WO2017119750A1 - 가스 흡착성 고분자를 포함하고 있는 이차전지 - Google Patents

가스 흡착성 고분자를 포함하고 있는 이차전지 Download PDF

Info

Publication number
WO2017119750A1
WO2017119750A1 PCT/KR2017/000173 KR2017000173W WO2017119750A1 WO 2017119750 A1 WO2017119750 A1 WO 2017119750A1 KR 2017000173 W KR2017000173 W KR 2017000173W WO 2017119750 A1 WO2017119750 A1 WO 2017119750A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
secondary battery
battery
polymer
aminophenyl
Prior art date
Application number
PCT/KR2017/000173
Other languages
English (en)
French (fr)
Inventor
오세운
김현민
우선확
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17736122.7A priority Critical patent/EP3352286B1/en
Priority to PL17736122T priority patent/PL3352286T3/pl
Priority to US15/770,963 priority patent/US10727541B2/en
Priority to JP2018516727A priority patent/JP6575832B2/ja
Priority to CN201780003874.4A priority patent/CN108352585B/zh
Publication of WO2017119750A1 publication Critical patent/WO2017119750A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery containing a gas-adsorbable polymer.
  • lithium secondary batteries such as lithium ion batteries, lithium ion polymer batteries and the like.
  • lithium secondary batteries have disadvantages in safety. Specifically, after the final sealing, when an abnormal operating state such as internal short circuit, overcharge, high temperature exposure is reached, the high pressure gas may be generated while the internal electrolyte is decomposed. At this time, the generated high pressure gas may cause deformation of the battery case and shorten the life of the battery, and seriously cause explosion or explosion of the battery.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application after repeated in-depth studies and various experiments, as described later, when manufacturing a battery cell using a battery case containing a gas adsorbent polymer having an Azo group, Due to the hollow structure and chemical characteristics, it is confirmed that the adsorption to gas generated inside the battery cell is increased and the explosion and ignition caused by the increased gas inside the battery cell can be suppressed to improve the safety of the battery. Came to complete.
  • a secondary battery according to the present invention is a secondary battery in which an electrode assembly is sealed in an interior of a battery case together with an electrolyte, and a gas adsorbable polymer having an azo group is included in a battery cell. It consists of adsorption and removal of gas generated from.
  • the secondary battery according to the present invention has a structure including a gas adsorbent polymer capable of absorbing gas such as carbon dioxide generated in the battery cell, and thus, a swelling phenomenon caused by gas generation in the battery cell, As a result, the explosion and ignition of the battery may be improved, and thus the safety of the battery may be greatly improved.
  • the battery case may be a pouch type case of a laminate sheet including a gas adsorptive polymer layer, but a square can or a cylindrical battery case may be used.
  • the laminate sheet may include a structure including an outer coating layer, a barrier metal layer, and a heat sealable resin layer, and a gas adsorbent polymer layer including a gas absorbent polymer on the heat sealable resin layer.
  • the laminate sheet used in the secondary battery includes a gas-adsorbable polymer layer as well as a heat sealable resin layer for sealing the battery case in a conventional general laminate sheet.
  • the gas adsorptive polymer layer may be configured to include a matrix binder in addition to the gas absorbent polymer.
  • the matrix binder refers to a polymer present in the polymer matrix forming the gas adsorptive polymer layer, and the material of the matrix binder is not particularly limited, and for example, epoxy, phenol, melamine, polyester, or urethane It may be made of one or more selected from the group consisting of polyethylene terephthalate-based and polyether urethane-based resins.
  • the gas-adsorbable polymer layer may be applied to all parts of the battery case, but preferably, may be a structure that is applied to at least a portion of the inner surface of the receiving portion in contact with the electrolyte except for the sealing portion of the battery case.
  • the sealing force can be prevented from being lowered.
  • the coating thickness of the gas adsorptive polymer layer may be formed, for example, within a range of 0.1 ⁇ m to 100 ⁇ m, and specifically, may be formed within a range of 0.5 ⁇ m to 70 ⁇ m.
  • the coating thickness of the gas adsorbent polymer layer is thinner than 0.1 ⁇ m, the amount of gas adsorbable polymer is reduced because the amount of gas adsorbable polymer is reduced, and when the thickness of the gas adsorbent polymer layer is larger than 100 ⁇ m, Increasing the thickness is not preferable because it can not provide a battery cell of a compact structure.
  • the gas adsorbent polymer may be included in the electrolyte solution.
  • the electrolyte solution includes a gas-adsorbing polymer, it is possible to immediately adsorb gas generated due to decomposition of the electrolyte solution in an abnormal situation.
  • the content of the gas-adsorbable polymer may be in the range of 0.05% to 10% relative to the weight of the electrolyte, and in detail, may be in the range of 0.1% to 5%.
  • the amount of gas adsorbable polymer is reduced because the amount of the gas-adsorbing polymer is included, and when the content of the gas-adsorbing polymer is more than 10%, the viscosity of the electrolyte is increased. Therefore, the ion conductivity may decrease, which may decrease the performance of the battery.
  • the gas-adsorbable polymer may be Azo-Linked Porous Organic Polymers (ALPs), such ALPs may be, for example, 1,3,5,7-tetrakis ( 4-aminophenyl) adamantine (1,3,5,7-tetrakis (4-aminophenyl) adamantine, TAPA), 2,6,12-triaminotriptycin (2, 6, 12-triaminotriptycene, TAT), Tetrakis (4-aminophenyl) methane (TAM) or 1,3,5-tris (4-aminophenyl) benzene (1,3,5-tris (4-aminophenyl) benzene , TAB) can be prepared by polymerizing one monomer selected from the group consisting of.
  • ALPs Azo-Linked Porous Organic Polymers
  • the gas-adsorbable polymer is polymerized by coupling CuBr and pyridine as catalysts to couple monomers of the same type containing an aniline group.
  • an azo group exhibiting gas adsorption property while connecting the monomers to each other is formed from the amino group of the monomer.
  • Toluene, THF or chloroform can be used as a solvent of the polymerization reaction.
  • problems such as reduced solubility of the monomers in the solvent, inhibition of the polymerization reaction and the CuBr-pyridine catalysis or reduction of the surface area of the gas-adsorbable polymer occur. Therefore, in order to prepare a gas-adsorbable polymer having a maximum surface area, the polymerization reaction is preferably performed in a solvent in which toluene and THF are mixed.
  • the shape of the ALPs may be spherical, fibrous, and ribbon-shaped, and can be represented in a wide variety of shapes.
  • the particle size of the ALPs is not particularly limited in the case of nanometer level, but is within the range of 1 nm to 800 nm. It may vary and may be in detail from 200 nm to 700 nm. If the particle size is less than 1 nm, the pore size of the gas adsorbent polymer is too small to adsorb the gas properly, and if the particle size is more than 800 nm, the surface area of the gas adsorbent polymer is reduced, which reduces the amount of gas adsorption. not.
  • the specific surface area of the ALPs may be 850 m 2 / g to 1250 m 2 / g, specifically 900 m 2 / g to 1,200 m 2 / g, more specifically 950 m 2 / g To 1,150 m 2 / g.
  • the specific surface area of such a value is 2 to 3 times higher than that of a porous polymer covalently bonded to the conventional azo group, and thus may exhibit a higher gas adsorption rate because the gas can interact with a larger area.
  • the gas adsorbent polymer may selectively adsorb carbon dioxide and carbon monoxide in the gas generated inside the battery cell. That is, since the carbon dioxide and carbon monoxide having a high specific gravity generated in the process of using the battery cell can be adsorbed, the swelling phenomenon can be more easily prevented than when only one gas is adsorbed.
  • the gas-adsorbable polymer has excellent adsorption power to carbon dioxide, and thus can selectively adsorb only carbon dioxide, thereby removing carbon dioxide in which side reactions occur with the electrolyte, thereby preventing a vicious cycle of side reactions and gas generation of the electrolyte. have.
  • Adsorption amount of the carbon dioxide and carbon monoxide may be 10% to 30% based on the weight of the gas-adsorbable polymer. Specifically, 1 g of the gas-adsorbable polymer may adsorb at least 236 mg of carbon dioxide and carbon monoxide at room temperature.
  • the high carbon dioxide and carbon monoxide adsorption capacity of the gas adsorbent polymer is due to the interaction between the azo group of the gas adsorbent polymer and the carbon dioxide and carbon monoxide molecules.
  • the nitrogen atom of the azo group is a Lewis base, and carbon atoms of carbon dioxide and carbon monoxide act as Lewis acids to form strong bonds between the two atoms, a large amount of carbon dioxide and carbon monoxide may be adsorbed and removed from the battery cell.
  • the present invention also provides a battery pack including the lithium secondary battery as a unit cell and a device including the battery pack as a power source.
  • the battery pack may be used as a power source for devices requiring high temperature safety, long cycle characteristics, and high rate characteristics.
  • a power tool that is driven by a mobile electronic device and a battery-based motor.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • FIG. 2 is a perspective view of a pouch type secondary battery in which a gas adsorptive polymer layer is formed according to one embodiment of the present invention
  • FIG. 3 is a partial cross-sectional view of the cutout according to AA ′ in FIG. 2;
  • FIG. 4 is a vertical cross-sectional view of a laminate sheet on which a gas adsorptive polymer layer is formed according to another embodiment of the present invention.
  • FIG. 2 schematically illustrates a perspective view of a pouch type secondary battery in which a gas adsorptive polymer layer is formed according to an embodiment of the present invention.
  • the pouch type secondary battery 200 includes a lower case 220 including an electrode assembly accommodating part 203 and an upper case in which a sealing is formed with the lower case 220 on an upper surface of the accommodating part 203.
  • the upper case 210 and the lower case 220 have a structure connected to each other on a part of the outer circumferential surfaces 211 and 221.
  • the upper case 210 and the lower case 220 are sealed by heat fusion, and a seal is formed on the outer circumferential surface 211 of the upper case 210 and the outer circumferential surface 221 of the lower case 220.
  • FIG. 3 schematically illustrates a partial cross-sectional view of a cut portion of the battery case cut along the line AA ′ of FIG. 2.
  • the laminate sheet 300 of FIG. 3 includes a gas-adsorbing polymer including an outer coating layer 310, a barrier metal layer 320, a heat-sealing resin layer 330, and a gas-adsorbing polymer 341 from the outside.
  • Layers 340 are stacked sequentially.
  • the heat sealable resin layer 330 is interposed on the entire inner surface of the barrier metal layer 320
  • the gas adsorbent polymer layer 340 is interposed on the entire inner surface of the heat sealable resin layer 330.
  • FIG. 4 is a vertical cross-sectional view of a laminate sheet on which a gas adsorptive polymer layer is formed according to another embodiment of the present invention.
  • the outer coating layer 410 and the barrier metal layer 420 are sequentially stacked from the outside, and the heat-sealing resin layer 430 is formed in a part of the barrier metal layer 420.
  • the sealing part 401 is formed, and the gas-adsorbing polymer layer 440 is formed in the remaining portions except for the heat sealing resin layer 430.
  • the gas-adsorbing polymer layer 440 is formed only in the remaining portion of the heat-sealed resin layer 430 except for the portion corresponding to the sealing portion 401, the gas-adsorbing polymer layer 440 does not lower the adsorption force of the gas generated inside the battery cell. The sealing force can be prevented from being lowered without doing so.
  • the thickness D2 of the gas absorbent polymer layer 440 may be formed to be the same as the thickness D1 of the heat-sealed resin layer 430, but the thickness of the gas absorbent polymer layer 440 ( Of course, D2) may be formed thicker than the thickness D1 of the heat-sealed resin layer 430.
  • TAM tetrakis (4-aminophenyl) methane
  • TAT 2,6,12-triaminotrypticin
  • pyridine 84 mg of brown ALP-2 powder was prepared in the same manner as in Example 1, except that 1.35 mmol (107 mg) of was used.
  • TAPA 1,3,5,7-tetrakis (4-aminophenyl) adamantin
  • TAT 2,6,12-triaminotrypticin
  • CuBr 74 mg of brown ALP-3 powder was prepared in the same manner as in Example 1, except that 0.132 mol (19 mg) and pyridine were used as 1.02 mmol (81 mg).
  • TAB 1,3,5-tris (4-aminophenyl) benzene
  • TAT 2,6,12-triaminotrypsin
  • 91 mg of brown ALP-4 flour was prepared in the same manner as in Example 1, except that 1.01 mmol (80 mg) of pyridine was used.
  • Example 1 to ALP-4 prepared in Examples 1 to 4 were photographed by SEM and shown in FIG. 1.
  • Example 1 (Fig. 1-a) and Example 4 (Fig. 1-d) are spherical particles
  • Example 2 (Fig. 1-b) is a fibrous particle
  • Example 3 (Fig. 1-b) c) can be confirmed that the ribbon particles.
  • the gas-adsorbable polymers having azo groups can adsorb at least 9 times more than the amount of methane gas to the carbon dioxide gas, and thus, the secondary battery including the gas-adsorbable polymer has a large amount of gas generated therein. CO 2 can be selectively removed.
  • EC Ethyl Carbonate
  • PC Polylene Carbonate
  • DEC Diethyl Carbonate
  • 3: 2: 5 volume ratio
  • ALP-1 polymer prepared in 1 to prepare a laminate sheet in which a gas adsorbable polymer layer having a thickness of 10 ⁇ m is formed on a part of the outer surface of the barrier metal layer.
  • the electrode assembly of the anode made of natural graphite and the anode made of LiCoO 2 and the electrolyte were accommodated in the battery case, thereby manufacturing a pouch type secondary battery.
  • a pouch type secondary battery including ALP-2 was manufactured in the same manner as in Example 1 except that a gas-adsorbable polymer layer was formed on the outer surface of the barrier metal layer of the laminate sheet using ALP-2.
  • a pouch type secondary battery including ALP-3 was manufactured in the same manner as in Example 1 except that a gas-adsorbable polymer layer was formed on the outer surface of the barrier metal layer of the laminate sheet using ALP-3.
  • a pouch type secondary battery including ALP-4 was manufactured in the same manner as in Example 1 except that a gas-adsorbable polymer layer was formed on the outer surface of the barrier metal layer of the laminate sheet using ALP-4.
  • An electrolyte solution and an electrode assembly prepared in Example 5 were prepared, and ALP-1 prepared in Example 1 was injected into the electrolyte solution to prepare a rectangular secondary battery in which ALP-1 contained 5% by weight of the electrolyte solution.
  • a secondary battery was manufactured in the same manner as in Example 5, except that a laminate sheet containing no azo group gas-adsorbing polymer was used.
  • the total amount of gas generated after 8 weeks is 252.64 ml
  • the amount of carbon dioxide is 126.41 ml
  • the amount of carbon monoxide is 75.92 ml
  • the total of other gases is about 50.31 ml.
  • the secondary batteries specified in Examples 5 to 9 and Comparative Example 1 were stored in a box at 60 ° C. for 8 weeks, and then the initial volume and the volume after 8 weeks were measured, and the changed volume value
  • the volume increase minus the initial volume value is shown in Table 3 below.
  • the volume increase of the secondary battery of Examples 5 to 9 according to the present invention is 52 to 62
  • the volume increase of Comparative Example 1 is 253. That is, Comparative Example 1 showed a higher swelling phenomenon than Examples 5 to 9. This is because the gas adsorbent polymer removes carbon dioxide and carbon monoxide generated in the battery cells of Examples 5 to 9, thereby suppressing the volume expansion and swelling of the battery, but the secondary battery of Comparative Example 1 does not contain the gas adsorbent polymer. Because it is impossible to remove gases such as carbon dioxide and carbon dioxide, the volume is expanded by the amount of gas actually generated. Therefore, since the secondary battery including the gas-adsorbable polymer having an azo group is suppressed from ignition or explosion, its safety can be greatly increased.
  • the secondary battery according to the present invention includes a gas-adsorbable polymer having an azo group, thereby adsorbing gas generated in a normal or abnormal operating state of the battery to prevent swelling, and increasing the internal pressure of the battery. As a result of suppressing explosion or ignition of the battery due to this, the safety of the battery can be greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 전극조립체가 전해액과 전지케이스의 내부에 밀봉되어 있는 이차전지로서, 아조(Azo)기를 가진 가스 흡착성 고분자가 전지셀에 포함되어서 전지 내부에서 발생하는 가스를 흡착하는 이차전지를 제공한다.

Description

가스 흡착성 고분자를 포함하고 있는 이차전지
본 출원은 2016.01.06자 한국 특허 출원 제10-2016-0001582호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 가스 흡착성 고분자를 포함하고 있는 이차전지에 대한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 많은 연구가 행해지고 있다.
대표적으로 전지의 형상 면에서는 얇은 두께로 휴대폰 등과 같은 제품들에 적용될 수 있는 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬 이온 전지, 리튬 이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.
그러나, 이러한 장점에도 불구하고 리튬 이차전지는 안전성에 단점을 가지고 있다. 구체적으로, 최종 실링 후, 내부 단락, 과충전, 고온 노출 등의 비정상적인 작동상태에 이르게 될 경우, 내부 전해액이 분해되면서 고압의 가스가 발생할 수 있다. 이때 발생된 고압 가스는 전지케이스의 변형을 유발하고 전지의 수명을 단축시킬 수 있으며, 심각하게는 전지의 발화 내지 폭발을 초래한다.
종래에는 이러한 리튬 이차전지의 안전성을 향상시키기 위하여, PTC(Positive Temperature Coefficient), 퓨즈, 또는 감압 보호 회로 등의 방법을 사용하거나, 전해액 혹은 전극에 안전성을 향상시키는 첨가제를 부가하는 방법 등을 이용하였으나, 상기와 같은 수단들을 구비하고 있어도, 비정상적인 조건 하에서 전지 내부의 이상 반응으로 인해 가스가 발생하거나, 상기 물질의 첨가로 인해 전지의 성능이 저하되는 문제점이 여전히 존재한다.
더불어, 최근에는 더 높은 에너지 밀도에 대한 요구가 증가하면서 기존 가스포켓 기능을 하던 부분들이 점차 사라져 가는 추세이므로, 전지의 제반 성능을 저하시키지 않으면서도, 전지셀 내부에서 가스 발생시 전지의 발화 내지 폭발을 방지하고 효율적으로 가스를 제거할 수 있는 새로운 방법이 필요한 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 아조(Azo)기를 가진 가스 흡착성 고분자를 포함하는 전지케이스를 이용하여 전지셀을 제조하는 경우, 가스 흡착성 고분자의 중공 구조 및 화학적 특징으로 인해, 전지셀 내부에서 발생하는 가스에 대한 흡착성이 증가하고, 전지셀 내부의 가스 증가로 인한 폭발 및 발화를 억제하여 전지의 안전성을 향상시킬 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이러한 목적을 달성하기 위하여, 본 발명에 따른 이차전지는, 전극조립체가 전해액과 함께 전지케이스의 내부에 밀봉되어 있는 이차전지로서, 아조(Azo)기를 가진 가스 흡착성 고분자가 전지셀에 포함되어 전지 내부에서 발생하는 가스를 흡착 및 제거하는 구성으로 이루어져 있다.
이와 같이, 본 발명에 따른 이차전지는, 전지셀 내부에서 발생하는 이산화탄소 등과 같은 가스를 흡수할 수 있는 가스 흡착성 고분자를 포함하는 구조인 바, 종래에 전지셀 내부의 가스 발생으로 인한 스웰링 현상, 이로 인한 전지의 폭발 및 발화 현상을 개선할 수 있으므로 전지의 안전성을 크게 향상시킬 수 있다.
또한, 종래에 가스 흡착물질로서 산화물 또는 수산화물을 사용하는 경우, 전해질과의 부반응이 발생하는 문제가 있었던 바, 상기 아조기를 가진 가스 흡착성 고분자를 사용하는 경우에는 분리막 내지 전극과의 반응성이 없어 전해질과의 부반응을 방지할 수 있을 뿐만 아니라, 셀 성능이 떨어지는 문제를 해결할 수 있다.
하나의 구체적인 예에서, 상기 전지케이스는 가스 흡착성 고분자층을 포함하는 라미네이트 시트의 파우치형 케이스일 수 있지만, 각형 캔 또는 원통형 전지 케이스가 사용될 수도 있음은 물론이다.
상기 라미네이트 시트는 외부 피복층, 차단성 금속층 및 열융착성 수지층을 포함하고 있고, 상기 열융착성 수지층에 가스 흡착성 고분자를 포함하는 가스 흡착성 고분자층이 도포되어 있는 구조일 수 있다. 구체적으로, 상기 이차전지에 사용되는 라미네이트 시트는, 종래의 일반적인 라미네이트 시트에 전지케이스의 실링을 위한 열융착성 수지층뿐만 아니라 가스 흡착성 고분자층을 포함하고 있다.
이러한 구조에서, 상기 가스 흡착성 고분자층은 가스 흡착성 고분자 이외에 매트릭스 바인더를 포함하는 구성일 수 있다.
상기 매트릭스 바인더는 가스 흡착성 고분자층을 형성하는 고분자 매트릭스에 존재하는 고분자를 의미하며, 이러한 매트릭스 바인더의 소재는 특별히 제한되지 않지만, 예를 들어, 에폭시계, 페놀계, 멜라민계, 폴리에스테르계, 우레탄계, 폴리에틸렌테레프탈레이트계 및 폴리에테르우레탄계 수지로 이루어진 군에서 선택되는 1종 이상으로 이루어질 수 있다.
상기 가스 흡착성 고분자층은 전지케이스의 모든 부위에 도포될 수도 있지만, 바람직하게는, 전지케이스의 밀봉부를 제외하고 전해액이 접촉하는 수납부의 내면 중의 적어도 일부에 도포되어 있는 구조일 수 있다. 이와 같이 밀봉부에는 가스 흡착성 고분자층이 형성되어 있지 않은 구조를 갖는 라미네이트 시트를 사용하는 경우, 가스 흡착성 고분자층이 전지케이스의 밀봉부를 제외한 부분에 형성되므로 밀봉력이 저하되는 것을 방지할 수 있고, 더불어 전지셀 내부에서 발생하는 가스의 흡착력이 감소하는 것을 방지할 수 있다.
상기 가스 흡착성 고분자층의 도포 두께는, 예를 들어, 0.1 ㎛ 내지 100 ㎛의 범위 내에서 형성될 수 있으며, 상세하게는 0.5 ㎛ 내지 70 ㎛의 범위 내에서 형성될 수 있다.
상기 가스 흡착성 고분자층의 도포 두께가 0.1 ㎛보다 얇은 경우에는 포함되는 가스 흡착성 고분자의 양이 줄어들기 때문에 흡착할 수 있는 가스의 양이 줄어드는 단점이 있고, 100 ㎛ 보다 두꺼운 경우에는, 전체적인 라미네이트 시트의 두께가 증가함으로써 컴팩트한 구조의 전지셀을 제공할 수 없으므로 바람직하지 않다.
또 다른 구체적인 예에서, 상기 가스 흡착성 고분자는 전해액에 포함되어 있을 수 있다. 이와 같이, 전해액이 가스 흡착성 고분자를 포함하는 경우, 비정상적인 상황에서 전해액 분해로 인해 발생되는 가스를 즉각적으로 흡착할 수 있다.
이 경우, 가스 흡착성 고분자의 함량은 전해액 중량 대비 0.05% 내지 10%의 범위일 수 있으며, 상세하게는 0.1% 내지 5%의 범위일 수 있다.
상기 가스 흡착성 고분자의 함량이 0.05%보다 적은 경우에는, 포함되는 가스 흡착성 고분자의 양이 줄어들기 때문에 흡착할 수 있는 가스의 양이 줄어드는 단점이 있고, 10%보다 많을 경우에는, 전해액의 점도 증가에 따라 이온 전도도가 감소하여 전지의 성능을 저하시킬 수 있으므로 바람직하지 않다.
하나의 구체적인 예에서, 상기 가스 흡착성 고분자는 아조-결합 다공성 유기 고분자(Azo-Linked Porous Organic Polymers, ALPs)일 수 있으며, 이러한 ALP는, 예를 들어, 1,3,5,7-테트라키스 (4-아미노페닐) 아다만틴(1,3,5,7-tetrakis (4-aminophenyl) adamantine, TAPA), 2,6,12-트리아미노트립티신(2, 6, 12-triaminotriptycene, TAT), 테트라키스 (4-아미노페닐) 메테인(tetrakis (4-aminophenyl) methane, TAM) 또는 1,3,5-트리스 (4-아미노페닐) 벤젠(1,3,5-tris (4-aminophenyl) benzene, TAB)으로 이루어진 군으로부터 선택되는 1종의 단량체를 중합하여 제조될 수 있다.
구체적으로, 상기 가스 흡착성 고분자는 CuBr 및 피리딘(pyridine)이 촉매로 작용하여, 아닐린(aniline)기를 포함하고 있는 동일한 종류의 단량체들을 커플링(coupling)시킴으로써 중합된다. 이때, 단량체들을 서로 연결하면서 가스 흡착성을 나타내는 아조기가 단량체의 아미노기로부터 형성된다.
상기 중합 반응의 용매로서 톨루엔, THF 또는 클로로포름을 사용할 수 있다. 그러나, 단일 용매만을 사용하는 경우, 단량체들의 용매에 대한 용해성 감소, 중합 반응 및 CuBr-피리딘 촉매 반응의 저해 또는 가스 흡착성 고분자의 표면적 감소라는 문제점이 발생하게 된다. 따라서, 최대 표면적을 가지는 가스 흡착성 고분자를 제조하기 위하여, 상기 중합 반응은 톨루엔과 THF가 혼합되어 있는 용매에서 진행되는 것이 바람직하다.
상기 ALPs의 형태는 구형, 섬유형 및 리본형의 형상일 수 있어 매우 다양한 형상으로 나타날 수 있고, 상기 ALPs의 입경은 나노미터 수준을 가지는 경우 크게 한정되지는 않으나, 1 nm 내지 800 nm의 범위 내로 다양할 수 있으며 상세하게는 200 nm 내지 700 nm일 수 있다. 입경이 1 nm 미만인 경우, 가스 흡착성 고분자의 공극 크기가 너무 작아져 가스를 제대로 흡착할 수 없고, 입경이 800 nm를 초과하는 경우, 가스 흡착성 고분자의 표면적이 감소하여 가스 흡착량이 감소하게 되므로 바람직하지 않다.
또한, 상기 ALPs의 비표면적은 850 m2/g 내지 1,250 m2/g일 수 있고, 상세하게는 900 m2/g 내지 1,200 m2/g일 수 있고, 더욱 상세하게는 950 m2/g 내지 1,150 m2/g일 수 있다. 이와 같은 수치의 비표면적은 종래의 아조기와 공유 결합되어 있는 다공성 고분자보다 2배 내지 3배 높은 수치인 바, 가스와 더 넓은 면적에서 상호작용을 할 수 있으므로 더 높은 가스 흡착률을 나타낼 수 있다.
이러한 가스 흡착성 고분자는 전지셀 내부에서 발생하는 가스 중 이산화탄소 및 일산화탄소를 선택적으로 흡착할 수 있다. 즉, 전지셀의 사용 과정에서 발생 비중이 높은 이산화탄소 및 일산화탄소를 흡착할 수 있으므로, 1종의 가스만을 흡착하는 경우보다 스웰링 현상을 더 쉽게 방지할 수 있다.
바람직하게는, 상기 가스 흡착성 고분자는 이산화탄소에 대한 흡착력이 우수하여, 이산화탄소만을 선택적으로 흡착할 수 있는 바, 전해액과 부반응이 일어나는 이산화탄소를 제거하기 때문에, 전해액의 부반응 및 가스 발생이라는 악순환을 방지할 수 있다.
상기 이산화탄소 및 일산화탄소의 흡착량은 가스 흡착성 고분자의 중량을 기준으로 10% 내지 30%일 수 있다. 구체적으로, 상기 가스 흡착성 고분자 1 g은 상온에서 적어도 236 mg의 이산화탄소 및 일산화탄소를 흡착할 수 있다.
상기와 같은 가스 흡착성 고분자의 높은 이산화탄소 및 일산화탄소 흡착력은, 가스 흡착성 고분자의 아조기와 이산화탄소 및 일산화탄소 분자간의 상호 작용으로 인해 나타난다. 구체적으로, 아조기의 질소 원자는 루이스 염기로, 이산화탄소 및 일산화탄소의 탄소 원자는 루이스 산으로 작용하여 두 원자 사이에 강한 결합이 이루어지므로, 전지셀에서 많은 양의 이산화탄소 및 일산화탄소를 흡착 제거할 수 있다.
본 발명은 또한, 상기 리튬 이차전지를 단위전지로 포함하는 전지팩 및 상기 전지팩을 전원으로서 포함하고 있는 디바이스를 제공한다.
구체적으로, 상기 전지팩은 고온 안전성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 디바이스의 전원으로 사용될 수 있으며, 이러한 디바이스의 상세한 예로는 모바일 전자기기, 전지 기반 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이들 디바이스의 구조 및 그것의 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명은 생략한다.
도 1은 본 발명의 실시예 1 내지 4에서 제조된 가스 흡착성 고분자들의 전자현미경(SEM) 사진이다;
도 2는 본 발명의 하나의 실시예에 따른 가스 흡착성 고분자층이 형성된 파우치형 이차전지의 사시도이다;
도 3은 도 2의 A-A'에 따른 절단부의 부분 단면도이다;
도 4는 본 발명의 또 다른 실시예에 따른 가스 흡착성 고분자층이 형성된 라미네이트 시트의 수직 단면도이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 2는 본 발명의 하나의 실시예에 따른 가스 흡착성 고분자층이 형성된 파우치형 이차전지의 사시도를 모식적으로 도시하고 있다.
도 2를 참조하면, 파우치형 이차전지(200)는 전극조립체 수납부(203)를 포함하는 하부 케이스(220) 및 수납부(203)의 상면에서 하부 케이스(220)와 밀봉이 형성되는 상부 케이스(210)로 구성되어 있고, 상부 케이스(210) 및 하부 케이스(220)는 외주면(211, 221) 일부에서 서로 연결된 구조로 이루어져 있다. 상부 케이스(210) 및 하부 케이스(220)는 열융착에 의해 밀봉이 이루어 지는 바, 상부 케이스(210)의 외주면(211) 및 하부 케이스(220)의 외주면(221) 상에 밀봉부가 형성된다.
도 3은 도 2의 A-A'에 따라 절단된 전지케이스의 절단부의 부분 단면도를 모식적으로 도시하고 있다.
도 3을 참조하면, 도 3의 라미네이트 시트(300)는 외측으로부터 외부 피복층(310), 차단성 금속층(320), 열융착 수지층(330) 및 가스 흡착성 고분자(341)를 포함하는 가스 흡착성 고분자층(340)이 순차적으로 적층되어 있다. 열융착 수지층(330)은 차단성 금속층(320)의 내측면 전체에 개재되어 있으며, 가스 흡착성 고분자층(340)은 열융착 수지층(330)의 내측면 전체에 개재되어 있다.
도 4는 본 발명의 또 다른 실시예에 따른 가스 흡착성 고분자층이 형성된 라미네이트 시트의 수직 단면도를 도시하고 있다.
도 4를 참조하면, 라미네이트 시트(400)는 외측으로부터 외부 피복층(410), 차단성 금속층(420)이 순차적으로 적층되어 있으며, 열융착 수지층(430)은 차단성 금속층(420)의 일부에서 밀봉부(401)를 형성하고, 가스 흡착성 고분자층(440)은 열융착 수지층(430)을 제외한 나머지 부분에 형성되어 있다.
이와 같이, 가스 흡착성 고분자층(440)은 열융착 수지층(430)에서 밀봉부(401)와 대응되는 부분을 제외한 나머지 부분에만 형성되어 있기 때문에, 전지셀 내부에서 발생하는 가스의 흡착력을 저하시키지 않으면서 밀봉력이 저하되는 것을 방지할 수 있다.
한편, 가스 흡착성 고분자층(440)의 두께(D2)는 열융착 수지층(430)의 두께(D1)와 동일하게 형성될 수 있으나, 가스 흡착력을 높이기 위해 가스 흡착성 고분자층(440)의 두께(D2)를 열융착 수지층(430)의 두께(D1)보다 더 두껍게 형성할 수 있음은 물론이다.
이하에서는, 본 발명의 실시예들을 설명한다.
<실시예 1>
22 mL의 THF/toluene 용매에, 단량체로서 2,6,12-트리아미노트립티신 (TAT) 0.334 mmol (100 mg), 촉매로서 CuBr 0.164 mmol (23.5 mg) 및 피리딘 1.19 mmol (94 mg)을 첨가하여, 상온에서 24시간 동안 1차 교반, 60℃에서 12시간 동안 2차 교반, 80℃에서 12시간 동안 3차 교반을 진행하였다. 이후, 혼합액을 거르고 THF로 워싱 후, 물로 다시 한 번 워싱 과정을 진행하였다. 남은 분말들을 24시간 동안 염화수소(HCl)에 담근 후 다시 걸러서, 물, 수산화나트륨(NaOH) 및 에탄올 수용액으로 각각 차례대로 한 번씩 워싱 과정을 진행하였다. 110℃, 150 mTorr에서 건조 과정을 거친 뒤, 적갈색의 ALP-1 가루 70 mg을 제조하였다.
<실시예 2>
단량체로서 2,6,12-트리아미노트립티신 (TAT) 대신 테트라키스(4-아미노페닐)메테인 (TAM) 0.26 mmol (100 mg)을 사용하고, CuBr을 0.174 mmol (25 mg)만큼, 피리딘을 1.35 mmol (107 mg)만큼 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 갈색의 ALP-2 가루 84 mg을 제조하였다.
<실시예 3>
단량체로서 2,6,12-트리아미노트립티신 (TAT) 대신 1,3,5,7-테트라키스(4-아미노페닐)아다만틴 (TAPA) 0.2 mmol (100 mg)을 사용하고, CuBr을 0.132 mol (19 mg)만큼, 피리딘을 1.02 mmol (81 mg)만큼 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 갈색의 ALP-3 가루 74 mg을 제조하였다.
<실시예 4>
단량체로서 2,6,12-트리아미노트립티신 (TAT) 대신 1,3,5-트리스(4-아미노페닐)벤젠 (TAB) 0.28 mmol (100 mg)을 사용하고, CuBr을 0.139 mmol (20 mg)만큼, 피리딘을 1.01 mmol (80 mg)만큼 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 갈색의 ALP-4 가루 91 mg을 제조하였다.
<실험예 1>
실시예 1 내지 4에서 제조된 ALP-1 내지 ALP-4을 SEM으로 촬영하여 하기 도 1에 나타내었다. 도 1을 살펴보면, 실시예 1(도 1-a) 및 실시예 4(도 1-d)는 구형의 입자, 실시예 2(도 1-b)는 섬유형 입자, 실시예 3(도 1-c)은 리본형 입자임을 확인할 수 있다.
<실험예 2>
실시예 1 내지 실시예 4에서 제조된 ALP-1 내지 ALP-4의 흡착량을 측정하기 위하여, 1 atm, 0℃ 및 1 atm, 25℃ 조건에서 이산화탄소 가스 및 메탄 가스에 노출시킨 후, 그 결과를 하기 표 1에 나타내었다.
<표 1>
Figure PCTKR2017000173-appb-I000001
상기 표 1에서 보이는 바와 같이, 아조기를 가진 가스 흡착성 고분자들은 이산화탄소 가스를 메탄 가스량의 적어도 9배 이상을 흡착할 수 있고, 따라서, 상기 가스 흡착성 고분자를 포함한 이차전지는 내부에서 발생하는 가스 중 많은 양의 이산화탄소를 선택적으로 제거할 수 있다.
<실시예 5>
혼합용매(EC(Ethyl Carbonate): PC(Propylene Carbonate): DEC(Diethyl Carbonate) = 3:2:5(체적비)로 구성)에 LiPF6을 1M의 농도가 되도록 용해시킨 전해액을 준비하고, 실시예 1에서 제조된 ALP-1 고분자를 이용하여 차단성 금속층 외면 일부에 10 ㎛의 두께의 가스 흡착성 고분자층이 형성된 라미네이트 시트를 제조하였다. 다음으로, 상기 라미네이트 시트를 사용하여 전지케이스를 제조한 후, 천연 흑연으로 이루어진 음극 및 LiCoO2 이루어진 양극의 전극조립체 및 상기 전해액을 상기 전지케이스에 수납하여, 파우치형 이차전지를 제조하였다.
<실시예 6>
라미네이트 시트의 차단성 금속층 외면 일부에 ALP-2를 이용하여 가스 흡착성 고분자층을 형성한 것을 제외하고는 실시예 1과 동일한 방법으로 ALP-2를 포함하는 파우치형 이차전지를 제조하였다.
<실시예 7>
라미네이트 시트의 차단성 금속층 외면 일부에 ALP-3을 이용하여 가스 흡착성 고분자층을 형성한 것을 제외하고는 실시예 1과 동일한 방법으로 ALP-3을 포함하는 파우치형 이차전지를 제조하였다.
<실시예 8>
라미네이트 시트의 차단성 금속층 외면 일부에 ALP-4를 이용하여 가스 흡착성 고분자층을 형성한 것을 제외하고는 실시예 1과 동일한 방법으로 ALP-4를 포함하는 파우치형 이차전지를 제조하였다.
<실시예 9>
실시예 5에서 제조된 전해액 및 전극 조립체를 준비하고, 실시예 1에서 제조된 ALP-1을 상기 전해액에 주입시켜, ALP-1이 전해액 중량 대비 5%로 포함된 각형 이차전지를 제조하였다.
<비교예 1>
아조기를 가진 가스 흡착성 고분자를 포함하지 않은 라미네이트 시트를 사용한 것을 제외하고는 실시예 5와 동일한 방법으로 이차전지를 제조하였다.
<실험예 3>
이차전지의 최대 가스 발생량을 측정하기 위하여, 비교예 1에서 제조한 이차전지를 60℃의 상자에 8주간 저장한 후 발생한 가스량을 하기 표 2에 나타내었다.
<표 2>
Figure PCTKR2017000173-appb-I000002
상기 표 2에서 보이는 바와 같이, 8주 후 발생한 가스의 총량은 252.64 ml이고, 이산화탄소의 양은 126.41 ml 및 일산화탄소의 양은 75.92 ml이며, 그 외의 가스들의 총합은 약 50.31 ml이다.
<실험예 4>
스웰링으로 인한 부피 변화를 측정하기 위하여, 실시예 5 내지 9 및 비교예 1에 명시된 이차전지를 60℃의 상자에 8주간 저장한 후, 초기 부피 및 8주 후의 부피를 측정하고, 변화된 부피 값에서 초기 부피 값을 뺀 부피 증가량을 하기 표 3에 나타내었다.
<표 3>
Figure PCTKR2017000173-appb-I000003
상기 표 3에서 보는 바와 같이, 본 발명에 따른 실시예 5 내지 실시예 9의 이차전지의 부피 증가량은 52 내지 62이고, 비교예 1의 부피 증가량은 253이다. 즉, 비교예 1은 실시예 5 내지 9에 비해 스웰링 현상이 높게 나타났다. 이는, 가스 흡착성 고분자에 의해 실시예 5 내지 9의 전지셀 내부에서 발생한 이산화탄소 및 일산화탄소가 제거됨으로써 전지의 부피 팽창 및 스웰링 현상이 억제되었지만, 비교예 1의 이차전지에는 가스 흡착성 고분자가 포함되지 않아, 이산화탄소 등의 가스 제거가 불가능하므로 실제로 발생한 가스의 양만큼 부피가 팽창되었기 때문이다. 따라서, 아조기를 가진 가스 흡착성 고분자를 포함하는 이차전지는 발화 내지 폭발이 억제되므로 그 안전성이 매우 증가될 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 이차전지는 아조기를 가진 가스 흡착성 고분자를 포함함으로써, 전지의 정상적 또는 비정상적인 작동 상태에서 발생하는 가스를 흡착하여 스웰링 현상을 방지할 수 있으며, 전지의 내압 증가로 인한 전지의 폭발 또는 발화를 억제하는 바, 결과적으로 전지의 안전성을 크게 향상시킬 수 있다.

Claims (18)

  1. 전극조립체가 전해액과 함께 전지케이스의 내부에 밀봉되어 있는 이차전지로서, 아조(Azo)기를 가진 가스 흡착성 고분자가 전지셀에 포함되어서 전지 내부에서 발생하는 가스를 흡착 및 제거하는 것을 특징으로 하는 이차전지.
  2. 제 1 항에 있어서, 상기 전지케이스는 라미네이트 시트의 파우치형 케이스 또는 각형 캔인 것을 특징으로 하는 이차전지.
  3. 제 2 항에 있어서, 상기 라미네이트 시트는 외부 피복층, 차단성 금속층, 및 열융착성 수지층을 포함하고 있고, 상기 열융착성 수지층에 가스 흡착성 고분자를 포함하는 가스 흡착성 고분자층이 도포되어 있는 것을 특징으로 하는 이차전지.
  4. 제 3 항에 있어서, 상기 가스 흡착성 고분자층은 가스 흡착성 고분자 및 매트릭스 바인더를 포함하고 있는 것을 특징으로 하는 이차전지.
  5. 제 4 항에 있어서, 상기 매트릭스 바인더는 에폭시계, 페놀계, 멜라민계, 폴리에스테르계, 우레탄계, 폴리에틸렌테레프탈레이트계 및 폴리에테르우레탄계 수지로 이루어진 군에서 선택되는 1종 이상으로 이루어진 것을 특징으로 하는 이차전지.
  6. 제 3 항에 있어서, 상기 가스 흡착성 고분자층은 전지케이스의 밀봉부를 제외하고 전해액이 접촉하는 수납부의 내면 중의 적어도 일부에 도포되어 있는 것을 특징으로 하는 이차전지.
  7. 제 3 항에 있어서, 상기 가스 흡착성 고분자층의 도포 두께는 0.1 ㎛ 내지 100 ㎛의 범위인 것을 특징으로 하는 이차전지.
  8. 제 1 항에 있어서, 상기 가스 흡착성 고분자는 전해액에 포함되어 있는 것을 특징으로 하는 이차전지.
  9. 제 8 항에 있어서, 상기 가스 흡착성 고분자의 함량은 전해액 중량 대비 0.05% 내지 10%의 범위인 것을 특징으로 하는 이차전지.
  10. 제 1 항에 있어서, 상기 가스 흡착성 고분자는 아조-결합 다공성 유기 고분자(Azo-Linked Porous Organic Polymers, ALPs)인 것을 특징으로 하는 이차전지.
  11. 제 10 항에 있어서, 상기 ALPs는 1,3,5,7-테트라키스 (4-아미노페닐) 아다만틴(1,3,5,7-tetrakis (4-aminophenyl) adamantine, TAPA), 2,6,12-트리아미노트립티신(2, 6, 12-triaminotriptycene, TAT), 테트라키스 (4-아미노페닐) 메테인 (tetrakis (4-aminophenyl) methane, TAM) 또는 1,3,5-트리스 (4-아미노페닐) 벤젠 (1,3,5-tris (4-aminophenyl) benzene, TAB)으로 이루어진 군으로부터 선택되는 1종의 단량체를 중합하여 제조되는 것을 특징으로 하는 이차전지.
  12. 제 10 항에 있어서, 상기 ALPs는 형태가 구형, 섬유형 또는 리본형인 것을 특징으로 하는 이차전지.
  13. 제 10 항에 있어서, 상기 ALPs는 입경이 1 nm 내지 800 nm인 것을 특징으로 하는 이차전지.
  14. 제 10 항에 있어서, 상기 ALPs는 비표면적이 850 m2/g 내지 1,250 m2/g인 것을 특징으로 하는 이차전지.
  15. 제 1 항에 있어서, 상기 가스 흡착성 고분자는 이산화탄소 및 일산화탄소를 선택적으로 흡착하는 것을 특징으로 하는 이차전지.
  16. 제 15 항에 있어서, 상기 이산화탄소 및 일산화탄소의 흡착량은 중량을 기준으로 가스 흡착성 고분자 중량의 10% 내지 30%의 범위인 것을 특징으로 하는 이차전지.
  17. 제 1 항 내지 제 16 항 중 어느 하나에 따른 이차전지를 포함하는 것을 특징으로 하는 전지팩.
  18. 제 17 항에 따른 전지팩을 전원으로서 포함하고 있는 것을 특징으로 하는 디바이스.
PCT/KR2017/000173 2016-01-06 2017-01-06 가스 흡착성 고분자를 포함하고 있는 이차전지 WO2017119750A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17736122.7A EP3352286B1 (en) 2016-01-06 2017-01-06 Secondary battery comprising gas-absorbing polymer
PL17736122T PL3352286T3 (pl) 2016-01-06 2017-01-06 Akumulator zawierający polimer absorbujący gaz
US15/770,963 US10727541B2 (en) 2016-01-06 2017-01-06 Secondary battery comprising gas-absorbing polymer
JP2018516727A JP6575832B2 (ja) 2016-01-06 2017-01-06 ガス吸着性高分子を含んでいる2次電池
CN201780003874.4A CN108352585B (zh) 2016-01-06 2017-01-06 包含气体吸附聚合物的二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0001582 2016-01-06
KR1020160001582A KR101956334B1 (ko) 2016-01-06 2016-01-06 가스 흡착성 고분자를 포함하고 있는 이차전지

Publications (1)

Publication Number Publication Date
WO2017119750A1 true WO2017119750A1 (ko) 2017-07-13

Family

ID=59273747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000173 WO2017119750A1 (ko) 2016-01-06 2017-01-06 가스 흡착성 고분자를 포함하고 있는 이차전지

Country Status (7)

Country Link
US (1) US10727541B2 (ko)
EP (1) EP3352286B1 (ko)
JP (1) JP6575832B2 (ko)
KR (1) KR101956334B1 (ko)
CN (1) CN108352585B (ko)
PL (1) PL3352286T3 (ko)
WO (1) WO2017119750A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021529870A (ja) * 2018-07-06 2021-11-04 ハイドロ−ケベック グリシジル含有ポリマー、それらを含むポリマー組成物、およびそれらの電気化学セルでの使用
US11581592B2 (en) 2018-01-09 2023-02-14 Lg Energy Solution, Ltd. Battery case having gas adsorption layer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11081737B2 (en) * 2017-07-31 2021-08-03 Viking Power Systems Pte, Ltd. Getter for use with electrochemical cells, devices including the getter, and method of forming same
KR102282411B1 (ko) * 2017-08-25 2021-07-26 주식회사 엘지에너지솔루션 이차전지 및 그 제조방법
CN109822998A (zh) * 2018-12-28 2019-05-31 桑顿新能源科技有限公司 一种复合铝塑膜及其制备方法和电池
JP7071701B2 (ja) * 2019-03-11 2022-05-19 トヨタ自動車株式会社 非水系リチウムイオン二次電池
CN111430828A (zh) * 2020-01-17 2020-07-17 蜂巢能源科技有限公司 锂离子电池
CN112271341A (zh) * 2020-10-23 2021-01-26 珠海冠宇动力电池有限公司 一种叠片电芯和锂离子电池
KR20230056142A (ko) * 2021-10-20 2023-04-27 주식회사 엘지에너지솔루션 가스 흡착제가 개재된 파우치를 포함하는 이차전지 및 그의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004227818A (ja) * 2003-01-20 2004-08-12 Sony Corp 非水電解質電池
KR20120042752A (ko) * 2010-04-28 2012-05-03 파나소닉 주식회사 이차전지
JP2012204131A (ja) * 2011-03-25 2012-10-22 Kurita Water Ind Ltd 二次電池からの噴出ガス中の一酸化炭素の除去材
KR20140089706A (ko) * 2013-01-07 2014-07-16 한국과학기술원 Azo기로 공유 결합된 다공성 유기 고분자 및 그 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1678405A (en) * 1924-06-03 1928-07-24 Le Carbone Sa Process for rendering gas-absorbent bodies air-tight in liquids
JP2000077103A (ja) 1998-08-31 2000-03-14 Hitachi Ltd リチウム二次電池および機器
KR100354247B1 (ko) 1999-11-18 2002-09-28 삼성에스디아이 주식회사 리튬 2차 전지
JP4529207B2 (ja) 1999-11-30 2010-08-25 ソニー株式会社 非水電解質電池
TW571601B (en) * 2000-05-17 2004-01-11 Dynic Corp Hygroscopic molded material
JP4953525B2 (ja) 2001-07-23 2012-06-13 パナソニック株式会社 非水電解質二次電池およびその製造法
US7041412B2 (en) 2001-07-23 2006-05-09 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
KR101123061B1 (ko) * 2006-10-23 2012-03-15 주식회사 엘지화학 향상된 안전성의 이차전지
KR101132169B1 (ko) * 2008-04-02 2012-04-05 주식회사 엘지화학 전지케이스용 라미네이트 시트 및 이를 포함하고 있는 리튬이차전지
JP2011249269A (ja) * 2010-05-31 2011-12-08 Panasonic Corp ラミネート電池
CN103682431A (zh) * 2012-09-21 2014-03-26 海洋王照明科技股份有限公司 凝胶聚合物电解质及其制备方法、电化学电源及其应用
CN102872703A (zh) * 2012-10-03 2013-01-16 黄立维 一种气液吸收结合微电解净化有害气体的装置及其工艺
KR20150091898A (ko) * 2014-02-04 2015-08-12 주식회사 코캄 안전성이 향상된 리튬 이차전지 모듈 및 리튬 이차전지 팩
KR20150126129A (ko) 2014-05-02 2015-11-11 주식회사 엘지화학 안전성이 향상된 이차전지 케이스 및 이를 포함하고 있는 리튬 이차전지
KR20150108040A (ko) 2015-09-11 2015-09-24 주식회사 코캄 리튬 이차전지용 세퍼레이터 및 그를 포함하는 리튬 이차전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004227818A (ja) * 2003-01-20 2004-08-12 Sony Corp 非水電解質電池
KR20120042752A (ko) * 2010-04-28 2012-05-03 파나소닉 주식회사 이차전지
JP2012204131A (ja) * 2011-03-25 2012-10-22 Kurita Water Ind Ltd 二次電池からの噴出ガス中の一酸化炭素の除去材
KR20140089706A (ko) * 2013-01-07 2014-07-16 한국과학기술원 Azo기로 공유 결합된 다공성 유기 고분자 및 그 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATEL, HASMUKH A. ET AL.: "Unprecedented High-temperature C02 Selectivity in N2-phobic Nanoporous Covalent Organic Polymers", NATURE COMMUNICATIONS, vol. 4, no. 1357, 2013, pages 1 - 8, XP055396487 *
See also references of EP3352286A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11581592B2 (en) 2018-01-09 2023-02-14 Lg Energy Solution, Ltd. Battery case having gas adsorption layer
JP2021529870A (ja) * 2018-07-06 2021-11-04 ハイドロ−ケベック グリシジル含有ポリマー、それらを含むポリマー組成物、およびそれらの電気化学セルでの使用
JP7320049B2 (ja) 2018-07-06 2023-08-02 ハイドロ-ケベック グリシジル含有ポリマー、それらを含むポリマー組成物、およびそれらの電気化学セルでの使用

Also Published As

Publication number Publication date
EP3352286A4 (en) 2018-09-05
US10727541B2 (en) 2020-07-28
CN108352585B (zh) 2021-05-25
PL3352286T3 (pl) 2020-12-14
JP6575832B2 (ja) 2019-09-18
EP3352286B1 (en) 2020-09-09
KR101956334B1 (ko) 2019-03-08
US20190252737A1 (en) 2019-08-15
KR20170082328A (ko) 2017-07-14
EP3352286A1 (en) 2018-07-25
CN108352585A (zh) 2018-07-31
JP2018530878A (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
WO2017119750A1 (ko) 가스 흡착성 고분자를 포함하고 있는 이차전지
WO2019139272A1 (ko) 가스 흡착층을 포함하는 전지케이스
WO2012099321A1 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
US9935346B2 (en) Battery module
WO2012165758A1 (ko) 리튬 이차전지
WO2011159051A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2000013251A1 (fr) Accumulateur et dispositif au lithium
WO2014038891A1 (ko) 이차전지
KR102074051B1 (ko) 비수전해질 이차 전지
JP7162148B2 (ja) 負極活性材料、その製造方法、及びそれに関連した二次電池、電池モジュール、電池パック及び装置
WO2014017864A1 (ko) 이차전지
WO2019155452A2 (ko) 리튬 금속 이차전지 및 이를 포함하는 전지모듈
WO2015065090A1 (ko) 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지
WO2012118338A2 (ko) 일체형 전극조립체 및 이를 이용한 이차전지
WO2020101353A1 (ko) 파우치 케이스 및 이를 포함하는 파우치형 이차 전지의 제조 방법
WO2019132403A1 (ko) Eol 셀의 재생방법
WO2020242257A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
KR20170075482A (ko) 전기화학소자용 전극 및 상기 전극을 포함하는 전극 조립체
WO2014010872A1 (ko) 이차전지
KR102468592B1 (ko) 부극 활성 재료, 그 제조 방법 및 그에 관련된 이차 전지, 전지 모듈, 전지 팩 및 장치
WO2023120984A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2021085798A1 (ko) 가압 지그 및 이를 이용한 이차전지 제조 방법
WO2023090642A1 (ko) 가스 흡착 소재를 포함하는 이차전지 및 이차전지 모듈
WO2023033405A1 (ko) 전고체 전지용 전극
WO2014010908A1 (ko) 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17736122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018516727

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE