WO2017119567A1 - 냉장고 - Google Patents

냉장고 Download PDF

Info

Publication number
WO2017119567A1
WO2017119567A1 PCT/KR2016/008400 KR2016008400W WO2017119567A1 WO 2017119567 A1 WO2017119567 A1 WO 2017119567A1 KR 2016008400 W KR2016008400 W KR 2016008400W WO 2017119567 A1 WO2017119567 A1 WO 2017119567A1
Authority
WO
WIPO (PCT)
Prior art keywords
shelf
light source
transmitter
receiver
source unit
Prior art date
Application number
PCT/KR2016/008400
Other languages
English (en)
French (fr)
Inventor
이성훈
정병상
김환용
박승제
하상두
손용준
박선욱
양재성
이원복
최규철
정중길
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020217033156A priority Critical patent/KR102418145B1/ko
Priority to KR1020177002914A priority patent/KR102318549B1/ko
Priority to EP23198499.8A priority patent/EP4287489A3/en
Priority to KR1020167035045A priority patent/KR101944833B1/ko
Priority to CN201680002288.3A priority patent/CN107408843B/zh
Priority to KR1020177002915A priority patent/KR102314317B1/ko
Priority to AU2016259416A priority patent/AU2016259416B2/en
Priority to EP16808547.0A priority patent/EP3214730B1/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020177002916A priority patent/KR102314318B1/ko
Priority to KR1020197001846A priority patent/KR102314319B1/ko
Priority to JP2017538331A priority patent/JP6837977B2/ja
Priority to US15/381,402 priority patent/US10340741B2/en
Priority to US15/381,361 priority patent/US9793763B2/en
Publication of WO2017119567A1 publication Critical patent/WO2017119567A1/ko
Priority to US16/458,819 priority patent/US10886785B2/en
Priority to US17/103,202 priority patent/US11239702B2/en
Priority to US17/576,168 priority patent/US11532954B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D27/00Lighting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D27/00Lighting arrangements
    • F25D27/005Lighting arrangements combined with control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/008Alarm devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2325/00Charging, supporting or discharging the articles to be cooled, not provided for in other groups of this subclass
    • F25D2325/022Shelves made of glass or ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/809Holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/40Refrigerating devices characterised by electrical wiring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/02Sensors detecting door opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/08Sensors using Radio Frequency Identification [RFID]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to a refrigerator, and more particularly, to a shelf installed in the refrigerator.
  • a refrigerator is a device configured to store food freshly.
  • the refrigerator includes a machine room at the bottom of the main body.
  • the machine room is generally installed in the lower part of the refrigerator for the center of gravity of the refrigerator, the efficiency of assembly and the vibration reduction.
  • the refrigerator's machine room is equipped with a refrigeration cycle device, and keeps the food fresh by keeping the inside of the refrigerator frozen / refrigerated by using the property of absorbing external heat while the low-pressure liquid refrigerant is changed into a gaseous refrigerant. Done.
  • the refrigeration cycle apparatus of the refrigerator includes a compressor for changing a low temperature low pressure gaseous refrigerant into a high temperature high pressure gaseous refrigerant, and a high temperature high pressure gaseous refrigerant changed by the compressor into a high temperature high pressure liquid refrigerant. And a condenser and an evaporator for absorbing external heat while changing the liquid refrigerant having a low temperature and high pressure changed in the condenser into a gaseous state.
  • the refrigerator Since the internal space of the refrigerator is dark, lighting may be provided in the internal space in order for the user to easily find the stored food. However, in general, since the light source is installed at a specific position of the interior space, the entire interior space may be difficult to illuminate. On the other hand, the refrigerator may have a shelf installed in the interior space and configured to support food. In general, since a plurality of shelves are installed in the interior space, by providing a light source to the shelves, the interior space can be uniformly illuminated. Therefore, for uniform illumination, it is necessary to consider improving the shelf to illuminate the interior space.
  • the present application is to solve the above problems, an object of the present application to provide a refrigerator configured to uniformly illuminate the internal space of the refrigerator.
  • the present application is a cabinet including a storage compartment of a predetermined size; A shelf installed in the storage compartment and including a light source unit configured to illuminate the storage compartment; A transmitter configured to be connected to an external power source and wirelessly transmit power, the transmitter having a first resonance frequency in a predetermined range; And a receiving unit configured to wirelessly receive power from the transmitting unit and to supply power to the light source unit of the shelf, wherein the transmitting unit uses a secondary resonance frequency generated when the receiving unit is disposed adjacent to the transmitting unit. It can provide a refrigerator for transmitting power to.
  • the secondary resonant frequency may be described as being larger than the primary resonant frequency, and more specifically, the secondary resonant frequency may be set to be larger than twice the primary resonant frequency.
  • the primary resonant frequency may range from 100 to 150 kHz, and the secondary resonant frequency may range from 300 to 400 kHz.
  • the receiving unit may be configured to adjust the capacitance of the capacitor connected to the load according to the resistance of the load of the light source unit to generate the secondary resonance frequency.
  • the receiver may include a capacitor connected in series and / or in parallel with the load according to the resistance of the load of the light source unit.
  • the transmitter and the receiver may be provided on sidewalls of the storage compartment and sides of the shelf to face each other.
  • the shelf includes a shelf member and brackets configured to support both sides of the shelf member, wherein the transmitter may be installed at a side wall of the storage compartment and the receiver may be installed at a side of the shelf.
  • the receiver may be installed at the rear of the bracket.
  • the transmitter and the receiver may each include a shielding member configured to shield leakage of electromagnetic waves.
  • the transmitting unit includes a first surface facing the receiving unit and a second surface opposite to the first surface, and the shielding member may be attached to the second surface.
  • the receiving part may include a first surface facing the transmitting part and a second surface opposite the first surface, and the shielding member may be attached to the second surface.
  • the transmitter includes a circuit board: a coil which is formed on a surface facing the receiver of the circuit board and generates electromagnetic waves for power transmission; And a wire connecting the circuit board and the external power source.
  • the receiver may include a circuit board; A coil formed on a surface of the circuit board facing the transmitter and configured to induce a current from electromagnetic waves transmitted from the transmitter; And a wiring connecting the circuit board and the light source unit to supply an induced current.
  • the present application is a cabinet comprising a storage compartment of a predetermined size; A shelf installed in the storage compartment and including a light source unit configured to illuminate the storage compartment; A transmitter configured to be connected to an external power source and configured to transmit power wirelessly; And a receiver configured to wirelessly receive power from the transmitter and to supply the light to the light source of the shelf, wherein the light source includes a housing and a light source module disposed in the housing and configured to irradiate light. Can be.
  • the light source unit may be disposed at the front of the shelf and may be oriented to irradiate light downward.
  • the housing may include a light blocking portion configured not to pass light and a window configured to pass light, and the window may be disposed at a rear portion of a bottom portion of the housing.
  • the distance between the front and rear ends of the window may be set to 1/2 of the distance between the front and rear ends of the housing.
  • the window may be curved.
  • the light source module may be oriented to irradiate light toward the upper inner surface of the housing, and on the other hand, may be inclined at a predetermined angle with respect to the horizontal plane to irradiate light toward the upper and front inner surfaces of the housing.
  • the light source unit includes a holder configured to hold the light source module, wherein the holder comprises: a stopper configured to support both ends of the light source module; It may include first and second arms configured to support the upper and lower portions of the light source module, respectively. In addition, the second arm may extend longer than the first arm.
  • the shelf includes a shelf member configured to support articles and having a shelf member having a transparent body, the shelf member disposed on the transparent body and configured to prevent light from leaking through the body.
  • the layer may be formed along an edge of the shelf member.
  • the light source unit may be oriented parallel to the horizontal plane to irradiate light directly below the shelf, or tilted at a predetermined angle with respect to the horizontal plane to irradiate light to the rear part of the shelf.
  • the present application includes a cabinet including a storage compartment of a predetermined size; A shelf installed in the storage compartment and including a light source unit configured to illuminate the storage compartment; A transmitter configured to be connected to an external power source and configured to transmit power wirelessly; And a receiving unit configured to wirelessly receive power from the transmitting unit and to supply power to the light source unit of the shelf, wherein the refrigerator is provided with a sealing member inside the transmitting unit and the receiving unit to prevent foreign matter from entering into the inside. Can be provided.
  • the light source unit includes: a housing; A light source module disposed in the housing and configured to irradiate light; A holder disposed inside the housing to hold the light source module; And a first sealing part interposed between the housing and the holder to prevent foreign material from entering the housing.
  • the light source unit may include: a head disposed outside the housing and coupled to the shelf; And a second sealing part provided inside the head to prevent foreign material from entering the housing.
  • the light source unit may further include a third sealing part interposed between the holder and the light source module to prevent an external material from reaching the light source module.
  • the refrigerator may further include a cover configured to cover the receiver to protect the receiver, and the cover may be made of a material that does not interfere with wireless power transmission.
  • the cover may be made of a non-conductive or non-metallic material.
  • the internal space of the refrigerator may be uniformly illuminated.
  • problems such as a short circuit, an electric shock or corrosion do not occur.
  • the mechanical and circuit configurations for wireless power transmission are optimally designed, and the optimum control is applied so that the interior space of the refrigerator can be more effectively and efficiently illuminated.
  • FIG. 1 is a front view showing a refrigerator according to the present application.
  • FIG. 2 is a schematic diagram schematically illustrating a circuit of a wireless power transmission system mounted on a refrigerator shelf according to an example of the present application.
  • FIG. 3 is a block diagram illustrating in more detail a circuit of a wireless power transmission system mounted on a refrigerator shelf according to an example of the present application.
  • FIG. 4 is a graph showing a relationship between primary resonance, secondary resonance, and gain obtained experimentally according to an example of the present application.
  • FIG. 5 is a graph illustrating a relationship between primary resonance, secondary resonance and phase acquired experimentally according to an example of the present application.
  • FIG. 6 is a schematic diagram schematically illustrating a structure of a transmitter of a wireless power transmission system according to an example of the present application.
  • FIG. 7 is a schematic diagram illustrating an example of a structure of a receiver of a wireless power transmission system according to an example of the present application.
  • FIG. 8 is a schematic diagram illustrating another example of a structure of a receiver of a wireless power transmission system according to an example of the present application.
  • FIG. 9 is a schematic diagram illustrating another example of a structure of a receiver of a wireless power transmission system according to an example of the present application.
  • FIG. 10 is a table showing conditions for each receiver structure shown in FIGS. 11 to 13.
  • FIG. 11 is a schematic diagram illustrating an example of a structure of a transmitter shown in FIG. 10.
  • FIG. 12 is a schematic diagram illustrating another example of the structure of a transmitter shown in FIG. 10.
  • FIG. 13 is a schematic diagram illustrating still another example of the structure of a transmitter shown in FIG. 10.
  • FIG. 14 is a perspective view schematically showing a storage compartment and a shelf of a refrigerator.
  • 15 is a block diagram illustrating a configuration of a refrigerator according to an example of the present application.
  • 16A and 16B are perspective views respectively viewed from a left side and a right side of a shelf according to the present application.
  • 16c is a perspective view from below of a shelf according to the present application.
  • 16D is a perspective view of the shelf having the shelf member moved.
  • 17 and 18 are exploded perspective views of the shelf of FIG. 16.
  • 19 is a partial perspective view of a shelf including a cover, a receiver and a transmitter.
  • 20A is a plan view illustrating an assembly of a receiver and a light source unit.
  • 20B is a plan view showing the cover in detail.
  • 21 is a partial perspective view illustrating a refrigerator and a shelf according to the present application.
  • 22 is a partial plan view showing the bracket and the receiver of the shelf.
  • FIG. 23 are side views illustrating the alignment of the transmitter of the storage compartment side wall and the receiver of the shelf.
  • FIG. 24 is a cross-sectional view taken along the line A-A of FIG. 16A.
  • 25 is a plan view showing the top of the light source portion of the shelf.
  • FIG. 26A is a cross-sectional view taken along line B-B in FIG. 25.
  • FIG. 26B is a cross-sectional view taken along line C-C in FIG. 16A.
  • FIG. 27 is a perspective view illustrating a light source unit of a shelf configured to irradiate light forward.
  • FIG. 28 is a perspective view illustrating a light source unit of a shelf configured to irradiate light downward;
  • FIG. 29 is a plan view illustrating a bottom of the light source unit of FIG. 27.
  • 30A is a partially enlarged view showing in detail a partial perspective view of a light source unit coupled to a bracket and a cap member of the light source unit.
  • 30B is a partial perspective view illustrating the light source unit coupled to the bracket.
  • Fig. 31 is a side view showing the side of the transmitter.
  • 32 is a rear view showing the back of the transmitter.
  • 33 is a partial perspective view of an inner case including a structure for installing a transmitter.
  • 34A is a partial cross-sectional view illustrating an example of a transmitter and a receiver installed in a refrigerator.
  • 34B is a partial cross-sectional view showing another example of a transmitter and a receiver installed in the refrigerator.
  • 35 is a partial perspective view illustrating a transmitting unit installed in a refrigerator.
  • 36A-36E are perspective views showing right and left caps of the light source portion, and a plan view, front view and right side view showing the cap.
  • FIG. 37 is a perspective view and a partially enlarged view showing a rail of the shelf member.
  • 38 is a front view of the refrigerator showing a light source of a wall illuminating the inside of the refrigerator.
  • 39 is a cross-sectional view of the refrigerator showing a wall light source for illuminating the inside of the refrigerator and a light source unit of the shelf.
  • 40A and 40B are side views showing examples of the orientation of the light source unit.
  • 41A is a cross-sectional view illustrating a configuration of a housing and a light source module of the light source unit.
  • 41B-41E are cross-sectional views showing other examples of the configuration of FIG. 41A.
  • FIG. 42 is a plan view showing a shelf member including an opaque layer.
  • 43A-43C are side views showing examples of various arrangements of the bar of the light source portion and the bracket.
  • 44 is a side view showing a detailed configuration related to the arrangement of the light source unit and the bar.
  • 45 is a perspective view illustrating a modification of the electrical connection of the receiver and the light source.
  • Fig. 46 is a front view showing the transmitter installed on the rear wall of the storage compartment.
  • 47 is a perspective view showing a shelf having a receiving unit installed at the rear portion.
  • 48 is a front view showing the structure of a transmitter and a receiver in the shelf supported on the side wall of the storage compartment.
  • FIG. 49 is a rear view illustrating the shelf of FIG. 48.
  • 50 is a front view showing another example of the configuration of the transmitter and the receiver in the shelf supported on the side wall of the storage compartment.
  • FIG. 51 is a side view illustrating the shelf of FIG. 50; FIG.
  • FIG. 52 is a plan view illustrating a detailed configuration of a substrate and a coil of a transmitter.
  • 53 is a plan view illustrating a detailed configuration of a substrate and a coil of a receiver.
  • 54 is a flowchart illustrating a method of controlling a light source when the door is opened.
  • 55 is a flowchart illustrating a method of controlling a light source when the door is closed.
  • a refrigerator forms a food storage space capable of blocking heat penetrating from the outside by cabinets and doors filled with heat insulating material therein, and collects it out of the food storage space with an evaporator that absorbs heat inside the food storage space. It is provided with a refrigeration device consisting of a heat dissipating device for discharging the heat, maintaining the food storage space in a low temperature temperature area difficult to survive and multiply the microorganisms, and stores the stored food without altering for a long time.
  • the refrigerator is formed by separating a refrigerator compartment for storing food into a temperature region of an image and a freezer compartment for storing food in a sub-zero temperature region, and a top freeze having an upper freezer compartment and a lower refrigerator compartment according to the arrangement of the refrigerator compartment and the freezer compartment.
  • Top Freezer (Bottom Freezer), which includes a refrigerator, a lower freezer and an upper refrigerator, and a side by side refrigerator arranged in a left freezer and a right freezer.
  • a user may include a plurality of shelves and drawers in the food storage space in order to conveniently store or withdraw the food stored in the food storage space.
  • circuitry and structural configuration of the wireless power transfer system described herein is applicable to any device requiring wireless power transmission or charging. That is, in the following detailed description, the configuration of the wireless power transmission system is mainly described in relation to a refrigerator, in particular a shelf, but is not necessarily limited to the refrigerator, and may be used without any special modification for wireless transmission of power in all devices.
  • circuit and structural configurations of the wireless power transmission system may be directly applied to a mobile phone, a smartphone, a notebook computer, a wearable device, an HMD, a signage, a smart watch, a smart glass, a TV, a washing machine, a cleaner, an air conditioner, and the like. . Therefore, any device including the described configurations are included in the scope of the present application.
  • FIG. 1 is a front view of a refrigerator according to one embodiment of the present application.
  • a refrigerator according to an example includes a cabinet 1 forming an appearance.
  • the cabinet 1 is provided with a storage compartment 2 for storing food.
  • the cabinet 1 may have an outer case 10a surrounding the inner case 10 while being spaced apart from the inner case 10 at a predetermined interval.
  • the space between the inner case 10 and the outer case 10a may be filled with a heat insulating material.
  • the storage compartment 2 may be formed by an inner case 10 provided inside the cabinet 1.
  • the storage compartment 2 includes a rear wall 13 forming a rear surface, an upper wall 12 forming an upper surface, two side walls 15 forming a side surface, and a bottom 14 forming a lower surface.
  • the front side of the storage compartment 2 is open so that a user can put food into or withdraw the food from the storage compartment through the front side of the storage compartment 2.
  • the rear wall 13 may include a left rear wall 13a and a right rear wall 13b about its central portion.
  • the side wall 15 may include a left side wall 15a and a right side wall 15b.
  • the rear wall 13 covers the left and right rear walls 13a and 13b, and reference numerals 13, 13a and 13b may be selectively used to suit the relative positions of the related components.
  • the side wall 15 encompasses the left and right side walls 15a and 15b, and reference numerals 15, 15a and 15b may optionally be used to suit the relative positions of the associated components.
  • the front of the cabinet (1) is rotatably installed in the cabinet (1), the first door (20) for opening and closing one side of the storage compartment (2), rotatably installed in the cabinet (1), A second door 40 for opening and closing the other side of the storage compartment 2 is provided.
  • the storage compartment 2 may be entirely sealed.
  • the first door 20 may be provided with a pillar 50 that is rotated to be in contact with the second door 40.
  • the pillar 50 may have a rectangular parallelepiped shape as a whole and may be coupled to the first door 20 to be rotated with respect to the first door 20.
  • the first door 20 may be provided with a door dike 22 forming a rear exterior of the first door 20.
  • the second door 40 may also be provided with a door dike 42 forming a rear appearance of the second door 40.
  • Baskets 44 and 24 may be installed on the door dikes 42 and 22, respectively, and various types of food may be stored in the baskets 44 and 24.
  • the storage compartment 2 may be provided with a first drawer 32 disposed on the first door 20 side and a second drawer 34 disposed on the second door 40 side.
  • the first drawer 32 and the second drawer 34 may be disposed on the same horizontal plane. That is, the first drawer 32 and the second drawer 34 may be disposed on the left and right sides on the same height in the storage compartment 2, respectively.
  • the first drawer 32 and the second drawer 34 are each independently withdrawable.
  • the first door 20 for opening and closing the left side of the single storage compartment 2 and the second door 40 for opening and closing the right side are provided, so that left and right sides of one storage compartment are provided on each door. Can be opened and closed by.
  • the storage compartment 2 may be provided with a shelf 100 on which food can be placed on the upper portion thereof.
  • the shelf 100 needs to be supported by the inner walls of the storage compartment 2 to support the food. If the shelf 100 is supported by the left and right side walls 15a and 15b, the shelf 100 continuously extends from the left side wall 15a to the right side wall 15b and thus on the same height or the same plane. Only one shelf 100 may be installed. On the other hand, if the shelf 100 is supported by the rear wall 13, two or more shelves 100 may be disposed on the left and right sides of the storage compartment 2, respectively, as shown in FIG. That is, the plurality of shelves 100 may be disposed on the same plane while being supported by the rear wall 13. In addition, the plurality of shelves 100 may be arranged at different heights while being supported by the rear wall 13 or the side wall 15.
  • the shelf 100 may be configured to illuminate the storage compartment 2. As described above, since the plurality of shelves 100 are installed in the storage compartment 2 by dividing the storage compartment 2, when the shelf 100 provides a light source, the internal space, that is, the storage compartment 2 is uniform. Can be illuminated.
  • the shelf 100 has a light source or a lighting device, an apparatus for supplying power to the light source is required.
  • a connection structure for directly connecting a power source and a light source using a wire or a contact may be applied.
  • a power supply supply contact portion may be installed at a predetermined portion of the shelf 100, and a power supply contact portion may be installed at a predetermined portion of the refrigerator, that is, any one of the walls 12-15 of the storage compartment 2.
  • the power supply supply contact portion and the power supply contact portion may be connected to each other. Therefore, when power is supplied, the light source of the shelf 100 may emit light.
  • the shelf 100 is configured to have a light source for illuminating the storage compartment 2 and may also use a wireless power transfer system to supply power to this light source.
  • FIG. 2 schematically illustrates a circuit of a wireless power transmission system mounted on a refrigerator shelf according to an example of the present application.
  • the wireless power transfer system is composed of a circuit including a primary coil (installed in a body of a refrigerator) and a circuit including a secondary coil (installed in a shelf).
  • the shelf is detachable from the refrigerator body and is designed so that there is no problem such as washing.
  • AC current Alternating Current, AC
  • magnetism that is, electromagnetic waves
  • magnetism is generated, and magnetism is induced in the secondary coil due to the generated magnetism, that is, electromagnetic waves, and as a result, a load (eg, For example, power is supplied to the LED).
  • the circuit including the primary coil illustrated in FIG. 2 may be installed in the refrigerator main body, that is, the cabinet 1 illustrated in FIG. 1, and may configure the transmitter 200 of the wireless power transmission system.
  • the circuit including the secondary coil illustrated in FIG. 2 may be installed on the shelf 100 of the refrigerator illustrated in FIG. 1, and may configure the receiver 300 of the wireless power transmission system. Since the wireless power transmission system may be configured as part of the refrigerator itself to supply power to the light source of the shelf 100, the transmitter 200 and the receiver 300 may be configured as part of the refrigerator as well.
  • the mechanical configuration of the transmitter 200 and the receiver 300 is described in more detail in FIGS. 14-53 together with the structure of the shelf 100, the circuit configuration of which is first described in detail below.
  • different reference numerals are given to the transmitter and the receiver, but reference numerals 200 and 300 are commonly applied to the transmitter and the receiver throughout the present specification.
  • the transmitter 200 and the receiver 300 may be designed as, for example, a printed circuit board (PCB) coil structure for application of a small / thin structure.
  • the power supplied to each shelf installed in the refrigerator is about 1.2W, and the distance for power transmission, that is, the shelf 100 and the refrigerator main body (for example, the rear wall 13 and the side wall 15 of the storage compartment 2).
  • the distance with is about 6-10 mm. If the distance is less than 6 mm, the rear wall 13 / side wall 15 and the shelf 100 rub against each other due to the narrow distance, i.e. the spacing, during mounting and detachment of the shelf 100, thereby damaging them. This may occur.
  • the rear wall 13 and the side wall 15 may protrude by the heat insulating material filled between the inner and outer cases 10 and 10 a of the refrigerator, and the rear wall 13 and the side wall protruding at intervals smaller than 6 mm 15 and the shelf 100 may interfere with each other. Furthermore, if the distance is greater than 10 mm, the efficiency of wireless power transfer may be degraded and the generation of secondary resonant frequencies, described below, may be hindered. Therefore, as described above, the distance between the shelf 100 and the refrigerator main body is set to about 6 mm-10 mm, which is advantageous in preventing damage to the shelf 100 and the rear wall / side walls 13 and 15 and in smooth wireless power transmission. Do.
  • the distance may be equally applied to the distance between the transmitter 200 and the receiver 300.
  • the above figures are only examples, and it is obvious that the scope of the present application should be interpreted according to the matters described in the claims.
  • the time for supplying power to the transmitter 200 provided in the refrigerator main body is designed to operate for about 7 minutes from the time when the door of the refrigerator is opened.
  • FIG. 3 illustrates in more detail the circuit of the wireless power transmission system mounted on the refrigerator shelf according to an example of the present application.
  • the transmitter 710 of the wireless power transmission system shown in FIG. 3 is installed in the refrigerator body, and is installed at a distance from the detachable shelf, in particular. The slight distance is enough to cause secondary resonance with the coils provided in the transmitter 710 and the receiver 720.
  • the refrigerator body may be, for example, both the side wall 15 and the rear wall 13 inside the refrigerator.
  • the transmitter 710 includes an input filter 711, a regulator 712, an oscillator 713, an inverter 714, a coil / resonator 715, and the like.
  • 713, inverter 714 and coil / resonator 715 are essential components and the remaining components may optionally be included.
  • It is a simple power transfer circuit, has no separate signal modulation / demodulation algorithm, and is configured only in the active / non-operating mode, depending on the 12V input power.
  • the circuit diagram shown in FIG. 3 is only an example, and it is also within the scope of the present application for a person skilled in the art to add, change, or delete some circuits.
  • the receiver 720 of the wireless power transmission system illustrated in FIG. 3 is installed on the shelf 100 of the refrigerator, and is installed at a distance from the refrigerator main body. The slight distance is enough to cause secondary resonance through coils provided in the transmitter 710 and the receiver 720, respectively.
  • the secondary resonance (or auxiliary resonance) will be described later in more detail with reference to FIG. 4.
  • the receiver 720 includes a coil / resonator 721, a rectifier 722, a load 723, and the like.
  • the load 723 corresponds to, for example, a light emitting diode (LED).
  • the load 723 may be implemented by any material emitting light instead of the LED.
  • the receiver 720 may have no separate signal modulation algorithm. When the magnetic field is generated by the transmitter 710, power is transferred to the load 723 of the receiver 720. Suffice.
  • gain primary coil current / primary coil voltage
  • the transmitter 200 using communication (for example, Refrigerator body) Foreign Object Detection (FOD) is not applied.
  • communication for example, Refrigerator body
  • FOD Foreign Object Detection
  • considerations in setting the secondary resonance frequency include (1) selecting the first resonant frequency and (2) more than 1.5 times (appropriately two times) of the first resonant frequency so that induction heating is minimized in the metal foreign matter.
  • Selection of Second Resonant Frequency by Frequency (3) There is a configuration of a second capacitor (serial capacitor) or a third capacitor (parallel capacitor) to have an auxiliary resonance at the second resonant frequency in consideration of the load condition.
  • the primary resonance (main resonance) at 100 to 150 kHz is transmitted.
  • the main resonance frequency is 150 depending on the proximity of the foreign matter.
  • the secondary resonance frequency is out of the resonance frequency range (150-250 kHz) due to foreign matter. (300 to 400kHz) is generated in the transmitter 200. Therefore, by using the auxiliary resonance, while the wireless power transmission is possible, there is a technical effect of minimizing the standby power, and does not generate induction heating to the foreign matter.
  • FIG. 5 illustrates a relationship between primary resonance, secondary resonance and phase acquired experimentally according to an example of the present application.
  • FIG. 4 the gain (primary coil current / voltage) of the resonator 1030 (see FIG. 6) of the transmitter according to the driving frequency of the transmitter 200 is illustrated.
  • the phase of the driving voltage and the current of the resonator 1030 of the transmitter is shown.
  • the second resonant frequency shown in Figures 4 and 5 is designed to be about two times (or more) higher than the first resonant frequency, the metal foreign matter is transmitted to the receiver 200 (refrigerator body) receiver 300 ( Approaching instead of the shelf can block the expected heat generation.
  • the steel-based metal When the steel-based metal is aligned with the transmitter 200 (the main body of the refrigerator), the steel generates an induced current according to the current flowing through the coil of the transmitter 200 and consumes heat (induction heating). In view, the resistance component tends to increase greatly.
  • a separate auxiliary resonance point may be generated in the transmitter 200, and the magnetic coupling state of the transmitter 200 and the receiver 300 may be increased.
  • the resonator of the receiver 300 may be adjusted to set a frequency higher than twice.
  • FIG. 6 briefly illustrates a structure of a transmitter of a wireless power transmission system according to an example of the present application.
  • the transmitter 200 of the wireless power transmission system is configured with a power supply 1010, an inverter 1020, a resonator 1030, and the resonator 1030 includes a coil 1031 and a capacitor 1032. It is composed of Of course, deleting, adding, or changing some modules is within the scope of other rights of the present application.
  • the resonator 1030 As shown in FIG. 6, if the transmitter 200 (the refrigerator body) using the resonator 1030 in which the inductance of the coil 1031 and the capacitor 1032 are connected in series is present alone, the resonator 1030 A single resonance point occurs.
  • the wireless power transmission system using a plurality of coils is composed of a transmitter 200 shown in FIG. 6 and a receiver 300 to be described later in FIG.
  • the transmitter 200 includes a module 1010 for receiving a predetermined voltage and a first resonator 1030 for generating a first resonant frequency according to the received voltage, and the first resonator 1030 includes a first A coil 1031 and a first capacitor 1032. Furthermore, another feature of the present application is that the module 1010 is designed to include an inverter 1020 that converts DC power into AC power and supplies the converted AC power to the first resonator 1030. In addition, the module 1010 is designed to control the inverter 1020 driven at a second resonant frequency.
  • the wireless power transmission system when a door opening of the refrigerator is detected, a predetermined voltage is received in the module 1010, and when the door closing of the refrigerator is detected, the module ( It is also within the scope of another application of the present application to prevent unnecessary power loss by stopping reception of a voltage preset in 1010.
  • the receiver 300 spaced apart from the transmitter 200 may include a load that emits light, a capacitor connected in series or in parallel according to an equivalent resistance of the load, and the second resonance frequency. Contains two coils. A more specific structure of the receiver 300 will be described below with reference to FIG. 7.
  • FIG. 7 illustrates an example of a structure of a receiver of a wireless power transmission system according to an example of the present application.
  • 8 illustrates another example of a structure of a receiver of a wireless power transmission system according to an example of the present application.
  • 9 illustrates another example of a structure of a receiver of a wireless power transmission system according to an example of the present application.
  • Each of the receivers 300 illustrated in FIGS. 7, 8, and 9 is a structure of the receiver 300 for each load that may have an additional resonance point (secondary resonance, secondary resonance).
  • the structure of the receiver 300 is changed according to the size of the load, it should be designed so that the main current flows through the capacitor. Furthermore, the large and small equivalent resistance of the load is a value that is relatively applied according to the coupling state (eg, distance) of the transmitter 200 and the receiver 300, and may be experimentally obtained.
  • the coil of the receiver 300 may be 1101 and rectifier / load 1103 are connected in series with capacitor 1102.
  • the parallel capacitor 1202 and the series capacitor between the coil 1201 and the rectifier / load 1204 are shown. (1203) are all present.
  • the coil 1301 and the rectifier / load 1303 of the receiver 300 may include a capacitor 1302. Connected in parallel with
  • the coil and the capacitor of the receiver 300 are connected in series, and the receiver ( When the equivalent resistance of the load of 300 is greater than the second preset threshold, the coil and the capacitor of the receiver 300 are connected in parallel.
  • the second threshold is greater than the first threshold, for example.
  • the capacitor is composed of two and is connected in series and parallel with the coil of the receiver 300, respectively.
  • the coil of the transmitter 200 may be named a first coil
  • the coil of the receiver 300 may be named a second coil.
  • FIG. 10 shows the conditions for each receiver structure shown in FIGS. 7 to 9.
  • FIG. 10 illustrates a principle in which an auxiliary resonance (secondary resonance) occurs through resonator transformer modeling of each of the transmitter 200 (the refrigerator main body) and the receiver 300 (the refrigerator shelf 100) of the wireless power transmission system. It is shown in detail.
  • the receiver 300 may be configured according to the magnitude of the equivalent resistance of the load (for example, LED). 10 has a technical effect that the characteristics of the auxiliary resonance (secondary resonance) appear sufficiently should be designed as shown in FIG.
  • the capacitor Cp is designed to be connected in parallel.
  • FIG. 10 illustrates that the circuit diagram varies according to the equivalent resistance of the load, it is also within the scope of another application of the present invention to design a series / parallel capacitor connected to the equivalent resistance of the load with only one circuit diagram by setting a switch.
  • FIG. 11 shows an example of the structure of the transmitter shown in FIG.
  • the principle of generating the auxiliary resonance by using the transmitter 200 using the fixed frequency will be described.
  • the transmitter 200 (the refrigerator body) includes an oscillator 1510, an inverter 1520, and a resonator 1530, and the resonator 1530 includes a coil 1531 and a capacitor ( 1532).
  • the resonant frequency of the transmitter 200 resonator is f1 and the receiver 300 is mounted.
  • the resonance frequency additionally generated is f2
  • Wireless power transmission is possible through the configuration of the transmitter 200 shown in FIG.
  • the induction heating by the metal material is very low, when the receiving unit 300 (shelf 100) is aligned, there is a technical effect that the energy is sufficiently transmitted due to the characteristics of the auxiliary resonance.
  • the oscillator 1510 has an output in the form of a pulse of a frequency to be driven, and the inverter 1520 converts DC power into AC power of a corresponding frequency component.
  • the AC power output from the inverter 1520 flows to the coil 1531 of the resonator 1530 of the transmitter 200, thereby causing magnetic coupling with the receiver 300 to transmit energy.
  • FIG. 12 shows another example of the structure of the transmitter shown in FIG.
  • a method of sensing the receiver 300 generating the auxiliary resonance by using the transmitter 200 that detects a phase will be described.
  • the transmitter 200 (the refrigerator body) includes a voltage controlled oscillator (VCO) 1610, a low pass filter 1620, a phase detector 1630, and a phase sensor 1640. , An inverter 1650 and a resonator 1660.
  • the resonator 1660 includes a coil 1661 and a capacitor 1662.
  • FIG. 12 shows the apparent current / voltage phase difference change in the resonator 1660 of the transmitter 200 when the transmitter 200 (the main body of the refrigerator) and the receiver 300 (the shelf 100) are aligned. This is a method of detecting the receiver 300 (the shelf 100).
  • the oscillator 1510 of FIG. 11 is changed to a voltage controlled oscillator (VCO), and the rectification of the resonator 1660 of the transmitter 200 and the driving frequency of the inverter 1650 are performed.
  • VCO voltage controlled oscillator
  • a phase sensor 1640 and phase comparator 1630 for detecting the phase difference of the phase and LPF 1620 to prevent the feedback system from oscillating were added.
  • the operation algorithm is as follows.
  • the transmitter 200 shown in FIG. 12 starts driving at a frequency higher than f2 (referred to as an auxiliary resonance frequency or a secondary resonance frequency), and the resonance of the transmitter 200 which occurs only when the receiver 300 is aligned.
  • the operating point with negative specific voltage / current phase difference is searched for within a specific frequency range including f2.
  • the specific frequency range may cover at least a portion of the frequency band in which the secondary resonance illustrated in FIG. 4 may occur. Or may include the entirety of the secondary resonant frequency band.
  • the specific frequency range may be set wider or narrower than the secondary resonant frequency band.
  • the receiver 300 (shelf 100) is determined to be aligned, and designed to continuously transmit energy (power) as long as the corresponding phase difference is maintained. do.
  • phase sensing method shown in FIG. 12 has the following advantages.
  • FIG. 13 shows yet another example of the structure of the transmitter shown in FIG.
  • a principle of generating auxiliary resonance by using the transmitter 200 that senses input power will be described.
  • the transmitter 200 (the refrigerator body) includes a voltage controlled oscillator (VCO) 1710, an amplifier 1720, a low pass filter 1730, and an input current detector. 1740, inverter 1750, and resonator 1760.
  • the resonator 1760 includes a coil 1701 and a capacitor 1762.
  • auxiliary resonance (or secondary resonance) frequency f2 When operating at the auxiliary resonance (or secondary resonance) frequency f2, power is largely transmitted only when the receiver 300 (shelf 100) is aligned, and the difference in efficiency for each load and distance is insensitive, so that the receiver ( If you want to control the power of the 300, it is possible to control the power in the transmitter 200.
  • FIG. 13 shows a transmitter power control method using this feature.
  • an input current detector 1740 for measuring power a low pass filter (LPF) 1730 for removing a driving frequency component because the input current is mixed, and a filtered input.
  • a reference voltage and OPAMP 1720 were added to allow feedback to be applied to the current value.
  • the driving algorithm of the power control method shown in FIG. 13 is as follows.
  • the transmitter 200 (the refrigerator body) starts driving at a frequency higher than f2, and searches for an operating point having a specific input current within a specific frequency range including f2.
  • the receiver 300 (the shelf 100) is aligned, and is designed to continuously transmit energy (power) as long as the corresponding input voltage is maintained. do.
  • the so-called input power sensing method shown in FIG. 13 has the following advantages.
  • the refrigerator when the refrigerator is designed using the wireless power transmission system according to an example of the present application, it is possible to build a light source (ie, an LED) on each of the detachable shelves 100.
  • a light source ie, an LED
  • the LED mounted on the shelf 100 that can be attached and detached in the refrigerator uses a contact type connector, which poses a risk of aging and corrosion.
  • a contact type connector which poses a risk of aging and corrosion.
  • one example of the present application can solve this problem.
  • the transmitter 200 is mounted on the inside wall of the refrigerator, the receiver 300 is mounted on the shelf 100, and wirelessly transmits power using the auxiliary resonance point, thereby effectively transmitting power wirelessly to the shelf 100. Even if the shelf 100 is removed and an aluminum beverage pot or iron pot is placed, it is possible to prevent the transmitter 200 from being damaged due to induction heating or excessive resonance. As described above, one example of the present application is very useful because all of these concerns can be solved by using an auxiliary resonance point (secondary resonance point).
  • both the coil of the transmitter 200 embedded in the main body of the refrigerator and the coil of the receiver 300 embedded in the shelf 100 of the refrigerator are made of PCB coils, and a ferrite (shielding member) of MnZn series is added to the coil.
  • the mutual inductance between the transmitting and receiving coils was increased.
  • the shielding member is applicable to both the transmitting unit 200 and the receiving unit 300, the shielding member thickness is suitable about 1.2-10mm.
  • the shield member may be formed of a flexible sheet as well as a rigid plate.
  • the specific specifications of the resonator of the transmitter 200 are, for example, the coil inductance is about 9.3 ⁇ H, the series capacitor is about 100 nF, and the resonant frequency when the transmitter 200 is present alone is about 150 kHz.
  • specific specifications of the resonator of the receiver 300 include, for example, a coil inductance of about 36 ⁇ H, a series capacitor of about 4.7 nF, a parallel capacitor of about 2.2 nF, and a combination of the transmitter 200 and the receiver 300.
  • the auxiliary resonance frequency is about 350 kHz.
  • the secondary resonant frequency may vary depending on the transmitter / receiver coupled state, and is an experimental value when the transmitter 200 and the receiver 300 are aligned at intervals of about 9 mm.
  • the equivalent load resistance is about 50 ⁇ .
  • the amount of power supplied to the refrigerator main body (transmitter 200) positioned on the side of each shelf 100 may be differentially adjusted.
  • dimming may be implemented by adjusting a duty of turning off and on the power by using a principle that power transmission is cut off.
  • dimming may be implemented using the driving frequency by using the point that the power transmission is lowered as the driving frequency is increased at the auxiliary resonance frequency. That is, the driving frequency may be gradually increased from the auxiliary resonance frequency to gradually decrease the brightness of the light source.
  • the brightness of the light source may be gradually increased by gradually decreasing the driving frequency up to the auxiliary resonance frequency.
  • the dimming technique of the lighting of the shelf 100 may gradually illuminate the lighting when the refrigerator door is opened to increase visibility, and may adjust the brightness of the lighting of the shelf 100 according to the ambient temperature or time of the refrigerator.
  • the dimming technique also allows for color illumination by combining colors of various colors (eg R, G, B).
  • the transmitter in series with the first coil and the first coil for generating a magnetic flux according to a module receiving a predetermined voltage and a flowing current. It may include a first capacitor connected to generate a first resonant frequency.
  • the receiver which is spaced apart from the transmitter, is equivalent to the load that consumes power, the second coil in which current is induced by linking the first coil and the magnetic flux, and the secondary load when the receiver is aligned with the transmitter.
  • the capacitor may include a second capacitor connected in series with the second coil or a third capacitor connected in parallel.
  • Such a wireless power transmission system uses an auxiliary resonance point generated when the transmitter and receiver are aligned, so that excessive resonance energy (current) is generated in the transmitter coil when the receiver is detached, and the metal after the transmitter and the receiver is detached.
  • the wireless power transmission system may minimize the standby power when the receiver is detached.
  • wireless power transfer systems can achieve simple and high efficiency by minimizing unnecessary circuitry.
  • the transmitter 200 and the receiver 300 may be applied to the shelf 100 of the refrigerator to have various mechanical configurations, that is, structural configurations. Can be.
  • the arrangement of the transmitter 200 and the receiver 300 may be important from a design point of view, and thus, it may need to be considered first. More specifically, once the arrangement of the transmitter 200 and the receiver 300 is determined, the shelf 100 and related structures can be easily designed based on this arrangement. Therefore, FIG. 14 is a perspective view schematically showing the storage compartment and the shelf of the refrigerator, and the arrangement of the transmitter 200 and the receiver 200 will now be described with reference to FIG. 14.
  • the shelf 100 may be supported by the side wall 15 or the rear wall 13 for installation in the storage compartment 2.
  • the transmitter 200 and the receiver 300 must face each other in order to transmit power wirelessly using magnetic flux, that is, electromagnetic waves. Therefore, the parts of the shelf 100 and the refrigerator (storage chamber 2) facing each other, that is, the side portions 100a and 100b / side walls 15a and 15b of the shelf 100 or the rear portion of the shelf 100 ( The transmitter 200 and the receiver 300 may be installed on the 100c and 100d / rear walls 13a and 13b.
  • the side portions 100a and 100b or the rear portions 100c and 100d may be inappropriate to directly install the transmitter 200 or the receiver 300. Accordingly, as shown, flanges 100e and 100f for installing the transmitter 200 or the receiver 300 may be provided on the side parts 100a and 100b and the rear parts 100c and 100d of the shelf, respectively.
  • the transmitter 200 may be disposed on the side walls 15a and 15b and may also be disposed on the rear walls 13a and 13b.
  • the receiver 300 may be disposed on the side parts 100a and 100b or the rear parts 100c and 100d of the shelf 100 to face the transmitter 200. If the transmitter 200 and the receiver 300 are disposed on the side walls 15a and 15b and the side parts 100a and 100b of the shelf 100, respectively, the transmitter 200 and the receiver 300 are well visible to the user. In this case, the appearance of the refrigerator may be improved. Therefore, the arrangement of the transmitter 200 and the receiver 300 on the side walls 15a and 15b and the sides 100a and 100b of the shelf 100 may be considered first, and then described in FIGS. 16-45.
  • Shelf 100 is also provided with a transmitter 200 and a receiver 300 disposed as such. More specifically, the receiver 300 may be installed on the side parts (100a, 100b) of the shelf 100 to supply power received to the light source of the shelf, the transmitter 200 is connected to the external power source while receiving ( It may be installed on the side walls (15a, 15b) to face 300. On the other hand, since various mechanisms are arranged behind the rear walls 13a and 13b while being connected to the power source, if the transmitter 200 is disposed on the rear walls 13a and 13b, it can be easily connected to an external power source. . Accordingly, as in the examples of FIGS. 46 and 47 described later, the transmitter 200 and the receiver 300 may be disposed on the rear walls 13a and 13b and the rear portions 100c and 100d of the shelf 100, respectively. .
  • the shelf 100 may be designed to be functionally and structurally optimally connected to the transmitter 200 and the receiver 300 arranged as described above. Such a shelf 100 is described in detail below with reference to the associated drawings.
  • 16A and 16B are perspective views respectively viewed from the left and the right of the shelf according to the present application, and FIGS. 17 and 18 are exploded perspective views of the shelf of FIG. 16.
  • 19 is a partial perspective view of a shelf including a cover, a receiver, and a transmitter
  • FIG. 20A is a plan view showing the assembly of the receiver and the light source
  • FIG. 20B is a plan view showing the internal structure of the cover in detail.
  • FIG. 16A shows the shelf 100 arranged on the left side of the storage compartment 2 when the refrigerator is viewed from the front
  • FIG. 16B shows the shelf 100 arranged on the right side of the storage compartment 2 when the refrigerator is viewed from the front.
  • the transmitter 200 and the receiver 300 face the side wall 15 and the side wall 15 to face each other for wireless power transmission and reception. It may be disposed on the side of the shelf (100). In this case, in the shelf 100 of FIG.
  • the receiver 300 since the left part 100a faces the left wall 15a, the receiver 300 is disposed at the left part 100a of the shelf 100, and the transmitter 200 is left. May be disposed on the wall 15a.
  • the receiver 300 since the right side 100b faces the right wall 15b, the receiver 300 is disposed at the right side 100b of the shelf 100, and the transmitter 200 is provided. May be disposed on the right side wall 15b.
  • the illustrated shelves 100 are fixed or supported on the rear wall 13 to be disposed on the left and right sides, respectively, the shelves 100 may have left and right brackets 121a and 121b as shown.
  • brackets 121a and 121b form left and right sides 100a and 100b of the shelf 100, respectively, and may provide enough space for installing the receiver 300. Accordingly, in the case of the shelf 100 of FIG. 16A, the receiver 300 may be installed in the left bracket 121a, and in the case of the shelf 100 of FIG. 16B, the receiver 300 may be installed in the right bracket 121b. have.
  • This bracket 121a, 121b assembly is described in more detail later.
  • the refrigerator has a single shelf 100 extending continuously across the left and right side walls (15a, 15b), unlike the one shown in Figures 1 and 16, the transmitter 200 and the receiver 300 is left
  • the wall 15a / shelf left part 100a and the right wall 15b / shelf right part 100b may be selectively installed.
  • the shelf 100 may include a shelf member 110.
  • Food stored in the refrigerator may be placed on the shelf member 110.
  • the shelf member 110 may include a plate 110a that substantially supports the food.
  • the plate 110a substantially occupies most of the shelf member 110, thereby forming a body of the shelf member 110.
  • Plate 110a may have sufficient strength for stable support of food.
  • the plate 110a may be made of a transparent member so that not only the food placed thereon but also the food placed on the plate 110a of the other shelf 100 may be easily identified.
  • the shelf member 110 may include rails 113a and 113b disposed at both side portions of the plate 110a. These rails 113a and 113b may be configured to support both sides of the plate 110a. More specifically, as best seen in FIG.
  • the rails 113a and 113b may include recesses 113c formed thereon and extending in the longitudinal direction.
  • the side of the plate 110a can be stably supported in this recess 113c.
  • the shelf member 100 may include a front cover 111 and a rear cover 112 respectively disposed at the front end and the rear end of the plate 110a.
  • the front and rear covers 111 and 112 may protect the front and rear ends of the exposed plate 110a and may have a design that may improve the appearance of the shelf 100. More specifically, the rear cover 112 may have a barrier (112a) installed on top of it.
  • the barrier 112a protrudes from the rear cover 112 to a predetermined height, thereby preventing the food placed on the shelf member 110 from falling to the rear of the shelf.
  • the plate 110a is first seated on the recess 113c of the rails 113a and 113b, and the recess (e.g., the adhesive 113f) is used for the recess (110f). May be fixed on 113c).
  • the covers 111 and 112 are fitted to the front and rear ends of the preliminary assembly of the plate 110a and the rails 113a and 113b, and the ends of the rails 113a and 113b as well as the plate 110a are also fitted. It may be held by the covers 111 and 112. Therefore, through this process, the plate 110a, the rails 113a and 113b and the covers 111 and 112 may be formed of one assembly, that is, the shelf member 110.
  • the shelf 100 may include a bracket 120 configured to support the shelf member 110 and the food placed thereon with respect to the rear wall 13.
  • the bracket 120 is disposed below the shelf member 110 and may support the bottom of the shelf member 110.
  • the bracket 120 may be formed of left and right brackets 121a and 121b disposed at both sides of the shelf member 110 for stable support of the shelf member 110. More specifically, the left and right brackets 121a and 121b are disposed below the left and right sides of the shelf member 110 and may support left and right sides of the bottom of the shelf member 110, respectively.
  • the left and right brackets 121a and 121b may be extended along the left and right sides of the shelf member 110 for stable support of the shelf member 110.
  • the bracket 120 may include bars 122a and 122b configured to support the left and right brackets 121a and 121b.
  • the bars 122a and 122b may be disposed between the left and right brackets 121a and 121b and may be oriented perpendicular to the left and right brackets 121a and 121b.
  • the bars 122a and 122b may be disposed at the front and the rear of the left and right brackets 121a and 121b, respectively.
  • the bars 122a and 122b may be coupled to the brackets 121a and 121b using fixing members such as bolts, and may be directly welded to the brackets 121a and 121b.
  • the bars 122a and 122b may prevent twisting or deformation of the brackets 121a and 121b due to an external force, thereby increasing the strength of the shelf 100 itself.
  • Such bars 122a and 122b may have various cross-sectional shapes, such as circular, elliptical, and square, if they have appropriate strength.
  • the front bar 122a may be formed of a cylindrical member having a circular cross section
  • the rear bar 122b may be formed of a plate member having a square cross section.
  • the bracket 120 may be configured to be fixed or supported on the rear wall 13 to support the shelf member 110.
  • the rear wall 13 may include a seating hole 18 that can be supported by the rear end of the bracket 120.
  • the shelf 100 may be configured to be movable in the vertical direction, that is, upward or downward direction. Therefore, as illustrated in FIGS. 1, 21, and 23, the plurality of seating holes 18 may be vertically arranged in a line.
  • a column of the plurality of seating holes 18 may be provided in the left and right brackets 121a and 121b, respectively.
  • the bracket 120 includes a first catching piece 123a and a second that are coupled to the rear wall 13, that is, the seating hole 18. It may include a locking piece (123b).
  • the first and second locking pieces 123a and 123b are provided at the rear end of the bracket 120 and may be disposed at the upper and lower portions of the rear end, respectively.
  • the first catching piece 123a and the second catching piece 123b may be coupled to different seating holes 18, respectively, to fix the bracket 120 to the rear wall.
  • the first catching piece 123a may be formed in a '-' shape, that is, an angle shape as a whole, and may be provided on an upper side of the rear end of the bracket 120.
  • the second catching piece 123b may be provided below the first catching piece 123b to be inserted into the seating hole 18.
  • the second locking piece 123b may have a shape different from that of the first locking piece 123a due to a functional difference.
  • the second catching piece 123b may have a pin shape that protrudes from the rear of the bracket 120 toward the rear, as shown.
  • a seating hole for inserting into the first catching piece 123a and a seating hole for inserting into the second catching piece 123b may be disposed adjacent to each other to form a pair.
  • the size of the seating hole for inserting the first catching piece 123a may be larger than the size of the seating hole for inserting the second catching piece 123b.
  • the seating hole for insertion into the first catching piece 123a and the seating hole for insertion into the second catching piece 123b may be sequentially arranged to form a pair.
  • these pairs of seating holes may be arranged in a line perpendicular to the rear wall 13, as described above.
  • the shelf 100 can be configured to be movable in the horizontal direction, ie, forward and rearward, so that food can be easily taken out.
  • it can be structurally difficult to move the entire shelf 100 in this manner, so that the shelf member 110 of the shelf 100 can be moved forward and backward.
  • Rails 113a and 113b of the shelf member 110 may be configured to be slidably supported or coupled to the bracket 120 for the forward and backward movement.
  • 24 is a cross-sectional view taken along the line A-A of FIG. 16A
  • FIG. 37 is a perspective view and a partially enlarged view showing a rail of the shelf member. More specifically, FIG.
  • FIG. 24 shows the right rail 113b together with the plate 110a and the right bracket 121b
  • FIG. 37 shows only the right rail 113b without any other members involved.
  • the bracket 120 that is, the right bracket 121b may include a flange 121c configured to slidably support the right rail 113b.
  • the flange 121c may extend inward to support the bottom surface of the rail 113b.
  • the rail 113b may include a first flange 113d extending downward and supported on the outer surface of the flange 121c.
  • the rail 113b may likewise include a second flange 113e extending downward and supported by the inner surface of the flange 121c.
  • the second flange 113e may again include an extension extending horizontally outward, and may wrap the flange 121c for more stable support.
  • the rail 113b may move along the flange 121c while being guided by the first and second flanges 113d and 113e.
  • the first and second flanges 113d and 113e and the flange 121c may be equally applied to the left and right rails 113a and 113b and the brackets 121a and 121b. Therefore, as illustrated in FIG. 16D, the shelf member 110 may move forward and backward using the left and right rails 113a and 113b.
  • the shelf member 110 When the shelf member 110 is moved to the front, the food can be close to the user, thereby the user can conveniently take out the food.
  • the rail 113b may include a protrusion 113h formed at its bottom surface.
  • the protrusion 113h is generally disposed at the center of the bottom of the rail 113b in the width direction so as to be disposed between the first and second flanges 113d and 113e, and may extend downward toward the flange 121c. Since the protrusion 113h has a relatively narrow contact surface with the flange 121c, the rail 113b can move along the flange 121c without great resistance, and thus, as shown in FIG. 16D, the shelf member 110 ) May be smoothly moved forward and backward while being supported by the left and right rails 113a and 113b and the brackets 121a and 121b.
  • the refrigerator may include not only the shelf 100 having the movable shelf member 110 described above, but also a shelf 100 fixed to the brackets 121a and 121b such that the shelf member 110 does not move.
  • a movable shelf member 110 may be applied to the shelf 100 of the upper part of the storage compartment 2, and a fixed and immovable shelf member 110 may be applied to the shelf 100 of the lower part of the storage compartment 2. . That is, the movable shelf member 110 may be selectively applied in consideration of the relative position and other requirements of the shelf 100.
  • the plate 110a seated in the recess 113c may be fixed on the bottom surface of the recess 113c using the adhesive 113f.
  • various additional configurations can be added to the rails 113a and 113b, and FIGS. 24 and 37 show such a configuration well.
  • the plate 110a when the plate 110a is fixed to the bottom of the recess 113c, the plate 110a may be pressed.
  • the adhesive 113f may flow out of the recess 113c by the pressurization and may hinder the appearance of the shelf 100.
  • grooves 113g may be formed in the upper portions of the rails 113a and 113b, precisely, the bottom surfaces of the recesses 113c, as shown in FIGS.
  • the groove 113g accommodates the adhesive 113f flowing on the recess 113c, thereby preventing the adhesive 113f from flowing out of the recess 113c.
  • a pair of grooves 113g may be formed on the bottom surface of the recess 113c.
  • the pair of grooves 113g may be spaced apart from each other at predetermined intervals, and may extend along the longitudinal direction of the rails 113a and 113b. Therefore, a substantial adhesive surface 113k can be formed between these grooves 113g.
  • a spacer 113i may be formed on the bottom surface of the recess 113c.
  • the spacer 113i may extend a predetermined length upward from the bottom surface of the recess 113c.
  • the plate 110a is substantially placed on the spacer 113i, and a space for filling the adhesive 113f may be formed between the plate 110a and the recess 113c by the spacer 113i. .
  • the spacer 113i may be disposed between the pair of grooves 113g, more particularly on the adhesive surface 113k.
  • an adhesive member for example, a double-sided tape may be blown on the spacer 113i, and the plate 110a may be preliminarily attached to the spacer 113i. Thereafter, the plate 110a may be finally fixed to the rail 113b using the adhesive 113f.
  • the adhesive 113f is not leaked out by the groove 113g and may be used for fixing the plate 110a. Therefore, by the above-described configuration, the plate 110a can be more firmly fixed to the rails 113a and 113b without harming the appearance of the shelf 100.
  • the shelf 100 may include a light source unit 140 configured to irradiate light by receiving power from the receiver 300.
  • FIG. 25 is a plan view illustrating a top of a light source unit of a shelf
  • FIG. 26A is a cross-sectional view taken along line B-B of FIG. 25
  • FIG. 26B is a cross-sectional view taken along line C-C of FIG. 16A.
  • FIG. 27 is a perspective view illustrating a light source unit of a shelf configured to irradiate light forward
  • FIG. 28 is a perspective view illustrating a light source unit of a shelf configured to irradiate light downward.
  • 29 is a plan view illustrating a bottom of the light source unit of FIG. 27, and FIGS.
  • FIGS. 30A and 30B are partial perspective views illustrating a light source unit coupled to a bracket.
  • FIGS. 36A-36E are perspective views showing right and left caps of the light source portion, and a plan view, front view and right side view showing the cap.
  • FIG. 38 is a front view of a refrigerator showing a light source of a wall illuminating the inside of the refrigerator
  • FIG. 39 is a cross-sectional view of the refrigerator showing a wall light source illuminating the inside of the refrigerator and a light source unit of the shelf.
  • the light source unit 140 will be described in detail as follows.
  • FIGS. 16-20 show in detail the premise structures of the shelf 100, which are referred together in the following description.
  • light sources 60A and 60B may be provided to illuminate the interior of the refrigerator, that is, the storage compartment 2.
  • the light sources 60A and 60B may be installed, for example, on the upper wall 12, and may be disposed at the front and rear portions of the upper wall 12, respectively. have.
  • the light emitted from the light sources 60A, 60b is obscured by the shelf 100 and the articles placed thereon, and thus cannot reach all the areas of the storage compartment 2. Therefore, in addition to the light sources 60A and 60B, when the light source unit 140 is installed on the shelf 100, the light source unit 140 may directly illuminate the space between the shelves 100.
  • the light source unit 140 installed on the shelf 100 allows the user to better check the article placed on the shelf 100, the storage compartment 2 can be uniformly illuminated. Also, since the rear portion of the storage compartment 2 is generally darker than the front portion, the front light source 60A can also be oriented towards the rear portion for illumination of the rear portion of the storage compartment 2, as shown in FIG. have. Thus, the front part of the storage compartment 2 may be relatively poor in illumination compared to the rear part of the storage compartment 2. For this reason, the light source unit 140 may be disposed at the front part of the shelf 100 to illuminate the front part of the storage compartment 2. In addition, the light source unit 140 may extend continuously along the front portion of the shelf 100 for uniform illumination.
  • the light source unit 140 is disposed between the brackets 121a and 121b, and both left and right ends thereof may be coupled to the brackets 121a and 121b.
  • the light source unit 140 may supplement the front lighting of the storage compartment 2.
  • the light emitted from the light source unit 140 may be reflected by foods or other shelves directly below, so that the storage compartment 2 may be more uniformly illuminated.
  • the refrigerator includes an additional lighting unit 140-1 installed at the center of the shelf 100 and / or an additional lighting unit 140-2 installed at the rear of the shelf 100. Can have The additional lighting units 140-1 and 140-2 may more uniformly illuminate the storage compartment 2 together with the front lighting unit 140.
  • the light source unit 140 includes a housing 141.
  • the housing 141 may be made of a hollow tubular member.
  • the light source unit 140 may include a light source module 142 configured to emit light.
  • the module 142 may include a substrate 142a and a light emitting element 142b attached to the substrate.
  • the light emitting element 142b may be formed of, for example, a light emitting diode (LED).
  • the substrate 142a of the module 142 is also formed of a long extending strip member, and the light emitting device
  • the fields 142b may also be arranged in a line along the substrate 142a at predetermined intervals.
  • the module 142 may include wires 142c and 142d connected to the substrate 142a, and these wires 142c and 142d may be outside the light source unit 140. It may be extended and connected to the receiver 300.
  • Such a module 142 is housed in the housing 141 to be protected from the external environment.
  • the housing 141 is made opaque except for a specific portion to irradiate the light generated in the module 142 in the desired direction. That is, the housing 141 may include a light blocking portion configured not to pass light and a transparent portion configured to pass light, that is, a window 141c (see FIG. 29).
  • the light source unit 140 may include a cap 143 configured to close both ends of the housing 141.
  • the cap 143 may basically prevent moisture or other foreign matter from entering the housing 141 and causing a failure of the module 142.
  • the cap 143 may include a head 143i and an extension 143a extending from the head 143i.
  • the head 143i is positioned outside the housing 141 and may be coupled to the brackets 121a and 121b.
  • the head 143i may have a body that is partially hollow. That is, the head 143i may be formed of a container forming a predetermined space therein. Since part is open, the internal space of the head 143i can be accessed.
  • the extension 143a is inserted into the housing 141 and can hold the module 142. That is, the extension 143a may be a holder that substantially holds and supports the module 142.
  • the extension that is, the holder 143a may hold the left and right sides of the module 142.
  • the cap 143 may further include a sealing member 143b disposed between the body of the cap 143 and the housing 141.
  • the sealing member 143b is disposed to surround the extension part 143a.
  • the sealing member 143b is press-fitted between the cap 143, that is, the extension 143a and the housing 141, thereby effectively preventing moisture and other foreign matter from entering into the housing 141. That is, the sealing member 143b may be interposed between the housing 141 and the extension 143a to form a first sealing portion of the light source unit 140 that prevents an external material from entering the housing 141.
  • the cap 143 may include a protrusion 143c.
  • the protrusion 143c may extend outwardly in the longitudinal direction from the left and right ends of the cap 143. 16, 20, the bracket 120 may include a groove 121d formed in the front portion. Therefore, as shown in FIGS. 30A and 30B, the light source unit 140 is coupled to the bracket 120 and stably supported by inserting the protrusion 143c into the groove 121d. In addition, the protrusion 143c is directly coupled to the bracket 120 and becomes a portion exposed to the outside of the bracket 120. Accordingly, the wires 142c and 142d may be drawn out of the light source unit 140 and the bracket 120 to be connected to the receiver 300 through the protrusion 143c.
  • the protrusion 143c may include a through hole 143h, as shown in FIGS. 30A and 30B.
  • the wires 142c and 142d may be drawn out through any one of the left and right protrusions 143c adjacent to the receiver 200 according to the position of the receiver 200.
  • the extension 143a may provide a function as a holder for holding the module 142, as described above. That is, the cap 143 extends into the housing 141 and may include a holder 143a configured to stably fix the module 142.
  • the holder 143a is shown well in FIGS. 26A and 26B.
  • FIG. 26A shows the holder 143a associated with the module 142, while the module 142 is omitted in FIG. 26B to better show the holder 143a.
  • the cap 143 may have a stopper 143d as a holder 143a configured to support both ends of the module 142.
  • Module 142 generally has a predetermined length, and this length may be determined according to various conditions, for example, the number of elements 142b included. Therefore, since the length of the module 142 is determined first, the size, that is, the length of the stopper 143d may also be determined so as to support both ends of the module 142 and support them.
  • a through hole 143k is formed in the stopper 413d, and the inside and the outside of the housing 141 may communicate with each other by the through hole 143k. Accordingly, the wirings 142c and 142d may be drawn out of the housing 141 through the through holes 143k, which are well shown in FIGS. 30A and 30B.
  • the cap 143 may also have a first arm 143e, which is configured to support the top of the module 142, as the holder 143a.
  • the first arm 143e may be disposed on the upper portion of the module 142 to support the upper portion of the module 142. More specifically, the first arm 413e may extend a predetermined length from the top of the stopper 143d to the inside of the housing 141.
  • the cap 143 may have a second arm 143f as the holder 143a that is configured to support the bottom of the module 142.
  • the second arm 143f may be disposed below the module 142 to support the bottom of the module 142.
  • the second arm 413f may extend a predetermined length from the lower portion of the stopper 143d to the inside of the housing 141.
  • the module 142 since the module 142 has a long body, it can sag down by its own weight. Accordingly, the second arm 413f may be formed longer than the first arm 413e as shown.
  • the second arm 413f may have a length of 1.1-3.0 times the first arm 413e.
  • the second arm 413f may be configured to have a partially reduced width. More specifically, as shown in FIGS. 26B and 36A-36E, the second arm 413f includes a first extension 143f-1 and the first extension extending a predetermined length from the head 143i.
  • the second extension part 143f-2 may extend from the extension part 143f-1 and have a width smaller than that of the first extension part 143f-1.
  • the first extension 143f-1 may have substantially the same length as the first arm 143e, such that the second extension 143f-1 forms an extended length of the second arm 413f. Done.
  • the intended length of the second arm 413f can be secured using a simpler structure and less material.
  • the second arm 413f may support a wider portion of the lower part of the module 142, thereby stably supporting the long module 142.
  • the wirings 142c and 142d of the substrate may extend outside the housing 141 through the through hole 143k of the stopper 143d. Therefore, moisture may also penetrate through the through hole 143k.
  • the head 143i of the cap 143 may be filled with a sealing material 143g. That is, the sealing material 143g may be provided inside the head 143i to form a second sealing part of the light source unit 140 to prevent the external material from entering the housing 141. This sealing material 143g may also serve to fix the wirings 142c and 142d in the head 143i.
  • the holder 143a that is, the stopper 143d and the first and second arms 143e
  • An additional sealing member or material 143m may be provided inside and / or around 143f. More specifically, the sealing member or material 143m may be interposed between the holder 143a (ie, the stopper 143d / first and second arms 143e and 143f) and the module 142, Moisture or other foreign matter can effectively block the module 142 from reaching.
  • the sealing member or the sealing material 143m is interposed between the holder 143a and the module 142 such that an external material is stored in the module 142. It can act as a third sealing portion of the light source unit 140 to prevent reaching.
  • the additional sealing member or material 143m may also seal the through hole 143k of the stopper 143d. Therefore, it is also possible to prevent the sealing material 143g (see FIG. 30A) in the head 143i from entering the housing 141 through the through hole 143k.
  • the light source unit 140 may be configured to irradiate light forward.
  • the housing 141 may include a front portion 141a and a rear portion 141a, and the front portion 141a may be oriented toward the user.
  • the light emitting element 142b may be oriented toward the front, that is, the front portion 141a to irradiate light forward.
  • only the front portion 141a may be made transparent to pass the irradiated light. Such irradiation of light may effectively illuminate the storage compartment 2, but may cause glare of the user. For this reason, the light source unit 140 may be configured to irradiate light downward, as shown in FIG. 28. Therefore, as shown in FIG.
  • the light emitting device 142b may be oriented toward the bottom of the housing 141 to irradiate light downward.
  • a window 141c configured to pass the irradiated light may be formed at the bottom of the housing 141. According to this orientation, light is not directly irradiated to the user, and glare can be prevented.
  • the light source unit 140 may be configured to irradiate light directly downward. In order to irradiate light directly below, the light source unit 140 may be oriented substantially parallel to the horizontal plane. Since the light emitting window 141c is disposed at the light source unit 140, precisely at the bottom of the housing 141, in order to irradiate light directly below, the bottom or window of the light source unit (ie, the housing 141). 141c may be oriented substantially parallel to the horizontal plane. On the other hand, as shown in FIG. 40B, the light source unit 140 may be configured to irradiate light not only downward but also to the rear part of the storage compartment 2.
  • the light source unit 140 may be oriented toward the rear of the storage compartment 2 and may be oriented so as to have a predetermined inclination angle with respect to the horizontal plane. More precisely, in order to irradiate light also in the rear part of the storage compartment 2, the bottom part or the window 141c of the housing 141 may be oriented toward the rear part of the storage compartment 2, and a predetermined angle with respect to the horizontal plane is given. It may be oriented to have an inclination angle.
  • the light source unit 140 includes a housing 141 that protects the module 142, precisely the light emitting device 142b, but without such a housing 141, the light source unit 140 is a module 142 ) May be included. That is, the light source unit 140 may include the module 142 exposed to the outside, that is, the light emitting device 142b.
  • the exposed light emitting device 142b may be disposed on the shelf 100 as the light source unit 140, and may be oriented to irradiate light forward.
  • the exposed light emitting device 142b may be disposed on the shelf 100 as the light source unit 140, and may be oriented to irradiate light downward.
  • the light source unit 140 having the exposed light emitting device 142b may have the same configuration as the various light source units 140 described herein.
  • the window 141c When the window 141c is formed on the entire bottom of the light source unit 140 (ie, the housing 141), the inside of the storage compartment 2 may be more brightly illuminated due to an increase in the emission area of the light. However, there is a possibility that a part of the light emitted from the window 141c is irradiated forward to cause glare to the user. Thus, as shown in FIG. 29 and FIGS. 41A-41E showing a cross section of the light source unit 140, the window 141c may be formed only on a part of the housing 141, not the entire bottom portion thereof. More specifically, as shown in FIG.
  • the length A1 between the front end and the rear end of the window 141c is the length of the light source unit 140 (exactly, the housing 141). It may be set to 1/2 of the distance A2 from the front end to the rear end. By setting the length A2 of the window 141c, sufficient illumination can be provided while preventing glare.
  • the window 141c may be disposed at the rear portion of the bottom of the housing 141. Since the window 141c of FIG.
  • the window 141c disposed at the rear part of the housing 141 does not generate glare, as shown in FIG. 40A, the window 141c of FIG. Can be.
  • the light source part 140 of FIG. 40B since the window 141c itself is oriented toward the rear part of the storage compartment 2, the light irradiated from this window 141c is less likely to generate glare. Accordingly, the light source unit 140 of FIG. 40B may have a window 141c formed on the entire bottom of the housing 141.
  • the window 141c may be formed of a diffuser capable of uniformly dispersing incident light. The use of the diffuser can eliminate the point light source effect.
  • the window 141c may be curved. That is, the window 141c may be formed to have a substantial radius of curvature (R). More specifically, the window 141c may be partially curved, and thus may include at least one curved portion. In addition, the window 141c may be formed to be curved as a whole. Through the curved window 141c, light may be diffused in a wider range, and the storage compartment 2 may be more uniformly illuminated. Since the light source unit 140 is configured to illuminate an area located below the shelf 100 as described above, the module 142 and the light emitting element 142b are also downward, as shown in FIGS. 41A and 41B. It can be oriented to irradiate light.
  • R radius of curvature
  • the module 142 and the light emitting element 142b may be oriented to irradiate light upward instead of downward. That is, the light emitting device 142b may be oriented toward the upper portion of the housing 141 and may face the upper inner surface of the housing 141. By this orientation, the light emitting element 142b does not face the window 141c, and thus, the point light source phenomenon as mentioned above may be essentially prevented.
  • the light emitted from the light emitting element 142b may be diffused while being reflected by the inner surfaces of the opaque housing 141, and thus, uniformly, that is, uniformly, inside the housing 141. It may have a flux. Therefore, such uniform light is emitted to the outside through the window 141c, so that more uniform illumination can be performed.
  • the upwardly oriented module 142 and the light emitting element 142b may be disposed at the rear portion of the light source unit 140. That is, the light emitting element 142b may be disposed at the rear portion of the inner space of the housing 141.
  • the vertical center axis of the light emitting device 142b may be rearwardly spaced at a predetermined distance B from the light source unit 140 (that is, the vertical center axis C of the housing 141).
  • the distance B may be, for example, about 1 mm.
  • the light emitting element 142b may likewise be aligned with the window 141c disposed in the rear portion, and thus emitted from the light emitting element 142b. Light may be reflected on the inner surface of the housing 141 to reach the window 141c.
  • the module 142 and the light emitting element 142b are light source 140, precisely May be oriented to irradiate light toward the front as well as the top of the housing 141.
  • the light emitting element 142b may face the top inner and front inner surfaces of the housing 141.
  • the light emitting element 142b may be inclined at a predetermined angle ⁇ with respect to the horizontal plane.
  • the angle ⁇ may be 10 ° to 15 ° Since the light-emitting element 142b oriented in this manner faces the inner surfaces of the plurality of housings 141, the light emitted from the light-emitting element 142b is reflected more greatly.
  • 40% of the light is reflected by the inner surface of the housing 141, while the light emitting device of FIG. 70% of the light may be reflected by the inner surface at 141b, so that the light emitting device 141b of FIG. 41E may provide remarkably uniform illumination while preventing a point light source phenomenon.
  • the plate 110a of the shelf member 110 that is, the body of the shelf member 100 may be made of a transparent member, so that light emitted from the light source unit 140 or reflected from other parts of the refrigerator is reflected. I can pass it. Therefore, due to such leakage of light through the plate 110a, there is a possibility that the intended space is not properly illuminated.
  • the shelf 100 may include a layer 114 formed on the shelf member 110, precisely the plate 110a, configured to reflect light to prevent leakage of light.
  • 42 is a plan view showing a shelf member including a layer. In addition, FIG. 42 also shows a light source unit 140 disposed below the shelf member 110 for convenience of description.
  • the layer 114 may be opaque to prevent light incident on the plate 110a from passing through. Furthermore, this opaque layer 114 may reflect light incident on the plate 110a.
  • the layer 114 may be disposed on the upper or lower surface of the plate 110a.
  • the layer 114 may be formed in various ways. For example, the layer 114 may be made of an opaque film printed on the upper or lower surface of the plate 110a using opaque paint or attached to the upper or lower surface of the plate 110a. In general, since the articles are placed in the center portion of the plate 110a, light leakage can be suppressed in this center portion. Accordingly, the layer 114 may be formed at the edge of the plate 110a, as shown in FIG.
  • the layer 114 includes the front and rear layers 114a and 114d disposed at the front and rear portions of the plate 110a and the left and right layers 114b disposed at the left and right sides of the plate 110a, respectively. , 114c). These layers 114a, 114b, 114c, and 114d may extend inwardly from front, rear, left, and right ends of the plate 110a that are exposed to the outside and allow light to pass therethrough. Therefore, exposure of light at the edge portion of the plate 110a can be reliably prevented. In particular, since the light source unit 140 is disposed at the front portion of the plate 110a, light leakage may be severely generated at the front portion of the plate 110a.
  • the front layer 114a may extend from the front end of the plate 110a to cover the light source unit 140 disposed below the plate 110a, as shown in FIG. 42. Since the light source unit 140 is not visible to the user by the front layer 114a, the appearance of the shelf 100 may be improved while preventing light leakage.
  • the left and right layers 114b and 114c may also cover the left and right rails 113a and 113b and the brackets 121a and 121b so that they are not visible to the user.
  • the light source unit 140 is disposed at the front of the shelf 100 and may be oriented to irradiate light downward.
  • the light source 140 is advantageously disposed below the shelf member 100 forming the top of the shelf.
  • the brackets 121a and 121b may be used to support the light source unit 140 disposed below the shelf member 100.
  • the light source unit 140 is disposed below the shelf member 110, for example, as illustrated in FIG. 16A, and is disposed between the front portions of the brackets 121a and 121b to be disposed at the front of the shelf 100. Can be installed.
  • FIGS. 43A-43C are side views showing examples of various arrangements of the bar of the light source portion and the bracket.
  • the light source unit 140 may be disposed in front of the front bar 122a. Since the front bar 122a is also for reinforcing the strength of the front part of the shelf 100, the light source part 140 is adjacent to the light source part 140 so as to be disposed at the front of the brackets 121a and 121b together with the light source part 140.
  • the light source unit 140 may be disposed behind the front bar 122a.
  • the light source portion 140 is for illuminating the front portion of the storage compartment 2, and thus the front bar 122a to be disposed in front of the brackets 121a and 121b together with the front bar 122a. ) May be disposed at the rear of the front bar 122a.
  • the light source portion 140 may be disposed in the front portion of the bracket (121a, 121b). Instead, the front bar 122a may not be provided at the front of the brackets 121a and 121b.
  • the light source unit 140 may be configured to have sufficient strength to replace the front bar 122a.
  • the housing 141 of the light source unit 140 may be made of a metal material and have a sufficient thickness and size, so that the light source unit 140 itself may provide sufficient strength to the front portion of the shelf 100. have.
  • the shelf 100 of FIG. 43C may have a simple structure while having appropriate strength.
  • the light source unit 140 since the light source unit 140 is disposed in front of the front bar 122a, the light emitted from the light source unit 140 may not be blocked or reflected by the front bar 122a. Thus, without interference with the front bar 122a, the light source portion 140 of FIG.
  • the shelf 100 of FIG. 43A can well illuminate the front portion of the intended storage compartment 2.
  • the light source unit 140 itself may also provide some strength to the front of the shelf 100
  • the strength of the shelf 100 may be further reinforced by the addition of the front bar 122a.
  • the shelf 100 of FIG. 43A can adequately illuminate the front portion of the intended storage compartment 2 while having a high intensity, and all other views herein also have the same light source portion 140 shown in FIG. 43A.
  • the arrangement of the front bar 122a is another arrangement of the front bar 122a.
  • the light source unit 140 and the front bar 122a may be configured in more detail for the convenience of the user.
  • 44 is a side view showing a detailed configuration related to the arrangement of the light source unit and the bar.
  • the shelf member 110 may be configured to be movable back and forth. For the front and rear movement of the shelf member 110, the user can pull or push the shelf member (110).
  • a handle may be required on the shelf member 110 to smoothly perform such an operation.
  • the front part of the shelf member 110 that is, the front cover 111 is located close to the user, such a front cover 111 can be used as a handle. More specifically, as also shown in FIG.
  • the shelf 100 may include a shelf member 110, a handle 111a that is precisely provided under the front cover 111.
  • the handle 111a may have various structures so that the user can grip the shelf member 110 without slipping.
  • the handle 111a may be formed of a plurality of steps disposed obliquely.
  • the light source unit 140 may be disposed to be spaced apart from the front cover 110 by a predetermined interval.
  • the front end of the light source unit 140 may be spaced apart from the front end of the front cover 110, precisely by a predetermined distance (C1) from the rear end of the handle (111a).
  • the separation distance C1 may be 3mm-15mm.
  • a separation distance (C1) may be provided a sufficient space for the user's grip between the light source unit 140 and the handle (111a).
  • the light source unit 140 since the light source unit 140 is disposed at the front of the shelf 100, a user may pull the light source unit 140 instead of the handle 111a to move the shelf member 110. In this case, since the light source unit 140 is fixed to the brackets 121a and 121b, the light source unit 140 may be damaged by the pulling of the user. Therefore, as described above with reference to FIG.
  • the front bar 122b may be disposed adjacent to the rear part of the light source unit 140. This arrangement does not create a space for the user's hand to enter between the front bar 122b and the light source unit 140, so that the light source unit 140 can be prevented from being operated by the user instead of the handle 111a. . Furthermore, the front bar 122b may be disposed lower than the light source unit 140. Since the front bar 122b is disposed relatively low, the user may move the front bar 122b in place of the light source unit 140 even when the user incorrectly grips another member instead of the handle 111a to operate the shelf member 110. I can catch you.
  • the lower end of the front bar 122a may be disposed to be lower by a predetermined distance C2 than the lower end of the light source unit 140.
  • this distance C2 may be 1 mm-7 mm. Due to the arrangement according to the distance C2, the front bar 122a may be caught by the user instead of the light source unit 140, thereby preventing the light source unit 140 from being damaged.
  • FIG. 21 is a partial perspective view illustrating a refrigerator and a shelf according to the present application
  • FIG. 22 is a partial plan view illustrating a bracket and a receiver of a shelf
  • FIG. 23 is a side view illustrating an alignment of a transmitter of a storage sidewall and a receiver of a shelf.
  • FIGS. 31-35 are referred to below. More specifically, FIG. 31 is a side view showing the side of the transmitter, and FIG. 32 is a back view showing the back of the transmitter.
  • 33 is a partial perspective view of an inter case including a structure for installing a transmitter.
  • FIGS. 34A and 34B are cross-sectional views illustrating various examples of a transmitter and a receiver installed in a refrigerator
  • FIG. 35 is a partial perspective view illustrating a transmitter installed in a refrigerator.
  • FIGS. 16-20 show in detail the premise structures of the shelf 100, which are referred together in the following description.
  • the transmitter 200 may be disposed on the side wall 15 to face the receiver 300 installed in the shelf 100. As illustrated in FIGS. 19, 21, 23, 31, and 32, respectively, the transmitter 200 may be formed of a circuit board 210. In addition, the transmitter 200 may include a coil 211 formed on the substrate 210. The coil 211 may be provided on a surface facing the transmitter 200, precisely the receiver 300 of the substrate 210. More specifically, the coil 211 may be formed on the surface of the transmitter 200, that is, the surface closest to the receiver 300 among the surfaces of the substrate 210. The coil 211 generates electromagnetic waves for power transmission, and may correspond to the primary coil described with reference to FIG. 2.
  • the transmitter 200 may include a shielding member 212 for preventing the leakage of electromagnetic waves.
  • the shielding member 212 may be provided on the surface of the transmitter 200 positioned opposite to the surface of the transmitter 200 facing the receiver 300. That is, the transmitter 200 may include a first surface facing the receiver 300 and a second surface opposite to the first surface, and the shielding member 212 may be attached on the second surface. . More specifically, the shielding member 212 may be directly attached on the opposite surface of the surface on which the coil 211 is formed, or may be disposed adjacent to the opposite surface.
  • the shielding member 212 may prevent the electromagnetic wave from leaking and simultaneously divert or redirect the leaked electromagnetic wave toward the receiver 300 again, that is, the electromagnetic wave oriented in a direction other than the receiver 300. . Therefore, most electromagnetic waves of the transmitter 200 may be transmitted to the receiver 300.
  • the shielding member 212 may also serve to increase the inductance of the coil 211. Due to the shielding member 212, a greater amount of power can be effectively transmitted to the receiver 300.
  • the transmitter 200 may include a terminal 213 connected to the substrate 210. The terminal 213 may be directly connected to an external power source to supply power to the receiver 300.
  • the waterproof coating 214 may be applied to the transmitter 200. That is, the transmitter 200 may include the waterproof coating 214 as a sealing member configured to prevent moisture and other foreign matter from entering the inside thereof. As shown in FIG. 31, the waterproof coating 214 may be applied on the substrate 210, and may prevent an electric leakage or an electric shock by preventing moisture or other foreign substances from reaching the substrate 210.
  • the receiver 300 is disposed on the left side or the right side of the shelf 100, that is, the left bracket 121a or the right bracket 121b so as to face the transmitter 200 disposed on the side wall 15 as described above.
  • the rear portions of the brackets 121a and 121b have a size larger than the front portions of the brackets 121a and 121b. Therefore, the receiver 300 may be disposed at the rear portion of the brackets 121a and 121b having a relatively large width and accordingly having appropriate strength. That is, the receiver 300 may be disposed in the rear region from the rear ends of the brackets 121a and 121b to the distance L1 point.
  • This distance L1 may be set to, for example, 1/4 of the total length L of the brackets 121a and 121b. Therefore, the receiver 300 may be disposed in an area from the rear ends of the brackets 121a and 121b to a quarter point of the total length L toward the front part.
  • the receiver 300 may also include a circuit board 310.
  • the receiver 300 may include a coil 311 formed on the substrate 310.
  • the coil 311 may be provided on a surface facing the receiver 300, precisely the transmitter 200 of the substrate 310.
  • the coil 311 may be formed on the receiving unit 300, that is, the surface closest to the transmitting unit 200 among the surfaces of the substrate 310.
  • This coil 311 may correspond to the secondary coil described with reference to FIG. 2.
  • the coil 211 of the transmitter 200 is provided on any surface of the transmitter 200 facing the receiver 300, and the coil 311 of the receiver 300 is also transmitted to the transmitter 200. Since it is provided on any one surface of the receiver 300 facing the, the coils 211 and 311 face each other, and can effectively transmit power.
  • the receiver 300 may include a shielding member 312, thereby preventing the electromagnetic wave transmitted from the transmitter 200 to heat the food container.
  • the shielding member 312 may be provided on the surface of the receiver 300 positioned opposite to the surface of the receiver 300 facing the transmitter 200.
  • the receiver 300 may include a first surface facing the transmitter 200 and a second surface opposite to the first surface, and the shielding member 312 may be attached on the second surface.
  • the shield member 312 may be attached directly on the opposite surface of the surface on which the coil 311 is formed, or may be disposed adjacent to the opposite surface.
  • a shield coating may be applied for the same purpose.
  • the shielding member 312 may be attached on the surface opposite to the surface on which the coil 311 is formed in the substrate 310, and may be attached on the bracket 120 adjacent thereto.
  • the shield member 312 may not only prevent induction heating of the container but also increase power reception efficiency due to prevention of electromagnetic wave leakage.
  • the shielding member 312 can increase the inductance of the coil 311, thereby further increasing the power reception efficiency.
  • the receiver 300 may be connected to the wirings 142c and 142d of the light source unit 140. More specifically, the substrate 310 of the receiver 300 is connected to the wires 142c and 142d, and thus the received power may be supplied to the module 142 through the wires 142c and 142d.
  • the receiver 300 may be waterproof coated, and may effectively prevent a short circuit or an electric shock. That is, the receiving unit 300 may also include the waterproof coating as a sealing member configured to prevent moisture and other foreign matter from entering the inside thereof. The waterproof coating may be applied on the substrate 310, and may prevent an electric shock or an electric shock by preventing moisture or other foreign substances from reaching the substrate 310.
  • the coil 211 in the transmitter 200 may be wound to form a circle in which a radius gradually increases with respect to a central axis perpendicular to the side wall 15. That is, the coil 211 may be wound in a spiral. Thus, the coil 211 may be disposed in the same plane.
  • the coil 311 is similarly wound in the receiver 300 and may be disposed in the same plane. Therefore, due to the configuration of the coils 211 and 311, the thicknesses of the transmitter 200 and the receiver 300 are not greatly increased, and thus do not occupy much space in the refrigerator. 21 to 23, the coils 211 and 311 may have a circular shape, but may have an elliptical shape, as shown in FIG. 19.
  • the elliptical coils 211 and 311 may include a more detailed configuration for efficient power transmission.
  • 52 is a plan view illustrating a detailed configuration of a substrate and a coil of a transmitter
  • FIG. 53 is a plan view illustrating a detailed configuration of a substrate and a coil of a receiver.
  • Elliptical coils 211 and 311 have partially reduced outer diameters (eg, minimum outer diameters D2 and D4).
  • the elliptical coils 211 and 311 may have a horizontal or vertical width smaller than the circular coils having the same diameter (eg, the maximum outer diameters D1 and D3), depending on their orientation. That is, compared to the circular coil, the elliptical coils 211 and 311 may have a compact profile. For this reason, the elliptical coils 211 and 311 may be suitable to be placed in a limited space in the refrigerator while performing effective power transfer.
  • the transmitter 200 may be larger than the receiver 300 in order to continuously transmit power while facing the receiver 300.
  • the coil 211 of the transmitter 200 may be larger than the coil 311 of the receiver 300.
  • the positions of the transceivers 200 and 300 are also specified as predetermined positions, and may be continuously maintained. Therefore, the transmitter 200 does not need to be larger than the receiver 300.
  • the transmitter 200 may have substantially the same size as the receiver 300. That is, the coil 211 of the transmitter 200 and the coil 311 of the receiver 300 may have the same outer profile. More specifically, as shown in FIG. 19, the outer diameters D1 and D2 of the coil 211 may be formed to be the same as the outer diameters D3 and D4 of the coil 311. That is, the maximum outer diameter D1 of the coil 211 is the same as the maximum outer diameter D3 of the coil 311, and the minimum outer diameter D2 of the coil 211 is the same as the minimum outer diameter D4 of the coil 311. Can be set.
  • the coils 211 and 311 may have the following practical specifications.
  • the maximum outer diameter D1 may be 44 mm, and the minimum outer diameter D2 may be 33 mm.
  • the maximum inner diameter d1 may be 30 mm, and the minimum inner diameter d2 may be 19 mm.
  • the pattern width W1 of the coil 211 may be 1.0 mm, and the gap between the patterns may be set to 0.2 mm.
  • the thickness of the coil 211 may be 70 ⁇ m.
  • the coil 211 may be actually composed of two layers stacked, and the number of turns (ie, the number of turns) of the pattern in each layer may be 5.5 turns. Thus, the total number of turns of the pattern may be 11 turns.
  • the maximum outer diameter D3 may be 44 mm, and the minimum outer diameter D4 may be 33 mm. Therefore, as described above, the outer diameters D1 and D2 of the coil 211 are formed to be the same as the outer diameters D3 and D4 of the coil 311.
  • the maximum inner diameter d3 may be 23 mm, and the minimum inner diameter d4 may be 12 mm.
  • the pattern width W2 of the coil 311 may be 0.6 mm, and the gap between the patterns may be set to 0.2 mm.
  • the thickness of the coil 311 may be 70 ⁇ m.
  • the coil 311 may be actually composed of two layers stacked, and the number of turns (ie, the number of turns) of the pattern in each layer may be 13.5 turns. Thus, the total number of turns of the pattern may be 27 turns.
  • the inductance of the coil 311 may be 36.1 ⁇ 0.5 ⁇ H, and the DC resistance may be 2.8 ⁇ 0.2 ⁇ . These inductances and DC resistance are values when the shielding member 312 is installed.
  • the shielding members 212 and 312 may be configured to have an outer shape larger than that of the coils 211 and 311 to block electromagnetic waves and magnetic fluxes leaking from the coils 211 and 311.
  • the shielding members 212 and 312 may also have an elliptical shape with maximum and minimum diameters, as shown in other figures, for example FIGS. 17 and 19. Therefore, the maximum diameters of the shielding members 212 and 312 may be set larger than the maximum diameters D1 and D3 other than the coils 211 and 311.
  • the minimum diameters of the shielding members 212 and 312 may be set larger than the minimum diameters D2 and D4 other than the coils 211 and 311.
  • the maximum diameters of the shielding members 212 and 312 may be set to 46 mm and the minimum diameter to 35 mm.
  • Such shielding members 212 and 312 may be attached to the substrates 210 and 310 using an adhesive, for example, a double-sided tape.
  • the shielding members 212 and 312 may be made of a ferromagnetic material for effective shielding.
  • the shielding members 212 and 312 may be made of ferromagnetic material having ⁇ (permeability)> 3000. More specifically, the shielding members 212 and 312 may be made of ferrite, amorphous, or the like among the ferromagnetic bodies. If ferrite is used, Mn-Zn series or Ni-Zn series ferrite may be used. Mn-Zn-based ferrites are suitable for low loss, and Ni-Zn-based ferrites are suitable for high frequency.
  • the transmitter 200 may be embedded in the sidewall 15. Therefore, the transmitter 200 may be stably installed in the side wall 15, but may be difficult to separate from the side wall 15 for maintenance. For this reason, the transmitter 200 can be made as a module that can be easily detached from the side wall 15.
  • Such a modular transmitter 200 is shown in FIGS. 31-32, described in detail below with reference to these figures.
  • the transmitter 200 may include a substrate 210 on which a coil 211, a shield member 212, and a terminal 213 are installed.
  • the transmitter 200 may include a cover 220 covering the substrate 210.
  • Cover 220 may also be configured to receive the substrate 210 and other components installed therein. More specifically, the cover 220 may have a body 220a, as best shown in FIGS. 34A and 34B, which body 220a has a predetermined size plate to appropriately support the flat substrate 210. It may be made of.
  • the cover 220 may have a wall 221 protruding from the body 220a and extending along an edge thereof. By the wall 221 and the body 220a, the cover 220 may form a container having a predetermined size.
  • the substrate 210 and other components can be accommodated in the formed inner space.
  • the substrate 210 may be stably supported by the wall 221 and the body 220a.
  • the wall 221 may further include a rib 211a for fixing the substrate 210.
  • the cover 220 may include a flange 222 extending further from the body 220a.
  • the cover 220 may include a rib 223 extending from the wall 221 in the same direction as the flange 222.
  • a hole or recess 200a may be formed in the inner case 10 to accommodate the modular transmitter 200.
  • a heat insulating material S is filled between the inner case 10 and the outer case 10a. Static electricity may be generated when the heat insulating material S is filled between the cases 10 and 10a. If the transmitter 200 is installed before the heat insulating material S is filled, the circuit of the transmitter 200 may be damaged by static electricity. For this reason, the transmitter 200 is installed after the heat insulating material S is filled between the cases 10 and 10a.
  • a seat for installing the transmitter 200 to prevent the pre-filled heat insulating material S from entering the storage compartment 2 is formed as a recess 200a in which the bottom is closed.
  • a reinforcing plate 15a may be installed on the inner surface of the inner case 10 to reinforce the strength of the inner case 10.
  • the reinforcing plate 15a is also provided with a through hole 200b for installing the transmitter 200 and may communicate with the recess 200a.
  • the flange 222 is caught by the outer surface of the reinforcement plate 15a, and the rib 223 is the reinforcement plate 15a.
  • most of the transmitter module 200 is disposed in the recess 200a, and only the cover 210 is exposed to the outside as shown in FIG. 35 so as not to impair the appearance.
  • the transmitter module 200 can be stably attached to the side wall 15 and can be easily detached from the side wall 15 for maintenance in the same manner.
  • the flange 222 is formed larger than the through hole 200b, external foreign matter does not enter the recess 200a.
  • the sealing member 224 may be provided around the wall 221, and thus the recess 200a may be more completely sealed to prevent the failure of the transmitter 200.
  • a wire connected to an external power source is disposed between the cases 10 and 10 a in advance adjacent to the recess 200a, and then the case (by the heat insulating material S) is filled. 10, 10a) can be fixed between.
  • the terminal 213 of the transmitter 200 may be directly connected to the wiring adjacent to the recess 200a, and may be connected between the transmitter 200 and an external power source.
  • the connection can be performed easily.
  • a terminal configured to be directly connected to the terminal 213 may be installed at an end of the wire connected to the external power source, whereby the transmitter 200 and the external power source may be more easily connected.
  • the reinforcing plate 15a may include a recess 15b formed around the through hole 200b.
  • the flange 200 is inserted into the recess 15b and may not protrude outside the reinforcing plate 15a. More specifically, the outer surface of the flange 200 may be disposed in the same plane as the surface of the side wall 15 of the refrigerator. Therefore, the transmitter 200 may be substantially integrated with the refrigerator sidewall 15, and the appearance of the refrigerator may be improved.
  • the receiver 300 may also be made as a module that can be easily attached and detached from the bracket 120.
  • a modular receiver 300 is shown in FIGS. 17-20, described in detail below with reference to these figures.
  • FIGS. 17-19 show the receiver 300 installed on the left bracket 121a
  • FIGS. 20A and 20B show the receiver 300 installed on the right bracket 121b.
  • the receiver 300 may include a substrate 310 provided with a coil 311, a shield member 312, and wires 142c and 142d.
  • the receiver 300 may include a cover 130 covering the substrate 310.
  • the cover 130 may also be attached to the bracket 120 by using the fastening member, so that the receiver 300 may be wrapped by the bracket 120 and the cover 130. Therefore, the cover 130 may protect the receiver 300 from the external environment. Since the cover 130 is attached to the bracket 120 to form part of the shelf 100, it may be described that the shelf 100 includes such a cover 130. Cover 130 may also be configured to receive the substrate 310 and other components installed therein.
  • the cover 130 may be formed of a material that does not interfere with power transmission between the transmitter 200 and the receiver 300 and generation of a resonance frequency therefor.
  • the cover 130 may be made of a polymer material such as plastic and other non-conductive / non-metallic materials.
  • the cover 130 may have a body 130a.
  • the body 130a may be formed of a plate-shaped member, and the rib 130b may extend from the edge of the body 130a to be substantially perpendicular thereto. Therefore, the cover 130 may form a space for accommodating the components of the receiver 300 by the body 130a and the rib 130b.
  • the cover 130 may have a wall 131 protruding from the body 130a. By the wall 131 and the body 130a, a seat 131a having a predetermined size may be formed in the cover 130. Thus, the substrate 310 and other components can be accommodated in the formed seat portion 131a.
  • the wirings 142c and 142d must extend to the light source unit 140 to supply power.
  • the cover 130 may extend along the side of the bracket 120 as shown, and the wirings 142c and 142d may also be covered as shown. Can be disposed along 130.
  • the cover 130 may have an outer shape that matches the outer shape of the side surface of the bracket 120, thereby improving the appearance of the shelf 100.
  • the cover 130 may also include a plurality of ribs 132 configured to hold the wirings 142c and 142d.
  • the ribs 132 may be stably attached to the cover 130.
  • the cover 130 may include a plurality of bosses 134 formed in the body 130a.
  • the brackets 121a and 121b may include a plurality of fastening holes 121e.
  • the cover 130 may include a plurality of protrusions 135 formed on the body 130a. As shown in FIG. 18, a plurality of holes 121f into which the protrusions 135 are inserted may be formed in the brackets 121a and 121b.
  • the rear parts of the brackets 121a and 121b may be larger than their front parts so as to firmly support the shelf 100. That is, the front portions of the brackets 121a and 121b have a limited space. Accordingly, the boss 134 and the fastening hole 121e having a relatively large size are disposed at the rear and center portions of the cover 130 and the brackets 121a and 121b, while the projections 135 and the relatively small size are disposed.
  • the hole 121f may be disposed in front of the cover 130 and the brackets 121a and 121b.
  • the boss 134 and the fastening hole 121e may also be aligned with each other.
  • the cover 130 may be coupled to any one of the brackets 121a and 121b by fastening the fastening member to the aligned boss 134 and the fastening hole 121e.
  • the transmitter 300 may be modularized with the cover 130. Together with the bracket 120 can be easily installed or removed. Furthermore, the wirings 142c and 142d are drawn along the cover 130 and drawn out to the outside of the cover 130 through an aperture 133 formed at an end thereof, and immediately through the protrusion 143c. May be connected to the module 142.
  • the cover 130, the receiver 300, and the light source 140 may form one module or assembly. In such an assembly, from the perspective of the shelf 100 as a whole, the receiver 300 may form a receiver R, as shown in FIG. 20A, with a portion of the cover 130 receiving it.
  • the wirings 142c and 142d may form the wiring part W together with a part of the cover 130 accommodating the wirings 142c and 142d.
  • the light source unit 140 may be regarded as a load supplied with power by the wiring unit (W).
  • the cover 130, the transmitter 300 and the light source 140 can be easily installed on the shelf 100, precisely the bracket 120 at a time, and can also be easily separated for maintenance. have.
  • the cover 130 may be implemented in other forms in addition to the solid member as described above.
  • the receiver 300 and the wirings 142c and 142d are disposed on the brackets 121a and 121b, and a material that does not interfere with the power transmission as described above is the brackets 121a and 121b and the receiver 300.
  • a paint or other flexible member may be used instead of the solid cover 130 to perform the same function as the cover 130.
  • Another example of such a cover secures the receiver 300 and the wirings 142c and 142d to the brackets 121a and 121b, without interfering with the power transmission and the resonance frequency generation, and the receiver 300 and the wiring 142c. , 142d) can be protected from foreign substances.
  • the shelf 100 may be moved in an upward direction and a downward direction to have different heights.
  • the transmitter 200 and the receiver 300 In order to supply power to the light source unit 140 of the shelf 100, the transmitter 200 and the receiver 300 must face each other. Therefore, any one of the transmitter 200 and the receiver 300 needs to be adjusted to face each other even after the shelf 100 is moved.
  • the receiver 300 since the receiver 300 is fixed to the shelf 100 and moved together, it is necessary to adjust the transmitter 200 to face each other instead of the receiver 300. Therefore, the transmitter 200 may be configured to continuously face the receiver 300 even after the shelf 100 moves upward or downward. For such a confrontation between the transmitter 200 and the receiver 300, various structures can be applied. For example, as illustrated in FIGS.
  • a plurality of transmitters 200 may be disposed at different heights on the sidewall 15.
  • the transmitters 200 may be disposed at the same heights as the heights at which the shelf 100 may be disposed.
  • the shelf 100 may be fixed to the rear wall 13 by using the first and second locking pieces 123a and 123b caught by the mounting holes 18 adjacent to each other.
  • the bracket 120 of the fixed shelf 100 is disposed between the seating holes 18, and the receiver 300 disposed on the side of the bracket 120 is likewise. It may be arranged between the seating holes 18.
  • the plurality of transmitters 200 may be disposed on the sidewall 15 at heights H between the mounting holes 18 adjacent to each other.
  • the transmitter 200 may be installed on the side wall 15 of the refrigerator so as to be disposed between the mounting holes 18 adjacent to each other, that is, between the distance (H). For this reason, even when the shelf 100 moves from one height shown in FIG. 23 (a) to another height shown in FIG. 23 (b), the receiver 300 and the transmitter 200 provide stable power transmission. Can face each other.
  • the coils 211 and 311 of the transmitter and receiver 200 and 300 may face each other as shown.
  • the central axes of the coils 211 and 311 may be arranged to coincide with each other for higher power transmission.
  • the transmission unit 200 and disposed on the side wall 15 and the bracket 120 to face each other and The receiver 300 may no longer be disposed between the seating holes 18.
  • any one of the locking pieces 123a and 123b is the bracket 120.
  • the distance (H) between the seating holes 18 can also be reduced according to the change of the engaging pieces (123a, 123b). Therefore, the transmitter 200 facing the receiver 300 may no longer be disposed within the distance H.
  • the receiver 300 is still disposed on the side of the bracket 120. Therefore, when all or at least a part of the transmitter 200 is disposed on the side wall 15 to face the side of the bracket 120, more specifically, between the upper and lower ends of the bracket 120. When disposed, the transmitter 200 may face the receiver 300 disposed at the side of the bracket 120 regardless of the configuration of the locking pieces 123a and 123b and the mounting hole 18.
  • a plurality of coils 211 may be disposed on a single substrate 210 to form a plurality of transmitters 200 having the configuration as described above.
  • multiple modular transmitters 200 may be provided.
  • a single transmitter 200 may be slidably installed in the vertical direction on the side wall 15. Thus, the transmitter 200 may adjust its height according to the height of the shelf 100 and the receiver 300 which are changed.
  • a single coil 211a may be disposed over a height at which the receiver 300 may be disposed on a single substrate 210.
  • the transmitter 200 may always face the receiver 300.
  • the position of the receiver 300 is determined by the seating hole (18). Therefore, the positions of the transmitters 200 are determined first, and the heights of the seating holes 18 are such that the transmitters 200 and the receivers 300 at the predetermined positions may face each other even after the heights of the shelves 100 are changed. May be adjusted.
  • the transmitter 200 and the receiver 300 may be disposed to abut each other.
  • the heat insulating material S is filled at a high pressure between the inner and the outer cases 10 and 10a, a large amount of pressure is applied to these cases 10 and 10a.
  • the inner case 10, ie the side wall 15 may protrude and may have a different dimension than the one designed. If the transmitter 200 and the receiver 300 are designed to abut each other, the transmitter 200 may pressurize the receiver 300 and cause damage due to the dimension change during the production process.
  • the shelf 100 is moved in the vertical and horizontal directions.
  • the transmitter 200 and the receiver 300 may be spaced apart from each other by a predetermined distance t. That is, the transmitter 200 and the receiver 300 are configured not to directly contact each other.
  • the distance t is set not to significantly reduce the power transmission efficiency, and may be set to about 9 mm.
  • the existing wired power transmission method requires a direct contact between the shelf 100 and the inner case 10, and further includes problems such as the above-described dimensional change and damage in addition to reasons such as corrosion, short circuit and electric shock. Done. Therefore, in consideration of these reasons, it may be more apparent that the application of the transmitter 200 and the receiver 300 based on the wireless power transmission technology is optimal for supplying power to the light source of the refrigerator shelf 100.
  • the receiver 300 is electrically connected to the light source unit 140 using wires 142c and 142d, and transmits the power transmitted from the transmitter 200 to the light source unit 140.
  • the shelf 100 may include an electrical connection different from the electrical connection using the wiring (142c, 142d) as a modification.
  • Figure 45 is a perspective view showing a modification of the electrical connection of the receiver and the light source. Since the configuration of the shelf has already been described above, only the distinguishing configuration is described in the following. For the same reason, the configuration described with reference to the other drawings is equally applied to the configuration that has not been described, and the detailed description thereof is also omitted.
  • the bracket 121a may be used for electrical connection between the receiver 300 and the light source 140 instead of the wirings 142c and 142d.
  • the shelf 100 may include a first connector 124 electrically connecting the bracket 121a and the receiver 300.
  • the first connector 124 is provided in the bracket 121a and may include first and second contacts 124a and 124b connected to the receiver 300.
  • the first and second contacts 124a and 124b may be electrically connected to the receiver 300, precisely the substrate 310, by the wirings 124c and 124d.
  • the shelf 100 may include a second connection part 125 that electrically connects the bracket 121a and the light source unit 140.
  • the second connector 125 may be provided in the bracket 121a and include first and second contacts 125a and 125b connected to the light source unit 140.
  • the first and second contacts 125a and 125b may be electrically connected to the light source unit 140, precisely the module 142, by the wirings 125c and 125d.
  • the body of the bracket 121a may be used for the electrical connection between the first and second connectors 125.
  • the bracket 121a may be made of a highly conductive material, for example, steel.
  • some sections L of the bracket 121a may electrically connect the first and second connecting portions 124 and 125.
  • the receiver 300 may transmit the transmitted power to the light source unit 140 sequentially through the first connection unit 124, the bracket 121a, and the second connection unit 125.
  • the first and second contacts 124a and 124b of the first connection part 124 may be provided with a sealing part 124e, and thus may be protected from moisture and other foreign substances.
  • the sealing part 125e may be provided at the first and second contacts 125a and 125b of the second connection part 125.
  • the sealing parts 124e and 125e may be formed by applying a sealing material to the first and second contacts 124a, 124b, 125a and 125b.
  • the bracket 121a may also be coated with an insulating material to prevent a short circuit or an electric shock.
  • the cover 126 may be attached to the bracket 121a to protect the receiver 300.
  • the cover 126 may be formed to cover only the receiver 300 and the first connection part 124. That is, unlike the cover 130 that is elongated to protect the wirings 142c and 142d described above, the cover 126 may have a significantly reduced size. If necessary, an additional cover having the same function as the cover 126 may be applied to protect the second connection 125. Although the electrical connection structure applied to the left bracket 121a has been described above, the same may be applied to the right bracket 121b. The electrical connection structure of FIG. 45 can simplify the structure of the shelf and effectively transmit power to the light source unit 140.
  • the transmitter 200 may be disposed on the rear wall 13 instead of the side wall 15, so that the receiver 300 may also have a shelf (eg) facing the transmitter 200. It may be disposed at the rear of the 100.
  • FIG. 46 is a front view showing a transmitter installed on the rear wall of the storage compartment
  • FIG. 47 is a perspective view showing a shelf having a receiver installed at the rear portion.
  • the structure for mounting the receiver 300 as shown in FIG. 47 is omitted from the shelf 100 of FIG. 46.
  • FIG. 45 since the configuration of the shelf has already been described above, only the distinguishing configuration is described below. For the same reason, the configuration described with reference to the other drawings is equally applied to the configuration that has not been described, and the detailed description thereof is also omitted.
  • a pair of transmitters 200 are provided on the left and right rear walls 13a and 13b to supply power to the left and right shelves 100a and 100b, respectively.
  • the transmitters 200 may be disposed at the center of the rear wall. That is, one transmitter 200 may be disposed on the left rear wall 13a adjacent to the right bracket 121b of the left shelf 100a, and the other transmitter 200 is the left bracket of the right shelf 100b. It may be disposed on the right rear wall 13b adjacent to 121a.
  • a pair of additional brackets 100f may be formed at the rear of the left and right shelves 100a and 100b to support the receiver 300.
  • one bracket 100f may extend from the rear of the right bracket 121b of the left shelf 100a to a predetermined length in parallel to the left rear wall 13a.
  • another bracket 100f may extend from the rear of the left bracket 121a of the right shelf 100b to the right rear wall 13b in a predetermined length.
  • Receivers 300 may be installed on the brackets 100f, respectively.
  • the wires 142c and 142d may connect the receivers 300 and the light source units 140 to supply the transmitted power.
  • the wires 142c and 142d may extend from the receivers 300 along the brackets 121a and 121b to the light source unit 140.
  • the cover 130 described above may extend to cover the entire bracket of the brackets 121a and 121b as well as the additional bracket 100f.
  • the transmitter 200 and the receiver may face each other, and power may be effectively transmitted.
  • one transmitter 200 may be disposed on the left rear wall 13a adjacent to the left bracket 121a of the left shelf 100a, and the other transmitter 200 is the right shelf. It may be disposed on the right rear wall 13b adjacent to the right bracket 121b of the 100b.
  • the brackets 100f and the receivers 300 described above face the left bracket 121a (see, for example, FIG. 16A) and the right side of the left shelf 100a in the same manner so as to face the transmitters 200.
  • the right bracket 121b of the shelf 100b may be provided respectively.
  • FIG. 48 is a front view showing the structure of a transmitter and a receiver in the shelf supported on the side wall of the storage compartment
  • FIG. 49 is a rear view of the shelf of FIG. 50
  • FIG. 51 is a side view which shows the shelf of FIG.
  • FIGS. 45-47 the configuration of the shelf has already been described above, so only the distinguishing configuration is described below. For the same reason, the configuration described with reference to the other drawings is equally applied to the configuration that has not been described, and the detailed description thereof is also omitted.
  • sidewalls 15a and 15b of the refrigerator may include supporters 15c and 15d. More specifically, the left supporter 15c extends from the left wall 15a into the storage compartment 2 to a predetermined length, and similarly the right supporter 15d is predetermined from the right wall 15b into the storage compartment 2. It may extend in length.
  • the left and right side portions of the shelf 100 are placed on the left and right supporters 15c and 15d, whereby the shelf 100 can be stably supported in the refrigerator.
  • the transmitter 200 and the receiver 300 face the left supporter 15c / the left side or the right supporter 15d / of the shelf facing each other. It can be installed on the right side of the shelf.
  • the receiving unit 300 may be installed at the right side of the shelf to face the same.
  • the transmitter 200 may have a narrow width according to the shape of the supporter 15d. The transmitter 200 may be installed at any portion of the upper portion of the supporter 15d.
  • the receiving unit 300 faces the lower surface of the right rail 113b (ie, the floor) to face the transmitting unit 200. Surface).
  • the transmitter 200 when the transmitter 200 is disposed at the rear of the supporter 15d, the transmitter 200 may be disposed on the rear of the lower surface of the rail 113b so as to face the transmitter 200.
  • the rail 113b may be used for electrical connection between the light source unit 140 and the receiver 300 disposed at the front. For this electrical connection, the first and second connectors 124 and 125 as described in FIG.
  • the rail 113b may be made of a conductive material.
  • the remaining surface of the rail 113b except for electrical contacts such as the contacts 124a, 124b, 125a, and 125b of FIG. 45 may be coated with an insulating material.
  • the receiver 300 and the light source 140 may be electrically connected to each other using the wirings 142c and 142d as described above.
  • a protective member such as the cover 130 and 126 described above may be applied to protect against foreign matter and moisture.
  • the transmitter 200 may be disposed on the rear wall 13.
  • 50 shows the transmitter 200 disposed at the center portion of the rear wall 13, but the transmitter 200 may be disposed at any portion of the rear wall 13 adjacent to the rear portion of the shelf 100.
  • a bracket 100f for supporting the receiver 300 may be provided at the rear portion of the shelf 100. This bracket 100f may extend a predetermined length in the downward direction from the rear end of the shelf 100, as shown in FIG.
  • the receiver 300 may be installed on the bracket 100f so as to face the transmitter 200.
  • any one of the rails 113a and 113b may be used for electrical connection between the light source unit 140 and the receiver 300 disposed in front.
  • the first and second connection parts 124 and 125 as described in FIG. 45 may be applied to any one of the rails 113a and 113b in the same manner, and the rail may be made of a conductive material. Except for the electrical contacts, the remaining surfaces of the rails 113a or 113b for electrical connection may be coated with an insulating material.
  • the receiver 300 and the light source 140 may be electrically connected to each other using the wirings 142c and 142d.
  • a protection member such as the cover 130 and 126 described above may be applied to protect the wirings 142c and 142d, the receiver 300, and the connection parts 124 and 125 from foreign matter and moisture.
  • the above-described configuration of the refrigerator may wirelessly supply power required for the light source unit 140 of the shelf 100.
  • appropriate control considering the structure and characteristics of the refrigerator needs to be applied.
  • the optimization of such control can achieve the intended functional improvement more effectively and efficiently.
  • control methods described below control the operation of the components described above, ie, the various components, and can provide intended functions based on this operation.
  • the operations and functions associated with the control method can be considered not only as features of the control method but also as features of the corresponding structural components involved.
  • the controller may be called by various names such as a processor, a controller, and a controlling device, and may control all the components of the refrigerator to perform a predetermined operation.
  • the control unit substantially controls all the methods and modes described next in the present application, so that all steps to be described later may be characteristic of the control unit. For this reason, although not explicitly described as being performed by the controller or the refrigerator, the following steps and their detailed features should all be understood as features of the controller or the refrigerator itself.
  • FIG. 15 is a block diagram illustrating a refrigerator according to the present application.
  • 54 is a flowchart illustrating a method of controlling the light source when the door is opened
  • FIG. 55 is a flowchart illustrating a method of controlling the light source when the door is closed.
  • the refrigerator may have a door switch 60 for detecting opening and closing of the doors 20 and 40.
  • the door switch 60 may be disposed adjacent to the doors 20 and 40 to detect opening and closing.
  • the door switch 60 may include a first door switch for detecting opening and closing of the first door 20 and a second door switch for detecting opening and closing of the second door 40.
  • the signal detected by the door switch 60 may be transmitted to the controller 70.
  • the controller 70 may detect the opening and closing of the doors 20 and 40 based on the signal received from the door switch 60.
  • the controller 70 may supply power to the transmitter 200 capable of transmitting power.
  • the controller 70 can supply power to the transmitter 200 only when the door is opened.
  • the transmitter 200 may be provided in plural numbers.
  • the control unit 100 may supply power to all of the plurality of transmitters 200, or only some of the plurality of power transmitters 110. Power may be wirelessly transmitted from the transmitter 200 to the receiver 300. The power received by the receiver 300 is transmitted to the light source unit 140, and light may be radiated from the light source unit 140.
  • the door switch 60 may detect the opening of the doors 20 and 40 (S11).
  • the controller 70 may supply power to the transmitter 200 (S12).
  • the supply step S12 when the doors 20 and 40 are detected to be open, power may be supplied to all of the plurality of transmitters 200.
  • the controller 70 may selectively supply power to some of the plurality of transmitters 200. More specifically, power may be supplied only to the transmitter 200 associated with the exposed shelf 100 so that only the shelf 100 exposed by the door that is opened may emit light. That is, only the transmitter 200 disposed on the side part 15 exposed by the door may receive power. For example, when the first door 20 disposed on the left side is opened, power may be supplied only to the transmitter 200 installed on the left wall 15 so that only the exposed shelves of the left side emit light.
  • the controller 100 may detect a change in the frequency of the electromagnetic wave received by the transmitter 200 and detect the transmitter 200 not facing the receiver 200. More specifically, the transmitter 200 may not only transmit electromagnetic waves but also receive some electromagnetic waves.
  • the transmitter 200 facing the receiver 300 detects a large frequency change by resonance for power transmission, while the transmitter 200 not facing the receiver 300 detects only a small frequency change. That is, the electromagnetic wave of the low frequency band may be received by the transmitter 200 that does not face the receiver 300. Therefore, when the frequency of the electromagnetic wave re-received after being transmitted by the transmitter 200 changes small, the controller 70 may cut off the power supplied to the transmitter 200.
  • the receiving unit 300 may receive power by electromagnetic induction (S14).
  • the power received by the receiver 300 is converted into a current and transmitted to the light source unit 140, whereby the light source unit 140 may irradiate light (S16). If irradiated with too strong light from the beginning, it can cause glare to the user. Therefore, in the irradiation step (S16), the intensity of the light irradiated from the light source unit 140 is controlled to increase gradually over time, thereby giving a time for the user to become accustomed to the light.
  • the electromagnetic wave of the transmitter 200 is mostly transmitted to the receiver 300, but some may heat the metal container, damage the food in the container.
  • power may be supplied to the transmitter 200 only for a predetermined time after the doors 20 and 40 are opened. That is, when a predetermined time elapses after the doors 20 and 40 are opened, the power supplied to the transmitter 200 may be stopped. The interruption of the power supply is performed after a predetermined time even if the doors 20 and 40 are kept open to prevent induction heating. For example, when 7 minutes have elapsed after the doors 20 and 40 are opened, the power supplied to the transmitter 200 may be stopped. If power is not supplied to the transmitter 200, electromagnetic waves are not transmitted to the receiver 300, and thus induction heating may be prevented.
  • the light source unit 140 may also be turned off.
  • the user may be notified of the power cutoff and the light source 140 to be turned off so that the user does not suspect the failure.
  • Such notification may be performed in a variety of ways. For example, alarms, lights, voices, etc. can be used for notification.
  • the door closing may be detected by the door switch 70 (S21). Thereafter, the control unit 70 cuts off the power supply to all the transmitters 200 (S22). Since no electromagnetic wave is generated in the transmitter 200, power cannot be received in the receiver 300 (S24), and the light source unit 140 is also turned off (S26).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

본 출원은 내부공간을 균일하게 조명할 수 있는 냉장고를 개시한다. 본 출원은 소정크기의 저장실을 포함하는 캐비닛; 상기 저장실내에 설치되며, 상기 저장실내를 조명하도록 구성된 광원부를 포함하는 선반; 외부전원과 연결되어 무선으로 전력을 전송하도록 구성되며, 소정범위의 1차 공진주파수를 갖는 송신부; 및 상기 송신부로부터 무선으로 전력을 수신하여 상기 선반의 광원부에 공급하도록 구성되는 수신부로 이루어지며, 상기 송신부는 상기 수신부가 상기 송신부에 인접하게 배치될 때 발생하는 2차 공진주파수를 이용하여, 상기 수신부에 전력을 전송하는 냉장고를 제공할 수 있다.

Description

냉장고
본 출원은 냉장고에 관한 것으로서, 보다 상세하게는 상기 냉장고내에 설치되는 선반에 관한 것이다.
일반적으로, 냉장고는 식품을 신선하게 저장하도록 구성된 장치이다. 상기 냉장고는 본체의 하부에 기계실을 포함한다. 상기 기계실은 냉장고의 무게중심과 조립의 효용성 및 진동저감을 위해 냉장고의 하부에 설치되는 것이 일반적이다. 이러한 냉장고의 기계실에는 냉동사이클장치가 설치되어, 저압의 액체상태 냉매가 기체상태의 냉매로 변화하면서 외부의 열을 흡수하는 성질을 이용하여 냉장고 내부를 냉동/냉장상태로 유지함으로써 식품을 신선하게 보관하게 된다.
상기 냉장고의 냉동사이클장치는 저온저압의 기체상태의 냉매를 고온고압의 기체상태의 냉매로 변화시키는 압축기와, 상기 압축기에서 변화된 고온고압의 기체상태의 냉매를 고온고압의 액채상태의 냉매로 변화시키는 응축기와, 상기 응축기에서 변화된 저온고압의 액체상태의 냉매를 기체상태로 변화시키면서 외부의 열을 흡수하는 증발기 등으로 구성된다.
이러한 냉장고의 내부공간은 어둡기 때문에 사용자가 저장된 식품을 용이하게 찾기 위해서 내부공간에 조명이 제공될 수 있다. 그러나, 일반적으로 광원이 내부공간의 특정위치에 설치되기 때문에 내부공간 전체가 조명되기 어려울 수 있다. 한편, 상기 냉장고는 내부공간내에 설치되며 식품을 지지하도록 구성되는 선반을 가질 수 있다. 일반적으로 다수개의 선반들이 내부공간내에 설치되므로, 이러한 선반에 광원을 제공하면, 내부공간은 균일하게 조명될 수 있다. 따라서, 균일한 조명을 위해, 내부공간을 조명하도록 상기 선반을 개량하는 것이 고려될 필요가 있다.
본 출원은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 출원의 목적은 냉장고의 내부공간을 균일하게 조명하도록 구성되는 냉장고를 제공하는 것이다.
또한, 본 출원의 목적은 내부공간을 조명하도록 구성되는 선반을 갖는 냉장고를 제공하는 것이다.
상기 목적을 달성하기 위한 본 출원의 일 측면에 따르면, 본 출원은 소정크기의 저장실을 포함하는 캐비닛; 상기 저장실내에 설치되며, 상기 저장실내를 조명하도록 구성된 광원부를 포함하는 선반; 외부전원과 연결되어 무선으로 전력을 전송하도록 구성되며, 소정범위의 1차 공진주파수를 갖는 송신부; 및 상기 송신부로부터 무선으로 전력을 수신하여 상기 선반의 광원부에 공급하도록 구성되는 수신부로 이루어지며, 상기 송신부는 상기 수신부가 상기 송신부에 인접하게 배치될 때 발생하는 2차 공진주파수를 이용하여, 상기 수신부에 전력을 전송하는 냉장고를 제공할 수 있다.
상기 2차 공진주파수는 상기 1차 공진주파수보다 크게 설명될 수 있으며, 보다 상세하게는, 상기 2차 공진 주파수는 상기 1차 공진 주파수의 2배보다 크게 설정될 수 있다. 상기 1차 공진 주파수는 100-150kHz의 범위를 가지며, 상기 2차 공진 주파수는 300-400kHz의 범위를 가질 수 있다.
상기 수신부는 상기 2차 공진 주파수를 생성하기 위해 상기 광원부의 부하의 저항에 따라 상기 부하에 연결되는 커패시터의 용량을 조절하도록 구성될 수 있다. 보다 상세하게는, 상기 수신부는 상기 광원부의 부하의 저항에 따라 상기 부하에 직렬 및/또는 병렬로 연결되는 커패시터를 포함할 수 있다.
상기 송신부 및 수신부는 서로 마주보도록 상기 저장실의 측벽 및 상기 선반의 측부에 각각 제공될 수 있다. 보다 상세하게는, 상기 선반은 선반부재와 상기 선반부재의 양측부들을 지지하도록 구성되는 브라켓들을 포함하며, 상기 송신부는 상기 저장실의 측벽에 설치되며 상기 수신부는 상기 선반의 측부에 설치될 수 있다. 또한, 상기 수신부는 상기 브라켓의 후방부에 설치될 수 있다.
상기 송신부 및 수신부는 누설되는 전자기파를 차폐하도록 구성되는 차폐부재를 각각 포함할 수 있다. 보다 상세하게는, 상기 송신부는 상기 수신부와 마주하는 제 1 표면과 상기 제 1 표면에 대향되는 제 2 표면을 포함하며, 상기 차폐부재는 상기 제 2 표면에 부착될 수 있다. 상기 수신부는 상기 송신부와 마주하는 제 1 표면과 상기 제 1 표면에 대향되는 제 2 표면을 포함하며, 상기 차폐부재는 상기 제 2 표면에 부착될 수 있다.
상기 송신부는 회로기판: 상기 회로기판의 상기 수신부와 마주하는 표면에 형성되며 전력전송을 위한 전자기파를 생성하는 코일; 및 상기 회로기판과 상기 외부전원을 연결하는 배선을 포함할 수 있다. 또한, 상기 수신부는 회로기판; 상기 회로기판의 상기 송신부와 마주하는 표면에 형성되며 상기 송신부로부터 전달된 전자기파로부터 전류를 유도하도록 구성되는 코일; 및 상기 회로기판과 상기 광원부를 연결하며, 유도된 전류를 공급하도록 구성되는 배선을 포함할 수 있다.
다른 한편(alternatively), 상기 목적을 달성하기 위한 본 출원의 다른 측면에 따르면, 본 출원은 소정크기의 저장실을 포함하는 캐비닛; 상기 저장실내에 설치되며, 상기 저장실내를 조명하도록 구성된 광원부를 포함하는 선반; 외부전원과 연결되어 무선으로 전력을 전송하도록 구성되는 송신부; 및 상기 송신부로부터 무선으로 전력을 수신하여 상기 선반의 광원부에 공급하도록 구성되는 수신부로 이루어지며, 상기 광원부는 하우징과, 상기 하우징내에 배치되며 빛을 조사하도록 구성되는 광원모듈을 포함하는 냉장고를 제공할 수 있다.
상기 광원부는 상기 선반의 전방부에 배치되며, 아래쪽으로 빛을 조사하도록 배향될 수 있다.
상기 하우징은 빛을 통과시키지 않도록 구성되는 차광부와 빛을 통과시키도록 구성되는 윈도우를 포함하며, 상기 윈도우는 상기 하우징의 바닥부의 후방부에 배치될 수 있다. 상기 윈도우의 전단 및 후단사이의 거리는 상기 하우징의 전단 및 후단 사이 거리의 1/2로 설정될 수 있다. 또한, 상기 윈도우는 만곡지게(curved) 형성될 수 있다. 더 나아가, 상기 광원모듈은 상기 하우징의 상부 내면을 향해 빛을 조사하도록 배향될 수 있으며, 다른 한편 상기 하우징의 상부 및 전방 내면들을 향해 빛을 조사하도록 수평면에 대해 소정 각도로 경사지게 배치될 수도 있다.
상기 광원부는 상기 광원모듈을 붙잡도록 구성되는 홀더를 포함하며, 상기 홀더는: 상기 광원모듈의 양 끝단을 지지하도록 구성되는 스토퍼; 상기 광원모듈의 상부 및 하부를 각각 지지하도록 구성되는 제 1 및 제 2 암들을 포함할 수 있다. 또한, 상기 제 2 암이 상기 제 1 암보다 길게 연장될 수 있다.
상기 선반은 물품들을 지지하도록 구성되며 투명한 몸체를 갖는 선반부재를 포함하며, 상기 선반부재는 상기 투명한 몸체에 배치되어 상기 몸체를 통해 빛이 누출되는 것을 방지하도록 구성되는 불투명 레이어를 포함할 수 있다. 보다 상세하게는, 상기 레이어는 상기 선반부재의 가장자리를 따라 형성될 수 있다.
상기 광원부는 상기 선반의 직하방에 빛을 조사하도록 수평면과 나란하게 배향되거나 상기 선반의 후방부에도 빛을 조사하도록 상기 수평면에 대해 소정각도로 틸트되게 배향될 수 있다.
또 다른 한편, 상기 목적을 달성하기 위한 본 출원의 다른 측면에 따르면, 본 출원은 소정크기의 저장실을 포함하는 캐비닛; 상기 저장실내에 설치되며, 상기 저장실내를 조명하도록 구성된 광원부를 포함하는 선반; 외부전원과 연결되어 무선으로 전력을 전송하도록 구성되는 송신부; 및 상기 송신부로부터 무선으로 전력을 수신하여 상기 선반의 광원부에 공급하도록 구성되는 수신부로 이루어지며, 상기 송신부 및 상기 수신부의 내부에는 외부로부터 이물질이 그 내부로 진입하는 것을 방지하는 실링부재가 제공되는 냉장고를 제공할 수 있다.
상기 광원부는: 하우징; 상기 하우징내에 배치되며 빛을 조사하도록 구성되는 광원모듈; 상기 하우징 내부에 배치되어 상기 광원모듈을 붙잡는 홀더; 및 상기 하우징과 상기 홀더사이에 개재되어 외부 물질이 상기 하우징내로 진입하는 것을 방지하는 제 1 실링부를 포함할 수 있다.
또한, 상기 광원부는: 상기 하우징 외부에 배치되어 상기 선반에 결합되는 헤드; 및 상기 헤드의 내부에 제공되어 외부 물질이 상기 하우징내로 진입하는 것을 방지하는 제 2 실링부를 더 포함할 수 있다.
또한, 상기 광원부는 상기 홀더와 상기 광원모듈사이에 개재되어 외부물질이 상기 광원모듈에 도달하는 것을 방지하는 제 3 실링부를 더 포함할 수도 있다.
상기 냉장고는 상기 수신부를 보호하도록 상기 수신부를 덮도록 구성되는 커버를 더 포함할 수 있으며, 상기 커버는 무선전력전송을 방해하지 않는 재질로 이루어질 수 있다. 보다 상세하게는, 상기 커버는 비 전도 또는 비 금속 재질로 이루어질 수 있다.
본 출원에서 설명되는 예들에 따라 냉장고의 선반에 광원이 제공됨으로써 냉장고의 내부공간은 균일하게 조명될 수 있다. 또한, 선반의 광원에 무선으로 전력을 공급함으로써 누전, 감전 또는 부식과 같은 문제가 발생되지 않는다. 더 나아가, 무선 전력 전송을 위한 기계적 및 회로적 구성이 최적으로 설계되고, 최적의 제어가 적용됨으로써 냉장고의 내부공간은 보다 효과적이고 효율적으로 조명될 수 있다.
본 출원에서 설명된 예들(example)의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 설명된 예들의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 출원의 바람직한 예들은 단지 예시로 주어진 것으로 이해되어야 한다.
도 1은 본 출원에 따른 냉장고를 나타내는 정면도이다.
도 2는 본 출원의 일 예(example)에 의한 냉장고 선반에 장착되는 무선 전력 전송 시스템의 회로를 개략적으로 나타내는 개략도이다.
도 3은 본 출원의 일 예에 의한 냉장고 선반에 장착되는 무선 전력 전송 시스템의 회로를 보다 상세하게 도시하는 블록도이다.
도 4은 본 출원의 일 예에 따라 실험적으로 획득된 1차공진, 2차공진과 게인(gain)과의 관계를 도시하는 그래프이다.
도 5는 본 출원의 일 예에 따라 실험적으로 획득된 1차공진, 2차공진과 위상(phase)과의 관계를 도시하는 그래프이다.
도 6은 본 출원의 일 예에 따른 무선 전력 전송 시스템의 송신부 구조를 간략히 도시하는 개략도이다.
도 7은 본 출원의 일 예에 따른 무선 전력 전송 시스템의 수신부 구조의 일예를 도시하는 개략도이다.
도 8은 본 출원의 일 예에 따른 무선 전력 전송 시스템의 수신부 구조의 다른 일예를 도시하는 개략도이다.
도 9는 본 출원의 일 예에 따른 무선 전력 전송 시스템의 수신부 구조의 또 다른 일예를 도시하는 개략도이다.
도 10는 도 11 내지 도 13에 도시된 각각의 수신부 구조를 위한 조건을 도시하는 테이블이다.
도 11은 도 10에 도시된 송신부 구조의 일예를 도시하는 개략도이다.
도 12은 도 10에 도시된 송신부 구조의 다른 일예를 도시하는 개략도이다.
도 13은 도 10에 도시된 송신부 구조의 또 다른 일예를 도시하는 개략도이다.
도 14는 냉장고의 저장실 및 선반을 개략적으로 도시하는 사시도이다.
도 15는 본 출원의 일 예에 따른 냉장고의 구성을 나타내는 블럭도이다.
도 16a 및 도 16b는 본 출원에 따른 선반을 좌측 및 우측에서 각각 바라본 사시도들이다.
도 16c는 본 출원에 따른 선반을 하부에서 바라본 사시도이다.
도 16d는 이동된 선반부재를 갖는 선반을 나타내는 사시도이다.
도 17 및 도 18은 도 16의 선반의 분해사시도이다.
도 19는 커버, 수신부 및 송신부를 포함하는 선반의 부분 사시도이다.
도 20a은 수신부와 광원부의 어셈블리를 보여주는 평면도이다.
도 20b는 커버를 상세하게 보여주는 평면도이다.
도 21은 본 출원에 따른 냉장고 및 선반을 나타내는 부분 사시도이다.
도 22는 선반의 브라켓 및 수신부를 나타내는 부분 평면도이다.
도 23은 저장실 측벽의 송신부와 선반의 수신부의 정렬을 설명하는 측면도들이다.
도 24는 도 16a의 A-A선을 따라 얻어진 단면도이다.
도 25는 선반의 광원부의 상부(top)을 나타내는 평면도이다.
도 26a은 도 25의 B-B선을 따라 얻어진 단면도이다.
도 26b는 도 16a의 C-C선을 따라 얻어진 단면도이다.
도 27은 전방으로 빛을 조사하도록 구성된 선반의 광원부를 나타내는 사시도이다.
도 28은 하방으로 빛을 조사하도록 구성된 선반의 광원부를 나타내는 사시도이다.
도 29는 도 27의 광원부의 바닥부(bottom)을 나타내는 평면도이다.
도 30a은 브라켓에 결합된 광원부를 나타내는 부분 사시도 및 광원부의 캡 부재를 상세하게 보여주는 부분 확대도이다.
도 30b는 브라켓에 결합된 광원부를 나타내는 부분 사시도이다.
도 31은 송신부의 측부를 나타내는 측면도이다 .
도 32는 송신부의 배면을 나타내는 배면도이다.
도 33은 송신부 설치를 위한 구조를 포함하는 인너 케이스의 부분 사시도이다.
도 34a는 냉장고에 설치된 송신부 및 수신부의 일 예를 나타내는 부분 단면도이다.
도 34b는 냉장고에 설치된 송신부 및 수신부의 다른 예를 나타내는 부분 단면도이다.
도 35는 냉장고에 설치된 송신부를 나타내는 부분 사시도이다.
도 36a-도 36e는 광원부의 우측 및 좌측 캡들을 나타내는 사시도들 및 상기 캡을 나타내는 평면도, 정면도, 우측면도이다.
도 37은 선반부재의 레일을 나타내는 사시도 및 부분 확대도이다.
도 38은 냉장고 내부를 조명하는 벽체(wall)의 광원을 보여주는 냉장고의 정면도이다.
도 39는 냉장고 내부를 조명하는 벽체 광원 및 선반의 광원부를 보여주는 냉장고의 단면도이다.
도 40a 및 도 40b는 광원부의 배향의 예들을 보여주는 측면도들이다.
도 41a는 광원부의 하우징 및 광원모듈의 구성을 보여주는 단면도이다.
도 41b-도 41e는 도 41a의 구성의 다른 예들을 보여주는 단면도들이다.
도 42는 불투명한 레이어를 포함하는 선반부재를 보여주는 평면도이다.
도 43a-도 43c는 광원부 및 브라켓의 바(bar)의 다양한 배치의 예들을 보여주는 측면도들이다.
도 44는 광원부 및 바의 배치와 관련된 상세한 구성을 보여주는 측면도이다.
도 45는 수신부와 광원부의 전기적 연결의 변형예를 보여주는 사시도이다.
도 46은 저장실의 후벽에 설치되는 송신부를 보여주는 정면도이다.
도 47은 후방부에 설치된 수신부를 갖는 선반을 보여주는 사시도이다.
도 48은 저장실의 측벽에 지지되는 선반에 있어서 송신부 및 수신부의 구성을 보여주는 정면도이다.
도 49는 도 48의 선반을 나타내는 배면도이다.
도 50은 저장실의 측벽에 지지되는 선반에 있어서 송신부 및 수신부의 구성의 다른 예를 보여주는 정면도이다.
도 51은 도 50의 선반을 나타내는 측면도이다.
도 52는 송신부의 기판 및 코일의 상세한 구성을 보여주는 평면도이다.
도 53은 수신부의 기판 및 코일의 상세한 구성을 보여주는 평면도이다.
도 54은 도어가 열릴 때 광원을 제어하는 방법을 나타내는 순서도이다.
도 55은 도어가 닫힐 때 광원을 제어하는 방법을 나타내는 순서도이다.
일반적으로 냉장고는 내부에 단열재로 충진된 캐비닛과 도어에 의해, 외부에서 침투하는 열을 차단 가능한 식품 저장공간을 형성하고, 상기 식품저장공간 내부의 열을 흡수하는 증발기와 상기 식품저장공간 외부로 수집된 열을 배출하는 방열장치로 구성된 냉동장치를 구비하여, 상기 식품저장공간을 미생물의 생존 및 증식이 어려운 저온의 온도영역으로 유지하여, 저장된 식품을 장기간 변질없이 보관하는 장치이다.
상기 냉장고는 영상의 온도영역으로 식품을 저장하는 냉장실과 영하의 온도영역으로 식품을 저장하는 냉동실로 분리하여 형성되고, 상기 냉장실과 냉동실의 배치에 따라, 상부 냉동실과 하부 냉장실을 배치한 탑프리즈(Top Freezer)냉장고와 하부 냉동실과 상부 냉장실을 배치한 바텀프리즈(Bottom Freezer)냉장고, 그리고 좌측 냉동실과 우측 냉장실로 배치한 사이드바이사이드(Side by side)냉장고 등으로 분류된다. 그리고, 사용자가 상기 식품저장공간에 저장된 식품을 편리하게 적치하거나, 인출하기 위해, 다수개의 선반과 서랍 등을 상기 식품저장공간 내부에 구비한다.
이하 상기의 목적을 구체적으로 실현할 수 있는 본 출원의 예들(examples)을 첨부한 도면을 참조하여 설명한다.
이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 출원의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다.
본 명세서에서 설명되는 무선 전력 전송 시스템의 회로적 및 구조적 구성은 무선 전력 송신 또는 충전이 필요한 어떠한 디바이스에도 적용 가능하다. 즉, 다음의 상세한 설명에서는 상기 무선 전력 전송 시스템의 구성이 주로 냉장고, 특히 선반과 관련하여 설명되지만, 반드시 냉장고에 한정되는 것은 아니고, 모든 디바이스에서 전력의 무선 전송을 위해 특별한 변형없이 사용될 수 있다. 예를 들어, 휴대폰, 스마트폰, 노트북 컴퓨터, 웨어러블 디바이스, HMD, 싸이니지, 스마트워치, 스마트 글래스, TV, 세탁기, 청소기, 에어컨 등에 상기 무선 전력 전송 시스템의 회로적 및 구조적 구성들이 바로 적용될 수 있다. 따라서, 설명된 구성들을 포함하는 어떠한 디바이스들도 본원의 권리범위에 포함된다.
도 1은 본 출원의 일 예에 따른 냉장고의 정면도이다.
도 1을 참조하면, 일 예에 따른 냉장고는 외관을 형성하는 캐비닛(1)을 포함한다.
상기 캐비닛(1)에는 식품을 저장할 수 있는 저장실(2)이 구비된다. 캐비닛(1)은 인너 케이스(10)와 소정간격으로 이격되면서 상기 인너 케이스(10)를 감싸는 아우터 케이스(10a)를 가질 수 있다. 또한, 인너 케이스(10)와 아우터 케이스(10a)의 사이의 공간은 단열재로 채워질 수 있다.
상기 저장실(2)은 상기 캐비닛(1)의 내측에 구비되는 인너 케이스(10)에 의해서 형성될 수 있다. 상기 저장실(2)는 후방면을 형성하는 후벽(13), 상측면을 형성하는 상측벽(12), 측면을 형성하는 두 개의 측벽(15) 및 하면을 형성하는 바닥(14)을 포함한다. 상기 저장실(2)의 전면은 개방되어서, 사용자가 상기 저장실(2)의 전면을 통해서 상기 저장실에 식품을 넣거나 상기 저장실로부터 식품을 인출할 수 있다. 보다 상세하게는, 후벽(13)은 이의 중앙부를 중심으로 좌측후벽(13a) 및 우측 후벽(13b)을 포함할 수 있다. 또한, 측벽(15)은 좌측 측벽(15a)과 우측 측벽(15b)을 포함할 수 있다. 다음의 설명에서, 다른 설명이 없는 한, 후벽(13)은 좌우측 후벽(13a,13b)를 포괄하며, 도면부호 13, 13a, 13b는 관련된 구성요소의 상대적 위치에 적합하게 선택적으로 사용될 수 있다. 마찬가지로 측벽(15)은 좌우측 측벽(15a,15b)를 포괄하며, 도면부호 15, 15a, 15b는 관련된 구성요소의 상대적 위치에 적합하게 선택적으로 사용될 수 있다.
상기 캐비닛(1)의 전면에는 상기 캐비닛(1)에 회동가능하게 설치되고, 상기 저장실(2)의 일측을 개폐하는 제1도어(20)와, 상기 캐비닛(1)에 회동가능하게 설치되고, 상기 저장실(2)의 타측을 개폐하는 제2도어(40)가 구비된다. 이때 상기 제1도어(20)와 상기 제2도어(40)가 상기 저장실(2)의 전면을 폐쇄하면 상기 저장실(2)이 전체적으로 밀폐될 수 있다.
상기 제1도어(20)에는 상기 제2도어(40)에 접촉가능하도록 회전되는 필라(50)가 구비될 수 있다. 상기 필라(50)는 전체적으로 직육면체 형상으로 이루어져서, 상기 제1도어(20)에 대해서 회전될 수 있도록 상기 제1도어(20)에 결합될 수 있다.
상기 제1도어(20)는 상기 제1도어(20)의 후방 외관을 형성하는 도어 다이크(22)가 구비될 수 있다. 또한 상기 제2도어(40)도 상기 제2도어(40)의 후방 외관을 형성하는 도어 다이크(42)가 구비될 수 있다.
상기 도어 다이크(42, 22)에는 각각 바스켓(44, 24)이 설치되고, 각각의 바스켓(44, 24)에는 다양한 형태의 식품이 저장되는 것이 가능하다.
상기 저장실(2)에는 상기 제1도어(20) 측에 배치되는 제1드로워(32)와 상기 제2도어(40) 측에 배치되는 제2드로워(34)가 구비될 수 있다. 이때 상기 제1드로워(32)와 상기 제2드로워(34)는 동일한 수평면 상에 배치될 수 있다. 즉 상기 제1드로워(32)와 상기 제2드로워(34)는 상기 저장실(2) 내에서 동일한 높이 상에, 좌우측에 각각 배치되는 것이 가능하다. 상기 제1드로워(32)와 상기 제2드로워(34)는 각각 독립적으로 인출가능하다.
본 출원의 일 예에서는 단일의 저장실(2)의 좌측부를 개폐하는 상기 제1도어(20)와 우측부를 개폐하는 상기 제2도어(40)가 구비되어서, 하나의 저장실의 좌우측이 각각의 도어에 의해서 개폐될 수 있다.
상기 저장실(2)에는 이의 상부위에 식품이 배치될 수 있는 선반(100)이 설치될 수 있다. 상기 선반(100)은 식품을 지지하기 위해서 저장실(2)의 내측벽들에 의해 지지될 필요가 있다. 만일 선반(100)이 좌우측벽(15a,15b)에 의해 지지되면, 이러한 선반(100)는 좌측벽(15a)으로부터 우측벽(15b)까지 계속적으로 연장되며, 이에 따라 동일 높이 또는 동일 평면상에 하나의 선반(100)만이 설치될 수 있다. 한편, 만일 선반(100)이 후벽(13)에 의해 지지되면, 두개 또는 그 이상의 선반들(100)이 도 1에 도시된 바와 같이, 상기 저장실(2)의 좌우측에 각각 배치될 수 있다. 즉 다수개의 선반들(100)이 후벽(13)에 지지되면서 동일 평면상에 배치될 수 있다. 또한, 다수개의 선반들(100)이 후벽(13) 또는 측벽(15)에 지지되면서 높이를 달리해서 배치될 수 있다.
한편, 냉장고의 저장실(2)은 어둡기 때문에 사용자가 저장된 식품을 용이하게 찾기 위해서는 내부공간에 조명이 제공될 수 있다. 그러나, 일반적으로 광원은 내부공간의 특정위치, 예를 들어 상측벽(12) 또는 후벽(13)에 설치되기 때문에 내부공간 전체가 조명되기 어려울 수 있다. 따라서, 상기 선반(100)이 저장실(2)을 조명하도록 구성될 수 있다. 앞서 설명된 바와 같이, 다수개의 선반들(100)이 저장실(2)을 분할하면서 저장실(2)내에 설치되므로, 이러한 선반(100)이 광원을 제공하면, 내부공간, 즉 저장실(2)은 균일하게 조명될 수 있다.
만일, 선반(100)이 광원 또는 조명장치를 갖는 경우, 이러한 광원에 전원을 공급하기 위한 장치가 요구된다. 이러한 전원공급장치로서, 전원과 광원을 배선 또는 접점을 이용하여 직접적으로 연결하는 연결구조가 적용될 수 있다. 예를 들어, 선반(100)의 소정부위에 전원 수급 접점부가 설치되고, 냉장고의 소정부위, 즉 저장실(2)의 벽들(12-15)중 어느 하나에는 전원 공급 접점부가 설치될 수 있다. 또한, 선반이 저장실(2)의 벽들(12-15)중 어느 하나에 설치되면, 전원 수급 접점부와 전원 공급 접점부가 서로 연결될 수 있다. 따라서, 전원이 공급되면, 선반(100)의 광원은 빛을 발산할 수 있다. 그러나, 이러한 직결식 구조에서는 냉장고 자체의 다습 환경으로 인하여, 선반 및 냉장고 본체 각각의 도출된 접점부가 부식되거나 기계적 접촉 불량을 야기할 가능성이 매우 높다. 나아가, 냉장고 내부에 보관된 액체의 관리 소홀이나 선반 세척 후 결합 과정에서 접점부의 누수나 감전 가능성도 매우 높다.
한편, 쇄교 자속(Magnetic Flux)을 이용하는 무선 전력 전송 기술이 최근에 논의되고 있으며, 모바일 기기 뿐만 아니라 전기 자동차의 무선 충전 분야에도 상용화 되도록 기술 개발이 논의되고 있다. 특히, 후술되는 바와 같이, 이와 같은 무선 전력 전송 기술은 자속을 이용하여 배선없이 전력을 전송할 수 있으므로, 탈부착이 요구되거나, 방수 기능이 요구되거나 또는 방진 기능이 요구되는 장치들에 유용할 수 있다. 따라서, 선반(100)은 저장실(2)을 조명하기 위한 광원을 가지도록 구성되며, 또한, 이러한 광원에 전력을 공급하기 위해 무선 전력 전송 시스템을 이용할 수 있다.
도 2는 본 출원의 일 예에 의한 냉장고 선반에 장착되는 무선 전력 전송 시스템의 회로를 개략적으로 도시하고 있다.
도 2에 도시된 바와 같이, 무선 전력 전송 시스템은 1차 코일을 포함하는 회로(냉장고의 본체에 설치됨) 및 2차 코일을 포함하는 회로(선반에 설치됨)로 구성된다. 선반은 냉장고 본체로부터 탈부착이 가능하여, 세척 등의 문제가 없도록 설계된다. 도 2에 도시된 1차 코일에 AC 전류(Alternating Current, 교류)가 인가되면 자기, 즉 전자기파가 발생하고, 상기 발생된 자기, 즉 전자기파로 인하여 2차 코일에 자기가 유도되고 결과적으로 부하(예를 들어, LED)에 전력이 공급된다.
도 2에 도시된 1차 코일을 포함하는 회로는 도 1에 도시된 냉장고 본체, 즉 캐비닛(1)에 설치되며, 무선 전력 전송 시스템의 송신부(200)를 구성할 수 있다. 또한, 도 2에 도시된 2차 코일을 포함하는 회로는 도 1에 도시된 냉장고의 선반(100)에 설치되며, 무선 전력 전송 시스템의 수신부(300)를 구성할 수 있다. 상기 무선 전력 전송 시스템은 선반(100)의 광원에 전원을 공급하기 위해 냉장고 자체의 일부로서 구성될 수 있으므로, 상기 송신부(200) 및 수신부(300)도 마찬가지로 냉장고의 일부로서 구성될 수 있다. 이러한 송신부(200) 및 수신부(300)의 기계적 구성은 선반(100)의 구조와 함께 도 14-도 53에서 보다 상세하게 설명되며, 이들의 회로적 구성이 먼저 다음에서 상세하게 설명된다. 또한, 이러한 회로적 구성을 설명함에 있어서, 설명의 편의를 위해 송신부 및 수신부에는 서로 다른 도면부호들이 다음에서 부여되나 본 명세서 전체에 걸쳐서 송신부 및 수신부에는 도면부호 200 및 300이 공통적으로 적용된다.
송신부(200) 및 수신부(300)는 예를 들어 소형/박형 구조 적용을 위한 PCB (Printed Circuit Board) 코일 구조로 설계 가능하다. 냉장고에 설치된 각각의 선반에 공급되는 전력은 약 1.2W 이고, 전력 전달을 위한 거리, 즉 선반(100)과 냉장고 본체(예를 들어, 저장실(2)의 후벽(13) 및 측벽(15))와의 거리는 약 6 내지 10mm 이다. 만일 상기 거리가 6mm보다 작으면, 선반(100)의 장착 및 탈착하는 동안 좁은 거리, 즉 간격으로 인해 후벽(13)/측벽(15) 및 선반(100)이 서로 마찰하게 되고 이에 따라 이들에 손상이 발생될 수 있다. 또한, 냉장고의 인너 및 아우터 케이스(10,10a)사이에 충진되는 단열재에 의해 후벽(13) 및 측벽(15)이 돌출될 수 있으며, 6mm 보다 작은 간격하에는 돌출된 후벽(13) 및 측벽(15)과 선반(100)이 서로 간섭할 수도 있다. 더 나아가, 만일 상기 거리가 10mm보다 크면, 무선 전력 전송의 효율이 저하되고 후술되는 2차 공진 주파수의 생성도 방해받을 수 있다. 따라서, 선반(100)과 냉장고 본체와의 거리는 앞서 설명된 바와 같이, 약 6mm-10mm로 설정되는 것이 선반(100) 및 후벽/측벽(13,15)의 손상 방지 및 원활한 무선 전력 전송에 있어서 유리하다. 송신부(200) 및 수신부(300)는 냉장고 본체와 선반(100)에 각각 설치되므로, 이러한 거리는 동일하게 송신부(200) 및 수신부(300)사이의 거리에도 적용될 수 있다. 물론, 상기 수치는 일예에 불과하며, 본 출원의 권리범위는 특허청구범위에 기재된 사항에 따라 해석되어야 함은 당연하다.
나아가, 비용 절감을 위하여 송신부(200) 및 수신부(300)에는 다른 통신 기능을 적용하지 않았다. 한편, FOD(Foreign Object Detect) 기능을 제외할 경우 비용 절감의 기술적 효과가 있으나, 선반이 탈착된 후 금속 이물질이 근접시 발열 이슈가 예상된다. 이와 같은 문제점 해결을 위하여, 2차 공진 주파수 대역을 이용하는 것이 본 출원의 일특징이다. 이와 관련하여, 도 4이하에서 보다 상세히 후술한다.
그리고, 냉장고 본체에 설치된 송신부(200)에 전원을 공급하는 시간은, 냉장고의 도어가 열린 시점부터 약 7분간 동작하도록 설계한다. 물론, 다른 수치로 변형 설계하는 것도 본 출원의 다른 권리범위에 속한다.
도 3은 본 출원의 일예에 의한 냉장고 선반에 장착되는 무선 전력 전송 시스템의 회로를 보다 상세히 도시하고 있다.
도 3에 도시된 무선 전력 전송 시스템의 송신부(710)는 냉장고 본체에 설치되며, 특히 탈부착 가능한 선반과 약간의 거리를 두고 설치된다. 상기 약간의 거리라 함은, 송신부(710) 및 수신부(720)에 설치된 코일로 2차 공진이 발생할 정도면 충분하다. 상기 냉장고 본체는 예를 들어, 냉장고 내부의 측벽(15) 및 후벽(13) 모두가 될 수 있다.
나아가, 상기 송신부(710)는 도 3에 도시된 바와 같이, 입력 필터(711), 레귤레이터(712), 오실레이터(713), 인버터(714), 코일/공진기(715) 등으로 구성되는데, 상기 오실레이터(713), 인버터(714) 및 코일/공진기(715)는 필수구성요소이며, 나머지 구성요수는 선택적으로 포함할 수 있다. 이는 단순 전력 전송 회로이며, 별도의 신호 변/복조 알고리즘이 없으며, 약 12V 입력 전력에 따라 동작/비동작 모드로만 구성된다. 또한, 도 3에 도시된 회로도는 일예에 불과하며, 당업자가 일부 회로를 추가, 변경, 삭제하는 것도 본 출원의 권리범위에 속한다.
한편, 도 3에 도시된 무선 전력 전송 시스템의 수신부(720)는 냉장고의 선반(100)에 설치되며, 냉장고 본체와 약간의 거리를 두고 설치된다. 상기 약간의 거리라 함은, 송신부(710) 및 수신부(720)에 각각 설치된 코일을 통해 2차 공진이 발생할 정도면 충분하다. 상기 2차 공진(또는 보조 공진)에 대해서는 도 4 이하에서 보다 상세히 후술한다.
나아가, 상기 수신부(720)는 도 3에 도시된 바와 같이, 코일/공진기(721), 정류기(Rectifier, 722), 부하(Load, 723) 등으로 구성된다. 상기 부하(723)는 예를 들어, LED (Light Emitting Diode) 등에 해당한다. 다만, 상기 LED 대신 빛을 내는 어떠한 물질로도 상기 부하(723)를 구현 가능하다. 또한, 송신부(710)와 마찬가지로 수신부(720)도 별도의 신호 변조 알고리즘이 없어도 무방하며, 송신부(710)에서 자기장 발생시 수신부(720)의 부하(723)로 전력이 전달되는 구조(또는 회로)면 충분하다.
도 4은 본 출원의 일예에 따라, 송신부(200)에서 실험적으로 획득된 1차공진, 2차공진과 게인(gain = 1차코일전류/1차코일전압)과의 관계를 도시하고 있다.
전술한 바와 같이, 본 출원의 일예에 의한 무선 전력 전송 시스템을 구현함에 있어서, 송신부(200)와 수신부(300)간 통신 기능을 적용하지 않음에 따라 통신을 이용한 송신부(200)(예를 들어, 냉장고 본체) 주변 금속 물질 감지 기능(FOD, Foreign Object Detection)이 적용되지 않는다.
따라서, 효율적인 무선 전력 전송 및 금속 재질 이물질의 가열 방지를 위해 2차 공진(부공진, 보조공진)의 게인(gain)을 최대화하기 위한 2차 공진 주파수값을 설정할 필요가 있다. 한편, 2차 공진 주파수 사용으로 인한 금속 재질의 이득은 최소화 해야 한다. 참고로, 상기 2차 공진 주파수 설정시 고려할 사항으로 (1) 제1공진주파수 선정, (2) 금속 이물질에서 유도가열이 최소화 되도록, 제1공진 주파수의 1.5배 (적절하게는 2배) 이상 되는 주파수로 제2공진 주파수 선정 (3) 부하조건을 고려하여 제2공진 주파수에서 보조공진을 갖도록 제2커패시터(직렬커패시터)또는 제3커패시터(병렬커패시터)의 구성이 있다.
도 6 이하에서 후술할 무선 전력 전송 시스템의 송신부 및 수신부로 구현할 경우, 도 4에 도시된 결과를 실험적으로 획득하였다.
우선, 도 4에 도시된 바와 같이 송신부(200)(냉장고 본체)만 존재하고 수신부(300)(냉장고 선반(100))이 없는 경우, 100 내지 150kHz 에서 1차 공진(주 공진)만이 송신부(200), 즉 이의 1차 코일에 발생한다. 한편, 송신부(200)(냉장고 본체)에 수신부(300)(냉장고 선반(100))가 위치하지 않으나 알루미늄이나 스틸 등의 이물질이 근처에 접근하면, 해당 이물질의 근접정도에 따라 주공진 주파수가 150 내지 250kHz 으로 변경된다. 그러나, 송신부(200)(냉장고 본체)에 수신부(300)(냉장고 선반(100))가 약간의 거리를 두고 부착된 경우, 이물질로 인한 공진주파수 범위(150-250kHz)를 벗어나면서 2차 공진 주파수(300 내지 400kHz)가 송신부(200)에 발생한다. 따라서, 보조공진을 이용함으로써 무선 전력 전송이 가능하면서도, 대기전력을 최소화하고, 이물질에 유도 가열을 발생시키지 않는 기술적 효과가 있다.
도 5는 본 출원의 일예에 따라 실험적으로 획득된 1차공진, 2차공진과 위상(phase)과의 관계를 도시하고 있다.
이전 도 4에서는 송신부(200)의 구동주파수에 따른 송신부의 공진부(1030: 도 6 참조)의 게인(1차코일전류/전압)을 도시한 반면, 도 5에서는 송신부(200)의 구동 주파수에 따른 송신부의 공진부(1030)의 구동전압과 전류의 위상(phase: 1차 코일 전압과 전류의 위상차)를 도시하였다.
도 4과 마찬가지로 도 5에서도, 본 출원의 일예에 따른 무선 전력 전송 시스템의 송신부(200)와 수신부(300)의 결합(일정한 거리를 두고)에 따라 1차 공진 및 2차 공진이 발생하는 것을 확인할 수가 있다. 따라서, 상기 2차 공진의 주파수(300-400kHz)가 송신부(200)와 금속물질이 커플링된 경우의 주파수(150-250kHz) 보다 높기 때문에, 2차 공진 주파수를 이용하여 전력을 전송할 경우, 송신부(200) 근처에 수신부(300)없이 금속물질이 오더라도 유도가열의 원인이 될 수 있는 1차 코일에서의 전류가 거의 발생되지 않는다. 따라서, 상기 금속물질의 가열 현상을 방지할 수 있는 기술적 효과가 기대된다고 할 것이다. 또한, 공진에 의한 전력전송의 높은 효율성에 의해, 2차 공진 주파수의 이용은 금속물질의 가열을 회피하면서도 효과적인 무선전력전송을 가능하게 한다.
한편, 도 4 및 도 5에 도시된 제2공진주파수는 제1공진주파수 보다 약 2배 (또는 그 이상) 높도록 설계하면, 금속 이물질이 송신부(200)(냉장고 본체)에 수신부(300)(선반) 대신 접근하는 경우 예상되는 발열 현상을 차단할 수가 있다.
나아가, 도 4 및 도 5를 다시 요약 정리해서 설명하면 다음과 같다.
스틸 계열의 금속이 송신부(200)(냉장고의 본체)에 정렬될 경우, 스틸은 상기 송신부(200)의 코일에 흐르는 전류에 따라 유도전류가 발생하여 열로 소모되므로(유도 가열) 상기 송신부의 임피던스로 볼때, 저항성분이 크게 증가하는 경향이 있다.
또한 알루미늄 계열의 금속이 상기 송신부(200)에 정렬 될 경우 유도가열은 발생하지 않으나 코일의 자기 경로를 변화시키므로 코일의 인덕턴스가 변화하여 송신부 공진기의 공진주파수가 크게 변화한다. 그러나 이와 같은 금속재질의 물질은 공진 특성만 변화시킬 뿐 추가 공진점(2차 공진)을 발생하지는 않는다.
반면, 추가 공진점을 가진 수신부(300)(냉장고의 선반)가 상기 송신부에 정렬될 경우 별도의 보조 공진점을 송신부(200)에 발생시킬 수 있으며 송신부(200) 및 수신부(300)의 자기 결합상태, 수신부(300)의 공진부를 조정하여 2배 이상 높은 주파수로 설정 할 수 있다.
도 6은 본 출원의 일예에 따른 무선 전력 전송 시스템의 송신부 구조를 간략히 도시하고 있다.
본 출원의 일예에 의한 무선 전력 전송 시스템의 송신부(200)는 전원(1010), 인버터(1020), 공진부(1030) 등으로 구성되며, 공진부(1030)는 코일(1031) 및 커패시터(1032)로 구성된다. 물론, 일부 모듈을 삭제, 추가, 변경하는 것도 본 출원의 다른 권리범위에 속한다.
도 6에 도시된 바와 같이, 코일(1031)의 인덕턴스와 커패시터(1032)가 직렬로 연결된 공진부(1030)를 이용하는 송신부(200)(냉장고 본체)가 단독으로 존재하면, 공진부(1030)에는 단일의 공진점이 발생한다.
그러나, 도 6에 도시된 송신부(200)의 코일(1031) 주변에 금속성 이물질이 위치할 경우, 공진 주파수 및 공진 품질 수치(Quality Factor)가 변화 한다. 또한, 도 6에 도시된 송신부(200)와 유사하게 코일의 인덕턴스와 커패시터를 이용한 공진부를 가지는 수신부(300)(냉장고 선반(100))가 위치할 경우 보조 공진(또는 2차 공진)을 발생시킬 수 있다. 이와 같은 수신부(300)의 구체적인 구조에 대해서는, 이하 도 7을 참조하여 보다 상세히 후술한다.
한편, 본 출원의 일예에 의한 복수개의 코일들을 이용한 무선 전력 전송 시스템은 도 6에 도시된 송신부(200) 및 도 7 이하에서 후술할 수신부(300)로 구성된다.
송신부(200)는 기설정된 전압을 수신하는 모듈(1010) 및 상기 수신된 전압에 따라 제1공진주파수를 발생하는 제 1 공진부(1030)을 포함하고, 제 1 공진부(1030)은 제 1 코일(1031) 및 제 1 커패시터(1032)를 포함한다. 나아가, 상기 모듈(1010)은, DC 파워를 AC 파워로 변환하고 변환된 AC 파워를 제 1 공진부(1030)에 공급하는 인버터(1020)를 포함하도록 설계하는 것도 본 출원의 다른 일특징이다. 또한, 상기 모듈(1010)은 제2공진주파수로 구동되는 상기 인버터(1020)를 컨트롤 하도록 설계된다. 더욱이, 본 출원의 일예에 의한 무선 전력 전송 시스템이 냉장고에 설계된 경우, 냉장고의 도어 열림이 감지된 경우 상기 모듈(1010)에 기설정된 전압이 수신되고, 냉장고의 도어 닫힘이 감지된 경우 상기 모듈(1010)에 기설정된 전압의 수신을 중단하여 불필요한 전력 손실을 방지하는 것도 본 출원의 또 다른 권리범위에 속한다.
한편, 상기 송신부(200)와 이격한 수신부(300)는 빛(light)을 발산하는 부하, 상기 부하의 등가저항에 따라 직렬 또는 병렬로 연결된 커패시터 및 상기 제 2 공진주파수를 발생시키도록 설계되는 제2코일을 포함한다. 상기 수신부(300)의 보다 구체적인 구조에 대해서는 도 7 이하에서 상술한다.
도 7은 본 출원의 일예에 따른 무선 전력 전송 시스템의 수신부 구조의 일예를 도시하고 있다. 도 8는 본 출원의 일예에 따른 무선 전력 전송 시스템의 수신부 구조의 다른 일예를 도시하고 있다. 도 9은 본 출원의 일예에 따른 무선 전력 전송 시스템의 수신부 구조의 또 다른 일예를 도시하고 있다.
도 7, 도 8 및 도 9에 도시된 수신부(300) 각각은 추가 공진점(보조 공진, 2차 공진)을 가질 수 있도록 하는 부하별 수신부(300)의 구조 이다.
부하의 크기에 따라 수신부(300)의 구조가 변경되는 본 출원의 다른 일특징이며, 주요 전류가 커패시터에 흐르도록 설계해야 한다. 나아가, 부하의 등가저항이 크고 작음은 송신부(200) 및 수신부(300)의 결합상태(예를 들어, 거리)에 따라 상대적으로 적용되는 값으로서, 실험적으로 구할 수도 있다.
실험적으로 데이터를 축적한 결과, 송신부(200) 및 수신부(300)의 코일의 결합이 증가할 수록(즉, 상호 인덕턴스가 증가할수록, 송수신부 거리가 가까워질수록), 직렬 커패시터의 크기가 작아질수록, 병렬 커패시터의 크기가 작아질수록, 보조 공진(2차 공진)의 주파수는 증가하는 경향이 있다.
수신부(300)(예를 들어, 냉장고의 선반(100))의 부하(예를 들어, LED)의 등가 저항이 상대적으로 작을 때는, 도 7에 도시된 바와 같이, 상기 수신부(300)의 코일(1101) 및 정류기/부하(1103)는 커패시터(1102)와 직렬로 연결된다.
한편, 상기 수신부(300)의 부하의 등가 저항이 중간 정도의 범위를 가지는 경우, 도 8에 도시된 바와 같이, 코일(1201)과 정류기/부하(1204) 사이에 병렬 커패시터(1202) 및 직렬 커패시터(1203)가 모두 존재한다.
마지막으로, 상기 수신부(300)의 부하의 등가 저항이 상대적으로 큰 경우에는, 도 9에 도시된 바와 같이, 상기 수신부(300)의 코일(1301) 및 정류기/부하(1303)는 커패시터(1302)와 병렬로 연결된다.
도 7 내지 도 9을 정리해 보면, 수신부(300)의 부하(LED)의 등가 저항이 기설정된 제1문턱값(threshold) 미만인 경우, 수신부(300)의 코일과 커패시터는 직렬로 연결되며, 수신부(300)의 부하의 등가 저항이 기설정된 제2문턱값 초과인 경우, 수신부(300)의 코일과 커패시터는 병렬로 연결된다. 여기서, 상기 제2문턱값은 예를 들어 상기 제1문턱값 보다 크다. 한편, 상기 수신부(300)의 부하의 등가 저항이 기설정된 제1문턱값 이상이고 상기 제2문턱값 이하인 경우, 상기 커패시터는 2개로 구성되며 각각 수신부(300)의 코일과 직렬 및 병렬로 연결된다. 송신부(200)의 코일을 제1코일로 명명하고, 수신부(300)의 코일을 제2코일로 명명할 수도 있다.
도 10는 도 7 내지 도 9에 도시된 각각의 수신부 구조를 위한 조건을 도시하고 있다. 특히, 도 10은 무선 전력 전송 시스템의 송신부(200)(냉장고 본체) 및 수신부(300)(냉장고 선반(100)) 각각의 공진부 트랜스포머 모델링을 통하여 보조 공진(2차 공진)이 발생하는 원리를 상세히 도시하고 있다.
상기 수신부(300)의 공진부가 가지는 별도의 인덕터 성분(Llk2) 및 커패시터(Cp/Cs) 성분에 의해 발생하는 보조공진점이 송신부(200) 및 수신부(300) 각각의 코일 결합에 의해 발생하는 상호 인덕턱스인 Lm 및 이를 병렬로 가지는 이상적인 트랜스포머(Ideal Transformer)로 인하여 전달되는 원리이다.
나아가, 수신부(300)의 공진부의 공진 특성을 표시하는 지표인 Q(Quality factor)가 충분히 커야 공진 특성을 나타낼 수 있으므로, 부하(예를 들어, LED)의 등가저항의 크기에 따라 수신부(300)는 도 10와 같이 설계해야 보조 공진(2차 공진)의 특성이 충분히 나타나는 기술적 효과가 있다.
즉, 수신부(300) 부하의 등가 저항이 상대적으로 작을 때는 도 10의 (a)에 도시된 바와 같이, 커패시터(Cs)를 직렬로 연결하는 반면, 수신부(300) 부하의 등가 저항이 상대적으로 클 때는 도 10의 (c)에 도시된 바와 같이, 커패시터(Cp)를 병렬로 연결하도록 설계한다.
나아가, 도 10의 (a) 및 (c)에 도시된 회로도를 사용할 수 없는 경우(즉, 수신부(300) 부하의 등가 저항이 중간 범위에 속하는 경우)에는, 수신부(300)의 공진부에 직렬 커패시터(Cs) 및 병렬 커패시터(Cp)를 모두 추가하면, 보조 공진(2차 공진) 특성이 충분히 나타난다.
한편, 도 10에서는 부하의 등가 저항에 따라 회로도가 달라지는 것을 예시하였으나, 스위치를 두어 하나의 회로도 만으로 부하의 등가 저항에 따라 직렬/병렬 커패시터가 연결되도록 설계하는 것도 본 출원의 다른 권리범위에 속한다.
도 11은 도 6에 도시된 송신부 구조의 일예를 도시하고 있다. 이하, 도 11를 참조하여, 고정 주파수를 이용하는 송신부(200)를 이용하여 보조 공진을 발생시키는 원리를 설명하겠다.
도 11에 도시된 바와 같이, 송신부(200)(냉장고 본체)는 오실레이터(1510), 인버터(1520), 공진부(1530)로 구성되며, 상기 공진부(1530)는 코일(1531) 및 커패시터(1532)로 구성된다.
이전에도 설명한 바와 같이, 송신부(200)(냉장고 본체)가 단독으로 존재할 시(선반(100)이 부착되지 않은 상태), 송신부(200) 공진기의 공진주파수를 f1, 상기 수신부(300)가 장착되었을 때 추가로 생성되는 공진 주파수를 f2라고 할 때, f2 > 2f1이 되도록, 해당 거리에서 수신부(300)의 직렬 커패시터 혹은 병렬 커패시터를 설정하고(이전 도 10 등 참조), 도 11, 도 12 또는 도 13에 도시된 송신부(200)의 구성을 통해 무선 전력 전송이 가능하다.
추가로 생성되는 2차 공진 주파수인 f2의 주변 주파수에서 고정으로 송신부(200)를 구동하면, 송신부(200)가 단독으로 존재할 때 발생하는 송신부(200)의 공진부의 공진 주파수(f1), 혹은 다른 금속 이물질이 근접할 때 발생되는 송신부(200)의 공진부의 공진주파수는 공진 주파수(f2)에서 멀리 이격되어 있으므로, 송신부(200)의 공진부에는 매우 미약한 전류만 흐르게 된다.
따라서 금속물질에 의한 유도가열은 매우 낮은 수준이며, 수신부(300)(선반(100))가 정렬 되었을 때, 보조공진의 특성으로 인하여 에너지가 충분히 전송이 되는 기술적 효과가 있다.
도 11는 이러한 방법을 이용하는 송신부(200) 구조의 일예를 도시한다. 상기 오실레이터(1510)는 구동하고자 하는 주파수의 펄스(PULSE)형태의 출력을 갖고, 상기 인버터(1520)는 DC Power를 해당주파수 성분의 AC Power로 변환한다. 나아가, 상기 인버터(1520)에서 출력되는 AC Power를 송신부(200) 공진기(1530)의 코일(1531)에 흐름으로서 수신부(300)와 자기 결합이 일어나 에너지를 전송하게 된다.
도 12은 도 6에 도시된 송신부 구조의 다른 일예를 도시하고 있다. 이하, 도 12을 참조하여, 위상(phase)을 감지하는 송신부(200)를 이용하여 보조 공진을 발생시키는 수신부(300)를 감지하는 방법을 설명하겠다
도 12에 도시된 바와 같이, 송신부(200)(냉장고 본체)는 전압제어형 오실레이터(VCO)(1610), 로우패스필터(Low Pass Filter)(1620), Phase 감지기(1630), Phase 센서(1640), 인버터(1650) 그리고 공진부(1660)를 포함한다. 상기 공진부(1660)는 코일(1661) 및 커패시터(1662)로 구성된다.
도 12는, 송신부(200)(냉장고의 본체) 및 수신부(300)(선반(100))가 정렬될 때, 송신부(200) 공진부(1660)에서의 뚜렷한 전류/전압간 위상차 변화를 관측하여 수신부(300)(선반(100))를 감지하는 방법이다. 도 11와 대비하여 설명하면, 도 11의 오실레이터(1510)는 전압제어형 오실레이터(VCO, Voltage Controller Oscillatro)로 변경되고, 송신부(200) 공진부(1660)의 정류와 인버터(1650)의 구동 주파수와의 phase 차를 감지하기 위한 phase 센서(1640) 및 phase 비교기(1630), 그리고 피드백 시스템이 발진하지 않도록 하는 LPF(1620)가 추가되었다.
동작 알고리즘은 다음과 같다.
우선, 도 12에 도시된 송신부(200)는 f2(보조공진 주파수 또는 2차 공진 주파수라고 함) 보다 높은 주파수에서 구동을 시작하고, 수신부(300)가 정렬되었을 때만 발생하는 송신부(200)의 공진부의 특정한 전압/전류 위상차를 갖는 동작점을 f2를 포함하는 특정 주파수 범위내에서 탐색한다. 도 4에 도시된 바와 같이, 2차 공진은 어느 하나의 특정 주파수가 아닌 소정의 주파수 대역에서 발생하므로, 상기 특정 주파수 범위는 적어도 도 4에 도시된 2차 공진이 발생할 수 있는 주파수 대역의 일부를 포함하거나 또는 상기 2차 공진 주파수 대역의 전체를 포함할 수 있다. 또한, 상기 특정 주파수 범위는 상기 2차 공진 주파수 대역보다 넓거나 좁게 설정될 수도 있다.
해당 특정 주파수 범위 내에서 동작점 탐색이 불가한 경우, 이물질(선반(100)이 아닌 다른 금속)이 접근했거나 또는 수신부(300)(선반(100))이 분리된 것으로 판단하여, 송신부(200)에 공급되는 전원을 오프시킨다.
반면, 해당 특정 주파수 범위 내에서 동작점이 탐색된 경우에는, 수신부(300)(선반(100))가 정렬된 상태로 판단하여, 해당 위상 차이가 유지되는 한 지속적으로 에너지(전력)를 전송하도록 설계한다.
도 11에 도시된 고정 주파수 구동 방식과 비교해 볼 때, 도 12에 도시된 소위 phase 감지법은 다음과 같은 장점이 있다.
첫째, 수신부(300)(선반(100)) 정렬 여부를 감지하여 대기 전력을 감소시키는 기술적 효과가 있다. 둘째, 이물질 정렬 여부를 감지하여 유도 가열의 가능성을 방지하는 기술적 효과가 있다.셋째, 송수신부 부품에 산포가 발생하더라도 일정한 동작점을 유지할 수 있는 기술적 효과가 있다.
도 13은 도 6에 도시된 송신부 구조의 또 다른 일예를 도시하고 있다. 이하, 도 13을 참조하여, 입력 전력을 감지하는 송신부(200)를 이용하여 보조 공진을 발생시키는 원리를 설명하겠다.
도 13에 도시된 바와 같이, 송신부(200)(냉장고 본체)는 전압제어형 오실레이터(VCO)(1710), 증폭기(Amplifier, 1720), 로우패스필터(Low Pass Filter)(1730), 입력전류 감지기(1740), 인버터(1750) 그리고 공진부(1760)를 포함한다. 상기 공진부(1760)는 코일(1761) 및 커패시터(1762)로 구성된다.
보조공진(또는 2차공진) 주파수인 f2에서 동작시 수신부(300)(선반(100))가 정렬하였을 때에만 전력이 크게 전달 되며, 부하 별, 거리별에 대한 효율 차이는 둔감하므로, 수신부(300)의 전력을 제어하고 싶은 경우 송신부(200)에서 전력을 제어가 가능하다.
도 13은 이러한 특징을 이용하는 송신부 전력 제어 방법을 나타낸다. 도 11에 도시된 고정 주파수 구동 방법에 비하여 전력을 측정하기 위한 입력 전류 감지기(1740), 입력전류에는 구동 주파수 성분이 섞여 있으므로 이를 제거하기 위한 Low Pass Filter(LPF)(1730), 그리고필터된 입력전류 값을 특정 값에 피드백이 인가되도록 하는 레퍼런스전압 및 OPAMP(1720)가 추가 되었다.
도 13에 도시된 전력 제어 방법의 구동 알고리즘은 다음과 같다.
송신부(200)(냉장고 본체)는 상기 f2 보다 높은 주파수에서 구동을 시작하고, 특정 입력 전류를 가지는 동작점을 f2를 포함하는 특정 주파수 범위내에서 탐색한다.
해당 특정 주파수 범위내에서 동작점 탐색이 불가한 경우, 이물질(선반(100)이 아닌 다른 금속)이 접근했거나 또는 수신부(300)(선반(100))이 분리된 것으로 판단하여, 송신부(200)에 공급되는 전원을 오프시킨다.
반면, 해당 특정 주파수 범위내에서 동작점이 탐색된 경우에는, 수신부(300)(선반(100))가 정렬된 상태로 판단하여, 해당 입력전압이 유지되는 한 지속적으로 에너지(전력)를 전송하도록 설계한다.
도 11에 도시된 고정 주파수 구동 방식과 비교해 볼 때, 도 13에 도시된 소위 입력 전력 감지 방법은 다음과 같은 장점이 있다.
첫째, 수신부(300)(선반(100)) 정렬 여부를 감지하여 대기 전력을 감소시키는 기술적 효과가 있다.둘째, 이물질 정렬 여부를 감지하여 유도 가열의 가능성을 방지하는 기술적 효과가 있다.셋째, 송수신부 부품에 산포가 발생하더라도 일정한 동작점을 유지할 수 있는 기술적 효과가 있다.넷째, 송신부(200)(냉장고 본체) 및 수신부(300)(냉장고의 선반(100)) 각각의 코일간 결합이 변경되어도(예를 들어, 송신부(200) 코일 및 수신부(300) 코일의 거리 변경 등), 일정한 동작점을 유지시킬 수 있는 기술적 효과가 있다.다섯째, 정전력 구동을 통해 안정적인 부하 구동이 가능하다. 예를 들면, LED 부하의 경우 별도의 정전류 구동기가 필요 없는 장점이 있다.
전술한 바와 같이, 본 출원의 일예에 의한 무선 전력 전송 시스템을 이용하여 냉장고를 설계하면, 탈부착이 가능한 각각의 선반들(100)에 광원(즉, LED)를 구축하는 것이 가능하다.
종래 기술에 따르면, 냉장고 내의 탈부착이 가능한 선반(100)에 장착되는 LED의 경우 접점방식의 커넥터를 이용하므로, 노화와 부식의 위험을 안고 있다. 그러나, 본 출원의 일예는 이러한 문제점을 해결 가능하다.
냉장고 안쪽 벽면에 송신부(200)를 장착하고, 선반(100)에 수신부(300)를 장착하고 보조 공진점을 이용하여 무선으로 전력을 전송함으로써, 선반(100)으로 효과적으로 전력을 무선으로 전송할 뿐만 아니라, 선반(100)을 빼고 알루미늄재질의 음료수캔 혹은 철 계열의 냄비 등을 놓아도 이들이 유도가열 되거나 과도한 공진으로 인하여 송신부(200)가 파손되지 않도록 하는 것이 가능하다. 전술한 바와 같이 본 출원의 일예는 보조공진점(2차 공진점)을 이용하여 이러한 우려사항을 모두 해결할 수 있으므로 매우 유용하다.
한편, 냉장고의 본체에 내장된 송신부(200)의 코일 및 냉장고의 선반(100)에 내장된 수신부(300)의 코일 모두 PCB코일로 제작되었으며, 코일에는 MnZn계열의 페라이트(차폐부재)를 덧대어 송수신 코일간 상호 인덕턴스를 증가시켰다.
상기 차폐부재는 송신부(200) 및 수신부(300) 모두에 적용 가능하며, 차폐부재 두께는 1.2 - 10mm 정도가 적당하다. 또한, 상기 차폐부재는 단단한(rigid) 플레이트(plate) 뿐만 아니라 플렉서블한 쉬트(sheet)로도 이루어질 수 있다.
나아가, 송신부(200)의 공진부의 구체적인 사양은, 예를 들어 코일 인덕턴스는 약 9.3μH, 직렬 커패시터는 약 100nF, 그리고 송신부(200) 단독으로 존재할 경우의 공진 주파수는 약 150kHz 이다.
한편, 수신부(300)의 공진부의 구체적인 사양은, 예를 들어 코일 인덕턴스는, 약 36μH, 직렬 커패시터는 약 4.7nF, 병렬 커패시터는 약 2.2nF, 그리고 송신부(200) 및 수신부(300) 결합시 발생하는 보조공진 주파수는 약 350kHz 이다. 물론, 송/수신부 결합상태에 따라 상기 보조공진 주파수는 다를 수 있으며, 송신부(200)와 수신부(300)가 약 9mm간격으로 정렬 되었을 때의 실험값이다.
마지막으로, 수신부(300)의 부하의 구체적인 사양은, 예를 들어 부하의 종류로는 LED부하를 사용하였으며, 등가 부하 저항은 약 50Ω 이다.
한편, 본 출원의 다른 일예로서, 각각의 선반(100)에 다른 칼라 또는 밝기의 빛이 발광하도록 설계하는 것도 가능하다. 이를 구현하기 위하여, 각각의 선반(100)의 측면에 위치하는 냉장고 본체(송신부(200))에 공급되는 전력의 양을 차등적으로 조절할 수 있다. 또한, 무선전력전송 모듈에 전원이 인가되면 전력이 전송되고, 전원이 차단되면 전력 전송이 차단되는 원리를 이용하여 전원을 껐다 켜는 듀티(duty)를 조절하여 디밍(dimming)을 구현할 수 있다. 더 나아가, 도 4에 도시된 바와 같이, 보조 공진 주파수에서 구동주파수가 높아질수록 전력전송이 낮아지는 점을 이용하여, 구동 주파수를 이용하여 디밍(dimming)을 구현할 수 있다. 즉, 보조 공진 주파수로부터 점차적으로 구동 주파수를 높여 광원의 밝기를 점차적으로 감소시킬 수 있다. 반대로 보조 공진 주파수까지 점차적으로 구동 주파수를 감소시켜 광원의 밝기를 점차적으로 증가시킬 수 있다.
상기 선반(100) 조명의 디밍(dimming) 기술은 냉장고 도어 오픈 시 조명을 서서히 밝혀 시인성을 높이는 효과가 있으며, 냉장고 주변 온도 또는 시간에 따라 선반(100) 조명의 밝기를 조절하게 할 수 있다. 상기 디밍 기술은 다양한 컬러의 색(예를들어 R, G, B)을 조합하여 컬러 조명도 가능하게 한다.
앞서 상세하게 설명된 바와 같이, 복수개의 코일들을 이용한 무선 전력 전송 시스템에서, 송신부는 기설정된 전압을 수신하는 모듈 및 흐르는 전류에 따라 자속(magnetic flux)을 발생시키는 제1코일 및 제 1코일과 직렬로 연결되어 제1 공진주파수를 발생시키는 제1캐퍼시터를 포함할 수 있다. 상기 송신부와 이격한 수신부는, 전력을 소비하는 부하와, 제 1코일과 자속을 쇄교하여 전류가 유도되는 제2코일, 그리고 수신부가 송신부와 정렬하였을 때 보조공진을 발생시킬 수 있도록 상기 부하의 등가저항에 따라 제2코일과 직렬로 연결된 제2캐퍼시터 또는 병렬로 연결된 제3캐패시터를 포함할 수 있다.
이와 같은 무선 전력 전송 시스템은 송신부와 수신부가 정렬되었을 때 발생하는 보조 공진점을 이용하여, 수신부가 탈착되었을 때 송신부 코일에 과도한 공진 에너지(전류)가 발생하는 문제점 및 전송부와 수신부가 탈착된 이후 금속 이물질이 근접시 상기 금속 이물질을 유도 가열시키는 문제점을 해결할 수 있다. 또한, 상기 무선 전력 전송 시스템은 수신부가 탈착되었을 때 대기전력을 최소화할 수 있다. 더 나아가, 무선 전력 전송 시스템은 불필요한 회로를 최소화함으로써 단순하고 고 효율을 달성할 수 있다.
앞서 도 2-도 13을 참조하여 설명된 회로적 구성, 즉 기능적 구성을 포함하면서, 송신부(200) 및 수신부(300)는 냉장고의 선반(100)에 다양한 기계적 구성, 즉, 구조적 구성들을 갖도록 적용될 수 있다. 이와 같은 기계적 구성들중 송신부(200) 및 수신부(300)의 배치가 설계적 관점에서 중요할 수 있으며, 이에 따라 먼저 고려될 필요가 있다. 보다 상세하게는, 송신부(200) 및 수신부(300)의 배치가 결정되면, 선반(100) 및 관련 구조들이 이러한 배치에 기초하여 용이하게 설계될 수 있다. 따라서, 도 14는 냉장고의 저장실 및 선반을 개략적으로 도시하는 사시도이며, 다음에서 송신부(200) 및 수신부(200)의 배치가 도 14를 참조하여 설명된다.
앞서 설명된 바와 같이, 선반(100)은 저장실(2)내의 설치를 위해 측벽(15) 또는 후벽(13)에 의해 지지될 수 있다. 또한, 송신부(200) 및 수신부(300)는 자속즉, 전자기파를 이용하여 무선으로 전력을 전송하기 위해서는 서로 마주보고 있어야 한다. 따라서, 서로 마주하는 선반(100)과 냉장고(저장실(2))의 부분들, 즉, 선반(100)의 측부(100a,100b)/측벽(15a,15b) 또는 선반(100)의 후방부(100c,100d)/후벽(13a,13b)에 송신부(200) 및 수신부(300)가 설치될 수 있다. 실제적으로 선반(100)은 얇은 플레이트 형상을 가지므로, 이의 측부(100a,100b) 또는 후방부(100c,100d)는 송신부(200) 또는 수신부(300)를 직접 설치하기에 부적절할 수 있다. 따라서, 도시된 바와 같이, 송신부(200) 또는 수신부(300) 설치를 위한 플랜지(100e,100f)가 선반의 측부(100a,100b) 및 후방부(100c,100d)에 각각 제공될 수 있다.
송신부(200)는 측벽(15a,15b)에 배치될 수 있으며, 또한 후벽(13a,13b)에 배치될 수도 있다. 또한, 수신부(300)는 상기 송신부(200)와 마주하도록 선반(100)의 측부(100a,100b) 또는 후방부(100c,100d)에 배치될 수 있다. 만일 송신부(200) 및 수신부(300)가 측벽(15a,15b) 및 선반(100)의 측부(100a,100b)에 각각 배치되는 경우, 이러한 송신부(200) 및 수신부(300)는 사용자에게 잘 보여지지 않으며, 이에 따라 냉장고의 외관이 향상될 수 있다. 따라서, 송신부(200) 및 수신부(300)를 측벽(15a,15b) 및 선반(100)의 측부(100a,100b)에 각각 배치하는 것이 먼저 고려될 수 있으며, 다음에 도 16-도 45에 설명되는 선반(100)도 그와 같이 배치된 송신부(200) 및 수신부(300)를 갖는다. 보다 상세하게는, 수신부(300)는 선반의 광원에 수신한 전원을 공급하기 위해 선반(100)의 측부(100a,100b)에 설치될 수 있으며, 송신부(200)는 외부 전원과 연결되면서 수신부(300)와 마주하도록 측벽(15a,15b)에 설치될 수 있다. 다른 한편(alternatively), 후벽(13a,13b)의 뒤쪽에는 다양한 기계장치들이 전원과 연결되면서 배치되므로, 만일 송신부(200)가 후벽(13a,13b)에 배치되면, 외부전원에 용이하게 연결될 수 있다. 따라서, 후술되는 도 46 및 도 47의 예에서와 같이, 송신부(200)와 수신부(300)가 후벽(13a,13b) 및 선반(100)의 후방부(100c,100d)에 각각 배치될 수도 있다.
선반(100)은 앞서 설명된 바와 같이 배치된 송신부(200) 및 수신부(300)와 기능적 및 구조적으로 최적으로 연계되도록 설계될 수 있다. 이와 같은 선반(100)이 관련된 도면을 참조하여 다음에서 상세하게 설명된다. 도 16a 및 도 16b는 본 출원에 따른 선반을 좌측 및 우측에서 각각 바라본 사시도들이며, 도 17 및 도 18은 도 16의 선반의 분해사시도이다. 또한, 도 19는 커버, 수신부 및 송신부를 포함하는 선반의 부분 사시도이며, 도 20a은 수신부와 광원부의 어셈블리를 보여주는 평면도이고, 도 20b는 커버의 내부구조를 상세하게 보여주는 평면도이다.
도 1 및 도 14을 참조하여 설명된 바와 같이, 저장공간을 효율적으로 사용하기 위해 다수개의 선반(100)들이 후벽(13)에 의해 지지되면서, 상기 저장실(2)의 좌우측에 각각 배치될 수 있다. 도 16a는 냉장고를 정면에서 보았을 때, 저장실(2)의 좌측에 배치되는 선반(100)을 도시하며, 도 16b는 냉장고를 정면에서 보았을 때, 저장실(2)의 우측에 배치된 선반(100)을 도시한다. 앞서 설명되었으며 또한 도 19, 도 21, 도 23에도 도시된 바와 같이, 송신부(200) 및 수신부(300)는 무선 전력 송수신을 위해 서로 마주보도록, 측벽(15) 및 상기 측벽(15)을 마주하는 선반(100)의 측부에 배치될 수 있다. 이러한 경우, 도 16a의 선반(100)에서, 좌측부(100a)가 좌측벽(15a)과 마주하므로, 수신부(300)는 선반(100)의 좌측부(100a)에 배치되며, 송신부(200)는 좌측벽(15a)에 배치될 수 있다. 또한, 도 16b의 선반(100)의 경우, 우측부(100b)가 우측벽(15b)과 마주하므로, 수신부(300)는 선반(100)의 우측부(100b)에 배치되며, 송신부(200)는 우측벽(15b)에 배치될 수 있다. 더 나아가, 도시된 선반(100)들은 좌우측들에 각각 배치되기 위해 후벽(13)상에 고정 또는 지지되므로, 도시된 바와 같이 좌우측 브라켓(121a,121b)를 가질 수 있다. 이들 브라켓(121a,121b)은 선반(100)의 좌우측부(100a,100b)를 각각 형성하며, 수신부(300) 설치에 충분한 공간을 제공할 수 있다. 따라서, 도 16a의 선반(100)의 경우, 수신부(300)가 좌측 브라켓(121a)에 설치되며, 도 16b의 선반(100)의 경우, 수신부(300)가 우측 브라켓(121b)에 설치될 수 있다. 이러한 브라켓(121a,121b) 어셈블리는 나중에 보다 상세하게 설명된다. 한편, 만일, 도 1 및 도 16에 도시된 것과는 다르게, 냉장고가 좌우측벽(15a,15b)에 걸쳐 연속적으로 연장되는 단일 선반(100)을 갖는 경우, 송신부(200) 및 수신부(300)는 좌측벽(15a)/선반 좌측부(100a) 및 우측벽(15b)/선반 우측부(100b)중 어느 하나에 선택적으로 설치될 수 있다.
이와 같은 기본적인 구성에 뒤이어, 앞서 언급된 도면들 다시 참조하여, 선반(100)의 상세한 구성을 설명하면 다음과 같다.
먼저, 선반(100)은 선반부재(110)을 포함할 수 있다. 선반부재(110)상에는 냉장고 내에 저장되는 식품이 놓여질 수 있다. 선반부재(110)는 상기 식품을 실질적으로 지지하는 플레이트(plate)(110a)를 포함할 수 있다. 상기 플레이트(110a)는 실질적으로 선반부재(110)의 대부분을 차지하며, 이에 따라 상기 선반부재(110)의 몸체를 형성할 수 있다. 플레이트(110a)는 식품의 안정적인 지지를 위해 충분한 강도를 가질 수 있다. 플레이트(110a)는 그위에 놓여진 식품뿐만 아니라 다른 선반(100)의 플레이트(110a)에 놓여진 식품들도 용이하게 식별할 수 있도록 투명한 부재로 이루어질 수 있다. 또한, 선반부재(110)는 플레이트(110a)의 양측부에 각각 배치되는 레일(rail)(113a,113b)를 포함할 수 있다. 이러한 레일(113a,113b)는 플레이트(110a)의 양측을 지지하도록 구성될 수 있다. 보다 상세하게는, 도 24에 잘 보여지는 바와 같이, 레일(113a,113b)는 이의 상부에 형성되며 길이방향으로 연장되는 리세스(113c)를 포함할 수 있다. 플레이트(110a)의 측부는 이러한 리세스(113c)내에 안정적으로 지지될 수 있다. 또한, 선반부재(100)는 플레이트(110a)의 전단부 및 후단부에 각각 배치되는 전방 커버(111) 및 후방커버(112)를 포함할 수 있다. 전방 및 후방커버(111,112)는 노출되는 플레이트(110a)의 전후단부들을 보호하며, 동시에 선반(100)의 외관을 향상시킬 수 있는 디자인을 가질 수 있다. 보다 상세하게는, 후방 커버(112)는 이의 상부에 설치되는 배리어(barrier)(112a)를 가질 수 있다. 배리어(112a)는 후방 커버(112)로부터 소정 높이까지 돌출되며, 이에 따라 선반부재(110)상에 놓여지는 식품이 선반의 뒤쪽으로 낙하하는 것을 방지할 수 있다. 이러한 선반부재(110)의 조립시, 먼저 플레이트(110a)가 레일(113a,113b)의 리세스(113c)상에 안착되며, 고정수단, 예를 들어 접착제(113f)를 이용하여 상기 리세스(113c)상에 고정될 수 있다. 또한, 이러한 플레이트(110a)-레일(113a,113b)의 예비 어셈블리의 전방 및 후방 끝단에 상기 커버들(111,112)가 각각 끼워지며, 플레이트(110a) 뿐만 아니라 레일(113a,113b)의 끝단들도 커버들(111,112)에 의해 붙잡힐(held) 수 있다. 따라서, 이러한 과정을 통해, 플레이트(110a), 레일(113a,113b) 및 커버들(111,112)은 하나의 어셈블리, 즉 선반부재(110)로 형성될 수 있다.
또한, 선반(100)은 후벽(13)에 대해 상기 선반부재(110) 및 그위에 놓인 식품을 지지하도록 구성되는 브라켓(120)을 포함할 수 있다. 브라켓(120)은 선반부재(110)의 아래쪽에 배치되며, 선반부재(110)의 바닥부를 지지할 수 있다. 브라켓(120)은 선반부재(110)의 안정적인 지지를 위해 선반부재(110)의 양측부에 각각 배치되는 좌측 및 우측 브라켓(121a,121b)로 이루어질 수 있다. 보다 상세하게는, 이러한 좌우측 브라켓(121a,121b)는 선반부재(110)의 좌우측 아래쪽에 배치되며, 선반부재(110)의 바닥부의 좌우측부를 각각 지지할 수 있다. 좌우측 브라켓(121a,121b)는 선반부재(110)의 안정적인 지지를 위해 선반부재(110)의 좌우측부를 따라 길게 연장될 수 있다. 또한, 브라켓(120)은 좌우측 브라켓(121a,121b)을 지지하도록 구성되는 바(bar)(122a,122b)를 포함할 수 있다. 바(122a,122b)는 좌우측 브라켓(121a,121b)사이에 배치되며, 좌우측 브라켓(121a,121b)에 수직하게 배향될 수 있다. 또한, 바(122a,122b)는 좌우측 브라켓(121a,121b)의 전방 및 후방에 각각 배치될 수 있다. 바(122a,122b)는 브라켓(121a,121b)에 볼트와 같은 고정부재를 이용하여 결합될 수 있으며, 또한, 브라켓(121a,121b)에 직접 용접될 수도 있다. 상기 바(122a,122b)는 외력에 의한 브라켓(121a,121b)의 비틀림이나 변형을 방지할 수 있으며, 이에 따라 선반(100) 자체의 강도를 증가시킬 수 있다. 이와 같은 바(122a,122b)는 적절한 강도를 갖는다면, 원형, 타원형, 사각형과 같은 다양한 단면 형상들을 가질 수 있다. 예를 들어, 도 16c에 도시된 바와 같이, 전방 바(122a)는 원형 단면을 갖는 원기둥 부재로 이루어지는 반면, 후방 바(122b)는 사각 단면을 갖는 플레이트 부재로 이루어질 수 있다.
브라켓(120)은 선반부재(110)을 지지하기 위해 후벽(13)에 고정되거나 지지되도록 구성될 수 있다. 이러한 고정 및 지지를 위해, 후벽(13)은 상기 브라켓(120)의 후단이 걸려서 지지될 수 있는 안착공(18)을 포함할 수 있다. 한편, 식품들의 높이 및 크기는 서로 다르므로, 이러한 식품들을 효율적으로 저장하기 위해서 선반(100)은 수직방향, 즉 위쪽 또는 아래쪽 방향으로 이동가능하게 구성될 수 있다. 따라서, 도 1, 도 21 및 도 23에 도시된 바와 같이, 복수개의 안착공(18)이 수직하게 일렬로 배치될 수 있다. 또한, 이러한 복수개의 안착공들(18)의 열(column)은 좌우측 브라켓(121a,121b)에 각각 제공될 수 있다. 브라켓(121a,121b)이 어느 하나의 안착공(18)으로부터 분리되어 다른 높이를 갖는 다른 안착공(18)에 결합되면, 선반(100)의 높이가 변화될 수 있다.
보다 상세하게는, 도 16-도 19 및 도 22에 상세하게 도시된 바와 같이, 브라켓(120)은 후벽(13), 즉 안착공(18)에 결합되는 제1걸림편(123a)과 제2걸림편(123b)를 포함할 수 있다. 제 1 및 제 2 걸림편(123a,123b)은 브라켓(120)의 후단부에 제공되며, 상기 후단부의 상부 및 하부에 각각 배치될 수 있다. 상기 제1걸림편(123a)과 상기 제2걸림편(123b)은 각각 서로 다른 안착공(18)에 결합되어서, 상기 브라켓(120)을 상기 후벽에 고정할 수 있다. 상기 제1걸림편(123a)은 전체적으로 'ㄱ'자 형상, 즉 앵글 형상으로 형성되고, 상기 브라켓(120)의 후단의 상측에 제공될 수 있다. 상기 제1걸림편(123a)은 상기 안착공(18)에 삽입되면, 상기 안착공(18)의 상측에 걸려지며, 상기 브라켓(120)의 전단부가 아래쪽으로 쳐지는 것을 방지할 수 있다. 상기 제2걸림편(123b)은 상기 제1걸림편(123b)의 하부에 제공되어서, 상기 안착공(18)에 삽입될 수 있다. 상기 제2걸림편(123b)이 상기 안착공(18)에 삽입되면, 상기 브라켓(120)이 상기 제1걸림편(123a)를 중심으로 후벽(13)을 향해 회전(pivot)하는 것을 방지하며, 이에 따라 상기 브라켓(120)의 전단이 아래쪽으로 쳐지는 것을 방지할 수 있다. 상기 제2걸림편(123b)은 기능적 차이로 인해 상기 제1걸림편(123a)와 다른 형상을 가지는 것이 가능하다. 예를 들어, 상기 제2걸림편(123b)은 도시된 바와 같이, 상기 브라켓(120)의 후방에서 후방을 향해서 돌출된 핀(pin)형상을 가지는 것이 가능하다.
상기 안착공(18)에서, 상기 제1걸림편(123a)에 삽입되기 위한 안착공과 상기 제2걸림편(123b)에 삽입되기 위한 안착공이 서로 인접하게 배치되어 짝을 형성할 수 있다. 예를 들어, 상기 제1걸림편(123a)이 삽입되기 위한 안착공의 크기는 상기 제2걸림편(123b)가 삽입되기 위한 안착공의 크기에 비해서 클 수 있다. 이러한 경우에 상기 제1걸림편(123a)에 삽입되기 위한 안착공과 상기 제2걸림편(123b)에 삽입되기 위한 안착공이 짝을 형성하도록 순차적으로 배치되는 것이 가능하다. 또한,이러한 안착공들의 짝들은 앞서 설명된 바와 같이, 후벽(13)에 수직하게 일렬로 배치될 수 있다.
다른 한편, 사용자는 선반(100)의 후방에 놓인 식품을 꺼내기 어려울 수 있다. 따라서, 식품을 쉽게 꺼낼 수 있도록, 선반(100)은 수평방향, 즉 전방 및 후방으로 이동가능하게 구성될 수 있다. 실제적으로, 선반(100) 전체를 이와 같이 이동시키는 것은 구조적으로 어려울 수 있으므로, 선반(100)의 선반부재(110)가 전방 및 후방으로 이동가능하게 구성될 수 있다. 이러한 전후방의 이동을 위해 선반부재(110)의 레일(113a,113b)는 브라켓(120)에 슬라이드 가능하게 지지되거나 결합되도록 구성될 수 있다. 도 24는 도 16a의 A-A선을 따라 얻어진 단면도이며, 도 37은 선반부재의 레일을 나타내는 사시도 및 부분 확대도이다. 보다 상세하게는, 도 24는 플레이트(110a) 및 우측 브라켓(121b)과 함께 우측레일(113b)을 보여주며, 도 37은 관련된 다른 부재 없이 우측레일(113b)만을 보여준다. 이들 도면을 참조하여, 전후방 이동을 위한 메커니즘 및 레일의 상세한 구성이 다음에서 설명된다.
도 24에 도시된 바와 같이, 브라켓(120), 즉 우측 브라켓(121b)은 우측 레일(113b)를 슬라이드 가능하게 지지하도록 구성된 플랜지(121c)를 포함할 수 있다. 플랜지(121c)는 레일(113b)의 바닥면을 지지하도록 안쪽방향으로 연장될 수 있다. 레일(113b)은 아랫쪽방향으로 연장되며 플랜지(121c)의 외측면상에 지지되는 제 1 플랜지(113d)를 포함할 수 있다. 또한, 레일(113b)는 마찬가지로 아랫쪽 방향으로 연장되며 플랜지(121c)의 내측면에 의해 지지되는 제 2 플랜지(113e)를 포함할 수 있다. 제 2 플랜지(113e)는 다시 수평하게 바깥쪽으로 연장되는 연장부를 포함할 수 있으며, 보다 안정적인 지지를 위해 플랜지(121c)를 감쌀 수 있다. 따라서, 이러한 제 1 및 제 2 플랜지(113d,113e)에 의해 안내되면서 레일(113b)은 플랜지(121c)를 따라 이동할 수 있다. 이와 같은 제 1 및 제 2 플랜지(113d,113e) 및 플랜지(121c)는 좌우 레일(113a,113b) 및 브라켓(121a,121b)에 동일하게 적용될 수 있다. 따라서, 도 16d에 도시된 바와 같이, 좌우 레일(113a,113b)를 이용하여 선반부재(110)가 전방 및 후방으로 이동할 수 있다. 선반부재(110)가 전방으로 이동되면, 식품들은 사용자에게 가까워질 수 있으며, 이에 따라 사용자는 편리하게 식품들을 꺼낼 수 있다. 한편, 플랜지(121c)의 상부면이 레일(113b)의 바닥면과 전체적으로 접촉하면, 면접촉에 의한 상대적으로 큰 마찰저항이 발생할 수 있다. 따라서, 도 24에 도시된 바와 같이, 레일(113b)는 이의 바닥면에 형성되는 돌출부(113h)를 포함할 수 있다. 돌출부(113h)는 제 1 및 제 2 플랜지(113d,113e) 사이에 배치되도록 대체적으로 폭 방향에서 레일(113b)의 바닥부의 중앙부에 배치되며, 아래쪽으로 플랜지(121c)를 향해 연장될 수 있다. 돌출부(113h)는 플랜지(121c)와 상대적으로 좁은 접촉면을 가지므로, 큰 저항없이 레일(113b)은 플랜지(121c)를 따라 이동할 수 있다, 따라서, 도 16d에 도시된 바와 같이, 선반부재(110)는 보다 원활하게 전방 및 후방으로 좌우 레일(113a,113b) 및 브라켓(121a,121b)에 의해 지지되면서 이동할 수 있다.
냉장고는 상술된 이동가능한 선반부재(110)을 갖는 선반(100) 뿐만 아니라 상기 선반부재(110)가 움직이지 않도록 브라켓(121a,121b)에 고정된 선반(100)도 포함할 수 있다. 예를 들어, 사용자는 저장실(2)의 상부에 배치된 선반(100)의 후방에 높인 식품을 꺼내기는 어려운 반면, 저장실(2)의 하부에 배치된 선반(100)의 후방에 놓은 식품을 비교적 용이하게 꺼낼 수 있다. 따라서, 저장실(2) 상부의 선반(100)에는 이동 가능한 선반부재(110)가 적용될 수 있으며, 저장실(2) 하부의 선반(100)에는 고정되고 이동불가한 선반부재(110)가 적용될 수 있다. 즉, 선반(100)의 상대적 위치 및 다른 요건들을 고려하여, 상기 이동 가능한 선반부재(110)는 선택적으로 적용될 수 있다.
앞서 설명된 바와 같이, 리세스(113c)내에 안착된 플레이트(110a)는 접착제(113f)를 이용하여 리세스(113c)의 바닥면상에 고정될 수 있다. 이러한 고정을 보다 효율적으로 수행하기 위해, 다양한 추가적인 구성이 레일(113a,113b)에 추가될 수 있으며, 도 24 및 도 37은 그와 같은 구성을 잘 보여준다. 먼저, 플레이트(110a)가 리세스(113c)의 바닥부에 고정될 때, 플레이트(110a)는 가압될 수 있다. 이러한 가압에 의해 접착제(113f)가 리세스(113c)의 외부로 유출될 수 있으며, 선반(100)의 외관을 저해할 수 있다. 이러한 이유로, 레일(113a,113b)의 상부, 정확하게는 리세스(113c)의 바닥면에는 도 24 및 도 37에 도시된 바와 같이, 홈(113g)이 형성될 수 있다. 상기 홈(113g)은 리세스(113c)상에서 유동하는 접착제(113f)를 수용하며, 이에 따라 접착제(113f)가 리세스(113c)외부로 유출되는 것을 방지할 수 있다. 접착제(113f)의 유출을 보다 효과적으로 방지하기 위해 한 쌍의 홈(113g)가 리세스(113c)의 바닥면상에 형성될 수 있다. 이들 한 쌍의 홈(113g)은 서로 소정간격으로 이격되며, 레일(113a,113b)의 길이방향을 따라 연장될 수 있다. 따라서, 이들 홈들(113g)사이에 실질적인 접착면(113k)이 형성될 수 있다. 더 나아가, 리세스(113c)의 바닥면상에는 스페이서(spacer)(113i)가 형성될 수 있다. 스페이서(113i)는 리세스(113c)의 바닥면으로부터 위쪽으로 소정길이로 연장될 수 있다. 플레이트(110a)는 실질적으로 이러한 스페이서(113i)상에 놓여지며, 상기 스페이서(113i)에 의해 플레이트(110a)와 리세스(113c)사이에는 접착제(113f)가 채워질 수 있는 공간이 형성될 수 있다. 이러한 이유로, 스페이서(113i)는 한 쌍의 홈들(113g)사이에, 보다 상세하게는 접착면(113k)상에 배치될 수 있다. 선반부재(110)의 조립시, 스페이서(113i)의 상부에는 접착부재, 예를 들어 양면 테이프가 불여질 수 있으며, 플레이트(110a)가 상기 스페이서(113i)상에 예비적으로 부착될 수 있다. 이 후, 플레이트(110a)는 접착제(113f)를 이용하여 레일(113b)에 최종적으로 고정될 수 있다. 이러한 고정작업중에, 접착제(113f)는 상기 홈(113g)에 의해 외부로 유출되지 않으며, 플레이트(110a)의 고정에 모두 사용될 수 있다. 따라서, 앞서 설명된 구성에 의해, 선반(100)의 외관을 해치지 않으면서, 플레이트(110a)는 레일(113a,113b)에 보다 견고하게 고정될 수 있다.
또한, 선반(100)은 수신부(300)로부터 전원을 공급받아서 빛을 조사하도록 구성되는 광원부(140)을 포함할 수 있다. 도 25는 선반의 광원부의 상부(top)을 나타내는 평면도이며, 도 26a은 도 25의 B-B선을 따라 얻어진 단면도이고, 도 26b는 도 16a의 C-C선을 따라 얻어진 단면도이다. 도 27은 전방으로 빛을 조사하도록 구성된 선반의 광원부를 나타내는 사시도이며, 도 28은 하방으로 빛을 조사하도록 구성된 선반의 광원부를 나타내는 사시도이다. 또한, 도 29는 도 27의 광원부의 바닥부(bottom)을 나타내는 평면도이며, 도 30a 및 도 30b은 브라켓에 결합된 광원부를 나타내는 부분 사시도이다. 더 나아가, 도 36a-도 36e는 광원부의 우측 및 좌측 캡들을 나타내는 사시도들 및 상기 캡을 나타내는 평면도, 정면도, 우측면도이다. 도 38은 냉장고 내부를 조명하는 벽체(wall)의 광원을 보여주는 냉장고의 정면도이며, 도 39는 냉장고 내부를 조명하는 벽체 광원 및 선반의 광원부를 보여주는 냉장고의 단면도이다. 이들 도면을 참조하여, 광원부(140)을 상세하게 설명하면 다음과 같다. 또한, 도 16-도 20은 선반(100)의 전제 구조들을 상세하게 보여주므로, 다음의 설명에서 함께 참조된다.
냉장고의 내부공간, 즉 저장실(2)은 어둡기 때문에 사용자가 저장된 식품을 용이하게 찾을 없다. 따라서, 도 38 및 도 39에 도시된 바와 같이, 냉장고의 내부, 즉 저장실(2)을 조명하기 위해서 광원(60A,60B)이 제공될 수 있다. 상기 저장실(2)의 균일한 조명을 위해, 광원(60A,60B)은 예를 들어, 상측벽(12)에 설치될 수 있으며, 상측벽(12)의 전방부 및 후방부에 각각 배치될 수 있다. 그러나, 광원(60A,60b)에서 방출된 빛은 선반(100) 및 그 위에 놓여진 물품에 가려져, 저장실(2)의 모든 영역들에 도달할 수 없다. 따라서, 광원(60A,60B)에 추가적으로, 선반(100)에 광원부(140)가 설치되면, 이러한 광원부(140)는 선반들(100)사이의 공간을 직접적으로 조명할 수 있다. 이러한 이유로, 선반(100)에 설치된 광원부(140)에 의해 사용자는 선반(100)에 높인 물품을 더 잘 확인할 수 있으며, 저장실(2)이 균일하게 조명될 수 있다. 또한, 일반적으로 저장실(2)의 후방부가 전방부에 비해 더 어둡기 때문에, 전방 광원(60A)도 도 39에 도시된 바와 같이, 저장실(2)의 후방부의 조명을 위해 상기 후방부를 향해 배향될 수 있다. 따라서, 저장실(2)의 전방부가 상대적으로 저장실(2)의 후방부에 비해 조명이 부족할 수 있다. 이러한 이유로, 저장실(2)의 전방부를 조명할 수 있도록 광원부(140)는 선반(100)의 전방부에 배치될 수 있다. 또한, 광원부(140)는 균일한 조명을 위해 선반(100)의 전방부를 따라 연속적으로 연장될 수 있다. 실제적으로 광원부(140)는 브라켓(121a,121b)사이에 배치되며, 이의 좌우측 양끝단들이 브라켓(121a,121b)에 결합될 수 있다. 이러한 광원부(140)는 저장실(2)의 전방부 조명을 보충할 수 있다. 또한, 도 39에 도시된 바와 같이, 광원부(140)로부터 방출된 빛은 바로 아래에 있는 식품들이나 다른 선반들에 의해 반사될 수 있으며, 이에 따라 저장실(2)이 보다 균일하게 조명될 수 있다. 더 나아가, 도 39에 도시된 바와 같이, 냉장고는 선반(100)의 중앙부에 설치되는 추가 조명부(140-1) 및/또는 선반(100)의 후방부에 설치되는 추가 조명부(140-2)를 가질 수 있다. 이러한 추가 조명부(140-1,140-2)는 전방의 조명부(140)와 함께 저장실(2)을 보다 균일하게 조명할 수 있다.
보다 상세하게는, 도 17 및 도 25에 잘 도시된 바와 같이, 광원부(140)는 하우징(141)을 포함한다. 하우징(141)은 중공의 관 형상의 부재로 이루어질 수 있다. 또한, 광원부(140)는 빛을 발광하도록 구성되는 광원모듈(142)를 포함할 수 있다. 모듈(142)는 도 29에 잘 도시된 바와 같이, 기판(142a)과 기판에 부착된 발광소자(142b)로 이루어질 수 있다. 발광소자(142b)는 예를 들어 LED(Light Emitting Diode)로 이루어질 수 있다. 앞서 설명된 바와 같이, 균일한 조명을 위해 광원부(140)는 선반(100)의 전방부를 따라 길게 연장되므로, 모듈(142)의 기판(142a)도 마찬가지로 길게 연장된 스트립 부재로 형성되며, 발광소자들(142b)도 기판(142a)을 따라 소정간격으로 일렬로 배치될 수 있다. 또한, 수신부(300)로부터 전원을 공급받기 위해서 모듈(142)는 기판(142a)에 연결되는 배선(142c,142d)을 포함할 수 있으며, 이들 배선(142c,142d)은 광원부(140)외부로 연장되어 수신부(300)에 연결될 수 있다. 이와 같은 모듈(142)은 외부의 환경으로부터 보호받기 위해 하우징(141)내에 수용된다. 또한, 하우징(141)은 모듈(142)에 생성된 빛을 원하는 방향으로 조사하기 위해 특정부분을 제외한 나머지 부분들은 불투명하게 만들어진다. 즉, 상기 하우징(141)은 빛을 통과시키지 않도록 구성되는 차광부 및 빛을 통과시키도록 구성되는 투명부, 즉 윈도우(141c: 도 29 참조)를 포함할 수 있다.
또한, 도 26a, 도 26b 및 도 36a-도 36e에 잘 도시된 바와 같이, 광원부(140)는 하우징(141)의 양 끝단을 폐쇄하도록 구성되는 캡(143)을 포함할 수 있다. 캡(143)은 기본적으로 수분이나 기타 이물질이 하우징(141)내에 진입하여 모듈(142)의 고장을 유발하는 것을 방지할 수 있다. 캡(143)은 헤드(143i)와 상기 헤드(143i)로부터 연장되는 연장부(143a)를 포함할 수 있다. 헤드(143i)는 하우징(141)의 외부에 위치되며, 브라켓(121a,121b)과 결합될 수 있다. 헤드(143i)는 일부가 개방된 중공(hollow)인 몸체를 가질 수 있다. 즉, 헤드(143i)는 내부에 소정의 공간을 형성하는 컨테이너로 이루어질 수 있다. 일부가 개방되어 있으므로, 헤드(143i)의 내부 공간은 엑세스(access)될 수 있다. 따라서, 하우징(141)내부로부터 캡(143)을 통해 광원부(140)의 외부로, 작업자는 배선(142c,142d)를 용이하게 인출할 수 있다. 반면(in contrast), 연장부(143a)는 하우징(141)내부로 삽입되며, 모듈(142)을 붙잡을 수 있다. 즉, 연장부(143a)는 모듈(142)를 실질적으로 붙잡으며 지지하는 홀더가 될 수 있다. 하우징(141)의 좌우측 끝단에 캡(143)이 설치되면, 연장부, 즉 홀더(143a)는 모듈(142)의 좌우측부를 붙잡을 수 있다. 따라서, 이와 같은 캡(143), 정확하게는 연장부(143a)를 이용하여, 모듈(142)는 하우징(141)의 내벽들과 일정한 간격을 유지하면서 하우징(141)내에서 안정적으로 지지될 수 있다.
또한, 캡(143)은 도 25에도 도시된 바와 같이, 캡(143)의 몸체와 하우징(141)사이에 배치되는 실링부재(143b)를 더 포함할 수 있다. 실제적으로 실링부재(143b)는 상기 연장부(143a)를 감싸도록 배치된다. 실링부재(143b)는 캡(143), 즉 연장부(143a) 및 하우징(141)사이에 압입되며, 이에 따라 하우징(141)내부로 수분 및 기타 이물질이 진입하는 것을 효과적으로 방지할 수 있다. 즉, 상기 실링부재(143b)는 하우징(141) 및 연장부(143a)사이에 개재되어 외부 물질이 상기 하우징(141)내로 진입하는 것을 방지하는 광원부(140)의 제 1 실링부를 형성할 수 있다. 또한, 캡(143)은 돌기(protrusion)(143c)를 포함할 수 있다. 돌기(143c)는 캡(143)의 좌우측 끝단으로부터 길이방향으로 바깥쪽으로 연장될 수 있다. 도 16-도 20에서도 잘 보여지는 바와 같이, 브라켓(120)는 전방부에 형성되는 홈(121d)을 포함할 수 있다. 따라서, 도 30a 및 도 30b에 잘 도시된 바와 같이, 돌기(143c)를 홈(121d)에 삽입함으로써 광원부(140)는 브라켓(120)에 결합되며, 안정적으로 지지될 수 있다. 또한, 돌기(143c)는 브라켓(120)에 직접적으로 결합되며 브라켓(120)의 외부로 노출되는 부위가 된다. 따라서, 이러한 돌기(143c)를 통해 배선(142c,142d)은 수신부(300)와 연결되기 위해 광원부(140) 및 브라켓(120)의 외부로 인출될 수 있다. 이와 같은 인출을 위해, 돌기(143c)는 도 30a 및 도 30b에 잘 도시된 바와 같이, 관통공(143h)를 포함할 수 있다. 수신부(200)의 위치에 따라 배선(142c,142d)은 좌우측 돌기(143c)중 수신부(200)와 인접한 어느 하나를 통해 인출될 수 있다.
한편, 상기 연장부(143a)는 앞서 설명된 바와 같이, 모듈(142)를 붙잡는 홀더로서의 기능을 제공할 수 있다. 즉, 캡(143)은 하우징(141)내부로 연장되며, 모듈(142)을 안정적으로 고정하도록 구성되는 홀더(143a)를 포함할 수 있다. 상기 홀더(143a)는 도 26a 및 도 26b에서 잘 보여진다. 도 26a는 모듈(142)와 결합된 홀더(143a)를 보여주는 반면, 도 26b에서는 홀더(143a)를 더 잘 보여주기 위해 모듈(142)이 생략되어 있다. 도 26a 및 도 26b를 참조하면, 캡(143)은 모듈(142)의 양 끝단을 지지하도록 구성되는 스토퍼(143d)를 홀더(143a)로써 가질 수 있다. 모듈(142)은 일반적으로 소정의 길이를 가지며, 이러한 길이는 여러가지 조건들, 예를 들어 포함된 소자(142b)의 갯수에 따라 결정될 수 있다. 따라서, 모듈(142)의 길이가 먼저 결정되므로, 이와 같은 모듈(142)의 양끝단과 맞닿으면서 이들을 지지하도록 스토퍼(143d)의 크기,즉 길이도 결정될 수 있다. 상기 스토퍼(413d)에는 관통공(143k)이 형성되며, 하우징(141)의 내부와 외부가 상기 관통공(143k)에 의해 서로 연통될 수 있다. 따라서, 배선(142c,142d)은 관통공(143k)를 통해 하우징(141)의 외부로 인출될 수 있으며, 이러한 관통공(143k)은 도 30a 및 도 30b에도 잘 보여진다.
또한, 캡(143)은 모듈(142)의 상부를 지지하도록 구성되는 제 1 암(arm)(143e)을 홀더(143a)로서 가질 수 있다. 제 1 암(143e)는 모듈(142)의 상부를 지지하도록 모듈(142)의 상부에 배치될 수 있다. 보다 상세하게는, 제 1 암(413e)은 스토퍼(143d)의 상부로부터 하우징(141)의 안쪽으로 소정길이로 연장될 수 있다. 더 나아가, 캡(143)은 모듈(142)의 하부를 지지하도록 구성되는 제 2 암(arm)(143f)을 홀더(143a)로서 가질 수 있다. 제 2 암(143f)는 모듈(142)의 하부를 지지하도록 모듈(142)의 하부에 배치될 수 있다. 보다 상세하게는, 제 2 암(413f)은 스토퍼(143d)의 하부로부터 하우징(141)의 안쪽으로 소정길이로 연장될 수 있다. 또한, 모듈(142)는 긴 몸체를 가지고 있으므로, 자중에 의해 아래로 처질 수 있다. 따라서, 제 2 암(413f)는 도시된 바와 같이, 제 1 암(413e)보다 길게 형성될 수 있다. 예를 들어, 제 2 암(413f)은 제 1 암(413e)의 1.1배-3.0배의 길이를 가질 수 있다. 또한, 제 2 암(413f)는 부분적으로 축소된 폭을 갖도록 구성될 수 있다. 보다 상세하게는, 도 26b 및 도 36a-도 36e에 잘 도시되는 바와 같이, 제 2 암(413f)은 헤드(143i)로부터 소정길이로 연장되는 제 1 연장부(143f-1)과 상기 제 1 연장부(143f-1)로부터 연장되며 제 1 연장부(143f-1)보다 적은 폭을 갖는 제 2 연장부(143f-2)를 포함할 수 있다. 제 1 연장부(143f-1)는 제 1 암(143e)와 대체적으로 동일한 길이를 가질 수 있으며, 이에 따라 제 2 연장부(143f-1)가 제 2 암(413f)의 연장된 길이를 형성하게 된다. 따라서, 보다 단순한 구조 및 적은 소재를 사용하여 제 2 암(413f)의 의도된 길이가 확보될 수 있다. 이와 같은 제 2 암(413f)은 모듈(142)의 하부의 보다 넓은 부위를 지지할 수 있으며, 이에 따라 긴 길이의 모듈(142)를 안정적으로 지지할 수 있다.
또한, 앞서 설명된 바와 같이, 기판의 배선(142c,142d)은 스토퍼(143d)의 관통공(143k)를 통해 하우징(141) 외부로 연장될 수 있다. 따라서, 상기 관통공(143k)을 통해서도 수분이 침투할 수 있다. 이러한 이유로, 도 30a에 잘 도시된 바와 같이, 캡(143)의 헤드(143i)는 실링물질(143g)로 충진될 수 있다. 즉, 상기 실링물질(143g)는 헤드(143i)내부에 제공되어 외부 물질이 하우징(141)내로 진입하는 것을 방지하는 광원부(140)의 제 2 실링부를 형성할 수 있다. 이러한 실링물질(143g)는 또한 헤드(143i)내에서 배선(142c,142d)을 고정시키는 역할도 할 수 있다. 더 나아가, 도 26a에 도시된 바와 같이, 수분 및 외부물질에 의한 모듈(142)의 고장을 보다 효과적으로 방지하기 위해, 홀더(143a), 즉 스토퍼(143d)와 제 1 및 제 2 암(143e,143f)의 내부 및/또는 주위에 추가적으로 실링부재 또는 물질(143m)이 제공될 수 있다. 보다 상세하게는, 상기 실링부재 또는 물질(143m)은 홀더(143a)(즉, 스토퍼(143d)/제 1 및 제 2 암(143e,143f))와 모듈(142)사이에 개재될 수 있으며, 수분 또는 다른 외부물질이 모듈(142)에 도달하는 것을 효과적으로 차단할 수 있다. 즉, 앞서 설명된 제 1 및 제 2 실링부(143b,143g)와 더불어, 상기 실링부재 또는 실링 물질(143m)은 홀더(143a)와 모듈(142)사이에 개재되어 외부물질이 상기 모듈(142)에 도달하는 것을 방지하는 광원부(140)의 제 3 실링부로서 작용할 수 있다. 이러한 추가적인 실링부재 또는 물질(143m)은 스토퍼(143d)의 관통공(143k)도 실링할 수 있다. 따라서, 헤드(143i)내의 실링물질(143g)(도 30a 참조)이 관통공(143k)를 통해 하우징(141)내부로 진입하는 것도 방지할 수 있다.
이와 같은 광원부(140)는 도 27에 도시된 바와 같이, 전방으로 빛을 조사하도록 구성될 수 있다. 도 25를 참조하면, 하우징(141)은 전방부(141a) 및 후방부(141a)를 포함할 수 있으며, 상기 전방부(141a)가 사용자를 향해서 배향될 수 있다. 따라서, 도 27에 도시된 바와 같이, 발광소자(142b)는 전방으로 빛을 조사하도록 전방, 즉 전방부(141a)를 향해 배향될 수 있다. 또한, 전방부(141a)만이 투명하게 만들어져 조사된 빛을 통과시킬 수 있다. 이러한 빛의 조사는 저장실(2)을 효과적으로 조명할 수 있으나, 사용자의 눈부심을 유발할 수 있다. 이러한 이유로, 광원부(140)은 도 28에 도시된 바와 같이, 하방으로 빛을 조사하도록 구성될 수 있다. 따라서, 도 29에도 도시된 바와 같이, 발광소자(142b)는 하방으로 빛을 조사하도록 하우징(141)의 바닥부를 향해 배향될 수 있다. 또한 조사된 빛을 통과시키도록 구성된 윈도우(141c)가 하우징(141)의 바닥부에 형성될 수 있다. 이러한 배향에 따라 사용자에게 직접 빛이 조사되지 않아서, 눈부심이 방지될 수 있다.
보다 상세하게는, 도 40a에 도시된 바와 같이, 광원부(140)는 직하방을 향해 빛을 조사하도록 구성될 수 있다. 이러한 직하방으로의 빛의 조사를 위해, 광원부(140)는 수평면에 실질적으로 나란하게 배향될 수 있다. 빛을 방출하는 윈도우(141c)가 광원부(140), 정확하게는 하우징(141)의 바닥부에 배치되므로, 직하방으로 빛을 조사하기 위해, 광원부(즉, 하우징(141))의 바닥부 또는 윈도우(141c)가 상기 수평면에 실질적으로 나란하게 배향될 수 있다. 다른 한편, 도 40b에 도시된 바와 같이, 광원부(140)는 하방 뿐만 아니라 저장실(2)의 후방부에도 빛을 조사하도록 구성될 수 있다. 이를 위해, 광원부(140)는 저장실(2)의 후방부를 향해 배향될 수 있으며, 상기 수평면에 대해 소정의 경사각을 갖도록 배향될 수 있다. 보다 정확하게는, 저장실(2)의 후방부에도 빛을 조사하기 위해, 하우징(141)의 바닥부 또는 윈도우(141c)가 저장실(2)의 후방부를 향해 배향될 수 있으며, 상기 수평면에 대해 소정의 경사각을 갖도록 배향될 수 있다.
한편, 앞서 설명된 바와 같이, 광원부(140)은 모듈(142), 정확하게는 발광소자(142b)를 보호하는 하우징(141)을 포함하나, 이러한 하우징(141)없이 광원부(140)는 모듈(142)을 포함할 수 있다. 즉, 광원부(140)는 외부로 노출된 모듈(142), 즉 발광소자(142b)를 포함할 수 있다. 예를 들어, 도 27에 도시된 바와 같이, 노출된 발광소자(142b)가 광원부(140)로서 선반(100)에 배치될 수 있으며, 전방으로 빛을 조사하도록 배향될 수 있다. 다른 한편, 도 28에 도시된 바와 같이, 노출된 발광소자(142b)는 광원부(140)로서 선반(100)에 배치될 수 있으며, 하방으로 빛을 조사하도록 배향될 수 있다. 이러한 노출된 발광소자(142b)를 갖는 광원부(140)에도 본 명세서에서 설명되는 다양한 광원부(140)의 구성이 동일하게 적용될 수 있다.
윈도우(141c)가 광원부(140)(즉,하우징(141)) 바닥부 전체에 형성되면, 빛의 방출면적의 증가로 인해 저장실(2) 내부를 더 밝게 조명할 수 있다. 그러나, 이와 같은 윈도우(141c)에서 방출된 빛의 일부가 전방으로 조사되어 사용자에게 눈부심을 발생시킬 가능성이 있다. 따라서, 도 29 및 광원부(140)의 단면을 나타내는 도 41a-도 41e에 도시된 바와 같이, 윈도우(141c)는 하우징(141)의 바닥부 전체가 아닌 일부에만 형성될 수 있다. 보다 상세하게는, 도 41a에 도시된 바와 같이, 윈도우(141c)의 전단(fron end)에서 후단(rear end)사이의 길이(A1)는 광원부(140)(정확하게는, 하우징(141))의 전단에서 후단까지의 거리(A2)의 1/2로 설정될 수 있다. 이러한 윈도우(141c) 길이(A2)의 설정에 의해, 눈부심이 방지되면서도 충분한 조명이 제공될 수 있다. 또한, 이와 같은 윈도우(141c)가 하우징(141)의 바닥부의 전방부에 배치되면, 앞서 이미 언급된 바와 같이, 사용자의 눈부심을 야기시킬 수 있다. 따라서, 도 41a-도 41e에 도시된 바와 같이, 윈도우(141c)는 하우징(141)의 바닥부의 후방부에 배치될 수 있다. 도 41a의 윈도우(141c), 즉, 하우징(141)의 후방부에 배치된 윈도우(141c)는 눈부심을 발생시키지 않으므로, 도 40a에 도시된 바와 같이, 직하방으로 조사하는 광원부(140)에 적용될 수 있다. 반면, 도 40b의 광원부(140)에 있어서, 윈도우(141c) 자체가 저장실(2)의 후방부를 향해 배향되므로, 이러한 윈도우(141c)로부터 조사된 빛은 눈부심을 발생시킬 가능성이 적다. 따라서, 도 40b의 광원부(140)는 하우징(141)의 바닥부 전체에 형성되는 윈도우(141c)를 가질 수 있다. 또한, 발광소자(142b)들은 소정간격으로 이격되어 있으므로, 발광소자(142b)에 인접한 윈도우(141c)의 일부는 윈도우(141c)의 다른 부위에 비해 상대적으로 밝을 수 있다. 즉, 점 광원이 사용자에게 인식될 수 있다. 이러한 현상은 냉장고의 외관에 영향을 미칠 수 있다. 이러한 이유로, 윈도우(141c)는 입사되는 빛을 균일하게 분산시킬 수 있는 디퓨져(diffuser)로 이루어질 수 있다. 상기 디퓨져의 사용으로 인해 점 광원효과가 제거될 수 있다.
또한,도 41b에 도시된 바와 같이, 윈도우(141c)는 만곡지게(curved) 형성될 수 있다. 즉, 윈도우(141c)는 실질적인 곡률반경(R)을 갖도록 형성될 수 있다. 보다 상세하게는, 윈도우(141c)는 부분적으로 만곡질 수 있으며, 이에 따라 적어도 하나의 만곡진 부분(curved portion)을 포함할 수 있다. 또한, 윈도우(141c)는 전체적으로 만곡지게 형성될 수 있다. 이러한 만곡진 윈도우(141c)를 통해 빛은 보다 넓은 범위로 확산될 수 있으며, 저장실(2)이 보다 균일하게 조명될 수 있다. 광원부(140)가 앞서 설명된 바와 같이, 선반(100)의 아래쪽에 위치한 영역을 조명하도록 구성되므로, 모듈(142) 및 발광소자(142b)도 도 41a 및 도 41b에 도시된 바와 같이, 하방으로 빛을 조사하도록 배향될 수 있다. 즉, 적어도 발광소자(142b)는 하우징(141)의 하부를 향해 배향되며, 이에 따라 하우징(141)의 하부 내면을 마주할 수 있다. 그러나, 다른 한편(alternatively), 도 41c에 도시된 바와 같이, 모듈(142) 및 발광소자(142b)는 하방 대신에 위쪽방향으로 빛을 조사하도록 배향될 수 있다. 즉, 발광소자(142b)는 하우징(141)의 상부를 향해 배향될 수 있으며, 하우징(141)의 상부 내면을 마주할 수 있다. 이러한 배향에 의해 발광소자(142b)는 윈도우(141c)와 마주하지 않으므로, 앞서 언급된 바와 같은 점광원 현상은 근본적으로 방지될 수 있다. 또한, 발광소자(142b)로부터 방출된 빛은 불투명한 하우징(141)의 내면들에 의해 반사되면서 확산(diffused)될 수 있으며, 이에 따라 일차적으로 하우징(141)내부에서 균일한 상태, 즉 균일한 광속(flux)을 가질 수 있다. 따라서, 이러한 균일한 빛이 윈도우(141c)를 통해 외부로 방출됨으로써 보다 균일한 조명이 수행될 수 있다. 또한, 도 41d에 도시된 바와 같이, 위쪽방향으로 배향된 모듈(142) 및 발광소자(142b)는 광원부(140)의 후방부에 배치될 수 있다. 즉 발광소자(142b)는 하우징(141)의 내부공간의 후방부에 배치될 수 있다. 예를 들어, 발광소자(142b)의 수직방향 중심축은 광원부(140)(즉, 하우징(141)의 수직방향 중심축(C)으로부터 소정거리(B)로 후방방향으로 이격될 수 있다. 이러한 이격 거리(B)는 예를 들어, 약 1mm 정도가 될 수 있다. 이러한 발광소자(142b)는 마찬가지로 후방부에 배치된 윈도우(141c)와 정렬될 수 있다. 따라서, 발광소자(142b)로부터 방출된 빛은 하우징(141)의 내면에 반사되어 바로 윈도우(141c)에 도달할 수 있다. 다른 한편, 도 41e에 도시된 바와 같이, 모듈(142) 및 발광소자(142b)는 광원부(140), 정확하게는 하우징(141)의 상부 뿐만 아니라 전방부를 향해 빛을 조사하도록 배향될 수 있다. 즉, 발광소자(142b)는 하우징(141)의 상부 내면 및 전방 내면을 마주할 수 있다. 이러한 배향을 위해, 발광소자(142b)는 수평면에 대해 소정의 각도(θ)로 경사질 수 있다. 예를 들어, 상기 각도(θ)는 10°내지 15°가 될 수 있다. 이와 같이 배향된 발광소자(142b)는 복수개의 하우징(141) 내면과 마주하므로, 발광소자(142b)에서 방출된 빛은 보다 크게 반사되고 확산될 수 있다. 예를 들어, 도 41a 및 도 41b에 도시된 하방으로 배향된 발광소자(142b)에서 빛의 40%가 하우징(141)의 내면에 의해 반사되는 반면, 도 41e의 발광소자(141b)에서는 빛의 70%가 상기 내면에 의해 반사될 수 있다. 따라서, 이러한 도 41e의 발광소자(141b)는 점광원 현상을 방지하면서도 현저하게 균일한 조명을 제공할 수 있다.
앞서 설명된 바와 같이, 선반부재(110)의 플레이트(110a), 즉 선반부재(100)의 몸체는 투명한 부재로 이루질 수 있으므로, 광원부(140)에서 방출되거나 냉장고의 다른 부분에서 반사된 빛을 통과시킬 수 있다. 따라서, 이와 같은 플레이트(110a)를 통한 빛의 누출로 인해, 의도된 공간이 적절하게 조명되지 못할 가능성이 있다. 이러한 이유로, 선반(100)은 선반부재(110), 정확하게는 플레이트(110a)에 형성되어 빛의 누출을 방지하기 위해 빛을 반사하도록 구성되는 레이어(layer)(114)을 포함할 수 있다. 도 42는 레이어를 포함하는 선반부재를 보여주는 평면도이다. 또한, 도 42는 설명상의 편의를 위해 선반부재(110)아래에 배치된 광원부(140)도 함께 도시한다.
레이어(114)는 플레이트(110a)에 입사되는 빛이 통과하지 못하도록 불투명하게 형성될 수 있다. 더 나아가, 이러한 불투명한 레이어(114)는 플레이트(110a)에 입사되는 빛을 반사할 수도 있다. 이러한 레이어(114)는 플레이트(110a)의 상면 또는 하면상에 배치될 수 있다. 또한, 레이어(114)는 여러가지 방식으로 형성될 수 있다. 예를 들어, 레이어(114)는 불투명한 도료를 사용하여 플레이트(110a)의 상면 또는 하면상에 인쇄되거나 플레이트(110a)의 상면 또는 하면상에 부착된 불투명한 필름으로 이루어질 수도 있다. 일반적으로 플레이트(110a)의 중앙부에는 물품들이 올려져 있으므로, 빛의 누출이 이러한 중앙부에서는 억제될 수 있다. 따라서, 레이어(114)는 도 42에 도시된 바와 같이, 플레이트(110a)의 가장자리에 형성될 수 있다. 보다 상세하게는, 레이어(114)는 플레이트(110a)의 전방부 및 후방부에 각각 배치되는 전방 및 후방 레이어(114a,114d)와 플레이트(110a)의 좌우측에 각각 배치되는 좌측 및 우측 레이어(114b,114c)를 포함할 수 있다. 이들 레이어들(114a,114b,114c, 114d)은 외부로 노출되어 빛을 통과시킬 수 있는 플레이트(110a)의 전후좌우 끝단들로부터 안쪽방향으로 연장될 수 있다. 따라서, 플레이트(110a)의 가장자리부에서의 빛의 노출이 확실하게 방지될 수 있다. 특히, 플레이트(110a)의 전방부에는 광원부(140)가 배치되므로, 빛의 누출이 상기 플레이트(110a)의 전방부에서 심하게 발생될 수 있다. 따라서, 전방 레이어(114a)는 도 42에 도시된 바와 같이, 플레이트(110a)의 전단으로부터 플레이트(110a) 아래에 배치된 광원부(140)를 덮도록 연장될 수 있다. 이러한 전방 레이어(114a)에 의해 광원부(140)가 사용자에 보여지지 않으므로, 빛의 누출을 방지하면서도 선반(100)의 외관을 향상시킬 수 있다. 마찬가지로, 좌우측 레이어(114b,114c)도 좌우측 레일(113a,113b) 및 브라켓(121a,121b)를 사용자에게 보여지지 않게 가릴 수 있다.
광원부(140)은 앞서 설명된 바와 같이, 선반(100)의 전방부에 배치되며, 하방으로 빛을 조사하도록 배향될 수 있다. 이러한 의도된 하방 조명을 위해서는, 광원부(140)는 선반의 상부를 형성하는 선반부재(100)보다 아래에 배치되는 것이 유리하다. 또한, 브라켓(121a,121b)이 선반부재(100)의 아래에 배치되며 충분한 강도를 가지므로, 선반부재(100)의 아래에 배치되는 광원부(140)를 지지하기 위해 이용될 수 있다. 따라서, 광원부(140)는 예를 들어, 도 16a에 도시된 바와 같이, 선반부재(110)의 아래쪽에 배치되며, 선반(100)의 전방부에 배치되도록 브라켓(121a,121b)의 전방부사이에 설치될 수 있다. 한편, 앞서 설명된 바와 같이, 전방 바(122a)도 광원부(140)와 마찬가지로 브라켓(121a,121b)의 전방부에 배치되므로, 광원부(140)와 전방 바(122a)의 다양한 상대적 배치가 고려될 수 있다. 이와 관련하여, 도 43a-도 43c는 광원부 및 브라켓의 바(bar)의 다양한 배치의 예들을 보여주는 측면도들이다. 먼저, 도 43a에 도시된 바와 같이, 광원부(140)가 전방 바(122a)의 앞쪽에 배치될 수 있다. 전방 바(122a)도 선반(100)의 전방부의 강도를 보강하기 위한 것이므로, 광원부(140)와 함께 브라켓(121a,121b)의 전방부에 배치되도록 광원부(140)에 인접하면서 상기 광원부(140)의 후방에 배치될 수 있다. 다른 한편(alternatively), 도 43b에 도시된 바와 같이, 광원부(140)가 전방 바(122a)의 뒤쪽에 배치될 수 있다. 앞서 도 43a에 설명된 것과 유사한 이유로, 광원부(140)는 저장실(2)의 전방부를 조명하기 위한 것이므로, 전방 바(122a)와 함께 브라켓(121a,121b)의 전방부에 배치되도록 전방 바(122a)에 인접하면서 상기 전방 바(122a)의 후방에 배치될 수 있다. 또 다른 한편, 도 43c에 도시된 바와 같이, 광원부(140)만이 브라켓(121a,121b)의 전방부에 배치될 수 있다. 대신에, 전방 바(122a)는 브라켓(121a,121b)의 전방부에 제공되지 않을 수 있다.
이와 같은 다양한 구성에 있어서, 먼저 도 43c의 예에서, 광원부(140)는 전방 바(122a)를 대체할 수 있을 만큼 충분한 강도를 갖도록 구성될 수 있다. 예를 들어, 광원부(140)의 하우징(141)은 금속재질로 만들어지고 충분한 두께 및 크기를 가질 수 있으며, 이에 따라 광원부(140) 자체가 선반(100)의 전방부에 충분한 강도를 제공할 수 있다. 따라서, 도 43c의 선반(100)은 적절한 강도를 가지면서도 단순한 구조를 가질 수 있다. 한편, 도 43a의 예에서, 광원부(140)는 전방 바(122a)의 앞쪽에 배치되므로, 광원부(140)에서 방출되는 빛이 전방 바(122a)에 의해 가려지거나 반사되지 않을 수 있다. 따라서, 전방 바(122a)와의 간섭없이, 도 43a의 광원부(140)는 의도된 저장실(2)의 전방부를 잘 조명할 수 있다. 또한, 광원부(140) 자체도 어느 정도의 강도를 선반(100)의 전방부에 제공할 수 있으므로, 전방 바(122a)의 추가에 의해 선반(100)의 강도는 더 보강될 수 있다. 결과적으로, 도 43A의 선반(100)은 높은 강도를 가지면서도 의도된 저장실(2)의 전방부를 적절하게 조명할 수 있으며, 본원의 다른 모든 도면들도 이와 같은 도 43a에 도시된 광원부(140)와 전방 바(122a)의 배치를 포함하고 있다.
이와 같은 도 43a의 배치 예와 관련하여, 광원부(140) 및 전방 바(122a)는 사용자의 편의를 위해 보다 상세하게 구성(configured)될 수 있다. 도 44는 광원부 및 바의 배치와 관련된 상세한 구성을 보여주는 측면도이다. 앞서 설명된 바와 같이, 선반부재(110)은 전후방으로 이동가능하게 구성될 수 있다. 선반부재(110)의 전후방 이동을 위해, 사용자는 선반부재(110)를 당기거나 밀 수 있다. 이와 같은 조작을 원활히 수행하기 위해 선반부재(110)에 손잡이가 요구될 수 있다. 예를 들어, 선반부재(110)의 전방부, 즉 전방 커버(111)가 사용자에게 가깝게 위치되므로, 이러한 전방 커버(111)가 손잡이로서 이용될 수 있다. 보다 상세하게는, 도 16c에도 도시되는 바와 같이, 선반(100)은 선반부재(110), 정확하게는 전방 커버(111)의 하부에 제공되는 손잡이(111a)를 포함할 수 있다. 손잡이(111a)는 사용자가 미끄러짐 없이 선반부재(110)를 파지할 수 있도록 다양한 구조를 가질 수 있다. 예를 들어, 손잡이(111a)는 도 16c에 도시된 바와 같이, 경사지게 배치된 다수개의 스텝부(step)로 이루어질 수 있다. 또한, 사용자의 손이 손잡이(111a)를 잡기 위해서는, 선반(100)의 전방부에 배치된 광원부(140)와 손잡이(111a)사이에 공간이 필요하다. 따라서, 광원부(140)는 전방커버(110)로부터 소정간격으로 이격되게 배치될 수 있다. 보다 상세하게는, 광원부(140)의 전단부는 전방커버(110), 정확하게는 손잡이(111a)의 후단부로부터 소정거리(C1)으로 이격될 수 있다. 예를 들어, 상기 이격거리(C1)은 3mm-15mm가 될 수 있다. 이러한 이격거리(C1)에 의해 광원부(140)와 손잡이(111a)사이에는 사용자의 파지를 위한 충분한 공간이 제공될 수 있다. 또한, 광원부(140)는 선반(100)의 전방부에 배치되므로, 사용자가 선반부재(110)를 이동시키기 위해 손잡이(111a) 대신에 광원부(140)를 잡아당길 수 있다. 이러한 경우, 광원부(140)는 브라켓(121a,121b)에 고정되어 있으므로, 사용자의 당김에 의해 파손될 수 있다. 따라서, 앞서 이미 도 43a를 참조하여 설명된 바와 같이, 전방 바(122b)가 광원부(140)에 후방부에 인접하게 배치될 수 있다. 이러한 배치에 의해 전방 바(122b)와 광원부(140)사이에는 사용자의 손이 들어갈 수 있는 공간이 생성되지 않으므로, 광원부(140)가 손잡이(111a) 대신에 사용자에 의해 조작되는 것이 방지될 수 있다. 더 나아가, 전방 바(122b)는 광원부(140)보다 낮게 배치될 수 있다. 전방 바(122b)가 상대적으로 낮게 배치되므로, 사용자가 선반부재(110) 조작을 위해 손잡이(111a)대신 다른 부재를 잘못 잡는 경우에도, 사용자는 전방 바(122b)를 광원부(140)를 대신해서 잡을 수 있다. 보다 상세하게는, 전방 바(122a)의 하단부는 광원부(140)의 하단부보다 소정거리(C2)만큼 낮게 배치될 수 있다. 예를 들어, 이러한 거리(C2)는 1mm-7mm가 될 수 있다. 이러한 거리(C2)에 따른 배치로 인해, 전방 바(122a)는 사용자에 의해 광원부(140) 대신에 잡힐 수 있으며, 이에 따라 광원부(140)의 파손이 방지될 수 있다.
앞서 설명된 선반(100)의 구조에 뒤이어, 냉장고에 적용된 송신부(200) 및 수신부(300)의 실제적인 구조가 다음에서 관련된 도면들을 참조하여 설명된다. 도 21은 본 출원에 따른 냉장고 및 선반을 나타내는 부분 사시도이며, 도 22는 선반의 브라켓 및 수신부를 나타내는 부분 평면도이고, 도 23은 저장실 측벽의 송신부와 선반의 수신부의 정렬을 설명하는 측면도들이다. 특히, 송신부(200)와 관련해서는,도 31- 도 35가 다음에서 참조된다. 보다 상세하게는, 도 31은 송신부의 측부를 나타내는 측면도이며, 도 32는 송신부의 배면을 나타내는 배면도이다. 도 33은 송신부 설치를 위한 구조를 포함하는 인터 케이스의 부분 사시도이다. 끝으로, 도 34a 및 도 34b는 냉장고에 설치된 송신부 및 수신부의 다양한 예들을 나타내는 단면도이며, 도 35는 냉장고에 설치된 송신부를 나타내는 부분 사시도이다. 더 나아가, 도 16-도 20은 선반(100)의 전제 구조들을 상세하게 보여주므로, 다음의 설명에서 함께 참조된다.
송신부(200)는 앞서 설명된 바와 같이, 선반(100)에 설치된 수신부(300)를 마주하도록 측벽(15)상에 배치될 수 있다. 도 19, 도 21, 도 23, 도 31 및 도 32에 각각 도시된 바와 같이, 송신부(200)는 회로기판(210)으로 이루어질 수 있다. 또한, 송신부(200)는 기판(210)상에 형성되는 코일(211)을 포함할 수 있다. 상기 코일(211)은 송신부(200), 정확하게는 기판(210)의 수신부(300)와 마주하는 표면상에 제공될 수 있다. 보다 상세하게는, 코일(211)은 송신부(200), 정확하게는 기판(210)의 표면들중 수신부(300)에 가장 가까운 표면상에 형성될 수 있다. 이러한 코일(211)은 전력 전송을 위한 전자기파를 발생시키며, 도 2를 참조하여 설명된 1차 코일에 해당될 수 있다.
상기 송신부(200)에서 발생되는 전자기파는 수신부(300)를 향해 이송되지만 일부 전자기파는 반대방향으로 누설될 수 있다. 따라서, 송신부(200)는 이러한 전자파의 누설을 방지하기 위한 차폐부재(212)를 포함할 수 있다. 도 34b에도 잘 도시되는 바와 같이, 차폐부재(212)는 수신부(300)와 마주하는 송신부(200)의 표면에 대향되게 위치하는 송신부(200)의 표면에 제공될 수 있다. 즉, 송신부(200)는 수신부(300)와 마주하는 제 1 표면과 상기 제 1 표면에 대향되는 제 2 표면을 포함할 수 있으며, 차폐부재(212)는 이러한 제 2 표면상에 부착될 수 있다. 보다 상세하게는, 차폐부재(212)는 코일(211)이 형성되는 표면의 반대표면상에 직접 부착될 수 있으며, 또는 이러한 반대표면에 인접하게 배치될 수 있다. 또한, 차폐부재(212) 대신에 차폐코팅도 같은 목적으로 적용될 수 있다. 차폐부재(212)는 전자기파가 누설되는 것을 방지하면서 동시에 누설되는 전자기파, 즉 수신부(300)쪽이 아닌 다른 방향으로 배향된 전자기파를 다시 수신부(300)를 향해 실제적으로 우회시키거나 재배향시킬 수 있다. 따라서, 송신부(200)의 대부분의 전자기파가 수신부(300)로 전송될 수 있다. 또한, 차폐부재(212)는 코일(211)의 인덕턴스를 증가시키는 역할도 할 수 있다. 이와 같은 차폐부재(212)로 인해 보다 많은 량의 전력이 수신부(300)로 효과적으로 전송될 수 있다. 또한, 송신부(200)는 기판(210)에 연결된 단자(213)를 포함할 수 있다. 이러한 단자(213)는 수신부(300)에 전력을 공급하기 위해 외부 전원과 직접 연결될 수 있다. 또한, 상기 저장실(2)에는 습도가 높고, 물을 포함하는 식품들이 많이 보관되기 때문에, 물이 튀거나 응결되는 물방울이 상기 송신부(200)에 맺힐 가능성이 있다. 따라서 송신부(200)에는 방수 코팅(214)이 적용될 수 있다. 즉, 송신부(200)는 이의 내부로 수분 및 기타 이물질들이 진입하는 것을 방지하도록 구성되는 실링부재로서 상기 방수코팅(214)를 포함할 수 있다. 도 31에 도시된 바와 같이, 방수코팅(214)은 기판(210)상에 적용될 수 있으며, 수분이나 기타 이물질들이 기판(210)에 도달하는 것을 방지함으로써 누전이나 감전을 효과적으로 방지할 수 있다.
수신부(300)는 앞서 설명된 바와 같이, 측벽(15)상에 배치된 송신부(200)와 마주하도록 선반(100)의 좌측부 또는 우측부, 즉 좌측 브라켓(121a) 또는 우측 브라켓(121b)에 배치될 수 있다. 도 18에 도시된 바와 같이, 선반(100)을 견고하게 지지하기 위해, 브라켓(121a,121b)의 후방부는 브라켓(121a,121b)의 전방부보다 큰 크기를 갖는다. 따라서, 수신부(300)는 상대적으로 넓고 이에 따라 적절한 강도도 갖는 브라켓(121a,121b)의 후방부에 배치될 수 있다. 즉, 수신부(300)는 브라켓(121a,121b)의 후단부로부터 거리(L1) 지점까지의 후방부 영역내에 배치될 수 있다. 이러한 거리 (L1)은 예를 들어, 브라켓(121a,121b)의 전체 길이(L)의 1/4로 설정될 수 있다. 따라서, 수신부(300)는 브라켓(121a,121b)의 후단부로부터 전방부쪽으로 전체길이(L)의 1/4 지점까지의 영역내에 배치될 수 있다.
도 18-도 23에 각각 도시된 바와 같이, 수신부(300)도 회로기판(310)을 포함할 수 있다. 또한, 수신부(300)는 기판(310)상에 형성되는 코일(311)을 포함할 수 있다. 상기 코일(311)은 수신부(300), 정확하게는 기판(310)의 송신부(200)와 마주하는 표면상에 제공될 수 있다. 보다 상세하게는, 코일(311)은 수신부(300), 정확하게는 기판(310)의 표면들중 송신부(200)에 가장 가까운 표면상에 형성될 수 있다. 이러한 코일(311)은 도 2를 참조하여 설명된 2차 코일에 해당될 수 있다. 앞서 설명된 바와 같이, 송신부(200)의 코일(211)은 수신부(300)와 마주하는 송신부(200)의 어느 한 표면상에 제공되며, 수신부(300)의 코일(311)도 송신부(200)와 마주하는 수신부(300)의 어느 한 표면상에 제공되므로, 상기 코일(211,311)들을 서로 마주하게 되며, 효과적으로 전력을 전송할 수 있다.
송신부(200)에서 발생되는 전자기파는 상기 수신부(300)에 대부분 전달될 수 있지만, 일부 전자기파는 수신부(300)를 통과하여 저장실(2) 내의 저장용기에 전달될 수 있다. 상기 용기가 금속 재질 등의 전자기 유도가 일어날 수 있는 재질의 용기라면, 상기 용기가 가열되면서 용기에 보관된 식품의 온도가 상승될 수 있다. 이러한 경우에 상기 용기내의 식품은 오히려 높은 온도로 가열되어서 쉽게 부패하거나 식품이 변질될 수 있다. 이를 방지하기 위해서, 수신부(300)는 차폐 부재(312)를 포함할 수 있으며, 이에 따라 송신부(200)에서 전달되는 전자기파가 식품 용기를 가열하는 것을 방지할 수 있다. 도 34b에도 잘 도시되는 바와 같이, 차폐부재(312)는 송신부(200)와 마주하는 수신부(300)의 표면에 대향되게 위치하는 수신부(300)의 표면에 제공될 수 있다. 즉, 수신부(300)는 송신부(200)와 마주하는 제 1 표면과 상기 제 1 표면에 대향되는 제 2 표면을 포함할 수 있으며, 차폐부재(312)는 이러한 제 2 표면상에 부착될 수 있다. 보다 상세하게는, 차폐부재(312)는 코일(311)이 형성되는 표면의 반대표면상에 직접 부착될 수 있으며, 또는 이러한 반대표면에 인접하게 배치될 수 있다. 또한, 차폐부재(312) 대신에 차폐코팅도 같은 목적으로 적용될 수 있다. 예를 들어, 차폐부재(312)는 기판(310)에서 코일(311)이 형성되는 표면에 반대쪽 표면상에 부착될 수 있으며, 이에 인접한 브라켓(120)상에 부착될 수도 있다. 이러한 차폐부재(312)는 용기의 유도 가열을 방지할 뿐만 아니라 전자기파 누설의 방지로 인해 전력수신효율을 증가시킬 수도 있다. 더 나아가, 차폐부재(312)는 코일(311)의 인덕턴스를 증가시킬 수 있으며, 이에 따라 전력수신효율이 더욱 증가될 수 있다. 또한, 도 19, 도 20 및 도 22에 잘 도시된 바와 같이, 수신부(300)는 광원부(140)의 배선(142c,142d)와 연결될 수 있다. 보다 상세하게는, 수신부(300)의 기판(310)이 상기 배선(142c,142d)과 연결되며, 이에 따라 수신된 전력이 배선(142c,142d)을 통해 모듈(142)에 공급될 수 있다. 또한, 송신부(200)와 마찬가지로 수신부(300)에도 방수코팅이 적용될 수 있으며, 누전이나 감전을 효과적으로 방지할 수 있다. 즉, 수신부(300)도 이의 내부로 수분 및 기타 이물질들이 진입하는 것을 방지하도록 구성되는 실링부재로서 상기 방수코팅을 포함할 수 있다. 이러한 방수코팅은 기판(310)상에 적용될 수 있으며, 수분이나 기타 이물질들이 기판(310)에 도달하는 것을 방지함으로써 누전이나 감전을 효과적으로 방지할 수 있다.
송신부(200)에서 코일(211)은 도 21-도 23에서 도시된 바와 같이, 상기 측벽(15)에 수직한 중심축에 대해서 반지름이 점차 커지는 원형을 이루도록 감겨질 수 있다. 즉, 코일(211)은 나선으로 감겨질 수 있다. 따라서, 상기 코일(211)은 동일한 평면내에 배치될 수 있다. 또한, 수신부(300)에서도 동일하게 코일(311)은 나선형으로 감겨지며 동일평면내에 배치될 수 있다. 따라서, 이와 같은 코일(211,311)의 구성으로 인해, 송신부(200) 및 수신부(300)의 두께는 크게 증가되지 않으며, 이에 따라 냉장고내에서 많은 공간을 차지하지 않는다. 또한, 도 21-도 23에서 코일(211,311)은 원형 형상을 가지나, 도 19에 도시된 바와 같이, 타원형 형상을 가질 수도 있다.
이와 같은 타원형 코일(211,311)은 효율적인 전력전송을 위해 보다 상세한 구성을 포함할 수 있다. 도 52는 송신부의 기판 및 코일의 상세한 구성을 보여주는 평면도이며, 도 53은 수신부의 기판 및 코일의 상세한 구성을 보여주는 평면도이다. 이들 도면들 및 관련된 다른 도면을 참조하여, 코일(211,311)과 이와 관련된 송수신부(200,300)의 다른 부품들이 다음에서 보다 상세하게 설명된다.
타원형 코일(211,311)은 부분적으로 축소된 외경(예를 들어, 최소외경(D2,D4))을 갖는다. 따라서, 타원형 코일(211,311)은 이의 배향에 따라, 동일한 직경(예를 들어, 최대외경(D1,D3))을 갖는 원형코일 보다 작은 수평 또는 수직방향 너비를 가질 수 있다. 즉, 원형 코일과 비교할 때, 타원형 코일(211,311)은 컴팩트한 프로파일(profile)을 가질 수 있다. 이러한 이유로, 타원형 코일(211,311)은 효과적인 전력전송을 수행하면서도 냉장고 내의 한정된 공간내에 배치되기에 적합할 수 있다. 또한, 수신부(300)의 위치변화가 발생하는 경우에도 상기 수신부(300)와 계속적으로 마주하면서 안정적으로 전력을 전송하기 위해, 송신부(200)는 수신부(300)보다 크게 형성될 수 있다. 즉, 송신부(200)의 코일(211)은 수신부(300)의 코일(311)보다 크게 형성될 수 있다. 그러나, 냉장고에 있어서, 선반(100)은 지속적으로 같은 위치에 고정되므로, 송수신부(200,300) 위치도 소정의 위치들로 특정되며, 지속적으로 유지될 수 있다. 따라서, 송신부(200)는 수신부(300)보다 크게 형성될 필요가 없다. 이러한 이유로, 송신부(200)는 수신부(300)와 실질적으로 같은 크기를 가질 수 있다. 즉, 송신부(200)의 코일(211)과 수신부(300)의 코일(311)은 같은 크기의 외형(outer profile)을 가질 수 있다. 보다 상세하게는, 도 19에도 도시된 바와 같이, 코일(211)의 외경(D1,D2)는 코일(311)의 외경(D3,D4)와 동일하게 형성될 수 있다. 즉, 코일(211)의 최대 외경(D1)은 코일(311)의 최대외경(D3)와 동일하며, 코일(211)의 최소외경(D2)는 코일(311)의 최소외경(D4)와 동일하게 설정될 수 있다.
이와 같은 구성하에서, 코일(211,311)은 다음과 같은 실제적인 사양(sepcification)을 가질 수 있다. 먼저, 송신부(200)의 코일(211)에서, 최대외경(D1)은 44mm, 최소외경(D2)은 33mm 가 될 수 있다. 또한, 최대 내경(d1)은 30mm, 최소내경(d2)는 19mm가 될 수 있다. 코일(211)의 패턴 폭(W1)은 1.0mm가 될 수 있으며, 패턴들사이의 간격은 0.2mm로 설정될 수 있다. 코일(211)의 두께는 70㎛가 될 수 있다. 또한, 코일(211)은 실제적으로 적층된 두개의 레이어로 이루어질 수 있으며, 각 레이어에서 패턴의 감김수(즉, 턴수)는 5.5 턴(turn)이 될 수 있다. 따라서, 전체적으로 패턴의 감김수는 11턴이 될 수 있다.
수신부(300)의 코일(311)에서, 최대외경(D3)은 44mm, 최소외경(D4)은 33mm 가 될 수 있다. 따라서, 앞서 설명된 바와 같이, 코일(211)의 외경(D1,D2)는 코일(311)의 외경(D3,D4)와 동일하게 형성된다. 또한, 최대 내경(d3)은 23mm, 최소내경(d4)는 12mm가 될 수 있다. 코일(311)의 패턴 폭(W2)은 0.6mm가 될 수 있으며, 패턴들사이의 간격은 0.2mm로 설정될 수 있다. 코일(311)의 두께는 70㎛가 될 수 있다. 또한, 코일(211)과 마찬가지로, 코일(311)도 실제적으로 적층된 두개의 레이어로 이루어질 수 있으며, 각 레이어에서 패턴의 감김수(즉, 턴수)는 13.5 턴(turn)이 될 수 있다. 따라서, 전체적으로 패턴의 감김수는 27 턴이 될 수 있다. 또한, 코일(311)의 인덕턴스는 36.1±0.5μH 가 될 수 있으며, DC 저항은 2.8±0.2Ω이 될 수 있다. 이들 인덕턱스 및 DC 저항은 차폐부재(312)가 설치되었때의 값이다.
차폐부재들(212,312)는 이러한 코일(211,311)에서 누설되는 전자기파 및 자속을 차단하기 위해 상기 코일(211,311)의 외형보다 큰 외형을 갖도록 구성될 수 있다. 차폐부재들(212,312)도 다른 도면들, 예를 들어, 도 17 및 도 19에서 도시된 바와 같이, 최대 및 최소직경을 갖는 타원형상을 가질 수 있다. 따라서, 차폐부재들(212,312)의 최대직경은 코일(211,311)외 최대직경(D1,D3)보다 크게 설정될 수 있다. 또한, 차폐부재들(212,312)의 최소직경도 코일(211,311)외 최소직경(D2,D4)보다 크게 설정될 수 있다. 예를 들어, 차폐부재들(212,312)의 최대 직경은 46mm, 최소직경은 35mm로 설정될 수 있다. 이러한 차폐부재들(212,312)은 접착제, 예를 들어 양면 테이프를 이용하여 기판(210,310)에 부착될 수 있다. 또한, 효과적인 차폐를 위해 차폐부재들(212,312)는 강자성체로 이루어질 수 있다. 예를 들어, 차폐부재들(212,312)는 μ(투자율(permeability)) > 3000 인 강자성체로 제조될 수 있다. 보다 상세하게는, 차폐부재들(212,312)는 강자성체들 중에서 페라이트(ferrite), 아모포스 등으로 만들어질 수 있다. 만일 페라이트가 사용되는 경우, Mn-Zn 계열 또는 Ni-Zn 계열 페라이트가 사용될 수 있다. Mn-Zn계열 페라이트는 저손실에 적합하며, Ni-Zn계열 페라이크는 고주파에 적합하다.
도 21 및 도 23에 도시된 바와 같이, 송신부(200)는 측벽(15)내에 내장될 수 있다. 따라서, 이와 같은 송신부(200)는 측벽(15)내에 안정적으로 설치될 수 있으나 유지보수를 위해 측벽(15)으로부터 분리하기가 어려울 수도 있다. 이러한 이유로, 송신부(200)는 측벽(15)으로부터 용이하게 탈착될 수 있는 모듈로서 만들어질 수 있다. 이러한 모듈화된 송신부(200)가 도 31-도 32에 도시되며, 이들 도면을 참조하여 다음에서 상세하게 설명된다.
먼저, 송신부(200)는 앞서 설명된 바와 같이, 코일(211), 차폐부재(212) 및단자(213)이 설치된 기판(210)을 포함할 수 있다. 또한, 송신부(200)는 이와 같은 기판(210)을 덮는 커버(220)를 포함할 수 있다. 커버(220)는 또한 상기 기판(210)및 이에 설치된 다른 부품들을 수용하도록 구성될 수 있다. 보다 상세하게는, 커버(220)는 도 34a 및 도 34b에 잘 도시된 바와 같이, 몸체(220a)를 가질 수 있으며, 몸체(220a)는 평평한 기판(210)을 적절하게 지지하도록 소정크기의 플레이트로 이루어질 수 있다. 커버(220)는 상기 몸체(220a)로부터 돌출되며 이의 가장자리를 따라 연장되는 벽체(wall)(221)을 가질 수 있다. 이러한 벽체(221) 및 몸체(220a)에 의해 커버(220)는 실질적으로 소정크기의 컨테이너를 형성할 수 있다. 따라서, 형성된 내부공간내에 기판(210) 및 다른 부품들이 수용될 수 있다. 또한, 기판(210)은 벽체(221) 및 몸체(220a)에 의해 안정적으로 지지될 수 있다. 벽체(221)는 기판(210)을 고정시키기 위한 리브(211a)를 더 포함할 수도 있다. 커버(220)는 몸체(220a)로부터 추가적으로 연장되는 플랜지(222)를 포함할 수 있다. 또한, 커버(220)는 벽체(221)로부터 플랜지(222)와 같은 방향으로 연장되는 리브(223)을 포함할 수 있다. 이와 같은 커버(220)와 기판(210)의 결합에 의해 송신부(200)는 모듈화될 수 있다.
도 33을 참조하면, 모듈화된 송신부(200)를 수용하기 위해 인너케이스(10)에는 홀 또는 리세스(200a)가 형성될 수 있다. 도 34a에 도시된 바와 같이, 인너케이스(10)과 아우터 케이스(10a)사이에는 단열재(S)가 채워진다. 단열재(S)가 케이스들(10,10a)사이에 채워질 때 정전기가 발생할 수 있다. 만일 단열재(S)가 채워지기 이전에 송신부(200)가 설치되면, 정전기에 의해 송신부(200)의 회로가 파손될 수 있다. 이러한 이유로, 단열재(S)가 케이스들(10,10a)사이에 채워진 이후에 송신부(200)가 설치된다. 또한, 미리 채워진 단열재(S)가 저장실(2)내로 진입하지 못하도록 송신부(200)를 설치하기 위한 자리(seat)는 바닥부가 폐쇄된 리세스(200a)로 형성된다. 또한, 인너케이스(10)의 강도를 보강하기 위해 인너케이스(10)의 내면에는 보강판(15a)이 설치될 수 있다. 보강판(15a)에도 송신부(200)의 설치를 위한 관통공(200b)이 형성되며, 상기 리세스(200a)와 연통될 수 있다. 따라서, 도 34a에 도시된 바와 같이, 송신부 모듈(200)을 리세스(200a)내에 삽입하면, 플랜지(222)는 보강판(15a)의 바깥면에 걸리며, 리브(223)은 보강판(15a)의 내면에 걸릴 수 있다. 동시에 송신부 모듈(200)의 대부분은 리세스(200a)내에 배치되며, 외관을 저해하지 않도록 오직 커버(210) 만이 도 35에 도시된 바와 같이 외부로 노출된다. 따라서, 이러한 결합메커니즘에 의해 송신부 모듈(200)은 측벽(15)에 안정적으로 부착될 수 있으며, 같은 방식으로 유지보수를 위해 측벽(15)으로부터 용이하게 탈착될 수 있다. 또한, 플랜지(222)가 관통공(200b)보다 크게 형성되므로 외부의 이물질이 리세스(200a)내로 진입하지 못한다. 추가적으로 벽체(221)주위에 실링부재(224)가 제공될 수 있으며, 이에 따라 리세스(200a)는 송신부(200)의 고장을 방지하도록 보다 완전하게 밀폐될 수 있다. 또한, 단열재(S)가 채워지기 이전에, 외부전원과 연결된 배선이 리세스(200a)에 인접하게 미리 케이스들(10,10a)사이에 배치되며, 이후 채워진 단열재(S)에 의해 케이스들(10,10a)사이에 고정될 수 있다. 따라서, 송신부(200)가 리세스(200a)에 설치될 때, 상기 리세스(200a) 인접한 배선에 송신부(200)의 단자(213)는 바로 연결될 수 있으며, 송신부(200)와 외부전원사이의 연결은 용이하게 수행될 수 있다. 상기 외부전원에 연결된 배선의 끝단에는 상기 단자(213)와 직접적으로 연결되도록 구성된 단자가 설치될 수 있으며, 이에 따라 송신부(200)와 외부전원은 보다 용이하게 연결될 수 있다. 더 나아가, 도 34b에 도시된 바와 같이, 보강판(15a)은 관통공(200b) 주변에 형성되는 리세스(15b)를 포함할 수 있다. 플랜지(200)는 상기 리세스(15b)내에 삽입되며, 보강판(15a)외부로 돌출되지 않을 수 있다. 보다 상세하게는, 플랜지(200)의 외면은 냉장고의 측벽(15) 표면과 동일 평면내에 배치될 수 있다. 따라서, 송신부(200)는 냉장고 측벽(15)과 실질적으로 일체화되며, 냉장고의 외관이 향상될 수 있다.
앞서 설명된 송신부(200)와 유사한 이유로, 수신부(300)도 브라켓(120)으로부터 용이하게 부착되고 탈착될 수 있는 모듈로서 만들어질 수 있다. 이러한 모듈화된 수신부(300)가 도 17-도 20에 도시되며, 이들 도면을 참조하여 다음에서 상세하게 설명된다. 참고적으로 도 17-도 19는 좌측 브라켓(121a)에 설치되는 수신부(300)을 보여주며, 도 20a 및 도 20b는 우측 브라켓(121b)에 설치되는 수신부(300)를 보여준다.
먼저, 수신부(300)는 앞서 설명된 바와 같이, 코일(311), 차폐부재(312) 및 배선(142c,142d)이 설치된 기판(310)을 포함할 수 있다. 또한, 수신부(300)는 이와 같은 기판(310)을 덮는 커버(130)를 포함할 수 있다. 커버(130)는 또한 체결부재를 이용하여 브라켓(120)에 부착될 수 있으며, 이에 따라 브라켓(120)과 커버(130)에 의해 수신부(300)는 감싸질 수 있다. 따라서, 커버(130)는 수신부(300)를 외부환경으로부터 보호할 수 있다. 커버(130)는 브라켓(120)에 부착되어 선반(100)의 일부를 형성하므로, 선반(100)이 이와 같은 커버(130)를 포함한다고도 설명될 수 있다. 커버(130)는 또한 상기 기판(310)및 이에 설치된 다른 부품들을 수용하도록 구성될 수 있다. 더 나아가, 커버(130)는 송신부(200)와 수신부(300) 사이의 전력전송 및 이를 위한 공진주파수 생성을 방해하지 않는 재질로 형성될 수 있다. 예를 들어, 커버(130)는 플라스틱과 같은 고분자 재질 및 기타 비 전도/비 금속 재질로 만들어 질 수 있다.
보다 상세하게는, 도 20a 및 도 20b에 잘 도시된 바와 같이, 커버(130)는 몸체(130a)를 가질 수 있다. 상기 몸체(130a)는 판형부재로 이루어질 수 있으며, 상기 몸체(130a)의 가장자리로부터 이에 대체적으로 수직하게 리브(130b)가 연장될 수 있다. 따라서, 커버(130)는 몸체(130a)와 리브(130b)에 의해 수신부(300)의 부품들을 수용하는 공간을 형성할 수 있다. 또한, 커버(130)는 상기 몸체(130a)로부터 돌출되는 벽체(131)을 가질 수 있다. 이러한 벽체(131) 및 몸체(130a)에 의해 커버(130)에는 소정크기의 자리부(seat)(131a)가 형성될 수 있다. 따라서, 형성된 자리부(131a)내에 기판(310) 및 다른 부품들이 수용될 수 있다. 또한, 배선(142c,142d)은 전원을 공급하기 위해서는 광원부(140)까지 연장되어야 한다. 이러한 배선(142c,142d)를 완전하게 보호하기 위해 커버(130)는 도시된 바와 같이, 브라켓(120)의 측면을 따라 길게 연장될 수 있으며, 도시된 바와 같이 배선(142c,142d)도 이러한 커버(130)를 따라 배치될 있다. 커버(130)는 브라켓(120)의 측면의 외형과 일치하는 외형을 가질 수 있으며, 이에 따라 선반(100)의 외관이 향상될 수 있다.
커버(130)는 또한, 배선(142c,142d)를 붙잡도록 구성된 다수개의 리브들(132)를 포함할 수 있다. 이러한 리브들(132)에 의해 커버(130)에 안정적으로 부착될 수 있다. 또한, 커버(130)은 몸체(130a)에 형성되는 다수개의 보스(boss)(134)를 포함할 수 있다. 이러한 보스(134)에 대응하여, 도 18에 도시된 바와 같이, 브라켓(121a,121b)은 다수개의 체결공(121e)를 포함할 수 있다. 더 나아가, 커버(130)는 몸체(130a)에 형성되는 다수개의 돌기(135)를 포함할 수 있다. 도 18에 도시된 바와 같이, 브라켓(121a,121b)에는 이러한 돌기(135)들이 삽입되는 다수개의 홀(hole)(121f)이 형성될 수 있다. 브라켓(121a,121b)의 후방부들은 선반(100)을 견고하게 지지할 수 있도록 이들의 전방부보다 크게 형성될 수 있다. 즉, 브라켓(121a,121b)의 전방부들은 한정된 공간을 갖는다. 따라서, 상대적으로 큰 크기를 갖는 보스(134) 및 체결공(121e)은 커버(130) 및 브라켓(121a,121b)의 후방부 및 중앙부에 배치되는 반면, 상대적으로 작은 크기의 돌기(135) 및 홀(121f)는 커버(130) 및 브라켓(121a,121b)의 전방부에 배치될 수 있다. 커버(130)가 브라켓(121a 또는 121b)에 결합될 때, 먼저 돌기(135)가 홀(121f)에 삽입됨으로써 커버(130)가 정확한 결합위치에 배치될 수 있다. 이러한 돌기(135) 및 홀(121f)의 위치결정(positioning)에 의해, 보스(134)와 체결공(121e)도 서로 정렬될 수 있다. 체결부재를 정렬된 보스(134) 및 체결공(121e)에 체결함으로써 커버(130)는 브라켓(121a,121b)중 어느 하나에 결합될 수 있다.
앞서 설명된 커버(130)와 기판(310)의 결합, 즉 기판(310)의 자리부(131a)로의 삽입에 의해 송신부(300)는 커버(130)와 모듈화될 수 있으며, 커버(130)와 함께 용이하게 브라켓(120)에 설치 또는 분리될 수 있다. 더 나아가, 배선(142c,142d)은 커버(130)를 따라 배열되면서 이의 끝단부에 형성되는 개구부(aperture)(133)을 통해 커버(130)의 외부로 인출되며, 바로 돌기(143c)을 통해 모듈(142)와 연결될 수 있다. 따라서, 도 18, 도 20, 및 도 30에 도시된 바와 같이, 커버(130), 수신부(300) 및 광원부(140)는 하나의 모듈 또는 어셈블리를 형성할 수 있다. 이러한 어셈블리에서, 선반(100) 전체의 관점에서, 수신부(300)는 이를 수용하는 커버(130)의 일부와 더불어 도 20a에 도시된 바와 같이, 수신부(R)를 형성할 수 있다. 또한, 배선(142c,142d)는 이를 수용하는 커버(130)의 일부와 더불어, 배선부(W)을 형성할 수 있다. 광원부(140)는 배선부(W)에 의해 전원을 공급받는 부하로서 간주될 수 있다. 이와 같은 어셈블리로서, 커버(130), 송신부(300) 및 광원부(140)는 선반(100), 정확하게는 브라켓(120)에 한번에 용이하게 설치될 수 있으며, 또한 유지보수를 위해 용이하게 분리될 수 있다. 커버(130)는 앞서 설명된 바와 같은 솔리드한(soild) 부재이외에 다른 형태로도 구현될 수 있다. 예를 들어, 브라켓(121a,121b)상에 수신부(300)와 배선(142c,142d)를 배치시키고, 앞서 설명된 바와 같은 전력전송을 방해하지 않는 물질이 브라켓(121a,121b), 수신부(300) 및 배선(142c,142d)상에 도포될 수 있다. 즉, 솔리드한 커버(130) 대신에 도료 또는 다른 플렉서블한 부재가 커버(130)와 같은 기능을 수행하도록 이용될 수 있다. 이러한 커버의 다른 예는 동일하게 전력전송 및 공진주파수 생성을 방해하지 않으면서, 브라켓(121a,121b)에 수신부(300) 및 배선(142c,142d)을 고정시키며, 수신부(300) 및 배선(142c,142d)을 외부물질로 부터 보호할 수 있다.
한편, 앞서 설명된 바와 같이, 선반(100)은 서로 다른 높이를 갖도록 위쪽방향 및 아랫쪽 방향으로 이동될 수 있다. 상기 선반(100)의 광원부(140)에 전원을 공급하기 위해서는 송신부(200)와 수신부(300)가 서로 마주보아야 한다. 따라서, 선반(100)의 이동후에도 서로 마주할 수 있도록 송신부(200) 및 수신부(300)중 어느 하나가 조절될 필요가 있다. 그러나, 수신부(300)는 선반(100)에 고정되어 함께 이동되므로, 수신부(300) 대신에 송신부(200)가 서로 마주할 수 있도록 조절될 필요가 있다. 따라서, 송신부(200)는 선반(100)이 위쪽 또는 아래쪽으로 이동한 후에도 수신부(300)와 계속적으로 마주하도록 구성될 수 있다. 이와 같은 송신부(200) 및 수신부(300)사이의 대면을 위해, 여러가지 구조가 적용될 수 있다. 예를 들어, 21 및 도 23에 도시된 바와 같이, 다수개의 송신부(200)가 측벽(15)에 서로 다른 높이들로 배치될 수 있다. 보다 상세하게는, 선반(100)이 배치될 수 있는 높이들과 같은 높이들에 송신부(200)들이 각각 배치될 수 있다. 또한, 앞서 설명된 바와 같이, 서로 인접한 안착공들(18)에 걸리는 제 1 및 제 2 걸림편들(123a,123b)를 이용하여, 선반(100)은 후벽(13)에 고정될 수 있다. 도 23 및 도 34에 도시되는 바와 같이, 고정된 선반(100)의 브라켓(120)은 안착공들(18)사이에 배치되며, 이러한 브라켓(120)의 측면에 배치된 수신부(300)도 마찬가지로 안착공들(18)사이에 배치될 수 있다. 따라서, 도 23에 도시된 바와 같이, 다수개의 송신부(200)는 서로 인접하는 안착공들(18)사이의 높이들(H)로 측벽(15)에 배치될 수 있다. 즉, 송신부(200)는 서로 인접하는 안착공들(18)사이, 즉 거리(H)사이에 배치되도록 냉장고의 측벽(15)에 설치될 수 있다. 이러한 이유로, 도 23(a)에 도시된 어느 하나의 높이에서 도 23(b)에 도시된 다른 높이로 선반(100)이 이동하는 경우에도 수신부(300)와 송신부(200)가 안정적인 전력 전달을 위해 마주볼 수 있다. 또한, 보다 높은 전력전송 효율을 위해, 선반(100)의 높이가 변경된 후에도 송신부 및 수신부(200,300)의 코일들(211,311)이 도시된 바와 같이 서로 마주볼 수 있다. 더 나아가, 선반(100)의 높이가 변경된 후에도 상기 코일들(211,311)의 중심축이 더 높은 전력전송을 위해 서로 일치되도록 배치될 수도 있다. 또한, 만일 걸림편(123a,123b) 및 안착공(18)의 구조가 도 23에 도시된 것과는 다르게 변경되면, 서로 마주하도록 측벽(15) 및 브라켓(120)에 각각 배치된 송신부(200) 및 수신부(300)는 더 이상 안착공(18)들 사이에 배치되지 않을 수 있다. 예를 들어, 만일 도 23에 도시된 브라켓(120) 후단의 상부 및 하단에 각각 배치되는 걸림편들(123a,123b)와 다르게, 상기 걸림편들(123a,123b)중 어느 하나가 브라켓(120) 후단의 중앙부에 배치되면, 안착공(18)들의 사이의 거리(H)도 이러한 걸림편(123a,123b)의 변경에 따라 줄어들 수 있다. 따라서, 수신부(300)와 마주하는 송신부(200)는 더 이상 상기 거리(H)내에 배치될 수 없을 수 있다. 그러나, 이러한 경우에도 수신부(300)는 여전히 브라켓(120)의 측부에 배치된다. 따라서, 송신부(200)의 전체 또는 적어도 송신부(200)의 일부가 브라켓(120)의 측부를 마주하도록 측벽(15)에 배치되면, 보다 상세하게는, 상기 브라켓(120)의 상단 및 하단부사이에 배치되면, 이러한 송신부(200)는 걸림편(123a,123b) 및 안착공(18)의 구성의 변화에 상관없이 브라켓(120)의 측부에 배치된 수신부(300)와 마주할 수 있다.
도 23에 도시된 바와 같이, 앞서 설명된 바와 같은 구성을 갖는 다수개의 송신부(200)를 형성하기 위해 단일의 기판(210)상에 다수개의 코일들(211)이 배치될 수 있다. 도 23의 송신부(200)를 대신하여, 도 31-도 35에 도시된 바와 같이, 다수개의 모듈화된 송신부(200)가 제공될 수 있다. 또한, 상술된 다수개의 송신부(200)를 대신하여, 단일의 송신부(200)가 측벽(15)상에 수직방향으로 슬라이드 가능하게 설치될 수 있다. 이러한 송신부(200)는 따라서, 변화되는 선반(100) 및 수신부(300)의 높이에 맞게 자신의 높이를 조절할 수 있다. 더 나아가, 도 23에 도시된 바와 같이, 단일의 기판(210)상에 수신부(300)가 배치될 수 있는 높이 전체에 걸쳐서 단일의 코일(211a)이 배치될 수 있다. 따라서, 수신부(300)의 높이가 선반(100)과 함께 변화되더라도 항상 송신부(200)는 수신부(300)와 마주할 수 있게 된다. 한편, 수신부(300)의 위치는 안착공(18)에 의해 결정된다. 따라서, 송신부들(200)의 위치가 먼저 결정되고, 이러한 기 설정된 위치의 송신부(200)와 수신부(300)가 선반(100)의 높이가 변경된 후에도 서로 마주할 수 있도록 안착공(18)의 높이가 조절될 수도 있다.
전자기 유도 방식에 의한 전력전송에 있어서, 송신부(200)와 수신부(300)가 멀어지면, 전력전송효율이 감소될 수 있다. 따라서, 송신부(200)와 수신부(300)는 서로 맞닿도록 배치되는 것이 바람직할 수 있다. 그러나, 도 34를 참조하면, 단열재(S)는 인너 및 아우터케이스(10,10a)사이에 고압으로 충진되므로, 이들 케이스들(10,10a)에 많은 압력을 가하게 된다. 따라서, 인너 케이스(10), 즉 측벽(15)이 돌출될 수 있으며, 설계된 것과 다른 치수를 가질 수 있다. 만일 송신부(200)와 수신부(300)가 서로 맞닿게 설계되면, 이러한 생산 공정중의 치수변경으로 인해 송신부(200)가 수신부(300)를 가압하고 파손을 발생시킬 수 있다. 또한, 앞서 설명된 바와 같이, 선반(100)은 수직 및 수평방향으로 이동된다. 따라서, 만일 송신부(200) 및 수신부(300)이 서로 맞닿게 설계되면, 선반(100)의 탈부착시 측벽(15) 또는 선반(100)자체에 손상이 가해질 수도 있다. 따라서, 도 34에 도시된 바와 같이, 송신부(200)와 수신부(300)는 일정 거리(t)로 서로 이격될 수 있다. 즉, 송신부(200)와 수신부(300)는 서로 직접 접촉하지 않도록 구성된다. 상기 거리(t)는 전력전송효율을 크게 감소시키지 않도록 설정되며, 대략적으로 9mm 정도로 설정될 수 있다. 한편, 기존의 유선전력전송방식은 선반(100)과 인너케이스(10)의 직접적인 접촉을 요구하므로, 부식, 누전 및 감전등과 같은 이유에 추가적으로 앞서 설명된 치수변경 및 손상과 같은 문제점을 더 내포하게 된다. 따라서, 이러한 이유들을 고려할 때, 무선 전력 전송 기술에 기초한 송신부(200) 및 수신부(300)을 적용하는 것이 냉장고 선반(100)의 광원에 전원을 공급하는 데 있어서 최적인 것이 보다 명확해질 수 있다.
앞서 참조된 모든 도면들에서 도시된 바와 같이, 수신부(300)는 배선(142c,142d)를 이용하여 광원부(140)과 전기적으로 연결되며, 송신부(200)로부터 전송된 전력을 광원부(140)에 공급할 수 있다. 한편, 이러한 배선(142c,142d)을 이용한 전기적 연결과는 다른 전기적 연결을 선반(100)은 변형예로써 포함할 수 있다. 이와 관련하여, 도 45는 수신부와 광원부의 전기적 연결의 변형예를 보여주는 사시도이다. 선반의 구성은 이미 앞서 설명되었으므로, 다음에서는 구별되는 구성만이 설명된다. 같은 이유로, 설명되지 않은 구성에 대해서는 앞서 다른 도면들을 참조하여 설명된 구성이 동일하게 적용되며, 이에 대한 상세한 설명은 또한 생략된다.
도 45에 도시된 변형예는 배선(142c,142d) 대신에 브라켓(121a)을 수신부(300)와 광원부(140)의 전기적 연결을 위해 사용할 수 있다. 이미 앞서 전제된 바와 같이, 송신부(200) 및 수신부(300)의 구조와 상기 송신부(200)에서 수신부(300)로의 전력 전송을 위한 구성은 앞서 설명된 것과 동일하다. 먼저 선반(100)은 브라켓(121a)과 수신부(300)를 전기적으로 연결하는 제 1 연결부(124)를 포함할 수 있다. 보다 상세하게는, 제 1 연결부(124)는 브라켓(121a)에 제공되며, 수신부(300)와 연결되는 제 1 및 제 2 접점(124a,124b)를 포함할 수 있다. 또한, 상기 제 1 및 제 2 접접(124a,124b)는 배선(124c,124d)에 의해 수신부(300), 정확하게는 기판(310)과 전기적으로 연결될 수 있다. 한편, 선반(100)은 브라켓(121a)과 광원부(140)를 전기적으로 연결하는 제 2 연결부(125)를 포함할 수 있다. 보다 상세하게는, 제 2 연결부(125)는 브라켓(121a)에 제공되며, 광원부(140)과 연결되는 제 1 및 제 2 접점(125a,125b)를 포함할 수 있다. 또한, 상기 제 1 및 제 2 접접(125a,125b)은 배선(125c,125d)에 의해 광원부(140), 정확하게는 모듈(142)과 전기적으로 연결될 수 있다. 더 나아가, 상기 제 1 및 제 2 연결부(125)사이의 전기적 연결을 위해 브라켓(121a)의 몸체가 이용될 수 있다. 이러한 전기적 연결을 위해 브라켓(121a)은 높은 전도성 재질, 예를 들어 강철로 이루어질 수 있다. 즉, 도시된 바와 같이, 브라켓(121a)의 일부 구간(L)이 제 1 및 제 2 연결부(124,125)를 전기적으로 연결할 수 있다. 이러한 구성에 따라, 수신부(300)는 전송된 전력을 제 1 연결부(124), 브라켓(121a), 및 제 2 연결부(125)를 순차적으로 거쳐 광원부(140)에 전달될 수 있다.
제 1 연결부(124)의 제 1 및 제 2 접점들(124a,124b)에는 실링부(124e)가 제공될 수 있으며, 이에 따라 수분 및 다른 외부물질로부터 보호될 수 있다. 같은 이유로, 실링부(125e)가 제 2 연결부(125)의 제 1 및 제 2 접점들(125a,125b)에 제공될 수 있다. 이러한 실링부(124e,125e)는 실링물질을 상기 제 1 및 제 2 접점들(124a,124b,125a,125b)에 도포함으로써 형성될 수 있다. 또한, 브라켓(121a)도 누전이나 감전을 방지하기 위해 절연재질로 도포될 수 있다. 더 나아가, 수신부(300)를 보호하기 위해 커버(126)가 브라켓(121a)에 부착될 수 있다. 브라켓(121a)이 전기적 연결을 위해 이용되므로, 커버(126)는 수신부(300)와 제 1 연결부(124)만을 덮도록 형성될 수 있다. 즉, 앞서 설명된 배선(142c,142d)을 보호하기 위해 길게 연장되는 커버(130)와는 달리, 커버(126)는 상당히 축소된 크기를 가질 수 있다. 만일 필요하다면, 커버(126)와 동일한 기능을 갖는 추가적인 커버가 제 2 연결부(125)를 보호하기 위해 적용될 수 있다. 위에서 좌측 브라켓(121a)에 적용된 전기적 연결구조가 설명되었으나 동일하게 우측 브라켓(121b)에도 적용될 수 있다. 이와 같은 도 45의 전기적 연결구조는 선반의 구조를 단순화시키면서도 효과적으로 전력을 광원부(140)에 전달할 수 있다.
앞서 도 14를 참조하여 설명된 바와 같이, 송신부(200)는 측벽(15) 대신에, 후벽(13)에 배치될 수 있으며, 이에 따라 수신부(300)도 이러한 송신부(200)와 마주하도록 선반(100)의 후방부에 배치될 수 있다. 도 46은 저장실의 후벽에 설치되는 송신부를 보여주는 정면도이며, 도 47은 후방부에 설치된 수신부를 갖는 선반을 보여주는 사시도이다. 송신부(200)를 잘 보여주기 위해, 도 47에서 도시된 바와 같은 수신부(300) 장착을 위한 구조는 도 46의 선반(100)으로부터 생략된다. 도 45의 예와 마찬가지로, 선반의 구성은 이미 앞서 설명되었으므로, 다음에서는 구별되는 구성만이 설명된다. 같은 이유로, 설명되지 않은 구성에 대해서는 앞서 다른 도면들을 참조하여 설명된 구성이 동일하게 적용되며, 이에 대한 상세한 설명은 또한 생략된다.
도 46을 참조하면, 냉장고가 좌우측 선반(100a,100b)들을 포함하므로, 이러한 좌우측 선반(100a,100b)에 전력을 공급하기 위해 한 쌍의 송신부(200)가 좌우측 후벽(13a,13b)에 각각 설치될 수 있다. 보다 상세하게는, 송신부들(200)은 후벽의 중앙부에 배치될 수 있다. 즉, 하나의 송신부(200)는 좌측선반(100a)의 우측 브라켓(121b)에 인접하게 좌측 후벽(13a)에 배치될 수 있으며, 다른 하나의 송신부(200)는 우측선반(100b)의 좌측 브라켓(121a)에 인접하게 우측 후벽(13b)에 배치될 수 있다. 도 47를 참조하면, 좌우측 선반(100a,100b)의 후방부에는 수신부(300)를 지지하기 위한 한 쌍의 추가 브라켓(100f)들이 형성될 수 있다. 보다 상세하게는, 하나의 브라켓(100f)이 좌측선반(100a)의 우측 브라켓(121b)의 후방부로부터 좌측 후벽(13a)에 나란하게 소정길이로 연장될 수 있다. 또한, 다른 하나의 브라켓(100f)이 우측선반(100b)의 좌측 브라켓(121a)의 후방부로부터 우측 후벽(13b)에 나란하게 소정길이로 연장될 수 있다. 이러한 브라켓들(100f)에 수신부들(300)이 각각 설치될 수 있다. 또한, 배선들(142c,142d)이 전송된 전력을 공급하기 위해 수신부들(300)과 광원부들(140)을 연결할 수 있다. 보다 상세하게는, 배선들(142c,142d)은 수신부들(300)로부터 브라켓(121a,121b)를 따라 광원부(140)까지 연장될 수 있다. 수신부들(300) 및 배선들(142c,142d)을 보호하기 위해, 앞서 설명된 커버(130)가 브라켓(121a,121b)의 전체 측면 뿐만 아니라 추가 브라켓(100f)를 덮도록 연장될 수 있다. 이와 같은 구성에 의해 송신부(200)와 수신부를 서로 마주할 수 있으며, 효과적으로 전력의 전송이 이루어질 수 있다. 도 46에 도시된 것과 다르게, 하나의 송신부(200)는 좌측선반(100a)의 좌측 브라켓(121a)에 인접하게 좌측 후벽(13a)에 배치될 수 있으며, 다른 하나의 송신부(200)는 우측선반(100b)의 우측 브라켓(121b)에 인접하게 우측 후벽(13b)에 배치될 수 있다. 이러한 경우, 송신부들(200)과 마주하도록, 앞서 설명된 브라켓들(100f) 및 수신부들(300)이 동일한 방식으로 좌측선반(100a)의 좌측 브라켓(121a, 예를 들어 도 16a 참조) 및 우측선반(100b)의 우측 브라켓(121b)에 각각 제공될 수 있다.
한편, 선반(100)은 냉장고의 후벽(13) 대신에 측벽(15)에 지지될 수 있다. 또한, 이러한 선반(100)의 광원부(140)에도 무선으로 전력을 공급하기 위해 송신부(200) 및 수신부(300)가 적용될 수 있다. 도 48은 저장실의 측벽에 지지되는 선반에 있어서 송신부 및 수신부의 구성을 보여주는 정면도이며, 도 49는 도 48의 선반을 나타내는 배면도이다. 또한, 도 50은 저장실의 측벽에 지지되는 선반에 있어서 송신부 및 수신부의 구성의 다른 예를 보여주는 정면도이며, 도 51은 도 50의 선반을 나타내는 측면도이다. 도 45-도 47의 예와 마찬가지로, 선반의 구성은 이미 앞서 설명되었으므로, 다음에서는 구별되는 구성만이 설명된다. 같은 이유로, 설명되지 않은 구성에 대해서는 앞서 다른 도면들을 참조하여 설명된 구성이 동일하게 적용되며, 이에 대한 상세한 설명은 또한 생략된다.
도 48을 참조하면, 선반(100)을 지지하기 위해, 냉장고의 측벽(15a,15b)은 서포터(supporter)(15c,15d)를 포함할 수 있다. 보다 상세하게는, 좌측 서포터(15c)는 좌측벽(15a)로부터 저장실(2) 안쪽으로 소정길이로 연장되며, 유사하게 우측 서포터(15d)는 우측벽(15b)로부터 저장실(2) 안쪽으로 소정길이로 연장될 수 있다. 또한, 선반(100)의 좌우측부들은 상기 좌우측 서포터(15c,15d)상에 놓여지며, 이에 따라 선반(100)은 냉장고내에서 안정적으로 지지될 수 있다. 이와 같이 서포터(15c,15d)와 선반(100)의 좌우측부들이 서로 마주하므로, 송신부(200) 및 수신부(300)는 서로 마주하는 좌측서포터(15c)/선반의 좌측부 또는 우측 서포터(15d)/선반의 우측부에 설치될 수 있다. 예를 들어, 도 48에 도시된 바와 같이, 우측 서포터(15d)에 송신부(200)가 설치되는 경우, 수신부(300)는 이와 마주하도록 선반의 우측부에 설치될 수 있다. 보다 상세하게는, 서포터(15d)는 길이에 비해 상대적으로 좁은 폭을 가지므로, 송신부(200)는 이러한 서포터(15d)의 형상에 따라 좁은 폭을 가질 수 있다. 송신부(200)는 서포터(15d)의 상부의 어느 부위에도 설치될 수 있다. 그러나, 사용자에 눈에 보여지지 않도록, 서포터(15d)의 전방부보다는 중앙부 또는 후방부에 배치될 수 있다. 또한, 도 49에 도시된 바와 같이, 선반(100)의 우측부에는 우측 레일(113b)이 배치되므로, 수신부(300)는 송신부(200)와 마주하도록 우측레일(113b)의 하면(즉, 바닥면)상에 설치될 수 있다. 또한, 송신부(200)가 서포터(15d)의 후방부에 배치되는 경우, 이와 같은 송신부(200)와 마주하도록 레일(113b)의 하면의 후방부상에 배치될 수 있다. 전방에 배치된 광원부(140)와 수신부(300)사이의 전기적 연결을 위해 레일(113b)이 이용될 수 있다. 이러한 전기적 연결을 위해 도 45에 설명된 바와 같은 제 1 및 제 2 연결부(124,125)가 동일하게 레일(113b)에 적용될 수 있으며, 레일(113b)은 전도성 재질로 이루어질 수 있다. 마찬가지로, 누전 및 감전을 방지하기 위해, 예를 들어 도 45의 접점(124a,124b,125a,125b)과 같은 전기적 접점을 제외한 레일(113b)의 나머지 표면은 절연물질로 도포될 수 있다. 레일(113b) 대신에, 앞서 설명된 바와 같은 배선(142c,142d)를 이용하여, 수신부(300)과 광원부(140)가 서로 전기적으로 연결될 수도 있다. 또한, 외부 물질 및 수분으로부터 보호하기 위해, 앞서 설명된 커버(130,126)와 같은 보호부재가 적용될 수도 있다.
다른 한편, 도 51을 참조하면, 측벽(15)에 지지되는 선반(100)에 있어서도, 송신부(200)는 후벽(13)에 배치될 수 있다. 도 50은 후벽(13)의 중앙부에 배치된 송신부(200)를 보여주나 송신부(200)는 선반(100)의 후방부에 인접하게 후벽(13)의 어느 부위에도 배치될 수 있다. 도 50 및 도 51 둘 다에 도시되는 바와 같이, 선반(100)의 후방부에는 수신부(300)를 지지하기 위한 브라켓(100f)이 제공될 수 있다. 이러한 브라켓(100f)는 도 51에 잘 도시된 바와 같이, 선반(100)의 후방 끝단으로부터 아래쪽 방향으로 소정 길이로 연장될 수 있다. 이러한 브라켓(100f)에 수신부(300)가 송신부(200)와 마주하도록 설치될 수 있다. 앞서 도 48 및 도 49의 예에서도 설명된 바와 같이, 전방에 배치된 광원부(140)와 수신부(300)사이의 전기적 연결을 위해 레일(113a,113b)중 어느 하나가 이용될 수 있다. 또한, 도 45에 설명된 바와 같은 제 1 및 제 2 연결부(124,125)가 동일하게 레일(113a,113b)중 어느 하나에 적용될 수 있으며, 해당 레일은 전도성 재질로 이루어질 수 있다. 전기적 접점을 제외한, 전기적 연결을 위한 레일(113a 또는 113b)의 나머지 표면은 절연물질로 도포될 수 있다. 다른 한편, 배선(142c,142d)를 이용하여, 수신부(300)과 광원부(140)이 서로 전기적으로 연결될 수도 있다. 또한, 외부 물질 및 수분으로부터 배선(142c,142d), 수신부(300), 연결부(124,125)등을 보호하기 위해, 앞서 설명된 커버(130,126)와 같은 보호부재가 적용될 수도 있다.
상술된 바와 같은 도 48-도 51의 구성에 의해, 측벽(15)에 지지되는 선반(100)에서도 송신부 및 수신부(200,300)을 이용하여 효과적으로 광원부(140)에 전력이 공급될 수 있다.
한편, 앞서 설명된 냉장고의 구성은 선반(100)의 광원부(140)에 요구되는 전력을 무선으로 공급할 수 있다. 그러나, 보다 향상된 기능을 제공하기 위해서는, 냉장고의 구조 및 특성을 고려한 적절한 제어가 적용될 필요가 있다. 또한, 그와 같은 제어의 최적화는 의도된 기능적 향상을 보다 효과적이고 효율적으로 달성할 수 있다. 이와 같은 이유로, 앞서 설명된 냉장고에 대한 제어방법이 개발되었으며, 다음에서 관련된 도면들을 참조하여 설명된다. 특별히 반대되는 설명이 없는 한 앞서 참조된 도면들 및 이에 대한 설명들은 다음의 제어방법의 설명 및 도면들에 기본적으로 포함되고 참조된다.
다음에서 설명되는 제어방법들은 앞서 설명된 구성요소, 즉 다양한 부품들의 작동을 제어하며, 이러한 작동에 기초하여 의도된 기능들을 제공할 수 있다. 따라서, 제어방법과 관련된 작동 및 기능들은 제어방법의 특징 뿐만 아니라 모두 관련된 해당 구조적 구성요소들의 특징으로도 간주될 수 있다. 또한, 제어부는 프로세서(processor), 제어기(controller) 및 제어장치(controlling device)와 같은 다양한 명칭으로 불릴 수 있으며, 소정의 작동을 수행하기 위해 냉장고의 모든 구성요소들을 제어할 수 있다. 따라서, 제어부가 실질적으로 본 출원에서 다음에 설명되는 모든 방법 및 모드들을 실질적으로 제어하며, 이에 따라 이후 설명될 모든 단계들은 제어부의 특징이 될 수 있다. 이러한 이유로, 비록 제어부 또는 냉장고에 의해 수행되는 것으로 명확하게 설명되지 않는다 하더라도, 다음의 단계들 및 이들의 세부적인 특징들은 모두 제어부 또는 냉장고 자체의 특징으로 이해되어야 한다.
도 15는 본 출원에 따른 냉장고를 나타내는 블럭도이다. 또한, 도 54은 도어가 열릴 때 광원을 제어하는 방법을 나타내는 순서도이며, 도 55은 도어가 닫힐 때 광원을 제어하는 방법을 나타내는 순서도이다.
도 15를 참조하면, 냉장고의 구성이 제어적 측면에서 설명될 수 있다. 먼저 냉장고는 도어(20,40)의 개폐를 감지하는 도어 스위치(60)를 가질 수 있다. 개폐를 감지하기 위해 상기 도어 스위치(60)는 도어(20,40)에 인접하게 배치될 수 있다. 상기 도어 스위치(60)는 상기 제1도어(20)의 개폐를 감지하는 제 1 도어 스위치와 상기 제2도어(40)의 개폐를 감지하는 제 2 도어 스위치를 포함할 수 있다.
상기 도어 스위치(60)에서 감지된 신호는 제어부(70)에 전달될 수 있다. 상기 제어부(70)는 상기 도어 스위치(60)에서 수신된 신호에 의해서 상기 도어(20,40)의 개폐를 감지할 수 있다. 상기 제어부(70)는 전력을 전송할 수 있는 송신부(200)에 전력을 공급할 수 있다. 여기서, 제어부(70)는 도어가 개방된 경우에 한해서, 송신부(200)에 전력을 공급할 수 있다.
송신부(200)는 앞서 설명된 바와 같이 복수 개가 설치될 수 있다. 제어부(100)는 도어가 개방될 때, 복수 개의 송신부(200)로 모두에 전력을 공급하거나, 복수 개의 전력 송신부(110) 중에서 일부에만 전력을 공급할 수 있다. 전력은 송신부(200)로부터 수신부(300)로 무선으로 전달될 수 있다. 수신부(300)에서 수신한 전력은 광원부(140)로 전달되며, 빛이 광원부(140)로부터 조사될 수 있다.
이와 같은 냉장고의 구성에 기초하여 구체적인 제어방법이 도 54 및 도 55을 참조하여 다음에서 설명된다.
도 54를 참조하면, 먼저 도어(20,40)가 개방되면, 도어 스위치(60)는 상기 도어(20,40)의 개방을 감지할 수 있다(S11).
상기 감지단계(S11)이후. 제어부(70)는 송신부(200)에 전력을 공급할 수 있다(S12). 이러한 공급단계(S12)에 있어서, 도어(20,40)가 개방된 것으로 감지되면 다수개의 송신부(200)에 모두 전력이 공급될 수 있다.
다른 한편, 제어부(70)는 다수개의 송신부(200)중 일부에 선택적으로 전력을 공급할 수 있다. 보다 상세하게는, 개방되는 도어에 의해 노출되는 선반(100)만이 빛을 조사할 수 있도록 이러한 노출되는 선반(100)에 연계된 송신부(200)에만 전력이 공급될 수 있다. 즉, 도어에 의해 노출되는 측부(15)에 배치되는 송신부(200)만이 전력을 공급받을 수 있다. 예를 들어, 좌측에 배치된 제 1 도어(20)가 개방되는 경우, 노출되는 좌측부의 선반들만이 빛을 조사하도록, 좌측벽(15)에 설치된 송신부(200)에만 전력이 공급될 수 있다.
또한, 수신부(300)가 인접하게 배치되지 않은 상태에서, 송신부(200)를 통해서 전자기파가 발생되면 근처의 금속 재질의 용기가 유도가열효과에 의해 가열될 수 있으며, 저장된 식품이 손상될 수 있다. 이러한 현상을 방지하기 위해서, 송신부(200)로의 선택적인 전력공급의 다른 예로서, 전력은 수신부(300)와 마주하지 않는 송신부(200)에는 공급되지 않는다. 즉, 오직 수신부(300)와 마주하는 송신부(200)에만 전력이 공급될 수 있다. 이와 같은 선택적인 공급을 위해, 제어부(100)는 송신부(200)에서 수신되는 전자기파의 주파수 변화를 감지해서, 수신부(200)와 마주하지 않는 송신부(200)를 검출할 수 있다. 보다 상세하게는, 송신부(200)는 전자기파를 전송할 뿐만 아니라 일부 전자기파를 수신할 수도 있다. 수신부(300)와 마주하는 송신부(200)는 전력전송을 위한 공진에 의해 큰 주파수의 변화를 감지하는 반면, 수신부(300)와 마주하지 않는 송신부(200)는 적은 주파수의 변화만을 감지한다. 즉, 수신부(300)와 마주하지 않는 송신부(200)에서는 저주파 대역의 전자기파가 수신될 수 있다. 따라서, 제어부(70)는 송신부(200)에서 전송된 후에 재수신되는 전자기파의 주파수가 작게 변화되는 경우, 해당 송신부(200)에 공급된 전력을 차단할 수 있다.
상기 공급단계(12)이후, 수신부(300)에서는 전자기 유도 등에 의해서 전력이 수신될 수 있다(S14). 상기 수신부(300)에서 수신된 전력은 전류로 변화되어 광원부(140)로 전달되며, 이에 따라 상기 광원부(140)은 빛을 조사할 수 있다(S16). 만일 처음부터 너무 강한 빛을 조사하면, 사용자에게 눈부심을 유발할 수 있다. 따라서, 상기 조사단계(S16)에서, 상기 광원부(140)에서 조사되는 빛의 강도는 시간이 경과에 따라 점차적으로 증가되도록 제어되며, 이에 따라 사용자가 빛에 익숙해질 수 있는 시간을 줄 수 있다.
한편, 송신부(200)의 전자기파는 대부분 수신부(300)로 전송되지만, 일부는 금속용기를 가열하고, 용기내의 식품을 손상시킬 수 있다. 이러한 유도가열을 방지하기 위해, 도어(20,40)의 개방후 소정시간동안만 송신부(200)에 전력이 공급될 수 있다. 즉, 도어(20,40)의 개방후 소정시간이 경과하면 송신부(200)에 공급되는 전원이 중단될 수 있다. 이러한 전원 공급의 중단은 유도가열을 방지하기 위해 도어(20,40)가 계속 개방되어 있다 하더라도 소정시간의 경과후에 수행된다. 예를 들어, 도어(20,40)의 개방후 7분이 경과하면, 송신부(200)에 공급되는 전력이 중단될 수 있다. 송신부(200)에 전력이 공급되지 않으면, 수신부(300)로 전자기파가 전송되지 않으므로, 유도 가열이 방지될 수 있다. 동시에, 송신부(200)에 전력이 공급되지 않으면, 광원부(140)도 꺼질 수 있다. 이러한 경우, 사용자가 고장을 의심하지 않도록 전력차단 및 광원부(140)의 꺼짐이 사용자에게 통지될 수 있다. 이러한 통지는 다양한 방법으로 수행될 수 있다. 예를 들어, 알람, 빛, 음성등이 통지를 위해 사용될 수 있다.
한편, 도 55를 참조하면, 도어(20,40)이 닫히면, 도어 스위치(70)에서 도어 닫힘이 감지될 수 있다(S21). 이 후, 제어부(70)는 모든 송신부(200)로의 전력 공급을 차단한다(S22). 송신부(200)에서 전자기파가 발생되지 않기 때문에, 수신부(300)에서도 전력이 수신될 수 없고(S24), 광원부(140)도 꺼지게 된다(S26).
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 출원의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 출원의 등가적 범위 내에서의 모든 변경은 본 출원의 범위에 포함된다.

Claims (32)

  1. 소정크기의 저장실을 포함하는 캐비닛;
    상기 저장실내에 설치되며, 상기 저장실내를 조명하도록 구성된 광원부를 포함하는 선반;
    외부전원과 연결되어 무선으로 전력을 전송하도록 구성되며, 소정범위의 1차 공진주파수를 갖는 송신부; 및
    상기 송신부로부터 무선으로 전력을 수신하여 상기 선반의 광원부에 공급하도록 구성되는 수신부로 이루어지며,
    상기 송신부는 상기 수신부가 상기 송신부에 인접하게 배치될 때 발생하는 2차 공진주파수를 이용하여, 상기 수신부에 전력을 전송하는 냉장고.
  2. 제 1 항에 있어서,
    상기 2차 공진주파수는 상기 1차 공진주파수보다 큰 것을 특징으로 하는 냉장고.
  3. 제 1 항에 있어서,
    상기 2차 공진 주파수는 상기 1차 공진 주파수의 2배보다 큰 것을 특징으로 하는 냉장고.
  4. 제 1 항에 있어서,
    상기 1차 공진 주파수는 100-150kHz의 범위를 가지며, 상기 2차 공진 주파수는 300-400kHz의 범위를 갖는 것을 특징으로 하는 냉장고.
  5. 제 1 항에 있어서,
    상기 수신부는 상기 2차 공진 주파수를 생성하기 위해 상기 광원부의 부하의 저항에 따라 상기 부하에 연결되는 커패시터의 용량을 조절하도록 구성되는 것을 특징으로 하는 냉장고.
  6. 제 5 항에 있어서,
    상기 수신부는 상기 광원부의 부하의 저항에 따라 상기 부하에 직렬 및/또는 병렬로 연결되는 커패시터를 포함하는 것을 특징으로 하는 냉장고.
  7. 제 1 항에 있어서,
    상기 송신부 및 수신부는 서로 마주보도록 상기 저장실의 측벽 및 상기 선반의 측부에 각각 제공되는 것을 특징으로 하는 냉장고.
  8. 제 1 항에 있어서,
    상기 선반은 선반부재와 상기 선반부재의 양측부들을 지지하도록 구성되는 브라켓들을 포함하며,
    상기 송신부는 상기 저장실의 측벽에 설치되며 상기 수신부는 상기 선반의 측부에 설치되는 것을 특징으로 하는 냉장고.
  9. 제 8 항에 있어서,
    상기 수신부는 상기 브라켓의 후방부에 설치되는 것을 특징으로 하는 냉장고.
  10. 제 1 항에 있어서,
    상기 송신부 및 수신부는 누설되는 전자기파를 차폐하도록 구성되는 차폐부재를 각각 포함하는 것을 특징으로 하는 냉장고.
  11. 제 10 항에 있어서,
    상기 송신부는 상기 수신부와 마주하는 제 1 표면과 상기 제 1 표면에 대향되는 제 2 표면을 포함하며, 상기 차폐부재는 상기 제 2 표면에 부착되는 것을 특징으로 하는 냉장고.
  12. 제 10 항에 있어서,
    상기 수신부는 상기 송신부와 마주하는 제 1 표면과 상기 제 1 표면에 대향되는 제 2 표면을 포함하며, 상기 차폐부재는 상기 제 2 표면에 부착되는 것을 특징으로 하는 냉장고.
  13. 제 1 항에 있어서,
    상기 송신부는 회로기판: 상기 회로기판의 상기 수신부와 마주하는 표면에 형성되며 전력전송을 위한 전자기파를 생성하는 코일; 및 상기 회로기판과 상기 외부전원을 연결하는 배선을 포함하는 것을 특징으로 하는 냉장고.
  14. 제 1 항에 있어서,
    상기 수신부는 회로기판; 상기 회로기판의 상기 송신부와 마주하는 표면에 형성되며 상기 송신부로부터 전달된 전자기파로부터 전류를 유도하도록 구성되는 코일; 및 상기 회로기판과 상기 광원부를 연결하며, 유도된 전류를 공급하도록 구성되는 배선을 포함하는 것을 특징으로 하는 냉장고.
  15. 소정크기의 저장실을 포함하는 캐비닛;
    상기 저장실내에 설치되며, 상기 저장실내를 조명하도록 구성된 광원부를 포함하는 선반;
    외부전원과 연결되어 무선으로 전력을 전송하도록 구성되는 송신부; 및
    상기 송신부로부터 무선으로 전력을 수신하여 상기 선반의 광원부에 공급하도록 구성되는 수신부로 이루어지며,
    상기 광원부는 하우징과, 상기 하우징내에 배치되며 빛을 조사하도록 구성되는 광원모듈을 포함하는 냉장고.
  16. 제 15 항에 있어서,
    상기 광원부는 상기 선반의 전방부에 배치되며, 아래쪽으로 빛을 조사하도록 배향되는 것을 특징으로 하는 냉장고.
  17. 제 15 항에 있어서,
    상기 하우징은 빛을 통과시키지 않도록 구성되는 차광부와 빛을 통과시키도록 구성되는 윈도우를 포함하며, 상기 윈도우는 상기 하우징의 바닥부의 후방부에 배치되는 것을 특징으로 하는 냉장고.
  18. 제 17 항에 있어서,
    상기 윈도우의 전단 및 후단사이의 거리는 상기 하우징의 전단 및 후단 사이 거리의 1/2로 설정되는 것을 특징으로 하는 냉장고.
  19. 제 17 항에 있어서,
    상기 윈도우는 만곡지게(curved) 형성되는 것을 특징으로 하는 냉장고.
  20. 제 17 항에 있어서,
    상기 광원모듈은 상기 하우징의 상부 내면을 향해 빛을 조사하도록 배향되는 것을 특징으로 하는 냉장고.
  21. 제 17 항에 있어서,
    상기 광원모듈은 상기 하우징의 상부 및 전방 내면들을 향해 빛을 조사하도록 수평면에 대해 소정 각도로 경사지게 배치되는 것을 특징으로 하는 냉장고.
  22. 제 15 항에 있어서,
    상기 광원부는 상기 광원모듈을 붙잡도록 구성되는 홀더를 포함하며,
    상기 홀더는:
    상기 광원모듈의 양 끝단을 지지하도록 구성되는 스토퍼;
    상기 광원모듈의 상부 및 하부를 각각 지지하도록 구성되는 제 1 및 제 2 암들을 포함하는 것을 특징으로 하는 냉장고.
  23. 제 22 항에 있어서,
    상기 제 2 암이 상기 제 1 암보다 길게 연장되는 것을 특징으로 하는 냉장고.
  24. 제 15 항에 있어서.
    상기 선반은 물품들을 지지하도록 구성되며 투명한 몸체를 갖는 선반부재를 포함하며, 상기 선반부재는 상기 투명한 몸체에 배치되어 상기 몸체를 통해 빛이 누출되는 것을 방지하도록 구성되는 불투명 레이어를 포함하는 것을 특징으로 하는 냉장고.
  25. 제 24 항에 있어서,
    상기 레이어는 상기 선반부재의 가장자리를 따라 형성되는 것을 특징으로 하는 냉장고.
  26. 제 15 항에 있어서,
    상기 광원부는 상기 선반의 직하방에 빛을 조사하도록 수평면과 나란하게 배향되거나 상기 선반의 후방부에도 빛을 조사하도록 상기 수평면에 대해 소정각도로 틸트되게 배향되는 것을 특징으로 하는 냉장고.
  27. 소정크기의 저장실을 포함하는 캐비닛;
    상기 저장실내에 설치되며, 상기 저장실내를 조명하도록 구성된 광원부를 포함하는 선반;
    외부전원과 연결되어 무선으로 전력을 전송하도록 구성되는 송신부; 및
    상기 송신부로부터 무선으로 전력을 수신하여 상기 선반의 광원부에 공급하도록 구성되는 수신부로 이루어지며,
    상기 송신부 및 상기 수신부의 내부에는 외부로부터 이물질이 그 내부로 진입하는 것을 방지하는 실링부재가 제공되는 냉장고.
  28. 제 27 항에 있어서,
    상기 광원부는:
    하우징;
    상기 하우징내에 배치되며 빛을 조사하도록 구성되는 광원모듈;
    상기 하우징 내부에 배치되어 상기 광원모듈을 붙잡는 홀더; 및
    상기 하우징과 상기 홀더사이에 개재되어 외부 물질이 상기 하우징내로 진입하는 것을 방지하는 제 1 실링부를 포함하는 것을 특징으로 하는 냉장고.
  29. 제 28 항에 있어서,
    상기 광원부는:
    상기 하우징 외부에 배치되어 상기 선반에 결합되는 헤드; 및
    상기 헤드의 내부에 제공되어 외부 물질이 상기 하우징내로 진입하는 것을 방지하는 제 2 실링부를 더 포함하는 것을 특징으로 하는 냉장고.
  30. 제 28 항에 있어서,
    상기 광원부는 상기 홀더와 상기 광원모듈사이에 개재되어 외부물질이 상기 광원모듈에 도달하는 것을 방지하는 제 3 실링부를 더 포함하는 것을 특징으로 하는 냉장고.
  31. 제 27 항에 있어서,
    상기 수신부를 보호하도록 상기 수신부를 덮도록 구성되는 커버를 더 포함하며, 상기 커버는 무선전력전송을 방해하지 않는 재질로 이루어지는 것을 특징으로 하는 냉장고.
  32. 제 31 항에 있어서,
    상기 커버는 비 전도 또는 비 금속 재질로 이루어지는 것을 특징으로 하는 냉장고.
PCT/KR2016/008400 2016-01-04 2016-07-29 냉장고 WO2017119567A1 (ko)

Priority Applications (16)

Application Number Priority Date Filing Date Title
KR1020177002916A KR102314318B1 (ko) 2016-01-04 2016-07-29 냉장고
KR1020177002914A KR102318549B1 (ko) 2016-01-04 2016-07-29 냉장고
KR1020197001846A KR102314319B1 (ko) 2016-01-04 2016-07-29 냉장고
CN201680002288.3A CN107408843B (zh) 2016-01-04 2016-07-29 冰箱
KR1020177002915A KR102314317B1 (ko) 2016-01-04 2016-07-29 냉장고
AU2016259416A AU2016259416B2 (en) 2016-01-04 2016-07-29 Refrigerator
EP16808547.0A EP3214730B1 (en) 2016-01-04 2016-07-29 Refrigerator
KR1020217033156A KR102418145B1 (ko) 2016-01-04 2016-07-29 냉장고
EP23198499.8A EP4287489A3 (en) 2016-01-04 2016-07-29 Refrigerator
KR1020167035045A KR101944833B1 (ko) 2016-01-04 2016-07-29 냉장고
JP2017538331A JP6837977B2 (ja) 2016-01-04 2016-07-29 冷蔵庫
US15/381,402 US10340741B2 (en) 2016-01-04 2016-12-16 Refrigerator
US15/381,361 US9793763B2 (en) 2016-01-04 2016-12-16 Refrigerator
US16/458,819 US10886785B2 (en) 2016-01-04 2019-07-01 Refrigerator
US17/103,202 US11239702B2 (en) 2016-01-04 2020-11-24 Refrigerator
US17/576,168 US11532954B2 (en) 2016-01-04 2022-01-14 Refrigerator

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20160000586 2016-01-04
KR10-2016-0000586 2016-01-04
US201662311917P 2016-03-23 2016-03-23
US62/311,917 2016-03-23
KR20160050154 2016-04-25
KR10-2016-0050154 2016-04-25
KR10-2016-0060770 2016-05-18
KR20160060770 2016-05-18
KR20160079572 2016-06-24
KR10-2016-0079572 2016-06-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/381,361 Continuation US9793763B2 (en) 2016-01-04 2016-12-16 Refrigerator
US15/381,402 Continuation US10340741B2 (en) 2016-01-04 2016-12-16 Refrigerator

Publications (1)

Publication Number Publication Date
WO2017119567A1 true WO2017119567A1 (ko) 2017-07-13

Family

ID=59274336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008400 WO2017119567A1 (ko) 2016-01-04 2016-07-29 냉장고

Country Status (7)

Country Link
US (5) US10340741B2 (ko)
EP (2) EP4287489A3 (ko)
JP (1) JP6837977B2 (ko)
KR (6) KR102318549B1 (ko)
CN (1) CN107408843B (ko)
AU (1) AU2016259416B2 (ko)
WO (1) WO2017119567A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646181A (zh) * 2022-03-11 2022-06-21 海信(山东)冰箱有限公司 一种冰箱的辅助关门控制方法及冰箱

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016176236A1 (en) 2015-04-29 2016-11-03 Zpower, Llc Temperature dependent charge algorithm
KR101695696B1 (ko) * 2015-07-15 2017-01-12 엘지전자 주식회사 냉장고
KR102318549B1 (ko) * 2016-01-04 2021-10-29 엘지전자 주식회사 냉장고
US10648724B2 (en) * 2016-09-06 2020-05-12 Whirlpool Corporation Cold plate shelf assembly for a refrigerator
DE102016221026A1 (de) * 2016-10-26 2018-04-26 BSH Hausgeräte GmbH Haushaltskältegerät mit einem elektrischen Bauteil an einer Stirnwand an einer Auflagerippe sowie Verfahren zum Herstellen eines Haushaltskältegeräts
US11285833B2 (en) * 2017-03-22 2022-03-29 The University Of Hong Kong System and method for charging electric vehicles
KR20180124748A (ko) * 2017-05-12 2018-11-21 엘에스전선 주식회사 캐비닛
WO2019051022A1 (en) * 2017-09-06 2019-03-14 Zpower, Llc SYSTEM AND METHOD FOR WIRELESS LOAD
CN107874493A (zh) * 2017-11-02 2018-04-06 中山日创电器有限公司 一种层架带灯的柜子
CN107951226A (zh) * 2017-11-02 2018-04-24 中山日创电器有限公司 一种无线控制酒柜
CN107853898A (zh) * 2017-11-02 2018-03-30 中山日创电器有限公司 一种利用活动机构与层架灯电连的柜子
KR102531048B1 (ko) 2018-04-26 2023-05-10 주식회사 아모센스 회전형 연결부용 무선전력 전송 시스템
CN109215316A (zh) * 2018-09-12 2019-01-15 中山市凯腾电器有限公司 一种酒柜的电子控制装置
KR102583888B1 (ko) * 2018-12-05 2023-10-04 엘지전자 주식회사 냉장고
US10670327B1 (en) * 2018-12-07 2020-06-02 Bsh Hausgeraete Gmbh Household cooling appliance comprising a shelf device
KR102609768B1 (ko) 2019-01-10 2023-12-05 엘지전자 주식회사 냉장고
KR20200090461A (ko) 2019-01-21 2020-07-29 백종민 선박용 짐벌형 냉장고
JP7200709B2 (ja) * 2019-01-31 2023-01-10 株式会社オートネットワーク技術研究所 給電装置
WO2020183949A1 (ja) * 2019-03-12 2020-09-17 富士フイルム株式会社 収容ケース、収容ケーススタック及びマイクロ流体デバイスの稼働方法
KR20200113872A (ko) * 2019-03-26 2020-10-07 엘지전자 주식회사 냉장고
US11118832B2 (en) * 2019-04-17 2021-09-14 Whirlpool Corporation Shelf assembly with water dispenser and filtration system
CN112290319A (zh) * 2019-07-10 2021-01-29 泰科电子(上海)有限公司 电连接组件和电器设备
CN113531974A (zh) * 2020-04-20 2021-10-22 青岛海尔电冰箱有限公司 冰箱
KR20220005959A (ko) * 2020-07-07 2022-01-14 삼성전자주식회사 무선으로 전력을 수신하는 전자 장치 및 그 동작 방법
US20220087446A1 (en) * 2020-09-24 2022-03-24 True Manufacturing Co., Inc. Field-installable refrigerated cabinet kit with on-cabinet refrigeration system
JP7352586B2 (ja) * 2021-01-22 2023-09-28 日立グローバルライフソリューションズ株式会社 収容庫
JP2022116465A (ja) * 2021-01-29 2022-08-10 日立グローバルライフソリューションズ株式会社 収容庫
WO2022157999A1 (ja) * 2021-01-22 2022-07-28 日立グローバルライフソリューションズ株式会社 収容庫
US20220397335A1 (en) * 2021-06-10 2022-12-15 Da-Kuang Chang Airtight metal pipes across inner spaces of non-Styrofoam, non-Plastic inner frame of refrigerators
US12044464B2 (en) * 2021-10-15 2024-07-23 Ssw Advanced Technologies, Llc Illuminated shelf assemblies
KR102651702B1 (ko) * 2022-01-05 2024-03-29 뉴서광 주식회사 선택형 선반 모듈 및 이를 포함하는 냉장고
US12119664B2 (en) 2022-05-20 2024-10-15 Snap-On Incorporated Systems, tool storage units, and methods for providing electrical power
US20240047995A1 (en) * 2022-08-05 2024-02-08 Haier Us Appliance Solutions, Inc. Wireless power transfer to a door of a refrigerator appliance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065921A (ja) * 2008-09-10 2010-03-25 Mitsubishi Electric Corp 冷蔵庫
KR20110034271A (ko) * 2009-09-28 2011-04-05 엘지전자 주식회사 냉장고 및 냉장고용 선반
KR20110045445A (ko) * 2009-10-27 2011-05-04 엘지전자 주식회사 냉장고
KR20120052983A (ko) * 2009-08-14 2012-05-24 일리노이즈 툴 워크스 인코포레이티드 유도 전력 공급된 조명 조립체
KR20120088709A (ko) * 2009-09-28 2012-08-08 파워매트 테크놀로지스 엘티디. 유도전력 전송을 조절하는 장치 및 방법

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202444A1 (de) * 2002-01-22 2003-07-31 Miele & Cie Kühlmöbel, insbesondere Kühlschrank
KR100500243B1 (ko) * 2003-01-24 2005-07-11 삼성전자주식회사 냉장고 및 그 제어방법
JP2005005424A (ja) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd 電磁波シールドパネルとこれを用いた保温保冷機器、電子機器、衣料用品、及び住宅部材
KR101059244B1 (ko) * 2004-12-17 2011-08-25 주식회사 대우일렉트로닉스 냉장고의 선반 브라켓 지지구
KR100756449B1 (ko) * 2006-05-16 2007-09-07 엘지전자 주식회사 냉장고 내의 램프 제어장치 및 방법
DE102007029182B4 (de) * 2007-06-25 2019-09-12 BSH Hausgeräte GmbH Kältegerät
US10343535B2 (en) * 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
WO2011143059A1 (en) 2010-05-10 2011-11-17 Illinois Tool Works Inc. Refrigerator shelf adjustment system with in-shelf lighting
JP2012023913A (ja) * 2010-07-16 2012-02-02 Shigeo Hamaguchi 非接触給電装置
JP6039557B2 (ja) * 2010-08-13 2016-12-07 イリノイ トゥール ワークス インコーポレイティド 棚内照明を有する冷蔵庫棚調整システム
KR20120092442A (ko) * 2011-02-11 2012-08-21 삼성전자주식회사 냉장고
JP5058350B1 (ja) * 2011-03-30 2012-10-24 株式会社東芝 送電装置及び電力伝送システム
KR101305713B1 (ko) * 2011-07-27 2013-09-09 엘지이노텍 주식회사 무선 전력 송신장치, 무선 전력 수신장치 및 무선 전력 송신 방법
US9702610B2 (en) * 2011-08-22 2017-07-11 Sekisui Chemical Co., Ltd. Reefer container and power supply system for reefer container
CN202393162U (zh) * 2011-11-22 2012-08-22 3M中国有限公司 一种无线供电的照明隔板
KR101399023B1 (ko) * 2011-12-21 2014-05-27 주식회사 아모센스 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
JP5903624B2 (ja) * 2012-03-09 2016-04-13 パナソニックIpマネジメント株式会社 非接触電力伝達装置の駆動方法及び非接触電力伝達装置
KR101896254B1 (ko) * 2012-04-17 2018-09-07 엘지전자 주식회사 포터블 조명 모듈 및 그를 갖는 냉장고
JP6092017B2 (ja) * 2013-06-25 2017-03-08 ルネサスエレクトロニクス株式会社 送電装置、非接触給電システム、及び制御方法
US9702619B2 (en) * 2013-07-31 2017-07-11 Whirlpool Corporation Controlled, dynamic lighting of interior of appliance
JP5635215B1 (ja) * 2013-12-10 2014-12-03 中国電力株式会社 受電装置、給電システム
CN103673493B (zh) * 2013-12-17 2016-05-18 合肥美的电冰箱有限公司 用于冰箱的发光搁架组件和具有其的冰箱
JP5911608B2 (ja) * 2013-12-26 2016-04-27 三菱電機エンジニアリング株式会社 共振型送信電源装置及び共振型送信電源システム
KR101708312B1 (ko) * 2014-02-07 2017-02-20 엘지전자 주식회사 무선 전력 수신 및 전송 방법, 무선 전력 전송장치, 수신장치 및 무선 충전 시스템
US9287021B2 (en) * 2014-03-04 2016-03-15 Whirlpool Corporation Shelf brackets to conduct electricity to refrigerator shelves
JP6395535B2 (ja) * 2014-03-31 2018-09-26 ローム株式会社 受電装置、送電装置及び非接触給電システム
KR101670128B1 (ko) * 2014-04-30 2016-10-27 삼성전기주식회사 무선 전력 수신 장치 및 이를 구비하는 전자기기
CN107257167B (zh) * 2014-05-27 2020-01-21 松下知识产权经营株式会社 送电装置以及无线电力传输系统
KR20160047266A (ko) * 2014-10-22 2016-05-02 엘지이노텍 주식회사 전자기파 차폐 시트, 이를 포함하는 무선 전력 송신 장치 및 무선 전력 수신 장치
KR101698792B1 (ko) 2015-06-03 2017-01-23 엘지전자 주식회사 홈 어플라이언스
JP6401672B2 (ja) 2015-07-22 2018-10-10 本田技研工業株式会社 受電装置及び非接触送電方法
KR102318549B1 (ko) * 2016-01-04 2021-10-29 엘지전자 주식회사 냉장고

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065921A (ja) * 2008-09-10 2010-03-25 Mitsubishi Electric Corp 冷蔵庫
KR20120052983A (ko) * 2009-08-14 2012-05-24 일리노이즈 툴 워크스 인코포레이티드 유도 전력 공급된 조명 조립체
KR20110034271A (ko) * 2009-09-28 2011-04-05 엘지전자 주식회사 냉장고 및 냉장고용 선반
KR20120088709A (ko) * 2009-09-28 2012-08-08 파워매트 테크놀로지스 엘티디. 유도전력 전송을 조절하는 장치 및 방법
KR20110045445A (ko) * 2009-10-27 2011-05-04 엘지전자 주식회사 냉장고

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646181A (zh) * 2022-03-11 2022-06-21 海信(山东)冰箱有限公司 一种冰箱的辅助关门控制方法及冰箱

Also Published As

Publication number Publication date
KR20180091703A (ko) 2018-08-16
KR101944833B1 (ko) 2019-02-07
EP3214730A1 (en) 2017-09-06
JP2019502080A (ja) 2019-01-24
US20170214277A1 (en) 2017-07-27
KR20180091701A (ko) 2018-08-16
US20190326784A1 (en) 2019-10-24
US9793763B2 (en) 2017-10-17
JP6837977B2 (ja) 2021-03-03
US10886785B2 (en) 2021-01-05
CN107408843B (zh) 2021-01-01
EP3214730A4 (en) 2018-03-21
EP4287489A3 (en) 2024-02-28
US20170211875A1 (en) 2017-07-27
US10340741B2 (en) 2019-07-02
US20210083521A1 (en) 2021-03-18
AU2016259416B2 (en) 2017-10-19
AU2016259416A1 (en) 2017-07-20
US20220140658A1 (en) 2022-05-05
KR20190009432A (ko) 2019-01-28
US11532954B2 (en) 2022-12-20
KR102314317B1 (ko) 2021-10-20
KR102314319B1 (ko) 2021-10-20
KR102418145B1 (ko) 2022-07-08
KR102314318B1 (ko) 2021-10-20
KR20210129239A (ko) 2021-10-27
US11239702B2 (en) 2022-02-01
EP4287489A2 (en) 2023-12-06
KR20170084990A (ko) 2017-07-21
EP3214730B1 (en) 2023-11-29
CN107408843A (zh) 2017-11-28
KR102318549B1 (ko) 2021-10-29
KR20180091702A (ko) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2017119567A1 (ko) 냉장고
WO2017034332A1 (ko) 냉장고
WO2017052058A1 (en) Display device, door including the same, and refrigerator including the door
WO2016093478A1 (ko) 무선전력 송신장치
WO2010123177A1 (en) Refrigerator
WO2014104776A1 (ko) Led 연속구동을 위한 led 구동회로, 이를 포함하는 led 조명장치 및 구동방법
WO2015012509A1 (en) Power transmitting unit (ptu) and power receiving unit (pru), and communication method of ptu and pru in wireless power transmission system
WO2016060530A1 (ko) 냉장고
WO2019177315A1 (ko) 냉장고
WO2016163750A1 (ko) 무선 전력 송신 장치 및 그 제어 방법
WO2018169206A1 (ko) 무선 충전 장치
WO2017034154A1 (ko) 무선 전력 송신 장치 및 그 제어 방법
WO2016171459A1 (ko) 무선 전력 송신 장치 및 그 제어 방법
WO2019190091A1 (ko) 무선 통신 코일을 구비한 무선충전장치
WO2017164598A1 (en) Wireless power transmission system using multiple coils
WO2022250494A1 (ko) 전기 레인지
WO2023146379A1 (ko) 가전 기기
WO2024147480A1 (ko) 냉장고

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167035045

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016808547

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016259416

Country of ref document: AU

Date of ref document: 20160729

Kind code of ref document: A

Ref document number: 2017538331

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16808547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE