WO2017122586A1 - 内視鏡装置 - Google Patents

内視鏡装置 Download PDF

Info

Publication number
WO2017122586A1
WO2017122586A1 PCT/JP2017/000239 JP2017000239W WO2017122586A1 WO 2017122586 A1 WO2017122586 A1 WO 2017122586A1 JP 2017000239 W JP2017000239 W JP 2017000239W WO 2017122586 A1 WO2017122586 A1 WO 2017122586A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
serial
endoscope apparatus
transmission path
serial communication
Prior art date
Application number
PCT/JP2017/000239
Other languages
English (en)
French (fr)
Inventor
光伸 大野
健児 沼田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017561598A priority Critical patent/JPWO2017122586A1/ja
Publication of WO2017122586A1 publication Critical patent/WO2017122586A1/ja
Priority to US16/018,248 priority patent/US20180296065A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00018Operational features of endoscopes characterised by signal transmission using electrical cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00124Connectors, fasteners and adapters, e.g. on the endoscope handle electrical, e.g. electrical plug-and-socket connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00013Operational features of endoscopes characterised by signal transmission using optical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00105Constructional details of the endoscope body characterised by modular construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly

Definitions

  • the present invention relates to an endoscope apparatus that is used by inserting an insertion portion into a test object.
  • an endoscope apparatus that inserts a long and thin insertion portion into a test object and images the test object with an imaging element provided in a distal end portion positioned at the distal end of the insertion section is practical. It has become.
  • a CCD (Charge Coupled Device) image sensor is mounted as an image sensor, and a signal provided in an insertion portion is an image signal in a test object imaged by the CCD image sensor. It is transmitted to the main unit by cable.
  • Patent Document 1 discloses an endoscope apparatus configured to transmit an analog image signal output from a CCD image sensor to a main body portion using a serial cable via a CDS (Correlated Double Sampling) and a buffer. Is disclosed. In the endoscope apparatus disclosed in Patent Document 1, an analog image signal output from a CCD image sensor is transmitted to the main body as an analog signal.
  • CDS Correlated Double Sampling
  • an analog image signal output from a CCD image sensor is converted into a parallel digital signal by analog / digital conversion (A / D conversion), and further converted into a serial digital signal by a serializer.
  • An endoscope apparatus configured to transmit to a main body is disclosed.
  • the transmitted serial digital signal is converted into the original parallel digital signal, that is, the analog image signal output from the CCD image sensor by the deserializer provided in the main body.
  • the analog / digital converted parallel digital signal is restored.
  • CMOS Complementary Metal-Oxide Semiconductor: Complementary Metal Oxide Semiconductor
  • an endoscope apparatus configured to transmit a control signal for a component included in a CMOS image sensor as a digital serial signal as in the endoscope apparatus disclosed in Patent Document 3 is disclosed.
  • a command for changing a drive current of a light emitting element that converts an electrical signal of an image into an optical signal is sent to a receiver provided in the CMOS image sensor, and the I2C (Inter-Integrated) is used. It is transmitted via a Circuit) cable.
  • transmission of signals by I2C is an effective transmission method for reducing the diameter of the insertion portion because various commands and control signals can be transmitted by two signal cables.
  • the I2C transmission method is a standard that assumes short-distance signal transmission. For this reason, the I2C transmission method is not suitable for use in an insertion portion of an endoscope apparatus used in an environment where a signal is transmitted over a long distance and there is a lot of noise. For this reason, when I2C signal transmission is performed in an endoscope apparatus configured to transmit each signal (digital signal) by a signal cable provided in the insertion portion, for example, EMC (Electro-Magnetic Compatibility) is compatible with the electromagnetic environment.
  • EMC Electro-Magnetic Compatibility
  • noise countermeasures are required to satisfy the requirements of the In other words, an I2C transmission method in an endoscope apparatus in which the total length of the insertion portion extends over several meters, particularly in an endoscope apparatus used in the industrial field and in which the length of the insertion portion is several tens of meters.
  • many noise countermeasures such as EMC are required.
  • the present invention has been made based on the above problems, and in an endoscope apparatus that is used by inserting an insertion portion into a test object, the number of signal cables provided in the insertion portion is reduced, and An object of the present invention is to provide an endoscope apparatus capable of taking measures against noise in a state where the diameter is reduced.
  • an endoscope apparatus includes an imaging element that outputs a pixel signal corresponding to a photographed subject image, a distal end portion that is inserted into a test object, and a first portion.
  • a stack bus that performs processing for recovering the stopped first serial communication when the setting related to photographing is transmitted to the image sensor by serial communication of the first serial communication and the first serial communication is stopped
  • a first serial signal transmission path provided with a recovery circuit; and a second serial signal transmission path for transmitting the pixel signal output from the imaging device by second serial communication, and the tip portion of the test signal is detected.
  • the second serial signal transmission path has a frequency of a serial signal for transmitting the pixel signal by the second serial communication.
  • an equalizer circuit for correcting the characteristic
  • a limiting amplifier circuit for amplifying the serial signal after the equalizer circuit has corrected the frequency characteristic.
  • the equalizer circuit suppresses the attenuation rate of the signal level of the output signal as the frequency band of the input signal is higher, You may correct
  • the first serial communication is serial communication using an I2C bus
  • the second serial communication is a clock embedded type. High-speed digital serial communication may be used.
  • the second serial communication uses a synchronization signal representing a timing at which the image sensor outputs the pixel signal as a clock signal.
  • a synchronization signal representing a timing at which the image sensor outputs the pixel signal as a clock signal.
  • An embedded clock embedded high-speed digital serial communication may be used.
  • the second serial signal transmission path transmits the pixel signal.
  • the cable and the equalizer circuit may be connected on the same substrate surface.
  • the second serial signal transmission path includes the equalizer circuit and the limiter.
  • the ting amplifier circuit may be connected on the same substrate surface.
  • the first serial signal transmission path provided in the flexible portion and the You may further provide the connector part which electrically connects each of a 2nd serial signal transmission line with the corresponding component with which the said main-body part was equipped.
  • the equalizer circuit and the limiting amplifier circuit may be arranged in the connector portion.
  • the first serial signal transmission line is the second serial signal.
  • a transmission path having a smaller diameter than the transmission path may be used.
  • the first serial signal transmission path is a single-wire twisted pair cable corresponding to each signal in the first serial communication.
  • the second serial signal transmission path may be formed of a twisted pair cable of a shield line corresponding to each serial signal in the second serial communication.
  • an endoscope apparatus that is used by inserting an insertion portion into a test object, the number of signal cables provided in the insertion portion is reduced, and noise countermeasures are taken in a state where the diameter of the insertion portion is reduced.
  • An endoscope apparatus that can be provided can be provided.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of an endoscope apparatus according to the first embodiment of the present invention.
  • the endoscope apparatus 1 includes an elongated insertion portion 2 and a main body portion 3.
  • the insertion portion 2 includes a distal end portion 4 provided with an image sensor and a flexible portion 5 that is a cord that guides the distal end portion 4 into a test object.
  • a pixel signal obtained by photographing with an imaging element provided in the distal end portion 4 is transmitted to the main body portion 3 through the flexible portion 5.
  • the movement and direction of the distal end portion 4 when it is guided by the flexible portion 5 and inserted into the test object, and further, the subject is photographed by the image sensor provided in the distal end portion 4.
  • the operation is operated from the main body part 3 through the flexible part 5.
  • an image (image) generated by processing the pixel signal transmitted from the distal end portion 4 in the main body portion 3 is displayed.
  • the video (image) generated by the main body unit 3 is recorded.
  • the insertion section 2 is wound around a drum section (not shown) attached to the main body section 3 and stored in the endoscope apparatus 1, for example.
  • the front end portion 4 includes an image sensor 41 as an image sensor and a crystal oscillator 42.
  • the flexible part 5 includes a power signal line 51, an I2C serial signal transmission path 52, and an SLVS-EC serial signal transmission path 53.
  • the main body 3 includes a battery 31, a power output unit 32, a multimedia processor 33, a stack recovery circuit 34, an equalizer circuit 35, a limiting amplifier circuit 36, a recording unit 37, and a display unit 38. ing.
  • the multimedia processor 33 may also be referred to as a System on Chip (SoC).
  • SoC System on Chip
  • each component provided in the endoscope apparatus 1 will be described in detail.
  • each component provided in the tip portion 4 will be described in detail.
  • the crystal oscillator 42 oscillates an operation clock signal having a predetermined frequency required when the image sensor 41 operates, and supplies the oscillated operation clock signal to the image sensor 41.
  • the crystal oscillator 42 does not need to oscillate an operation clock signal synchronized with the clock signal when the main body unit 3 operates and supply it to the image sensor 41. That is, in the endoscope apparatus 1, for example, it is not necessary for the crystal oscillator 42 to oscillate an operation clock signal synchronized with a synchronization signal output from the main body 3. For this reason, the endoscope apparatus 1 is configured such that a high-frequency operation clock signal is not transmitted from the main body portion 3 to the distal end portion 4. Therefore, in the endoscope apparatus 1, it is not necessary to provide the flexible part 5 with the waveform shaping circuit and the thick coaxial transmission line for preventing the waveform of the operation clock signal provided in the conventional endoscope apparatus from being deteriorated. Can be miniaturized.
  • the image sensor 41 is a CMOS image sensor that operates based on a clock signal oscillated by the crystal oscillator 42.
  • the image sensor 41 includes a pixel array unit (not shown) that outputs a pixel signal corresponding to the image of the subject in the captured object, a power input unit 411, a clock input unit 412, and an I2C (Inter-Integrated Circuit).
  • a communication unit 413, an SLVS-EC (Scalable Low Voltage Signaling with Embedded Clock) output unit 414, a synchronization signal generation unit 415, and an external synchronization input unit 416 are provided.
  • the power input unit 411 converts the power supplied from the main body unit 3 through the power signal line 51 provided in the flexible unit 5 into a voltage required by each component in the image sensor 41, and converts each of the converted power. Is supplied to each component.
  • the clock input unit 412 converts the operation clock signal input from the crystal oscillator 42 into a frequency required by each component in the image sensor 41, and supplies each converted clock signal to each component. .
  • the I2C communication unit 413 performs serial communication (hereinafter referred to as “I2C serial communication”) with the main body unit 3 via the I2C serial signal transmission path 52 provided in the flexible unit 5.
  • the I2C serial communication is performed by a transmission path (I2C serial signal transmission path 52) composed of two signal lines.
  • the IC2 communication unit 413 outputs the function activation and operation settings of the image sensor 41 input from the main body unit 3 by I2C serial communication to the corresponding components.
  • various settings related to shooting such as an electronic shutter, an exposure time, a shooting interval (so-called frame rate) when the pixel array unit (not shown) captures a subject from the main body unit 3 (
  • shooting mode setting is transmitted by I2C serial communication.
  • the IC2 communication unit 413 receives the shooting mode setting transmitted from the main body unit 3 via the I2C serial signal transmission path 52, the IC2 communication unit 413 outputs the received shooting mode setting information to a pixel array unit (not shown).
  • a pixel array unit (not shown) performs shooting according to the shooting mode setting information output from the I2C communication unit 413, and outputs each pixel signal obtained by shooting.
  • the communication method of I2C serial communication in the I2C communication unit 413 is the same as the serial communication using the existing I2C bus, and thus detailed description thereof is omitted.
  • the SLVS-EC output unit 414 performs serial communication using SLVS-EC (hereinafter, referred to as “SLVS-EC serial communication”) from a pixel signal (for example, a RAW signal) captured and output by a pixel array unit (not shown). Convert to a serial signal of the format.
  • the SLVS-EC output unit 414 transmits (sends) the converted serial signal to the main body unit 3 via the SLVS-EC serial signal transmission path 53.
  • the image sensor 41 is a CMOS image sensor that outputs a pixel signal corresponding to an image of a subject in the captured object by SLVS-EC serial communication.
  • the SLVS-EC serial communication is also performed by a transmission path (SLVS-EC serial signal transmission path 53) composed of two signal lines.
  • the pixel signal that the SLVS-EC output unit 414 transmits (sends) to the main body unit 3 by SLVS-EC serial communication is a digital signal.
  • the pixel signal photographed and output by the pixel array unit (not shown) is converted into a parallel digital signal by an analog / digital conversion (A / D conversion) circuit (not shown) and then output to the SLVS-EC output unit 414.
  • a / D conversion analog / digital conversion
  • the SLVS-EC output unit 414 converts the input pixel signal, which is a parallel digital signal, into a serial digital signal in the SLVS-EC serial communication format, and transmits (transmits) it to the main body unit 3.
  • the SLVS-EC output unit 414 converts the pixel signal photographed and output by a pixel array unit (not shown) into a serial signal in the SLVS-EC serial communication format. In the following description, it is assumed that the data is transmitted (transmitted) to the main body 3.
  • the synchronization signal generation unit 415 is based on the clock signal supplied from the clock input unit 412, and represents a synchronization signal (a horizontal synchronization signal or a vertical synchronization signal) that represents a timing at which a pixel signal captured by a pixel array unit (not shown) is output. Signal).
  • the synchronization signal generator 415 outputs the generated synchronization signals to a pixel array unit (not shown). Thereby, a pixel array unit (not shown) outputs each pixel signal obtained by photographing to the SLVS-EC output unit 414 at a timing synchronized with each input synchronization signal.
  • the respective synchronization signals output from the synchronization signal generation unit 415 are superimposed on the serial signal of the SLVS-EC serial communication and transmitted to the main body unit 3. Therefore, the synchronization signal generation unit 415 also outputs the generated synchronization signals to the SLVS-EC output unit 414.
  • the SLVS-EC output unit 414 converts each of the synchronization signals output from the synchronization signal generation unit 415 when converting the pixel signal output from the pixel array unit (not shown) into a serial signal of the SLVS-EC serial communication format. Is superimposed.
  • the SLVS-EC output unit 414 converts SLVS-EC serial communication format serial signals in which the respective synchronization signals output from the synchronization signal generation unit 415 are embedded as clock signals embedded in the SLVS-EC serial communication.
  • a synchronization signal horizontal synchronization signal or vertical synchronization signal
  • the main body 3 synchronizes with each synchronization signal transmitted together with the pixel signal, that is, at the timing of the horizontal synchronization signal or the vertical synchronization signal output from the image sensor 41.
  • the external synchronization input unit 416 is an input unit to which an external synchronization signal (horizontal synchronization signal or vertical synchronization signal) is input.
  • an external synchronization signal horizontal synchronization signal or vertical synchronization signal
  • each of the input external synchronization signals (hereinafter referred to as “external synchronization signal”) is output to a pixel array unit (not shown).
  • a pixel array unit (not shown) outputs each pixel signal obtained by photographing to the SLVS-EC output unit 414 at a timing synchronized with each input external synchronization signal.
  • the image sensor 41 is a CMOS image sensor that operates in synchronization with the input external synchronization signal.
  • the external synchronization signal is transmitted from the main body 3 via, for example, an external synchronization signal line (not shown) provided in the soft part 5.
  • the external synchronization input unit 416 outputs the input external synchronization signal to the SLVS-EC output unit 414 as well.
  • the SLVS-EC output unit 414 converts each pixel signal output from the pixel array unit (not shown) into a serial signal in the SLVS-EC serial communication format.
  • the external synchronization signal is superimposed and transmitted to the main unit 3.
  • the configuration of the endoscope apparatus 1 shown in FIG. 1 shows a configuration in which the image sensor 41 is a CMOS image sensor that operates in synchronization with the synchronization signal generated by the synchronization signal generation unit 415. Therefore, the endoscope apparatus 1 has a configuration in which the main body unit 3 operates in synchronization with the synchronization signal generated by the synchronization signal generation unit 415.
  • the image sensor 41 can also operate in synchronization with the external synchronization signal.
  • the image sensor 41 has a configuration that operates in synchronization with the synchronization signal generated by the synchronization signal generation unit 415, as shown in FIG.
  • the SLVS-EC output unit 414 transmits each synchronization signal together with the pixel signal.
  • the battery 31 is a rechargeable battery such as a lithium ion secondary battery that supplies power for driving each component provided in the main body 3 and each component provided in the distal end portion 4. is there.
  • the power output unit 32 supplies the electric power output from the battery 31 to each component provided in the distal end part 4 via the power signal line 51 provided in the flexible part 5.
  • FIG. 1 shows a state in which the power output unit 32 supplies power via the power signal line 51 to the power input unit 411 provided in the image sensor 41 in the distal end portion 4.
  • the multimedia processor 33 is a control unit that performs overall control in the endoscope apparatus 1.
  • the multimedia processor 33 has a function of the image sensor 41 provided in the distal end portion 4 instructed by a user of the endoscope apparatus 1 operating a dedicated operation device such as an operation unit (not shown) or a remote control terminal.
  • Various settings relating to activation and photographing operations that is, photographing mode settings in the endoscope apparatus 1 are transmitted to the I2C communication unit 413 provided in the image sensor 41 in the distal end portion 4 by I2C serial communication, and the endoscope The imaging of the subject in the test object in the apparatus 1 is controlled.
  • the multimedia processor 33 captures each pixel signal (for example, a RAW signal) captured by a pixel array unit (not shown) provided in the image sensor 41 in the distal end portion 4 and transmitted (transmitted) by SLVS-EC serial communication. ) Is subjected to various predetermined image processing to generate an image of the subject in the captured object. For example, the multimedia processor 33 performs recording image processing on each pixel signal transmitted (transmitted) from the image sensor 41 to generate a recording image (still image or moving image). A recording image is recorded in the recording unit 37.
  • each pixel signal for example, a RAW signal
  • a pixel array unit not shown
  • the multimedia processor 33 performs display image processing on each pixel signal transmitted (transmitted) from the image sensor 41 to generate a display image (a still image or a moving image), The generated display image is output to the display unit 38 and displayed.
  • the multimedia processor 33 also performs image processing for reading a recording image (still image or moving image) recorded in the recording unit 37 and outputting the image to the display unit 38 for display.
  • the recording unit 37 records the data of the subject image in the object imaged by the endoscope apparatus 1.
  • the recording unit 37 is shown as a component built in the main body unit 3, but the recording unit 37 may be, for example, an SD memory card (SD Memory Card) or a compact flash (registered trademark) (CompactFlash ( (Registered trademark): CF) or the like may be a recording medium configured to be detachable from the main body 3.
  • SD Memory Card Secure Digital Memory Card
  • the display unit 38 displays an image of the subject in the object imaged by the endoscope apparatus 1.
  • the display unit 38 is configured by a display device such as a liquid crystal display (LCD).
  • LCD liquid crystal display
  • FIG. 1 the display unit 38 is shown as a component mounted on the main body unit 3, but the display unit 38 is removable from an external display device connected to the main body unit 3, that is, the main body unit 3.
  • a display device having a simple structure may be used.
  • the stack recovery circuit 34 is connected to an end of the I2C serial signal transmission path 52 on the main body 3 side, and I2C serial communication between the I2C communication unit 413 provided in the image sensor 41 in the front end 4 and the multimedia processor 33. Relay.
  • the stack recovery circuit 34 is a stack bus recovery (stack bus recovery) circuit for monitoring the state of the I2C serial communication so that the I2C serial communication is normally performed.
  • the stack recovery circuit 34 is often used in the I2C serial signal transmission path 52 provided in the flexible portion 5 of the elongated insertion portion 2 when the endoscope apparatus 1 is used in a poor environment such as a factory with a lot of electromagnetic noise.
  • the stack recovery circuit 34 determines whether or not the I2C serial communication is stopped by monitoring the state of the I2C serial communication. When the I2C serial communication is determined to be stopped, the stack recovery circuit 34 stops the I2C serial communication. Process to restore (restart).
  • the stack recovery circuit 34 determines that the I2C serial communication is stopped. If it is determined that the I2C serial communication is stopped, the stack recovery circuit 34 temporarily shuts off the I2C serial communication transmission path, that is, the I2C serial signal transmission path 52, and automatically generates a predetermined number of communications. By adding the clock signal to the I2C serial signal transmission path 52, the I2C serial communication between the I2C communication unit 413 and the multimedia processor 33 provided in the stopped image sensor 41 is restored (restarted).
  • the stack recovery circuit 34 operates a communication clock signal (a so-called clock signal SCL generally used as a reference in I2C serial communication) in a serial signal of the I2C serial communication format to restore (restart) the I2C serial communication. .
  • a communication clock signal a so-called clock signal SCL generally used as a reference in I2C serial communication
  • the diameter of the insertion portion 2 can be reduced because it is performed by two signal lines, but the noise resistance of the I2C serial communication having the characteristic of being weak against external noise can be reduced by stack recovery.
  • the diameter of the insertion part 2 can be improved.
  • each signal line of the transmission path of I2C serial communication is shielded double, or the signal line itself is thickened so that Since it was necessary to lower the impedance, it was not easy to reduce the diameter of the transmission path of the I2C serial communication.
  • the endoscope apparatus 1 by providing the stack recovery circuit 34, measures such as a double shield and a thick signal line that are necessary in the conventional endoscope apparatus are reduced, and I2C. Coexistence of reducing the diameter of the serial signal transmission line 52 and improving noise resistance of I2C serial communication was easily realized.
  • the stack recovery circuit 34 is a signal component of each serial signal (hereinafter referred to as “I2C serial signal”) of I2C serial communication that is attenuated in the I2C serial signal transmission path 52 such as an I2C driver circuit.
  • I2C serial signal a signal component of each serial signal (hereinafter referred to as “I2C serial signal”) of I2C serial communication that is attenuated in the I2C serial signal transmission path 52 such as an I2C driver circuit.
  • a function of an amplifier circuit for amplifying the signal is provided.
  • the configuration and functions of the stack recovery circuit 34 are the same as those of the existing stack bus recovery (stack bus recovery) circuit, and thus detailed description thereof is omitted.
  • the stack recovery circuit 34 is shown as a component that is mounted on the main body 3 and connected to the multimedia processor 33, but the stack recovery circuit 34 is a function mounted on the multimedia processor 33, That is, the component provided in the multimedia processor 33 may be sufficient. Further, the stack recovery circuit 34 may be configured to switch whether or not to enable the function of amplifying the signal component of the I2C serial signal according to the length of the I2C serial signal transmission path 52. That is, the stack recovery circuit 34 may be configured to enable the function of amplifying the signal component of each I2C serial signal only when the length of the I2C serial signal transmission path 52 is long.
  • the stack recovery circuit 34 does not have a function of amplifying the signal component of each I2C serial signal and the length of the I2C serial signal transmission path 52 is long, the stack recovery circuit 34 of this configuration It is good also as the endoscope apparatus 1 of the structure which equips the main-body part 3 with an I2C driver circuit.
  • the equalizer circuit 35 is connected to the end of the SLVS-EC serial signal transmission path 53 on the main body unit 3 side, and is transmitted (transmitted) from the SLVS-EC output unit 414 provided in the image sensor 41 in the distal end portion 4. This is a circuit for correcting frequency characteristics of serial signals of EC serial communication.
  • the equalizer circuit 35 outputs the serial signal of the SLVS-EC serial communication after correcting the frequency characteristic to the limiting amplifier circuit 36.
  • each pixel signal obtained by photographing by the image sensor 41 is transmitted via the SLVS-EC serial signal transmission path 53 provided in the flexible portion 5 of the elongated insertion portion 2. Since the signal is transmitted (transmitted), the serial signal of SLVS-EC serial communication (hereinafter referred to as “SLVS-EC serial signal”) is attenuated more as the signal component has a higher frequency. For this reason, in the endoscope apparatus 1, the waveform of the SLVS-EC serial signal is distorted (generally, “the state where the eye pattern is open”, which is said to have good waveform quality in two-wire serial communication) The opposite state).
  • the equalizer circuit 35 corrects the attenuation amount of the signal component that varies depending on the frequency when transmitted through the SLVS-EC serial signal transmission line 53, and the waveform of the SLVS-EC serial signal is the same in all frequency bands. In other words, it is a component provided to achieve an “eye pattern open state” that is generally said to have a good waveform quality.
  • the waveform of the SLVS-EC serial signal transmitted (transmitted) by the equalizer circuit 35 via the SLVS-EC serial signal transmission path 53 is improved to improve the quality, thereby improving the multimedia quality.
  • a pixel signal of a high frequency component necessary for the processor 33 to perform image processing can be transmitted more accurately by SLVS-EC serial communication.
  • the equalizer circuit 35 and the SLVS-EC serial signal transmission path 53 are respectively configured on a board (hereinafter referred to as “main body board”) on which each component constituting the main body unit 3 is mounted.
  • main body board a board on which each component constituting the main body unit 3 is mounted.
  • the board surface on which the equalizer circuit 35 is mounted (soldered) and the board surface on which the respective cables constituting the SLVS-EC serial signal transmission path 53 are soldered are the same.
  • the equalizer circuit 35 and each cable constituting the SLVS-EC serial signal transmission path 53 are connected on the same substrate surface of the main body substrate. Thereby, in the endoscope apparatus 1, the quality of the waveform of the SLVS-EC serial signal can be ensured without changing the characteristic impedance of the signal line between the equalizer circuit 35 and the SLVS-EC serial signal transmission path 53. Can do.
  • the equalizer circuit 35 outputs a signal component in a high frequency band that is attenuated more when transmitted through the SLVS-EC serial signal transmission line 53 as it is, and outputs a signal component in a low frequency band that is less attenuated. By outputting after attenuation, the waveform of the SLVS-EC serial signal is improved by correcting so that the signal level is the same in all frequency bands.
  • the equalizer circuit 35 is configured by, for example, an RLC circuit in which a resistor (R), a coil (L), and a capacitor (C) are combined, that is, a filter circuit.
  • FIG. 2 is a circuit diagram illustrating an example of the equalizer circuit 35 provided in the endoscope apparatus 1 according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of frequency characteristics of the equalizer circuit 35 provided in the endoscope apparatus 1 according to the first embodiment of the present invention.
  • an equalizer circuit 35 includes a capacitor (C) 351, two first resistors (R1) 352-1 and a first resistor (R1) 352-2, and a second resistor (R2) 353. And a coil (L) 354. More specifically, each of the first terminal of the capacitor 351 and the first terminal of the first resistor 352-1 is connected to be an input terminal of the equalizer circuit 35.
  • the second terminal of the first resistor 352-1 is connected to each of the first terminal of the first resistor 352-2 and the first terminal of the second resistor 353.
  • the second terminal of the second resistor 353 is connected to the first terminal of the coil 354.
  • the second terminal of the coil 354 is grounded.
  • Each of the second terminal of the capacitor 351 and the second terminal of the first resistor 352-2 is connected to be an output terminal of the equalizer circuit 35.
  • the equalizer circuit 35 shown in FIG. 2 has an S-shaped frequency characteristic (filter characteristic) that combines a low-pass filter (LPF) and a high-pass filter (HPF), as shown in FIG. ) Is configured as a filter circuit. More specifically, as shown in FIG. 3, the frequency characteristic of the equalizer circuit 35 is such that the signal level of the output signal becomes the same level as the signal level of the input signal as the frequency band becomes higher. This is a characteristic in which the signal level of the input signal is attenuated as the band becomes lower. In other words, the equalizer circuit 35 has a frequency characteristic that suppresses the attenuation rate of the signal level of the signal output in the higher frequency band and increases the attenuation rate of the signal level of the signal output in the lower frequency band.
  • filter characteristic filter characteristic that combines a low-pass filter (LPF) and a high-pass filter (HPF), as shown in FIG. ) Is configured as a filter circuit. More specifically, as shown in FIG. 3, the frequency characteristic of the equalizer
  • the endoscope apparatus 1 improves the waveform of the SLVS-EC serial signal transmitted (transmitted) via the SLVS-EC serial signal transmission path 53, and the multimedia processor 33 Extracts pixel signals of high-frequency components necessary for image processing. That is, in the endoscope apparatus 1, as described above, the signal component of the SLVS-EC serial signal in the high frequency band that is attenuated more is output as it is by the equalizer circuit 35, and the low frequency with less attenuation is output. By attenuating and outputting the signal components in the band, pixel signals having similar signal levels are extracted in all frequency bands.
  • a method of extracting pixel signals having the same signal level in all frequency bands a plurality of methods other than the method performed by the equalizer circuit 35 can be considered. For example, a method using a technique called pre-emphasis or de-emphasis. In these methods, on the transmission side that outputs serial signals, the signal level of the frequency band that is attenuated by the transmission path is increased (emphasized) in advance, or the signal level of the frequency band that is not attenuated by the transmission path is transmitted in advance. This is a technique in which a receiving side to which a serial signal is input can receive serial signals of the same signal level in all frequency bands by transmitting after attenuation.
  • the equalizer circuit 35 is similar in all frequency bands by attenuating and outputting more signal components in a low frequency band with less attenuation when transmitted through the SLVS-EC serial signal transmission path 53.
  • the waveform of the SLVS-EC serial signal is corrected (improved) so that the signal level becomes.
  • the SLVS-EC serial signal whose frequency characteristics have been corrected by the equalizer circuit 35 has a low signal level (for example, several mV) as a whole. Therefore, the endoscope apparatus 1 is configured to amplify the corrected SLVS-EC serial signal output from the equalizer circuit 35 by the limiting amplifier circuit 36.
  • the limiting amplifier circuit 36 is an amplifier circuit that amplifies the SLVS-EC serial signal after the frequency characteristic is corrected by the equalizer circuit 35.
  • the limiting amplifier circuit 36 amplifies the signal level of the corrected SLVS-EC serial signal output from the equalizer circuit 35 to a level required when the multimedia processor 33 performs image processing. Then, the limiting amplifier circuit 36 outputs the SLVS-EC serial signal whose signal level is amplified to the multimedia processor 33.
  • the limiting amplifier circuit 36 amplifies the signal level of the corrected SLVS-EC serial signal by 100 times to several hundred times and outputs the amplified signal level to the multimedia processor 33.
  • the equalizer circuit 35 and the limiting amplifier are used. It is desirable that the signal line of the SLVS-EC serial signal between the equalizer circuit 35 and the limiting amplifier circuit 36 be as short as possible, which is arranged close to the circuit 36.
  • the equalizer circuit 35 and the limiting amplifier circuit 36 are mounted on the same substrate surface on the main body substrate. That is, in the endoscope apparatus 1, the soldering surfaces for soldering the equalizer circuit 35 and the limiting amplifier circuit 36 are on the same surface of the main body substrate, and the equalizer circuit 35 and the limiting amplifier circuit 36 are respectively These signal lines are connected on the same substrate surface of the main body substrate. Thereby, in the endoscope apparatus 1, the quality of the waveform of the SLVS-EC serial signal can be ensured without changing the characteristic impedance of the signal line between the equalizer circuit 35 and the limiting amplifier circuit 36.
  • the substrate surface on which the circuit 36 is mounted (soldered) is preferably the same substrate surface.
  • at least the board surface on which the equalizer circuit 35 is mounted and the board surface on which the cable constituting the SLVS-EC serial signal transmission path 53 is soldered are the same board surface, or the equalizer If one of the substrate surfaces on which the circuit 35 and the limiting amplifier circuit 36 are mounted is the same substrate surface, the quality of the waveform of the SLVS-EC serial signal can be ensured.
  • the power signal line 51 is composed of a single wire (power cable). With this single-wire power cable configuration, the power signal line 51 supplies the power output from the power output unit 32 provided in the main body 3 to the power input unit 411 provided in the image sensor 41 in the distal end 4.
  • the I2C serial signal transmission path 52 is composed of a pair of twisted pair cables in which two single wires corresponding to each of the I2C serial signals are combined. With this single-wire twisted pair cable configuration, the I2C serial signal transmission path 52 is an I2C serial connection between the multimedia processor 33 provided in the main unit 3 and the I2C communication unit 413 provided in the image sensor 41 in the tip 4. Realize communication.
  • the I2C serial signal transmission path 52 is configured to connect each of the two single wires to a shielded wire (coaxial wire) in order to prevent the entry of external noise to the single wire corresponding to each I2C serial signal, that is, to improve noise resistance. ).
  • a single wire that can reduce the diameter of the I2C serial signal transmission path 52 is used.
  • And can be used as a signal line corresponding to each I2C serial signal.
  • the SLVS-EC serial signal transmission path 53 is composed of a pair of twisted pair cables in which two shield lines (coaxial lines) corresponding to each of the SLVS-EC serial signals are combined. With this shielded wire twisted pair cable configuration, the SLVS-EC serial signal transmission path 53 is connected from the SLVS-EC output unit 414 provided in the image sensor 41 in the distal end 4 to the multimedia processor 33 provided in the main unit 3. Realizes SLVS-EC serial communication.
  • the SLVS-EC serial signal transmission path 53 is configured as a shielded twisted pair cable in the case of SLVS-EC serial communication, for example, at a high bit rate of 1 to 2 gigabits / second (Gbps) or more. This is because the pixel signal is transmitted.
  • the diameter of the flexible portion 5 can be reduced by the configuration of each signal line and transmission line. Thereby, the soft part 5 can improve the insertability of the front-end
  • the image sensor (image sensor 41) that outputs a pixel signal corresponding to the image of the photographed subject is provided, and the distal end portion (tip portion 4) that is inserted into the test object;
  • the image sensor 41 is connected by a first serial signal transmission path (I2C serial signal transmission path 52) including a stack bus recovery circuit (stack recovery circuit 34) that performs the above process and second serial communication (SLVS-EC serial communication).
  • a second serial signal transmission path (SLVS-EC serial signal transmission path 53) for transmitting the output pixel signal;
  • a main body unit including a soft part (soft part 5) that guides the part 4 into a test object and an image processing part (multimedia processor 33) that performs image processing on a pixel signal transmitted by SLVS-EC serial communication
  • An endoscope apparatus (endoscope apparatus 1) including the (main body unit 3) is configured.
  • the SLVS-EC serial signal transmission path 53 is an equalizer circuit that corrects the frequency characteristics of a serial signal (SLVS-EC serial signal) for transmitting a pixel signal by SLVS-EC serial communication.
  • An endoscope apparatus 1 is provided that includes an equalizer circuit 35) and a limiting amplifier circuit (limiting amplifier circuit 36) that amplifies the SLVS-EC serial signal after the equalizer circuit 35 corrects the frequency characteristics.
  • the equalizer circuit 35 increases the signal level of the output signal (corrected SLVS-EC serial signal) as the frequency band of the input signal (SLVS-EC serial signal) increases. Input is performed so as to suppress the attenuation factor and increase the signal level attenuation factor of the output signal (SLVS-EC serial signal after correction) as the frequency band of the input signal (SLVS-EC serial signal) is lower.
  • An endoscope apparatus 1 that corrects and outputs the signal level of the SLVS-EC serial signal is configured.
  • the I2C serial communication is serial communication using the I2C bus
  • the SLVS-EC serial communication includes the endoscope apparatus 1 that is a clock-embedded high-speed digital serial communication.
  • SLVS-EC serial communication is a clock embedded type in which a synchronization signal (horizontal synchronization signal or vertical synchronization signal) indicating the timing at which the image sensor 41 outputs a pixel signal is embedded as a clock signal.
  • An endoscope apparatus 1 that is high-speed digital serial communication is configured.
  • the SLVS-EC serial signal transmission path 53 connects the cable for transmitting the pixel signal and the equalizer circuit 35 on the same substrate surface (on the same substrate surface of the main body substrate).
  • An endoscope apparatus 1 is configured.
  • the SLVS-EC serial signal transmission path 53 includes the equalizer circuit 35 and the limiting amplifier circuit 36 connected on the same substrate surface (on the same substrate surface of the main body substrate).
  • the endoscope apparatus 1 is configured.
  • the endoscope apparatus 1 is configured in which the I2C serial signal transmission path 52 is a transmission path having a smaller diameter than the SLVS-EC serial signal transmission path 53.
  • the I2C serial signal transmission path 52 is a single-wire twisted pair cable corresponding to each signal in I2C serial communication (two single wires corresponding to each of the I2C serial signals are more combined.
  • the SLVS-EC serial signal transmission path 53 is composed of a shielded twisted pair cable (SLVS-EC serial signal 2) corresponding to each serial signal in SLVS-EC serial communication.
  • An endoscope apparatus 1 configured by a pair of twisted pair cables obtained by further combining two shield wires (coaxial lines) is configured.
  • the endoscope apparatus 1 includes the crystal oscillator 42 at the distal end portion 4.
  • the flexible part 5 does not include a signal line for supplying the operation clock signal to the image sensor 41 provided in the distal end part 4 of the main body part 3.
  • the diameter of the soft part 5 can be reduced.
  • the endoscope apparatus 1 includes various settings (shooting mode settings) relating to activation of functions of the image sensor 41 provided in the distal end portion 4 and shooting operations (shooting mode settings) are provided in the image sensor 41. This is performed by I2C serial communication between the communication unit 413 and the multimedia processor 33 provided in the main body unit 3. Further, the endoscope apparatus 1 according to the first embodiment includes the stack recovery circuit 34 on the main body 3 side of the I2C serial signal transmission path 52 that is a transmission path in I2C serial communication. In the endoscope apparatus 1 according to the first embodiment, the stack recovery circuit 34 includes an I2C communication unit 413 provided in the image sensor 41 in the distal end portion 4 and a multimedia processor 33 provided in the main body unit 3.
  • the state of the I2C serial communication is monitored, and when it is determined that the I2C serial communication is stopped, the stopped I2C serial communication is restored (restarted).
  • the noise tolerance of I2C serial communication is improved, and the length of the I2C serial signal transmission path 52 which is a transmission path in I2C serial communication is 10 meters, for example. Even when the length is longer, the diameter of the insertion portion 2 can be reduced.
  • the image sensor 41 provided in the distal end portion 4 supplies each pixel signal obtained by performing shooting according to the shooting mode setting information to the image sensor 41.
  • the provided SLVS-EC output unit 414 transmits (sends) to the main unit 3 by SLVS-EC serial communication.
  • the main body unit 3 and the equalizer circuit 35 are limited to the main body unit 3 side of the SLVS-EC serial signal transmission path 53 which is a transmission path in SLVS-EC serial communication. And an amplifier circuit 36.
  • the equalizer circuit 35 includes each pixel obtained by the image sensor 41 by photographing from the SLVS-EC output unit 414 provided in the image sensor 41 in the distal end portion 4.
  • the distortion of the frequency characteristic of each serial signal (SLVS-EC serial signal) in the SLVS-EC serial communication for transmitting (transmitting) the signal is corrected.
  • the limiting amplifier circuit 36 sets the signal level of each SLVS-EC serial signal that has been lowered overall by correcting the distortion of the frequency characteristics by the equalizer circuit 35. Amplified and output to the multimedia processor 33.
  • the length of the SLVS-EC serial signal transmission path 53 which is a transmission path in SLVS-EC serial communication is, for example, a length exceeding 10 meters. Even in some cases, it is possible to accurately receive each pixel signal transmitted (transmitted) by SLVS-EC serial communication and perform various image processing on each pixel signal.
  • the number of signal cables provided in the flexible portion 5 constituting the insertion portion 2 can be reduced. More specifically, in the endoscope apparatus 1 of the first embodiment, a power signal line 51 configured with a single power cable, an I2C serial signal transmission path 52 configured with a single twisted pair cable, and a shielded cable Since the flexible portion 5 only needs to have five signal cables with the SLVS-EC serial signal transmission line 53 configured by a twisted pair cable, the diameter of the flexible portion 5 can be reduced.
  • the I2C serial signal transmission path 52 is a single-wire that can be made thinner than the shielded twisted pair cable constituting the SLVS-EC serial signal transmission path 53. Since it can be comprised with a twisted pair cable, the diameter of the soft part 5 can be made thin.
  • the stack recovery circuit 34 allows noise resistance of I2C serial communication. Can be improved. Thereby, in the endoscope apparatus 1 of 1st Embodiment, the improvement of the noise tolerance in the state which made the diameter of the insertion part 2 thin can be implement
  • the endoscope apparatus 1 even when the length of the insertion portion 2 is longer than, for example, 10 meters in a state where the diameter of the insertion portion 2 is reduced. , EMC requirements can be satisfied. Note that the longer the length of the insertion portion 2, the more susceptible to external noise, and the stack recovery circuit 34 in the case of the endoscope apparatus 1 used in a place where the electromagnetic environment is very poor such as a factory. Even if there is a case, it may be necessary to make the I2C serial signal transmission line 52 shielded. However, even in such a case, the increase in the outer diameter of the insertion portion 2 due to the shield of the signal line can be greatly reduced as compared with the case where the stack recovery circuit 34 is not provided.
  • the insertion unit 2 is integrated with the main body unit 3, that is, the insertion unit 2 cannot be exchanged, and the inside of the test object to be imaged.
  • the configuration of the endoscope apparatus 1 having a configuration in which the distance to the subject is predetermined by the length of the flexible portion 5 is shown.
  • the endoscope apparatus 1 may be configured such that the insertion unit 2 can be replaced.
  • FIG. 4 is a block diagram showing an example of a schematic configuration of the endoscope apparatus according to the second embodiment of the present invention.
  • the endoscope apparatus 10 includes an elongated insertion portion 2 and a main body portion 3.
  • the insertion portion 2 includes a distal end portion 4 provided with an imaging device, a flexible portion 5 that is a cord that guides the distal end portion 4 into a test object, and a connector portion 16 for connecting the insertion portion 2 to the main body portion 3. Consists of including.
  • the endoscope apparatus 10 shown in FIG. 4 is an endoscope apparatus configured such that the endoscope apparatus 1 according to the first embodiment shown in FIG. Therefore, the constituent elements of the endoscope apparatus 10 in the second embodiment include the same constituent elements as those of the endoscope apparatus 1 of the first embodiment shown in FIG.
  • the same reference numerals are given to the same constituent elements as those of the endoscope apparatus 1 in the first embodiment. A detailed description of the components will be omitted. In the following description, only components different from the endoscope apparatus 1 of the first embodiment will be described.
  • the connector portion 16 is provided on the main body portion 3 side of the insertion portion 2, and the insertion portion 2 is configured to be detachable from the main body portion 3 by the connector portion 16.
  • the pixel signal obtained by the image sensor 41 provided in the distal end portion 4 is transmitted to the main body portion 3 through the flexible portion 5 and the connector portion 16.
  • the connector section 16 includes an electrical contact connector 161, an electrical contact connector 162, and an electrical contact connector 163. Further, the main body 3 has a configuration in which an electrical contact connector 131, an electrical contact connector 132, and an electrical contact connector 133 are added to the main body 3 constituting the endoscope apparatus 1 of the first embodiment. ing.
  • the electrical contact connector 161 is a connector corresponding to the power signal line 51 provided in the flexible part 5 and connected to the electrical contact connector 131 provided in the main body part 3.
  • the electrical contact connector 131 is a connector in the main body 3 corresponding to the power signal line 51.
  • the electrical contact connector 162 is a connector corresponding to the I2C serial signal transmission path 52 provided in the flexible part 5 and connected to the electrical contact connector 132 provided in the main body part 3.
  • the electrical contact connector 132 is a connector in the main body 3 corresponding to the I2C serial signal transmission path 52.
  • the I2C serial signal transmission path 52 is electrically connected to the stack recovery circuit 34 provided in the main body 3.
  • the I2C serial communication is performed between the multimedia processor 33 provided in the main body 3 and the I2C communication unit 413 provided in the image sensor 41 in the distal end portion 4, the electrical contact connector 132, This is performed via the electrical contact connector 162 and the I2C serial signal transmission path 52. That is, by connecting the electrical contact connector 162 and the electrical contact connector 132, various settings (shooting mode settings) relating to activation of functions of the image sensor 41 and shooting operations are performed by the multimedia processor 33.
  • the electrical contact connector 163 is a connector corresponding to the SLVS-EC serial signal transmission path 53 provided in the soft part 5 and connected to the electrical contact connector 133 provided in the main body part 3.
  • the electrical contact connector 133 is a connector in the main body 3 corresponding to the SLVS-EC serial signal transmission path 53.
  • the equalizer circuit 35 and the electrical contact connector 133 are mounted on the same board surface on the main body board.
  • the soldering surfaces for soldering the equalizer circuit 35 and the electrical contact connector 133 are on the same surface of the main body substrate, and the signals of the equalizer circuit 35 and the electrical contact connector 133 are the same.
  • the lines are connected on the same substrate surface of the main body substrate.
  • each of the equalizer circuit 35 and the limiting amplifier circuit 36 is mounted on the same substrate surface in the main body substrate as in the endoscope apparatus 1 of the first embodiment.
  • the board surface on which the equalizer circuit 35 is mounted (soldered), the board surface on which the electrical contact connector 133 is mounted (soldered), and the limiting amplifier circuit 36 are mounted on the main body board ( It is desirable that the board surface to be soldered is the same board surface.
  • at least the substrate surface on which the equalizer circuit 35 and the electrical contact connector 133 are mounted is the same substrate surface. In other words, if either one of the board surfaces on which the equalizer circuit 35 and the limiting amplifier circuit 36 are mounted is the same board surface, the quality of the waveform of the SLVS-EC serial signal can be ensured. it can.
  • the endoscope device 10 realizes a configuration in which the insertion portion 2 can be replaced.
  • the connector portion 16 can be reduced in size, and the configuration for replacing the insertion portion 2 can be realized at low cost. be able to.
  • the insertion portion 2 in which the length of the flexible portion 5 is short it is considered that the reflection of the signal and the distortion of the waveform of the signal that occur when each signal passes through the corresponding electrical contact connector are reduced.
  • the structure of each electrical contact connector provided in the connector part 16 can be simplified, and the cost can be further reduced.
  • the distortion of the waveform of the SLVS-EC serial signal for the image sensor 41 to transmit each pixel signal by SLVS-EC serial communication varies depending on the length of the soft part 5 constituting the insertion part 2. More specifically, the distortion of the frequency characteristic of the SLVS-EC serial signal in the SLVS-EC serial communication is a length obtained by combining the SLVS-EC serial signal transmission path 53, the electrical contact connector 163, and the electrical contact connector 133. In other words, it is considered that it varies depending on the distance between the SLVS-EC output unit 414 and the equalizer circuit 35.
  • the endoscope apparatus 10 is configured such that the frequency characteristics of the equalizer circuit 35 provided in the main body 3 can be changed according to the length of the flexible part 5 in the insertion part 2 to be connected.
  • the equalizer circuit 35 provided in the main body 3 of the endoscope apparatus 10 includes circuit elements provided in the equalizer circuit 35 (for example, the capacitor 351 in the configuration of the equalizer circuit 35 illustrated in FIG. 2).
  • the constants of the two first resistors 352-1 and 352-1, the second resistor 353, and the coil 354 are changed according to the settings from the multimedia processor 33. It can be configured.
  • the equalizer circuit 35 provided in the main body portion 3 of the endoscope apparatus 10 for example, the frequency characteristic curve shown in FIG. 3 is changed according to the length of the flexible portion 5 in the inserted portion 2 to be connected. can do.
  • a mirror device endoscope device 10) is configured.
  • the endoscope apparatus 10 according to the second embodiment as in the endoscope apparatus 1 according to the first embodiment, noise resistance is improved with the diameter of the insertion portion 2 being reduced. Can be realized. That is, in the endoscope apparatus 10 of the second embodiment, as in the endoscope apparatus 1 of the first embodiment, the length of the insertion section 2 is, for example, as shown in FIG. Even when the length exceeds 10 meters, the EMC requirements can be satisfied. Moreover, in the endoscope apparatus 10 of the second embodiment, the insertion portion 2 can be replaced.
  • the equalizer circuit 35 provided in the main body 3 is changed by the multimedia processor 33, for example, by changing the constant of each circuit element provided in the equalizer circuit 35.
  • the frequency characteristic curve in the equalizer circuit 35 is changed in accordance with the length of the flexible portion 5 in the inserted portion 2 to be connected.
  • the endoscope apparatus 1 is configured so that the insertion section 2 can be replaced, a configuration in which the curve of the frequency characteristics in the equalizer circuit 35 is not changed, that is, an optimum frequency characteristic for each insertion section 2 to be replaced.
  • the equalizer circuit 35 may be provided.
  • FIG. 5 is a block diagram showing an example of a schematic configuration of an endoscope apparatus according to the third embodiment of the present invention.
  • the endoscope apparatus 20 includes an elongated insertion portion 2 and a main body portion 3.
  • the insertion portion 2 includes a distal end portion 4 provided with an image sensor, a flexible portion 5 that is a cord for guiding the distal end portion 4 into the test object, and a connector portion 26 for connecting the insertion portion 2 to the main body portion 3. Consists of including.
  • An endoscope apparatus 20 shown in FIG. 5 is an endoscope apparatus in which the endoscope apparatus 10 according to the second embodiment shown in FIG. 4 is configured so as not to change the frequency characteristic curve in the equalizer circuit 35. . Therefore, the constituent elements of the endoscope apparatus 20 in the third embodiment include the same constituent elements as those of the endoscope apparatus 10 of the second embodiment shown in FIG. In the following description, in the constituent elements of the endoscope apparatus 20 in the third embodiment, the same reference numerals are given to the same constituent elements as those of the endoscope apparatus 10 in the second embodiment, and A detailed description of the components will be omitted. In the following description, only components different from the endoscope apparatus 10 of the second embodiment will be described.
  • the endoscope apparatus 20 includes a connector part 26 on the main body part 3 side of the insertion part 2, and the insertion part 2 is configured to be detachable from the main body part 3 by the connector part 26.
  • the pixel signal obtained by the image sensor 41 provided in the distal end portion 4 is transmitted to the main body portion 3 through the flexible portion 5 and the connector portion 26.
  • the connector section 26 includes an equalizer circuit 35, a limiting amplifier circuit 36, an electrical contact connector 161, an electrical contact connector 162, and an electrical contact connector 263.
  • the main body unit 3 includes an electrical contact connector 131, an electrical contact connector 132, and an electrical contact connector 233.
  • the equalizer circuit 35 and the limiting amplifier circuit 36 are the equalizer circuit 35 and the limiting amplifier circuit provided in the main body 3 in the endoscope apparatus 1 of the first embodiment and the endoscope apparatus 10 of the second embodiment. 36 are arranged (moved) in the connector portion 26. Accordingly, in the endoscope apparatus 20, the electrical contact connector 163 provided in the connector unit 16 in the endoscope apparatus 10 of the second embodiment is changed to an electrical contact connector 263. In the endoscope apparatus 20, the electrical contact connector 133 provided in the main body 3 in the endoscope apparatus 10 of the second embodiment is changed to the electrical contact connector 233.
  • each of the two shield lines (coaxial lines) corresponding to each of the SLVS-EC serial signals in the SLVS-EC serial signal transmission path 53 provided in the flexible section 5 is included in the first embodiment. Similar to the endoscope apparatus 1, it is connected to the equalizer circuit 35. In the connector unit 26, each of the SLVS-EC serial signals whose frequency characteristics are corrected by the equalizer circuit 35 and whose signal level is amplified by the limiting amplifier circuit 36 are connected to the electrical contact connector 263.
  • the equalizer circuit 35 and the SLVS-EC serial signal transmission path 53 are respectively configured on a board (hereinafter referred to as “connector board”) on which each component constituting the connector unit 26 is mounted.
  • the board surface on which the equalizer circuit 35 is mounted (soldered) and the board surface on which the respective cables constituting the SLVS-EC serial signal transmission path 53 are soldered are the same.
  • the equalizer circuit 35 and each cable constituting the SLVS-EC serial signal transmission path 53 are connected on the same board surface of the connector board.
  • the characteristic impedance of the signal line between the equalizer circuit 35 and the SLVS-EC serial signal transmission path 53 can be changed as in the endoscope apparatus 1 of the first embodiment.
  • the quality of the waveform of the SLVS-EC serial signal can be ensured.
  • each of the equalizer circuit 35 and the limiting amplifier circuit 36 is considered similarly to the endoscope apparatus 1 of the first embodiment and the endoscope apparatus 10 of the second embodiment.
  • the connector board is mounted on the same board surface. That is, also in the endoscope apparatus 20, the soldering surfaces for soldering the equalizer circuit 35 and the limiting amplifier circuit 36 are on the same surface of the connector board, and each of the equalizer circuit 35 and the limiting amplifier circuit 36 is provided. These signal lines are connected on the same board surface of the connector board.
  • the endoscope apparatus 20 is also considered in the same manner as the endoscope apparatus 1 of the first embodiment and the endoscope apparatus 10 of the second embodiment, and the equalizer circuit 35 is mounted (soldered) on the connector board.
  • the board surface to be soldered, the board surface to which the cable constituting the SLVS-EC serial signal transmission line 53 is soldered, and the board surface on which the limiting amplifier circuit 36 is mounted (soldered) may be the same board surface. desirable.
  • the endoscope device 20 is also considered in the same manner as the endoscope device 1 of the first embodiment, and at least the board surface on which the equalizer circuit 35 is mounted and the cable constituting the SLVS-EC serial signal transmission path 53 are soldered. If either one of the substrate surfaces to be attached is the same substrate surface or the substrate surfaces on which the equalizer circuit 35 and the limiting amplifier circuit 36 are mounted is the same substrate surface, SLVS- The quality of the EC serial signal waveform can be ensured.
  • the electrical contact connector 263 is a connector that corresponds to each of the SLVS-EC serial signals output from the limiting amplifier circuit 36 and whose signal level is amplified, and is connected to the electrical contact connector 233 provided in the main body 3. .
  • the electrical contact connector 233 is a connector in the main body 3 corresponding to each SLVS-EC serial signal whose signal level is amplified.
  • the SLVS-EC serial signal transmitted (transmitted) from the SLVS-EC output unit 414 provided in the image sensor 41 in the distal end portion 4 via the SLVS-EC serial signal transmission path 53 is processed. Correction and amplification of frequency characteristic distortion are performed in the connector section 26 and input to the multimedia processor 33 provided in the main body section 3 via the electrical contact connector 263 and the electrical contact connector 233.
  • Such a configuration realizes a configuration in which the insertion unit 2 can be replaced in the endoscope device 20 as well as the endoscope device 10 of the second embodiment.
  • the insertion portion 2 has a longer length of the flexible portion 5, the reflection or signal of the signal generated when each signal passes through the corresponding electrical contact connector.
  • the insertion unit 2 can be exchanged in a state where the influence on the signal when passing through the electrical contact connector is avoided. Can do.
  • the frequency characteristic of the equalizer circuit 35 that corrects the distortion of the waveform of the SLVS-EC serial signal, which is considered to change depending on the length of the flexible part 5 constituting the insertion part 2, is obtained for each insertion part 2.
  • the frequency characteristics can be optimized. More specifically, each circuit element provided in the equalizer circuit 35 in the connector section 26 of the endoscope apparatus 20 (for example, in the configuration of the equalizer circuit 35 shown in FIG. 2, the capacitor 351 and the two first The frequency characteristics of the resistor 352-1, the first resistor 352-2, the second resistor 353, and the circuit elements of the coil 354) are matched to the length of the flexible portion 5 to achieve optimum frequency characteristics. Can be a constant. For this reason, in the endoscope apparatus 20, the effect that the pixel signal of the high frequency component required when the multimedia processor 33 performs an image process can be extracted more accurately is also acquired.
  • the connector section is an endoscope apparatus (endoscope) in which an equalizer circuit (equalizer circuit 35) and a limiting amplifier circuit (limiting amplifier circuit 36) are arranged.
  • a mirror device 20) is constructed.
  • the insertion unit 2 is the same as the endoscope apparatus 1 of the first embodiment and the endoscope apparatus 10 of the second embodiment.
  • the noise resistance can be improved in a state where the diameter is reduced. That is, in the endoscope apparatus 20 according to the third embodiment, the diameter of the insertion portion 2 is reduced as in the endoscope apparatus 1 according to the first embodiment and the endoscope apparatus 10 according to the second embodiment. Even when the length of the insertion portion 2 is, for example, more than 10 meters, the EMC requirement can be satisfied. And also in the endoscope apparatus 20 of 3rd Embodiment, the insertion part 2 can be replaced
  • the size of the connector part 26 constituting the insertion part 2 is the same as the connector part 16 constituting the insertion part 2 in the endoscope apparatus 10 according to the second embodiment.
  • the equalizer circuit 35 in the connector part 26 can be made to have an optimum frequency characteristic that matches the length of the soft part 5, and the transmitted (transmitted) pixel signal can be obtained. Therefore, it can be extracted with higher accuracy.
  • the serial for performing various settings on the imaging device provided at the distal end of the insertion portion in the endoscope apparatus by serial communication.
  • Serial transmission for transmitting (transmitting) the signal transmission path and each pixel signal obtained by imaging with the image sensor provided at the tip to the image processing unit provided in the main body of the endoscope apparatus by serial communication.
  • Two types of serial signal transmission paths are provided. Thereby, in each embodiment of the present invention, it is possible to reduce the number of signal cables provided in the flexible portion constituting the insertion portion in the endoscope apparatus.
  • the serial communication is stopped (stacked) in the serial signal transmission path for setting the image sensor, the stopped serial communication is restored (restarted).
  • a stack bus recovery circuit for performing the above-described processing.
  • the serial signal transmission path for transmitting (transmitting) each pixel signal has an equalizer circuit that corrects the frequency characteristic of the serial signal, and the serial signal after the equalizer circuit corrects the frequency characteristic. And a limiting amplifier circuit.
  • each pixel signal can be accurately transmitted (transmitted) to the image processing section even when the length of the flexible section constituting the insertion section in the endoscope apparatus is long. .
  • An apparatus can be realized.
  • each embodiment the case where the endoscope apparatus of the present invention is an industrial endoscope apparatus has been described.
  • the configuration and concept of each embodiment are not limited to application to an industrial endoscope apparatus, and may be similarly applied to, for example, a medical endoscope apparatus.
  • the same effect as the industrial endoscope apparatus described in each embodiment can be obtained.
  • the number of signal cables provided in the insertion portion is reduced, and noise countermeasures are performed in a state where the diameter of the insertion portion is reduced. It is possible to provide an endoscope apparatus capable of performing the above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Studio Devices (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

撮影した被写体の画像に応じた画素信号を出力する撮像素子を具備し、被検物内に挿入される先端部と、第1のシリアル通信によって撮影に関する設定を撮像素子に送信し、第1のシリアル通信が停止してしまった場合に、停止している第1のシリアル通信を復旧させるための処理を行うスタックバス復旧回路を備える第1のシリアル信号伝送路と、第2のシリアル通信によって撮像素子が出力した画素信号を伝送する第2のシリアル信号伝送路とを具備し、先端部を被検物内に導く軟性部と、第2のシリアル通信によって伝送された画素信号に対して画像処理を施す画像処理部を具備した本体部と、を備える。

Description

内視鏡装置
 本発明は、被検物内に挿入部を挿入して使用する内視鏡装置に関する。
 本願は、2016年01月12日に、日本に出願された特願2016-003611号に基づき優先権を主張し、その内容をここに援用する。
 従来から、工業分野や医療分野において、細長い挿入部を被検物内に挿入し、挿入部の先端に位置する先端部内に備えた撮像素子によって被検物内を撮影する内視鏡装置が実用化されている。従来の内視鏡装置では、撮像素子として、CCD(Charge Coupled Device:電荷結合素子)イメージセンサを搭載し、CCDイメージセンサが撮像した被検物内の画像の信号を、挿入部内に備えた信号ケーブルによって本体部に伝送している。
 例えば、特許文献1には、CCDイメージセンサから出力されるアナログ画像信号を、CDS(Correlated Double Sampling:相関二重サンプリング)およびバッファを介してシリアルケーブルによって本体部に伝送する構成の内視鏡装置が開示されている。特許文献1に開示された内視鏡装置では、CCDイメージセンサから出力されるアナログ画像信号を、アナログ信号のまま本体部に伝送している。
 また、例えば、特許文献2には、CCDイメージセンサから出力されたアナログ画像信号をアナログ/デジタル変換(A/D変換)によってパラレルのデジタル信号に変換し、さらに、シリアライザによってシリアルのデジタル信号に変換して本体部に伝送する構成の内視鏡装置が開示されている。特許文献2に開示された内視鏡装置では、伝送されたシリアルのデジタル信号を、本体部に備えたデシリアライザによって、元のパラレルのデジタル信号、つまり、CCDイメージセンサから出力されたアナログ画像信号をアナログ/デジタル変換したパラレルのデジタル信号に戻している。
 また、近年では、CCDイメージセンサに代わって、CMOS(Complementary Metal-Oxide Semiconductor:相補型金属酸化膜半導体)イメージセンサを利用した内視鏡装置も実用化されてきている。CMOSイメージセンサを搭載した内視鏡装置では、撮像した被検物内の画像の信号を、デジタル信号で本体部に伝送することができる。
 そして、例えば、特許文献3に開示された内視鏡装置のように、CMOSイメージセンサに備えた構成要素に対する制御信号を、デジタルのシリアル信号で伝送する構成の内視鏡装置が開示されている。特許文献3に開示された内視鏡装置では、CMOSイメージセンサに備えたレシーバに、画像の電気信号を光信号に変換する発光素子の駆動電流を変更するための命令を、I2C(Inter-Integrated Circuit)ケーブルを介して伝送している。ここで、I2Cによる信号の伝送は、2本の信号ケーブルによって種々の命令や制御信号を伝送することができるため、挿入部の径を細くする上で有効な伝送方法である。
日本国特開2012-115531号公報 日本国特開2011-036585号公報 日本国特開2010-051503号公報
 しかしながら、一般的な内視鏡装置においては、挿入部の全長が数メートルに及ぶ。そして、I2Cの伝送方式は、短距離の信号伝送を想定した規格である。このため、I2Cの伝送方式は、信号を伝送する距離が長距離でノイズが多い環境で使用される内視鏡装置の挿入部への採用には適していない。このため、挿入部内に備えた信号ケーブルによってそれぞれの信号(デジタル信号)を伝送する構成の内視鏡装置においてI2Cによる信号伝送を行う場合には、例えば、EMC(Electro-Magnetic Compatibility:電磁環境両立性)の要求を満足するために、多くのノイズ対策などが必要になる。つまり、挿入部の全長が数メートルに及ぶような内視鏡装置、特に、工業分野において利用される、挿入部の長さが数十メートルにもなるような内視鏡装置においてI2Cの伝送方式を適用するためには、EMCなどの多くのノイズ対策が必要になる。
 なお、工業用の内視鏡装置においてI2Cの伝送方式を適用してEMCを満足させるために、例えば、I2Cケーブルの径を太くしてシールドを強化することも考えられる。しかし、I2Cケーブルを太くしてしまうと挿入部の径も太くなり、挿入部の取り回しが容易ではなくなってしまう。このため、I2Cケーブルを太くすることによってEMCなどのノイズ対策を行う方法は、実用的な方法ではない。
 本発明は、上記の課題に基づいてなされたものであり、被検物内に挿入部を挿入して使用する内視鏡装置において、挿入部内に備える信号ケーブルの数を少なくし、挿入部の径を細くした状態でノイズ対策を行うことができる内視鏡装置を提供することを目的としている。
 本発明の第1の態様によれば、内視鏡装置は、撮影した被写体の画像に応じた画素信号を出力する撮像素子を具備し、被検物内に挿入される先端部と、第1のシリアル通信によって撮影に関する設定を前記撮像素子に送信し、前記第1のシリアル通信が停止してしまった場合に、停止している前記第1のシリアル通信を復旧させるための処理を行うスタックバス復旧回路を備える第1のシリアル信号伝送路と、第2のシリアル通信によって前記撮像素子が出力した前記画素信号を伝送する第2のシリアル信号伝送路とを具備し、前記先端部を前記被検物内に導く軟性部と、第2のシリアル通信によって伝送された前記画素信号に対して画像処理を施す画像処理部を具備した本体部と、を備える。
 本発明の第2の態様によれば、上記第1の態様の内視鏡装置において、前記第2のシリアル信号伝送路は、前記画素信号を前記第2のシリアル通信によって伝送するシリアル信号の周波数特性を補正するイコライザー回路と、前記イコライザー回路が周波数特性を補正した後の前記シリアル信号を増幅するリミッティングアンプ回路と、を備えてもよい。
 本発明の第3の態様によれば、上記第2の態様の内視鏡装置において、前記イコライザー回路は、入力される信号の周波数帯域が高いほど出力する信号の信号レベルの減衰率を抑え、入力される信号の周波数帯域が低いほど出力する信号の信号レベルの減衰率を高くするように、入力された前記シリアル信号の信号レベルを補正して出力してもよい。
 本発明の第4の態様によれば、上記第3の態様の内視鏡装置において、前記第1のシリアル通信は、I2Cバスによるシリアル通信であり、前記第2のシリアル通信は、クロック埋め込み式の高速デジタルシリアル通信であってもよい。
 本発明の第5の態様によれば、上記第4の態様の内視鏡装置において、前記第2のシリアル通信は、前記撮像素子が前記画素信号を出力するタイミングを表す同期信号をクロック信号として埋め込んだクロック埋め込み式の高速デジタルシリアル通信であってもよい。
 本発明の第6の態様によれば、上記第2の態様から上記第5の態様のいずれか一態様の内視鏡装置において、前記第2のシリアル信号伝送路は、前記画素信号を伝送するケーブルと前記イコライザー回路とが、同一の基板面上で接続されてもよい。
 本発明の第7の態様によれば、上記第2の態様から上記第6の態様のいずれか一態様の内視鏡装置において、前記第2のシリアル信号伝送路は、前記イコライザー回路と前記リミッティングアンプ回路とが、同一の基板面上で接続されてもよい。
 本発明の第8の態様によれば、上記第2の態様から上記第7の態様のいずれか一態様の内視鏡装置において、前記軟性部に具備した前記第1のシリアル信号伝送路と前記第2のシリアル信号伝送路とのそれぞれを、前記本体部に具備した対応する構成要素に電気的に接続するコネクタ部、をさらに備えてもよい。
 本発明の第9の態様によれば、上記第8の態様の内視鏡装置において、前記コネクタ部は、前記イコライザー回路と前記リミッティングアンプ回路とが配置されてもよい。
 本発明の第10の態様によれば、上記第1の態様から上記第9の態様のいずれか一態様の内視鏡装置において、前記第1のシリアル信号伝送路は、前記第2のシリアル信号伝送路よりも径が細い伝送路であってもよい。
 本発明の第11の態様によれば、上記第10の態様の内視鏡装置において、前記第1のシリアル信号伝送路は、前記第1のシリアル通信におけるそれぞれの信号に対応した単線のツイストペアケーブルで構成され、前記第2のシリアル信号伝送路は、前記第2のシリアル通信におけるそれぞれのシリアル信号に対応したシールド線のツイストペアケーブルで構成されてもよい。
 上記各態様によれば、被検物内に挿入部を挿入して使用する内視鏡装置において、挿入部内に備える信号ケーブルの数を少なくし、挿入部の径を細くした状態でノイズ対策を行うことができる内視鏡装置を提供することができる。
本発明の第1の実施形態における内視鏡装置の概略構成の一例を示したブロック図である。 本発明の第1の実施形態の内視鏡装置に備えたイコライザー回路の一例を示した回路図である。 本発明の第1の実施形態の内視鏡装置に備えたイコライザー回路の周波数特性の一例を示した図である。 本発明の第2の実施形態における内視鏡装置の概略構成の一例を示したブロック図である。 本発明の第3の実施形態における内視鏡装置の概略構成の一例を示したブロック図である。
(第1の実施形態)
 以下、本発明の実施形態について、図面を参照して説明する。なお、以下の説明においては、本発明の内視鏡装置が、工業用の内視鏡装置である場合について説明する。図1は、本発明の第1の実施形態における内視鏡装置の概略構成の一例を示したブロック図である。図1において、内視鏡装置1は、細長い挿入部2と、本体部3とを備えている。挿入部2は、撮像素子を備えた先端部4と、先端部4を被検物内に導くコードである軟性部5とを含んで構成される。
 内視鏡装置1では、先端部4内に備えた撮像素子が撮影して得た画素信号を、軟性部5を介して本体部3に伝送する。なお、内視鏡装置1では、軟性部5によって導かれて被検物内に挿入されるときの先端部4の動きや方向、さらには、先端部4内に備えた撮像素子による被写体の撮影動作が、軟性部5を介して本体部3から操作される。内視鏡装置1では、先端部4から伝送された画素信号を本体部3で処理して生成した映像(画像)を表示する。また、内視鏡装置1では、本体部3が生成した映像(画像)を記録する。なお、内視鏡装置1において被検物内の撮影を行わない場合、挿入部2は、例えば、本体部3に取り付けられた不図示のドラム部に巻かれて内視鏡装置1に収納される。
 先端部4は、撮像素子としてのイメージセンサ41と、水晶発振器42とを備えている。軟性部5は、電源信号線51と、I2Cシリアル信号伝送路52と、SLVS-ECシリアル信号伝送路53とを備えている。本体部3は、バッテリー31と、電源出力部32と、マルチメディアプロセッサー33と、スタックリカバリー回路34と、イコライザー回路35と、リミッティングアンプ回路36と、記録部37と、表示部38とを備えている。なお、マルチメディアプロセッサー33は、System on Chip(SoC)と呼ばれる場合もある。
 ここで、内視鏡装置1に備えたそれぞれの構成要素について詳細に説明する。まず、先端部4に備えたそれぞれの構成要素について詳細に説明する。
 水晶発振器42は、イメージセンサ41が動作する際に必要な予め定めた周波数の動作クロック信号を発振し、発振した動作クロック信号をイメージセンサ41に供給する。
 なお、水晶発振器42は、本体部3が動作する際のクロック信号と同期した動作クロック信号を発振してイメージセンサ41に供給する必要はない。つまり、内視鏡装置1では、例えば、本体部3から出力される同期信号などに同期した動作クロック信号を水晶発振器42が発振する必要はない。このため、内視鏡装置1では、高い周波数の動作クロック信号を本体部3から先端部4に伝送しない構成にしている。従って、内視鏡装置1では、従来の内視鏡装置において備えていた波形整形回路や動作クロック信号の波形を劣化させないための太い同軸伝送線を軟性部5に備える必要がなくなり、先端部4を小型化することができる。
 イメージセンサ41は、水晶発振器42が発振するクロック信号に基づいて動作するCMOSイメージセンサである。イメージセンサ41は、撮像した被検物内の被写体の画像に対応する画素信号を出力する不図示の画素アレイ部と、電源入力部411と、クロック入力部412と、I2C(Inter-Integrated Circuit)通信部413と、SLVS-EC(Scalable Low Voltage Signaling with Embedded Clock)出力部414と、同期信号発生部415と、外部同期入力部416と、を備えている。
 電源入力部411は、軟性部5に備えた電源信号線51を介して本体部3から供給された電源を、イメージセンサ41内のそれぞれの構成要素が必要とする電圧に変換し、変換したそれぞれの電圧の電源をそれぞれの構成要素に供給する。
 クロック入力部412は、水晶発振器42から入力された動作クロック信号を、イメージセンサ41内のそれぞれの構成要素が必要とする周波数に変換し、変換したそれぞれのクロック信号をそれぞれの構成要素に供給する。
 I2C通信部413は、軟性部5に備えたI2Cシリアル信号伝送路52を介して、本体部3との間でI2Cバスによるシリアル通信(以下、「I2Cシリアル通信」という)を行う。I2Cシリアル通信は、2本の信号線から構成される伝送路(I2Cシリアル信号伝送路52)によって行われる。IC2通信部413は、I2Cシリアル通信によって本体部3から入力されたイメージセンサ41の機能の起動や動作の設定を、対応するそれぞれの構成要素に出力する。例えば、I2C通信部413には、本体部3から、不図示の画素アレイ部が被写体の撮影を行う際の電子シャッターや露光時間、撮影間隔(いわゆる、フレームレート)など、撮影に関する様々な設定(以下、「撮影モード設定」という)が、I2Cシリアル通信によって送信されてくる。IC2通信部413は、I2Cシリアル信号伝送路52を介して本体部3から送信された撮影モード設定を受信すると、受信した撮影モード設定の情報を、不図示の画素アレイ部に出力する。これにより、不図示の画素アレイ部は、I2C通信部413から出力された撮影モード設定の情報に応じた撮影を行い、撮影によって得たそれぞれの画素信号を出力する。なお、I2C通信部413におけるI2Cシリアル通信の通信方法は、既存のI2Cバスによるシリアル通信と同様であるため、詳細な説明は省略する。
 SLVS-EC出力部414は、不図示の画素アレイ部が撮影して出力した画素信号(例えば、RAW信号)を、SLVS-ECを使用したシリアル通信(以下、「SLVS-ECシリアル通信」という)の形式のシリアル信号に変換する。SLVS-EC出力部414は、変換したシリアル信号を、SLVS-ECシリアル信号伝送路53を介して本体部3に伝送(送信)する。つまり、イメージセンサ41は、撮像した被検物内の被写体の画像に対応する画素信号を、SLVS-ECシリアル通信によって出力するCMOSイメージセンサである。SLVS-ECシリアル通信も、2本の信号線から構成される伝送路(SLVS-ECシリアル信号伝送路53)によって行われる。
 なお、SLVS-EC出力部414がSLVS-ECシリアル通信によって本体部3に伝送(送信)する画素信号は、デジタル信号である。このため、不図示の画素アレイ部が撮影して出力した画素信号は、不図示のアナログ/デジタル変換(A/D変換)回路によってパラレルのデジタル信号に変換されてからSLVS-EC出力部414に入力される。従って、SLVS-EC出力部414は、入力されたパラレルのデジタル信号である画素信号を、SLVS-ECシリアル通信の形式のシリアルのデジタル信号に変換して、本体部3に伝送(送信)する。しかし、以下の説明においては、説明を容易にするため、SLVS-EC出力部414は、不図示の画素アレイ部が撮影して出力した画素信号をSLVS-ECシリアル通信の形式のシリアル信号に変換して本体部3に伝送(送信)するものとして説明する。
 同期信号発生部415は、クロック入力部412から供給されたクロック信号に基づいて、不図示の画素アレイ部が撮影して得た画素信号を出力するタイミングを表す同期信号(水平同期信号や垂直同期信号)を生成する。同期信号発生部415は、生成したそれぞれの同期信号を不図示の画素アレイ部に出力する。これにより、不図示の画素アレイ部は、入力されたそれぞれの同期信号に同期したタイミングで、撮影によって得たそれぞれの画素信号をSLVS-EC出力部414に出力する。
 内視鏡装置1では、SLVS-ECシリアル通信のシリアル信号に、同期信号発生部415から出力されたそれぞれの同期信号を重畳して本体部3に送信する。このため、同期信号発生部415は、生成したそれぞれの同期信号を、SLVS-EC出力部414にも出力する。SLVS-EC出力部414は、不図示の画素アレイ部から出力された画素信号をSLVS-ECシリアル通信の形式のシリアル信号に変換する際に、同期信号発生部415から出力されたそれぞれの同期信号を重畳する。つまり、SLVS-EC出力部414は、SLVS-ECシリアル通信において埋め込むクロック信号として、同期信号発生部415から出力されたそれぞれの同期信号を埋め込んだSLVS-ECシリアル通信の形式のシリアル信号を、SLVS-ECシリアル信号伝送路53を介して本体部3に伝送(送信)する。これにより、内視鏡装置1では、SLVS-ECシリアル通信によって、画素信号と共に同期信号(水平同期信号や垂直同期信号)が本体部3に送信される。そして、内視鏡装置1では、本体部3が、画素信号と共に送信されたそれぞれの同期信号に同期して、つまり、イメージセンサ41が画素信号を出力した水平同期信号や垂直同期信号のタイミングに同期して、それぞれの画素信号に対する種々の処理を行う。なお、SLVS-EC出力部414におけるSLVS-ECシリアル通信の通信方法は、既存のSLVS-ECを使用したシリアル通信と同様であるため、詳細な説明は省略する。
 外部同期入力部416は、外部からの同期信号(水平同期信号や垂直同期信号)が入力される入力部である。外部同期入力部416に、それぞれの同期信号が外部から入力された場合、入力された外部の同期信号(以下、「外部同期信号」という)のそれぞれを、不図示の画素アレイ部に出力する。これにより、不図示の画素アレイ部は、入力されたそれぞれの外部同期信号に同期したタイミングで、撮影によって得たそれぞれの画素信号をSLVS-EC出力部414に出力する。つまり、外部同期入力部416に外部同期信号が入力された場合、イメージセンサ41は、入力された外部同期信号に同期して動作するCMOSイメージセンサとなる。なお、外部同期信号は、例えば、軟性部5に備えた不図示の外部同期信号線を介して本体部3から伝送される。
 なお、イメージセンサ41が外部同期信号に同期して動作する場合でも、外部同期入力部416が、入力された外部同期信号をSLVS-EC出力部414にも出力する。これにより、SLVS-EC出力部414は、不図示の画素アレイ部から出力された画素信号をSLVS-ECシリアル通信の形式のシリアル信号に変換する際に、外部同期入力部416から出力されたそれぞれの外部同期信号を重畳して本体部3に送信する。
 図1に示した内視鏡装置1の構成では、イメージセンサ41が、同期信号発生部415が生成した同期信号に同期して動作するCMOSイメージセンサである構成を示している。従って、内視鏡装置1は、本体部3が、同期信号発生部415が生成した同期信号に同期して動作する構成である。しかし、上述したように、イメージセンサ41は、外部同期信号に同期して動作することもできる。ただし、この場合には、上述したように、外部同期信号をイメージセンサ41に別途伝送するための不図示の外部同期信号線を軟性部5に備えることが必要になる。このため、外部同期信号に同期して動作する構成の内視鏡装置1では、軟性部5に備える信号線の数が増加して、軟性部5の外形が太くなってしまうことが考えられる。従って、イメージセンサ41は、図1に示したように、同期信号発生部415が生成した同期信号に同期して動作する構成であることが望ましい。そして、イメージセンサ41は、SLVS-EC出力部414が、画素信号と共にそれぞれの同期信号を送信する。これにより、内視鏡装置1では、イメージセンサ41に備えた同期信号発生部415が生成したそれぞれの同期信号を本体部3に別途伝送するために、軟性部5にそれぞれの同期信号に対応した信号線を備えなくても、イメージセンサ41における撮影と本体部3における処理とが同期して動作することができる。
 続いて、本体部3に備えたそれぞれの構成要素について詳細に説明する。
 バッテリー31は、本体部3に備えたそれぞれの構成要素や、先端部4に備えたそれぞれの構成要素を駆動するための電力を供給する、例えば、リチウムイオン二次電池などの充電式の電池である。
 電源出力部32は、バッテリー31が出力した電力を、軟性部5に備えた電源信号線51を介して先端部4に備えたそれぞれの構成要素に供給する。図1には、電源出力部32が、先端部4内のイメージセンサ41に備えた電源入力部411に、電源信号線51を介して電力を供給している状態を示している。
 マルチメディアプロセッサー33は、内視鏡装置1における全体の制御を行う制御部である。例えば、マルチメディアプロセッサー33は、内視鏡装置1の使用者が不図示の操作部やリモコン端末などの専用の操作装置を操作することによって指示した先端部4に備えたイメージセンサ41の機能の起動や撮影の動作に関する様々な設定、すなわち、内視鏡装置1における撮影モード設定を、I2Cシリアル通信によって先端部4内のイメージセンサ41に備えたI2C通信部413に送信して、内視鏡装置1における被検物内の被写体の撮影を制御する。
 また、マルチメディアプロセッサー33は、先端部4内のイメージセンサ41に備えた不図示の画素アレイ部が撮影し、SLVS-ECシリアル通信によって伝送(送信)されたそれぞれの画素信号(例えば、RAW信号)に対して予め定められた種々の画像処理を施し、撮像した被検物内の被写体の画像を生成する画像処理部でもある。例えば、マルチメディアプロセッサー33は、イメージセンサ41から伝送(送信)されたそれぞれの画素信号に対して記録用の画像処理を施して記録用の画像(静止画像や動画像)を生成し、生成した記録用の画像を記録部37に記録させる。また、例えば、マルチメディアプロセッサー33は、イメージセンサ41から伝送(送信)されたそれぞれの画素信号に対して表示用の画像処理を施して表示用の画像(静止画像や動画像)を生成し、生成した表示用の画像を表示部38に出力して表示させる。なお、マルチメディアプロセッサー33は、記録部37に記録されている記録用の画像(静止画像や動画像)を読み出して表示部38に出力して表示させる画像処理も行う。
 記録部37は、内視鏡装置1によって撮像した被検物内の被写体の画像のデータを記録する。なお、図1において記録部37は、本体部3に内蔵される構成要素として示しているが、記録部37は、例えば、SDメモリカード(SD Memory Card)やコンパクトフラッシュ(登録商標)(CompactFlash(登録商標):CF)など、本体部3に着脱可能な構成の記録媒体であってもよい。
 表示部38は、内視鏡装置1によって撮像した被検物内の被写体の画像を表示する。表示部38は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)などの表示装置で構成される。なお、図1において表示部38は、本体部3に搭載される構成要素として示しているが、表示部38は、本体部3に接続される外部の表示装置、つまり、本体部3に脱着可能な構成の表示装置であってもよい。
 スタックリカバリー回路34は、I2Cシリアル信号伝送路52の本体部3側の端に接続され、先端部4内のイメージセンサ41に備えたI2C通信部413とマルチメディアプロセッサー33との間のI2Cシリアル通信を中継する。また、スタックリカバリー回路34は、I2Cシリアル通信の状態を監視し、I2Cシリアル通信が正常に行われるようにするためのスタック・バス・リカバリー(スタックバス復旧)回路である。スタックリカバリー回路34は、内視鏡装置1が、例えば、電磁ノイズが多い工場などの劣悪な環境で使用される場合、細長い挿入部2の軟性部5に備えたI2Cシリアル信号伝送路52に多くの外来ノイズが進入してI2Cシリアル通信が停止(スタック)してしまうことが考えられるために設けられた構成要素である。スタックリカバリー回路34は、I2Cシリアル通信の状態を監視することによってI2Cシリアル通信が停止しているか否か判定し、I2Cシリアル通信が停止していると判定した場合に、停止しているI2Cシリアル通信を復旧(再開)させるための処理を行う。
 より具体的には、例えば、外来ノイズなどによってI2Cシリアル通信における通信クロック信号が停止している時間が予め定めた時間以上である場合を考える。この場合、スタックリカバリー回路34は、I2Cシリアル通信が停止していると判定する。I2Cシリアル通信が停止していると判定すると、スタックリカバリー回路34は、I2Cシリアル通信の伝送路、つまり、I2Cシリアル信号伝送路52を一時的に遮断し、自動で生成した予め定めた数の通信クロック信号をI2Cシリアル信号伝送路52に付加することによって、停止しているイメージセンサ41に備えたI2C通信部413とマルチメディアプロセッサー33との間のI2Cシリアル通信を復旧(再開)させる。すなわち、スタックリカバリー回路34は、I2Cシリアル通信の形式のシリアル信号における通信クロック信号(いわゆる、一般的にI2Cシリアル通信において基準とするクロック信号SCL)を動作させてI2Cシリアル通信を復旧(再開)させる。
 これにより、内視鏡装置1では、2本の信号線によって行われるため挿入部2の径を細くすることができるが、外来ノイズに弱いという特性があるI2Cシリアル通信のノイズ耐性を、スタックリカバリー回路34を備えることによって、挿入部2の径を細くした状態で向上させることができる。つまり、従来の内視鏡装置においてI2Cシリアル通信のノイズ耐性を向上させるためには、I2Cシリアル通信の伝送路のそれぞれの信号線を二重にシールドしたり、信号線そのものを太くして電線のインピーダンスを下げたりする必要があったため、I2Cシリアル通信の伝送路の径を細くするのは容易ではなかった。これに対して、内視鏡装置1では、スタックリカバリー回路34を備えることによって、従来の内視鏡装置において必要であった二重のシールドや信号線を太くするなどの対策を軽減し、I2Cシリアル信号伝送路52の径を細くすることと、I2Cシリアル通信のノイズ耐性を向上させることとの両立を、容易に実現した。
 また、スタックリカバリー回路34は、例えば、I2Cドライバー回路のような、I2Cシリアル信号伝送路52において減衰してしまう、I2Cシリアル通信のそれぞれのシリアル信号(以下、「I2Cシリアル信号」という)の信号成分を増幅させる増幅回路の機能を備えている。なお、スタックリカバリー回路34の構成や機能は、既存のスタック・バス・リカバリー(スタックバス復旧)回路と同様であるため、詳細な説明は省略する。
 なお、図1においてスタックリカバリー回路34は、本体部3に搭載されてマルチメディアプロセッサー33に接続される構成要素として示しているが、スタックリカバリー回路34は、マルチメディアプロセッサー33に搭載される機能、つまり、マルチメディアプロセッサー33に備えた構成要素であってもよい。また、スタックリカバリー回路34は、I2Cシリアル信号伝送路52の長さに応じて、I2Cシリアル信号の信号成分を増幅させる機能を有効にするか否かを切り替える構成であってもよい。つまり、スタックリカバリー回路34は、I2Cシリアル信号伝送路52の長さが長い場合にのみ、それぞれのI2Cシリアル信号の信号成分を増幅させる機能を有効にする構成であってもよい。言い換えれば、スタックリカバリー回路34を、それぞれのI2Cシリアル信号の信号成分を増幅させる機能を備えていない構成とし、I2Cシリアル信号伝送路52の長さが長い場合に、この構成のスタックリカバリー回路34とI2Cドライバー回路とを本体部3に備える構成の内視鏡装置1としてもよい。
 イコライザー回路35は、SLVS-ECシリアル信号伝送路53の本体部3側の端に接続され、先端部4内のイメージセンサ41に備えたSLVS-EC出力部414から伝送(送信)されたSLVS-ECシリアル通信のシリアル信号の周波数特性を補正する回路である。イコライザー回路35は、周波数特性を補正した後のSLVS-ECシリアル通信のシリアル信号をリミッティングアンプ回路36に出力する。
 なお、内視鏡装置1では、上述したように、イメージセンサ41が撮影によって得たそれぞれの画素信号が、細長い挿入部2の軟性部5に備えたSLVS-ECシリアル信号伝送路53を介して伝送(送信)されるため、SLVS-ECシリアル通信のシリアル信号(以下、「SLVS-ECシリアル信号」という)は、周波数が高い信号成分ほど、より多く減衰してしまう。このため、内視鏡装置1では、SLVS-ECシリアル信号の波形が歪んだ状態(一般的に、2線のシリアル通信において波形の品質が良いといわれる「アイパターンが開いている状態」とは逆の状態)になってしまう。イコライザー回路35は、SLVS-ECシリアル信号伝送路53を介して伝送される際に、周波数によって異なる信号成分の減衰量を補正して、SLVS-ECシリアル信号の波形が、全ての周波数帯域で同様の信号レベルになるようにする、つまり、一般的に、波形の品質が良いといわれる「アイパターンが開いている状態」にするために設けられた構成要素である。内視鏡装置1では、イコライザー回路35によってSLVS-ECシリアル信号伝送路53を介して伝送(送信)されたSLVS-ECシリアル信号の波形を改善して品質が良い状態にすることによって、マルチメディアプロセッサー33が画像処理を行う際に必要な高周波成分の画素信号を、SLVS-ECシリアル通信によってより正確に伝送することができる。
 なお、内視鏡装置1では、本体部3を構成するそれぞれの構成要素を実装する基板(以下、「本体基板」という)において、イコライザー回路35とSLVS-ECシリアル信号伝送路53を構成するそれぞれの線材(ケーブル)とを接続する際に、イコライザー回路35を実装(半田付け)する基板面と、SLVS-ECシリアル信号伝送路53を構成するそれぞれのケーブルを半田付けする基板面とを、同一の基板面にする。つまり、内視鏡装置1では、イコライザー回路35とSLVS-ECシリアル信号伝送路53を構成するそれぞれのケーブルとは、本体基板の同一基板面上で接続される。これにより、内視鏡装置1では、イコライザー回路35とSLVS-ECシリアル信号伝送路53との間の信号線の特性インピーダンスを変化させることなく、SLVS-ECシリアル信号の波形の品位を確保することができる。
 イコライザー回路35は、SLVS-ECシリアル信号伝送路53を介して伝送される際により多く減衰してしまう高い周波数帯域の信号成分は比較的にそのまま出力し、減衰が少ない低い周波数帯域の信号成分を減衰させて出力することによって、全ての周波数帯域で同様の信号レベルになるように補正して、SLVS-ECシリアル信号の波形を改善する。イコライザー回路35は、例えば、抵抗(R)、コイル(L)、およびコンデンサ(C)を組み合わせたRLC回路、つまり、フィルター回路で構成される。
 ここで、イコライザー回路35の回路構成の一例と、イコライザー回路35の周波数特性の一例について詳細に説明する。図2は、本発明の第1の実施形態の内視鏡装置1に備えたイコライザー回路35の一例を示した回路図である。また、図3は、本発明の第1の実施形態の内視鏡装置1に備えたイコライザー回路35の周波数特性の一例を示した図である。
 図2において、イコライザー回路35は、コンデンサ(C)351と、2つの第1の抵抗(R1)352-1および第1の抵抗(R1)352-2と、第2の抵抗(R2)353と、コイル(L)354とから構成される。より具体的には、コンデンサ351の第1の端子と、第1の抵抗352-1の第1の端子とのそれぞれは接続されて、イコライザー回路35の入力端子になっている。第1の抵抗352-1の第2の端子は、第1の抵抗352-2の第1の端子と、第2の抵抗353の第1の端子とのそれぞれに接続されている。第2の抵抗353の第2の端子は、コイル354の第1の端子に接続されている。コイル354の第2の端子は、接地されている。コンデンサ351の第2の端子と、第1の抵抗352-2の第2の端子とのそれぞれは接続されて、イコライザー回路35の出力端子になっている。
 このような構成によって、図2に示したイコライザー回路35は、図3に示したように、ローパスフィルタ(LPF)とハイパスフィルタ(HPF)とを合わせたようなS字型の周波数特性(フィルター特性)を持つフィルター回路として構成される。より具体的には、図3に示したように、イコライザー回路35の周波数特性は、出力する信号の信号レベルが、周波数帯域が高くなるほど入力された信号の信号レベルと同様のレベルになり、周波数帯域が低くなるほど入力された信号の信号レベルが減衰したレベルになる特性である。言い換えれば、イコライザー回路35は、高い周波数帯域ほど出力する信号の信号レベルの減衰率を抑え、低い周波数帯域ほど出力する信号の信号レベルの減衰率を高くする周波数特性である。
 このような周波数帯域のイコライザー回路35によって、内視鏡装置1では、SLVS-ECシリアル信号伝送路53を介して伝送(送信)されたSLVS-ECシリアル信号の波形を改善し、マルチメディアプロセッサー33が画像処理を行う際に必要な、高周波成分の画素信号を抽出する。つまり、内視鏡装置1では、イコライザー回路35によって、上述したように、より多く減衰してしまう高い周波数帯域のSLVS-ECシリアル信号の信号成分は比較的にそのまま出力し、減衰が少ない低い周波数帯域の信号成分を減衰させて出力することによって、全ての周波数帯域で同様の信号レベルの画素信号を抽出する。
 なお、全ての周波数帯域で同様の信号レベルの画素信号を抽出する方法としては、イコライザー回路35によって行う方法以外にも、複数の方法が考えられる。例えば、プリエンファシスまたはデエンファシスという技術を用いた方法である。これらの方法は、シリアル信号を出力する送信側で、伝送路によって減衰する周波数帯域の信号レベルを予め高くして(強調して)伝送する、または伝送路によって減衰しない周波数帯域の信号レベルを予め減衰させて伝送することによって、シリアル信号が入力される受信側が、全ての周波数帯域で同様の信号レベルのシリアル信号を受信することができる技術である。しかしながら、プリエンファシスまたはデエンファシスという技術を内視鏡装置に適用すると、挿入部の径を細くしたい先端部により多くの部品を搭載することになってしまう。このため、内視鏡装置1のように、本体部3に備えたイコライザー回路35によってSLVS-ECシリアル通信のシリアル信号(SLVS-ECシリアル信号)の波形を改善する構成の方がより望ましい構成である。
 なお、イコライザー回路35は、SLVS-ECシリアル信号伝送路53を介して伝送される際に、減衰が少ない低い周波数帯域の信号成分をより多く減衰させて出力することにより、全ての周波数帯域で同様の信号レベルになるようにSLVS-ECシリアル信号の波形を補正(改善)する。このため、イコライザー回路35によって周波数特性が補正された後のSLVS-ECシリアル信号は、全体的に低い信号レベル(例えば、数mV)となる。そこで、内視鏡装置1では、イコライザー回路35から出力された補正後のSLVS-ECシリアル信号を、リミッティングアンプ回路36によって増幅する構成をとっている。
 リミッティングアンプ回路36は、イコライザー回路35によって周波数特性が補正された後のSLVS-ECシリアル信号を増幅する増幅(アンプ)回路である。リミッティングアンプ回路36は、イコライザー回路35から出力された補正後のSLVS-ECシリアル信号の信号レベルを、マルチメディアプロセッサー33が画像処理を行う際に必要なレベルまで増幅する。そして、リミッティングアンプ回路36は、信号レベルを増幅したSLVS-ECシリアル信号を、マルチメディアプロセッサー33に出力する。例えば、リミッティングアンプ回路36は、補正後のSLVS-ECシリアル信号の信号レベルを、100倍~数百倍に増幅してマルチメディアプロセッサー33に出力する。
 なお、上述したように、イコライザー回路35によって周波数特性が補正された後のSLVS-ECシリアル信号は全体的に低い信号レベルであるため、内視鏡装置1においては、イコライザー回路35とリミッティングアンプ回路36とは近接して配置される、つまり、イコライザー回路35とリミッティングアンプ回路36との間のSLVS-ECシリアル信号の信号線の長さをできる限り短くすることが望ましい。
 このため、内視鏡装置1では、本体基板において、イコライザー回路35とリミッティングアンプ回路36とのそれぞれを、同一の基板面に実装する。つまり、内視鏡装置1では、イコライザー回路35とリミッティングアンプ回路36とのそれぞれを半田付けする半田付け面が本体基板の同一の面にあり、イコライザー回路35とリミッティングアンプ回路36とのそれぞれの信号線は、本体基板の同一基板面で接続される。これにより、内視鏡装置1では、イコライザー回路35とリミッティングアンプ回路36との間の信号線の特性インピーダンスを変化させることなく、SLVS-ECシリアル信号の波形の品位を確保することができる。
 なお、内視鏡装置1では、本体基板において、イコライザー回路35を実装(半田付け)する基板面と、SLVS-ECシリアル信号伝送路53を構成するケーブルを半田付けする基板面と、リミッティングアンプ回路36を実装(半田付け)する基板面とが、同一の基板面であることが望ましい。しかし、内視鏡装置1では、少なくとも、イコライザー回路35を実装する基板面とSLVS-ECシリアル信号伝送路53を構成するケーブルを半田付けする基板面とが同一の基板面であること、またはイコライザー回路35とリミッティングアンプ回路36とのそれぞれを実装する基板面が同一の基板面であることのいずれか一方が実現できれば、SLVS-ECシリアル信号の波形の品位を確保することができる。
 続いて、軟性部5に備えた信号線および伝送路のそれぞれの構成要素について詳細に説明する。
 電源信号線51は、単線の電線(電源ケーブル)で構成する。この単線の電源ケーブルの構成で、電源信号線51は、本体部3に備えた電源出力部32が出力する電源を、先端部4内のイメージセンサ41に備えた電源入力部411に供給する。
 I2Cシリアル信号伝送路52は、I2Cシリアル信号のそれぞれに対応した2本の単線をより合わせた1組のツイストペアケーブルで構成する。この単線のツイストペアケーブルの構成で、I2Cシリアル信号伝送路52は、本体部3に備えたマルチメディアプロセッサー33と先端部4内のイメージセンサ41に備えたI2C通信部413との間でのI2Cシリアル通信を実現する。
 なお、I2Cシリアル信号伝送路52は、それぞれのI2Cシリアル信号に対応した単線への外来ノイズの進入を防ぐ、つまり、ノイズ耐性を向上させるために、2本の単線のそれぞれをシールド線(同軸線)にすることとも考えられる。しかし、内視鏡装置1では、本体部3に備えたスタックリカバリー回路34によって、I2Cシリアル通信のノイズ耐性を向上させているため、I2Cシリアル信号伝送路52の径を細くすることができる単線を、それぞれのI2Cシリアル信号に対応した信号線として用いることができる。
 SLVS-ECシリアル信号伝送路53は、SLVS-ECシリアル信号のそれぞれに対応した2本のシールド線(同軸線)をより合わせた1組のツイストペアケーブルで構成する。このシールド線のツイストペアケーブルの構成で、SLVS-ECシリアル信号伝送路53は、先端部4内のイメージセンサ41に備えたSLVS-EC出力部414から本体部3に備えたマルチメディアプロセッサー33へのSLVS-ECシリアル通信を実現する。なお、SLVS-ECシリアル信号伝送路53をシールド線のツイストペアケーブルの構成とするのは、SLVS-ECシリアル通信では、例えば、1~2ギガビット/秒(Gbps)以上の高いビットレートで、それぞれの画素信号を伝送するためである。
 このような信号線および伝送路のそれぞれの構成によって、軟性部5の径を細くすることができる。これにより、軟性部5は、被検物内への先端部4の挿入性を向上することができる。このことにより、内視鏡装置1は、より多くの被検物を検査対象とする、つまり、検査対象の幅を広げることができる。
 第1の実施形態によれば、撮影した被写体の画像に応じた画素信号を出力する撮像素子(イメージセンサ41)を具備し、被検物内に挿入される先端部(先端部4)と、第1のシリアル通信(I2Cシリアル通信)によって撮影に関する設定(撮影モード設定)をイメージセンサ41に送信し、I2Cシリアル通信が停止してしまった場合に、停止しているI2Cシリアル通信を復旧させるための処理を行うスタックバス復旧回路(スタックリカバリー回路34)を備える第1のシリアル信号伝送路(I2Cシリアル信号伝送路52)と、第2のシリアル通信(SLVS-ECシリアル通信)によってイメージセンサ41が出力した画素信号を伝送する第2のシリアル信号伝送路(SLVS-ECシリアル信号伝送路53)とを具備し、先端部4を被検物内に導く軟性部(軟性部5)と、SLVS-ECシリアル通信によって伝送された画素信号に対して画像処理を施す画像処理部(マルチメディアプロセッサー33)を具備した本体部(本体部3)と、を備える内視鏡装置(内視鏡装置1)が構成される。
 また、第1の実施形態によれば、SLVS-ECシリアル信号伝送路53は、画素信号をSLVS-ECシリアル通信によって伝送するシリアル信号(SLVS-ECシリアル信号)の周波数特性を補正するイコライザー回路(イコライザー回路35)と、イコライザー回路35が周波数特性を補正した後のSLVS-ECシリアル信号を増幅するリミッティングアンプ回路(リミッティングアンプ回路36)と、を備える内視鏡装置1が構成される。
 また、第1の実施形態によれば、イコライザー回路35は、入力される信号(SLVS-ECシリアル信号)の周波数帯域が高いほど出力する信号(補正後のSLVS-ECシリアル信号)の信号レベルの減衰率を抑え、入力される信号(SLVS-ECシリアル信号)の周波数帯域が低いほど出力する信号(補正後のSLVS-ECシリアル信号)の信号レベルの減衰率を高くするように、入力されたSLVS-ECシリアル信号の信号レベルを補正して出力する内視鏡装置1が構成される。
 また、第1の実施形態によれば、I2Cシリアル通信は、I2Cバスによるシリアル通信であり、SLVS-ECシリアル通信は、クロック埋め込み式の高速デジタルシリアル通信である内視鏡装置1が構成される。
 また、第1の実施形態によれば、SLVS-ECシリアル通信は、イメージセンサ41が画素信号を出力するタイミングを表す同期信号(水平同期信号や垂直同期信号)をクロック信号として埋め込んだクロック埋め込み式の高速デジタルシリアル通信である内視鏡装置1が構成される。
 また、第1の実施形態によれば、SLVS-ECシリアル信号伝送路53は、画素信号を伝送するケーブルとイコライザー回路35とが、同一の基板面上(本体基板の同一基板面上)で接続される内視鏡装置1が構成される。
 また、第1の実施形態によれば、SLVS-ECシリアル信号伝送路53は、イコライザー回路35とリミッティングアンプ回路36とが、同一の基板面上(本体基板の同一基板面上)で接続される内視鏡装置1が構成される。
 また、第1の実施形態によれば、I2Cシリアル信号伝送路52は、SLVS-ECシリアル信号伝送路53よりも径が細い伝送路である内視鏡装置1が構成される。
 また、第1の実施形態によれば、I2Cシリアル信号伝送路52は、I2Cシリアル通信におけるそれぞれの信号に対応した単線のツイストペアケーブル(I2Cシリアル信号のそれぞれに対応した2本の単線をより合わせた1組のツイストペアケーブル)で構成され、SLVS-ECシリアル信号伝送路53は、SLVS-ECシリアル通信におけるそれぞれのシリアル信号に対応したシールド線のツイストペアケーブル(SLVS-ECシリアル信号のそれぞれに対応した2本のシールド線(同軸線)をより合わせた1組のツイストペアケーブル)で構成される内視鏡装置1が構成される。
 上記に述べたように、第1の実施形態の内視鏡装置1では、先端部4に水晶発振器42を備える。これにより、第1の実施形態の内視鏡装置1では、本体部3が先端部4に備えたイメージセンサ41に動作クロック信号を供給するための信号線を軟性部5に備えない構成にして、軟性部5の径を細くすることができる。
 また、第1の実施形態の内視鏡装置1では、先端部4に備えたイメージセンサ41の機能の起動や撮影の動作に関する様々な設定(撮影モード設定)を、イメージセンサ41に備えたI2C通信部413と、本体部3に備えたマルチメディアプロセッサー33との間のI2Cシリアル通信によって行う。また、第1の実施形態の内視鏡装置1では、I2Cシリアル通信における伝送路であるI2Cシリアル信号伝送路52の本体部3側に、スタックリカバリー回路34を備える。そして、第1の実施形態の内視鏡装置1では、スタックリカバリー回路34が、先端部4内のイメージセンサ41に備えたI2C通信部413と、本体部3に備えたマルチメディアプロセッサー33との間のI2Cシリアル通信の状態を監視し、I2Cシリアル通信が停止していると判定した場合に、停止しているI2Cシリアル通信を復旧(再開)させる。これにより、第1の実施形態の内視鏡装置1では、I2Cシリアル通信のノイズ耐性を向上させ、I2Cシリアル通信における伝送路であるI2Cシリアル信号伝送路52の長さが、例えば、十メートルを超えるような長さである場合でも、挿入部2の径を細くすることができる。
 また、第1の実施形態の内視鏡装置1では、先端部4に備えたイメージセンサ41が、撮影モード設定の情報に応じた撮影を行って得たそれぞれの画素信号を、イメージセンサ41に備えたSLVS-EC出力部414が、SLVS-ECシリアル通信によって本体部3に伝送(送信)する。また、第1の実施形態の内視鏡装置1では、SLVS-ECシリアル通信における伝送路であるSLVS-ECシリアル信号伝送路53の本体部3側に、本体部3にイコライザー回路35とリミッティングアンプ回路36とを備える。そして、第1の実施形態の内視鏡装置1では、イコライザー回路35が、先端部4内のイメージセンサ41に備えたSLVS-EC出力部414から、イメージセンサ41が撮影によって得たそれぞれの画素信号を伝送(送信)するためのSLVS-ECシリアル通信におけるそれぞれのシリアル信号(SLVS-ECシリアル信号)の周波数特性の歪を補正する。また、第1の実施形態の内視鏡装置1では、リミッティングアンプ回路36が、イコライザー回路35による周波数特性の歪の補正によって全体的に低くなったそれぞれのSLVS-ECシリアル信号の信号レベルを増幅してマルチメディアプロセッサー33に出力する。これにより、第1の実施形態の内視鏡装置1では、SLVS-ECシリアル通信における伝送路であるSLVS-ECシリアル信号伝送路53の長さが、例えば、十メートルを超えるような長さである場合でも、SLVS-ECシリアル通信によって伝送(送信)されたそれぞれの画素信号を正確に受信し、それぞれの画素信号に対する種々の画像処理を行うことができる。
 これらのことにより、第1の実施形態の内視鏡装置1では、挿入部2を構成する軟性部5内に備える信号ケーブルの数を少なくすることができる。より具体的には、第1の実施形態の内視鏡装置1では、単線の電源ケーブルで構成した電源信号線51と、単線のツイストペアケーブルで構成したI2Cシリアル信号伝送路52と、シールド線のツイストペアケーブルで構成したSLVS-ECシリアル信号伝送路53との5本の信号ケーブルを軟性部5に備えればよいため、軟性部5の径を細くすることができる。つまり、第1の実施形態の内視鏡装置1では、I2Cシリアル信号伝送路52を、SLVS-ECシリアル信号伝送路53を構成するシールド線のツイストペアケーブルよりも径を細くすることができる単線のツイストペアケーブルで構成することができるため、軟性部5の径を細くすることができる。そして、第1の実施形態の内視鏡装置1では、I2Cシリアル信号伝送路52を単線のツイストペアケーブルで構成することによって径を細くした場合でも、スタックリカバリー回路34によって、I2Cシリアル通信のノイズ耐性を向上させることができる。これにより、第1の実施形態の内視鏡装置1では、挿入部2の径を細くした状態でのノイズ耐性の向上を実現することができる。このことにより、第1の実施形態の内視鏡装置1では、挿入部2の径を細くした状態で、挿入部2の長さが、例えば、十メートルを超えるような長さである場合でも、EMCの要求を満足することができる。なお、挿入部2の長さは長くなる程、外来ノイズの影響を受けやすくなる上、工場などの電磁環境が非常に劣悪な場所で使用する内視鏡装置1の場合にはスタックリカバリー回路34があっても、I2Cシリアル信号伝送路52のシールド線化などが必要になる場合もある。しかしながら、そのような場合であってもスタックリカバリー回路34がない場合に比べて、信号線のシールド化による挿入部2の外径の太径化は大きく軽減することができる。
 なお、第1の実施形態の内視鏡装置1では、挿入部2が本体部3と一体になっている構成、つまり、挿入部2を交換することができず、撮像する被検物内の被写体までの距離が軟性部5の長さによって予め定められている構成の内視鏡装置1の構成を示した。しかし、内視鏡装置1を、挿入部2を交換することができる構成にしてもよい。
(第2の実施形態)
 次に、本発明の第2の実施形態の内視鏡装置について説明する。なお、第2の実施形態の内視鏡装置も、工業用の内視鏡装置である場合について説明する。図4は、本発明の第2の実施形態における内視鏡装置の概略構成の一例を示したブロック図である。図4において、内視鏡装置10は、細長い挿入部2と、本体部3とを備えている。挿入部2は、撮像素子を備えた先端部4と、先端部4を被検物内に導くコードである軟性部5と、本体部3に挿入部2を接続するためのコネクタ部16とを含んで構成される。
 図4に示した内視鏡装置10は、図1に示した第1の実施形態の内視鏡装置1が、挿入部2を交換することができる構成にした内視鏡装置である。従って、第2の実施形態における内視鏡装置10の構成要素には、図1に示した第1の実施形態の内視鏡装置1と同様の構成要素を含んでいる。以下の説明においては、第2の実施形態における内視鏡装置10の構成要素において、第1の実施形態の内視鏡装置1と同様の構成要素には、同一の符号を付与し、それぞれの構成要素に関する詳細な説明は省略する。そして、以下の説明においては、第1の実施形態の内視鏡装置1と異なる構成要素についてのみを説明する。
 内視鏡装置10では、挿入部2の本体部3側にコネクタ部16を備え、挿入部2が、コネクタ部16によって本体部3を着脱可能な構成となっている。そして、内視鏡装置10では、先端部4内に備えたイメージセンサ41が撮影して得た画素信号を、軟性部5およびコネクタ部16を介して本体部3に伝送する。
 コネクタ部16は、電気接点コネクタ161と、電気接点コネクタ162と、電気接点コネクタ163とを備えている。また、本体部3は、第1の実施形態の内視鏡装置1を構成する本体部3に、電気接点コネクタ131と、電気接点コネクタ132と、電気接点コネクタ133とが追加された構成となっている。
 電気接点コネクタ161は、軟性部5に備えた電源信号線51に対応し、本体部3に備えた電気接点コネクタ131と接続されるコネクタである。また、電気接点コネクタ131は、電源信号線51に対応する本体部3内のコネクタである。電気接点コネクタ161と電気接点コネクタ131とが接続されることによって、電源信号線51が本体部3に備えた電源出力部32に電気的に接続される。これにより、内視鏡装置10において、電源出力部32が出力する電源が、電気接点コネクタ131、電気接点コネクタ161、および電源信号線51を介して、先端部4内のイメージセンサ41に備えた電源入力部411に供給される。
 電気接点コネクタ162は、軟性部5に備えたI2Cシリアル信号伝送路52に対応し、本体部3に備えた電気接点コネクタ132と接続されるコネクタである。また、電気接点コネクタ132は、I2Cシリアル信号伝送路52に対応する本体部3内のコネクタである。電気接点コネクタ162と電気接点コネクタ132とが接続されることによって、I2Cシリアル信号伝送路52が本体部3に備えたスタックリカバリー回路34に電気的に接続される。これにより、内視鏡装置10において、本体部3に備えたマルチメディアプロセッサー33と先端部4内のイメージセンサ41に備えたI2C通信部413との間でI2Cシリアル通信が、電気接点コネクタ132、電気接点コネクタ162、およびI2Cシリアル信号伝送路52を介して行われる。つまり、電気接点コネクタ162と電気接点コネクタ132とが接続されることによって、イメージセンサ41の機能の起動や撮影の動作に関する様々な設定(撮影モード設定)が、マルチメディアプロセッサー33によって行われる。
 電気接点コネクタ163は、軟性部5に備えたSLVS-ECシリアル信号伝送路53に対応し、本体部3に備えた電気接点コネクタ133と接続されるコネクタである。また、電気接点コネクタ133は、SLVS-ECシリアル信号伝送路53に対応する本体部3内のコネクタである。電気接点コネクタ163と電気接点コネクタ133とが接続されることによって、SLVS-ECシリアル信号伝送路53が本体部3に備えたイコライザー回路35に電気的に接続される。これにより、内視鏡装置10において、先端部4内のイメージセンサ41に備えたSLVS-EC出力部414から本体部3に備えたマルチメディアプロセッサー33へのSLVS-ECシリアル通信が、SLVS-ECシリアル信号伝送路53、電気接点コネクタ163、および電気接点コネクタ133を介して行われる。つまり、電気接点コネクタ163と電気接点コネクタ133とが接続されることによって、イメージセンサ41が撮影モード設定の情報に応じた撮影を行って得たそれぞれの画素信号が、マルチメディアプロセッサー33に伝送(送信)される。
 なお、内視鏡装置10では、本体基板において、イコライザー回路35と電気接点コネクタ133とのそれぞれを、同一の基板面に実装する。つまり、内視鏡装置10では、イコライザー回路35と電気接点コネクタ133とのそれぞれを半田付けする半田付け面が本体基板の同一の面にあり、イコライザー回路35と電気接点コネクタ133とのそれぞれの信号線は、本体基板の同一基板面で接続される。これにより、内視鏡装置10では、イコライザー回路35と電気接点コネクタ133との間の信号線、つまり、イコライザー回路35と、電気接点コネクタ133および電気接点コネクタ163を介したSLVS-ECシリアル信号伝送路53との間の信号線の特性インピーダンスを変化させることなく、SLVS-ECシリアル信号の波形の品位を確保することができる。
 なお、内視鏡装置10でも、イコライザー回路35とリミッティングアンプ回路36とのそれぞれは、第1の実施形態の内視鏡装置1と同様に、本体基板において同一の基板面に実装する。そして、内視鏡装置10では、本体基板において、イコライザー回路35を実装(半田付け)する基板面と、電気接点コネクタ133を実装(半田付け)する基板面と、リミッティングアンプ回路36を実装(半田付け)する基板面とが、同一の基板面であることが望ましい。しかし、内視鏡装置10でも、第1の実施形態の内視鏡装置1と同様に、少なくとも、イコライザー回路35と電気接点コネクタ133とのそれぞれを実装する基板面とが同一の基板面であること、またはイコライザー回路35とリミッティングアンプ回路36とのそれぞれを実装する基板面が同一の基板面であることのいずれか一方が実現できれば、SLVS-ECシリアル信号の波形の品位を確保することができる。
 このような構成によって、内視鏡装置10では、挿入部2を交換することができる構成を実現する。しかも、内視鏡装置10では、それぞれの信号ケーブルに対応する電気接点コネクタを備えるのみであるため、コネクタ部16を小型化することができ、挿入部2を交換する構成を低コストで実現することができる。また、軟性部5の長さが短い挿入部2では、それぞれの信号が対応する電気接点コネクタを通過する際に発生する信号の反射や信号の波形の歪が小さくなると考えられるため、軟性部5の長さが短い挿入部2では、コネクタ部16に備えるそれぞれの電気接点コネクタの構造を簡略化し、さらにコストを低減することができるという効果も得られる。
 なお、イメージセンサ41がSLVS-ECシリアル通信によってそれぞれの画素信号を伝送するためのSLVS-ECシリアル信号の波形の歪は、挿入部2を構成する軟性部5の長さによって変化すると考えられる。より具体的には、SLVS-ECシリアル通信におけるSLVS-ECシリアル信号の周波数特性の歪は、SLVS-ECシリアル信号伝送路53と、電気接点コネクタ163と、電気接点コネクタ133とを合わせた長さ、つまり、SLVS-EC出力部414とイコライザー回路35との間の距離によって変化すると考えられる。例えば、軟性部5の長さが短い場合には、SLVS-ECシリアル信号の波形の歪は少なく、軟性部5の長さが長い場合には、SLVS-ECシリアル信号の波形の歪は多くなる。このため、イコライザー回路35がSLVS-ECシリアル信号の周波数特性を補正する際の補正量、つまり、イコライザー回路35の周波数特性は、軟性部5の長さによって最適な周波数特性が変わる。そこで、内視鏡装置10では、本体部3に備えるイコライザー回路35の周波数特性が、接続される挿入部2における軟性部5の長さに応じて変更することができる構成になっている。より具体的には、内視鏡装置10の本体部3に備えたイコライザー回路35は、イコライザー回路35に備えたそれぞれの回路要素(例えば、図2に示したイコライザー回路35の構成では、コンデンサ351と、2つの第1の抵抗352-1および第1の抵抗352-2と、第2の抵抗353と、コイル354とのそれぞれの回路要素)の定数が、マルチメディアプロセッサー33からの設定によって変更することができる構成になっている。これにより、内視鏡装置10の本体部3に備えたイコライザー回路35では、例えば、図3に示した周波数特性のカーブを、接続される挿入部2における軟性部5の長さに応じて変更することができる。
 第2の実施形態によれば、軟性部(軟性部5)に具備した第1のシリアル信号伝送路(I2Cシリアル信号伝送路52)と第2のシリアル信号伝送路(SLVS-ECシリアル信号伝送路53)とのそれぞれを、本体部(本体部3)に具備した対応する構成要素(スタックリカバリー回路34、イコライザー回路35)に電気的に接続するコネクタ部(コネクタ部16)、をさらに備える内視鏡装置(内視鏡装置10)が構成される。
 上記に述べたように、第2の実施形態の内視鏡装置10でも、第1の実施形態の内視鏡装置1と同様に、挿入部2の径を細くした状態でノイズ耐性の向上を実現することができる。つまり、第2の実施形態の内視鏡装置10でも、第1の実施形態の内視鏡装置1と同様に、挿入部2の径を細くした状態で、挿入部2の長さが、例えば、十メートルを超えるような長さである場合でも、EMCの要求を満足することができる。しかも、第2の実施形態の内視鏡装置10では、挿入部2を交換することができる。
 なお、第2の実施形態の内視鏡装置10では、本体部3に備えたイコライザー回路35を、イコライザー回路35に備えたそれぞれの回路要素の定数を、例えば、マルチメディアプロセッサー33が変更することによって、イコライザー回路35における周波数特性のカーブを、接続される挿入部2における軟性部5の長さに応じて変更する構成を実現していた。しかし、内視鏡装置1を、挿入部2を交換することができる構成にした場合において、イコライザー回路35における周波数特性のカーブを変更しない構成、つまり、交換する挿入部2ごとに最適な周波数特性のイコライザー回路35を備えた構成にしてもよい。
(第3の実施形態)
 次に、本発明の第3の実施形態の内視鏡装置について説明する。なお、第3の実施形態の内視鏡装置も、工業用の内視鏡装置である場合について説明する。図5は、本発明の第3の実施形態における内視鏡装置の概略構成の一例を示したブロック図である。図5において、内視鏡装置20は、細長い挿入部2と、本体部3とを備えている。挿入部2は、撮像素子を備えた先端部4と、先端部4を被検物内に導くコードである軟性部5と、本体部3に挿入部2を接続するためのコネクタ部26とを含んで構成される。
 図5に示した内視鏡装置20は、図4に示した第2の実施形態の内視鏡装置10を、イコライザー回路35における周波数特性のカーブを変更しない構成にした内視鏡装置である。従って、第3の実施形態における内視鏡装置20の構成要素には、図4に示した第2の実施形態の内視鏡装置10と同様の構成要素を含んでいる。以下の説明においては、第3の実施形態における内視鏡装置20の構成要素において、第2の実施形態の内視鏡装置10と同様の構成要素には、同一の符号を付与し、それぞれの構成要素に関する詳細な説明は省略する。そして、以下の説明においては、第2の実施形態の内視鏡装置10と異なる構成要素についてのみを説明する。
 内視鏡装置20では、挿入部2の本体部3側にコネクタ部26を備え、挿入部2が、コネクタ部26によって本体部3を着脱可能な構成となっている。そして、内視鏡装置20では、先端部4内に備えたイメージセンサ41が撮影して得た画素信号を、軟性部5およびコネクタ部26を介して本体部3に伝送する。
 コネクタ部26は、イコライザー回路35と、リミッティングアンプ回路36と、電気接点コネクタ161と、電気接点コネクタ162と、電気接点コネクタ263とを備えている。また、本体部3は、電気接点コネクタ131と、電気接点コネクタ132と、電気接点コネクタ233とを備えている。
 イコライザー回路35とリミッティングアンプ回路36とは、第1の実施形態の内視鏡装置1および第2の実施形態の内視鏡装置10において本体部3に備えたイコライザー回路35とリミッティングアンプ回路36とを、コネクタ部26内に配置(移動)したものである。これに伴い、内視鏡装置20では、第2の実施形態の内視鏡装置10においてコネクタ部16に備えた電気接点コネクタ163が、電気接点コネクタ263に変わった構成となっている。また、内視鏡装置20では、第2の実施形態の内視鏡装置10において本体部3に備えた電気接点コネクタ133が、電気接点コネクタ233に変わった構成となっている。
 コネクタ部26では、軟性部5に備えたSLVS-ECシリアル信号伝送路53においてSLVS-ECシリアル信号のそれぞれに対応した2本のシールド線(同軸線)のそれぞれが、第1の実施形態の内視鏡装置1と同様に、イコライザー回路35に接続される。そして、コネクタ部26では、イコライザー回路35によって周波数特性が補正され、リミッティングアンプ回路36によって信号レベルが増幅されたSLVS-ECシリアル信号のそれぞれが、電気接点コネクタ263に接続されている。
 なお、内視鏡装置20では、コネクタ部26を構成するそれぞれの構成要素を実装する基板(以下、「コネクタ基板」という)において、イコライザー回路35とSLVS-ECシリアル信号伝送路53を構成するそれぞれの線材(ケーブル)とを接続する際に、イコライザー回路35を実装(半田付け)する基板面と、SLVS-ECシリアル信号伝送路53を構成するそれぞれのケーブルを半田付けする基板面とを、同一の基板面にする。つまり、内視鏡装置20では、イコライザー回路35とSLVS-ECシリアル信号伝送路53を構成するそれぞれのケーブルとは、コネクタ基板の同一基板面で接続される。これにより、内視鏡装置20でも、第1の実施形態の内視鏡装置1と同様に、イコライザー回路35とSLVS-ECシリアル信号伝送路53との間の信号線の特性インピーダンスを変化させることなく、SLVS-ECシリアル信号の波形の品位を確保することができる。
 なお、内視鏡装置20でも、イコライザー回路35とリミッティングアンプ回路36とのそれぞれは、第1の実施形態の内視鏡装置1や第2の実施形態の内視鏡装置10と同様に考え、コネクタ基板において同一の基板面に実装する。つまり、内視鏡装置20でも、イコライザー回路35とリミッティングアンプ回路36とのそれぞれを半田付けする半田付け面がコネクタ基板の同一の面にあり、イコライザー回路35とリミッティングアンプ回路36とのそれぞれの信号線は、コネクタ基板の同一基板面で接続される。そして、内視鏡装置20でも、第1の実施形態の内視鏡装置1や第2の実施形態の内視鏡装置10と同様に考え、コネクタ基板において、イコライザー回路35を実装(半田付け)する基板面と、SLVS-ECシリアル信号伝送路53を構成するケーブルを半田付けする基板面と、リミッティングアンプ回路36を実装(半田付け)する基板面とが、同一の基板面であることが望ましい。しかし、内視鏡装置20でも、第1の実施形態の内視鏡装置1と同様に考え、少なくとも、イコライザー回路35を実装する基板面とSLVS-ECシリアル信号伝送路53を構成するケーブルを半田付けする基板面とが同一の基板面であること、またはイコライザー回路35とリミッティングアンプ回路36とのそれぞれを実装する基板面が同一の基板面であることのいずれか一方が実現できれば、SLVS-ECシリアル信号の波形の品位を確保することができる。
 電気接点コネクタ263は、リミッティングアンプ回路36から出力された、信号レベルが増幅されたSLVS-ECシリアル信号のそれぞれに対応し、本体部3に備えた電気接点コネクタ233と接続されるコネクタである。また、電気接点コネクタ233は、信号レベルが増幅されたSLVS-ECシリアル信号のそれぞれに対応する本体部3内のコネクタである。電気接点コネクタ263と電気接点コネクタ233とが接続されることによって、信号レベルが増幅されたSLVS-ECシリアル信号のそれぞれが、本体部3に備えたマルチメディアプロセッサー33に電気的に接続される。つまり、内視鏡装置20では、先端部4内のイメージセンサ41に備えたSLVS-EC出力部414からSLVS-ECシリアル信号伝送路53を介して伝送(送信)されたSLVS-ECシリアル信号に対する周波数特性の歪の補正と増幅とがコネクタ部26内で行われ、電気接点コネクタ263および電気接点コネクタ233を介して、本体部3に備えたマルチメディアプロセッサー33に入力される。
 このような構成によって、内視鏡装置20でも、第2の実施形態の内視鏡装置10と同様に、挿入部2を交換することができる構成を実現する。しかも、内視鏡装置20では、挿入部2を構成するコネクタ部26内でSLVS-ECシリアル通信によってそれぞれの画素信号を伝送するためのSLVS-ECシリアル信号に対する周波数特性の歪の補正と増幅とを行う。このため、第2の実施形態の内視鏡装置10では、軟性部5の長さが長い挿入部2ほど、それぞれの信号が対応する電気接点コネクタを通過する際に発生する信号の反射や信号の波形の歪の影響を受けてしまうが、内視鏡装置20では、電気接点コネクタを通過する際の信号に対する影響を回避した状態で、挿入部2を交換することができる構成を実現することができる。そして、内視鏡装置20では、挿入部2を構成する軟性部5の長さによって変化すると考えられるSLVS-ECシリアル信号の波形の歪を補正するイコライザー回路35の周波数特性を、挿入部2ごとに最適な周波数特性にすることができる。より具体的には、内視鏡装置20のコネクタ部26内のイコライザー回路35に備えたそれぞれの回路要素(例えば、図2に示したイコライザー回路35の構成では、コンデンサ351と、2つの第1の抵抗352-1および第1の抵抗352-2と、第2の抵抗353と、コイル354とのそれぞれの回路要素)の定数を、軟性部5の長さに合わせた最適な周波数特性を実現する定数にすることができる。このため、内視鏡装置20では、マルチメディアプロセッサー33が画像処理を行う際に必要な高周波成分の画素信号を、より精度よく抽出することができるという効果も得られる。
 第3の実施形態によれば、コネクタ部(コネクタ部26)は、イコライザー回路(イコライザー回路35)とリミッティングアンプ回路(リミッティングアンプ回路36)とが配置されている内視鏡装置(内視鏡装置20)が構成される。
 上記に述べたように、第3の実施形態の内視鏡装置20でも、第1の実施形態の内視鏡装置1や第2の実施形態の内視鏡装置10と同様に、挿入部2の径を細くした状態でノイズ耐性の向上を実現することができる。つまり、第3の実施形態の内視鏡装置20でも、第1の実施形態の内視鏡装置1や第2の実施形態の内視鏡装置10と同様に、挿入部2の径を細くした状態で、挿入部2の長さが、例えば、十メートルを超えるような長さである場合でも、EMCの要求を満足することができる。そして、第3の実施形態の内視鏡装置20でも、第2の実施形態の内視鏡装置10と同様に、挿入部2を交換することができる。しかも、第3の実施形態の内視鏡装置20では、挿入部2を構成するコネクタ部26の大きさが、第2の実施形態の内視鏡装置10において挿入部2を構成するコネクタ部16よりも若干大きくなってしまう可能性もあるが、コネクタ部26内のイコライザー回路35を軟性部5の長さに合わせた最適な周波数特性にすることができ、伝送(送信)された画素信号を、より精度よく抽出することができる。
 上記に述べたように、本発明の各実施形態によれば、内視鏡装置における挿入部の先端に位置する先端部に備えた撮像素子に対して様々な設定をシリアル通信で行うためのシリアル信号伝送路と、先端部に備えた撮像素子が撮影を行って得たそれぞれの画素信号をシリアル通信で内視鏡装置における本体部に備えた画像処理部に伝送(送信)するためのシリアル伝送路との2種類のシリアル信号伝送路を備える。これにより、本発明の各実施形態では、内視鏡装置における挿入部を構成する軟性部内に備える信号ケーブルの数を少なくすることができる。そして、本発明の各実施形態では、撮像素子に対して設定を行うシリアル信号伝送路に、シリアル通信が停止(スタック)してしまった場合に、停止しているシリアル通信を復旧(再開)させるための処理を行うスタックバス復旧回路を備える。これにより、本発明の各実施形態では、内視鏡装置における挿入部を構成する軟性部内に備える撮像素子に対して設定を行うシリアル信号伝送路の径を細くした場合でも、軟性部に進入する外来ノイズに対する耐性を向上させることができる。また、本発明の各実施形態では、それぞれの画素信号を伝送(送信)するシリアル信号伝送路に、シリアル信号の周波数特性を補正するイコライザー回路と、イコライザー回路が周波数特性を補正した後のシリアル信号を増幅するリミッティングアンプ回路とを備える。これにより、本発明の各実施形態では、内視鏡装置における挿入部を構成する軟性部の長さが長い場合でも、画像処理部にそれぞれの画素信号を正確に伝送(送信)することができる。これらのことにより、本発明の各実施形態では、挿入部の径を細くした状態で、かつノイズ耐性がある、つまり、EMCの要求を満足する、長さの長い挿入部を備えた内視鏡装置を実現することができる。しかも、本発明の各実施形態によれば、内視鏡装置における挿入部を、細い径でノイズ耐性を向上した状態で、挿入部を交換することができる構成の内視鏡装置を実現することができる。
 なお、各実施形態においては、本発明の内視鏡装置が、工業用の内視鏡装置である場合について説明した。しかし、各実施形態の構成や考え方は、工業用の内視鏡装置への適用に限定されるものではなく、例えば、医療用の内視鏡装置にも同様に適用してもよい。これにより、医療用の内視鏡装置においても、各実施形態において説明した工業用の内視鏡装置と同様の効果を得ることができる。
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態およびその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更をすることができる。
 また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 上記各実施形態によれば、被検物内に挿入部を挿入して使用する内視鏡装置において、挿入部内に備える信号ケーブルの数を少なくし、挿入部の径を細くした状態でノイズ対策を行うことができる内視鏡装置を提供することができる。
 1,10,20 内視鏡装置
 2 挿入部
 3 本体部
 31 バッテリー
 32 電源出力部
 33 マルチメディアプロセッサー(画像処理部)
 34 スタックリカバリー回路(スタックバス復旧回路)
 35 イコライザー回路
 351 コンデンサ(イコライザー回路)
 352-1,352-2 第1の抵抗(イコライザー回路)
 353 第2の抵抗(イコライザー回路)
 354 コイル(イコライザー回路)
 36 リミッティングアンプ回路
 37 記録部
 38 表示部
 4 先端部
 41 イメージセンサ(撮像素子)
 411 電源入力部
 412 クロック入力部
 413 I2C通信部(撮像素子)
 414 SLVS-EC出力部(撮像素子)
 415 同期信号発生部(撮像素子)
 416 外部同期入力部
 42 水晶発振器
 5 軟性部
 51 電源信号線
 52 I2Cシリアル信号伝送路(第1のシリアル信号伝送路)
 53 SLVS-ECシリアル信号伝送路(第2のシリアル信号伝送路)
 16,26 コネクタ部
 161 電気接点コネクタ(コネクタ部)
 162 電気接点コネクタ(コネクタ部)
 163,263 電気接点コネクタ(コネクタ部)
 131 電気接点コネクタ(コネクタ部)
 132 電気接点コネクタ(コネクタ部)
 133,233 電気接点コネクタ(コネクタ部)

Claims (11)

  1.  撮影した被写体の画像に応じた画素信号を出力する撮像素子を具備し、被検物内に挿入される先端部と、
     第1のシリアル通信によって撮影に関する設定を前記撮像素子に送信し、前記第1のシリアル通信が停止してしまった場合に、停止している前記第1のシリアル通信を復旧させるための処理を行うスタックバス復旧回路を備える第1のシリアル信号伝送路と、第2のシリアル通信によって前記撮像素子が出力した前記画素信号を伝送する第2のシリアル信号伝送路とを具備し、前記先端部を前記被検物内に導く軟性部と、
     第2のシリアル通信によって伝送された前記画素信号に対して画像処理を施す画像処理部を具備した本体部と、
     を備える、
     内視鏡装置。
  2.  前記第2のシリアル信号伝送路は、
     前記画素信号を前記第2のシリアル通信によって伝送するシリアル信号の周波数特性を補正するイコライザー回路と、
     前記イコライザー回路が周波数特性を補正した後の前記シリアル信号を増幅するリミッティングアンプ回路と、
     を備える、
     請求項1に記載の内視鏡装置。
  3.  前記イコライザー回路は、
     入力される信号の周波数帯域が高いほど出力する信号の信号レベルの減衰率を抑え、入力される信号の周波数帯域が低いほど出力する信号の信号レベルの減衰率を高くするように、入力された前記シリアル信号の信号レベルを補正して出力する、
     請求項2に記載の内視鏡装置。
  4.  前記第1のシリアル通信は、
     I2Cバスによるシリアル通信であり、
     前記第2のシリアル通信は、
     クロック埋め込み式の高速デジタルシリアル通信である、
     請求項3に記載の内視鏡装置。
  5.  前記第2のシリアル通信は、
     前記撮像素子が前記画素信号を出力するタイミングを表す同期信号をクロック信号として埋め込んだクロック埋め込み式の高速デジタルシリアル通信である、
     請求項4に記載の内視鏡装置。
  6.  前記第2のシリアル信号伝送路は、
     前記画素信号を伝送するケーブルと前記イコライザー回路とが、同一の基板面上で接続される、
     請求項2から請求項5のいずれか1項に記載の内視鏡装置。
  7.  前記第2のシリアル信号伝送路は、
     前記イコライザー回路と前記リミッティングアンプ回路とが、同一の基板面上で接続される、
     請求項2から請求項6のいずれか1項に記載の内視鏡装置。
  8.  前記軟性部に具備した前記第1のシリアル信号伝送路と前記第2のシリアル信号伝送路とのそれぞれを、前記本体部に具備した対応する構成要素に電気的に接続するコネクタ部、
     をさらに備える、
     請求項2から請求項7のいずれか1項に記載の内視鏡装置。
  9.  前記コネクタ部は、
     前記イコライザー回路と前記リミッティングアンプ回路とが配置されている、
     請求項8に記載の内視鏡装置。
  10.  前記第1のシリアル信号伝送路は、
     前記第2のシリアル信号伝送路よりも径が細い伝送路である、
     請求項1から請求項9のいずれか1項に記載の内視鏡装置。
  11.  前記第1のシリアル信号伝送路は、
     前記第1のシリアル通信におけるそれぞれの信号に対応した単線のツイストペアケーブルで構成され、
     前記第2のシリアル信号伝送路は、
     前記第2のシリアル通信におけるそれぞれのシリアル信号に対応したシールド線のツイストペアケーブルで構成される、
     請求項10に記載の内視鏡装置。
PCT/JP2017/000239 2016-01-12 2017-01-06 内視鏡装置 WO2017122586A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017561598A JPWO2017122586A1 (ja) 2016-01-12 2017-01-06 内視鏡装置
US16/018,248 US20180296065A1 (en) 2016-01-12 2018-06-26 Endoscope device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-003611 2016-01-12
JP2016003611 2016-01-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/018,248 Continuation US20180296065A1 (en) 2016-01-12 2018-06-26 Endoscope device

Publications (1)

Publication Number Publication Date
WO2017122586A1 true WO2017122586A1 (ja) 2017-07-20

Family

ID=59311695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000239 WO2017122586A1 (ja) 2016-01-12 2017-01-06 内視鏡装置

Country Status (3)

Country Link
US (1) US20180296065A1 (ja)
JP (1) JPWO2017122586A1 (ja)
WO (1) WO2017122586A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177148A1 (ja) * 2020-03-03 2021-09-10 Hoya株式会社 内視鏡システム
WO2022181008A1 (ja) * 2021-02-26 2022-09-01 富士フイルム株式会社 撮像制御基板及び撮像制御装置
US12016521B2 (en) 2020-03-03 2024-06-25 Hoya Corporation Endoscope system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537307A4 (en) * 2018-01-09 2019-12-25 Shenzhen Goodix Technology Co., Ltd. METHOD FOR HANDLING THE I2C BUS BLOCKING, ELECTRONIC DEVICE AND COMMUNICATION SYSTEM
KR102611722B1 (ko) * 2019-01-07 2023-12-07 삼성전자주식회사 이미지 처리 장치 및 이미지 처리 방법
EP3920498B1 (en) * 2019-01-28 2023-11-15 Sony Semiconductor Solutions Corporation Transmission device, transmission method, reception device, reception method, and transmission/reception device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110230A (en) * 1980-12-26 1982-07-09 Olympus Optical Co Endoscope apparatus
JPS6066722A (ja) * 1983-09-21 1985-04-16 オリンパス光学工業株式会社 内視鏡光源装置のエラ−検出回復回路
JPH06327623A (ja) * 1993-05-20 1994-11-29 Olympus Optical Co Ltd 内視鏡用画像表示装置
JP2000324362A (ja) * 1999-05-14 2000-11-24 Olympus Optical Co Ltd 撮影装置及び内視鏡装置
JP2011071958A (ja) * 2009-08-28 2011-04-07 Sony Corp 撮像素子およびカメラシステム
WO2011105259A1 (ja) * 2010-02-24 2011-09-01 オリンパスメディカルシステムズ株式会社 医療機器システム
JP2012018898A (ja) * 2010-06-08 2012-01-26 Hirose Electric Co Ltd 電気コネクタ、およびツイストペアケーブルと電気コネクタとの接続方法
JP2012115531A (ja) * 2010-12-02 2012-06-21 Hoya Corp 電子内視鏡及び電子内視鏡システム
WO2013128767A1 (ja) * 2012-03-01 2013-09-06 オリンパスメディカルシステムズ株式会社 撮像システム
WO2014181679A1 (ja) * 2013-05-09 2014-11-13 オリンパスメディカルシステムズ株式会社 アダプタ装置、そのデータ処理方法、及び医療システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110230A (en) * 1980-12-26 1982-07-09 Olympus Optical Co Endoscope apparatus
JPS6066722A (ja) * 1983-09-21 1985-04-16 オリンパス光学工業株式会社 内視鏡光源装置のエラ−検出回復回路
JPH06327623A (ja) * 1993-05-20 1994-11-29 Olympus Optical Co Ltd 内視鏡用画像表示装置
JP2000324362A (ja) * 1999-05-14 2000-11-24 Olympus Optical Co Ltd 撮影装置及び内視鏡装置
JP2011071958A (ja) * 2009-08-28 2011-04-07 Sony Corp 撮像素子およびカメラシステム
WO2011105259A1 (ja) * 2010-02-24 2011-09-01 オリンパスメディカルシステムズ株式会社 医療機器システム
JP2012018898A (ja) * 2010-06-08 2012-01-26 Hirose Electric Co Ltd 電気コネクタ、およびツイストペアケーブルと電気コネクタとの接続方法
JP2012115531A (ja) * 2010-12-02 2012-06-21 Hoya Corp 電子内視鏡及び電子内視鏡システム
WO2013128767A1 (ja) * 2012-03-01 2013-09-06 オリンパスメディカルシステムズ株式会社 撮像システム
WO2014181679A1 (ja) * 2013-05-09 2014-11-13 オリンパスメディカルシステムズ株式会社 アダプタ装置、そのデータ処理方法、及び医療システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177148A1 (ja) * 2020-03-03 2021-09-10 Hoya株式会社 内視鏡システム
US12016521B2 (en) 2020-03-03 2024-06-25 Hoya Corporation Endoscope system
WO2022181008A1 (ja) * 2021-02-26 2022-09-01 富士フイルム株式会社 撮像制御基板及び撮像制御装置
JP7408878B2 (ja) 2021-02-26 2024-01-05 富士フイルム株式会社 撮像制御基板及び撮像制御装置

Also Published As

Publication number Publication date
JPWO2017122586A1 (ja) 2018-11-01
US20180296065A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
WO2017122586A1 (ja) 内視鏡装置
US8690759B2 (en) Endoscopic instrument
EP2094002A2 (en) Electronic communication system and endoscope system
US8982202B2 (en) Image pickup system
EP2096865A2 (en) Image pickup system and endoscope system
US20160309983A1 (en) Endoscope system
JP2006181021A (ja) 電子内視鏡装置
WO2017122626A1 (ja) 内視鏡装置
JP2010081975A (ja) 撮像システム
CN110856647A (zh) 内窥镜装置及其信号传输方法
US20170085825A1 (en) Endoscope
JP5963978B2 (ja) 電子内視鏡
JP2012245107A (ja) 内視鏡システム
JP5336410B2 (ja) 内視鏡システム及びその作動方法
JP2005160925A (ja) 電子内視鏡装置
WO2016117373A1 (ja) 医療機器
CN110169053B (zh) 信号处理系统和内窥镜
JP2017176348A (ja) 内視鏡装置
JP2011010855A (ja) 信号伝送装置
JP2018094235A (ja) 内視鏡
WO2021156949A1 (ja) 内視鏡装置
JP2011254421A (ja) 信号伝送装置および電子内視鏡
JP2013025984A (ja) 配線ユニット
JP2004048360A (ja) ヘッド分離型テレビカメラ装置
CN116369823A (zh) 一种显示信号稳定系统及内窥镜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738341

Country of ref document: EP

Kind code of ref document: A1