JP6881514B2 - 半導体集積回路及び半導体集積回路のクロック供給方法 - Google Patents

半導体集積回路及び半導体集積回路のクロック供給方法 Download PDF

Info

Publication number
JP6881514B2
JP6881514B2 JP2019128917A JP2019128917A JP6881514B2 JP 6881514 B2 JP6881514 B2 JP 6881514B2 JP 2019128917 A JP2019128917 A JP 2019128917A JP 2019128917 A JP2019128917 A JP 2019128917A JP 6881514 B2 JP6881514 B2 JP 6881514B2
Authority
JP
Japan
Prior art keywords
circuit
clock
semiconductor integrated
inverters
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019128917A
Other languages
English (en)
Other versions
JP2019215881A (ja
Inventor
翔 亀沢
翔 亀沢
管野 透
透 管野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of JP2019215881A publication Critical patent/JP2019215881A/ja
Application granted granted Critical
Publication of JP6881514B2 publication Critical patent/JP6881514B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Manipulation Of Pulses (AREA)

Description

本発明は半導体集積回路及び半導体集積回路のクロック供給方法に関する。
近年、半導体集積回路の微細化、高集積化に伴い、クロック配線は細く、間隔は狭くなっている、そのため、配線抵抗や配線容量の増大による、クロック信号の配線遅延による到達タイミングのずれ(クロックスキュー)や信号電圧の減衰、立ち上がり立ち下がり特性の急峻さの悪化といった問題が発生している。
一般的に、半導体集積回路の内部動作はクロック信号に同期して行われるため、上記の問題が許容値を超えて発生した場合、誤った信号を取り込んだり、出力にひげ状のノイズが発生したりと、回路を誤動作させる可能性がある。
そこで、低クロックスキュー化の方法として、クロック信号の入力端子から末端の素子まで、複数のバッファ回路を設けて、クロック供給線をツリー状に接続する方法、つまり、クロック配線を2本、4本、8本、…と次第に分配させ、かつ各段にバッファ回路の負荷容量を等しくするようにクロック信号分配系を構築する技術が考えられ既に知られている。
しかし、今までのクロック配線をツリー状に分配する方法は、各ノード間の配線を等長かつ等容量となるように設計する必要があるため、回路は複雑となり、設計は困難となる。特に、半導体チップの縦横比が数十倍ともなることが一般的である固体撮像素子(リニアセンサなど)においては、面積などによる設計の制約から多段のバッファ回路を配置することが難しい。また、配線長や負荷容量を揃えた配線設計は困難であり、クロック信号の配線遅延や波形の乱れを抑制できず、高速動作が難しいという問題があった。
そこで、特許文献1では、ノイズの発生を低減させる目的で、横長形状の固体撮像素子において、水平転送バスラインが交差する部分の信号位相が互いに反転する第1のカラムAD回路と第2のカラムAD回路とからなり、当該第1のカラムAD回路51Aと第2のカラムAD回路とを所定数ごとに交互に配置した構成が開示されている。
別の例として、特許文献2の構成を図10A、図10Bに示す。図10Aは撮像素子の構成を示すブロック図で、図10Bは撮像部・A/D変換部の関係を示す図を示す。独立した駆動信号(sig_1〜sig_2、sig_3〜sig_4)は図中左側に配置される駆動制御部により生成され、画素部やA/D変換器へ供給される。図10Bを参照して、駆動制御部からの信号配線は横一直線に延伸し、画素部やA/D変換器に順次配線が接続される構成となっている。
特許文献1の構成では、交差する信号配線間のクロストークを低減することは可能であるが、信号配線の配線抵抗や配線容量を低減し、配線遅延や波形の乱れを抑制する構成にはなっていない。
特許文献2の構成では、駆動制御部から近傍の画素部やA/D変換器に供給される制御信号と、遠方の画素部やA/D変換器に供給される制御信号との間に、到達時間のズレが生じたり、信号電圧の減衰が生じたりしてしまう。到達時間のズレや、信号電圧の減衰が大きくなると、高速動作させた際に、処理タイミングのミスマッチにより後段のデジタル処理部で正常に処理が行われないという問題が生じるおそれがあった。
そこで、本発明は上記事情に鑑み、クロック信号の配線遅延や波形の乱れを抑制し、適切な高速動作を可能にする、半導体集積回路の提供を目的とする。
上記課題を解決するため、本発明の一態様では、1対の長辺と1対の短辺とを備えた長方形形状の半導体基板上に形成された半導体集積回路は、取得する制御基準クロック信号に基づいて複数の制御クロック信号を生成する同一機能の複数のタイミング生成回路と、前記複数のタイミング生成回路と同数に、互いに面積が略等しい回路ブロックに分割される並列処理回路部と、を備えており、
各回路ブロックには、対応する各タイミング生成回路から、複数の制御クロック信号が入力され、前記各回路ブロックでは、入力された複数の制御クロック信号に夫々対応する、前記複数の制御クロック信号と同数の、複数のクロック分配網が形成され、前記並列処理回路部は各クロック分配網毎に並列に処理可能であり、
前記各クロック分配網は、各制御クロック信号が入力される、入力バッファ回路と、前記入力バッファ回路と直列に接続され、前記回路ブロックの半導体基板の長手方向に対して中央付近に配置されるクロックバッファ回路と、分岐しているクロック配線によって前記クロックバッファ回路と接続され、前記クロックバッファ回路から出力される制御出力クロック信号が分配されて供給される複数の末端素子と、を備え
前記クロックバッファ回路は、並列接続された複数のインバータ又は複数のトランスファーゲートによって構成された段が、2段以上直列接続された構成であり、
後段を構成する複数のインバータ又はトランスファーゲートの並列接続される個数は、前段を構成する複数のインバータ又はトランスファーゲートの並列接続される個数よりも多いことを特徴とする。
一態様によれば、半導体集積回路において、クロック信号の配線遅延や波形の乱れを抑制し、高速動作を可能にする。
本発明の一実施形態の半導体集積回路において、2つのタイミング生成回路を左右に配置した場合の構成例。 本発明の他の実施形態の半導体集積回路において、4つのタイミング生成回路を下部に配置した場合の構成例。 本発明の並列処理回路部に含まれるクロックバッファ回路をインバータの2段構成とした例。 本発明の並列処理回路部に含まれるクロックバッファ回路を、2出力構成とした例。 本発明の並列処理回路部に含まれるクロックバッファ回路を非反転信号と反転信号を伝達するように構成した例。 図3Aのクロックバッファ回路の一部分であってインバータの接続構成を示す回路図。 図5Aのインバータをトランジスタで構成するレイアウト及び負荷の位置関係を示す図。 タイミング生成回路の入力段と出力段に位相調整回路を配置する例を示す図。 図6のタイミング生成回路の入力段に設けられる位相調整回路の構成例。 図6のタイミング生成回路の出力段に設けられる位相調整回路の構成例。 タイミング生成回路の入力段に180度位相調整用の位相調整回路を配置する例を示す図。 図8Aのタイミング生成回路の入力段に設けられる、位相調整回路の構成例。 タイミング生成回路の出力段に180度位相調整用の位相調整回路を配置する例を示す図。 図9Aのタイミング生成回路の出力段に設けられる、位相調整回路の構成例。 従来例における半導体集積回路。 図10Aの半導体集積回路の拡大図。
以下、図面を参照して本発明を実施するための形態について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付し、重複する説明を省略する。
<半導体集積回路の構成例>
図1は、本発明の一実施形態の半導体集積回路において、2個のタイミング生成回路を左右に配置した場合の構成例を示す。本発明の半導体集積回路1は、1対の長辺と1対の短辺とを備えた長方形形状の半導体基板上に形成されている。本発明の半導体集積回路が形成された半導体基板は、例えば、1次元イメージセンサであるリニアセンサ(リニアイメージセンサ、ラインイメージセンサともいう)等の固体撮像素子等に適用される。
半導体集積回路1は、並列処理回路部10と、タイミング生成回路31,32とを備える。半導体集積回路1には、バッファ40を介して、クロック生成回路20が接続されている。図1では、バッファ40を1個設ける例を示しているが、バッファ40は複数個直列に配置してもよい。
クロック生成回路20は、外部入力されたクロック、例えば、水晶発振子を用いた水晶発振回路などで発生したクロックを基準として所定周波数の制御基準クロック信号RCKを生成する。クロック生成回路20は、制御基準クロック信号RCKを取得して、半導体集積回路1のタイミング生成回路31,32へ出力する制御基準クロック信号RCKの周波数を任意に調整することができる。クロック生成回路20は、生成した所定周波数の制御基準クロック信号RCKを、バッファ40を介してタイミング生成回路31,32へ出力する。
ここで、クロック生成回路20は、任意の周波数の制御基準クロック信号RCKを複数のタイミング生成回路31,32にそれぞれ出力可能である。必要に応じて周波数を可変とすることで、高速動作が不要なときには周波数を落とし、消費電力を削減できる。
なお、クロック生成回路20及びバッファ40は半導体集積回路1の内部に設けられていてもよい。
半導体集積回路1において、タイミング生成回路(タイミングジェネレータ)31,32は、同一機能を備えており、クロック生成回路20から出力された制御基準クロック信号RCKに基づいて複数の制御クロック信号CK1〜CKnを生成する。詳しくは、2つのタイミング生成回路31,32はクロック生成回路20から出力された任意の周波数の制御基準クロックRCKに同期して、複数の制御クロック信号CK1〜CKnを生成する。
並列処理回路部10には、同一機能を有する複数の回路ブロック10a,10bが並列に配置され、複数の入力信号である制御クロック信号CK1〜CKnに対して並列に処理を行うことができる。各回路ブロック10a,10bは、並列処理回路部10において、互いに面積がほぼ等しくなるように分割されている。
各回路ブロック10a,10bごとに各タイミング生成回路31,32から供給される複数の制御クロック信号CK1〜CKnごとにn個のクロック分配網11〜11,12〜12が形成されている。
回路ブロック10aは、n個の入力バッファ回路41(41〜41)と、n個のクロックバッファ回路51(51〜51)と、n×出力数pの末端素子61(n×61〜61)とが設けられ、それらは、クロック配線71(71〜71)で接続されている。
同様に、回路ブロック10bは、n個の入力バッファ回路42(42〜42)と、n個のクロックバッファ回路52(52〜52)と、n×出力数pの末端素子62(n×62〜62)とが設けられ、それらは、クロック配線72(72〜72)で接続されている。
同一の機能を有する回路ブロック10a,10bにおいて、n×2個のクロック分配網11〜11,12〜12では同一数の、同一の構成要素が同様に配置されている繰り返し単位となる。
並列処理回路部10を構成する同一機能を有する回路(クロック分配網を含む回路ブロック10a,10b)は、アナログ信号処理、アナログ/デジタル(A/D)変換、およびデジタル信号処理のうち少なくとも1つを実行する。
回路ブロック10aと10bの各クロック分配網11,12には、タイミング生成回路31,32から出力された制御クロック信号CK1〜CKnがそれぞれ独立に供給される。なお、回路ブロック10aと10bのうち対応するクロック分配網11、12には、タイミング生成回路31,32から同一のタイミングで同一の制御クロック信号(例えばCKx)が供給される。
各クロック分配網11,12において、入力バッファ回路41,42が、各回路ブロック10a,10bの端部に配置され、複数の制御クロック信号CK1〜CKnが直接伝達されている。
詳しくは、入力バッファ回路41,42は、クロック配線71,72での信号の減衰を考慮して、末端素子61,62の閾値に適した論理値になるように、入力された各制御クロック信号CK1〜CKnの波形を適宜、増幅、整形する。
末端素子61,62は、例えば、スイッチであり、あるいは、FF(フリップフロップ)やインバータ、NAND、NOR回路などの論理回路が接続されてもよい。
クロックバッファ回路51,52は、各入力バッファ回路41,42と夫々直列に接続されている。クロックバッファ回路51,52は、各回路ブロック10a,10bの半導体基板の長手方向に対し中央付近に配置されている。
クロックバッファ回路51,52は、信号レベルの減衰を防ぐために設けられている。詳しくは、クロックバッファ回路51,52は、クロック配線71,72が長い部分である、例えば図1の端部にある末端素子61、61、62、62でも、クロック配線71,72が短い部分である中央付近にある末端素子61、62からの遅延を防ぐように、入力バッファ回路41,42で整えられた信号を調整する。即ち、バッファ回路51,52は、左右方向に広がって配置される複数の末端素子61〜61、62〜62間の、制御出力クロック信号CKxOUTの信号伝達での、例えば、信号の立ち上がり、立ち下がりのなまり等のタイミング誤差の発生を防ぐ。
複数の(所定の出力数pの)末端素子61〜61、62〜62には、クロックバッファ回路51,52から出力される制御出力クロック信号CKxOUTが供給され、出力先へと出力する。
クロック配線71,72は、各クロック分配網11,12内において、タイミング生成回路31,32からの出力⇒各入力バッファ回路41,42⇒各クロックバッファ回路51,52⇒分岐⇒複数の末端素子61〜61、62〜62を接続する配線である。
詳しくは、複数の制御クロック信号CK1〜CKnをそれぞれ伝達するクロック配線71、72は、タイミング生成回路31,32の出力端子と、各回路ブロック10a,10bの端部に配置される入力バッファ回路41,42の入力端子とを接続している。クロック配線71,72は、各入力バッファ回路41,42の出力端子と、各回路ブロックの半導体基板の長手方向に対し中央付近に配置されるクロックバッファ回路51,52の入力端子とを接続する。そして、クロック配線71,72はクロックバッファ回路51,52の出力端子から複数の末端素子61〜61、62〜62へ、制御出力クロック信号CKxOUTを分配するように接続している。
クロックバッファ回路51,52の出力端子に接続され、制御出力クロック信号CKxOUTを分配するクロック配線71,72は、並列処理回路部10を構成する同一機能を有する回路にそれぞれ含まれる末端素子61〜61、62〜62の数だけ分岐し、複数の末端素子61〜61、62〜62にそれぞれ接続される。
末端素子61〜61、62〜62が、スイッチ(負荷)である場合、例えば、トランジスタのゲート(容量負荷)で構成されうる。上述のように、各クロック配線71,72が接続されることで、クロック分配網11x,12x内では、タイミング生成回路31,32で生成された制御クロック信号CKxがバッファ(41x、42x),(51x、52x)で調整され、制御出力クロック信号CKxOUTに基づいて、複数の末端素子(スイッチ)61〜61、62〜62は同時にオンオフする。
上記構成では、長方形形状の半導体基板上に形成される半導体集積回路において、制御基準クロック信号RCKに同期して駆動タイミングを決定する複数の制御クロック信号CK1〜CKnを生成するタイミング生成回路31,32を半導体チップ上に複数設けている。例えば、図1の例では、半導体基板長手方向の左右の端部2ヶ所に配置したとすると、複数の制御クロック信号CK1〜CKnは2つのタイミング生成回路31,32から基板中央に向かってそれぞれ左右から供給することが可能である。
このような構成にすることにより、図10A、図10Bのように、タイミング生成回路を一端に1つだけ配置する場合と比較し、信号配線の配線長を短くできるため、配線抵抗、配線容量も低減できる。また、同じ数の末端素子を配置する場合であっても、クロック配線末端に接続される素子数を少なくできるため、駆動するゲート容量も各タイミング生成回路に分散でき、負荷を低減できる。
上記により、タイミング生成回路の複数設置により、配線を短くできるので、配線遅延や信号電圧の減衰、立ち上がり立ち下がり特性の急峻さの悪化(なまり)などの原因となる、配線抵抗、配線容量などを低減できる。そのため、結果として、波形の乱れやクロック信号の配線遅延による到達タイミングのずれ(クロックスキュー)を抑制でき、クロック信号の周波数を高く(早く)し、安定した高速動作の実施を可能にできる。
<半導体集積回路の別の構成例>
図2は、本発明の半導体集積回路において、4個のタイミング生成回路を下部に設けた場合の構成例を示す。図2の構成例では、半導体集積回路2において4つのタイミング生成回路31〜34を設けており、並列処理回路部10−1において、タイミング生成回路31〜34に対応して4つの回路ブロックを有する点が図1の構成とは異なる。
各回路ブロック10a〜10dは、並列処理回路部10−1において、互いに面積がほぼ等しくなるように分割されている。
回路ブロック10a,10b,10c,10dの各クロック分配網11〜11,121〜12,13〜13,14〜14には、タイミング生成回路31,32,33,34から出力された制御クロック信号CK1〜CKnがそれぞれ独立に供給される。
クロック分配網11,12の内部構成は、上記図1と同様である。クロック分配網13は、入力バッファ回路43、クロックバッファ回路53、複数の末端素子63〜63を備え、それらがクロック配線73で接続されている。クロック分配網14は、入力バッファ回路44、クロックバッファ回路54、複数の末端素子64〜64を備え、それらがクロック配線74で接続されている。
このような構成では、4個のタイミング生成回路31〜34が設けられているため、タイミング生成回路を一端に1つだけ配置する構成と比較して、信号配線の配線長は短くできるため、配線抵抗、配線容量も低減できる。また、クロック配線末端に接続される素子数を少なくできるため、駆動するゲート容量も各タイミング生成回路に分散でき、負荷を低減できる。
上記においても、配線遅延や信号電圧の減衰、立ち上がり立ち下がり特性の急峻さの悪化などの原因となる、配線抵抗、配線容量などを低減できる。
なお、図2の構成例では、タイミング生成回路31〜34を全て並列処理回路部10‐1の下部に配置しているが、半導体集積回路2において、タイミング生成回路31〜34は上下左右いずれに配置してもよい。
<並列処理回路部のクロックバッファ回路の概略構成例1>
図3Aは、本発明の並列処理回路部10(10−1)に含まれるクロックバッファ回路51,52をインバータの2段構成とした例を示す。下記、一例として、図3A〜図5Bでは、回路ブロック10aのうちの1つのクロック分配網11を用いて説明するが、回路ブロック10aの他のクロック分配網11〜11、及び回路ブロック10b,10c,10dでの各クロック分配網12,13,14内も同様の構成を備えている。
図3Aに示す例では、クロックバッファ回路51α(52α)は、前段を構成する第1段インバータ回路201と、後段を構成する第2段インバータ回路202とを含む2段のインバータ210で構成されている。それぞれのインバータ回路201,202は、複数のインバータで構成されている。
第1段インバータ回路201は入力バッファ回路41の出力端子に接続されるクロック配線にN個のインバータ210a〜210aが並列接続されている。
第2段インバータ回路202は、前段を構成する複数のインバータである第1段インバータ回路201の出力端子にM個のインバータ210b〜210bが並列接続されている。
クロックバッファ回路51αの出力はクロック配線71により複数の末端素子61〜61に接続される、即ち、第2段インバータ回路202からの出力信号は、複数の末端素子61〜61へ入力される。
インバータの個数を示す符号N,Mは、n個の制御クロック信号CK1〜CKnの個数nとは別に設定されるものとする。インバータが並列接続される個数に関して、「第1段インバータ回路201におけるインバータ数N<第2段インバータ回路202におけるインバータ数M」の関係が成立する。即ち後段のインバータである第2段インバータ回路202の駆動能力は、前段の第1段インバータ回路201よりも大きくなるように設計される。
NおよびMの数値は制御クロック信号CK1〜CKnの周波数や、末端素子61〜61の負荷(閾値、ゲート容量)によって決定され、周波数が高く、負荷が大きいほどNおよびMは大きな値に設定される。
<並列処理回路部のクロックバッファ回路の概略構成例2>
図3Bは、本発明の並列処理回路部10に含まれるクロックバッファ回路を、2出力構成とした例を示す。
この例では、図3Bに示すように、クロックバッファ回路51βは、2つの出力を有しするデュアルアウトプット構成である。本構成において、N個のインバータ210a〜210aで構成される第1段インバータ回路203は第1段インバータ回路201と同じ構成であり、M個のインバータ210b〜210bで構成される、第2段インバータ回路204は、第2段インバータ回路202と同じ構成である。
クロックバッファ回路51βを複数出力である構成にすることで、負荷駆動力を向上させ、構成要素であるインバータ210を分散配置させることができる。なお、上記は、2出力構成について説明したが、さらに3出力以上の多出力の構成としてもよい。
<並列処理回路部のクロックバッファ回路の概略構成例3>
図4は、本発明の並列処理回路部に含まれるクロックバッファ回路を非反転信号と反転信号を伝達するように構成した例を示す。
制御クロック信号CLKを反転させる必要がある場合、例えば、図4に示すように、クロックバッファ回路51γで、第1段のインバータ回路201の一方をトランスファーゲート回路301に置き換えれば良い。その場合も同様に、第1段のトランスファーゲート回路301は入力バッファ回路41の出力端子に接続されるクロック配線にN個のトランスファーゲート310a〜310aが並列接続される。
トランスファーゲートを設けることで、信号を反転させずに、複数の末端素子65〜65と接続される配線を通る、第1段インバータ回路201で発生する信号の遅延を揃えるようにする。
第2段インバータ回路202は、図3Bと同様に第1段のトランスファーゲート回路301にM個のインバータ210b〜210bが並列接続される構成となり、N<Mの関係を有す。
クロックバッファ回路51γの出力はクロック配線71,81により、複数の末端素子61〜61,65〜65に夫々接続される。末端素子61〜61は、例えば、CMOSスイッチのPchトランジスタのゲートであり、末端素子65〜65は、例えば、Nchトランジスタのゲートである。
もちろん、制御出力クロック信号CKxOUTを反転した反転制御出力クロック信号CKxOUTBのみを用いる回路構成であっても良いし、クロックバッファ回路の段数を2段に限定せず、3段以上の複数段にしても良い。
このように段数を増やす場合、後段の個数を増やすことでドライブ能力を強めることができる。
各段において、複数のインバータ210やトランスファーゲート310を並列接続してインバータ回路201やトランスファーゲート回路301を構成することによって、リニアセンサのように半導体基板が一方向に長いような長方形形状を持つ半導体回路に対して、面積効率の良いレイアウト設計が可能となる。
<クロックバッファ回路の回路詳細>
図5Aは、図3Aのクロックバッファ回路の一部分であってインバータの接続構成を示す回路図を示す。
図5Aは図3Aの回路の一部を切り出したものである。クロックバッファ回路51αの第1段インバータ回路201及び第2段インバータ回路202は、前述の通り、インバータ210を複数個並列に接続したものである。また、第1段インバータ回路201と第2段インバータ回路202はクロック配線91によって接続されている。
このように、複数のインバータを並列接続した構成により、面積効率の良いレイアウトが可能となる。
図5Bは、図5Aのインバータをトランジスタで構成するレイアウトの位置関係を示す。第1段インバータ回路201を構成するインバータ210aと、第2段インバータ回路202を構成するインバータ210bの内部構造と、レイアウト上の配置位置関係を示したものを図5Bに示す。図5Bではインバータ210aとインバータ210bが1つずつ交互に配置されているが、もちろん、2個以上を一組として交互に配置しても良い。
ここで、インバータ210aがN個、インバータ210bがM個であり、N<Mであるため、インバータ210aの一組の数:インバータ210bの一組の数=N:M(または、インバータ210aの一組の数:インバータ210bの一組の数≒N:M)になるように組を形成して、交互に配置してもよい。トランスファーゲートを用いる場合も同様である。
また、図5Bに示すように、クロックバッファ回路51αを構成するインバータ回路(複数のインバータ)201(202)の、各インバータ210a,210b(インバータのセル)は、Pchトランジスタ211及びNchトランジスタ212によって構成されている。ここで、インバータ回路201(又は202)内で含まれる、Pchトランジスタ211のサイズ及び形状を同一とし、同様にNchトランジスタ212のサイズ及び形状を同一とする。この構成により、さらに面積効率の良いレイアウトが可能となる。
図5Bでは、各インバータで構成されたクロックバッファ回路51αに負荷である末端素子61、61が接続される例を示している。図5Bに示すように、各末端素子61、61に対して、2つのインバータ210a,210bが、夫々対応付けられている。
このようなクロックバッファ51αでは、横方向に空間的に広がって分散配置される複数の末端素子61〜61の夫々に対して、夫々近接配置されたインバータ210a,210bを用いて、入力信号を整えているため、複数の末端素子61〜61間の動作のタイミングを揃えることができる。これにより、クロックバッファ51αから出力される制御出力クロック信号CKxOUTに基づいて、タイミングがずれることなく、複数の末端素子(スイッチ)61〜61を一斉にオンオフさせることができる。
また、本発明の半導体集積回路1が固体撮像素子に適用される場合、固定撮像素子の構造上、横方向は余裕があるが、縦方向は省スペース化が求められる。クロックバッファ回路51αで図5Bのように配置することで、複数の末端素子(スイッチ)61〜61間のタイミング誤差を予防しながら、横方向が長く、縦方向が短い、固体撮像素子への適用に適したレイアウトが実現できる。
なお、図4に示すように、クロックバッファ回路51αにおいて、インバータ回路201の一部をトランスファーゲート回路301で置き換える場合も同様に、トランスファーゲート回路301の各トランスファーゲート310(トランスファーゲートのセル)は、Pchトランジスタ及びNchトランジスタによって構成されている。
この場合も、トランスファーゲート301内で含まれる、Pchトランジスタのサイズ及び形状を同一とし、Nchトランジスタのサイズ及び形状を同一とする構成により、さらに面積効率の良いレイアウトが可能となる。
図3、図4に示すような、複数のインバータ、または、トランスファーゲートを並列接続した構成を1段とし、その段を複数段、直列接続したものは、図5Bに示すように、1列の中にインバータを配置することができるため、面積効率の良いレイアウトが可能となる。
さらに、半導体基板の長手方向において、クロックバッファ回路51α内で、インバータ210又はトランスファーゲート310が配置される間隔をデザインルールの最小値とせず、十分に広げて配置すると好適である。詳しくは、図5Bの横方向の、各インバータ210a⇔210bの間隔を広げることで、各インバータ210aと210bとを近づけすぎることで発生する配線の迂回による配線長の延伸を抑制できる。
このように、インバータ210又はトランスファーゲート310を半導体基板の長手方向(横方向)において空間的に広げて配置することで、端部に配置される末端素子61〜61と、クロックバッファ回路51αの末端素子側(図5Bの210b)に配置されるインバータ又はトランスファーゲートとの距離がより近くなる。したがって、クロック信号の配線遅延や波形の乱れの抑制はさらに効果的になる。
なお、回路設計の際に、セル間隔の微調整が可能である。この構成により、回路の端部である末端素子61〜61とクロックバッファ回路51αが近づく。
一般的に、末端素子61,62と、クロックバッファ回路51を構成する各インバータとが離れることによって、クロックスキューが発生する。例えば、仮に図1の末端素子61の近くだけにクロックバッファ回路51が配置された場合、中央部の末端素子61に供給されるクロックと、両サイドの末端素子61,61に供給されるクロックに遅延差が発生する。それを避けるために、図5Bの構成では、クロックバッファ回路51αを構成するインバータ210を空間的に分散させ、末端素子61〜61の近くに夫々の末端素子側のインバータ210bを配置することにより、遅延差(クロックスキュー)を小さくすることができる。
さらに、使用するトランジスタを共通にすることで、波形の乱れや、半導体基板の長手方向の位置よるタイミングのずれ(クロックスキュー)をさらに抑制できる。そのため、この構成において、クロック信号の周波数を高くして高速動作をさせた際でも、異常の発生を抑制し、正常に処理を実施することが可能になる。
<位相調整回路例1>
図6は、タイミング生成回路31の入力段と出力段に位相調整回路を配置する例を示す。図6に示すように、位相調整回路33はタイミング生成回路31の入力段に配置され、位相調整回路34はタイミング生成回路31の出力段に配置されている。
図6では、入力段の位相調整回路33は遅延基準信号RCKDLYを生成して、遅延基準信号RCKDLYをタイミング生成回路31及び出力段の位相調整回路34に与える。タイミング生成回路31は遅延基準信号RCKDLYを制御のための基準クロックとして用いて、複数の制御クロック信号CK1〜CKnを生成する。
そして、出力段の位相調整回路34は、制御基準クロック信号RCKを基準として生成した複数の制御クロック信号CK1〜CKnを、遅延基準信号RCKDLYによってタイミング調整して、調整制御クロック信号CKxDLYを作成して、回路ブロック10aに与える。
図7Aに図6のタイミング生成回路31(32)の入力段に設けられる位相調整回路33の構成例を示す。図7Bに図6のタイミング生成回路31(32)の出力段に設けられる位相調整回路34の構成例を示す。
図7Aに示す入力段の位相調整回路33は、例えば、多段接続された遅延回路401,402,403,404と、多入力のマルチプレクサ410によって構成される。位相調整回路33に入力された制御基準クロック信号RCKは、多段遅延回路によって、制御基準クロック信号RCKに対して、位相が0〜1周期程度遅延した遅延基準信号RCKDLYとなり、この遅延基準信号RCKDLYが出力される。
なお、遅延時間をさらに細かく設定するときは、遅延回路を4段以上の段数にする。この場合、マルチプレクサも複数段の構成となる。また、図7Aの位相調整回路33を直列に接続した構成であっても良い。
図7Bに示す出力段の位相調整回路34は、例えば、マルチプレクサ411、クロックバッファ420、フリップフロップ(D−FF)430により構成される。図6に示すタイミング生成回路31,32では、信号毎に位相調整の切替えが可能である。
上記のように、タイミング生成回路31(32)には、それぞれ、制御基準クロック信号RCKの位相を任意に調整可能な位相調整回路33,34が接続されているため、位相調整された制御基準クロック信号(遅延基準信号RCKDLY)に基づいて、複数の制御クロック信号CK1〜CKnを生成することができる。
ここで、図6〜図7Bに示す構成例では、タイミング生成回路31,32の動作タイミングをクロック分配網11〜11,12〜12ごとに僅かにずらすことによって、消費する電流の集中を防ぐことができ、電流変動に起因するノイズを低減できる。
また、タイミング生成回路31(32)が生成する制御クロック信号CK1〜CKnの周波数を、必要に応じて細かく可変とすることで、高速動作が不要なときには周波数を落とし、消費電力を削減できる。
<位相調整回路例2>
図8Aにタイミング生成回路31の入力段に180度位相調整用の位相調整回路35を配置する例を示す。図8Bに、図8Aのタイミング生成回路31(32)の入力段に設けられる、位相調整回路35の構成例を示す。
図8A、図8Bに示す構成では、入力段の位相調整回路35は遅延基準信号RCKDLYを生成して、遅延基準信号RCKDLYをタイミング生成回路31に与える。図8Bに示す入力段の位相調整回路35は、インバータ440、マルチプレクサ411、及びクロックバッファ420を備えている。
位相調整回路35では、インバータ440により、クロック生成回路20から入力される制御基準クロック信号RCKと、位相調整回路35から出力される位相調整された信号である遅延基準信号RCKDLYとの位相差が180度になるように設定している。このように、動作タイミングをずらすことにより、電流の集中を抑制することができる。
図8Bに示す位相調整回路35では、遅延基準信号RCKDLYの、制御基準クロック信号RCKからの位相差を180度に設定するので、例えば、制御基準クロック信号RCKをインバータ440により反転させるだけでよいので、図6〜図7Bと比較して簡単な構成となる。この構成では、多段の遅延回路401〜404や多入力のマルチプレクサ410は必要なく、2入力のマルチプレクサ411、クロックバッファ420、及びインバータ440の構成で実現できる。即ち、図6、図7Bに示すような出力段側の位相調整回路34を設けなくてもよい。
ただし、本構成では、動作タイミングの調整は180度の位相反転に限られるので、微調整が要求される場合は、図6〜図7Bに示す構成の方が好適であるため、適宜、用途に応じて構成を選択する。
<位相調整回路例3>
図9Aに、タイミング生成回路31の出力段に180度位相調整用の位相調整回路36を配置する例を示す。図9Bに図9Aのタイミング生成回路31(32)の出力段に設けられる、位相調整回路36の構成例を示す。
図9Bに示す出力段の位相調整回路36は、制御基準クロック信号RCKを基準として生成した複数の制御クロック信号CK1〜CKnを、インバータ440によってタイミング調整し、タイミング調整した調整制御クロック信号CKxDLYを出力して、回路ブロック10aに与える。図9Bに示す位相調整回路36は、インバータ440、2つのフリップフロップ回路430,430、インバータ440、マルチプレクサ411、及びクロックバッファ420を備えている。
図9Bに示す出力段の位相調整回路36を配置する構成例では、図6と異なり、基準クロックとなる遅延基準信号RCKDLYを生成する回路は必要ない。詳しくは、図7Bに示す出力段の位相調整回路34に、インバータ440を追加挿入すれば位相を変更できるため、図6、図7Aに示すような入力段側の位相調整回路33を設けなくてもよい。したがって、図6と比較して、構成を簡素化することができる。
ただし、本構成では、動作タイミングの調整は180度の位相反転に限られるので、微調整が要求される場合は、図6〜図7Bに示す構成の方が好適であるため、適宜、用途に応じて構成を選択する。
図6〜図9Bに示した位相調整回路を用いて、動作タイミングを僅かにずらすことにより、電流の集中を抑制することができる。
詳しくは、電流の変動は主に、クロック信号の立ち上がり立ち下がり時に発生するため、そのタイミングをわざとずらすことで、電流変動を分散でき、電流変動による電源電圧またはGNDの電位変動に起因するノイズを低減できる。
以上、各実施形態に基づき本発明の説明を行ってきたが、上記実施形態に示した要件に本発明が限定されるものではない。これらの点に関しては、本発明の主旨をそこなわない範囲で変更することができ、その応用形態に応じて適切に定めることができる。
1,2 半導体集積回路
10,10−1 並列処理回路部
10a,10b, 回路ブロック
11〜11,12〜12,13〜13,14〜14 クロック分配網
20 クロック生成回路
201,203 第1段インバータ回路(前段を構成する複数のインバータ)
202,204 第2段インバータ回路(後段を構成する複数のインバータ)
210 インバータ
210a,210a〜210a 各インバータ(前段のインバータのセル)
210b,210b〜210b 各インバータ(後段のインバータのセル)
211 Pchトランジスタ
212 Nchトランジスタ
301 トランスファーゲート回路(複数のトランスファーゲート)
310 トランスファーゲート
310a〜310a 各トランスファーゲート
31,32 タイミング生成回路
33 位相調整回路(入力段側)
34 位相調整回路(出力段側)
35 位相調整回路(入力段、位相180度変換用)
36 位相調整回路(出力段、位相180度変換用)
41,42 入力バッファ回路
51(51α,51β,51γ),52 クロックバッファ回路
61〜61,62〜62,63〜63,64〜64 末端素子(Pchトランジスタのゲート)
65〜65 末端素子(Nchトランジスタのゲート)
71,72,73,74 クロック配線
RCK 制御基準クロック
CK1,CKx,CKn 制御クロック信号
CKxOUT 制御出力クロック信号
CKxOUTB 反転制御出力クロック信号
RCKDLY 遅延基準クロック信号
CKxDLY 遅延クロック信号
特開2009‐200546号公報 特開2015‐204471号公報

Claims (8)

  1. 1対の長辺と1対の短辺とを備えた長方形形状の半導体基板上に形成された半導体集積回路であって、
    取得する制御基準クロック信号に基づいて複数の制御クロック信号を生成する同一機能の複数のタイミング生成回路と、
    前記複数のタイミング生成回路と同数に、互いに面積が略等しい回路ブロックに分割される並列処理回路部と、を備えており、
    各回路ブロックには、対応する各タイミング生成回路から、複数の制御クロック信号が入力され、
    前記各回路ブロックでは、入力された複数の制御クロック信号に夫々対応する、前記複数の制御クロック信号と同数の、複数のクロック分配網が形成され、
    前記並列処理回路部は各クロック分配網毎に並列に処理可能であり、
    前記各クロック分配網は、
    各制御クロック信号が入力される、入力バッファ回路と、
    前記入力バッファ回路と直列に接続され、前記回路ブロックの半導体基板の長手方向に対して中央付近に配置されるクロックバッファ回路と、
    分岐しているクロック配線によって前記クロックバッファ回路と接続され、前記クロックバッファ回路から出力される制御出力クロック信号が分配されて供給される複数の末端素子と、を備え
    前記クロックバッファ回路は、並列接続された複数のインバータ又は複数のトランスファーゲートによって構成された段が、2段以上直列接続された構成であり、
    後段を構成する複数のインバータ又はトランスファーゲートの並列接続される個数は、前段を構成する複数のインバータ又はトランスファーゲートの並列接続される個数よりも多いことを特徴とする
    半導体集積回路。
  2. 前記クロックバッファ回路を構成する複数のインバータ又は複数のトランスファーゲートの、各インバータ又は各トランスファーゲートにはPchトランジスタ及びNchトランジスタが含まれており、
    前記複数のインバータ又は前記複数のトランスファーゲートにおいて含まれている夫々のPchトランジスタはサイズが共通であり、夫々Nchトランジスタはサイズが共通であることを特徴とする
    請求項1に記載の半導体集積回路。
  3. 前記クロックバッファ回路を構成する、前記複数のインバータの各インバータの間隔、又は前記複数のトランスファーゲートの各トランスファーゲートの間隔を半導体基板の長手方向に広くとることで、前記クロックバッファ回路が前記半導体基板の長手方向に空間的に広がっていることを特徴とする
    請求項2に記載の半導体集積回路。
  4. 前記複数のタイミング生成回路は、それぞれ、前記制御基準クロック信号の位相を任意に調整可能な位相調整回路を備え、位相調整された制御基準クロック信号に基づいて複数の制御クロック信号を生成することを特徴とする
    請求項1乃至3のいずれか一項に記載の半導体集積回路。
  5. 前記位相調整回路は、前記制御基準クロック信号と、前記位相調整回路から出力される前記位相調整された制御基準クロック信号との位相差が180度になるように設定されることを特徴とする
    請求項4に記載の半導体集積回路。
  6. 前記並列処理回路部を構成する前記同一機能を有する前記回路ブロックは、アナログ信号処理、A/D変換、およびデジタル信号処理のうち少なくとも1つを実行することを特徴とする
    請求項1乃至5のいずれか一項に記載の半導体集積回路。
  7. 前記制御基準クロック信号を生成するクロック生成回路を備えており、
    前記クロック生成回路は、任意の周波数の制御基準クロック信号を前記複数のタイミング生成回路にそれぞれ出力可能であることを特徴とする
    請求項1乃至6のいずれか一項に記載の半導体集積回路。
  8. 半導体集積回路のクロック供給方法であって、1対の長辺と1対の短辺とを備えた長方形形状の半導体基板上に形成される当該半導体集積回路は、複数のタイミング生成回路と、前記複数のタイミング生成回路と同数の各回路ブロックを含み、該回路ブロックには複数のクロック分配網が形成されている並列処理回路部とを備えており、
    クロック供給方法は、
    前記複数のタイミング生成回路で、取得する制御基準クロック信号に基づいて複数の制御クロック信号を生成するステップと、
    前記並列処理回路部の各クロック分配網において、各制御クロック信号は、各入力バッファから各クロックバッファ回路へ伝達され、制御出力クロック信号として分配されて複数の末端素子へ供給されるステップと、を有しており、
    前記各クロックバッファ回路は、前記回路ブロックの半導体基板の長手方向に対して中央付近に配置され、並列接続された複数のインバータ又は複数のトランスファーゲートによって構成された段が、2段以上直列接続された構成であり、後段を構成する複数のインバータ又はトランスファーゲートの並列接続される個数は、前段を構成する複数のインバータ又はトランスファーゲートの並列接続される個数よりも多いことを特徴とする
    半導体集積回路のクロック供給方法。
JP2019128917A 2016-03-16 2019-07-11 半導体集積回路及び半導体集積回路のクロック供給方法 Active JP6881514B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016052602 2016-03-16
JP2016052602 2016-03-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016241633A Division JP6555239B2 (ja) 2016-03-16 2016-12-13 半導体集積回路及び半導体集積回路のクロック供給方法

Publications (2)

Publication Number Publication Date
JP2019215881A JP2019215881A (ja) 2019-12-19
JP6881514B2 true JP6881514B2 (ja) 2021-06-02

Family

ID=59972153

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016241633A Expired - Fee Related JP6555239B2 (ja) 2016-03-16 2016-12-13 半導体集積回路及び半導体集積回路のクロック供給方法
JP2019128917A Active JP6881514B2 (ja) 2016-03-16 2019-07-11 半導体集積回路及び半導体集積回路のクロック供給方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016241633A Expired - Fee Related JP6555239B2 (ja) 2016-03-16 2016-12-13 半導体集積回路及び半導体集積回路のクロック供給方法

Country Status (1)

Country Link
JP (2) JP6555239B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10437545B2 (en) 2016-12-28 2019-10-08 Ricoh Company, Ltd. Apparatus, system, and method for controlling display, and recording medium
JP6988221B2 (ja) 2017-07-18 2022-01-05 株式会社リコー 半導体集積回路
CA3065352C (en) 2018-12-29 2022-04-19 Huawei Technologies Co., Ltd. Optical splitting apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159080A (ja) * 1991-12-05 1993-06-25 Hitachi Ltd 論理集積回路
JP2000148282A (ja) * 1998-11-10 2000-05-26 Hitachi Ltd 半導体装置及び当該装置を搭載したモジュール
JP2004159239A (ja) * 2002-11-08 2004-06-03 Renesas Technology Corp 半導体集積回路
WO2011155333A1 (ja) * 2010-06-11 2011-12-15 株式会社日立製作所 半導体集積回路装置
JP2013219442A (ja) * 2012-04-05 2013-10-24 Nikon Corp 電子装置、イメージセンサおよび電子カメラ

Also Published As

Publication number Publication date
JP6555239B2 (ja) 2019-08-07
JP2019215881A (ja) 2019-12-19
JP2017174394A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
US10901453B2 (en) Semiconductor integrated circuit, and method for supplying clock signals in semiconductor integrated circuit
JP6881514B2 (ja) 半導体集積回路及び半導体集積回路のクロック供給方法
KR920010208B1 (ko) 클럭공급회로
KR101038470B1 (ko) 동작영역이 넓은 디지털제어발진기
US11916056B2 (en) Semiconductor integrated circuit device
KR100414758B1 (ko) 클록신호공급용집적회로및그구성방법
JP2001228931A (ja) クロックドライバ回路およびクロック配線方法
JPH04245714A (ja) 移相クロック信号発生装置
JPH0758207A (ja) データ保持タイミング調整回路及びこれを含む半導体集積回路
WO2017122417A1 (ja) 集積回路
EP2779460B1 (en) Fine timing adjustment method
US7952948B2 (en) Semiconductor memory apparatus
US8964059B2 (en) Scanning circuit, solid-state image sensor, and camera
TWI777757B (zh) 低偏移之互補訊號產生器與積體電路
JP3562226B2 (ja) 半導体集積回路装置
JP2000183701A (ja) 半導体集積回路及びそのデューティ劣化防止方法
JP2005116793A (ja) 半導体集積回路及びそのクロック配線方法
JP2001332698A (ja) 半導体集積回路装置
JPH04217345A (ja) 半導体装置
JP2000082745A (ja) 半導体装置
JP2009253829A (ja) 発振回路
JP2007214334A (ja) 半導体集積回路
JP2003023086A (ja) 半導体回路
JP2016178198A (ja) スタンダードセル
JPH0561564A (ja) 半導体集積回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R151 Written notification of patent or utility model registration

Ref document number: 6881514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151