WO2017122660A1 - ガス可視化装置、ガス可視化方法およびガス可視化プログラム - Google Patents

ガス可視化装置、ガス可視化方法およびガス可視化プログラム Download PDF

Info

Publication number
WO2017122660A1
WO2017122660A1 PCT/JP2017/000580 JP2017000580W WO2017122660A1 WO 2017122660 A1 WO2017122660 A1 WO 2017122660A1 JP 2017000580 W JP2017000580 W JP 2017000580W WO 2017122660 A1 WO2017122660 A1 WO 2017122660A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
gas
visible
image processing
infrared
Prior art date
Application number
PCT/JP2017/000580
Other languages
English (en)
French (fr)
Inventor
都築 斉一
土屋 信介
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017561125A priority Critical patent/JP6874694B2/ja
Publication of WO2017122660A1 publication Critical patent/WO2017122660A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light

Definitions

  • the present invention relates to a gas visualization device, a gas visualization method, and a gas visualization program that generate an image (hereinafter, simply referred to as a visible image) that visualizes a gas to be detected using an infrared image.
  • a visible image an image that visualizes a gas to be detected using an infrared image.
  • Patent Literature 1 there are a gas detection device described in Patent Literature 1 and a gas leakage detection device described in Patent Literature 2 below.
  • the gas detection device disclosed in Patent Document 1 includes a sealed structure in which a gas to be detected is sealed, a structure heating unit that heats the sealed structure, and an infrared ray having a wavelength that is absorbed by the gas to be detected.
  • An optical filter that receives infrared rays radiated from a sealed structure heated by the means, an infrared detection means that receives infrared rays that have passed through the optical filter and converts them into detection signals, and a signal that displays the output of the infrared detection means as a visible image Display means.
  • the detected gas is shown in black. The higher the concentration of the gas to be detected, the darker the black portion.
  • the gas leak detection device of Patent Document 2 includes an infrared camera that captures an inspection target region and an image processing unit that processes an infrared image captured by the infrared camera.
  • the image processing unit includes a fluctuation extraction unit that extracts dynamic fluctuation due to gas leakage from a plurality of infrared images arranged in time series. Further, the gas leak detection device synthesizes and displays a fluctuation indicating the detected gas on the background image.
  • Detected gas undergoes image processing for visualization.
  • image processing the information of the gas to be detected may be simplified or exaggerated extremely. Therefore, the conventional visible image has a problem that it is difficult for the user to determine the presence or absence of the gas to be detected.
  • an object of the present invention is to provide a gas visualization device, a gas visualization method, and a gas visualization program that can generate a visible image that allows a user to easily determine the presence or absence of a gas to be detected.
  • a first aspect of the present invention is a receiving unit that receives an infrared image obtained by photographing a monitoring region, an image generating unit that generates a first visible image that visualizes a gas to be detected in the monitoring region based on the infrared image,
  • the present invention is directed to a gas visualization apparatus including an image processing unit that performs image processing using a plurality of parameter values different from each other based on the first visible image and generates a plurality of second visible images for display.
  • the second aspect of the present invention includes a receiving step for receiving an infrared image obtained by photographing a monitoring region, an image generating step for generating a first visible image in which a gas to be detected is visualized based on the infrared image, and the first visible image.
  • the present invention is directed to a gas visualization method including an image processing step of performing image processing using a plurality of different parameter values and generating a plurality of second visible images for display.
  • a receiving unit that receives an infrared image obtained by imaging a monitoring region, an image generating unit that generates a first visible image that visualizes a gas to be detected based on the infrared image, and the first visible image
  • the present invention is directed to a gas visualization program for causing a computer device to function as an image processing unit that performs image processing using a plurality of different parameter values and generates a plurality of second visible images for display.
  • a plurality of second visible images are generated by image processing using a plurality of parameter values that are different from each other. Therefore, it is easy for the user to determine the presence or absence of the gas to be detected. It is possible to provide a gas visualization program.
  • FIG. 4 is a flowchart showing a detailed processing procedure of step S03 in FIG. 3 (that is, the image generation unit in FIG. 1). It is the graph which shows time series pixel data, and the graph which shows frequency component data.
  • FIG. 4 is a flowchart showing a detailed processing procedure of step S06 in FIG. 3 (that is, the image processing unit in FIG. 1). It is a figure which shows the processing content of step S24 of FIG.
  • FIG. 4 is a flowchart showing a detailed processing procedure of step S09 in FIG. 3 (that is, the image processing unit in FIG. 1). It is a figure which shows the hardware constitutions and functional block constitution of the server apparatus which applied the gas visualization apparatus which concerns on a modification.
  • the gas monitor 1A has an external appearance such as a portable video camera, a notebook PC, a smartphone, or a tablet terminal, and includes an infrared imaging device 11, a gas visualization device 12, a display device 13, and an input device 14. And.
  • the infrared imaging device 11 captures, for example, a region where gas leakage should be monitored (hereinafter referred to as a monitoring region), and generates a digital infrared moving image Vir having a predetermined frame rate.
  • the infrared imaging device 11 sequentially outputs the generated infrared moving image Vir to the gas visualization device 12.
  • the infrared moving image Vir is an example of an infrared image.
  • the infrared imaging device 11 includes an infrared optical system 111, an optical filter 112, an area image sensor (two-dimensional image sensor) 113, and a signal processing unit 114.
  • the infrared optical system 111 emits the infrared ray IR0 incident from the monitoring region serving as a subject to the optical filter 112 in order to form an image on the area image sensor 113.
  • the optical filter 112 is disposed on the optical path connecting the infrared optical system 111 and the area image sensor 113, and allows only the infrared IR1 included in the predetermined wavelength band among the infrared IR0 having passed through the infrared optical system 111 to pass therethrough.
  • the pass wavelength band of the optical filter 112 is substantially set to the absorption wavelength band of the gas to be detected.
  • the pass wavelength band is set to a medium wavelength range from 3.2 ⁇ m to 3.4 ⁇ m
  • the gases described in the upper row of the right column of Table 1 can be detected.
  • the passing wavelength band is a long wavelength range
  • the gases described in the lower row of the right column of Table 1 can be detected.
  • the area image sensor 113 performs photoelectric conversion on the infrared ray IR1 that has passed through the optical filter 112, and generates and outputs an analog electrical signal AS that represents an infrared image of the monitoring area.
  • the operation principle and material of the area image sensor 113 are appropriately selected according to the pass wavelength band of the optical filter 112. If the pass wavelength band is 3.2 ⁇ m to 3.4 ⁇ m, a cooled indium antimonide image sensor or the like is used. If the pass wavelength band is 10 ⁇ m to 11 ⁇ m, the cooled QWIP (quantum well infrared detector) or the like is used. Is used.
  • the signal processing unit 114 receives the analog signal AS from the area image sensor 113, converts it into a digital signal, and generates an infrared moving image Vir. Note that the signal processing unit 114 may perform known image processing as necessary. The signal processing unit 114 sequentially outputs the generated infrared moving image Vir to the gas visualization device 12 at a predetermined frame rate.
  • the gas visualization device 12 includes a communication unit 121, a CPU 122 as a typical example of a computer device, a nonvolatile memory 123, and a main memory 124.
  • the communication unit 121 is a communication interface between the gas visualization device 12 and the other devices 11, 13, and 14.
  • the CPU 122 executes the program P1A stored in advance in the non-volatile memory 123 by using the main memory 124 as a work area, so that as shown on the left side of FIG. , Function as an image processing unit 127 and a display control unit 128.
  • the gas visualization device 12 uses the infrared moving image Vir received from the infrared imaging device 11 to generate the first visible image Iv1 that visualizes the detected gas that may exist in the monitoring region. Thereafter, predetermined image processing is performed on the first visible image Iv1 to generate a second visible image Iv2.
  • the display control unit 128 transfers the second visible image Iv2 to the display device 13.
  • the second visible image Iv2 shows the detected gas A2 leaking into the monitoring area A1, and at least one graphical user interface part (hereinafter referred to as GUI part) A3 is synthesized.
  • the GUI unit A3 is, for example, a slider and is assigned parameters used in image processing that can be selected by the user.
  • the GUI unit A3 is slid by the user to increase or decrease the parameter value.
  • the second visible image Iv2 may indicate the leakage position P1 of the gas to be detected.
  • the display device 13 is, for example, a liquid crystal display, and sequentially displays the second visible image Iv2 sequentially transferred from the display control unit 128 of the gas visualization device 12.
  • the input device 14 is a touch panel incorporated in the display device 13, for example, and is operated by the user.
  • the user selects the parameter and changes the parameter value by sliding the GUI unit A3 displayed on the display device 13 with the finger.
  • the input device 14 transmits information including the selected parameter and parameter value (hereinafter referred to as parameter change request) to the CPU 122.
  • step S01 of FIG. 3 the infrared imaging device 11 generates an infrared moving image Vir from the infrared IR generated from the monitoring area and transfers it to the gas visualization device 12, as described above.
  • step S02 the communication unit 121 of the gas visualization device 12 sequentially receives each frame constituting the infrared moving image Vir and sequentially stores it in the main memory 124 under the control of the receiving unit 125 (CPU 122).
  • the infrared video Vir in the main memory 124 includes at least k frames F (1), F (2),... F (k) arranged in time series as schematically shown in FIG. k is the total number of frames in the main memory 124, and may be a natural number of 3 or more in principle, but is desirably a relatively large value (more than 21 in the present embodiment).
  • Each frame F (1) to F (k) typically includes m pixels P (1) to P (m) in a dot matrix shape.
  • the value of each pixel P (1) to P (m) indicates the temperature of the own pixel.
  • the frames F (1) to F (k) in the main memory 124 are updated by, for example, a FIFO (First-In, First-Out) method.
  • time series pixel data D1 (1) to D1 (m) data obtained by arranging the values of the pixels P existing at the same position in the frames F (1) to F (k) in time series is referred to as time series pixel data D1 (1) to D1 (m).
  • FIG. 4 typically shows time-series pixel data D1 (1) including the value of the first pixel P of each frame F.
  • FIG. 4 also shows time-series pixel data D1 (m).
  • step S03 the CPU 122 functions as the image generation unit 126 and performs predetermined statistical processing on the time-series pixel data D1.
  • the CPU 122 generates a first visible image Iv1 that visualizes the gas to be detected that may exist in the monitoring region, based on the infrared moving image Vir.
  • a known technique can be used as the detection method of the gas to be detected, but in the present embodiment, the following characteristic statistical processing is adopted.
  • the temperature change due to gas leakage is slight, for example, 0.2 ° C.
  • the temperature in the monitoring region is greatly changed in a short time such as 4 ° C. due to the influence of the weather or the like. If the gas leakage and the temperature change in the monitoring area occur simultaneously, the temperature change due to the leaked gas and the temperature change in the monitoring area overlap. Since the temperature change in the monitoring area is larger than the gas temperature change, in conventional gas detection using infrared images, the temperature change of the leakage gas is buried in the temperature change of the monitoring area, and the gas to be detected is very visible. The Applicant has found it difficult. In view of this problem, the present applicant has adopted statistical processing as shown in FIG.
  • step S11 of FIG. 5 the CPU 122 calculates a simple moving average of the first predetermined number of frames Mf1 in the m sets of time-series pixel data D1, and generates m sets of frequency component data D2.
  • Mf1 may be a natural number satisfying Mf1 ⁇ k, but is set to 21, for example.
  • the frequency component data D2 is calculated by using the target frame and the past and future 10 consecutive frames based on the target frame.
  • FIG. 6 shows a graph C1 of time-series pixel data D1 at a certain pixel position and a graph C2 of frequency component data (that is, simple moving average value) D2 corresponding thereto.
  • the graph C1 is obtained by connecting the target pixel values with lines in the order of frames.
  • the time variation component of the temperature of the monitoring region the time variation component of the temperature of the leaked gas, and the area image sensor 113 Including time-varying components of noise.
  • the graph C2 is obtained by extracting the low-frequency component of the graph C1, and substantially includes a temporal variation component of the temperature of the monitoring region. For this reason, the graph C2 varies gently as compared with the graph C1.
  • step S12 the CPU 122 calculates a difference value between the time-series pixel data D1 and the frequency component data D2 for each pixel position, and generates m sets of difference data D3.
  • the difference data D3 (1) is a difference value between the time series pixel data D1 (1) and the frequency component data D2 (1)
  • the difference data D3 (2) is the time series pixel data D1 (2 ) And frequency component data D2 (2).
  • the other difference data D3 (3) and later are similarly calculated.
  • FIG. 7 shows a graph C3 showing the change over time of the difference data D3 from the time-series pixel data D1 and the frequency component data D2 shown in FIG.
  • the graph C3 fluctuates with a relatively small amplitude in small increments before the gas to be detected starts leaking (that is, from the first to the approximately 90th frame). This indicates noise of the area image sensor 113.
  • the variation in the amplitude and waveform of the graph C3 is larger than before the leakage.
  • the amplitude of the graph C3 is about 0.4 ° C.
  • step S13 the CPU 122 calculates the moving standard deviation and the moving variance of the second predetermined frame number Mf2 in the m sets of difference data D3, and generates m sets of first variation data D4.
  • Mf2 is a natural number that satisfies Mf2 ⁇ Mf1, and may be any value that can calculate a statistically significant standard deviation.
  • the second predetermined frame number Mf2 is set to 21 which is the same as the first predetermined frame number Mf1 described above.
  • FIG. 8 shows a graph C4 of the first variation data D4 at a certain pixel position.
  • the graph C4 is obtained by connecting standard deviations at certain pixel positions with lines in the order of frames.
  • the vertical axis indicates the standard deviation, but when the variance is calculated in step S13, the vertical axis indicates the variance.
  • the frequency component data D2 representing the temperature change of the monitoring region is removed from the time-series pixel data D1 representing the infrared image of the monitoring region. Therefore, the first variation data D4 is a set of k infrared image frames in which the gas to be detected is accurately visualized by removing the influence of the temperature change in the monitoring region when the gas leakage occurs.
  • step S03 the CPU 122 determines whether or not the total movement standard deviation constituting the m sets of first variation data is greater than or equal to a predetermined third threshold value.
  • the third threshold value is appropriately determined based on the specification of the gas monitor 1A and the like, but is set to 0.03 in the present embodiment.
  • step S04 the CPU 122 regards that the gas to be detected has not leaked in the monitoring area, and proceeds to step S05.
  • step S05 the CPU 122 functions as the display control unit 128 and transfers the first variation data D4 stored in the main memory 124 to the display device 13 in time series in units of frames.
  • the display device 13 sequentially displays the received first variation data D4 as a first visible image Iv1 in units of frames. In this case, the gas to be detected is not displayed on the display device 13.
  • the CPU 122 regards that a gas leak has occurred and performs the step S06.
  • the CPU 122 functions as the image processing unit 127, performs the image processing shown in FIG. 9, and generates the second visible image Iv2 for display based on the first variation data D4.
  • step S21 of FIG. 9 the CPU 122 performs edge processing as a first example of predetermined image processing for each frame constituted by the first variation data D4.
  • edge processing an edge on the first visible image Iv1 is enhanced (edge enhancement), or noise on the first visible image Iv1 is removed (smoothing).
  • edge processing an operator composed of a pixel of interest and peripheral pixels is used. When the number of pixels of the operator is reduced to 3 ⁇ 3 pixels, for example, the edge on the first visible image is easily enhanced. On the other hand, when the number of pixels of the operator is increased, such as 5 ⁇ 5 pixels, the noise of the first visible image is easily removed.
  • noise may appear due to blurring of the infrared imaging device 11 and / or the monitoring area.
  • the CPU 122 performs filtering on each frame of the first variation data D4 using an operator having a predetermined number of pixels for noise removal and the like.
  • the number of pixels of the operator is set by default or by the user in advance.
  • the CPU 122 performs motion detection as a second example of predetermined image processing for each frame composed of the edge-processed first variation data D4 and arranged in time series. Do.
  • moving objects for example, people and / or vehicles
  • moving objects other than the gas to be detected can be removed from the first visible image Iv1.
  • step S22 the CPU 122 detects the amount of change in pixel value (temperature) per unit time for each pixel position, and then determines whether the amount of temperature change at each pixel position is equal to or greater than a predetermined first threshold. . Since the temperature change of the detected gas is about 0.4 ° C., in the moving object detection, when the first threshold is set to 1 ° C. or more, the CPU 122 can specify a pixel representing a moving object other than the detected gas. The corresponding pixel value is removed from the single variation data D4.
  • the CPU 122 determines the concentration / thickness product of the gas to be detected as a third example of the predetermined image processing. According to the determination of the concentration-thickness product, it is possible to remove moving objects (for example, water vapor and / or vehicle) other than the gas to be detected from the first visible image.
  • moving objects for example, water vapor and / or vehicle
  • the CPU 122 uses the time-series pixel data D1 and the first variation data D4 in the main memory 124 to calculate the concentration / thickness product of the gas to be detected for each pixel.
  • the concentration-thickness product is a value obtained by integrating the concentration of the gas to be detected in the depth direction, and can be calculated using a known technique. Thereafter, the CPU 122 determines for each pixel whether or not the calculated density / thickness product is equal to or greater than a predetermined second threshold value.
  • the second threshold value is set to a concentration thickness product (for example, 200% LELm) that greatly exceeds the explosion lower limit value of the gas to be detected.
  • the CPU 122 Since the pixels above the second threshold indicate moving objects other than the detected gas, when the second threshold is set to 200% LELm or higher, for example, the CPU 122 identifies pixels representing moving objects other than the detected gas, The corresponding pixel value is removed from the first variation data D4.
  • the first threshold value and the second threshold value used in steps S22 and S23 are also set in advance by default or by the user.
  • step S24 is executed as a preferable example.
  • the CPU 122 estimates the leakage position P1 of the gas to be detected.
  • the leakage position P1 is estimated as, for example, an intersection P1 between the contour L1 of the detected gas A2 and the long axis L2 virtually drawn by the contour L1.
  • CPU122 synthesize
  • the CPU 122 synthesizes a predetermined number of GUI units A3 with each frame obtained in step S24.
  • parameters that can be changed by the user include an operator in edge processing, a first threshold value used in moving object detection, and a second threshold value used in determination of the density / thickness product. Therefore, in order to allow the user to individually set these parameter values, as shown in FIG. 2, three GUI parts A3 are synthesized.
  • step S25 the CPU 122 exits the process of FIG. 9 and performs step S07 of FIG.
  • step S07 the CPU 122 functions as the display control unit 128, and transfers the processed first variation data D4 processed in step S06 to the display device 13 as the second visible image Iv2 in time series in units of frames.
  • the display device 13 sequentially displays the received first variation data D4 in units of frames and provides the user with a second visible image Iv2 as shown in FIG.
  • the user views the second visible image Iv2 and determines whether or not a gas leak has occurred in the monitoring area A1.
  • the parameters used in each image processing in step S06 do not necessarily match the user's preference. Therefore, in the second visible image Iv2 displayed in step S07, the user may have difficulty in determining whether or not the gas to be detected has leaked.
  • the user operates each GUI unit A3 displayed on the display device 13 with a finger, a stylus pen, or the like to change at least one parameter value.
  • the input device 14 transmits a parameter change request indicating the changed parameters (operator, first threshold value, second threshold value) and the changed value to the CPU 122.
  • step S07 the CPU 122 waits for a predetermined time to receive a parameter change request from the input device 14 in step S08. If there is no change request for a predetermined time (NO in step S08), CPU 122 returns to step S01.
  • step S08 the CPU 122 functions as the image processing unit 127 again in step S09, performs the image processing shown in FIG. 11, and changes the parameter value.
  • a bi-visible image Iv2 is generated.
  • FIG. 11 differs from FIG. 9 in that steps S21 to S23 are replaced with steps S31 to S33. Other than that, there is no difference between FIG. 9 and FIG. Therefore, in FIG. 11, the same step numbers are assigned to the steps corresponding to the steps of FIG.
  • step S31 unlike step S21, the CPU 122 performs edge processing with the number of pixels of the operator sent from the input device 14.
  • step S32 unlike step S22, the CPU 122 performs moving body removal using the first threshold value sent from the input device 14.
  • step S33 unlike step S23, the CPU 122 determines the density thickness product using the second threshold value sent from the input device 14.
  • step S10 the CPU 122 functions as the display control unit 128, and transfers the processed first variation data D4 in step S09 to the display device 13 in time series in units of frames as the second visible image Iv2 whose parameters have been changed. .
  • the display device 13 sequentially displays the received first variation data D4 in frame units, and provides the user with the second visible image Iv2 whose parameters have been changed.
  • the CPU 122 first performs image processing using preset parameters, generates the second visible image Iv2, and displays it on the display device 13.
  • the user changes the parameter using the GUI unit A3.
  • the CPU 122 performs image processing using the parameters set by the user, generates the second visible image Iv2, and displays it on the display device 13.
  • parameters having different values depending on time are used to generate a plurality of second visible images Iv2. Therefore, if the user sets the parameters to desired values, The second visible image Iv2 that makes it easy to determine the presence or absence of the detection gas can be obtained.
  • the program (in other words, the application program) P1A includes steps S05, S07, and S10 (display control steps).
  • steps S05, S07, and S10 display control steps
  • these steps S05, S07, and S10 may be executed as processing on the basic software side. Therefore, the display control unit 128 is not an essential function for the gas visualization device 12 but an arbitrary function, and steps S05, S07, and S10 are not essential steps for the gas visualization method and the gas visualization program.
  • the predetermined image processing is edge processing, moving object detection, and density / thickness product determination.
  • the present invention is not limited thereto, and the gas visualization device 12 may perform at least one selected from these three types of image processing. Further, the gas visualization device 12 may perform other image processing.
  • the gas monitor 1 ⁇ / b> A has been described as including the infrared imaging device 11, the gas visualization device 12, the display device 13, and the input device 14.
  • the present invention is not limited to this, and the gas visualization device 12 may be mounted on the server device 3 connected to the network 2 as shown in FIG.
  • the server apparatus 3 receives an infrared moving image Vir and a parameter change request from the remote infrared imaging apparatus 4 via the network 2.
  • the server device 3 generates the second visible image Iv2 for display on the infrared imaging device 11 or the like based on the infrared moving image Vir or the parameter change request from the infrared imaging device 4.
  • the infrared imaging device 11 captures the infrared moving image Vir and the infrared imaging device 11 displays the second visible image Iv2.
  • the present invention is not limited to this, and the display of the second visible image Iv2 may be performed by a personal computer or the like connected to the network 2 at another location.
  • Gas monitor configuration >> The gas monitor 1B is different from the gas monitor 1A in that the CPU 122 executes the program P1B stored in the nonvolatile memory 123. Other than that, there is no difference between the two gas monitors 1A, 1B. Therefore, in the gas monitor 1B, components corresponding to the configuration of the gas monitor 1A are assigned the same reference numerals, and descriptions thereof are omitted.
  • FIG. 13 differs from FIG. 3 in that step S06 replaces step S41 and that steps S08 to S10 are not executed. Other than that, there is no difference between the two flow diagrams. Therefore, in FIG. 13, the same step numbers are assigned to the steps corresponding to the steps in FIG.
  • step S41 the CPU 122 functions as the image processing unit 127, performs image processing as shown in FIG. 14, and generates a second visible image Iv2 for display.
  • step S51 of FIG. 14 the CPU 122 selects one unselected parameter from a plurality of preset parameter sets.
  • each parameter set includes a combination of the number of pixels of the operator, the first threshold value, and the second threshold value that do not overlap each other.
  • step S52 the CPU 122 performs edge processing on each frame constituted by the first variation data D4.
  • the edge processing is as described in step S21. However, in the edge processing in step S52, an operator having the number of pixels selected in step S51 is used.
  • step S53 the CPU 122 performs moving object detection on the first variation data D4 subjected to the edge processing.
  • This moving object detection is the process as described in step S22, but in the moving object detection in step S53, the first threshold value selected in step S51 is used.
  • step S54 the CPU 122 determines the concentration / thickness product of the gas to be detected.
  • the determination of the density / thickness product is the process as described in step S23, but in step S54, the second threshold value selected in step S51 is used.
  • step S55 the CPU 122 determines whether or not all parameter sets have been selected. If NO, the CPU 122 regards that an unselected parameter set remains and performs step S51. Accordingly, steps S52 to S54 are repeatedly executed, and repeated image processing is performed using different parameter sets. As a result, a plurality of second visible images Iv2 having different appearances are generated in the main memory 124.
  • step S56 the CPU 122 generates a composite image Iv3 (see FIG. 15) obtained by combining the plurality of second visible images Iv2.
  • the reference symbol Iv ⁇ b> 2 is assigned to the three second visible images.
  • the composite image Iv3 in which the number of pixels of the operator is decreased as the second visible image Iv2 in the upper stage and the second threshold value is increased as the second visible image Iv2 on the left side is illustrated.
  • the CPU 122 functions as the display control unit 128, and transfers the composite image Iv3 generated in step S56 to the display device 13 in time series in units of frames.
  • the display device 13 sequentially displays the received composite image Iv3 in units of frames, thereby providing the user with a plurality of second visible images Iv2 collectively.
  • the CPU 122 generates a plurality of second visible images Iv2 by image processing using a plurality of parameter sets, and collectively displays them on the display device 13 using the composite image Iv3. Thereby, the user can confirm the leakage of the detected gas by using the favorite second visible image Iv2 in which it is easy to determine the presence or absence of the detected gas.
  • the programs P1A and P1B are not only provided by being stored in the nonvolatile memory 123, but may also be provided via a recording medium such as a DVD (Digital Versatile Disc) or a network.
  • the gas visualization device, gas visualization method, and gas visualization program according to the present invention can generate a visible image that allows a user to easily determine the presence or absence of a gas to be detected, and is suitable for a gas monitor or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

ガス可視化装置は、監視領域を撮影した赤外線画像を受け取る受信部(125)と、前記赤外線画像に基づき被検出ガスを可視化した第一可視画像を生成する画像生成部(126)と、前記第一可視画像に基づいて、互いに異なる複数のパラメータ値を用いて画像処理を行って、表示用に複数の第二可視画像を生成する画像処理部(127)と、を備える。

Description

ガス可視化装置、ガス可視化方法およびガス可視化プログラム
 本発明は、赤外線画像を用いて、被検出ガスを可視化した画像(以下、単に、可視画像ということがある)を生成するガス可視化装置、ガス可視化方法およびガス可視化プログラムに関する。
 従来、上記のようなガス可視化装置としては、例えば、下記の特許文献1に記載の気体検出装置および下記の特許文献2に記載のガス漏れ検出装置がある。
 特許文献1の気体検出装置は、被検出ガスが封入されている密閉構造体と、密閉構造体を加熱する構造体加熱手段と、被検出ガスによって吸収される波長の赤外線を透過し構造体加熱手段によって加熱された密閉構造体から放射される赤外線を受ける光学フィルタと、光学フィルタを透過した赤外線を受光し検出信号に変換する赤外線検出手段と、赤外線検出手段の出力を可視画像として表示する信号表示手段とを備える。この可視画像において、被検出ガスは黒い色で示される。被検出ガスが高濃度である程、黒い部分が濃くなる。
 また、特許文献2のガス漏れ検出装置は、検査対象領域を撮影する赤外線カメラと、赤外線カメラにより撮影された赤外線画像を処理する画像処理部とを有する。画像処理部は、時系列に並べられた複数の赤外線画像からガス漏れによる動的なゆらぎを抽出するゆらぎ抽出部を有する。また、ガス漏れ検出装置は、被検出ガスを示すゆらぎを背景画像に合成し表示する。
特開2015-99168号公報 特開2012-58093号公報
 被検出ガスは、可視化のために画像処理を経る。この画像処理により、被検出ガスの情報は単純化されるか、極端に誇張されることがある。そのため、従来の可視画像には、ユーザが被検出ガスの有無を判断し難いという問題点があった。
 それゆえに、本発明の目的は、被検出ガスの有無をユーザが判断し易い可視画像を生成可能なガス可視化装置、ガス可視化方法およびガス可視化プログラムを提供することである。
 本発明の第一形態は、監視領域を撮影した赤外線画像を受け取る受信部と、前記赤外線画像に基づき、前記監視領域における被検出ガスを可視化した第一可視画像を生成する画像生成部と、前記第一可視画像に基づいて、互いに異なる複数のパラメータ値を用いて画像処理を行って、表示用に複数の第二可視画像を生成する画像処理部と、を備えたガス可視化装置に向けられる。
 本発明の第二形態は、監視領域を撮影した赤外線画像を受け取る受信ステップと、前記赤外線画像に基づき被検出ガスを可視化した第一可視画像を生成する画像生成ステップと、前記第一可視画像に基づいて、互いに異なる複数のパラメータ値を用いて画像処理を行って、表示用に複数の第二可視画像を生成する画像処理ステップと、を備えたガス可視化方法に向けられる。
 本発明の第三形態は、監視領域を撮影した赤外線画像を受け取る受信部、前記赤外線画像に基づき被検出ガスを可視化した第一可視画像を生成する画像生成部、および、前記第一可視画像に基づいて、互いに異なる複数のパラメータ値を用いて画像処理を行って、表示用に複数の第二可視画像を生成する画像処理部として、コンピュータ装置を機能させるためのガス可視化プログラムに向けられる。
 上記各形態によれば、互いに異なる複数のパラメータ値を用いた画像処理により、複数の第二可視画像が生成されるため、ユーザが被検出ガスの有無を判断し易いガス可視化装置、ガス可視化方法、および、ガス可視化プログラムを提供することが可能となる。
本発明の各実施形態に係るガス可視化装置の応用例であるガスモニタのハードウェア構成および機能ブロック構成を示す図である。 第一実施形態に係るガスモニタに表示される可視画像を示す図である。 第一実施形態に係るガスモニタの動作を示すフロー図であって、第一実施形態に係るガス可視化方法およびガス可視化プログラムを示すフロー図である。 赤外線動画を構成する各フレームを示す模式図である。 図3のステップS03(即ち、図1の画像生成部)の詳細な処理手順を示すフロー図である。 時系列画素データを示すグラフと、周波数成分データを示すグラフである。 差分データを示すグラフである。 第一ばらつきデータを示すグラフである。 図3のステップS06(即ち、図1の画像処理部)の詳細な処理手順を示すフロー図である。 図9のステップS24の処理内容を示す図である。 図3のステップS09(即ち、図1の画像処理部)の詳細な処理手順を示すフロー図である。 変形例に係るガス可視化装置を応用したサーバ装置のハードウェア構成および機能ブロック構成を示す図である。 第二実施形態に係るガスモニタの動作を示すフロー図であって、第二実施形態に係るガス可視化方法およびガス可視化プログラムを示すフロー図である。 図13のステップS41(即ち、図1の画像処理部)の詳細な処理手順を示すフロー図である。 図14のステップS56で生成される合成画像を示す図である。
≪1.第一実施形態≫
 以下、上記図面を参照して、本発明の第一実施形態に係るガス可視化装置、ガス可視化方法およびガス可視化プログラムを応用したガスモニタ1Aを詳説する。
≪1-1.ガスモニタの構成≫
 図1において、ガスモニタ1Aは、例えばポータブルビデオカメラ、ノート型PC、スマートフォンまたはタブレット端末のような外観をしており、赤外線撮影装置11と、ガス可視化装置12と、表示装置13と、入力装置14と、を備えている。
 赤外線撮影装置11は、例えばガス漏れを監視すべき領域(以下、監視領域という)を撮影して、予め定められたフレームレートを有するデジタルの赤外線動画Virを生成する。赤外線撮影装置11は、生成した赤外線動画Virをガス可視化装置12に順次出力する。ここで、赤外線動画Virは、赤外線画像の一例である。かかる赤外線動画Virを生成するため、赤外線撮影装置11は、赤外線光学系111と、光学フィルタ112と、エリアイメージセンサ(二次元イメージセンサ)113と、信号処理部114と、を備えている。
 赤外線光学系111は、被写体となる監視領域から入射された赤外線IR0を、エリアイメージセンサ113に結像させるために、光学フィルタ112に出射する。
 光学フィルタ112は、赤外線光学系111とエリアイメージセンサ113の間を結ぶ光路上に配置され、赤外線光学系111を通過した赤外線IR0のうち、所定波長帯に含まれる赤外線IR1のみを通過させる。ここで、光学フィルタ112の通過波長帯は、実質的に、被検出ガスの吸収波長帯域に設定される。例えば、通過波長帯を3.2μmから3.4μmの中波長域とすると、表1の右列上段に記載のガスが検知可能となる。また、通過波長帯を長波長域とすると、表1の右列下段に記載のガスが検知可能となる。
Figure JPOXMLDOC01-appb-T000001
 エリアイメージセンサ113は、光学フィルタ112を通過した赤外線IR1に対し光電変換を行って、監視領域の赤外線画像を表すアナログの電気信号ASを生成し出力する。エリアイメージセンサ113の動作原理および素材は、光学フィルタ112の通過波長帯により、適切に選ばれる。通過波長帯が3.2μm~3.4μmであれば、冷却型アンチモン化インジウムイメージセンサ等が使用され、通過波長帯が10μm~11μmであれば、冷却型QWIP(量子井戸型赤外線検知素子)等が使用される。
 なお、以下では、被検出ガスはメタンであるとして説明を続ける。
 信号処理部114は、エリアイメージセンサ113からアナログ信号ASを受信し、デジタル信号に変換して赤外線動画Virを生成する。なお、信号処理部114は、必要に応じて周知の画像処理を行うこともある。信号処理部114は、生成した赤外線動画Virを、所定のフレームレートでガス可視化装置12に順次出力する。
 ガス可視化装置12は、通信部121と、コンピュータ装置の典型例としてのCPU122と、不揮発性メモリ123と、メインメモリ124と、を備えている。
 通信部121は、ガス可視化装置12と他装置11,13,14との通信インタフェイスである。
 CPU122は、不揮発性メモリ123に予め格納されているプログラムP1Aを、メインメモリ124を作業領域として用いて実行することで、図1の左側に示すように、受信部125と、画像生成部126と、画像処理部127と、表示制御部128として機能する。これらの機能ブロック125~127により、ガス可視化装置12は、赤外線撮影装置11から受け取った赤外線動画Virを用いて、監視領域内に存在しうる被検出ガスを可視化した第一可視画像Iv1を生成し、その後、第一可視画像Iv1に対して所定の画像処理を行って、第二可視画像Iv2を生成する。表示制御部128は、第二可視画像Iv2を表示装置13に転送する。
 第二可視画像Iv2には、図2に示すように、監視領域A1に漏出する被検出ガスA2が示される共に、少なくとも一つのグラフィカルユーザインタフェイス部(以下、GUI部という)A3が合成される。GUI部A3は、例えば、スライダであって、ユーザが選択可能な画像処理で使用されるパラメータが割り当てられる。また、GUI部A3は、パラメータの値を増減させるために、ユーザによりスライド操作される。なお、図2に示すように、第二可視画像Iv2には、被検出ガスの漏出位置P1が示されることもある。
 表示装置13は、例えば液晶ディプレイであって、ガス可視化装置12の表示制御部128から順次転送されてくる第二可視画像Iv2を順次表示する。
 また、入力装置14は、例えば表示装置13に組み込まれたタッチパネルであって、ユーザにより操作される。本実施形態では、ユーザは、表示装置13に表示されたGUI部A3をユーザが指でスライドさせることで、パラメータを選択するとともにパラメータ値を変更する。これに応答して、入力装置14は、選択されたパラメータおよびパラメータ値を含む情報(以下、パラメータ変更要求という)をCPU122に送信する。
≪1-2.ガスモニタの動作≫
 次に、図3等を参照して、ガスモニタ1Aの動作、特にガス可視化装置12の動作を重点的に説明する。
 まず、図3のステップS01において、赤外線撮影装置11は、上述の通り、監視領域から生じる赤外線IRから赤外線動画Virを生成しガス可視化装置12に転送する。
 次に、ステップS02において、ガス可視化装置12の通信部121は、赤外線動画Virを構成する各フレームを順次受信し、受信部125(CPU122)の制御下でメインメモリ124に順次格納する。
 メインメモリ124内の赤外線動画Virは、図4に模式的に示すように、時系列に並ぶk個のフレームF(1),F(2),…F(k)を少なくとも含む。kは、メインメモリ124内の総フレーム数であって、原理的には3以上の自然数でよいが、相対的に大きな値(本実施形態では21超)とすることが望ましい。各フレームF(1)~F(k)は、模式的には、ドットマトリクス状のm個の画素P(1)~P(m)を含む。各画素P(1)~P(m)の値は自画素の温度を示す。なお、メインメモリ124内のフレームF(1)~F(k)は、例えばFIFO(First-In,First-Out)方式で更新される。
 本実施形態では、フレームF(1)~F(k)において同位置に存在する画素Pの値を時系列に並べたデータを、時系列画素データD1(1)~D1(m)という。なお、図4には、代表的に、各フレームFの1番目の画素Pの値からなる時系列画素データD1(1)が示される。図4にはさらに、時系列画素データD1(m)も示される。
 再度図3を参照する。ステップS03において、CPU122は、画像生成部126として機能し、時系列画素データD1に所定の統計処理を行う。これによって、CPU122は、赤外線動画Virに基づいて、監視領域に存在しうる被検出ガスを可視化した第一可視画像Iv1を生成する。ここで、被検出ガスの検出手法は公知技術を使用することも可能であるが、本実施形態では、下記の特徴的な統計処理が採用される。
 まず、特徴的な統計処理を採用する技術的背景を説明する。
 ガス漏れによる温度変化は僅かで例えば、0.2℃であるのに対し、監視領域の温度は天候等の影響で例えば4℃というように短時間の間に大きく変化する。ガス漏れと監視領域の温度変化とが同時に起こると、漏出ガスによる温度変化と、監視領域の温度変化とが重なることになる。監視領域の温度変化の方がガスの温度変化よりも大きいので、従来の赤外線画像を用いたガス検出では、監視領域の温度変化に漏出ガスの温度変化が埋もれ、被検出ガスの可視化が非常に困難であることを本件出願人は見出した。かかる問題点に鑑み、本件出願人は、図5に示すような統計処理をガス可視化装置12に採用するに至った。
 図5のステップS11において、CPU122は、m組の時系列画素データD1における第一所定フレーム数Mf1の単純移動平均を算出して、m組の周波数成分データD2を生成する。Mf1は、Mf1<kを満たす自然数であればよいが、例えば21とされる。この場合、例えば、対象となるフレームと、この対象フレームを基準として過去および未来の連続10フレームとを用いて、周波数成分データD2が算出される。
 ここで、図6には、ある画素位置の時系列画素データD1のグラフC1と、これに対応する周波数成分データ(即ち、単純移動平均値)D2のグラフC2とが示される。グラフC1は、対象となる画素値をフレーム順に線で結んだものであり、大略的には、監視領域の温度の時間変動成分と、漏出ガスの温度の時間変動成分と、エリアイメージセンサ113のノイズの時間変動成分とを含む。グラフC1に示す通り、時系列画素データD1は時間軸上で示す値は相対的に小刻みに変動する。それに対し、グラフC2は、グラフC1の低周波成分を抽出したものであり、実質的に、監視領域の温度の時間変動成分を含む。そのため、グラフC2は、グラフC1と比較してなだらかに変動する。
 再度図5を参照する。ステップS12において、CPU122は、各画素位置について、時系列画素データD1と周波数成分データD2との差分値を算出して、m組の差分データD3を生成する。具体的には、差分データD3(1)は、時系列画素データD1(1)および周波数成分データD2(1)の差分値であり、差分データD3(2)は、時系列画素データD1(2)および周波数成分データD2(2)の差分値である。他の差分データD3(3)以降も同様に算出される。
 ここで、図7には、図6に示す時系列画素データD1と周波数成分データD2から差分データD3の経時変化を示すグラフC3が示される。図7によれば、被検出ガスの漏出開始前(即ち、1番目から概ね90番目のフレームまでは)、グラフC3は、相対的に小さな振幅で小刻みに変動する。これは、エリアイメージセンサ113のノイズを示している。それに対し、被検出ガスの漏出開始後(即ち、90番目のフレーム以降)、グラフC3の振幅および波形のばらつきが、漏出前と比べて大きくなっている。具体的には、被検出ガスの漏出開始後、グラフC3の振幅は0.4℃程度となっている。
 再度図5を参照する。ステップS13において、CPU122は、m組の差分データD3における第二所定フレーム数Mf2の移動標準偏差や移動分散を算出して、m組の第一ばらつきデータD4を生成する。Mf2は、Mf2≦Mf1を満たす自然数であって、統計的に意義のある標準偏差を算出可能な値であればよい。本実施形態では、第二所定フレーム数Mf2は、前述の第一所定フレーム数Mf1と同じ21としている。
 ここで、図8には、ある画素位置での第一ばらつきデータD4のグラフC4が示される。グラフC4は、ある画素位置における標準偏差をフレーム順に線で結んだものである。図8において、縦軸は標準偏差を示すが、ステップS13で分散が算出される場合には、縦軸は分散となる。
 図5の統計処理で得られたm組の第一ばらつきデータD4では、監視領域の赤外線画像を表す時系列画素データD1から、監視領域の温度変化を表す周波数成分データD2が除去される。従って、第一ばらつきデータD4は、ガス漏れが発生している場合、監視領域の温度変化を影響と除去し被検出ガスを正確に可視化したk個の赤外線画像フレームの集まりとなる。
 以上のステップS13が終了すると、CPU122は、図5の処理を抜けて、図3のステップS04を行う。ステップS04では、CPU122は、m組の第一ばらつきデータを構成する全移動標準偏差が予め定められた第三閾値以上か否かを判断する。第三閾値は、ガスモニタ1Aの仕様等に基づき適宜適切に定められるが、本実施形態では0.03に設定される。
 ステップS04でNOと判断すると、CPU122は、監視領域にて被検出ガスが漏出していないとみなして、ステップS05に進む。ステップS05において、CPU122は、表示制御部128として機能し、メインメモリ124に格納されている第一ばらつきデータD4をフレーム単位で時系列に表示装置13に転送する。表示装置13は、受け取った第一ばらつきデータD4を第一可視画像Iv1としてフレーム単位で順次表示する。この場合、表示装置13には、被検出ガスは表示されない。
 それに対し、ステップS04でYESと判断すると、CPU122は、ガス漏れが発生しているとみなして、ステップS06を行う。この場合、CPU122は、画像処理部127として機能して、図9に示す画像処理を行って、第一ばらつきデータD4に基づき、表示用の第二可視画像Iv2を生成する。
 図9のステップS21において、CPU122は、第一ばらつきデータD4で構成される各フレームに対し、所定の画像処理の第一例としてのエッジ処理を行う。エッジ処理により、第一可視画像Iv1上のエッジが強調されたり(エッジ強調)、第一可視画像Iv1上のノイズが除去されたりする(平滑化)。周知の通り、エッジ処理では、注目画素と周辺画素とで構成されるオペレータが使用される。オペレータの画素数を例えば3×3画素というように少なくすると、第一可視画像上のエッジが強調され易くなる。それに対し、5×5画素というようにオペレータの画素数を多くすると、第一可視画像のノイズが除去され易くなる。
 第一可視画像には、赤外線撮影装置11および/または監視領域のぶれに起因して、ノイズが現れることがある。CPU122は、ノイズ除去等のために、予め定められた画素数のオペレータを用いて、第一ばらつきデータD4の各フレームに対しフィルタリングを行う。ここで、ステップS21では、オペレータの画素数は、デフォルトで、またはユーザにより予め設定されている。
 次のステップS22において、CPU122は、エッジ処理済の第一ばらつきデータD4で構成される各フレームであって、時系列に並ぶ各フレームに対し、所定の画像処理の第二例としての動体検出を行う。この動体検出によれば、第一可視画像Iv1から、被検出ガス以外の動体(例えば、人および/または車両)を除去することが可能となる。
 次に、ステップS22の処理をより詳細に説明する。動体検出において、CPU122は、画素位置ごとに、単位時間当たりの画素値(温度)の変化量を検出し、その後、各画素位置の温度変化量が所定の第一閾値以上か否かを判断する。被検出ガスの温度変化は0.4℃程度であるため、動体検出では、第一閾値が1℃以上に設定されると、CPU122は、被検出ガス以外の動体を表す画素を特定でき、第一ばらつきデータD4から対応する画素値を除去する。
 次のステップS23において、CPU122は、所定の画像処理の第三例として、被検出ガスの濃度厚み積の判定を行う。濃度厚み積の判定によれば、第一可視画像から、被検出ガス以外の動体(例えば、水蒸気および/または車両)を除去することが可能となる。
 次にステップS23の処理をより詳細に説明する。CPU122は、メインメモリ124内の時系列画素データD1や第一ばらつきデータD4を用いて、被検出ガスの濃度厚み積を画素毎に算出する。濃度厚み積とは、被検出ガスの濃度を、その奥行き方向に積算した値であり、公知技術を用いて算出可能である。その後、CPU122は、算出した濃度厚み積が所定の第二閾値以上か否かを画素毎に判断する。第二閾値は、被検出ガスの爆発下限値を大きく超える濃度厚み積(例えば、200%LELm)に設定される。第二閾値以上の画素は、被検出ガス以外の動体を示すため、第二閾値が例えば200%LELm以上に設定されると、CPU122は、被検出ガス以外の動体を表す画素を特定して、第一ばらつきデータD4から対応する画素値を除去する。
 上記ステップS22,S23で使用される第一閾値および第二閾値もまた、デフォルトで、またはユーザにより予め設定されている。
 以上のステップS21~S23により、第一可視画像Iv1からノイズおよび被検出ガス以外の動体を除去されたフレーム群が生成される。
 本実施形態では、好ましい例として、ステップS24が実行される。ステップS24において、CPU122は、被検出ガスの漏出位置P1を推定する。漏出位置P1は、図10に示すように、例えば、被検出ガスA2の輪郭L1と、輪郭L1に仮想的に引かれた長軸L2との交点P1と推定される。CPU122は、各フレームに推定したガス漏れ位置P1を示すオブジェクトを合成する。
 次のステップS25において、CPU122は、ステップS24で得られた各フレームに、予め定められた個数のGUI部A3を合成する。本実施形態では、ユーザが変更可能なパラメータとして、エッジ処理におけるオペレータ、動体検出で用いられる第一閾値、および、濃度厚み積の判定で用いられる第二閾値が例示される。従って、これらパラメータ値を個々にユーザが設定可能にすべく、図2に示すように、三個のGUI部A3が合成される。
 ステップS25が終了すると、CPU122は、図9の処理を抜けて、図3のステップS07を行う。ステップS07では、CPU122は、表示制御部128として機能し、ステップS06の処理済の第一ばらつきデータD4をフレーム単位で時系列に表示装置13に、第二可視画像Iv2として転送する。表示装置13は、受け取った第一ばらつきデータD4をフレーム単位で順次表示して、図2に示すような第二可視画像Iv2をユーザに提供する。
 ユーザは第二可視画像Iv2を観視して、監視領域A1にガス漏れが発生しているか否かを判断する。しかしながら、ステップS06の各画像処理で用いられるパラメータは必ずしもユーザの好みに合っている訳ではない。それゆえ、ステップS07で表示された第二可視画像Iv2では、被検出ガスの漏出の有無をユーザが判断し辛い場合がある。この場合、ユーザは、表示装置13に表示された各GUI部A3を指やスタイラスペン等で操作して、少なくとも一つのパラメータ値を変更する。これに応答して、入力装置14は、変更されたパラメータ(オペレータ、第一閾値、第二閾値)と、変更後の値とを示すパラメータ変更要求をCPU122に送信する。
 CPU122は、ステップS07の実行後、ステップS08において、入力装置14からパラメータ変更要求が送られてくることを所定時間待機している。所定時間の間変更要求がなければ(ステップS08でNO)、CPU122は、ステップS01に戻る。
 それに対し、パラメータ変更要求があれば(ステップS08でYES)、CPU122は、ステップS09にて、再度画像処理部127として機能して、図11に示す画像処理を行って、パラメータ値を変更した第二可視画像Iv2を生成する。なお、図11は、図9と比較すると、ステップS21~S23がステップS31~S33に置換される点で相違する。それ以外に図9および図11の間には相違点は無い。それゆえ、図11において図9のステップに相当するものには同一ステップ番号を付け、それぞれの説明を省略する。
 ステップS31において、CPU122は、ステップS21とは異なり、入力装置14から送られてきたオペレータの画素数でエッジ処理を行う。
 また、ステップS32において、CPU122は、ステップS22とは異なり、入力装置14から送られてきた第一閾値を用いて動体除去を行う。
 また、ステップS33において、CPU122は、ステップS23とは異なり、入力装置14から送られてきた第二閾値を用いて濃度厚み積の判定を行う。
 CPU122は、図11のステップS25を終了すると、図11の処理を抜けて、図3のステップS10を行う。ステップS10において、CPU122は、表示制御部128として機能し、ステップS09の処理済の第一ばらつきデータD4をフレーム単位で時系列に表示装置13に、パラメータ変更済の第二可視画像Iv2として転送する。表示装置13は、受け取った第一ばらつきデータD4をフレーム単位で順次表示して、パラメータ変更済の第二可視画像Iv2をユーザに提供する。
≪1-3.効果≫
 以上の説明した通り、CPU122は、まず、予め設定されたパラメータを用いて画像処理を行って、第二可視画像Iv2を生成し表示装置13に表示する。ユーザは、初期の第二可視画像Iv2が自分の好みに合わない場合、GUI部A3を用いてパラメータを変更する。その後、CPU122は、ユーザにより設定されたパラメータを用いて画像処理を行って、第二可視画像Iv2を生成し表示装置13に表示する。
 上記の通り、本実施形態の画像処理では、時間により異なる値のパラメータが使用されて、複数の第二可視画像Iv2が生成されるため、ユーザは、パラメータを好みの値に設定すれば、被検出ガスの有無を判断し易い第二可視画像Iv2を得ることが出来る。
≪1-4.付記1≫
 上記実施形態では、プログラム(換言するとアプリケーションプログラム)P1AがステップS05,S07,S10(表示制御のステップ)を含んでいた。しかし、ガスモニタ1Aに、アプリケーションプログラムP1A以外に、基本ソフト(Operating System)が実装されている場合、これらステップS05,S07,S10は、基本ソフト側の処理として実行されても構わない。従って、表示制御部128はガス可視化装置12に必須の機能では無く、任意の機能であるし、ステップS05,S07,S10は、ガス可視化方法およびガス可視化プログラムに必須のステップでは無い。
≪1-5.付記2≫
 上記実施形態では、所定の画像処理は、エッジ処理、動体検出および濃度厚み積の判定であった。しかし、これに限らず、ガス可視化装置12は、この三種の画像処理から選ばれた少なくとも一つ以上を行えば良い。また、ガス可視化装置12は、他の画像処理を行っても構わない。
≪1-6.変形例≫
 上記実施形態では、ガスモニタ1Aは、赤外線撮影装置11と、ガス可視化装置12と、表示装置13と、入力装置14とを備えるとして説明した。しかし、これに限らず、図12に示すように、ガス可視化装置12は、ネットワーク2に接続されたサーバ装置3に実装されても構わない。サーバ装置3には、ネットワーク2を介して、遠隔の赤外線撮影装置4から赤外線動画Virやパラメータ変更要求が送られてくることになる。サーバ装置3は、赤外線撮影装置4からの赤外線動画Virやパラメータ変更要求に基づき、赤外線撮影装置11等での表示のために第二可視画像Iv2を生成する。
 なお、上記変形例では、赤外線撮影装置11が赤外線動画Virを撮影し、赤外線撮影装置11において第二可視画像Iv2を表示すると説明した。しかし、これに限らず、第二可視画像Iv2の表示はさらに別の場所でネットワーク2に接続されたパーソナルコンピュータ等で行われても良い。
≪2.第二実施形態≫
 次に、前述の図面を参照して、本発明の第二実施形態に係るガス可視化装置、ガス可視化方法およびガス可視化プログラムを応用したガスモニタ1Bを詳説する。
≪2-1.ガスモニタの構成≫
 ガスモニタ1Bは、ガスモニタ1Aと比較すると、CPU122が不揮発性メモリ123に格納されたプログラムP1Bを実行する点で相違する。それ以外に、両ガスモニタ1A,1Bの間に相違点は無い。それゆえ、ガスモニタ1Bにおいて、ガスモニタ1Aの構成に相当するものには同一参照符号を付け、それぞれの説明を省略する。
≪2-2.ガスモニタの動作≫
 次に、図13等を参照して、ガスモニタ1Bの動作、特にガス可視化装置12の動作を重点的に説明する。
 図13は、図3と比較すると、ステップS06がステップS41に代わる点と、S08~S10が実行されない点とで相違する。それ以外に、両フロー図の間には相違点は無い。それゆえ、図13において、図3のステップに相当するものには同一ステップ番号を付け、それぞれの説明を省略する。
 ステップS41にて、CPU122は、画像処理部127として機能して、図14に示すような画像処理を行って、表示用の第二可視画像Iv2を生成する。
 図14のステップS51において、CPU122は、予め設定された複数のパラメータセットから、未選択のものを一つ選択する。ここで、各パラメータセットは、互いに重複しないオペレータの画素数、第一閾値および第二閾値の組み合わせで構成される。
 次のステップS52において、CPU122は、第一ばらつきデータD4で構成される各フレームに対しエッジ処理を行う。エッジ処理は、ステップS21で説明した通りであるが、ステップS52のエッジ処理では、ステップS51で選択された画素数のオペレータが使用される。
 次のステップS53において、CPU122は、エッジ処理済の第一ばらつきデータD4に対し動体検出を行う。この動体検出は、ステップS22で説明した通りの処理であるが、ステップS53の動体検出では、ステップS51で選択された第一閾値が使用される。
 次のステップS54において、CPU122は、被検出ガスの濃度厚み積の判定を行う。濃度厚み積の判定は、ステップS23で説明した通りの処理であるが、ステップS54では、ステップS51で選択された第二閾値が使用される。
 次のステップS55において、CPU122は、全てのパラメータセットを選択したか否かを判断し、NOと判断すると、未選択のパラメータセットが残っているとみなして、ステップS51を行う。これによって、ステップS52~S54が繰り返し実行され、互いに異なるパラメータセットを用いつつ繰り返し画像処理が行われる。その結果、メインメモリ124には、見え方が異なる複数の第二可視画像Iv2が生成される。
 ステップS55でYESと判断すると、ステップS56において、CPU122は、複数の第二可視画像Iv2を合成した合成画像Iv3(図15を参照)を生成する。なお、図15では、図示の都合上、三個の第二可視画像に参照符号Iv2を付している。また、図15において、上段の第二可視画像Iv2ほど、オペレータの画素数が少なくなり、左側の第二可視画像Iv2ほど、第二閾値が大きくなる合成画像Iv3が例示される。次の、ステップS57において、CPU122は、表示制御部128として機能し、ステップS56で生成した合成画像Iv3をフレーム単位で時系列に表示装置13に転送する。表示装置13は、受け取った合成画像Iv3をフレーム単位で順次表示して、これによって、複数の第二可視画像Iv2を一括してユーザに提供する。
≪2-3.効果≫
 以上の説明した通り、CPU122は、複数のパラメータセットを用いた画像処理により、複数の第二可視画像Iv2を生成し、合成画像Iv3によりこれらを表示装置13に一括表示する。これによって、ユーザは、被検出ガスの有無を判断し易い好みの第二可視画像Iv2を使って、被検出ガスの漏出を確認できる。
≪2-4.付記1≫
 なお、1-4~1-6欄の記載事項は、第二実施形態にも適用可能である。
≪2-5.付記2≫
 また、上記プログラムP1A,P1Bは、不揮発性メモリ123に格納されて提供されるだけでなく、DVD(Digital Versatile Disc)等の記録媒体やネットワークを介して提供されても構わない。
 2016年1月15日出願の特願2016-006067の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係るガス可視化装置、ガス可視化方法およびガス可視化プログラムは、被検出ガスの有無をユーザが判断し易い可視画像を生成可能であり、ガスモニタ等に好適である。
 1A,1B ガスモニタ
 11 赤外線撮影装置
 12 ガス可視化装置
 122 コンピュータ装置(CPU)
 P1A,P1B プログラム
 125 受信部
 126 画像生成部
 127 画像処理部
 128 表示制御部
 13 表示装置
 14 入力装置

Claims (8)

  1.  監視領域を撮影した赤外線画像を受け取る受信部と、
     前記赤外線画像に基づき、前記監視領域における被検出ガスを可視化した第一可視画像を生成する画像生成部と、
     前記第一可視画像に基づいて、互いに異なる複数のパラメータ値を用いて画像処理を行って、表示用に複数の第二可視画像を生成する画像処理部と、を備えたガス可視化装置。
  2.  前記画像処理がエッジ検出の場合、前記パラメータ値は、前記第一可視画像における注目画素に対する周辺画素数である、請求項1に記載のガス可視化装置。
  3.  前記画像処理が前記被検出ガス以外の動体検出の場合、前記画像処理部は、前記第一可視画像における各画素値の温度変化量を、前記パラメータ値としての予め定められた第一閾値と比較する、請求項1または2に記載のガス可視化装置。
  4.  前記画像処理が前記被検出ガスの濃度厚み積の算出の場合、前記画像処理部は、前記第一可視画像の画素毎に濃度厚み積を算出して、算出した濃度厚み積を、前記パラメータ値としての予め定められた第二閾値と比較する、請求項1~3のいずれかに記載のガス可視化装置。
  5.  前記画像生成部は、
      前記赤外線画像から、前記監視領域の温度変化を示す低周波成分を抽出して、差分データを生成し、その後、
      前記差分データに基づき前記第一可視画像を生成する、請求項1~4のいずれかに記載のガス可視化装置。
  6.  前記複数の第二可視画像のそれぞれには、ユーザがパラメータ値を調整するためのGUI部が合成される、請求項1~5のいずれかに記載のガス可視化装置。
  7.  監視領域を撮影した赤外線画像を受け取る受信ステップと、
     前記赤外線画像に基づき被検出ガスを可視化した第一可視画像を生成する画像生成ステップと、
     前記第一可視画像に基づいて、互いに異なる複数のパラメータ値を用いて画像処理を行って、表示用に複数の第二可視画像を生成する画像処理ステップと、を備えたガス可視化方法。
  8.  監視領域を撮影した赤外線画像を受け取る受信部、
     前記赤外線画像に基づき被検出ガスを可視化した第一可視画像を生成する画像生成部、および、
     前記第一可視画像に基づいて、互いに異なる複数のパラメータ値を用いて画像処理を行って、表示用に複数の第二可視画像を生成する画像処理部として、コンピュータ装置を機能させるためのガス可視化プログラム。
PCT/JP2017/000580 2016-01-15 2017-01-11 ガス可視化装置、ガス可視化方法およびガス可視化プログラム WO2017122660A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017561125A JP6874694B2 (ja) 2016-01-15 2017-01-11 ガス可視化装置、ガス可視化方法およびガス可視化プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-006067 2016-01-15
JP2016006067 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017122660A1 true WO2017122660A1 (ja) 2017-07-20

Family

ID=59311793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000580 WO2017122660A1 (ja) 2016-01-15 2017-01-11 ガス可視化装置、ガス可視化方法およびガス可視化プログラム

Country Status (2)

Country Link
JP (1) JP6874694B2 (ja)
WO (1) WO2017122660A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058864A1 (ja) * 2017-09-21 2019-03-28 コニカミノルタ株式会社 ガス検査レポート作成支援装置、ガス検査レポート作成支援方法、及び、ガス検査レポート作成支援プログラム
WO2019058863A1 (ja) * 2017-09-21 2019-03-28 コニカミノルタ株式会社 ガス検知用画像処理装置、ガス検知用画像処理方法、及び、ガス検知用画像処理プログラム
JP2019184485A (ja) * 2018-04-13 2019-10-24 コニカミノルタ株式会社 ガス検知用画像処理装置、ガス検知用画像処理方法、及び、ガス検知用画像処理プログラム
JP2020016527A (ja) * 2018-07-25 2020-01-30 コニカミノルタ株式会社 定置式ガス検知装置の設置箇所の調査方法
WO2020039606A1 (ja) * 2018-08-20 2020-02-27 コニカミノルタ株式会社 ガス検出装置、情報処理装置およびプログラム
WO2020235165A1 (ja) * 2019-05-20 2020-11-26 コニカミノルタ株式会社 検査データ管理システム、検査装置および検査データ送信方法
WO2020235337A1 (ja) * 2019-05-20 2020-11-26 コニカミノルタ株式会社 検査データ管理システム、管理装置、管理方法および端末装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232336A (ja) * 1985-08-05 1987-02-12 Toshiba Corp Itvカメラによる液体漏洩検出方法
US20060117108A1 (en) * 2004-12-01 2006-06-01 Richard Salisbury Touch screen control
JP2008153119A (ja) * 2006-12-19 2008-07-03 Nippon Steel Corp 電池検査システム、及び電池検査方法
JP2012058093A (ja) * 2010-09-09 2012-03-22 Mitsubishi Electric Building Techno Service Co Ltd ガス漏れ検出装置
US20140002639A1 (en) * 2011-03-25 2014-01-02 Joseph M. Cheben Autonomous Detection of Chemical Plumes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4286970B2 (ja) * 1999-06-02 2009-07-01 Nec三栄株式会社 ガス可視化装置及びガス可視化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232336A (ja) * 1985-08-05 1987-02-12 Toshiba Corp Itvカメラによる液体漏洩検出方法
US20060117108A1 (en) * 2004-12-01 2006-06-01 Richard Salisbury Touch screen control
JP2008153119A (ja) * 2006-12-19 2008-07-03 Nippon Steel Corp 電池検査システム、及び電池検査方法
JP2012058093A (ja) * 2010-09-09 2012-03-22 Mitsubishi Electric Building Techno Service Co Ltd ガス漏れ検出装置
US20140002639A1 (en) * 2011-03-25 2014-01-02 Joseph M. Cheben Autonomous Detection of Chemical Plumes

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058863A1 (ja) * 2017-09-21 2019-03-28 コニカミノルタ株式会社 ガス検知用画像処理装置、ガス検知用画像処理方法、及び、ガス検知用画像処理プログラム
WO2019058864A1 (ja) * 2017-09-21 2019-03-28 コニカミノルタ株式会社 ガス検査レポート作成支援装置、ガス検査レポート作成支援方法、及び、ガス検査レポート作成支援プログラム
JP7230813B2 (ja) 2017-09-21 2023-03-01 コニカミノルタ株式会社 ガス検知用画像処理装置、ガス検知用画像処理方法、及び、ガス検知用画像処理プログラム
JPWO2019058863A1 (ja) * 2017-09-21 2020-09-10 コニカミノルタ株式会社 ガス検知用画像処理装置、ガス検知用画像処理方法、及び、ガス検知用画像処理プログラム
JPWO2019058864A1 (ja) * 2017-09-21 2020-09-10 コニカミノルタ株式会社 ガス検査レポート作成支援装置、ガス検査レポート作成支援方法、及び、ガス検査レポート作成支援プログラム
JP7156291B2 (ja) 2017-09-21 2022-10-19 コニカミノルタ株式会社 ガス検査レポート作成支援装置、ガス検査レポート作成支援方法、及び、ガス検査レポート作成支援プログラム
JP7056342B2 (ja) 2018-04-13 2022-04-19 コニカミノルタ株式会社 ガス検知用画像処理装置、ガス検知用画像処理方法、及び、ガス検知用画像処理プログラム
JP2019184485A (ja) * 2018-04-13 2019-10-24 コニカミノルタ株式会社 ガス検知用画像処理装置、ガス検知用画像処理方法、及び、ガス検知用画像処理プログラム
JP2020016527A (ja) * 2018-07-25 2020-01-30 コニカミノルタ株式会社 定置式ガス検知装置の設置箇所の調査方法
JPWO2020039606A1 (ja) * 2018-08-20 2021-08-26 コニカミノルタ株式会社 ガス検出装置、情報処理装置およびプログラム
US11197065B2 (en) 2018-08-20 2021-12-07 Konica Minolta, Inc. Gas detection device, information processing device, and program
WO2020039606A1 (ja) * 2018-08-20 2020-02-27 コニカミノルタ株式会社 ガス検出装置、情報処理装置およびプログラム
JP7294343B2 (ja) 2018-08-20 2023-06-20 コニカミノルタ株式会社 ガス検出装置、情報処理装置およびプログラム
WO2020235337A1 (ja) * 2019-05-20 2020-11-26 コニカミノルタ株式会社 検査データ管理システム、管理装置、管理方法および端末装置
WO2020235165A1 (ja) * 2019-05-20 2020-11-26 コニカミノルタ株式会社 検査データ管理システム、検査装置および検査データ送信方法

Also Published As

Publication number Publication date
JPWO2017122660A1 (ja) 2018-11-01
JP6874694B2 (ja) 2021-05-19

Similar Documents

Publication Publication Date Title
WO2017122660A1 (ja) ガス可視化装置、ガス可視化方法およびガス可視化プログラム
JP6245418B2 (ja) ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム
JP6344533B2 (ja) ガス濃度厚み積測定装置、ガス濃度厚み積測定方法、ガス濃度厚み積測定プログラム、及び、ガス濃度厚み積測定プログラムを記録したコンピュータ読み取り可能な記録媒体
US20210192031A1 (en) Motion-based credentials using magnified motion
CN111033231A (zh) 用于量化气体泄漏的系统和方法
KR101623826B1 (ko) 히트맵 영상 기능을 가진 감시카메라
JP2022118201A (ja) 画像処理システム、画像処理方法及びプログラム
US20160155009A1 (en) Display apparatus and image processing method thereby
JP6699671B2 (ja) ガス検出装置、ガス検出方法およびガス検出プログラム
JP2015220510A5 (ja)
JP2018507439A (ja) 表示機器のカムフラージュ/回復システム及び制御方法
JP6579290B2 (ja) ガス検知用画像処理装置、ガス検知用画像処理方法、及び、ガス検知用画像処理プログラム
JP6508439B2 (ja) ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム
JP6579291B2 (ja) ガス検知用画像処理装置、ガス検知用画像処理方法、及び、ガス検知用画像処理プログラム
WO2014190928A1 (zh) 热像分析装置和热像分析方法
JP7230813B2 (ja) ガス検知用画像処理装置、ガス検知用画像処理方法、及び、ガス検知用画像処理プログラム
CN104065952A (zh) 穿戴式电子设备和图像处理方法
JP6436385B2 (ja) 撮像装置、画像処理装置及び画像処理方法
JP7156291B2 (ja) ガス検査レポート作成支援装置、ガス検査レポート作成支援方法、及び、ガス検査レポート作成支援プログラム
JP7188051B2 (ja) 医用画像管理システム
JP2019029952A5 (ja)
KR20230054957A (ko) 비정상 객체 탐지 장치 및 방법
WO2018123196A1 (ja) ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム
KR20150018162A (ko) 전방위 영상 정보 제공 방법 및 시스템
JP2015058067A5 (ja) 画像処理装置、画像処理方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738414

Country of ref document: EP

Kind code of ref document: A1