WO2017122417A1 - 集積回路 - Google Patents
集積回路 Download PDFInfo
- Publication number
- WO2017122417A1 WO2017122417A1 PCT/JP2016/083258 JP2016083258W WO2017122417A1 WO 2017122417 A1 WO2017122417 A1 WO 2017122417A1 JP 2016083258 W JP2016083258 W JP 2016083258W WO 2017122417 A1 WO2017122417 A1 WO 2017122417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clock
- clock signal
- output
- line
- integrated circuit
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims description 45
- 230000005484 gravity Effects 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000000872 buffer Substances 0.000 description 77
- 239000012464 large buffer Substances 0.000 description 43
- 230000004048 modification Effects 0.000 description 24
- 238000012986 modification Methods 0.000 description 24
- 238000010586 diagram Methods 0.000 description 19
- 238000005516 engineering process Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000001360 synchronised effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
- G06F1/10—Distribution of clock signals, e.g. skew
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
Definitions
- This technology relates to integrated circuits. Specifically, the present invention relates to an integrated circuit that distributes a clock signal.
- a clock distribution circuit including a plurality of buffers has been used.
- the buffer topology in the clock distribution circuit include a tree-like clock tree type, a mesh-like mesh type, and a fish bone type having a shape similar to a fish bone.
- a clock distribution circuit using an H-tree type which is a kind of clock tree type, has been proposed (see, for example, Patent Document 1).
- H-tree type four buffers in the subsequent stage are connected to one buffer in the previous stage via an H-shaped wiring.
- the drive capability of each buffer is the same.
- the above-described conventional technique has a problem that the difference between the maximum value and the minimum value of the delay time of the clock signal distributed to each circuit in the final stage increases as the number of stages and branches of the tree increase. This difference in delay time is generally called clock skew.
- clock skew As a method of reducing the clock skew, there is a method of adding a buffer for adjusting the delay time. However, this method may increase the circuit scale and the number of wirings. For this reason, there is a problem that it is difficult to reduce clock skew.
- This technology was created in view of such a situation, and aims to reduce clock skew in a circuit that distributes clock signals.
- the present technology has been made to solve the above-described problems, and a first aspect of the present technology is to generate a plurality of clock outputs that generate an output clock signal based on the distributed clock signal and output it to the circuit.
- An integrated circuit comprising: an element; and a clock distribution element that generates a clock signal having a current value larger than that of the output clock signal based on the input clock signal and distributes the clock signal to the plurality of clock output elements as the distribution clock signal It is. As a result, a clock signal having a current value larger than that of the output clock signal is distributed.
- the clock output element includes a normal transistor having a predetermined size
- the clock output element includes a large transistor having a size larger than the predetermined size
- the normal transistor includes the output clock signal.
- the large transistor may generate the distributed clock signal.
- the distributed clock signal is generated by a large transistor having a size larger than that of the normal transistor.
- the first aspect further includes a main line connected to the output terminal of the clock distribution element and a branch line connected to the main line, and the plurality of clock output elements are inserted into the branch line,
- the main line may be wider than the branch line.
- the first aspect further includes two stacked substrates, wherein the plurality of clock output elements are disposed on one of the two substrates, and the clock distribution element is the other of the two substrates. May be arranged. As a result, the clock signal is distributed and output by the clock distribution element and the clock output element arranged in a distributed manner on the two stacked substrates.
- a power line having a predetermined power supply potential, a ground line having a potential lower than the predetermined power supply potential, the main line, and the branch line are further disposed on one of the two substrates.
- the main line may be disposed between the power supply line and the ground line. This brings about the effect
- the main line may be wired along a direction perpendicular to the direction from the input terminal to the output terminal of the clock distribution element.
- the clock signal is transmitted through the main line wired along the direction perpendicular to the direction from the input terminal to the output terminal of the clock distribution element.
- the main line may be wired along the direction from the input terminal to the output terminal of the clock distribution element.
- the clock signal is transmitted through the main line wired along the direction from the input terminal to the output terminal of the clock distribution element.
- a clock signal line connected to the clock distribution element and the plurality of clock output elements may be further provided, and the clock signal line may be wired in a two-dimensional lattice shape. This brings about the effect that the clock signal is transmitted via the clock signal line wired in a mesh shape.
- each of the plurality of clock output elements outputs a signal obtained by inverting the distributed clock signal as the output clock signal
- the clock distribution element is a signal obtained by inverting the input clock signal. May be distributed as the distribution clock signal. This brings about the effect that a signal obtained by inverting the clock distribution signal is output.
- each of the plurality of clock output elements is set by a predetermined enable signal and reset by a signal obtained by inverting the input clock signal, and an output terminal of the latch circuit;
- An AND gate that outputs a logical product with the input clock signal may be provided.
- the clock signal is output by the element including the latch circuit and the AND gate.
- the output terminal of the clock distribution element may be arranged at the center of gravity of a polygon including all of the plurality of clock output elements.
- the clock signal is distributed by the clock distribution element in which the output terminal is arranged at the center of gravity of the polygon.
- the present technology it is possible to achieve an excellent effect that the clock skew can be reduced in the circuit that distributes the clock signal.
- the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
- FIG. 3 is a circuit diagram illustrating a configuration example of a clock distribution circuit and a synchronous operation circuit according to the first embodiment of the present technology. It is a circuit diagram which shows one structural example of the clock distribution circuit in a comparative example. It is a circuit diagram showing an example of 1 composition of a large-sized buffer in a 1st embodiment of this art. It is a circuit diagram showing an example of 1 composition of a clock distribution circuit and a synchronous operation circuit in a modification of a 1st embodiment of this art.
- FIG. 28 is a circuit diagram illustrating a configuration example of a clock distribution circuit according to a second modification example of the third embodiment of the present technology.
- FIG. 1 is a block diagram illustrating a configuration example of the integrated circuit 10 according to the first embodiment.
- the integrated circuit 10 includes a clock generation unit 100, a clock distribution circuit 200, and a synchronous operation circuit 300.
- Clock generator 100 is for generating a clock signal CLK in a predetermined frequency.
- a clock signal is generated by a crystal oscillator or a phase synchronization circuit.
- Clock generating unit 100 supplies the generated clock signal CLK in via the signal line 109 to the clock distribution circuit 200.
- the clock distribution circuit 200 distributes the clock signal CLK in to a plurality of clock signals CLK out and outputs the clock signal CLK in to the synchronous operation circuit 300 via the signal line 209.
- Synchronous operation circuit 300 in synchronization with the clock signal CLK out from the clock distribution circuit 200 performs a predetermined process.
- FIG. 2 is a circuit diagram illustrating a configuration example of the clock distribution circuit 200 and the synchronous operation circuit 300 according to the first embodiment.
- the clock distribution circuit 200 includes a plurality of normal buffers 211, a large buffer 212, and a plurality of normal buffers 221. These buffers are provided on one substrate, for example.
- the synchronous operation circuit 300 includes a plurality of flip-flops 310.
- normal buffers 211 are provided. These normal buffers 211 are connected in series between the clock generator 100 and the large buffer 212. For example, nine normal buffers 221 are provided. The input terminals of these normal buffers 221 are connected in parallel to the output terminals of the large buffer 212. The output terminal of the normal buffer 221 is connected to different flip-flops 310.
- the number of normal buffers 211 is not limited to three.
- the normal buffer 211 may not be provided in front of the large buffer 212, and the large buffer 212 may be directly connected to the clock generation unit 100.
- the number of normal buffers 221 is not limited to nine as long as it is two or more.
- the buffer 211 based on the clock signal CLK in, and outputs to the subsequent device to generate a signal delayed amplifies the signal.
- Large buffers 212 typically on the basis of the clock signal CLK in from the buffer 211, and generates a signal delayed amplifies the signal, and distributed to a plurality of normal buffers 221.
- the driving capacity of the large buffer 212 is larger than that of the normal buffers 211 and 221. Therefore, the current value of the clock signal output from the large buffer 212 is larger than the clock signal CLK out.
- the large buffer 212 is an example of a clock distribution element described in the claims.
- the normal buffer 221 is an example of a clock output element described in the claims.
- Flip-flop 310 in synchronization with the clock signal CLK out, it is to hold the data.
- flip-flop 310 is connected to the normal buffer 221, a configuration in which circuits and elements other than the flip-flop 310 such as a logic circuit are connected may be used.
- one flip-flop 310 is connected to the normal buffer 221, a configuration in which two or more circuits and elements are connected in parallel may be used.
- FIG. 3 is a circuit diagram showing a configuration example of a clock distribution circuit in a comparative example in which the large buffer 212 is not used.
- each of the normal buffers can drive up to three subsequent normal buffers.
- a seven-stage normal buffer is required as illustrated in FIG.
- the number of buffer stages is five as illustrated in FIG. 2, which is smaller than that of the comparative example.
- the clock skew increases as the number of buffer stages increases. Therefore, by providing the large buffer 212, the clock skew can be reduced.
- the number of normal buffers is 19.
- the power consumption of the clock distribution circuit of the comparative example is 19Q.
- the clock distribution circuit 200 has one large buffer 212 and a total of twelve normal buffers (211 and 221).
- the power consumption of the clock distribution circuit 200 is 15Q, which is smaller than that of the comparative example.
- the comparative example it is not branched to the 4th stage, it is branched into 2 systems at the 5th stage, and it is branched into 4 systems and 9 systems at the 6th and 7th stages.
- the clock distribution circuit 200 does not branch to the fourth stage, but branches to nine systems at the fifth stage.
- the clock distribution circuit 200 since the clock distribution circuit 200 has fewer branches than the comparative example, the number of wires is small, and the total wiring capacitance between the wires is small. Therefore, the power loss of the wiring is smaller than that of the comparative example.
- FIG. 4 is a circuit diagram showing a configuration example of the large buffer 212 in the first embodiment.
- the large buffer 212 includes even-numbered (for example, four-stage) inverting elements each composed of a P-type transistor 213 and an N-type transistor 214.
- As the P-type transistor 213 and the N-type transistor 214 for example, a MOS (Metal Oxide Semiconductor) transistor is used.
- the P-type transistor 213 and the N-type transistor 214 are connected in series between the power supply terminal and the ground terminal.
- the P-type transistor 213 is disposed on the power supply side, and the gates of the P-type transistor 213 and the N-type transistor 214 are connected in common to the preceding element. Further, the connection point of the P-type transistor 213 and the N-type transistor 214 is connected to a subsequent element.
- the configuration of the normal buffers 211 and 221 is the same as that of the large buffer 212.
- the size (gate width, etc.) of the P-type transistor 213 and the N-type transistor 214 of the large buffer 212 is assumed to be larger than these normal buffers.
- the gate voltage is constant
- the current value of the drain current increases as the size of the transistor increases.
- the current value of the clock signal output from the large buffer 212 is larger than that of the normal buffer. Therefore, more elements than the normal buffer 221 can be connected to the large buffer 212. As a result, the number of buffer stages can be reduced and the clock skew can be reduced.
- the large buffer 212 distributes a clock signal having a current value larger than that of the signal output from the normal buffer, so that the large buffer 212 is not provided.
- the number of buffer stages can be reduced. Thereby, the clock skew can be reduced.
- the clock signal is distributed by the buffer, but it can also be distributed by an element (such as an inverter) other than the buffer.
- the clock distribution circuit 200 according to the modification of the first embodiment is different from the first embodiment in that the clock signal is distributed by elements other than the buffer.
- FIG. 5 is a circuit diagram showing a configuration example of the clock distribution circuit 200 and the synchronous operation circuit 300 in the modification of the first embodiment.
- the clock distribution circuit 200 according to the modification of the first embodiment includes the normal inverters 215 and 222 instead of the normal buffers 211 and 221, and the first embodiment in that a large inverter 216 is provided instead of the large buffer 212.
- the form is different.
- Ordinary inverters 215 and 222 invert the clock signal from the preceding element and output it to the succeeding element.
- the number of normal inverters 215 is an even number (for example, two).
- the large inverter 216 inverts the clock signal from the normal inverter 215 and distributes the inverted signal to the plurality of normal inverters 222.
- FIG. 6 is a circuit diagram showing a configuration example of the large-sized inverter 216 in the modification of the first embodiment.
- the large inverter 216 includes odd-numbered (eg, three-stage) inverting elements each composed of a P-type transistor 213 and an N-type transistor 214. Compared to a buffer that requires at least two inverting elements, an inverter requires at least one inverting element.
- an ICG (Integrated Clock Gating) cell 240 may be provided instead of the normal inverter 222.
- the ICG cell 240 cell includes a latch circuit 241 and an AND (logical product) gate 242.
- the enable signal EN is input to the set terminal of the latch circuit 241, and the inverted signal of the clock signal is input to the reset terminal.
- the output terminal of the latch circuit is connected to one input terminal of the AND gate 242.
- a clock signal is input to the other input terminal of the AND gate 242, and an output terminal is connected to a subsequent element (such as the flip-flop 310).
- the enable signal EN is generated by a circuit external to the clock distribution circuit 200.
- the clock signal is distributed by the inverter 222 or the like, so that the number of inversion elements including the P-type transistor 213 and the N-type transistor 214 is reduced. Can do.
- Second Embodiment> In the first embodiment described above, a plurality of buffers are provided on one substrate. However, as the number of buffers increases, the mounting area increases. The clock distribution circuit 200 of the second embodiment is different from the first embodiment in that the mounting area is reduced.
- FIG. 8 is a circuit diagram showing a configuration example of the clock distribution circuit 200 according to the second embodiment.
- the clock distribution circuit 200 according to the second embodiment includes a lower substrate 210 and an upper substrate 220 stacked on the lower substrate 210.
- the lower substrate 210 is provided with a large buffer 212
- the upper substrate 220 is provided with a plurality of normal buffers 221. Further, it is assumed that the normal buffer 211 is not provided in the preceding stage of the large buffer 212.
- one clock signal line 225 and a plurality of clock signal lines 226 and 209 are wired on the upper substrate 220.
- the clock signal line 225 is wired along the Y direction perpendicular to the X direction, with the direction from the input terminal to the output terminal of the large buffer 212 being the X direction.
- the clock signal line 225 is connected to the output terminal of the large buffer 212 and each of the clock signal lines 226.
- the large buffer 212 and the clock signal line 225 are connected via a stack via in consideration of easiness of wiring.
- the clock signal line 226 is connected to the clock signal line 225 and the input terminal of the normal buffer 221, and the clock signal line 209 is connected to the output terminal of the normal buffer 221.
- the power supply line and the ground line are also wired on the lower substrate 210 and the lower substrate 220, these are omitted for convenience of description.
- the width of the clock signal line 225 is wider than that of the clock signal lines 226 and 209.
- the wiring topology in which the clock signal line 225 is connected to the backbone (main line) and the clock signal lines 226 and 209 are connected to the backbone as a small bone (branch line) is called a fishbone type.
- the alternate long and short dash line in FIG. 8 indicates a polygon having the smallest area among the polygons surrounding all of the normal buffers (221) immediately below the large buffer 212. It is desirable to arrange the output terminal of the large buffer 212 at a position substantially coincident with the center of gravity of the polygon. By arranging the output terminal of the large buffer 212 at the center of gravity, the wiring distance to each of the normal buffers 221 can be made close to the same length.
- the clock signal lines are not wired in a mesh (two-dimensional lattice), but the clock signal lines may be wired in a mesh as illustrated in FIG.
- Such a wiring topology is called a mesh type.
- the delay time in the clock signal line 225 can be shortened by making the width of the clock signal line 225 immediately below the large buffer 212 relatively wide.
- the delay time of the clock signal in the clock distribution circuit 200 includes a delay time in the buffer and a delay time in the clock signal line.
- Delay time T b in the buffer for example, it is determined by the following equation.
- T b R b ⁇ C ⁇ k b
- Formula 1 k b ⁇ log (V out / V b ⁇ 1) ⁇ Equation 2
- Rb is the on-resistance of the transistor in the buffer
- C is the capacitance of the element to be driven.
- one of the N-type transistor 213 and the P-type transistor 214 is turned on, and the on-resistances of these transistors are adjusted to the same level.
- Vout is the output potential of the element to be driven
- Vb is the supply potential of the buffer.
- the unit of the delay time Tb is, for example, picoseconds (ps), and the unit of the capacity C is, for example, femtofarad (fF).
- the unit of the on-resistance Rb is, for example, kilo ohm (k ⁇ ).
- the on-resistance Rb in the normal buffer 221 is 1.0 kiloohm (k ⁇ ), and the capacitance C is 500 femtofarads (fF). Then, assuming that kb obtained from V out and V b is 0.7, the delay time Tb of the normal buffer 221 is about 350 picoseconds (ps) from Equation 1.
- the on-resistance Rb in the large buffer 212 is smaller than that of the normal buffer 221 because of the large transistor size. If the on-resistance R b in the large buffer 212 is, for example, 0.01 kilo ohm (k ⁇ ), the delay time of the large buffer 212 is about 3.5 picoseconds (ps) from Equation 1. Thus, the delay time of the large buffer 212 is relatively short.
- the delay time T w in the clock signal line for example, be determined by the following equation.
- R w is a wiring resistance of the clock signal line
- V c is the supply potential of the clock signal line.
- Unit delay time T w is, for example, a picosecond (ps)
- the unit of the wiring resistance Rw is, for example, kilohms (kW).
- the wiring resistance R w of the wider clock signal line 225 (the main line) width is smaller than the clock signal line 226 and 209 (branch).
- the width of the clock signal line 225 is four times that of the clock signal lines 226 and 209.
- the wiring resistance R w is next 1/4, since the 0.25 kilohms (kW), the wiring delay of a clock signal line 225 from the equation 3 is approximately 60 picoseconds (ps).
- the delay time can be shortened by increasing the width of the clock signal line 225.
- Equation 3 does not consider the delay time due to the increase in wiring capacity.
- the buffers are distributed and arranged on the two stacked substrates (210 and 220), three or more substrates may be stacked and the buffers may be distributed and arranged on them.
- FIG. 10 is a plan view showing an example of the wiring layout of the upper substrate 220 in the second embodiment.
- a clock signal line 225 which is a main line is wired along the Y direction
- a clock signal line 226 which is a branch line is wired along the X direction.
- the power supply line 227 and the ground line 228 are wired along the Y direction
- the power supply line 229 and the ground line 230 are wired along the X direction.
- These power supply lines (227 and 229) and ground lines (228 and 230) are connected to the power supply terminal and the ground terminal of the normal buffer 221.
- the power supply potential of the power supply line is higher than the ground potential of the ground line.
- the power supply line 227 is wired between the ground line 228 and the clock signal line 225 (main line).
- the mounting area can be made smaller than the case where the buffers are arranged on the single-layer substrate. it can.
- the power supply line 227 is wired between the ground line 228 and the clock signal line 225.
- electromagnetic noise and static electricity using circuits and elements on the upper substrate 220 as noise sources are used.
- the signal quality of the clock signal may deteriorate due to noise.
- the clock distribution circuit 200 according to a modification of the second embodiment is different from the second embodiment in that electromagnetic noise and electrostatic noise are reduced.
- FIG. 11 is a plan view showing an example of the wiring layout of the upper substrate 220 in the modification of the second embodiment.
- the upper substrate 220 according to the modification of the second embodiment differs from the second embodiment in that the clock signal line 225 (main line) is wired between the power supply line 227 and the ground line 228.
- the power supply line 227 and the ground line 228 function as an electromagnetic shield and an electrostatic shield, and reduce the electromagnetic noise and electrostatic noise using the circuit on the upper substrate 220 as a noise source to improve the signal quality of the clock signal. Can be improved.
- the clock signal line 225 (main line) is wired along the Y direction.
- a method of wiring the main line along the X direction can be considered.
- the clock distribution circuit 200 of the third embodiment is different from the second embodiment in that the clock signal line 225 is wired along the X direction.
- FIG. 12 is a circuit diagram showing a configuration example of the clock distribution circuit 200 according to the third embodiment. As illustrated in the figure, in the clock distribution circuit 200 according to the third embodiment, the clock signal line 225 is wired not in the Y direction but in the X direction.
- the clock signal lines are not wired in a mesh (two-dimensional lattice), but the clock signal lines may be wired in a mesh as illustrated in FIG.
- FIG. 14 is a plan view showing an example of the wiring layout of the upper substrate 220 in the third embodiment.
- the clock signal line 225 (main line) is wired along the X direction
- the clock signal line 226 (branch line) is wired along the Y direction.
- the clock signal line 225 (main line) is wired between the power supply line 229 and the ground line 230.
- the clock signal line 225 which is the main line is wired along the X direction, and thus the wiring distance cannot be sufficiently increased in the Y direction.
- a normal buffer 221 can be disposed on the substrate.
- the power supply line 229 is wired between the ground line 230 and the clock signal line 225.
- the clock distribution circuit 200 according to the modification of the third embodiment is different from the third embodiment in that electromagnetic noise and electrostatic noise are reduced.
- FIG. 15 is a plan view showing an example of the wiring layout of the upper substrate 220 in the third embodiment.
- the upper substrate 220 according to the modification of the third embodiment is different from the third embodiment in that the clock signal line 225 (main line) is wired between the power supply line 229 and the ground line 230.
- the power supply line 229 and the ground line 230 function as an electromagnetic shield or an electrostatic shield, and electromagnetic noise and electrostatic noise using the circuit on the upper substrate 220 as a noise source are reduced to improve the signal quality of the clock signal. Can be made.
- this technique can also take the following structures.
- a plurality of clock output elements for generating an output clock signal based on the distributed clock signal and outputting the generated clock signal to the circuit;
- An integrated circuit comprising: a clock distribution element that generates a clock signal having a current value larger than that of the output clock signal based on an input clock signal and distributes the clock signal to the plurality of clock output elements as the distribution clock signal.
- the clock output element includes a normal transistor of a predetermined size, The clock output element includes a large transistor having a size larger than the predetermined size, The normal transistor generates the output clock signal, The integrated circuit according to (1), wherein the large transistor generates the distribution clock signal.
- a main line connected to an output terminal of the clock distribution element A branch line connected to the main line, The plurality of clock output elements are inserted into the branch lines, The integrated circuit according to (1) or (2), wherein a width of the main line is wider than the branch line.
- a power line having a predetermined power supply potential, a ground line having a potential lower than the predetermined power supply potential, the main line, and the branch line are further disposed.
- Each of the plurality of clock output elements outputs a signal obtained by inverting the distributed clock signal as the output clock signal,
- Each of the plurality of clock output elements is A latch circuit set by a predetermined enable signal and reset by a signal obtained by inverting the input clock signal;
- (11) The integrated circuit according to any one of (1) to (10), wherein an output terminal of the clock distribution element is arranged at a center of gravity of a polygon including all of the plurality of clock output elements.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Semiconductor Integrated Circuits (AREA)
- Manipulation Of Pulses (AREA)
Abstract
クロック信号を分配する回路においてクロックスキューを低減する。 集積回路は、複数のクロック出力素子とクロック分配素子とを具備する。複数のクロック出力素子は、分配された分配クロック信号に基づいて出力クロック信号を生成して回路に出力する。また、クロック分配素子は、入力された入力クロック信号に基づいて出力クロック信号より電流値の大きなクロック信号を生成して複数の通常クロック分配素子に分配クロック信号として分配する。
Description
本技術は、集積回路に関する。詳しくは、クロック信号を分配する集積回路に関する。
従来より、クロック信号を複数の回路に分配する際に、複数のバッファからなるクロック分配回路が用いられている。このクロック分配回路内のバッファのトポロジとしては、ツリー状のクロックツリー型、網の目状のメッシュ型や、魚の骨に類似した形状のフィッシュボーン型などが挙げられる。例えば、クロックツリー型の一種であるHツリー型を用いるクロック分配回路が提案されている(例えば、特許文献1参照。)。このHツリー型では、前段のバッファ1つに対して、後段の4つのバッファがHの形状の配線を介して接続される。また、それぞれのバッファの駆動能力は同一である。
Phillip J. Restle, et al., A Clock Distribution Network for Microprocessors, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 5, MAY 2001.
しかしながら、上述の従来技術では、ツリーの段数や分岐が多くなるほど、最終段の回路のそれぞれに分配されるクロック信号の遅延時間の最大値と最小値との差が大きくなるという問題がある。この遅延時間の差は、一般にクロックスキューと呼ばれる。このクロックスキューを低減する方法として、遅延時間を調整するためのバッファを追加する方法が挙げられるが、この方法では回路規模や配線数が増大してしまうおそれがある。このため、クロックスキューの低減が困難であるという問題がある。
本技術はこのような状況に鑑みて生み出されたものであり、クロック信号を分配する回路においてクロックスキューを低減することを目的とする。
本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、分配された分配クロック信号に基づいて出力クロック信号を生成して回路に出力する複数のクロック出力素子と、入力された入力クロック信号に基づいて上記出力クロック信号より電流値の大きなクロック信号を生成して上記複数のクロック出力素子に上記分配クロック信号として分配するクロック分配素子とを具備する集積回路である。これにより、出力クロック信号より電流値の大きなクロック信号が分配されるという作用をもたらす。
また、この第1の側面において、上記クロック出力素子は、所定サイズの通常トランジスタを備え、上記クロック出力素子は、上記所定サイズより大きなサイズの大型トランジスタを備え、上記通常トランジスタは、上記出力クロック信号を生成し、上記大型トランジスタは、上記分配クロック信号を生成してもよい。これにより、通常トランジスタより大きなサイズの大型トランジスタにより分配クロック信号が生成されるという作用をもたらす。
また、この第1の側面において、上記クロック分配素子の出力端子に接続された本線と、上記本線に接続された支線とをさらに具備し、上記複数のクロック出力素子は、上記支線に挿入され、上記本線の幅は、上記支線より広くてもよい。これにより、支線より幅の広い本線を介してクロック信号が伝送されるという作用をもたらす。
また、この第1の側面において、積層された2つの基板をさらに具備し、上記複数のクロック出力素子は、上記2つの基板の一方に配置され、上記クロック分配素子は、上記2つの基板の他方に配置されてもよい。これにより、積層された2つの基板に分散して配置されたクロック分配素子およびクロック出力素子によりクロック信号が分配および出力されるという作用をもたらす。
また、この第1の側面において、上記2つの基板の一方には、所定の電源電位の電源線と上記所定の電源電位より低い電位のグランド線と上記本線と上記支線とがさらに配置され、上記本線は、上記電源線と上記グランド線との間に配置されてもよい。これにより、電磁ノイズが低減するという作用をもたらす。
また、この第1の側面において、上記本線は、上記クロック分配素子の入力端子から出力端子への方向に垂直な方向に沿って配線されてもよい。これにより、クロック分配素子の入力端子から出力端子への方向に垂直な方向に沿って配線された本線を介してクロック信号が伝送されるという作用をもたらす。
また、この第1の側面において、上記本線は、上記クロック分配素子の入力端子から出力端子への方向に沿って配線されてもよい。これにより、クロック分配素子の入力端子から出力端子への方向に沿って配線された本線を介してクロック信号が伝送されるという作用をもたらす。
また、この第1の側面において、前記クロック分配素子と前記複数のクロック出力素子とに接続されたクロック信号線をさらに具備し、前記クロック信号線は、二次元格子状に配線されてもよい。これにより、メッシュ状に配線されたクロック信号線を介してクロック信号が伝送されるという作用をもたらす。
また、この第1の側面において、上記複数のクロック出力素子のそれぞれは、上記分配クロック信号を反転した信号を上記出力クロック信号として出力し、上記クロック分配素子は、上記入力クロック信号を反転した信号を上記分配クロック信号として分配してもよい。これにより、クロック分配信号を反転した信号が出力されるという作用をもたらす。
また、この第1の側面において、前記複数のクロック出力素子のそれぞれは、所定のイネーブル信号によりセットされ、前記入力クロック信号を反転した信号によりリセットされるラッチ回路と、前記ラッチ回路の出力端子と前記入力クロック信号との論理積を出力するANDゲートとを備えてもよい。これにより、ラッチ回路およびANDゲートを含む素子により、クロック信号が出力されるという作用をもたらす。
また、この第1の側面において、上記クロック分配素子の出力端子は、上記複数のクロック出力素子の全てを含む多角形の重心に配置されてもよい。これにより、多角形の重心に出力端子が配置されたクロック分配素子によってクロック信号が分配されるという作用をもたらす。
本技術によれば、クロック信号を分配する回路においてクロックスキューを低減することができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.第1の実施の形態(通常バッファと大型バッファとを設けた例)
2.第2の実施の形態(通常バッファと大型バッファとを2つの基板に分散して設けた例)
3.第3の実施の形態(クロック信号線の配線方向を変えて通常バッファと大型バッファとを2つの基板に分散して設けた例)
1.第1の実施の形態(通常バッファと大型バッファとを設けた例)
2.第2の実施の形態(通常バッファと大型バッファとを2つの基板に分散して設けた例)
3.第3の実施の形態(クロック信号線の配線方向を変えて通常バッファと大型バッファとを2つの基板に分散して設けた例)
<1.第1の実施の形態>
[集積回路の構成例]
図1は、第1の実施の形態における集積回路10の一構成例を示すブロック図である。この集積回路10は、クロック生成部100、クロック分配回路200および同期動作回路300を備える。
[集積回路の構成例]
図1は、第1の実施の形態における集積回路10の一構成例を示すブロック図である。この集積回路10は、クロック生成部100、クロック分配回路200および同期動作回路300を備える。
クロック生成部100は、所定の周波数のクロック信号CLKinを生成するものである。例えば、水晶発振器や位相同期回路によりクロック信号が生成される。クロック生成部100は、生成したクロック信号CLKinを信号線109を介してクロック分配回路200に供給する。
クロック分配回路200は、クロック信号CLKinを複数のクロック信号CLKoutに分配して、同期動作回路300に信号線209を介して出力するものである。
同期動作回路300は、クロック分配回路200からのクロック信号CLKoutに同期して、所定の処理を行うものである。
[クロック分配回路の構成例]
図2は、第1の実施の形態におけるクロック分配回路200および同期動作回路300の一構成例を示す回路図である。クロック分配回路200は、複数の通常バッファ211と大型バッファ212と複数の通常バッファ221とを備える。これらのバッファは、例えば、1つの基板に設けられる。また、同期動作回路300は、複数のフリップフロップ310を備える。
図2は、第1の実施の形態におけるクロック分配回路200および同期動作回路300の一構成例を示す回路図である。クロック分配回路200は、複数の通常バッファ211と大型バッファ212と複数の通常バッファ221とを備える。これらのバッファは、例えば、1つの基板に設けられる。また、同期動作回路300は、複数のフリップフロップ310を備える。
通常バッファ211は、例えば、3個設けられる。これらの通常バッファ211は、クロック生成部100と大型バッファ212との間において直列に接続される。また、通常バッファ221は、例えば、9個設けられる。これらの通常バッファ221の入力端子は、大型バッファ212の出力端子に並列に接続される。そして、通常バッファ221の出力端子は、互いに異なるフリップフロップ310に接続される。
なお、通常バッファ211の個数は、3個に限定されない。また、大型バッファ212の前段に通常バッファ211が設けられず、大型バッファ212が直接、クロック生成部100に接続される構成であってもよい。また、通常バッファ221の個数は、2個以上であれば、9個に限定されない。
通常バッファ211は、クロック信号CLKinに基づいて、その信号を増幅するとともに遅延させた信号を生成して後段の素子に出力するものである。
大型バッファ212は、通常バッファ211からのクロック信号CLKinに基づいて、その信号を増幅するとともに遅延させた信号を生成して、複数の通常バッファ221に分配するものである。また、大型バッファ212の駆動能力は、通常バッファ211および221より大きい。このため、大型バッファ212の出力するクロック信号の電流値は、クロック信号CLKoutより大きくなる。なお、大型バッファ212は、特許請求の範囲に記載のクロック分配素子の一例である。
通常バッファ221は、クロック信号CLKinに基づいて、その信号を増幅するとともに遅延させた信号CLKoutを生成してフリップフロップ310に出力するものである。なお、通常バッファ221は、特許請求の範囲に記載のクロック出力素子の一例である。
フリップフロップ310は、クロック信号CLKoutに同期して、データを保持するものである。
なお、通常バッファ221にフリップフロップ310が接続されているが、論理回路など、フリップフロップ310以外の回路や素子が接続される構成であってもよい。また、通常バッファ221に1つのフリップフロップ310が接続されているが、2つ以上の回路や素子が並列に接続される構成であってもよい。
図3は、大型バッファ212を用いない比較例におけるクロック分配回路の一構成例を示す回路図である。この比較例では、通常バッファのそれぞれは、3つまでの後段の通常バッファを駆動することができるものとする。5段目以降で分岐して、クロック信号を9個の回路に分配するためには、同図に例示するように7段の通常バッファが必要となる。
これに対して、駆動能力の大きな大型バッファ212を設けたクロック分配回路200では、図2に例示したようにバッファの段数は5段となり、比較例よりも少なくなる。前述したように、バッファの段数が多くなるほど、クロックスキューが大きくなるため、大型バッファ212を設けることにより、クロックスキューを低減することができる。
また、比較例では通常バッファの個数が19個である。これらの通常バッファの個々の消費電力をQワット(W)とし、配線の電力損失を除外すると、比較例のクロック分配回路の消費電力は19Qである。これに対して、クロック分配回路200では大型バッファ212が1個で、通常バッファ(211および221)が計12個である。駆動能力が通常バッファの3倍の大型バッファ212の消費電力を3Qと概算すると、クロック分配回路200の消費電力は15Qとなり、比較例よりも小さくなる。
さらに、比較例では、4段目まで分岐せず、5段目で2系統に分岐し、6段目および7段目で4系統および9系統に分岐する。これに対して、クロック分配回路200では、4段目まで分岐せず、5段目で9系統に分岐する。このように、クロック分配回路200では比較例に対して分岐が少ないため、配線数が少なく、配線間の配線容量の合計が小さくなる。したがって、配線の電力損失が比較例よりも小さくなる。
[大型バッファの構成例]
図4は、第1の実施の形態における大型バッファ212の一構成例を示す回路図である。この大型バッファ212は、それぞれがP型トランジスタ213およびN型トランジスタ214からなる偶数段(例えば、4段)の反転素子を備える。P型トランジスタ213およびN型トランジスタ214として、例えば、MOS(Metal Oxide Semiconductor)トランジスタが用いられる。
図4は、第1の実施の形態における大型バッファ212の一構成例を示す回路図である。この大型バッファ212は、それぞれがP型トランジスタ213およびN型トランジスタ214からなる偶数段(例えば、4段)の反転素子を備える。P型トランジスタ213およびN型トランジスタ214として、例えば、MOS(Metal Oxide Semiconductor)トランジスタが用いられる。
P型トランジスタ213およびN型トランジスタ214は、電源端子と接地端子との間において、直列に接続される。ここで、P型トランジスタ213は電源側に配置され、P型トランジスタ213およびN型トランジスタ214のゲートは、前段の素子に共通に接続される。また、P型トランジスタ213およびN型トランジスタ214の接続点は、後段の素子に接続される。
通常バッファ211および221の構成は、大型バッファ212と同様である。ただし、大型バッファ212のP型トランジスタ213およびN型トランジスタ214のサイズ(ゲート幅など)は、これらの通常バッファよりも大きいものとする。ここで、一般に、ゲート電圧を一定とすると、トランジスタのサイズが大きいほど、ドレイン電流の電流値が大きくなる。このため、大型バッファ212が出力するクロック信号の電流値は、通常バッファよりも大きくなる。したがって、大型バッファ212には、通常バッファ221よりも多くの素子を接続することができる。これにより、バッファの段数を少なくしてクロックスキューを低減することができる。
このように、本技術の第1の実施の形態によれば、大型バッファ212は、通常バッファが出力する信号よりも電流値の大きなクロック信号を分配するため、大型バッファ212を設けない場合よりもバッファの段数を少なくすることができる。これにより、クロックスキューを低減することができる。
[変形例]
上述の第1の実施の形態では、バッファによりクロック信号を分配していたが、バッファ以外の素子(インバータなど)により分配することもできる。この第1の実施の形態における変形例のクロック分配回路200は、バッファ以外の素子によりクロック信号を分配する点において第1の実施の形態と異なる。
上述の第1の実施の形態では、バッファによりクロック信号を分配していたが、バッファ以外の素子(インバータなど)により分配することもできる。この第1の実施の形態における変形例のクロック分配回路200は、バッファ以外の素子によりクロック信号を分配する点において第1の実施の形態と異なる。
図5は、第1の実施の形態の変形例におけるクロック分配回路200および同期動作回路300の一構成例を示す回路図である。この第1の実施の形態の変形例のクロック分配回路200は、通常バッファ211および221の代わりに通常インバータ215および222を備え、大型バッファ212の代わりに大型インバータ216を備える点において第1の実施の形態と異なる。
通常インバータ215および222は、前段の素子からのクロック信号を反転して後段の素子に出力するものである。この通常インバータ215の個数は、偶数個(例えば、2個)である。
大型インバータ216は、通常インバータ215からのクロック信号を反転し、その反転した信号を複数の通常インバータ222に分配するものである。
図6は、第1の実施の形態の変形例における大型インバータ216の一構成例を示す回路図である。この大型インバータ216は、それぞれがP型トランジスタ213およびN型トランジスタ214からなる奇数段(例えば、3段)の反転素子を備える。少なくとも2個の反転素子が必要なバッファと比較して、インバータでは、反転素子は最低1個で済む。
なお、図7に例示するように、通常インバータ222の代わりにICG(Integrated Clock Gating)セル240を設けることもできる。このICGセル240セルは、ラッチ回路241およびAND(論理積)ゲート242を備える。ラッチ回路241のセット端子には、イネーブル信号ENが入力され、リセット端子には、クロック信号の反転信号が入力される。また、ラッチ回路の出力端子は、ANDゲート242の一方の入力端子に接続される。また、ANDゲート242の他方の入力端子には、クロック信号が入力され、出力端子は、後段の素子(フリップフロップ310など)に接続される。イネーブル信号ENは、クロック分配回路200の外部の回路により生成される。
このように、本技術の第1の実施の形態における変形例によれば、インバータ222などによりクロック信号を分配するため、P型トランジスタ213およびN型トランジスタ214からなる反転素子の個数を低減することができる。
<2.第2の実施の形態>
上述の第1の実施の形態では、1つの基板に複数のバッファを設けていたが、バッファの個数が多いほど、実装面積が増大してしまう。この第2の実施の形態のクロック分配回路200は、実装面積を小さくした点において第1の実施の形態と異なる。
上述の第1の実施の形態では、1つの基板に複数のバッファを設けていたが、バッファの個数が多いほど、実装面積が増大してしまう。この第2の実施の形態のクロック分配回路200は、実装面積を小さくした点において第1の実施の形態と異なる。
図8は、第2の実施の形態におけるクロック分配回路200の一構成例を示す回路図である。この第2の実施の形態のクロック分配回路200は、下側基板210と、その下側基板210に積層された上側基板220とを備える。下側基板210には大型バッファ212が設けられ、上側基板220には、複数の通常バッファ221が設けられる。また、大型バッファ212の前段には通常バッファ211が設けられないものとする。
また、上側基板220には、1本のクロック信号線225と複数のクロック信号線226および209とが配線される。クロック信号線225は、大型バッファ212の入力端子から出力端子への方向をX方向とし、そのX方向に垂直なY方向に沿って配線される。そして、クロック信号線225は、大型バッファ212の出力端子と、クロック信号線226のそれぞれとに接続される。ここで、大型バッファ212とクロック信号線225とは、配線のしやすさなどを考慮してスタックビアなどを介して接続される。クロック信号線226は、クロック信号線225と通常バッファ221の入力端子とに接続され、クロック信号線209は、通常バッファ221の出力端子に接続される。
なお、下側基板210および下側基板220には電源線やグランド線も配線されるが、これらは、記載の便宜上、省略されている。
さらに、クロック信号線225の幅は、クロック信号線226および209より広いものとする。このように、クロック信号線225を背骨(本線)として、その背骨に小骨(支線)としてクロック信号線226および209を接続する配線トポロジは、フィッシュボーン型と呼ばれる。
また、図8における一点鎖線は、大型バッファ212の直下の通常バッファ(221)の全てを囲む多角形のうち最小面積のものを示す。この多角形の重心に略一致する位置に、大型バッファ212の出力端子を配置することが望ましい。大型バッファ212の出力端子を重心に配置することにより、通常バッファ221のそれぞれまでの配線距離を同じ長さに近づけることができる。
なお、図8では、クロック信号線が網の目(二次元格子)状に配線されていないが、図9に例示するように、クロック信号線を網の目状に配線してもよい。このような配線トポロジは、メッシュ型と呼ばれる。
上述のように、大型バッファ212の直下のクロック信号線225の幅を比較的広くすることにより、クロック信号線225における遅延時間を短くすることができる。ここで、クロック分配回路200におけるクロック信号の遅延時間は、バッファにおける遅延時間と、クロック信号線における遅延時間とからなる。
バッファにおける遅延時間Tbは、例えば、次の式により求められる。
Tb=Rb×C×kb ・・・式1
kb={-log(Vout/Vb-1)} ・・・式2
上式において、Rbは、バッファ内のトランジスタのオン抵抗であり、Cは、駆動する素子の容量である。バッファ内では、N型トランジスタ213およびP型トランジスタ214の一方がオン状態となるが、これらのトランジスタのそれぞれのオン抵抗は、同程度に調整されているものとする。また、Voutは、駆動する素子の出力電位であり、Vbは、バッファの供給電位である。遅延時間Tbの単位は、例えば、ピコ秒(ps)であり、容量Cの単位は、例えば、フェムトファラッド(fF)である。また、オン抵抗Rbの単位は、例えば、キロオーム(kΩ)である。
Tb=Rb×C×kb ・・・式1
kb={-log(Vout/Vb-1)} ・・・式2
上式において、Rbは、バッファ内のトランジスタのオン抵抗であり、Cは、駆動する素子の容量である。バッファ内では、N型トランジスタ213およびP型トランジスタ214の一方がオン状態となるが、これらのトランジスタのそれぞれのオン抵抗は、同程度に調整されているものとする。また、Voutは、駆動する素子の出力電位であり、Vbは、バッファの供給電位である。遅延時間Tbの単位は、例えば、ピコ秒(ps)であり、容量Cの単位は、例えば、フェムトファラッド(fF)である。また、オン抵抗Rbの単位は、例えば、キロオーム(kΩ)である。
通常バッファ221におけるオン抵抗Rbを、1.0キロオーム(kΩ)とし、容量Cを500フェムトファラッド(fF)とする。そして、VoutおよびVbから得られるkbを0.7とすると、式1より通常バッファ221の遅延時間Tbは、約350ピコ秒(ps)となる。
一方、大型バッファ212におけるオン抵抗Rbは、トランジスタのサイズが大きいために、通常バッファ221より小さくなる。大型バッファ212におけるオン抵抗Rbを例えば、0.01キロオーム(kΩ)とすると、式1より大型バッファ212の遅延時間は、約3.5ピコ秒(ps)となる。このように、大型バッファ212の遅延時間は、比較的短くなる。
また、クロック信号線における遅延時間Twは、例えば、次の式により求められる。
Tw=Rw×C×kw ・・・式3
kw={-log(Vout/Vc-1)} ・・・式4
上式において、Rwは、クロック信号線の配線抵抗であり、Vcは、クロック信号線の供給電位である。遅延時間Twの単位は、例えば、ピコ秒(ps)であり、配線抵抗Rwの単位は、例えば、キロオーム(kΩ)である。
Tw=Rw×C×kw ・・・式3
kw={-log(Vout/Vc-1)} ・・・式4
上式において、Rwは、クロック信号線の配線抵抗であり、Vcは、クロック信号線の供給電位である。遅延時間Twの単位は、例えば、ピコ秒(ps)であり、配線抵抗Rwの単位は、例えば、キロオーム(kΩ)である。
幅の狭い方のクロック信号線226および209(支線)の配線抵抗Rwを1.0キロオーム(kΩ)とし、容量Cを500フェムトファラッド(fF)とする。そして、VoutおよびVcから得られるkwを0.5とすると、式3より遅延時間Tbは、約250ピコ秒(ps)となる。
一方、幅の広い方のクロック信号線225(本線)の配線抵抗Rwは、クロック信号線226および209(支線)よりも小さくなる。例えば、クロック信号線225の幅は、クロック信号線226および209の4倍であるものとする。この場合には、配線抵抗Rwが1/4となり、0.25キロオーム(kΩ)となるため、式3よりクロック信号線225の配線遅延は、約60ピコ秒(ps)となる。このように、クロック信号線225の幅を広くすることにより、遅延時間を短くすることができる。
厳密には、クロック信号線225の幅を広くすることにより、配線容量も増大するが、後段の素子とのカップリング容量が支配的であるため、幅を4倍にしても、配線容量は4倍とならない。したがって、式3では配線容量の増大による遅延時間については考慮していない。
上述のように、大型バッファ212を設け、支線より幅の広い本線(クロック信号線225)を配線することにより、少ない段数のバッファで複数のフリップフロップ310などを効率的に駆動することができる。
これに対して、大型バッファ212を設けず、支線と幅の同じ本線を配線する構成では、式1および式3よりバッファやクロック信号線の遅延時間が増大してしまう。これにより、クロックスキューが大きくなってしまう。クロックスキューを低減するには遅延時間を調整するためのバッファを支線に追加する必要があるが、その場合には回路規模や配線数が増大してしまい、非効率的である。
なお、積層した2つの基板(210および220)に、バッファを分散して配置しているが、3つ以上の基板を積層して、それらにバッファを分散して配置してもよい。
図10は、第2の実施の形態における上側基板220の配線レイアウトの一例を示す平面図である。上側基板220には、Y方向に沿って本線であるクロック信号線225が配線され、X方向に沿って、支線であるクロック信号線226が配線される。また、電源線227およびグランド線228がY方向に沿って配線され、電源線229およびグランド線230がX方向に沿って配線される。これらの電源線(227および229)とグランド線(228および230)とは、通常バッファ221の電源端子と接地端子とに接続される。また、電源線の電源電位は、グランド線の接地電位よりも高いものとする。そして、電源線227は、グランド線228とクロック信号線225(本線)との間に配線される。
このように、本技術の第2の実施の形態によれば、積層された複数の基板にバッファを分散して配置したため、単層の基板に配置する場合よりも、実装面積を小さくすることができる。
[第1の変形例]
上述の第2の実施の形態では、電源線227をグランド線228とクロック信号線225との間に配線していたが、上側基板220上の回路や素子をノイズ源とする電磁ノイズや静電ノイズによりクロック信号の信号品質が低下することがある。この第2の実施の形態の変形例のクロック分配回路200は、電磁ノイズや静電ノイズを低減する点において第2の実施の形態と異なる。
上述の第2の実施の形態では、電源線227をグランド線228とクロック信号線225との間に配線していたが、上側基板220上の回路や素子をノイズ源とする電磁ノイズや静電ノイズによりクロック信号の信号品質が低下することがある。この第2の実施の形態の変形例のクロック分配回路200は、電磁ノイズや静電ノイズを低減する点において第2の実施の形態と異なる。
図11は、第2の実施の形態の変形例における上側基板220の配線レイアウトの一例を示す平面図である。この第2の実施の形態の変形例の上側基板220は、クロック信号線225(本線)が電源線227とグランド線228との間に配線されている点において第2の実施の形態と異なる。これにより、電源線227とグランド線228とが電磁シールドや静電シールドとして機能し、上側基板220上の回路等をノイズ源とする電磁ノイズや静電ノイズを低減してクロック信号の信号品質を向上させることができる。
このように、本技術の第2の実施の形態における変形例によれば、クロック信号線225を電源線227とグランド線228との間に配線したため、そのシールド効果により電磁ノイズや静電ノイズを低減することができる。
<3.第3の実施の形態>
上述の第2の実施の形態では、Y方向に沿ってクロック信号線225(本線)を配線していたが、実装上、Y方向において配線距離を十分に大きくすることができない場合もある。この場合には、本線をX方向に沿って配線する方法が考えられる。この第3の実施の形態のクロック分配回路200は、クロック信号線225をX方向に沿って配線した点において第2の実施の形態と異なる。
上述の第2の実施の形態では、Y方向に沿ってクロック信号線225(本線)を配線していたが、実装上、Y方向において配線距離を十分に大きくすることができない場合もある。この場合には、本線をX方向に沿って配線する方法が考えられる。この第3の実施の形態のクロック分配回路200は、クロック信号線225をX方向に沿って配線した点において第2の実施の形態と異なる。
図12は、第3の実施の形態におけるクロック分配回路200の一構成例を示す回路図である。同図に例示するように、第3の実施の形態のクロック分配回路200では、クロック信号線225は、Y方向で無く、X方向に沿って配線される。
なお、図12では、クロック信号線が網の目(二次元格子)状に配線されていないが、図13に例示するように、クロック信号線を網の目状に配線してもよい。
図14は、第3の実施の形態における上側基板220の配線レイアウトの一例を示す平面図である。同図に例示するように、クロック信号線225(本線)は、X方向に沿って配線され、クロック信号線226(支線)は、Y方向に沿って配線される。また、クロック信号線225(本線)は、電源線229とグランド線230との間に配線される。
このように、本技術の第3の実施の形態における変形例によれば、本線であるクロック信号線225をX方向に沿って配線するため、Y方向において配線距離を十分に大きくすることができない基板に通常バッファ221を配置することができる。
[変形例]
上述の第3の実施の形態では、電源線229をグランド線230とクロック信号線225との間に配線していたが、上側基板220上の回路をノイズ源とする電磁ノイズや静電ノイズによりクロック信号の信号品質が低下することがある。この第3の実施の形態の変形例のクロック分配回路200は、電磁ノイズや静電ノイズを低減する点において第3の実施の形態と異なる。
上述の第3の実施の形態では、電源線229をグランド線230とクロック信号線225との間に配線していたが、上側基板220上の回路をノイズ源とする電磁ノイズや静電ノイズによりクロック信号の信号品質が低下することがある。この第3の実施の形態の変形例のクロック分配回路200は、電磁ノイズや静電ノイズを低減する点において第3の実施の形態と異なる。
図15は、第3の実施の形態における上側基板220の配線レイアウトの一例を示す平面図である。この第3の実施の形態の変形例の上側基板220は、クロック信号線225(本線)が電源線229とグランド線230との間に配線されている点において第3の実施の形態と異なる。これにより、電源線229とグランド線230とが電磁シールドや静電シールドとして機能し、上側基板220上の回路をノイズ源とする電磁ノイズや静電ノイズを低減してクロック信号の信号品質を向上させることができる。
このように、本技術の第3の実施の形態における変形例によれば、クロック信号線225を電源線229とグランド線230との間に配線したため、そのシールド効果により電磁ノイズや静電ノイズを低減することができる。
なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
なお、本技術は以下のような構成もとることができる。
(1)分配された分配クロック信号に基づいて出力クロック信号を生成して回路に出力する複数のクロック出力素子と、
入力された入力クロック信号に基づいて前記出力クロック信号より電流値の大きなクロック信号を生成して前記複数のクロック出力素子に前記分配クロック信号として分配するクロック分配素子と
を具備する集積回路。
(2)前記クロック出力素子は、所定サイズの通常トランジスタを備え、
前記クロック出力素子は、前記所定サイズより大きなサイズの大型トランジスタを備え、
前記通常トランジスタは、前記出力クロック信号を生成し、
前記大型トランジスタは、前記分配クロック信号を生成する
前記(1)記載の集積回路。
(3)前記クロック分配素子の出力端子に接続された本線と、
前記本線に接続された支線とをさらに具備し、
前記複数のクロック出力素子は、前記支線に挿入され、
前記本線の幅は、前記支線より広い
前記(1)または(2)記載の集積回路。
(4)積層された2つの基板をさらに具備し、
前記複数のクロック出力素子は、前記2つの基板の一方に配置され、
前記クロック分配素子は、前記2つの基板の他方に配置される
前記(3)記載の集積回路。
(5)前記2つの基板の一方には、所定の電源電位の電源線と前記所定の電源電位より低い電位のグランド線と前記本線と前記支線とがさらに配置され、
前記本線は、前記電源線と前記グランド線との間に配置される
前記(4)記載の集積回路。
(6)前記本線は、前記クロック分配素子の入力端子から出力端子への方向に垂直な方向に沿って配線される
前記(4)または(5)記載の集積回路。
(7)前記本線は、前記クロック分配素子の入力端子から出力端子への方向に沿って配線される
前記(4)または(5)記載の集積回路。
(8)前記クロック分配素子と前記複数のクロック出力素子とに接続されたクロック信号線をさらに具備し、
前記クロック信号線は、二次元格子状に配線される
前記(1)記載の集積回路。
(9)前記複数のクロック出力素子のそれぞれは、前記分配クロック信号を反転した信号を前記出力クロック信号として出力し、
前記クロック分配素子は、前記入力クロック信号を反転した信号を前記分配クロック信号として分配する
前記(1)から(8)のいずれかに記載の集積回路。
(10)前記複数のクロック出力素子のそれぞれは、
所定のイネーブル信号によりセットされ、前記入力クロック信号を反転した信号によりリセットされるラッチ回路と、
前記ラッチ回路の出力端子と前記入力クロック信号との論理積を出力するANDゲートとを備える
前記(1)から(8)のいずれかに記載の集積回路。
(11)前記クロック分配素子の出力端子は、前記複数のクロック出力素子の全てを含む多角形の重心に配置される
前記(1)から(10)のいずれかに記載の集積回路。
(1)分配された分配クロック信号に基づいて出力クロック信号を生成して回路に出力する複数のクロック出力素子と、
入力された入力クロック信号に基づいて前記出力クロック信号より電流値の大きなクロック信号を生成して前記複数のクロック出力素子に前記分配クロック信号として分配するクロック分配素子と
を具備する集積回路。
(2)前記クロック出力素子は、所定サイズの通常トランジスタを備え、
前記クロック出力素子は、前記所定サイズより大きなサイズの大型トランジスタを備え、
前記通常トランジスタは、前記出力クロック信号を生成し、
前記大型トランジスタは、前記分配クロック信号を生成する
前記(1)記載の集積回路。
(3)前記クロック分配素子の出力端子に接続された本線と、
前記本線に接続された支線とをさらに具備し、
前記複数のクロック出力素子は、前記支線に挿入され、
前記本線の幅は、前記支線より広い
前記(1)または(2)記載の集積回路。
(4)積層された2つの基板をさらに具備し、
前記複数のクロック出力素子は、前記2つの基板の一方に配置され、
前記クロック分配素子は、前記2つの基板の他方に配置される
前記(3)記載の集積回路。
(5)前記2つの基板の一方には、所定の電源電位の電源線と前記所定の電源電位より低い電位のグランド線と前記本線と前記支線とがさらに配置され、
前記本線は、前記電源線と前記グランド線との間に配置される
前記(4)記載の集積回路。
(6)前記本線は、前記クロック分配素子の入力端子から出力端子への方向に垂直な方向に沿って配線される
前記(4)または(5)記載の集積回路。
(7)前記本線は、前記クロック分配素子の入力端子から出力端子への方向に沿って配線される
前記(4)または(5)記載の集積回路。
(8)前記クロック分配素子と前記複数のクロック出力素子とに接続されたクロック信号線をさらに具備し、
前記クロック信号線は、二次元格子状に配線される
前記(1)記載の集積回路。
(9)前記複数のクロック出力素子のそれぞれは、前記分配クロック信号を反転した信号を前記出力クロック信号として出力し、
前記クロック分配素子は、前記入力クロック信号を反転した信号を前記分配クロック信号として分配する
前記(1)から(8)のいずれかに記載の集積回路。
(10)前記複数のクロック出力素子のそれぞれは、
所定のイネーブル信号によりセットされ、前記入力クロック信号を反転した信号によりリセットされるラッチ回路と、
前記ラッチ回路の出力端子と前記入力クロック信号との論理積を出力するANDゲートとを備える
前記(1)から(8)のいずれかに記載の集積回路。
(11)前記クロック分配素子の出力端子は、前記複数のクロック出力素子の全てを含む多角形の重心に配置される
前記(1)から(10)のいずれかに記載の集積回路。
10 集積回路
100 クロック生成部
200 クロック分配回路
210 下側基板
211、221 通常バッファ
212 大型バッファ
213 Pトランジスタ
214 N型トランジスタ
215、222 通常インバータ
216 大型インバータ
220 上側基板
240 ICGセル
241 ラッチ回路
242 AND(論理積)ゲート
300 同期動作回路
310 フリップフロップ
100 クロック生成部
200 クロック分配回路
210 下側基板
211、221 通常バッファ
212 大型バッファ
213 Pトランジスタ
214 N型トランジスタ
215、222 通常インバータ
216 大型インバータ
220 上側基板
240 ICGセル
241 ラッチ回路
242 AND(論理積)ゲート
300 同期動作回路
310 フリップフロップ
Claims (11)
- 分配された分配クロック信号に基づいて出力クロック信号を生成して回路に出力する複数のクロック出力素子と、
入力された入力クロック信号に基づいて前記出力クロック信号より電流値の大きなクロック信号を生成して前記複数のクロック出力素子に前記分配クロック信号として分配するクロック分配素子と
を具備する集積回路。 - 前記クロック出力素子は、所定サイズの通常トランジスタを備え、
前記クロック出力素子は、前記所定サイズより大きなサイズの大型トランジスタを備え、
前記通常トランジスタは、前記出力クロック信号を生成し、
前記大型トランジスタは、前記分配クロック信号を生成する
請求項1記載の集積回路。 - 前記クロック分配素子の出力端子に接続された本線と、
前記本線に接続された支線とをさらに具備し、
前記複数のクロック出力素子は、前記支線に挿入され、
前記本線の幅は、前記支線より広い
請求項1記載の集積回路。 - 積層された2つの基板をさらに具備し、
前記複数のクロック出力素子は、前記2つの基板の一方に配置され、
前記クロック分配素子は、前記2つの基板の他方に配置される
請求項3記載の集積回路。 - 前記2つの基板の一方には、所定の電源電位の電源線と前記所定の電源電位より低い電位のグランド線と前記本線と前記支線とがさらに配置され、
前記本線は、前記電源線と前記グランド線との間に配置される
請求項4記載の集積回路。 - 前記本線は、前記クロック分配素子の入力端子から出力端子への方向に垂直な方向に沿って配線される
請求項4記載の集積回路。 - 前記本線は、前記クロック分配素子の入力端子から出力端子への方向に沿って配線される
請求項4記載の集積回路。 - 前記クロック分配素子と前記複数のクロック出力素子とに接続されたクロック信号線をさらに具備し、
前記クロック信号線は、二次元格子状に配線される
請求項1記載の集積回路。 - 前記複数のクロック出力素子のそれぞれは、前記分配クロック信号を反転した信号を前記出力クロック信号として出力し、
前記クロック分配素子は、前記入力クロック信号を反転した信号を前記分配クロック信号として分配する
請求項1記載の集積回路。 - 前記複数のクロック出力素子のそれぞれは、
所定のイネーブル信号によりセットされ、前記入力クロック信号を反転した信号によりリセットされるラッチ回路と、
前記ラッチ回路の出力端子と前記入力クロック信号との論理積を出力するANDゲートとを備える
請求項1記載の集積回路。 - 前記クロック分配素子の出力端子は、前記複数のクロック出力素子の全てを含む多角形の重心に配置される
請求項1記載の集積回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017561524A JPWO2017122417A1 (ja) | 2016-01-12 | 2016-11-09 | 集積回路 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016003542 | 2016-01-12 | ||
JP2016-003542 | 2016-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017122417A1 true WO2017122417A1 (ja) | 2017-07-20 |
Family
ID=59311160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/083258 WO2017122417A1 (ja) | 2016-01-12 | 2016-11-09 | 集積回路 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2017122417A1 (ja) |
WO (1) | WO2017122417A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020031743A1 (ja) * | 2018-08-09 | 2020-02-13 | ソニーセミコンダクタソリューションズ株式会社 | 半導体集積回路および電子機器 |
US20240007080A1 (en) * | 2020-03-16 | 2024-01-04 | Seiko Epson Corporation | Real-Time Clock Device |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0764667A (ja) * | 1993-08-23 | 1995-03-10 | Hitachi Ltd | 半導体装置およびクロック信号供給方法 |
JPH0944267A (ja) * | 1995-07-26 | 1997-02-14 | Mitsubishi Electric Corp | クロック分配回路 |
JPH10303710A (ja) * | 1997-02-27 | 1998-11-13 | Kawasaki Steel Corp | 半導体集積回路 |
JP2001308189A (ja) * | 2000-04-26 | 2001-11-02 | Nec Corp | 半導体集積回路装置及びクロック配線方法並びに記録媒体 |
JP2002237521A (ja) * | 2001-02-08 | 2002-08-23 | Matsushita Electric Ind Co Ltd | 半導体装置のクロックスキュー調整方法 |
JP2003092352A (ja) * | 2001-09-18 | 2003-03-28 | Nec Corp | 半導体集積回路装置のクロック信号分配回路 |
JP2006128339A (ja) * | 2004-10-28 | 2006-05-18 | Fujitsu Ltd | マルチチップ・パッケージおよびicチップ |
JP2007027841A (ja) * | 2005-07-12 | 2007-02-01 | Nec Electronics Corp | 半導体集積回路の設計装置と方法並びにプログラム |
US20090020863A1 (en) * | 2007-07-16 | 2009-01-22 | Samsung Electronics Co., Ltd. | Stacked semiconductor devices and signal distribution methods thereof |
JP2009053830A (ja) * | 2007-08-24 | 2009-03-12 | Ricoh Co Ltd | 自動配置配線方法およびレイアウト装置 |
JP2010258152A (ja) * | 2009-04-23 | 2010-11-11 | Elpida Memory Inc | スタンダードセルおよび半導体装置 |
JP2013045459A (ja) * | 2011-08-22 | 2013-03-04 | Fujitsu Ltd | クロック・ネットワーク・メタ合成のためのシステムおよび方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63151060A (ja) * | 1986-12-16 | 1988-06-23 | Matsushita Electric Ind Co Ltd | Cmos回路のマスク設計方法 |
JPH041993A (ja) * | 1990-01-19 | 1992-01-07 | Fujitsu Ltd | コンパイルドセルのバッファ回路配置方法 |
JP4829645B2 (ja) * | 2006-03-08 | 2011-12-07 | パナソニック株式会社 | 半導体集積回路装置 |
-
2016
- 2016-11-09 JP JP2017561524A patent/JPWO2017122417A1/ja active Pending
- 2016-11-09 WO PCT/JP2016/083258 patent/WO2017122417A1/ja active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0764667A (ja) * | 1993-08-23 | 1995-03-10 | Hitachi Ltd | 半導体装置およびクロック信号供給方法 |
JPH0944267A (ja) * | 1995-07-26 | 1997-02-14 | Mitsubishi Electric Corp | クロック分配回路 |
JPH10303710A (ja) * | 1997-02-27 | 1998-11-13 | Kawasaki Steel Corp | 半導体集積回路 |
JP2001308189A (ja) * | 2000-04-26 | 2001-11-02 | Nec Corp | 半導体集積回路装置及びクロック配線方法並びに記録媒体 |
JP2002237521A (ja) * | 2001-02-08 | 2002-08-23 | Matsushita Electric Ind Co Ltd | 半導体装置のクロックスキュー調整方法 |
JP2003092352A (ja) * | 2001-09-18 | 2003-03-28 | Nec Corp | 半導体集積回路装置のクロック信号分配回路 |
JP2006128339A (ja) * | 2004-10-28 | 2006-05-18 | Fujitsu Ltd | マルチチップ・パッケージおよびicチップ |
JP2007027841A (ja) * | 2005-07-12 | 2007-02-01 | Nec Electronics Corp | 半導体集積回路の設計装置と方法並びにプログラム |
US20090020863A1 (en) * | 2007-07-16 | 2009-01-22 | Samsung Electronics Co., Ltd. | Stacked semiconductor devices and signal distribution methods thereof |
JP2009053830A (ja) * | 2007-08-24 | 2009-03-12 | Ricoh Co Ltd | 自動配置配線方法およびレイアウト装置 |
JP2010258152A (ja) * | 2009-04-23 | 2010-11-11 | Elpida Memory Inc | スタンダードセルおよび半導体装置 |
JP2013045459A (ja) * | 2011-08-22 | 2013-03-04 | Fujitsu Ltd | クロック・ネットワーク・メタ合成のためのシステムおよび方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020031743A1 (ja) * | 2018-08-09 | 2020-02-13 | ソニーセミコンダクタソリューションズ株式会社 | 半導体集積回路および電子機器 |
US20240007080A1 (en) * | 2020-03-16 | 2024-01-04 | Seiko Epson Corporation | Real-Time Clock Device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017122417A1 (ja) | 2018-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10901453B2 (en) | Semiconductor integrated circuit, and method for supplying clock signals in semiconductor integrated circuit | |
US6378080B1 (en) | Clock distribution circuit | |
JP2012118976A (ja) | 集積回路、クロックゲート回路、および方法 | |
JP2010041156A (ja) | 半導体集積回路 | |
US7492205B2 (en) | Clock generator | |
JP5704795B2 (ja) | クロック分配システム、分配方法、それらを利用した集積回路 | |
US20210028162A1 (en) | Semiconductor integrated circuit device | |
JP6881514B2 (ja) | 半導体集積回路及び半導体集積回路のクロック供給方法 | |
JPH1127113A (ja) | 半導体集積回路 | |
US11855647B2 (en) | Low power clock network | |
WO2017122417A1 (ja) | 集積回路 | |
US8930742B2 (en) | Clock signals for dynamic reconfiguration of communication link bundles | |
JP2004173168A (ja) | マルチプレクサ回路 | |
JP7218289B2 (ja) | クロックイネーブラ回路 | |
US7126405B2 (en) | Method and apparatus for a distributed clock generator | |
US9118314B2 (en) | Adaptive body bias circuit and semiconductor integrated circuit including the same | |
US10141920B2 (en) | Clock signal controller | |
US8166438B2 (en) | Low RC local clock distribution | |
Nishanth et al. | Design of low power sequential circuit using Clocked Pair Shared Flip flop | |
Esmaeili et al. | Integrated power and clock distribution network | |
JP2006339521A (ja) | 半導体集積回路 | |
JP3562226B2 (ja) | 半導体集積回路装置 | |
Kwan et al. | Design of high-performance power-aware asynchronous pipelined circuits in MOS current-mode logic | |
US9590599B1 (en) | Clock distribution for flip-flop circuits | |
US6407574B1 (en) | Method and system for utilizing hostile-switching neighbors to improve interconnect speed for high performance processors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16885020 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017561524 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16885020 Country of ref document: EP Kind code of ref document: A1 |