WO2014017864A1 - 이차전지 - Google Patents

이차전지 Download PDF

Info

Publication number
WO2014017864A1
WO2014017864A1 PCT/KR2013/006710 KR2013006710W WO2014017864A1 WO 2014017864 A1 WO2014017864 A1 WO 2014017864A1 KR 2013006710 W KR2013006710 W KR 2013006710W WO 2014017864 A1 WO2014017864 A1 WO 2014017864A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
separator
electrode assembly
pattern processing
Prior art date
Application number
PCT/KR2013/006710
Other languages
English (en)
French (fr)
Inventor
김명훈
임효성
김영석
윤석환
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2014017864A1 publication Critical patent/WO2014017864A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery.
  • secondary batteries are batteries that can be repeatedly used through a reverse charging and discharging process that converts chemical energy into electrical energy. Examples thereof include nickel-cadmium (Ni-Cd) batteries and nickel-hydrogen (Ni-MH) batteries. Batteries, lithium-metal batteries, lithium-ion (Ni-Ion) batteries, and lithium-ion polymer batteries (Li-Ion Polymer Battery, hereinafter referred to as "LIPB").
  • the secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator, and stores and generates electricity by using voltage differences between different positive and negative electrode materials.
  • discharge means to move electrons from a high voltage cathode to a low anode (generates electricity by the voltage difference between the anodes), and charge moves electrons from the anode to the cathode again.
  • the anode material receives electrons and lithium ions. To return to the original metal oxide. That is, when the secondary battery is charged, the charging current flows as the metal atoms move from the positive electrode to the negative electrode through the separator, and when discharged, the metal atoms move from the negative electrode to the positive electrode and the discharge current flows.
  • secondary batteries have attracted attention as energy sources that are widely used in IT products, automobile fields, and energy storage fields.
  • IT product field secondary batteries can be used continuously for a long time, miniaturization and weight reduction are required, and the automotive field demands high power, durability, and stability to solve the explosion risk.
  • Energy storage is to store the surplus power produced by wind, solar power, etc., can be applied to a secondary battery of a more relaxed condition as used as a fixed type.
  • lithium secondary batteries using carbon as a negative electrode instead of lithium metal have been developed, and have been used for more than 500 cycles and short charging times of 1 to 2 hours.
  • the lithium secondary battery has the highest unit cell voltage (3.0 to 3.7V) and excellent energy density among the existing secondary batteries, and may have characteristics optimized for mobile devices.
  • the lithium secondary battery is generally classified into a liquid electrolyte battery and a polymer electrolyte battery according to the type of electrolyte.
  • a battery using a liquid electrolyte is called a lithium ion battery
  • a battery using a polymer electrolyte is called a lithium polymer battery.
  • the exterior material of the lithium secondary battery may be formed in various kinds, and typical types of exterior materials include cylindrical, prismatic, and pouches.
  • an electrode assembly in which a positive electrode plate, a negative electrode plate, and a separator (separator) interposed therebetween is stacked or wound is provided.
  • the secondary battery according to the prior art does not have a configuration for discharging gas on the electrode assembly accommodated inside the secondary battery packaging material, as disclosed in the patent document of the following prior art document, and therefore, There was a problem that smooth discharge is difficult. In particular, there is a problem that the gas is not properly discharged in the required section due to the separator surrounding the electrode assembly. As a result, the explosion risk of the electrode assembly itself may increase, the operational reliability of the secondary battery may also be deteriorated, and the battery assembly may have a fatal effect on the secondary battery operation performance such as uncharged by residual gas.
  • Patent Document 1 KR2008-0052869 A
  • the present invention is to solve the above-mentioned problems of the prior art, one aspect of the present invention by processing a predetermined pattern on the separator forming the electrode assembly, while smoothing the gas discharge inside the electrode assembly, the electrolyte solution impregnation process In order to more efficiently fill the electrolyte inside the electrode assembly, and to provide a secondary battery to evenly distribute the overall electrolyte solution.
  • a secondary battery according to an embodiment of the present invention, the first electrode, the second electrode stacked to face the first electrode; And a separator formed between the first and second electrodes facing each other, wherein the separator is wound to surround the outer surface of the first electrode or the second electrode.
  • the separator includes the first electrode and It may include an electrode assembly formed with at least one pattern processing for discharging the gas generated from the second electrode.
  • the separator may be formed between the first and second electrodes facing each other, and may have a zigzag shape such that a folding part is formed to be folded a plurality of times so that the corresponding surfaces face each other. have.
  • the pattern processing portion may be formed in each of the folding portion formed on one side or the other side of the separator.
  • the electrode assembly may be formed in a stacking manner.
  • the pattern processing unit may be formed at both ends of the electrode assembly such that the gas is discharged in a direction perpendicular to the stacking direction of the electrode assembly formed by stacking the first electrode and the second electrode.
  • the pattern processing part is formed in the separator surrounding the first electrode and the second electrode, and the separator may discharge the gas generated from the first electrode and the second electrode. It can be formed through.
  • the secondary battery may further include an exterior member having a sealing portion sealed along an edge to accommodate the electrode assembly therein.
  • the exterior material may be formed in a pouch type or a square shape.
  • the first electrode may further include a positive electrode current collector plate and a positive electrode active material layer.
  • the second electrode may further include a negative electrode current collector plate and a negative electrode active material layer.
  • a secondary battery comprising: a first tab portion protruding from one side of the first electrode; And a second tab portion protruding from one side of the second electrode.
  • the pattern processing part is processed in the folding part formed in the zigzag-type separation membrane in the stack type electrode assembly, so that the discharge direction of gas generated from the inside of the electrode assembly coincides with the position where the pattern processing part is formed. There is an effect that can release the gas.
  • the pattern processing part processed at both ends of the electrode assembly smoothly circulates the electrolyte through the processed pattern processing parts at both ends in the pressurization and depressurization process of the electrode assembly for the injection of the electrolyte, thereby more effectively impregnating the electrolyte in the electrode assembly. It has an effect.
  • FIG. 1 is an exploded perspective view of an electrode assembly according to an embodiment of the present invention
  • FIG. 2 is a perspective view of the electrode assembly according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of an electrode assembly according to an embodiment of the present invention.
  • FIGS. 4 to 9 are views illustrating a manufacturing process of a secondary battery including an electrode assembly according to an embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of an electrode assembly according to an embodiment of the present invention
  • Figure 2 is a perspective view of the electrode assembly according to an embodiment of the present invention
  • Figure 3 is a cross-sectional view of the electrode assembly according to an embodiment of the present invention to be.
  • a secondary battery includes a first electrode 11 and a second electrode 12 stacked to face the first electrode 11; And a separator formed between the first surface of the first electrode 11 and the second electrode 12, the laminated surface of the second electrode 12 facing the outer surface of the first electrode 11 or the second electrode 12. 13, wherein the separator 13 has an electrode assembly 10 having at least one pattern processing part 20a for discharging gas generated from the first electrode 11 and the second electrode 12. It may include.
  • the electrode assembly 10 is formed to include a first electrode 11, a second electrode 12, and a separator 13, and a separator between the first electrode 11 and the second electrode 12 is laminated. 13) is formed. According to the method of combining the first electrode 11, the second electrode 12 and the separator 13, it is a winding type (Jelly-roll), or a stack type / stack folding type, etc. It can be formed as. In the following, in particular, an embodiment of the present invention will be described based on the structure of electrode assemblies stacked in a stacking manner.
  • first electrode 11 and the second electrode 12 are defined as the positive electrode plate 11 and the negative electrode plate 12, respectively, for convenience, and the first tab portion 11a and the second tab portion 12a respectively correspond to the electrodes.
  • the positive electrode tab and the negative electrode tab will be defined and described. Since the order is arbitrary, it can be selected and applied to each of those skilled in the art.
  • the positive electrode plate 11 may be formed to include a first tab part 11a, a positive electrode current collector plate 11b, and a positive electrode active material layer 11c that protrude on one side.
  • the positive electrode current collector plate 11b is formed of a material having high conductivity, and is not particularly limited as long as it does not cause chemical change. For example, aluminum, nickel, titanium, calcined carbon, or the like may be used as the positive electrode current collector plate 11b.
  • the positive electrode plate 11 is composed of a positive electrode active material layer 11c coated with an active material and the like and an uncoated positive electrode non-coating portion.
  • the positive electrode active material layer 11c may further include a binder and a conductive material for binding the positive electrode active material and the positive electrode active material.
  • the positive electrode active material layer 11c may be formed by adding a positive electrode active material, a binder, and a conductive material to a solvent to form a slurry, and then applying the slurry to the positive electrode current collector plate 11b.
  • the solvent that can be used is NMP (N-Methyl-2-Pyrrolidone), the positive electrode active material, including lithium cobalt oxide (LiCoO 2 ), ternary layered lithium metal oxide (LiMO 2 ), including lithium manganese oxide A spinel-based material (LiM 2 O 4 ) represented by (LiMn 2 O 4 ), or an olivine-based material (LiMPO 4 ) such as lithium iron phosphate (LiFePO 4 ) may be used, and as the conductive material, acetyl As the black, carbon black, graphite, or binder, polyvinylidene fluoride may be used, but is not limited thereto.
  • NMP N-Methyl-2-Pyrrolidone
  • the positive electrode active material including lithium cobalt oxide (LiCoO 2 ), ternary layered lithium metal oxide (LiMO 2 ), including lithium manganese oxide
  • LiM 2 O 4 represented by (LiMn 2 O
  • the first tab portion 11a may be formed of nickel emdd.
  • the first tab portion 11a may be attached to the upper surface of the positive electrode non-coating portion by any one of ultrasonic welding, resistance welding, and laser welding.
  • the negative electrode plate 12 may include a second tab part 12a, a negative electrode current collector plate 12b, and a negative electrode active material layer 12c protruding from one side.
  • the negative electrode plate 12 includes a negative electrode active material layer 12c formed by applying a negative electrode active material to the negative electrode current collector plate 12b and a negative electrode non-coated portion to which the negative electrode active material is not coated.
  • the negative electrode current collector plate 12b has conductivity, and may be formed of, for example, copper, stainless steel, aluminum, or nickel.
  • the negative electrode active material layer 12c is made of a negative electrode active material, and the negative electrode active material includes a carbon (C) -based material, Si, Sn, tin oxide, tin alloy composites, transition metal oxides, or lithium metals. An oxide or the like may be used, but is not limited thereto.
  • the separator 13 may be disposed to surround the outer surface of the first electrode 11 or the second electrode 12. Particularly, in the present invention, at least one pattern processing portion 20a may be formed on the separator 13 in the form of a sheet in order to discharge gas generated from the first electrode 11 and the second electrode 12. . As shown in FIG. 1, the separation membrane 13 may be formed in a zigzag form to form the folding portions 20 that are folded multiple times.
  • the separator 13 may be formed to extend in a sheet shape, and a porous film, a nonwoven fabric, or the like including polyethylene, polypropylene, or polyvinylidene fluoride may be used, but the material is not limited thereto.
  • the separator 13 may be formed between the stacked surfaces of the first electrode 11 and the second electrode 12 facing each other, and may be formed in a zigzag form so that the same surfaces thereof face each other.
  • the first electrode 11 and the second electrode 12 may be alternately inserted and stacked on both sides of the separator 13 having a zigzag shape to form the electrode assembly 10.
  • one side end of the separator 13 may be adhered to, or may be finished using a separate tape (not shown).
  • the pattern processing part 20a of both ends of the electrode assembly 10 including the first electrode 11, the second electrode 12, and the separator 13 may be formed. Can be processed.
  • the pattern processing part 20a is formed through the separation membrane 13, and serves to discharge gas that may be generated from the first electrode 11 or the second electrode 12 to the outside. Therefore, it would be desirable to be processed so that a space connected to the outside from the first electrode 11 or the second electrode 12 is formed.
  • the pattern processing unit 20a As described above in the separator 13, it is possible to more secure the reliability of the degassing operation to discharge the harmful gas in the initial stage of the secondary battery manufacturing process described later, Residual gas may be left in the electrode assembly of the manufactured secondary battery. Through this, it is possible to prevent the explosion of the secondary battery in advance, it can greatly contribute to the stability as well as the operating performance of the secondary battery.
  • the pattern processing portions 20a are formed at both ends of the electrode assembly 10 to form an electrolyte.
  • Impregnation of the electrolyte can be made easier by allowing this smooth circulation. That is, since the electrolyte flows from both ends through the pattern processing part 20a at both ends, it is possible to form a more effective and balanced electrolyte impregnation distribution in the electrode assembly 10.
  • the electrode assembly 10 of the secondary battery according to an embodiment of the present invention can be formed in a stacking manner, by processing the pattern processing portion 20a of the separator 13 so as to be located at both ends of the electrode assembly, the inside of the electrode assembly It is possible to smoothly discharge the gas that can be generated from.
  • the processing of the pattern processing portion 20a can process a large number of circular holes, as shown in the drawing, but the shape thereof is in the form of a line along the outer surface of the separator 20 and the folding portion 20. Since it may be formed, it is not particularly limited to the shape and shape of the pattern processing portion 20a shown in the drawings of the present specification.
  • the direction in which the gas is discharged that is, the first electrode 11 and the second electrode 12 are stacked. It may be desirable to process the pattern processing portion 20a in a direction perpendicular to the direction (see FIG. 3).
  • the present invention may further include an exterior member 30 for accommodating the electrode assembly 10 therein.
  • the exterior material 30 serves to accommodate the electrode assembly 10, and the sealing part 32 sealed along the edge is formed.
  • the material of the exterior material 30 may be a pouch (a pouch) which is aluminum, but the shape of the exterior material 30 is not particularly limited.
  • the exterior material 30 may include a cover covering the open upper surface of the accommodating part 31 and the accommodating part 31 in which the electrode assembly 10 is accommodated together with the electrolyte.
  • the exterior member 30 has an edge of the exterior member 30 including the accommodation part 31 in a state in which the first tab part 11a and the second tab part 12a of the electrode assembly 10 accommodated therein protrude outwards. Opposite edges of the cover and the cover can be joined to form a sealing portion 32 to be sealed.
  • FIGS. 4 to 9 are views illustrating a manufacturing process of a secondary battery including an electrode assembly 10 according to an embodiment of the present invention.
  • the gas discharge and other processes of the secondary battery of the present invention will be described.
  • an exterior member 30 for accommodating the electrode assembly 10 is prepared.
  • the exterior member 30 may be formed to include a discharge part 33 for discharging gas in a degassing step to be described later.
  • the electrode assembly 10 is seated to be inserted into the accommodating part 31 of the packaging material 30.
  • the first tab portion 11a and the second tab portion 12a of the electrode assembly 10 are connected to an external power source while protruding to the outside of the exterior member 30.
  • the electrolyte is impregnated onto the electrode assembly 10 accommodated in the packaging material 30.
  • the secondary battery may be filled in the exterior material 30 in the liquid state of the electrolyte according to the type.
  • the electrolyte may be filled into the exterior material 30 in a liquid state, and then a polymerizable component may be added to finally make the electrolyte in a polymer state.
  • the electrolyte is filled inside the enclosure, and then the first terminals are provided at the first tab portion 11a and the second tab portion 12a for pre-charging.
  • the power connection part 40 including the 41 and the second terminal 42 is connected.
  • gas generated from the inside of the electrode assembly 10 may be discharged through the discharge part 33 of the exterior material 30 in this step.
  • the reliability of the secondary battery including the exterior material 30 may be improved.
  • the separator 13 surrounding the electrode assembly 10 may be an obstacle to the discharge of the gas generated from the electrode inside the electrode assembly 10. Therefore, in the related art, the gas generated in the electrode assembly 10 may not be smoothly discharged in the pre-charge step, thereby increasing the risk of deterioration and explosion during charging of the secondary battery to be manufactured. 3, the gas may be discharged to both ends of the electrode assembly 10, and the gas is discharged through the break 33a of the discharge part 33 of the exterior material 30 of FIG. 7. Not only can it be smoother, there is an advantage that can further improve the reliability of the gas removal generated inside the electrode assembly 10.
  • the manufacture of the secondary battery is completed. Thereafter, the battery pack including the electrode assembly 10 may be applied to related devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명의 일실시예에 따른 이차전지는, 제1 전극, 상기 제1 전극에 대면되도록 적층되는 제2 전극; 및 상기 제1 전극 및 상기 제2 전극이 대면되는 적층면 사이에 형성되며, 상기 제1 전극 또는 상기 제2 전극 외측면을 감싸도록 취되는 배치되는 분리막;을 포함하고, 상기 분리막에는 상기 제1 전극 및 상기 제2 전극으로부터 발생되는 가스가 배출되기 위한 적어도 하나 이상의 패턴가공부가 형성된 전극조립체를 포함할 수 있다. 본 발명에 따르면, 전극조립체를 감싸도록 배치되어 있는 분리막에 일정 패턴을 가공함으로써 전극조립체 내부의 가스배출을 원활히 할 수 있는 효과가 있다.

Description

이차전지
본 발명은 이차전지에 관한 것이다.
일반적으로 이차전지는 화학에너지를 전기에너지로 변환하는 방전과 역방향인 충전과정을 통하여 반복 사용이 가능한 전지이며, 그 종류로는 니켈-카드뮴(Ni-Cd) 전지, 니켈-수소(Ni-MH) 전지, 리튬-금속 전지, 리튬-이온(Ni-Ion) 전지 및 리튬-이온 폴리머 전지(Li-Ion Polymer Battery, 이하 "LIPB"라 함) 등이 있다.
이차전지는 양극, 음극, 전해질, 분리막으로 구성되며, 서로 다른 양극 및 음극 소재의 전압차이를 이용하여 전기를 저장 및 발생시킨다. 여기서, 방전이란 전압이 높은 음극에서 낮은 양극으로 전자를 이동시키는 것이며(양극의 전압 차이만큼 전기를 발생), 충전이란 전자를 다시 양극에서 음극으로 이동시키는 것으로 이때 양극물질은 전자와 리튬이온을 받아들여 원래의 금속산화물로 복귀하게 된다. 즉, 이차전지는 충전될 때 금속 원자가 분리막을 통하여 양극에서 음극으로 이동함에 따라 충전 전류가 흐르게 되고, 반대로 방전될 때 금속 원자는 음극에서 양극으로 이동하며 방전 전류가 흐르게 된다.
최근 이차전지는 IT제품, 자동차분야 및 에너지 저장분야 등에서 널리 사용됨으로써 각광받는 에너지원으로 주목받고 있다. IT제품 분야에서 이차전지는 장시간 연속사용이 가능하며, 소형화, 경량화가 요구되고 있으며, 자동차 분야에서는 고출력, 내구성 및 폭발위험을 해소하기 위한 안정성 등을 요구하고 있다. 에너지 저장분야는 풍력, 태양광 발전 등으로 생산한 잉여전력을 저장하는 것으로, 고정형으로 사용됨에 따라 보다 완화된 조건의 이차전지를 적용할 수 있다. 특히, 리튬 이차전지는 1970년대 초부터 연구개발이 진행되었고, 1990년 리튬금속 대신 탄소를 음극으로 이용한 리튬 이온전지가 개발되면서 실용화되었으며, 500회 이상의 사이클 수명과 1 내지 2시간의 짧은 충전시간을 특징으로 하여 이차전지 중 가장 판매 신장률이 높고 니켈-수소 전지에 비해서 30 내지 40% 정도 가벼워 경량화가 가능하다. 또한, 리튬 이차전지는 현존하는 이차전지 중 단위전지 전압(3.0 내지 3.7V)이 가장 높고 에너지밀도가 우수하여, 이동기기에 최적화된 특성을 가질 수 있다.
이러한 리튬 이차전지는 일반적으로 전해액의 종류에 따라 액체 전해질 전지, 고분자 전해질 전지로 분류되며, 액체 전해질을 사용하는 전지를 리튬 이온전지라 하고, 고분자 전해질을 사용하는 전지를 리튬 폴리머전지라 한다. 또한, 리튬 이차전지의 외장재는 여러가지 종류로 형성될 수 있고, 대표적인 외장재의 종류는 원통형(Cylindrical), 각형(Prismatic), 파우치(Pouch) 등이 있다. 상기 리튬 이차전지의 외장재 내부에는 양극판, 음극판 및 그 사이에 개재되는 분리막(세퍼레이터, Separator)가 적층되거나 권취된 전극조립체가 구비된다.
한편, 이차전지의 제조공정에서는 내부 전지로부터 발생되는 가스를 배출시키는 것이 이차전지의 안정성이나 적용되는 디바이스의 작동 신뢰성을 위해 무엇보다도 중요한 요소이다. 그러나, 종래기술에 따른 이차전지는 하기 선행기술문헌의 특허문헌에 개시된 바와 같이, 이차전지 외장재 내부에 수용되는 전극조립체상에 가스 배출을 위한 구성이 없고, 따라서, 전극조립체 내부로부터 발생된 가스의 원활한 배출이 어려운 문제점이 있었다. 특히, 전극조립체를 감싸고 있는 분리막으로 인해 필요한 구간에서 가스가 적절하게 배출되지 못하는 문제점이 있었다. 이로 인해, 전극조립체 자체의 폭발위험성이 증가하고, 이차 전지의 작동 신뢰성 또한 저하될 수 있으며, 전극조립체 내부에 잔여가스로 인한 미충전 등 이차전지 작동성능에도 치명적인 영향을 미치는 문제점이 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR2008-0052869 A
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 일 측면은 전극조립체를 형성하고 있는 분리막에 일정 패턴을 가공함으로써, 전극조립체 내부의 가스배출을 원활히 함과 동시에, 전해액 함침 과정에서 전해액을 전극조립체 내부에 보다 효과적으로 충진하고, 전체적인 전해액 분포를 고르게 하기 위한 이차전지를 제공하기 위한 것이다.
본 발명의 일실시예에 따른 이차전지는, 제1 전극, 상기 제1 전극에 대면되도록 적층되는 제2 전극; 및 상기 제1 전극 및 상기 제2 전극이 대면되는 적층면 사이에 형성되며, 상기 제1 전극 또는 상기 제2 전극 외측면을 감싸도록 권취되는 분리막;을 포함하고, 상기 분리막에는 상기 제1 전극 및 상기 제2 전극으로부터 발생되는 가스가 배출되기 위한 적어도 하나 이상의 패턴가공부가 형성된 전극조립체를 포함할 수 있다.
본 발명의 일실시예의 이차전지로써, 상기 분리막은 상기 제1 전극 및 상기 제2 전극이 마주보는 적층면 사이에 형성되고, 대응면이 상호 마주하도록 복수회 접히는 폴딩부가 형성되도록 지그재그 형태로 이루어질 수 있다.
본 발명의 일실시예의 이차전지로써, 상기 패턴가공부는 상기 분리막의 일측 또는 타측에 형성된 폴딩부에 각각 형성될 수 있다.
본 발명의 일실시예의 이차전지로써, 상기 전극조립체는 스택방식으로 형성될 수 있다.
본 발명의 일실시예의 이차전지로써, 상기 패턴가공부는 상기 제1 전극 및 상기 제2 전극이 적층되어 형성된 전극조립체의 적층방향에 수직한 방향으로 가스가 배출되도록 전극조립체 양측단에 형성될 수 있다 .
본 발명의 일실시예의 이차전지로써, 상기 패턴가공부는 상기 제1 전극 및 제2 전극을 감싸는 상기 분리막에 형성되고, 상기 제1 전극 및 상기 제2 전극으로부터 발생되는 가스가 배출될 수 있도록 상기 분리막을 관통하여 형성될 수 있다.
본 발명의 일실시예의 이차전지로써, 상기 전극조립체를 내부에 수용하도록 테두리를 따라서 밀봉된 실링부가 형성된 외장재를 더 포함할 수 있다.
본 발명의 일실시예의 이차전지로써, 상기 외장재는 파우치형 또는 각형으로 형성될 수 있다.
본 발명의 일실시예의 이차전지로써, 상기 제1 전극은 양극 집전판 및 양극 활물질층을 더 포함할 수 있다.
본 발명의 일실시예의 이차전지로써, 상기 제2 전극은 음극 집전판 및 음극 활물질층을 더 포함할 수 있다.
본 발명의 일실시예의 이차전지로써, 상기 제1 전극의 일측면상에 돌출되어 형성되는 제1 탭부; 및 상기 제2 전극의 일측면상에 돌출되어 형성되는 제2 탭부를 더 포함할 수 있다.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다.
본 발명에 따르면, 전극조립체를 감싸도록 배치되어 있는 분리막에 일정 패턴을 가공함으로써 전극조립체 내부의 가스배출을 원활히 할 수 있는 효과가 있다.
또한, 스택 방식의 전극조립체에서 지그재그 형태의 분리막에 형성된 폴딩부에 패턴가공부를 가공하여, 전극조립체 내부로부터 발생되는 가스의 배출방향과 패턴가공부의 형성위치를 일치시킴으로써, 보다 원활하게 전극조립체 내부의 가스를 배출할 수 있는 효과가 있다.
또한, 전극조립체 양단부에 가공된 패턴가공부는 전해액 주입을 위한 전극조립체의 가압 및 감압 공정에서 양끝단의 가공된 패턴가공부를 통해 전해액이 원활하게 순환함으로써, 보다 효과적으로 전극조립체내에 전해액을 함침시킬 수 있는 효과가 있다.
또한, 이치전지의 전극조립체 내부의 유해가스를 보다 효과적으로 제거함으로써, 이차전지의 안정적인 작동성능을 확보할 수 있는 효과가 있다.
또한, 이차전지의 작동성능의 신뢰성을 확보함에 따라, 이차전지가 적용될 수 있는 각종 디바이스의 작동성능 및 그 신뢰성을 함께 향상시킬 수 있는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 전극조립체의 분리 사시도;
도 2는 본 발명의 일실시예에 따른 전극조립체의 결합사시도;
도 3은 본 발명의 일실시예에 따른 전극조립체의 단면도; 및
도 4 내지 도 9는 본 발명의 일실시예에 따른 전극조립체를 포함한 이차전지의 제조공정을 나타내는 도면이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, "일면", "타면", "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 전극조립체의 분해 사시도, 도 2는 본 발명의 일실시예에 따른 전극조립체의 결합사시도이고, 도 3은 본 발명의 일실시예에 따른 전극조립체의 단면도이다.
본 발명의 일실시예에 따른 이차전지는, 제1 전극(11), 상기 제1 전극(11)에 대면되도록 적층되는 제2 전극(12); 및 상기 제1 전극(11) 및 상기 제2 전극(12)이 대면되는 적층면 사이에 형성되며, 상기 제1 전극(11) 또는 상기 제2 전극(12) 외측면을 감싸도록 배치되는 분리막(13)을 포함하고, 상기 분리막(13)에는 상기 제1 전극(11) 및 상기 제2 전극(12)으로부터 발생되는 가스가 배출되기 위한 적어도 하나 이상의 패턴가공부(20a)가 형성된 전극조립체(10)를 포함할 수 있다.
전극조립체(10)는 제1 전극(11), 제2 전극(12) 및 분리막(13)을 포함하여 형성되며, 제1 전극(11)과 제2 전극(12)이 적층되는 사이에 분리막(13)이 형성된다. 제1 전극(11), 제2 전극(12) 및 분리막(13)을 결합하는 방법에 따라, 젤리-롤(Jelly-roll)로 권취된 타입(Winding type)이거나, 스택형/ 스택폴딩형 등으로 형성될 수 있다. 이하에서는, 특히, 스택방식으로 적층된 전극조립체의 구조를 기준으로 본 발명의 일실시예를 설명하기로 한다.
여기서, 제1 전극(11) 및 제2 전극(12)은 편의상 각각 양극판(11) 및 음극판(12)으로 정의하고, 제1 탭부(11a) 및 제2 탭부(12a)는 각각 전극돠 대응되어 양극탭부와 음극탭부로 정의하여 설명하기로 하며, 그 순서는 임의적인 것이므로 각각 어느 것을 택하여 적용하는 것도 당업자에 의해서 가능하다.
양극판(11)은 일측면상에 돌출되어 형성되는 제1 탭부(11a), 양극 집전판(11b) 및 양극 활물질층(11c)을 포함하여 형성될 수 있다. 양극 집전판(11b)은 높은 도전성을 가진 물질로 형성되는 것으로, 화학적 변화를 유발하지 않는 것이면 특별히 한정되지 않는다. 예를 들어, 양극 집전판(11b)으로는 알루미늄, 니켈, 티탄, 소성 탄소 등이 사용될 수 있다. 양극판(11)양극판(11) 활물질 등이 도포된 양극 활물질층(11c)과 도포되지 않은 양극 무지부로 이루어진다. 양극 활물질층(11c)은 양극 활물질과 양극 활물질을 결착시키는 바인더 및 도전재를 더 포함할 수 있다. 양극 활물질층(11c)은 용매에 양극 활무질, 바인더 및 도전재를 첨가하여 슬러리 형태로 만든 후, 상기 슬러리를 양극 집전판(11b)에 도포하여 형성될 수 있다.
여기서, 사용될 수 있는 용매는 NMP(N-Methyl-2-Pyrrolidone), 양극 활물질로는 코발트산리튬(LiCoO2), 3원계 등의 층상계 구조의 리튬금속산화물(LiMO2)을 비롯하여 리튬망간산화물(LiMn2O4)로 대표되는 스피넬계 재료(LiM2O4), 또는 인산철리튬(LiFePO4) 같은 올리빈(Olivine)계 재료(LiMPO4)가 이용될 수 있고, 도전재로는 아세틸블랙, 카본 블랙, 흑연, 바인더로는 폴리불화비닐리덴을 사용할 수 있으나,이에 한정되는 것은 아니다.
제1 탭부(11a)는 니켈 emdd으로 형성될 수 있다. 제1 탭부(11a)는 초음파 용접, 저항용접 및 레이저 용접 중 어느 하나의 방식에 의하여 양극무지부의 상면에 부착될 수 있다.
음극판(12)은 일측면상에 돌출되어 형성되는 제2 탭부(12a), 음극 집전판(12b) 및 음극 활물질층(12c)을 포함하여 형성될 수 있다. 음극판(12)은 음극 집전판(12b)에 음극 활물질을 도포하여 형성된 음극 활물질층(12c)과 상기 음극 활물질이 도포되지 않은 음극 무지부로 이루어진다. 음극 집전판(12b)은 도전성을 가진 것으로, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈 등으로 형성될 수 있다. 음극 활물질층(12c)은 음극 활물질로 이루어지는데, 음극 활물질로는 탄소(C) 계열 물질, Si, Sn, 틴 옥사이드(Tin Oxide), 틴 합금 복합체(Composite Tin Alloys), 전이 금속 산화물 또는 리튬 금속 산화물 등이 이용될 수 있지만, 이에 한정되는 것은 아니다.
분리막(13)은 제1 전극(11) 또는 제2 전극(12) 외측면을 감싸도록 배치될 수 있다. 특히, 본 발명에서는 상기 제1 전극(11) 및 상기 제2 전극(12)으로부터 발생되는 가스가 배출되기 위해 적어도 하나 이상의 패턴가공부(20a)가 시트 형태의 분리막(13)상에 형성될 수 있다. 분리막(13)은, 도 1에 도시된 바와 같이, 지그재그 형태로 형성됨으로써, 복수회 접히는 폴딩부(20)를 각각 형성할 수 있다. 분리막(13)은 시트형으로 길게 연장되어 형성될 수 있으며, 폴리에틸렌, 폴리프로필렌 또는 폴리불화비닐리덴을 포함하는 다공질 필름, 부직포 등을 사용할 수 있으나, 그 재질에 한정되는 것은 아니다.
도 1에 도시된 바와 같이, 분리막(13)은 제1 전극(11) 및 제2 전극(12)이 마주보는 적층면 사이에 형성되며, 상호 동일면이 마주보도록 지그재그 형태로 형성될 수 있다. 제1 전극(11)과 제2 전극(12)은 지그재그 형태로 이루어진 분리막(13)에 양 측면에서 교호적으로 삽입되어 적층됨으로써 전극조립체(10)를 형성할 수 있다. 제1 전극(11) 및 제2 전극(12)의 적층이 끝나면, 분리막(13)의 일측단을 접착하거나, 별도의 테이프(도면 미도시) 등을 사용하여 마감작업할 수 있다.
도 2 및 도 3에 도시된 바와 같이, 본 발명은 제1 전극(11), 제2 전극(12) 및 분리막(13)을 포함하는 전극조립체(10)의 양 끝단의 패턴가공부(20a)가 가공될 수 있다. 패턴가공부(20a)는 분리막(13)을 관통하여 형성되며, 제1 전극(11) 또는 제2 전극(12)으로부터 발생될 수 있는 가스를 외부로 배출시키는 역할을 한다. 그러므로, 제1 전극(11) 또는 제2 전극(12)으로부터 외부로 연결되는 공간이 형성되도록 가공되는 것이 바람직할 것이다.
분리막(13)에 상기와 같은 패턴가공부(20a)를 가공함으로써, 후술하는 이차전지의 제조공정 중 초기의 유해 가스를 배출시키는 디개싱(De-gassing)작업의 신뢰성을 보다 확보할 수 있으며, 최종 제작된 이차전지의 전극조립체 내부에 잔여 가스가 남지 않게 할 수 있다. 이를 통해 이차전지의 폭발 등을 사전에 예방할 수 있어, 이차전지의 작동 성능뿐만 아니라 안정성에도 크게 기여할 수 있다. 또한, 전극조립체(10)를 외장재(30)에 수용하고, 전해액을 함침시키는 공정에서, 가압 및 감압이 번갈아 일어나는 공정에서, 전극조립체(10) 양 끝단에 각각 패턴가공부(20a)를 형성하여 전해질이 원활히 순환할 수 있도록 함으로써 전해질의 함침이 보다 용이하게 이루어 질 수 있다. 즉, 양 끝의 패턴가공부(20a)를 통해 전해질이 수시로 양 단으로 흐르게 됨으로써, 전극조립체(10) 내부에 보다 효과적이고, 균형있는 전해질 함침 분포를 형성할 수 있다.
특히, 본 발명의 일실시예에 따른 이차전지의 전극조립체(10)는 스택방식으로 형성될 수 있어, 분리막(13)의 패턴가공부(20a)를 전극조립체 양단에 위치되도록 가공함으로써, 전극조립체 내부로부터 발생될 수 있는 가스를 원활히 배출할 수 있다. 특히, 패턴가공부(20a)의 가공은 도면에 도시된 바와 같이, 원형의 홀을 다수 가공할 수 있지만, 그 형태는 분리막(13) 폴딩부(20)의 외측면을 따라 라인(line)형태로 형성될 수도 있으므로, 특별히 본 명세서의 도면에 도시된 패턴가공부(20a)의 형상 및 모양에 한정되는 것은 아니다. 다만, 디개싱(De-gassing) 작업시에, 전극조립체(10) 내부의 가스를 원활히 배출하기 위해, 가스가 배출되는 방향 즉, 제1 전극(11) 및 제2 전극(12)이 적층되는 방향의 수직한 방향으로 패턴가공부(20a)를 가공하는 것이 바람직할 것이다(도 3 참조)
또한, 본 발명은, 전극조립체(10)를 내부에 수용하기 위한 외장재(30)를 더 포함할 수 있다. 외장재(30)는 전극조립체(10)를 수용하는 역할을 하는 것으로, 테두리를 따라서 밀봉된 실링부(32)가 형성된다. 여기서, 외장재(30)의 재질은 알루미늄인 파우치(Pouch)일 수 있으나, 외장재(30)의 형태는 특별히 한정되는 것은 아니다. 이러한 외장재(30)는 전극조립체(10)가 전해질과 함께 내부에 수용되는 수용부(31)와 수용부(31)의 개방된 상면을 덮어주는 커버를 포함할 수 있다.
이때, 외장재(30)는 내부에 수용된 전극조립체(10)의 제1 탭부(11a)와 제2 탭부(12a)가 외부로 돌출된 상태에서, 수용부(31)를 포함하는 외장재(30) 테두리와 커버의 마주보는 테두리가 접합하여 실링부(32)를 형성함으로써 밀봉시킬 수 있다.
도 4 내지 도 9는 본 발명의 일실시예에 따른 전극조립체(10)를 포함한 이차전지의 제조공정을 나타내는 도면이다. 도면을 참고하여, 본 발명의 이차전지의 가스 배출 및 기타 공정을 설명하기로 한다.
다만, 상기 일실시예에 따른 전극조립체를 포함하는 이차전지의 각 구성 및 설명은 중복되므로 자세한 설명은 생략하기로 한다.
먼저, 도 4에 도시된 바와 같이, 전극조립체(10)를 수용하기 위한 외장재(30)를 준비한다. 특히, 후술하는 디개싱(De-gassing)단계에서 가스배출을 위한 배출부(33)를 포함하도록 외장재(30)를 형성할 수 있다.
다음, 도 5에 도시된 바와 같이, 전극조립체(10)를 외장재(30)의 수용부(31)에 삽입되도록 안착시킨다. 여기서, 전극조립체(10)의 제1 탭부(11a) 및 제2 탭부(12a)가 외장재(30)의 외부로 돌출된 상태에서, 외부 전원과 연결되도록 한다.
다음, 도 6에서는 외장재(30)에 수용된 전극조립체(10) 상에 전해액을 함침시키는 단계이다. 이차전지는 종류에 따라, 전해질의 액체 상태로 외장재(30) 내부에 충진될 수 있다. 또한, 전해질을 액체 상태로 외장재(30) 내부에 충전한 다음 폴리머화될 수 있는 성분을 첨가하여 최종적으로 폴리머 상태의 전해질이 되도록 할 수 있다.
다음, 도 7 및 도 8에 도시된 바와 같이, 전해질이 외장내 내부에 충진된 다음, 프리-차지(Pre-Charge)를 위해 제1 탭부(11a)와 제2 탭부(12a)에 제1 단자(41)와 제2 단자(42)를 포함하는 전원연결부(40)를 연결한다. 전원연결부(40)를 통해 전류를 흘려줌으로써 전극조립체(10) 내부에 발생될 수 있는 초기 불순가스를 제거할 수 있다. 이러한 작업을 디개싱(De-gassing)공정 이라고 하는데, 일반적으로 본 단계에서 전극조립체(10) 내부로부터 발생되는 가스가 외장재(30)의 배출부(33)를 통해 배출될 수 있다. 본 단계에서 전극조립체(10) 내부에서 발생되는 가스가 원활히 배출될 때, 외장재(30)를 포함한 이차전지의 신뢰성이 향상될 수 있는 것이다.
그러나, 종래 전극조립체(10)를 감싸고 있는 분리막(13)은 전극조립체(10) 내부의 전극으로부터 발생되는 가스의 배출에 오히려 장애가 될 수 있었다. 그러므로, 종래에는 프리-차지단계에서 전극조립체(10) 내부에 발생되는 가스를 원활히 배출하지 못함으로써, 최종 제조되는 이차전지의 충전시의 성능 저하 및 폭발 등의 위험성이 증가하는 문제점이 있었다. 본 발명은, 도 3에 도시된 바와 같이, 전극조립체(10)의 양측단으로 가스가 배출될 수 있어, 도 7의 외장재(30) 배출부(33)의 파단부(33a)를 통해 가스 배출을 더욱 원활하게 할 수 있을 뿐만 아니라, 전극조립체(10) 내부에 발생된 가스 제거의 신뢰성을 보다 향상시킬 수 있는 이점이 있다.
다음, 도 9에 도시된 바와 같이, 전극조립체(10) 내부의 가스를 배출한 다음에는, 외장재(30)의 배출부(33)를 절단가공함으로써, 이차전지의 제조가 완료된다. 이후, 전극조립체(10)를 포함한 전지팩 등을 통해 관련 디바이스에 적용할 수 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
[부호의 설명]
10: 전극조립체
11: 제1 전극
11a: 제1 탭부
11b: 양극 집전판
11c: 양극 활물질층
12: 제2 전극
12a: 제2 탭부
12b: 음극 집전판
12c: 음극 활물질층
13: 분리막
20: 폴딩부
20a: 패턴가공부
30: 외장재
31: 수용부
32: 실링부
33: 배출부
33a: 파단부
40: 전원연결부
41: 제1 단자
42: 제2 단자

Claims (11)

  1. 제1 전극;
    상기 제1 전극에 대면되도록 적층되는 제2 전극; 및
    상기 제1 전극 및 상기 제2 전극이 대면되는 적층면 사이에 형성되며, 상기 제1 전극 또는 상기 제2 전극 외측면을 감싸도록 배치되는 분리막;을 포함하고,
    상기 분리막에는 상기 제1 전극 및 상기 제2 전극으로부터 발생되는 가스가 배출되기 위한 적어도 하나 이상의 패턴가공부가 형성된 전극조립체를 포함하는 이차전지.
  2. 청구항 1에 있어서,
    상기 분리막은 상기 제1 전극 및 상기 제2 전극이 마주보는 적층면 사이에 형성되고, 대응면이 상호 마주하도록 복수회 접히는 폴딩부가 형성되도록 지그재그 형태로 이루어진 이차전지.
  3. 청구항 2에 있어서,
    상기 패턴가공부는 상기 분리막의 일측 또는 타측에 형성된 폴딩부에 각각 형성되는 이차전지.
  4. 청구항 1에 있어서,
    상기 전극조립체는 스택방식으로 형성되는 이차전지.
  5. 청구항 1에 있어서,
    상기 패턴가공부는 상기 제1 전극 및 상기 제2 전극이 적층되어 형성된 전극조립체의 적층방향에 수직한 방향으로 가스가 배출되도록 전극조립체 양측단에 형성되는 이차전지.
  6. 청구항 1에 있어서,
    상기 패턴가공부는 상기 제1 전극 및 제2 전극을 감싸는 상기 분리막에 형성되고, 상기 제1 전극 및 상기 제2 전극으로부터 발생되는 가스가 배출될 수 있도록 상기 분리막을 관통하여 형성되는 이차전지.
  7. 청구항 1에 있어서,
    상기 전극조립체를 내부에 수용하도록 테두리를 따라서 밀봉된 실링부가 형성된 외장재를 더 포함하는 이차전지.
  8. 청구항 7에 있어서,
    상기 외장재는 파우치형 또는 각형인 이차전지.
  9. 청구항 1에 있어서,
    상기 제1 전극은 양극 집전판 및 양극 활물질층을 더 포함하는 이차전지.
  10. 청구항 1에 있어서,
    상기 제2 전극은 음극 집전판 및 음극 활물질층을 더 포함하는 이차전지.
  11. 청구항 1에 있어서,
    상기 제1 전극의 일측면상에 돌출되어 형성되는 제1 탭부; 및
    상기 제2 전극의 일측면상에 돌출되어 형성되는 제2 탭부를 더 포함하는 이차전지.
PCT/KR2013/006710 2012-07-26 2013-07-26 이차전지 WO2014017864A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120081927A KR101651712B1 (ko) 2012-07-26 2012-07-26 이차전지
KR10-2012-0081927 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014017864A1 true WO2014017864A1 (ko) 2014-01-30

Family

ID=49997593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006710 WO2014017864A1 (ko) 2012-07-26 2013-07-26 이차전지

Country Status (2)

Country Link
KR (1) KR101651712B1 (ko)
WO (1) WO2014017864A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3242346A1 (en) * 2016-05-02 2017-11-08 Samsung SDI Co., Ltd Electrode assembly
CN109546230A (zh) * 2017-12-29 2019-03-29 蜂巢能源科技有限公司 电极层叠组件的制造方法以及电极层叠组件
CN113571761A (zh) * 2021-09-26 2021-10-29 东莞塔菲尔新能源科技有限公司 一种夹叠式电极组件及其制作方法
US20210408609A1 (en) * 2017-09-15 2021-12-30 Manz Italy S.R.L. Method and Apparatus for Assembling Electrodes

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102314732B1 (ko) * 2015-01-21 2021-10-19 주식회사 아모그린텍 플렉서블 배터리 및 이를 포함하는 웨어러블 디바이스
KR102497004B1 (ko) * 2015-10-30 2023-02-06 에스케이온 주식회사 전극 조립체 및 이를 포함하는 리튬 이차 전지
US10074870B2 (en) * 2016-08-15 2018-09-11 Microsoft Technology Licensing, Llc Battery with perforated continuous separator
KR102278444B1 (ko) * 2016-09-06 2021-07-16 삼성에스디아이 주식회사 적층형 전극 조립체 및 이를 포함하는 플렉서블 이차 전지
KR102278448B1 (ko) * 2016-09-13 2021-07-16 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 이차 전지
KR102260835B1 (ko) 2016-09-20 2021-06-03 삼성에스디아이 주식회사 이차전지, 전극 조립체 및 전극 조립체 제조 방법
KR102217445B1 (ko) 2017-05-25 2021-02-22 주식회사 엘지화학 전극조립체 및 그 전극조립체의 제조 방법
KR102657498B1 (ko) 2018-04-24 2024-04-15 삼성에스디아이 주식회사 전극 조립체, 이를 포함하는 이차전지 및 그 제조 방법
KR102107410B1 (ko) * 2018-10-25 2020-05-07 주식회사 이노메트리 각형 이차전지 셀의 분리막 제공 방법
KR20210137784A (ko) * 2020-05-11 2021-11-18 주식회사 엘지에너지솔루션 이차전지 및 이차전지의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990058899A (ko) * 1997-12-30 1999-07-26 손욱 원통형 이차전지의 전극롤
KR100861705B1 (ko) * 2006-05-29 2008-10-06 주식회사 엘지화학 구조적 안정성과 전해액의 젖음성이 우수한 전극조립체 및이를 포함하는 이차전지
KR20110122378A (ko) * 2010-05-04 2011-11-10 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 이차 전지
KR20120026266A (ko) * 2010-09-09 2012-03-19 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 이차 전지
KR20120082580A (ko) * 2011-01-14 2012-07-24 주식회사 엘지화학 안전성이 향상된 스택/폴딩형 리튬 이차전지 및 그 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302075B1 (ko) 2006-12-08 2013-09-05 주식회사 엘지화학 이차 전지용 전극탭과 전극단자의 접합 구조 및 이를이용한 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990058899A (ko) * 1997-12-30 1999-07-26 손욱 원통형 이차전지의 전극롤
KR100861705B1 (ko) * 2006-05-29 2008-10-06 주식회사 엘지화학 구조적 안정성과 전해액의 젖음성이 우수한 전극조립체 및이를 포함하는 이차전지
KR20110122378A (ko) * 2010-05-04 2011-11-10 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 이차 전지
KR20120026266A (ko) * 2010-09-09 2012-03-19 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 이차 전지
KR20120082580A (ko) * 2011-01-14 2012-07-24 주식회사 엘지화학 안전성이 향상된 스택/폴딩형 리튬 이차전지 및 그 제조방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3242346A1 (en) * 2016-05-02 2017-11-08 Samsung SDI Co., Ltd Electrode assembly
US10727527B2 (en) 2016-05-02 2020-07-28 Samsung Sdi Co., Ltd. Electrode assembly
US20210408609A1 (en) * 2017-09-15 2021-12-30 Manz Italy S.R.L. Method and Apparatus for Assembling Electrodes
US12021198B2 (en) * 2017-09-15 2024-06-25 Manz Italy S.R.L. Method and apparatus for assembling electrodes
CN109546230A (zh) * 2017-12-29 2019-03-29 蜂巢能源科技有限公司 电极层叠组件的制造方法以及电极层叠组件
CN113571761A (zh) * 2021-09-26 2021-10-29 东莞塔菲尔新能源科技有限公司 一种夹叠式电极组件及其制作方法
CN113571761B (zh) * 2021-09-26 2022-02-08 东莞塔菲尔新能源科技有限公司 一种夹叠式电极组件及其制作方法

Also Published As

Publication number Publication date
KR20140014839A (ko) 2014-02-06
KR101651712B1 (ko) 2016-08-26

Similar Documents

Publication Publication Date Title
WO2014017864A1 (ko) 이차전지
KR101851856B1 (ko) 비수 전해액 이차 전지 및 조전지
US8119277B2 (en) Stack type battery
JP5696207B1 (ja) 新規なリチウムイオン電池
WO2011115464A2 (ko) 파우치형 케이스 및 이를 포함하는 전지팩
EP1998401B1 (en) Electrode assembley and secondary battery using the same
KR100786875B1 (ko) 전지 모듈
WO2020204407A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
WO2014104728A1 (ko) 내구성 향상을 위해 실링 마진을 가진 파우치형 이차 전지
WO2014038891A1 (ko) 이차전지
KR20170042834A (ko) 나노다공성 세퍼레이터 상의 전극 직접 코팅을 이용한 배터리
US6841295B2 (en) Rolled electrode battery with heat sink
EP2197071A1 (en) Secondary battery
WO2014077578A1 (ko) 전지모듈 냉각장치 및 이를 포함하는 전지모듈 어셈블리
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2013151233A1 (ko) 배터리셀
WO2012044035A2 (ko) 부식방지용 보호층을 포함하는 전극리드, 및 이를 포함하는 이차전지
WO2021038545A1 (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
KR102117076B1 (ko) 전지모듈의 어셈블리
WO2021118020A1 (ko) 이차전지 및 이를 포함하는 디바이스
KR20040092531A (ko) 이차전지의 전극 조립체
WO2021101026A1 (ko) 전극 조립체 및 그의 제조 방법
WO2020166803A1 (ko) 이차 전지 및 전지 모듈
KR102099909B1 (ko) 전기화학소자용 전극 및 상기 전극을 포함하는 전극 조립체
KR101515672B1 (ko) 2 이상의 양극 및 음극을 포함하는 전극 조립체 및 이에 의한 전기 화학 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822802

Country of ref document: EP

Kind code of ref document: A1