WO2016093478A1 - 무선전력 송신장치 - Google Patents

무선전력 송신장치 Download PDF

Info

Publication number
WO2016093478A1
WO2016093478A1 PCT/KR2015/010519 KR2015010519W WO2016093478A1 WO 2016093478 A1 WO2016093478 A1 WO 2016093478A1 KR 2015010519 W KR2015010519 W KR 2015010519W WO 2016093478 A1 WO2016093478 A1 WO 2016093478A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
unit
node
signal
wireless power
Prior art date
Application number
PCT/KR2015/010519
Other languages
English (en)
French (fr)
Inventor
배수호
박유리
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140177607A external-priority patent/KR20160070539A/ko
Priority claimed from KR1020140177608A external-priority patent/KR20160070540A/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US15/534,899 priority Critical patent/US10326315B2/en
Publication of WO2016093478A1 publication Critical patent/WO2016093478A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply

Definitions

  • the present invention relates to a wireless power transmission system, and more particularly, to an apparatus for transmitting wireless power.
  • Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver using the principle of induction of magnetic field, which is already used by electric motors or transformers using the electromagnetic induction principle in the 1800s. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as radio waves and lasers. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
  • energy transmission using wireless may be classified into magnetic induction, electromagnetic resonance, and power transmission using short wavelength radio frequency.
  • the magnetic induction method uses the phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows to one coil, and is rapidly commercialized in small devices such as mobile phones. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
  • the magnetic resonance method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
  • Short-wavelength wireless power transfer schemes simply RF schemes, utilize the fact that energy can be transmitted and received directly in the form of RadioWave.
  • This technology is a wireless power transmission method of the RF method using a rectenna, a compound word of an antenna and a rectifier (rectifier) refers to a device that converts RF power directly into direct current power.
  • the RF method is a technology that converts AC radio waves to DC and uses them. Recently, research on commercialization has been actively conducted as efficiency is improved.
  • Wireless power transfer technology can be used in various industries, such as the mobile, IT, railroad and consumer electronics industries.
  • Embodiments according to the present invention when operating in a magnetic resonance method, a wireless including a loss suppression for preventing power loss due to the coupling phenomenon in the coil for magnetic induction due to the magnetic flux generated from the coil for magnetic resonance A transmitter for power transmission can be provided.
  • the embodiment according to the present invention may provide a transmission apparatus for wireless power transmission that can minimize the effect of the loss suppression unit on the magnetic induction operation when operating in a magnetic induction method.
  • the embodiment according to the present invention may provide a transmitter for wireless power transmission that can minimize the effect of the switch unit on the magnetic induction operation when operating in a magnetic induction method.
  • the resonant coil unit may provide a wireless power transmitter that resonates at a first frequency for driving the resonance coil unit.
  • the series resonant circuit may provide a wireless power transmitter including at least one capacitor and at least one inductor.
  • a wireless power transmitter may include a loss suppression capacitor and a loss suppression inductor connected in series with the loss suppression capacitor.
  • the loss suppression unit provides a wireless power transmission apparatus having an impedance of more than a predetermined impedance at a second frequency for driving the inductive coil unit. You may.
  • a first DC / AC converter for converting a first DC signal to transfer the AC signal having the first frequency to the resonant coil portion;
  • a second DC / AC converter for converting a second DC signal to transfer an AC signal having the second frequency to the inductive coil part.
  • control unit for controlling the operation of the first and second DC / AC conversion unit; further comprising the first DC / AC conversion unit Enable the first DC / AC converter to enable the first DC / AC converter to transmit an AC signal having the first frequency to the resonant coil part; It is also possible to provide a wireless power transmitter for controlling the / AC converter.
  • control unit for controlling the operation of the first and second DC / AC converter further comprises; the control unit is the second DC / AC converter; Enable the second DC / AC converter to enable the second DC / AC converter to transmit an AC signal having the second frequency to the inductive coil part; It is also possible to provide a wireless power transmitter for controlling the / AC converter.
  • the AC / DC converter for receiving the AC signal and supplying the first and second DC signal to the first and second DC / AC converter;
  • the first DC / AC converter further includes: a first high frequency filter unit connected between the AC / DC converter and a first node; A second high frequency filter unit connected between the AC / DC converter and a second node; A first switch connected between the first node and a third node; And a second switch connected between the second node and the third node, wherein the resonant coil unit may provide a wireless power transmitter connected between the first and second nodes.
  • the AC / DC converter for receiving the AC signal and supplying the first and second DC signal to the first and second DC / AC converter;
  • the second DC / AC converter further includes: a first switch connected between the AC / DC converter and a first node; A second switch connected between the first node and a third node; A third switch connected between the AC / DC converter and a second node; And a fourth switch connected between the second node and the third node, wherein the inductive coil unit may provide a wireless power transmitter connected between the first and second nodes.
  • the wireless power transmission apparatus may provide a wireless power transmitter that resonates from a signal of a first frequency for driving the first coil unit.
  • the resonance circuit may provide a wireless power transmitter including at least one capacitor and at least one inductor.
  • the resonant circuit may provide a wireless power transmitter that is a series resonant circuit.
  • the loss suppression unit provides a wireless power transmitter having a magnitude of impedance equal to or greater than a preset impedance at a second frequency for driving the second coil unit. You may.
  • the first coil unit may provide a wireless power transmitter including a resonant coil.
  • the second coil unit may provide a wireless power transmitter including an induction coil.
  • the first frequency may provide a wireless power transmitter that is 6.78MHz.
  • the second frequency may provide a wireless power transmitter that is 125KHz.
  • the loss suppression unit may provide a wireless power transmitter including a variable capacitor and a variable inductor connected in series with each other.
  • when the first frequency is changed may provide a wireless power transmitter in which at least one of the capacitance of the variable capacitor and the inductance of the variable inductor is changed.
  • a first DC / AC converter for converting a first DC signal to transfer the AC signal having the first frequency to the resonant coil portion;
  • a second DC / AC conversion unit converting a second DC signal to transfer an AC signal having the second frequency to the inductive coil unit;
  • a controller configured to control an operation of the first and second DC / AC converters, wherein the controller enables one of the first and second DC / AC converters, and controls the other one.
  • a wireless power transmitter for disabling may be provided.
  • the wireless power transmission apparatus may provide a wireless power transmitter that resonates at a first frequency for driving the resonance coil unit.
  • the series resonant circuit may provide a wireless power transmitter including at least one capacitor and at least one inductor.
  • a wireless power transmitter may include a loss suppression capacitor and a loss suppression inductor connected in series with the loss suppression capacitor.
  • the loss suppression unit provides a wireless power transmission apparatus having an impedance of more than a predetermined impedance at a second frequency for driving the inductive coil unit. You may.
  • a first DC / AC converter for converting a first DC signal to transfer the AC signal having the first frequency to the resonant coil portion;
  • a second DC / AC converter for converting a second DC signal to transfer an AC signal having the second frequency to the inductive coil part.
  • control unit for controlling the operation of the first and second DC / AC conversion unit; further comprising the first DC / AC conversion unit Enable the first DC / AC converter to enable the first DC / AC converter to transmit an AC signal having the first frequency to the resonant coil part; It is also possible to provide a wireless power transmitter for controlling the / AC converter.
  • control unit for controlling the operation of the first and second DC / AC converter further comprises; the control unit is the second DC / AC converter; Enable the second DC / AC converter to enable the second DC / AC converter to transmit an AC signal having the second frequency to the inductive coil part; It is also possible to provide a wireless power transmitter for controlling the / AC converter.
  • the AC / DC converter for receiving the AC signal and supplying the first and second DC signal to the first and second DC / AC converter;
  • the first DC / AC converter further includes: a first high frequency filter unit connected between the AC / DC converter and a first node; A second high frequency filter unit connected between the AC / DC converter and a second node; A first switch connected between the first node and a third node; And a second switch connected between the second node and the third node, wherein the resonant coil unit may provide a wireless power transmitter connected between the first and second nodes.
  • the AC / DC converter for receiving the AC signal and supplying the first and second DC signal to the first and second DC / AC converter;
  • the second DC / AC converter further includes: a first switch connected between the AC / DC converter and a first node; A second switch connected between the first node and a third node; A third switch connected between the AC / DC converter and a second node; And a fourth switch connected between the second node and the third node, wherein the inductive coil unit may provide a wireless power transmitter connected between the first and second nodes.
  • the wireless power transmission apparatus may provide a wireless power transmitter that resonates from a signal of a first frequency for driving the first coil unit.
  • the resonance circuit may provide a wireless power transmitter including at least one capacitor and at least one inductor.
  • the resonant circuit may provide a wireless power transmitter that is a series resonant circuit.
  • the loss suppression unit provides a wireless power transmitter having a magnitude of impedance equal to or greater than a preset impedance at a second frequency for driving the second coil unit. You may.
  • the first coil unit may provide a wireless power transmitter including a resonant coil.
  • the second coil unit may provide a wireless power transmitter including an induction coil.
  • the first frequency may provide a wireless power transmitter that is 6.78MHz.
  • the second frequency may provide a wireless power transmitter that is 125KHz.
  • the loss suppression unit may provide a wireless power transmitter including a variable capacitor and a variable inductor connected in series with each other.
  • when the first frequency is changed may provide a wireless power transmitter in which at least one of the capacitance of the variable capacitor and the inductance of the variable inductor is changed.
  • a first DC / AC converter for converting a first DC signal to transfer the AC signal having the first frequency to the resonant coil portion;
  • a second DC / AC conversion unit converting a second DC signal to transfer an AC signal having the second frequency to the inductive coil unit;
  • a controller configured to control an operation of the first and second DC / AC converters, wherein the controller enables one of the first and second DC / AC converters, and controls the other one.
  • a wireless power transmitter for disabling may be provided.
  • 3A and 3B are block diagrams illustrating a transmission apparatus as one of sub-systems constituting a wireless power transmission system.
  • 4A and 4B are block diagrams illustrating a receiver as one of the subsystems configuring the wireless power transmission system.
  • 6 and 7 illustrate the structure of a transmitting side coil unit according to an exemplary embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a transmitting side coil unit according to an exemplary embodiment of the present invention.
  • 9 is an equivalent circuit diagram of a transmitting coil portion.
  • 10 is a graph showing the magnitude of impedance according to the frequency of the loss suppression unit.
  • FIG. 11 is a diagram illustrating first and second transmitting side DC / AC converters, first and second transmitting side impedance matching units, and first and second transmitting side coil parts in a transmitting apparatus according to an exemplary embodiment of the present invention.
  • FIG. 11 is a diagram illustrating first and second transmitting side DC / AC converters, first and second transmitting side impedance matching units, and first and second transmitting side coil parts in a transmitting apparatus according to an exemplary embodiment of the present invention.
  • FIG. 12 is a diagram illustrating an equivalent circuit when a transmitter according to an embodiment of the present invention supplies power in a magnetic resonance method under a first frequency.
  • FIG. 13 is a diagram illustrating an equivalent circuit when a transmitter according to an embodiment of the present invention supplies power in a magnetic induction method under a second frequency.
  • each or all of the components may be selectively combined to perform some or all functions combined in one or a plurality of hardware. It may be implemented as a computer program having a. Codes and code segments constituting the computer program may be easily inferred by those skilled in the art. Such a computer program is stored in a computer readable medium, which is read and executed by a computer, thereby providing an embodiment of the present invention.
  • the storage medium of the computer program may include a magnetic recording medium, an optical recording medium, a carrier wave medium, and the like.
  • a magnetic recording medium when it is described as being formed in “up (up) or down (down)", “before (front) or after (back)” of each component, it is “up (up) or Lower (bottom) “and” before (front) or rear (back) “include both in which the two components are in direct contact with one another or one or more other components are formed disposed between the two components.
  • the terms “comprise”, “comprise” or “having” described above mean that the corresponding component may be included, unless otherwise stated, and thus excludes other components. It should be construed that it may further include other components instead.
  • the apparatus for transmitting wireless power on the wireless power system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter, a transmitter, a transmitter, A wireless power transmitter, a wireless power transmitter, and the like will be used interchangeably.
  • a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, a receiver, a receiver Or the like can be used in combination.
  • Wireless power transmitter may be configured in the form of pad, rack, AP (Access Point), small base station, stand, ceiling buried, wall-mounted, vehicle buried, vehicle mounted, etc.
  • the transmitter may simultaneously transmit power to a plurality of wireless power receivers.
  • the wireless power transmitter may provide at least one wireless power transmission scheme (eg, electromagnetic induction scheme, electromagnetic resonance scheme, etc.).
  • the electromagnetic induction wireless power transmission standard may include an electromagnetic induction wireless charging technology defined by the Wireless Power Consortium (WPC) or / and the Power Matters Alliance (PMA).
  • WPC Wireless Power Consortium
  • PMA Power Matters Alliance
  • the wireless power transmission method may use an electromagnetic resonance method of transmitting power to a wireless power receiver located at a short distance by tuning a magnetic field generated by a transmission coil of the wireless power transmitter to a specific resonance frequency.
  • the electromagnetic resonance method may include a wireless charging technology of a resonance method defined in A4WP (Alliance for Wireless Power) which is a wireless charging technology standard apparatus.
  • the wireless power transmission method may use an RF wireless power transmission method that transmits power to a wireless power receiver located at a far distance by putting low power energy on an RF signal.
  • the wireless power transmitter according to the present invention may be designed to support at least two or more wireless power transmission methods of the electromagnetic induction method, the electromagnetic resonance method, and the RF wireless power transmission method.
  • the wireless power transmitter may select a wireless power transmission method to be adaptively used for the wireless power receiver based on the type, state, power requirements, etc. of the wireless power receiver as well as the wireless power transmission methods supported by the wireless power transmitter and the wireless power receiver. You can decide.
  • the wireless power receiver may be provided with at least one wireless power transmission scheme, and may simultaneously receive wireless power from two or more wireless power transmitters.
  • the wireless power transmission method may include at least one of the electromagnetic induction method, the electromagnetic resonance method, and the RF wireless power transmission method.
  • the embodiment selectively uses various types of frequency bands from low frequency (50 kHz) to high frequency (15 MHz) for wireless power transmission, and may include a communication system capable of exchanging data and control signals for system control. .
  • the embodiment can be applied to various industrial fields such as a mobile terminal industry, a smart watch industry, a computer and laptop industry, a home appliance industry, an electric vehicle industry, a medical device industry, and a robotics industry that use a battery or use electronic devices. .
  • the wireless power receiver includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, and an MP3. It may be mounted on a small electronic device such as a player, an electric toothbrush, an electronic tag, a lighting device, a remote control, a fishing bobber, and the like, but is not limited thereto, and a device capable of charging a battery is provided with a wireless power receiver according to the present invention.
  • the wireless power receiver according to another embodiment of the present invention may be mounted in a vehicle, an unmanned aerial vehicle, an air drone, or the like.
  • Embodiments may consider a system capable of transmitting power to one or more devices using one or more transmission coils.
  • a battery shortage problem may be solved in a mobile device such as a smart phone or a notebook.
  • a mobile device such as a smart phone or a notebook.
  • the battery is automatically charged and thus can be used for a long time.
  • a wireless charging pad is installed in public places such as cafes, airports, taxis, offices, restaurants, and the like, it is possible to charge various mobile devices regardless of different charging terminals for each mobile device manufacturer.
  • wireless power transmission technology is applied to household appliances such as vacuum cleaners and fans, there is no need to search for power cables, and complicated wires disappear in the home, which reduces wiring in the building and expands space utilization.
  • Wireless Power Transfer System A system that provides wireless power transfer within the magnetic field
  • Transmitter (Wireless Power Transfer System-Charger; PTU ): A device that provides wireless power transmission to a power receiver in a magnetic field area and manages the entire system, and may be referred to as a transmitter or a transmitter.
  • PRU Power Receiver Unit
  • Charging Area The area where the actual wireless power transmission takes place in the magnetic field area, and can vary according to the size of the application, required power, and operating frequency.
  • S parameter is a ratio of input voltage to output voltage in the frequency distribution, which is determined by the ratio of input port to output port (S21) or its own reflection of each input / output port, ie its own input. The value of the reflected return (Reflection; S11, S22).
  • Quality index Q In resonance, the value of Q means the quality of frequency selection. The higher the value of Q, the better the resonance characteristics.
  • the Q value is expressed as the ratio of energy stored in the resonator to energy lost.
  • the magnetic induction method is a non-contact energy transmission technology in which electromotive force is generated in the load inductor Ll through the magnetic flux generated when the source inductor Ls and the load inductor Ll are close to each other and current flows through one source inductor Ls. to be.
  • the magnetic resonance method combines two resonators and transmits energy wirelessly by using resonance techniques that generate magnetic and magnetic fields in the same wavelength range while vibrating at the same frequency due to magnetic resonance caused by natural frequencies between the two resonators. It is a technique to do.
  • a transmitter in a magnetic induction equivalent circuit, may have a source voltage Vs, a source resistor Rs, a source capacitor Cs for impedance matching, and a magnetic field with a receiver according to a device for supplying power. It can be implemented as a source coil (Ls) for coupling, the receiver is a load resistance (Rl), the equivalent resistance of the receiver, a load capacitor (Cl) for impedance matching and a load coil for magnetic coupling with the transmitter
  • the magnetic coupling degree of the source coil Ls and the load coil Ll may be represented by mutual inductance Msl.
  • Equation 1 when the ratio of the inductance of the transmitting coil (Ls) and the source resistance (Rs) and the ratio of the inductance of the load coil (Ll) and the load resistance (Rl) is the maximum power transmission is possible.
  • the self-reflection value (S11) of the input / output port cannot be zero, and the mutual inductance ( The power transfer efficiency may vary greatly depending on the Msl) value.
  • the source capacitor Cs may be added to the transmitter and the load capacitor Cl may be added to the receiver.
  • the compensation capacitors Cs and Cl may be connected to each of the receiving coil Ls and the load coil Ll in series or in parallel.
  • passive elements such as additional capacitors and inductors may be further added to each of the transmitter and the receiver for impedance matching.
  • a transmitting device in a self-resonant equivalent circuit, includes a source coil and a transmission-side resonance constituting a closed circuit in series connection of a source voltage Vs, a source resistor Rs, and a source inductor Ls.
  • a resonant coil of the transmitting side constituting a closed circuit in series connection of the inductor (L1) and the transmission-side resonant capacitor (C1)
  • the receiver is connected in series with the load resistor (Rl) and the load inductor (Ll)
  • the receiving side resonant coil constituting the closed circuit by connecting the load coil constituting the closed circuit and the receiving side resonant inductor L2 and the receiving side resonant capacitor C2 in series, and the source inductor Ls and the transmitting side
  • the inductor L1 is magnetically coupled with the coupling coefficient of K01
  • the load inductor Ll and the load side resonant inductor L2 are magnetically coupled with the coupling coefficient of K23
  • the transmitting side resonant inductor L1 and the receiving side are
  • an element for impedance matching may be added, and the impedance matching element may be a passive element such as an inductor and a capacitor.
  • 3A and 3B are block diagrams illustrating a transmitter as one of sub-systems constituting a wireless power transmission system.
  • a wireless power transmission system may include a transmitter 1000 and a receiver 2000 that receives power wirelessly from the transmitter 1000.
  • the transmitter 1000 generates a magnetic field based on an AC signal output from the power converter 101 and an AC signal output from the power converter 101 to convert the input AC signal into an AC signal.
  • a control unit 103 for performing impedance matching of 102, sensing impedance, voltage, and current information from the power converter 101 and the resonant circuit unit 102, and wirelessly communicating with the receiver 2000. ) May be included.
  • the power converter 101 may include at least one of a power converter that converts an AC signal into a direct current, a power converter that outputs a direct current by varying the level of the direct current, and a power converter that converts a direct current into an alternating current.
  • the resonant circuit unit 102 may include a coil and an impedance matching unit that may resonate with the coil.
  • the controller 103 may include a sensing unit and a wireless communication unit for sensing impedance, voltage, and current information.
  • the transmitter 1000 may include a transmitter AC / DC converter 1100, a transmitter DC / AC converter 1200, a transmitter impedance matcher 1300, and a transmitter coil unit ( 1400 and the transmitter-side communication and control unit 1500.
  • the transmission-side AC / DC converter 1100 is a power converter that converts an AC signal provided from the outside into a DC signal under the control of the transmission-side communication and the controller 1500, and the transmission-side AC / DC converter 1100.
  • the sub system may include a rectifier 1110 and a transmitter DC / DC converter 1120.
  • the rectifier 1110 is a system for converting an provided AC signal into a DC signal.
  • the rectifier 1110 is a diode rectifier having a relatively high efficiency at high frequency operation, a synchronous rectifier or a one-chip capable synchronous rectifier, or a cost. And a hybrid rectifier capable of saving space and having a high degree of dead time.
  • the transmitting side DC / DC converter 1120 adjusts the level of the DC signal provided from the rectifier 1110 under the control of the transmitting side communication and the control unit 1500. It may be a buck converter, a boost converter that raises the level of the input signal, a buck boost converter or a coke converter that lowers or raises the level of the input signal.
  • the DC-to-DC converter 1120 of the transmitting side includes a switch element having a power conversion control function, an inductor and capacitor having a role of power conversion medium or an output voltage smoothing function, and controlling voltage gain or electrical separation function (isolating function).
  • It may include a transformer, etc., and may function to remove the ripple component or pulsation component (AC component included in the DC signal) included in the input DC signal.
  • an error between the command value of the output signal of the transmission side DC / DC converter 1120 and the actual output value may be adjusted through a feedback method, which may be performed by the transmission side communication and the control unit 1500.
  • the transmitter DC / AC converter 1200 converts a DC signal output from the transmitter AC / DC converter 1100 into an AC signal under the control of the transmitter-side communication and the control unit 1500, and converts the frequency of the converted AC signal.
  • An example of implementing the system is a half bridge inverter or a full bridge inverter.
  • various amplifiers for converting direct current into alternating current may be applied. Examples include class A, B, AB, C, and E class F amplifiers.
  • the transmitter DC / AC converter 1200 may include an oscillator for generating a frequency of the output signal and a power amplifier for amplifying the output signal.
  • the AC / DC converter 1100 and the transmitter DC / AC converter 1200 may be replaced with an AC power supply, and may be omitted or replaced with another configuration.
  • the transmission impedance matching unit 1300 minimizes the reflected waves at points having different impedances to improve signal flow. Since the two coils of the transmitter 1000 and the receiver 2000 are spatially separated from each other, there is much leakage of the magnetic field, thereby correcting the impedance difference between the two connection terminals of the transmitter 1000 and the receiver 2000 to correct the power. It can improve the transfer efficiency.
  • the transmitter impedance matching unit 1300 may be configured of at least one of an inductor, a capacitor, and a resistor. The impedance may be changed by varying the inductance of the inductor, the capacitance of the capacitor, and the resistance of the resistor under the control of the communication and control unit 1500. You can adjust the impedance value for matching.
  • the transmission impedance matching unit 1300 may have a series resonance structure or a parallel resonance structure, and may be formed between the transmitter 1000 and the receiver 2000. The energy loss can be minimized by increasing the inductive coupling coefficient.
  • the transmission impedance matching unit 1300 may change a separation distance between the transmitter 1000 and the receiver 2000 or change a metallic foreign object (FO). By changing the characteristics of the coil according to mutual influences by multiple devices, it is possible to real-time correction of impedance matching according to the change of matching impedance on the energy transmission line. It may be a matching method using a, a method using a multi-loop.
  • the transmitting coil 1400 may be implemented by a plurality of coils or a singular coil, and when the transmitting coil 1400 is provided in plural, they may be spaced apart from each other or overlapping with each other, and they may be overlapped with each other. In this case, the overlapping area may be determined in consideration of the variation in magnetic flux density.
  • the transmitting side coil 1400 may be manufactured in consideration of the internal resistance and radiation resistance, in this case, if the resistance component is small, the quality factor (Quality factor) can be increased and the transmission efficiency can be increased.
  • the communication and control unit 1500 may include a transmitting side control unit 1510 and a transmitting side communication unit 1520.
  • the transmitter side control unit 1510 may be configured in consideration of at least one of a power requirement of the receiver 2000, a current charge amount, a voltage Vrect of the rectifier output terminal of the receiver, each charging efficiency of a plurality of receivers, and a wireless power scheme. It may serve to adjust the output voltage (or the current (Itx_coil) flowing in the transmission coil) of the transmission-side AC / DC converter 1100.
  • the transmission-side DC / AC converter 1200 in consideration of the maximum power transmission efficiency It is possible to control the power to be transmitted by generating a frequency and switching waveforms for driving the receiver, and also by using an algorithm, program or application required for control read from a storage unit (not shown) of the receiver 2000. It is possible to control the overall operation of the 2000.
  • the transmitter control unit 1510 may be a microprocessor, a micro controller unit or a microcomputer.
  • the transmitting-side communication unit 1520 may perform communication with the receiving-side communication unit 2620, and may use a short-range communication method such as Bluetooth, NFC, or Zigbee as an example of a communication method.
  • the transmitter-side communication unit 1520 and the receiver-side communication unit 2620 may transmit / receive the charging status information, the charging control command, etc.
  • the charging status information may include the number of the receiving apparatuses 2000, the remaining battery capacity, and the charging. Frequency, amount of use, battery capacity, battery ratio, and transmission power amount of the transmitter 1000.
  • the transmitter-side communication unit 1520 transmits a charging function control signal for controlling the charging function of the receiver 2000.
  • the charging function control signal may be a control signal that controls the receiver 2000 to enable or disable the charging function.
  • the transmitter-side communication unit 1520 may be communicated in an out-of-band format configured as a separate module, but is not limited thereto.
  • the transmitter-side communication unit 1520 may be received by using a power signal transmitted by a transmitter.
  • In-band format in which a device transmits a signal to a receiver by using a feedback signal transmitted from a device to a transmitter and frequency of a power signal transmitted by the transmitter by using a frequency shift. You can also perform communication.
  • the receiver may modulate the feedback signal and transmit information such as charging start, charging end, battery status, etc. to the transmitter through the feedback signal.
  • the transmitting side communication unit 1520 may be configured separately from the transmitting side control unit 1510, and the receiving apparatus 2000 may also include a receiving side communication unit 2620 included in the control unit 2610 of the receiving apparatus or may be configured separately. Can be.
  • the transmitting apparatus 1000 of the wireless power transmission system may further include a detector 1600.
  • the detector 1600 may include an input signal of the transmitting side AC / DC converter 1100, an output signal of the transmitting side AC / DC converter 1100, an input signal of the transmitting side DC / AC converter 1200, and a transmitting side.
  • the output signal of the DC / AC converter 1200, the input signal of the transmitting impedance matching unit 1300, the output signal of the transmitting impedance matching unit 1300, the input signal of the transmitting coil 1400, or the transmitting coil At least one of the signals on the 1400 may be detected.
  • the signal may include at least one of information on current, information on voltage, or information on impedance.
  • the detected signal is fed back to the communication and control unit 1500, and based on this, the communication and control unit 1500 transmits an AC / DC converter 1100, a DC / AC converter 1200, and an impedance matching transmitter.
  • the unit 1300 may be controlled.
  • the communication and controller 1500 may perform Foreign Object Detection (FOD).
  • FOD Foreign Object Detection
  • the detected signal may be at least one of a voltage and a current.
  • the detector 1600 may be configured with different hardware from the communication and control unit 1500, or may be implemented with one piece of hardware.
  • 4A and 4B are block diagrams illustrating a receiver (or a receiver) as one of subsystems configuring a wireless power transmission system.
  • the wireless power transmission system may include a transmitter 1000 and a receiver 2000 that receives power wirelessly from the transmitter 1000.
  • the receiving device 2000 converts the AC power from the receiving side resonant circuit unit 201 and the receiving side resonant circuit unit 201 to receive an AC signal transmitted from the transmitting apparatus 1000 and outputs the DC signal as a DC signal.
  • the current voltage of the load 2500 and the receiving side resonant circuit unit 201 that are charged by receiving the DC signal output from the receiving power converter 202 and the receiving power converter 202 are sensed or received.
  • the receiving side power converter 202 may include a power converter that converts an AC signal into a direct current, a power converter that outputs a direct current by varying the level of the direct current, and a power converter that converts a direct current into an alternating current.
  • a wireless power transmission system includes a transmitting device (or a transmitting device) 1000 and a receiving device (or receiving device) that receives power wirelessly from the transmitting device 1000 ( 2000 may include a receiving side resonant circuit unit 2120 and a receiving side AC / DC converter 2300 including a receiving side coil unit 2100 and a receiving side impedance matching unit 2200. ), A DC / DC converter 2400, a load 2500, and a receiving side communication and control unit 2600.
  • the receiving side AC / DC converter 2300 may be referred to as a rectifying unit rectifying the AC signal into a DC signal.
  • the receiving coil unit 2100 may receive power through a magnetic induction method or a magnetic resonance method. As such, it may include at least one of an induction coil and a resonant coil according to a power reception method.
  • the receiving side coil unit 2100 may be disposed in a portable terminal together with a near field communication (NFC).
  • NFC near field communication
  • the receiving side coil unit 2100 may be the same as the transmitting side coil unit 1400, and the dimensions of the receiving antenna may vary depending on the electrical characteristics of the receiving apparatus 200.
  • the receiving impedance matching unit 2200 performs impedance matching between the transmitter 1000 and the receiver 2000.
  • the receiving side AC / DC converter 2300 rectifies an AC signal output from the receiving side coil unit 2100 to generate a DC signal.
  • the output voltage of the receiving side AC / DC converter 2300 may be referred to as a rectified voltage Vrect, and the receiving side communication and control unit 2600 may output the output voltage of the receiving side AC / DC converter 2300.
  • the minimum rectified voltage Vrect_min (or the minimum output voltage Vrect_min), which is the minimum value of the output voltage of the receiving side AC / DC converter 2300, and the maximum rectified voltage Vrect_max, which is the maximum value, may be detected or changed.
  • the same state parameter information may be transmitted to the transmitter 1000.
  • the receiving DC / DC converter 2400 may adjust the level of the DC signal output from the receiving AC / DC converter 2300 according to the capacity of the load 2500.
  • the load 2500 may include a battery, a display, a voice output circuit, a main processor, and various sensors.
  • the receiving side communication and control unit 2600 may be activated by the wake-up power from the transmitting side communication and the control unit 1500, perform communication with the transmitting side communication and the control unit 1500, and You can control the operation of the subsystem.
  • the receiver 2000 may be configured in singular or plural to receive energy from the transmitter 1000 at the same time wirelessly. That is, in the wireless resonant wireless power transmission system, the plurality of target receiving apparatuses 2000 may receive power from one transmitting apparatus 1000. In this case, the transmitting side matching unit 1300 of the transmitting apparatus 1000 may adaptively perform impedance matching between the plurality of receiving apparatuses 2000. The same may be applied to the case where a plurality of receiving side coil parts are independent of each other in a magnetic induction method.
  • the power receiving schemes may be the same system or may be different kinds of systems.
  • the transmitter 1000 may be a system for transmitting power in a magnetic induction method or a magnetic resonance method or a system using both methods.
  • the transmitting side AC / DC conversion unit 1100 in the transmitter 1000 is tens or hundreds of V (for example, AC signals of tens or hundreds of Hz bands (for example, 60 Hz) of 110V to 220V may be applied and converted into DC signals of several to tens of Vs and hundreds of Vs (for example, 10V to 20V).
  • the transmitting side DC / AC converter 1200 may receive a DC signal and output an AC signal having a KHz band (for example, 125 KHz).
  • the receiving side AC / DC converter 2300 of the receiving device 2000 receives an AC signal having a KHz band (for example, 125 KHz), and receives a voltage of several V to several tens of V and hundreds of V (for example, 10 V to 20 V).
  • the DC signal may be converted into a DC signal and output, and the receiving DC / DC converter 2400 may output a DC signal of, for example, 5V suitable for the load 2500 and transmit the DC signal to the load 2500.
  • the transmitting side AC / DC converter 1100 in the transmitting apparatus 1000 has several tens or hundreds of V bands (for example, 110V to 220V) or several hundreds of Hz bands (for example, for example, an AC signal of 60 Hz may be applied to convert a DC signal of several V to several tens of V and several hundred V (for example, 10 V to 20 V) and output the DC signal.
  • the transmitter DC / AC converter 1200 may convert the DC signal. It can be applied to output an AC signal in the MHz band (for example, 6.78 MHz).
  • the receiver AC / DC converter 2300 of the receiver 2000 receives an AC signal of MHz (for example, 6.78 MHz) and receives several V to several tens of V and several hundred V (for example, 10 V to 20 V).
  • the DC signal may be converted into a DC signal and output, and the DC / DC converter 2400 may output a DC signal of, for example, 5V, suitable for the load 2500 and transmit the DC signal to the load 2500.
  • FIG. 5 is a block diagram showing an apparatus for transmitting wireless power transmission according to an embodiment of the present invention.
  • the transmission side DC / AC converter 1200 of the transmitter 1000 may include the first and second DC / AC converters 1210 and 1220.
  • the transmission impedance matching unit 1300 may include first and second impedance matching units 1310 and 1320.
  • the transmitting coil unit 1400 may include first and second transmitting coil units 1410 and 1420.
  • the transmitting apparatus 1000 includes a resonant circuit connected to both the first transmitting side coil unit 1410, the second transmitting side coil unit 1420, and the second transmitting side coil unit 1420.
  • Loss suppression unit 1430 may be included.
  • the resonant circuit of the loss suppressing unit 1430 may resonate with a signal having a first frequency for driving the first transmitting side coil unit 1410.
  • the resonant circuit may include at least one capacitor and at least one inductor.
  • the resonant circuit may be a series resonant circuit.
  • the loss suppressing unit 1430 may have an impedance greater than or equal to a preset impedance at a second frequency for driving the second transmitting side coil unit 1420.
  • the preset impedance may be a threshold set in consideration of minimizing the influence of the loss suppressing unit 1430 on the second transmitting side coil unit 1420 at the second frequency.
  • the transmitter 1000 may include a switch unit connected to both ends of a first transmitting side coil unit 1410, a second transmitting side coil unit 1420, and the second transmitting side coil unit 1420. 1430).
  • the switch unit 1430 includes at least one switch element, and the switch unit 1430 is shorted by being turned on when driving the first transmitting-side coil unit 1410 to transmit wireless power. It has the same effect as conducting wires connected in parallel between both ends of the second transmitting coil unit 1420, and is opened by being turned off when driving the second transmitting coil unit 1420 to transmit wireless power. Infinite resistances may be connected to both ends of the second transmitter-side coil unit 1420 in parallel.
  • the first transmitting-side coil unit 1410 may be a resonant coil unit, and in this case, the first DC / AC converter 1210 may be connected to the resonant coil unit 1410.
  • AC power having a frequency around 6.78 MHz or 6.78 MHz, which is a first frequency may be provided, and the first impedance matching unit 1310 may be provided on the receiving side nose of the resonant coil unit 1410 and the receiver 200. Impedance matching between the portions 2100 may be performed.
  • the second transmitting-side coil unit 1420 may be an induction coil unit, and in this case, the second DC / AC converter 1220 may be the inductive coil unit 1420.
  • AC power having a frequency of around 125 KHz or 125 KHz, which is a second frequency, may be provided, and the second impedance matching unit 1320 may include the inductive coil unit 1420 and the receiver side coil unit of the receiver 200. Impedance matching between 2100 may be performed.
  • the transmitter-side communication and control unit 1500 controls any one of the first DC / AC converter 1210 or the second DC / AC converter 1220 to transmit a device ( 1000 may transmit wireless power in a magnetic resonance method or a magnetic induction method. That is, the transmitter-side communication and control unit 1500 enables the first DC / AC converter 1210 and drives the second DC / AC to drive the first DC / AC converter 1210. The second DC / AC converter 1220 is disabled so that the converter 1220 does not drive, and a signal of a first frequency is supplied to the resonant coil unit 1410 to transmit in a self-resonant manner.
  • the device 1000 transmits power to the receiving device 2000, and the transmitting-side communication and control unit 1500 enables the second DC / AC converter 1220 and the first DC / AC.
  • the transmitter 1000 transmits power to the receiver 2000 in a magnetic induction manner. can do.
  • the switching element of the switch unit 1430 is shorted by the transmission-side communication and the switching control signal from the control unit 1500, and the second DC / AC converter 1220 is driven.
  • the switch unit (B) is switched by a switching control signal from the transmission-side communication and the controller 1500 in synchronization with the operation of the second DC / AC converter 1220.
  • the switch element of 1430 may be opened.
  • FIG 6 and 7 are views showing the structure of the transmitting side coil unit according to the embodiment of the present invention.
  • the transmitting coil unit 1400 may include a coil printed circuit board 3100 and a coil printed circuit board on which a coil is mounted.
  • a shielding agent 3200 attached to one surface of the 3100 and a transmission printed circuit board 3300 attached to one surface of the shielding agent 3200 and transmitting an electrical signal to the coil may be included.
  • a resonance coil 1411 constituting the resonant coil unit 1410 and an induction coil 1421 constituting the inductive coil unit 1420 may be formed on the coil printed circuit board 3100.
  • the resonant coil 1411 may be disposed to surround an edge of the coil printed circuit board 3100, and the induction coil 1421 may be disposed in a central region of the coil printed circuit board 3100 to provide the resonance coil ( 1411 may surround the induction coil 1421.
  • the shielding agent 3200 electrically isolates the coil printed circuit board 3100 and the transmission printed circuit board 3300, and according to driving of the transmission printed circuit board 3300.
  • the effect of the generated electromagnetic field on the resonance and induction coils 1411 and 1421 and the electromagnetic field generated by the driving of the resonance and the induction coils 1411 and 1421 may be minimized. Can be.
  • FIG. 8 is a block diagram showing a transmitting side coil unit according to the first and second embodiments of the present invention
  • FIG. 9 is an equivalent circuit diagram of the transmitting side coil unit according to the first embodiment.
  • the transmitting coil unit 1400 includes a resonance coil unit 1410, an induction coil unit 1420, and a loss suppressing unit 1430. can do.
  • the loss suppressing unit 1430 is connected between the inductive coil unit 1420 and the second impedance matching unit 1320, specifically, is connected in parallel with the inductive coil unit 1420, and the second impedance matching unit is used. It may be connected in parallel with the unit 1320.
  • the loss suppressing unit 1430 may short-circuit both ends of the inductive coil unit 1420, that is, the inductive coil unit ( 1420 may be a function of making both ends 0V.
  • the inductive coil unit 1420 may be represented by a first inductor L1, and the second impedance matching unit 1320 may be formed at one end of the inductive coil unit 1420.
  • a first capacitor C1 connected at one end and connected to a first node N1 and a second capacitor C2 connected at one end to the first node N1 and connected to a second node N2 at the other end;
  • a second inductor L2 having one end connected to the first node N1 and the other end connected to one end of the second DC / AC converter 1220 and one end connected to the second node N2 and the other end
  • the third inductor L3 connected to the other end of the second DC / AC converter 1220 may be represented, and the resonant coil unit 1410 may be represented by a fourth inductor L4.
  • the loss suppressing unit 1430 may include a loss suppressing capacitor Cp and a loss suppressing inductor Lp.
  • the loss suppressing capacitor CP and the loss suppressing inductor Lp may be connected in series to each other and connected to both ends of the first inductor L1. In other words, it may be connected between one end of the first capacitor C1 and the second node N2.
  • Equation 3 When the input impedance Zin viewed from the side, that is, the input impedance Zin viewed from the side of the inductive coil unit 1420 in the fourth inductor L4, is obtained, Equation 3 may be satisfied.
  • Equation 3 a real part of the input impedance Zin exists, and power loss may occur due to the real part.
  • the loss suppressing unit 1430 When the loss suppressing unit 1430 is connected , a signal of a first frequency f1 is applied to the resonant coil unit 1410, and the loss suppressing unit 1430 is resonated by the first frequency f1.
  • the input impedance Zin viewed from the resonance coil unit 1410 toward the inductive coil unit 1420 that is, the input viewed from the fourth inductor L4 toward the inductive coil unit 1420.
  • Equation 4 may be satisfied.
  • Equation 4 it can be seen that a real part does not exist in the input impedance Zin, and the resonant coil part 1410 is driven at the first frequency f1 due to the presence of a negative part in the real part.
  • the power loss in the inductive coil unit 1420 is ideally 0, and in fact, the power loss is minimized.
  • 10 is a graph showing the magnitude of the impedance according to the frequency of the loss suppressor.
  • an element value included in the loss suppressing unit 1430 may be set so that the specific frequency becomes the first frequency f1 for driving the resonant coil unit 1410.
  • the loss suppressing capacitor Cp of the loss suppressing unit 1430 and the loss suppressing inductor Lp are connected in series, and at the first frequency f1, they resonate in series and operate equivalently as a short circuit.
  • the capacitance value of the loss suppressing capacitor Cp and the inductance value of the loss suppressing inductor Lp satisfying Equation 5 may be set.
  • the capacitance of the loss suppressing capacitor Cp may be 0.1 nF, and thus the loss.
  • Impedance of the suppressor 1430 may satisfy the following Equation 6.
  • the loss suppression unit 1430 is resonated in series at 6.78 MHz to have the effect that the leads are connected to both ends of the inductive coil unit 1420, and the real part of the input impedance Zin is removed according to Equation 4 described above. can do.
  • the transmitter 1000 transmits wireless power in a self-resonant manner, power loss in the inductive coil unit 1420 may be minimized.
  • the resistance of the input part of the resonant coil unit 1410 is minimized so that the resistance (Real part) component is reduced by the interference between the resonant coil unit 1410 and the inductive coil unit 1420. Loss can be minimized, and each magnetic induction power transmission and magnetic resonance power transmission can operate independently.
  • the resonance suppressing coil unit 1410 causes the resonance at the first frequency f1, 6.78 MHz.
  • the impedance seen there is no real component and only an imaginary component remains so that the loss caused by the inductive coupling between the resonant coil unit 1410 and the inductive coil unit 1420 is prevented. It can be seen that it is removed.
  • the loss suppression capacitor Cp and the loss suppression inductor Lp it is necessary to minimize the influence of the loss suppression unit 1430 when the transmitter 1000 operates in a magnetic induction manner. Specifically, as shown in Fig.
  • the loss suppression capacitor Cp and the loss suppression inductor Lp are connected at a second frequency (for example, 200 kHz, f2) in which the transmitter 1000 operates in a magnetic induction manner.
  • the connection becomes a high impedance, so that the loss suppressing unit 1430 when the transmitting apparatus 1000 operates in a magnetic induction manner by having the same effect as that of an open circuit connected to both ends of the inductive coil unit 1420. Has a very small impact.
  • the loss at the first frequency (for example, 200 kHz, f1)
  • the impedance value of the suppressor 1430 is a very large value as shown in Equation 7 below.
  • the range of the product of the loss suppression capacitor Cp and the loss suppression inductor Lp can be determined.
  • the value of the loss suppression capacitor Cp and the loss suppression inductor Lp is derived from Equation 7.
  • the impedance of the loss suppressing unit 1430 which is a series connection circuit of the loss suppressing capacitor Cp and the loss suppressing inductor Lp, does not need to match exactly with Since it has a small value, the resistance component of the input impedance Zin can be minimized, and accordingly, it is also mounted on one coil printed circuit board 3100 so that the resonant coil unit 1410 and the inductive coil unit 1420 are adjacent to each other. It is possible to obtain an effect that can reduce the power loss that can be caused by the inductive coupling between the ().
  • the loss suppressing unit 1430 may include a variable capacitor and a variable inductor.
  • the capacitance of the variable capacitor and the inductance of the variable inductor may be changed under the control of the transmission side communication and the control unit 1500.
  • the transmitter-side communication and control unit 1500 Changes at least one of the capacitance of the variable capacitor and the inductance of the variable inductor so that the loss suppressing unit 1430 resonates in series at a variable frequency, and thus the resonant coil unit 1410 and the inductive coil unit 1420. It is possible to minimize the power loss that may be caused by inductive coupling of the liver.
  • FIG. 11 is a diagram illustrating first and second transmitting side DC / AC converters, first and second transmitting side impedance matching units, and first and second transmitting side coil parts in a transmitting apparatus according to an exemplary embodiment of the present invention. .
  • the first transmission-side DC / AC converter 1210 receives the first DC signal DC1 from the AC / DC converter 1100 as the fifth node Ne, and receives the third and third signals. AC signals can be output across the four nodes Nc and Nd.
  • a current flows through the first transmitting-side coil unit 1410 by an AC signal at both ends of the third and fourth nodes Nc and Nd, and the receiving side of the receiving device 2000 is controlled by the magnetic flux generated by the flowing current. The electric power is transmitted to the coil unit 2100.
  • the first transmission-side DC / AC converter 1210 may include first and second switches Sa and Sb and first and second high frequency filter units 1211 and 1212.
  • the first high frequency filter part 1211 is connected between the third and fifth nodes Nc and Ne
  • the second high frequency filter part 1212 is connected between the fourth and fifth nodes Nd and Ne.
  • the first switch Sa may be connected between the third node Nc and the reference ground
  • the second switch Sb may be connected between the fourth node Nd and the reference ground.
  • a pulse width modulation signal may be supplied to the first and second switches Sa and Sb so that the first and second switches Sa and Sb alternately conduct with each other.
  • the first and second switches Sa and Sb may operate at a first frequency by the transmitting side communication and the control unit 1500.
  • the first and second high frequency filter units 1211 and 1212 may attenuate the high frequency signals included in the DC signal DC1 provided from the fifth node Ne, and the first and second high frequency filter units
  • Each of 1211 and 1212 may be formed of at least one choke coil (RFC).
  • the first transmission-side impedance matching unit 1310 may include third to fifth capacitors C3, C4, and C5, and the third capacitor C3 may include first and third nodes Na and Nc.
  • the fourth capacitor C4 is connected between the first and second nodes Na and Nb, and the fifth capacitor C5 is connected between the second and fourth nodes Na and Nd. Can be.
  • the first transmitting side coil unit 1410 may be connected between the first and second nodes Na and Nb as a resonant coil unit.
  • the loss extractor 1430 may be connected to both ends of the first transmitter-side coil unit 1410, that is, between the first and second nodes Na and Nb.
  • the second transmitter-side DC / AC converter 1220 receives the second DC signal DC2 from the AC / DC converter 1100 as the fifth node N5, and receives the third and fourth nodes N3,. N4) It can output AC signal at both ends.
  • a current flows through the second transmitting-side coil unit 1420 by an AC signal at both ends of the third and fourth nodes N3 and N4, and the receiving side of the receiving device 2000 is controlled by the magnetic flux generated by the flowing current. The electric power is transmitted to the coil unit 2100.
  • the second transmitting-side DC / AC converter 1220 may include first to fourth switches S1, S2, S3, and S4, and the first switch S1 may be connected to the third node N3. It may be connected between the fifth node (N5), the second switch (S2) may be connected between the third node (N3) and the reference ground, the third switch (S3) is the fourth node (N4) ) And the fifth node N5, and the fourth switch S4 may be connected between the fourth node N4 and the reference ground.
  • the first and fourth switches S1 and S4 may be switched in the same phase, the second and third switches S2 and S3 may be in the same phase, and the first and second switches S1 and S2 may be in the opposite phase. have.
  • the transmitter-side communication and the controller 1500 may operate at the second frequency.
  • the second transmitter-side impedance matching unit 1320 may include a second inductor L2, a second node N2, and a fourth node N4 connected between the first node N1 and the third node N3.
  • the third inductor L3 connected to the first inductor L1, the first capacitor C1 connected between the first node N1 and the sixth node N6, and the connection between the first node N1 and the second node N2.
  • a second capacitor C2 may be any capacitor C2.
  • the second transmitting side coil unit 1420 may be connected between the first and second nodes N1 and N2 as the inductive coil unit.
  • FIG. 12 is a diagram illustrating an equivalent circuit when a transmitter according to an embodiment of the present invention supplies power in a self-resonant manner under a first frequency.
  • the first DC signal DC1 is supplied to the first transmission-side DC / AC converter 1210 and the second transmission-side DC
  • the supply of the second DC signal DC2 to the / AC converter 1220 may be cut off.
  • the first and second switches Sa and Sb of the first transmission-side DC / AC converter 1210 operate at the first frequency by the transmission-side communication and the control unit 1500, and the loss suppression unit 1430 is operated.
  • the loss suppression unit 1430 operates as a short circuit when the series resonant frequency of is a first frequency or a frequency close to the first frequency.
  • the loss suppressing unit 1430 has an effect in which the conductors are connected in parallel to the inductive coil unit 1420 connected between the sixth and second nodes N6 and N2, and thus the inductive type in the resonance coil unit 1410.
  • the resistance component may be minimized at the input impedance Zin viewed from the coil unit 1420, and accordingly, the power loss generated while the magnetic flux generated in the resonance string coil unit 1410 is interlinked with the inductive coil unit 1420. Can be minimized.
  • FIG. 13 is a diagram illustrating an equivalent circuit when a transmitter according to an embodiment of the present invention supplies power in a magnetic induction method under a second frequency.
  • the transmitter 1000 transmits power by using a magnetic induction method
  • the supply of the first DC signal DC1 to the first transmission-side DC / AC converter 1210 is cut off and the second transmission is performed.
  • the second DC signal DC2 may be supplied to the side DC / AC converter 1220.
  • the first to fourth switches S1 to S4 of the second transmission-side DC / AC converter 1220 operate at the second frequency by the transmission-side communication and the control unit 1500, and the loss suppression unit 1430 is operated.
  • Fig. 14 is an equivalent circuit diagram of a transmitting side coil unit according to the second embodiment.
  • the transmitting coil unit 1400 may include a resonance coil unit 1410, an induction coil unit 1420, and a switch unit 1430. Can be.
  • the switch unit 1430 is connected between the inductive coil unit 1420 and the second impedance matching unit 1320, specifically, is connected in parallel with the inductive coil unit 1420, and the second impedance matching unit 1320 may be connected in parallel.
  • the switch unit 1430 short-circuits both ends of the inductive coil unit 1420 when the AC signal of the first driving frequency is supplied to the resonant coil unit 1410, that is, the inductive coil unit 1420. It can function to make both ends of 0).
  • the inductive coil unit 1420 may be represented by a first inductor L1, and the second impedance matching unit 1320 may be formed at one end of the inductive coil unit 1420.
  • a first capacitor C1 connected at one end and connected to a first node N1 and a second capacitor C2 connected at one end to the first node N1 and connected to a second node N2 at the other end;
  • a second inductor L2 having one end connected to the first node N1 and the other end connected to one end of the second DC / AC converter 1220 and one end connected to the second node N2 and the other end
  • the third inductor L3 connected to the other end of the second DC / AC converter 1220 may be represented, and the resonant coil unit 1410 may be represented by a fourth inductor L4.
  • the switch unit 1430 may include a switch element capable of driving according to a transmission side communication and a switching control signal from the control unit 1500.
  • the switch element may be connected across the first inductor L1, that is, in parallel with the first inductor L1. In other words, it may be connected between one end of the first capacitor C1 and the second node N2.
  • Equation 3 When the signal of the first frequency f1 is applied to the resonant coil unit 1410 while the switch unit 1430 is not connected , the inductive coil unit 1420 is located on the inductive coil unit 1410.
  • the input impedance Zin i.e., the input impedance Zin viewed from the inductor coil unit 1420 side of the fourth inductor L4, is obtained, Equation 3 may be satisfied.
  • Equation 3 a real part of the input impedance Zin exists, and power loss may occur due to the real part.
  • the switch unit 1430 While the switch unit 1430 is connected, the case where the signal of the first frequency (f1) resonant nose is applied to the portion 1410, the switch unit 1430 is configured to be shorted, the resonant coil ( In 1410, the input impedance Zin viewed from the inductive coil unit 1420 side, that is, the input impedance Zin viewed from the inductor coil unit 1420 side from the fourth inductor L4 is obtained. Can meet.
  • Equation 4 it can be seen that a real part does not exist in the input impedance Zin, and the resonant coil part 1410 is driven at the first frequency f1 due to the presence of a negative part in the real part.
  • the power loss in the inductive coil unit 1420 is ideally 0, and in fact, the power loss is minimized.
  • FIG. 15 is a diagram illustrating first and second transmitting side DC / AC conversion units, first and second transmitting side impedance matching units, and first and second transmitting side coil parts in a transmitting apparatus according to an exemplary embodiment of the present invention. .
  • the first transmitter-side DC / AC converter 1210 receives the first DC signal DC1 from the AC / DC converter 1100 as the fifth node Ne, and receives the third and third signals. AC signals can be output across the four nodes Nc and Nd. Then, a current flows through the first transmitting-side coil unit 1410 by an AC signal at both ends of the third and fourth nodes Nc and Nd, and the receiving side nose of the receiving unit 2000 is controlled by the magnetic flux generated by the flowing current. Power is transmitted to the portion 2100.
  • the first transmission-side DC / AC converter 1210 may include first and second switches Sa and Sb and first and second high frequency filter units 1211 and 1212.
  • the first high frequency filter part 1211 is connected between the third and fifth nodes Nc and Ne
  • the second high frequency filter part 1212 is connected between the fourth and fifth nodes Nd and Ne.
  • the first switch Sa may be connected between the third node Nc and the reference ground
  • the second switch Sb may be connected between the fourth node Nd and the reference ground.
  • a pulse width modulation signal may be supplied to the first and second switches Sa and Sb so that the first and second switches Sa and Sb alternately conduct with each other.
  • the first and second switches Sa and Sb may operate at a first frequency by the transmitting side communication and the control unit 1500.
  • the first and second high frequency filter units 1211 and 1212 may attenuate the high frequency signals included in the DC signal DC1 provided from the fifth node Ne, and the first and second high frequency filter units
  • Each of 1211 and 1212 may be formed of at least one choke coil (RFC).
  • the first transmission-side impedance matching unit 1310 may include third to fifth capacitors C3, C4, and C5, and the third capacitor C3 may include first and third nodes Na and Nc.
  • the fourth capacitor C4 is connected between the first and second nodes Na and Nb, and the fifth capacitor C5 is connected between the second and fourth nodes Na and Nd. Can be.
  • the first transmitting side coil unit 1410 may be connected between the first and second nodes Na and Nb as a resonant coil unit.
  • the switch unit 1430 may be connected between both ends of the first transmitting side coil unit 1410, that is, between the first and second nodes Na and Nb.
  • the second transmitter-side DC / AC converter 1220 receives the second DC signal DC2 from the AC / DC converter 1100 as the fifth node N5, and receives the third and fourth nodes N3,. N4) It can output AC signal at both ends.
  • a current flows through the second transmitting-side coil unit 1420 by an AC signal at both ends of the third and fourth nodes N3 and N4, and the receiving side nose of the receiving unit 2000 is controlled by the magnetic flux generated by the flowing current. Power is transmitted to the portion 2100.
  • the second transmitting-side DC / AC converter 1220 may include first to fourth switches S1, S2, S3, and S4, and the first switch S1 may be connected to the third node N3. It may be connected between the fifth node (N5), the second switch (S2) may be connected between the third node (N3) and the reference ground, the third switch (S3) is the fourth node (N4) ) And the fifth node N5, and the fourth switch S4 may be connected between the fourth node N4 and the reference ground.
  • the first and fourth switches S1 and S4 may be switched in the same phase, the second and third switches S2 and S3 may be in the same phase, and the first and second switches S1 and S2 may be in the opposite phase. have.
  • the transmitter-side communication and the controller 1500 may operate at the second frequency.
  • the second transmitter-side impedance matching unit 1320 may include a second inductor L2, a second node N2, and a fourth node N4 connected between the first node N1 and the third node N3.
  • the third inductor L3 connected to the first inductor L1, the first capacitor C1 connected between the first node N1 and the sixth node N6, and the connection between the first node N1 and the second node N2.
  • a second capacitor C2 may be any capacitor C2.
  • the second transmitting side coil unit 1420 may be connected between the first and second nodes N1 and N2 as the inductive coil unit.
  • FIG. 16 is a diagram illustrating an equivalent circuit when a transmitter according to an embodiment of the present invention supplies power in a magnetic resonance method under a first frequency.
  • the first DC signal DC1 is supplied to the first transmission-side DC / AC converter 1210, and the second transmission-side DC
  • the supply of the second DC signal DC2 to the / AC converter 1220 may be cut off.
  • the switch 1430 may be shorted. Accordingly, the switch unit 1430 has the effect that the conducting wires are connected in parallel to the inductive coil unit 1420 connected between the sixth and second nodes N6 and N2, and thus the inductive nose unit 1410 in the resonant coil unit 1410.
  • the resistance component may be minimized at the input impedance Zin facing the portion 1420, and thus the power loss generated while the magnetic flux generated in the resonance-string coil unit 1410 crosses the inductive coil unit 1420. Can be minimized.
  • 17 is a diagram illustrating an equivalent circuit when a transmitter according to an embodiment of the present invention supplies power in a magnetic induction manner under a second frequency.
  • the transmitter 1000 transmits power by using a magnetic induction method
  • the supply of the first DC signal DC1 to the first transmission-side DC / AC converter 1210 is cut off and the second transmission is performed.
  • the second DC signal DC2 may be supplied to the side DC / AC converter 1220.
  • the switch unit 1430 may be opened. Accordingly, the switch unit 1430 may operate as an open circuit to minimize the influence on the operation of the transmitter 1000 when transmitting power in a magnetic induction manner.
  • the first and second embodiments of the present invention may In the case of the transmitter 1000 capable of combining the wireless power transmission according to the resonance method and the magnetic induction method, the resonant coil unit 1410 and the inductive coil unit 1420 are together on one coil printed circuit board 3100.
  • a loss may occur.
  • a magnetic field generated by the inductive coil unit 1420 is a resonant coil unit 1410.
  • the loss caused by the magnetic field generated by the resonant coil unit 1410 coupled to the inductive coil unit 1420 may be very large.
  • the power loss can be minimized by removing the real part from the reflection impedance that appears in the input impedance Zin viewed from the resonance coil unit 1410 toward the induction coil unit 1420.
  • the present invention can be used in the wireless charging field that can transmit and receive power wirelessly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명의 실시예에 따른 무선전력 송신장치는, 공진형 코일부, 유도형 코일부 및 상기 유도형 코일부 양단에 연결된 직렬 공진회로를 포함하는 손실 억제부, 상기 손실 억제부는 상기 공진형 코일부를 구동하기 위한 제1 주파수에서 공진하는 무선전력 송신장치를 제공할 수 있고, 또 다른 실시예에 따른 무선전력 송신장치는, 공진형 코일부; 유도형 코일부 및 상기 유도형 코일부 양단에 연결된 스위치 소자, 상기 스위치 소자는 상기 공진형 코일부 또는 상기 유도형 코일부 중 어느 하나에 의한 전력 전송 시 턴 온(Turn On) 또는 턴 오프(Turn Off)되는 무선전력 송신장치를 제공할 수 있다.

Description

무선전력 송신장치
본 발명은 무선전력전송 시스템에 관한 것으로 구체적으로는 무선전력 송신장치에 관한 발명이다.
최근 정보 통신 기술이 급속도로 발전함에 따라, 정보 통신 기술을 기반으로 하는 유비쿼터스 사회가 이루어지고 있다. 언제 어디서나 정보통신 기기들이 접속되기 위해서는 사회 모든 시설에 통신 기능을 가진 컴퓨터 칩을 내장시킨 센서들이 설치되어야 한다. 따라서 이들 기기나 센서의 전원 공급 문제는 새로운 과제가 되고 있다. 또한 휴대폰뿐만 아니라 블루투스 헤드셋과 아이팟 같은 뮤직 플레이어 등의 휴대기기 종류가 급격히 늘어나면서 배터리를 충전하는 작업이 사용자에게 시간과 수고를 요구하고 됐다. 이러한 문제를 해결하는 방법으로 무선 전력 전송 기술이 최근 들어 관심을 받고 있다.
무선 전력 전송 기술(wireless power transmission 또는 wireless energy transfer)은 자기장의 유도 원리를 이용하여 무선으로 송신기에서 수신기로 전기 에너지를 전송하는 기술로서, 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 라디오파나 레이저와 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다.
현재까지 무선을 이용한 에너지 전달 방식은 크게 자기 유도 방식, 자기 공진(Electromagnetic Resonance) 방식 및 단파장 무선 주파수를 이용한 전력 전송 방식 등으로 구분될 수 있다.
자기 유도 방식은 두 개의 코일을 서로 인접시킨 후 한 개의 코일에 전류를 흘려보내면 이 때 발생한 자속(MagneticFlux)이 다른 코일에 기전력을 일으키는 현상을 사용한 기술로서, 휴대폰과 같은 소형기기를 중심으로 빠르게 상용화가 진행되고 있다. 자기 유도 방식은 최대 수백 키로와트(kW)의 전력을 전송할 수 있고 효율도 높지만 최대 전송 거리가 1센티미터(cm) 이하이므로 일반적으로 충전기나 바닥에 인접시켜야 하는 단점이 있다.
자기 공진 방식은 전자기파나 전류 등을 활용하는 대신 전기장이나 자기장을 이용하는 특징이 있다. 자기 공진 방식은 전자파 문제의 영향을 거의 받지 않으므로 다른 전자 기기나 인체에 안전하다는 장점이 있다. 반면, 한정된 거리와 공간에서만 활용할 수 있으며 에너지 전달 효율이 다소 낮다는 단점이 있다.
단파장 무선 전력 전송 방식-간단히, RF 방식-은 에너지가 라디오 파(RadioWave)형태로 직접 송수신될 수 있다는 점을 활용한 것이다. 이 기술은 렉테나(rectenna)를 이용하는 RF 방식의 무선 전력 전송 방식으로서, 렉테나는 안테나(antenna)와 정류기(rectifier)의 합성어로서 RF 전력을 직접 직류 전력으로 변환하는 소자를 의미한다. 즉, RF 방식은 AC 라디오파를 DC로 변환하여 사용하는 기술로서, 최근 효율이 향상되면서 상용화에 대한 연구가 활발히 진행되고 있다.
무선 전력 전송 기술은 모바일 뿐만 아니라 IT, 철도, 가전 산업 등 산업 전반에 다양하게 활용될 수 있다.
최근에는 자기 유도 방식과 자기 공진 방식을 복합적으로 적용한 송신장치에 대한 개발이 활발해지고 있다. 이는 수신장치의 전력 공급 방식의 종류에 관계없이 수신장치에 전력을 공급할 수 있기 때문이다.
다만 자기 유도 방식과 자기 공진 방식을 혼용하는 경우, 어느 하나의 방식으로 전력 공급 시 자기 유도를 위한 코일과 자기 공진을 위한 코일 간의 자속에 의한 커플링 현상으로 전력 손실이 발생하여 전력 효율이 떨어지는 문제가 있었다.
본 발명에 따른 실시예는 자기 공진 방식으로 동작 시, 자기 공진을 위한 코일로부터 발생하는 자속에 기인한 자기 유도를 위한 코일에서의 커플링 현상에 따른 전력 손실을 방지하기 위한 손실 억제부를 포함하는 무선전력전송을 위한 송신장치를 제공할 수 있다.
또한 본 발명에 따른 실시예는 자기 유도 방식으로 동작 시 손실 억제부가 자기 유도 동작에 미치는 영향을 최소화할 수 있는 무선전력전송을 위한 송신장치를 제공할 수도 있다.
또한 본 발명에 따른 실시예는 자기 유도 방식으로 동작 시 스위치부가 자기 유도 동작에 미치는 영향을 최소화할 수 있는 무선전력전송을 위한 송신장치를 제공할 수도 있다.
본 발명의 실시예에 따른 무선전력 송신장치는, 공진형 코일부; 유도형 코일부; 및 상기 유도형 코일부 양단에 연결된 직렬 공진회로를 포함하는 손실 억제부; 상기 손실 억제부는 상기 공진형 코일부를 구동하기 위한 제1 주파수에서 공진하는 무선전력 송신장치를 제공할 수 있다.
또한 본 발명의 다른 실시예에 따른 무선전력 송신장치에서, 상기 직렬 공진회로는 적어도 하나의 커패시터와 적어도 하나의 인덕터를 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 손실 억제용 커패시터와 상기 손실 억제용 커패시터와 직렬 연결된 손실 억제용 인덕터를 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 손실 억제부는 상기 유도형 코일부를 구동하기 위한 제2 주파수에서 기 설정된 임피던스의 크기 이상의 임피던스의 크기를 가지는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 제1 직류 신호를 변환하여 상기 공진형 코일부에 상기 제1 주파수를 가진 교류 신호를 전달하는 제1 직류/교류 변환부; 및 제2 직류 신호를 변환하여 상기 유도형 코일부에 상기 제2 주파수를 가진 교류 신호를 전달하는 제2 직류/교류 변환부;를 더 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제1 및 제2 직류/교류 변환부의 동작을 제어하는 제어부;를 더 포함하고, 상기 제어부는 상기 제1 직류/교류 변환부를 인에이블(enable)시키고, 상기 제2 직류/교류 변환부를 디스에이블(disable) 시켜, 상기 제1 직류/교류 변환부가 상기 공진형 코일부에 상기 제1 주파수를 가진 교류 신호를 전달하도록 상기 제1 직류/교류 변환부를 제어하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제1 및 제2 직류/교류 변환부의 동작을 제어하는 제어부;를 더 포함하고, 상기 제어부는 상기 제2 직류/교류 변환부를 인에이블(enable)시키고, 상기 제1 직류/교류 변환부를 디스에이블(disable) 시켜, 상기 제2 직류/교류 변환부가 상기 유도형 코일부에 상기 제2 주파수를 가진 교류 신호를 전달하도록 상기 제2 직류/교류 변환부를 제어하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 교류 신호를 입력 받아 상기 제1 및 제2 직류/교류 변환부에 상기 제1 및 제2 직류 신호를 공급하는 교류/직류 변환부;를 더 포함하고, 상기 제1 직류/교류 변환부는, 상기 교류/직류 변환부 및 제1 노드 사이에 연결된 제1 고주파 필터부; 상기 교류/직류 변환부 및 제2 노드 사이에 연결된 제2 고주파 필터부; 상기 제1 노드와 제3 노드 사이에 연결된 제1 스위치; 및 상기 제2 노드와 상기 제3 노드 사이에 연결된 제2 스위치;를 포함하고, 상기 공진형 코일부는 상기 제1 및 제2 노드 사이에 연결된 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 교류 신호를 입력 받아 상기 제1 및 제2 직류/교류 변환부에 상기 제1 및 제2 직류 신호를 공급하는 교류/직류 변환부;를 더 포함하고, 상기 제2 직류/교류 변환부는, 상기 교류/직류 변환부 및 제1 노드 사이에 연결된 제1 스위치; 상기 제1 노드 및 제3 노드 사이에 연결된 제2 스위치; 상기 교류/직류 변환부 및 제2 노드 사이에 연결된 제3 스위치; 및 상기 제2 노드 및 상기 제3 노드 사이에 연결된 제4 스위치;를 포함하고, 상기 유도형 코일부는 상기 제1 및 제2 노드 사이에 연결된 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치는, 제1 코일부; 제2 코일부; 상기 제2 코일부 양단에 연결된 공진회로를 포함하는 손실 억제부; 상기 손실 억제부의 공진 회로는 상기 제1 코일부를 구동하기 위한 제1 주파수의 신호에서 공진하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 공진회로는 적어도 하나의 커패시터와 적어도 하나의 인덕터를 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 공진회로는 직렬 공진회로인 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 손실 억제부는 상기 제2 코일부를 구동하기 위한 제2 주파수에서 기 설정된 임피던스의 크기 이상의 임피던스의 크기를 가지는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제1 코일부는 공진형 코일을 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제2 코일부는 유도형 코일을 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제1 주파수는 6.78MHz인 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제2 주파수는 125KHz인 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 손실 억제부는, 서로 직렬 연결된 가변 커패시터 및 가변 인덕터를 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제1 주파수가 가변될 때 상기 가변 커패시터의 커패시턴스 및 상기 가변 인덕터의 인덕턴스 중 적어도 하나가 변하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 제1 직류 신호를 변환하여 상기 공진형 코일부에 상기 제1 주파수를 가진 교류 신호를 전달하는 제1 직류/교류 변환부; 제2 직류 신호를 변환하여 상기 유도형 코일부에 상기 제2 주파수를 가진 교류 신호를 전달하는 제2 직류/교류 변환부; 및 상기 제1 및 제2 직류/교류 변환부의 동작을 제어하는 제어부;를 더 포함하고, 상기 제어부는 상기 제1 및 제2 직류/교류 변환부 중 어느 하나를 인에이블(enable)시키고 나머지 하나를 디스에이블(disable) 시키는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치는, 공진형 코일부; 유도형 코일부; 및 상기 유도형 코일부 양단에 연결된 직렬 공진회로를 포함하는 손실 억제부; 상기 손실 억제부는 상기 공진형 코일부를 구동하기 위한 제1 주파수에서 공진하는 무선전력 송신장치를 제공할 수 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 직렬 공진회로는 적어도 하나의 커패시터와 적어도 하나의 인덕터를 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 손실 억제용 커패시터와 상기 손실 억제용 커패시터와 직렬 연결된 손실 억제용 인덕터를 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 손실 억제부는 상기 유도형 코일부를 구동하기 위한 제2 주파수에서 기 설정된 임피던스의 크기 이상의 임피던스의 크기를 가지는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 제1 직류 신호를 변환하여 상기 공진형 코일부에 상기 제1 주파수를 가진 교류 신호를 전달하는 제1 직류/교류 변환부; 및 제2 직류 신호를 변환하여 상기 유도형 코일부에 상기 제2 주파수를 가진 교류 신호를 전달하는 제2 직류/교류 변환부;를 더 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제1 및 제2 직류/교류 변환부의 동작을 제어하는 제어부;를 더 포함하고, 상기 제어부는 상기 제1 직류/교류 변환부를 인에이블(enable)시키고, 상기 제2 직류/교류 변환부를 디스에이블(disable) 시켜, 상기 제1 직류/교류 변환부가 상기 공진형 코일부에 상기 제1 주파수를 가진 교류 신호를 전달하도록 상기 제1 직류/교류 변환부를 제어하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제1 및 제2 직류/교류 변환부의 동작을 제어하는 제어부;를 더 포함하고, 상기 제어부는 상기 제2 직류/교류 변환부를 인에이블(enable)시키고, 상기 제1 직류/교류 변환부를 디스에이블(disable) 시켜, 상기 제2 직류/교류 변환부가 상기 유도형 코일부에 상기 제2 주파수를 가진 교류 신호를 전달하도록 상기 제2 직류/교류 변환부를 제어하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 교류 신호를 입력 받아 상기 제1 및 제2 직류/교류 변환부에 상기 제1 및 제2 직류 신호를 공급하는 교류/직류 변환부;를 더 포함하고, 상기 제1 직류/교류 변환부는, 상기 교류/직류 변환부 및 제1 노드 사이에 연결된 제1 고주파 필터부; 상기 교류/직류 변환부 및 제2 노드 사이에 연결된 제2 고주파 필터부; 상기 제1 노드와 제3 노드 사이에 연결된 제1 스위치; 및 상기 제2 노드와 상기 제3 노드 사이에 연결된 제2 스위치;를 포함하고, 상기 공진형 코일부는 상기 제1 및 제2 노드 사이에 연결된 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 교류 신호를 입력 받아 상기 제1 및 제2 직류/교류 변환부에 상기 제1 및 제2 직류 신호를 공급하는 교류/직류 변환부;를 더 포함하고, 상기 제2 직류/교류 변환부는, 상기 교류/직류 변환부 및 제1 노드 사이에 연결된 제1 스위치; 상기 제1 노드 및 제3 노드 사이에 연결된 제2 스위치; 상기 교류/직류 변환부 및 제2 노드 사이에 연결된 제3 스위치; 및 상기 제2 노드 및 상기 제3 노드 사이에 연결된 제4 스위치;를 포함하고, 상기 유도형 코일부는 상기 제1 및 제2 노드 사이에 연결된 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치는, 제1 코일부; 제2 코일부; 상기 제2 코일부 양단에 연결된 공진회로를 포함하는 손실 억제부; 상기 손실 억제부의 공진 회로는 상기 제1 코일부를 구동하기 위한 제1 주파수의 신호에서 공진하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 공진회로는 적어도 하나의 커패시터와 적어도 하나의 인덕터를 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 공진회로는 직렬 공진회로인 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 손실 억제부는 상기 제2 코일부를 구동하기 위한 제2 주파수에서 기 설정된 임피던스의 크기 이상의 임피던스의 크기를 가지는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제1 코일부는 공진형 코일을 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제2 코일부는 유도형 코일을 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제1 주파수는 6.78MHz인 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제2 주파수는 125KHz인 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 손실 억제부는, 서로 직렬 연결된 가변 커패시터 및 가변 인덕터를 포함하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 상기 제1 주파수가 가변될 때 상기 가변 커패시터의 커패시턴스 및 상기 가변 인덕터의 인덕턴스 중 적어도 하나가 변하는 무선전력 송신장치를 제공할 수도 있다.
또한 본 발명의 또 다른 실시예에 따른 무선전력 송신장치에서, 제1 직류 신호를 변환하여 상기 공진형 코일부에 상기 제1 주파수를 가진 교류 신호를 전달하는 제1 직류/교류 변환부; 제2 직류 신호를 변환하여 상기 유도형 코일부에 상기 제2 주파수를 가진 교류 신호를 전달하는 제2 직류/교류 변환부; 및 상기 제1 및 제2 직류/교류 변환부의 동작을 제어하는 제어부;를 더 포함하고, 상기 제어부는 상기 제1 및 제2 직류/교류 변환부 중 어느 하나를 인에이블(enable)시키고 나머지 하나를 디스에이블(disable) 시키는 무선전력 송신장치를 제공할 수도 있다.
도 1은 자기 유도 방식 등가회로.
도 2는 자기 공진 방식 등가회로.
도 3a 및 3b는 무선전력전송 시스템을 구성하는 서브 시스템 중 하나로 송신장치를 나타낸 블록도이다.
도 4a 및 도 4b는 무선전력전송 시스템을 구성하는 서브 시스템 중 하나로 수신장치를 나타낸 블록도이다.
도 6 및 도 7은 본 발명의 실시예에 따른 송신측 코일부의 구조를 나타낸 도면.
도 8은 본 발명의 실시예에 따른 송신측 코일부를 나타낸 블록도.
도 9는 송신측 코일부의 등가 회로도.
도 10은 손실 억제부의 주파수에 따른 임피던스 크기를 나타낸 그래프.
도 11은 본 발명의 실시예에 따른 송신장치에서 제1 및 제2 송신측 직류/교류 변환부와 제1 및 제2 송신측 임피던스 매칭부 그리고 제1 및 제2 송신측 코일부를 나타낸 도면.
도 12는 본 발명의 실시예에 따른 송신장치가 제1 주파수 하에서 자기 공진 방식으로 전력을 공급 시 등가회로를 나타낸 도면.
도 13은 본 발명의 실시예에 따른 송신장치가 제2 주파수 하에서 자기 유도 방식으로 전력을 공급 시 등가회로를 나타낸 도면.
이하, 본 발명의 실시예에 의한 무선전력 송신장치의 도면을 참고하여 상세하게 설명한다. 다음에 소개되는 실시 예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 장치의 크기 및 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한 이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성 요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성 요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수 개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 그 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 본 발명의 기술 분야의 당업자에 의해 용이하게 추론될 수 있을 것이다. 이러한 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 저장매체(Computer Readable Media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 본 발명의 실시예를
구현할 수 있다. 컴퓨터 프로그램의 저장매체로서는 자기 기록매체, 광 기록매체, 캐리어 웨이브 매체 등이 포함될 수 있다. 또한 실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)", "전(앞) 또는 후(뒤)"에 형성되는 것으로 기재되는 경우에 있어, "상(위) 또는 하(아래)" 및"전(앞) 또는 후(뒤)"는 두 개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
실시예의 설명에 있어서, 무선 전력 시스템상에서 무선 전력을 송신하는 장치는 설명의 편의를 위해 무선 파워 송신기, 무선 파워 송신 장치, 무선 전력 송신 장치, 무선 전력 송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 파워 전송 장치, 무선 파워 전송기 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 송신 장치로부터 무선 전력을 수신하는 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선 전력 수신기, 무선 파워 수신 장치, 무선 파워 수신기, 수신 단말기, 수신측, 수신 장치, 수신기 등이 혼용되어 사용될 수 있다.
발명에 따른 무선 전력 송신기는 패드 형태, 거치대 형태, AP(Access Point) 형태, 소형 기지국 형태, 스탠드 형태, 천장 매립 형태, 벽걸이 형태, 차량 매립 형태, 차량 거치 형태 등으로 구성될 수 있으며, 하나의 송신기는 복수의 무선 전력 수신 장치에 동시에 파워를 전송할 수 있다. 이를 위해, 무선 파워 송신기는 적어도 하나의 무선 전력 전송 방식 (가령, 전자기 유도 방식, 전자기 공진 방식 등을 포함)을 제공할 수도 있다.
예로, 무선 전력 전송 방식은 전력 송신단 코일에서 자기장을 발생시켜 그 자기장의 영향으로 수신단 코일에서 전기가 유도되는 전자기 유도 원리를 이용하여 충전하는 전자기 유도 방식에 기반한 다양한 무전 전력 전송 표준이 사용될 수 있다. 여기서, 전자기 유도 방식의 무선파워 전송 표준은 WPC(Wireless Power Consortium) 또는/및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
다른 일 예로, 무선 전력 전송 방식은 무선 파워 송신기의 송신 코일에 의해 발생되는 자기장을 특정 공진 주파수에 동조하여 근거리에 위치한 무선 파워 수신기에 전력을 전송하는 전자기 공진(Electromagnetic Resonance) 방식이 이용될 수도 있다. 일 예로, 전자기 공진 방식은 무선 충전 기술 표준 기구인 A4WP(Alliance for Wireless Power)에서 정의된 공진 방식의 무선 충전 기술을 포함할 수 있다.
또 다른 일 예로, 무선 전력 전송 방식은 RF 신호에 저전력의 에너지를 실어 원거리에 위치한 무선 파워 수신기로 전력을 전송하는 RF 무선 파워 전송 방식이 이용될 수도 있다.
본 발명의 또 다른 일 예로, 본 발명에 따른 무선 파워 송신기는 상기한 전자기 유도 방식, 전자기 공진 방식, RF 무선 파워 전송 방식 중 적어도 2개 이상의 무선 전력 전송 방식을 지원할 수 있도록 설계될 수도 있다. 경우, 무선 파워 송신기는 무선 파워 송신기 및 무선 파워 수신기에서 지원 가능한 무선 전력 전송 방식뿐만 아니라 무선 파워 수신기의 종류, 상태, 요구 전력 등에 기반하여 적응적으로 해당 무선 파워 수신기를 위해 사용될 무선 전력 전송 방식을 결정할 수 있다.
또한, 본 발명의 일 실시예에 따른 무선 파워 수신기는 적어도 하나의 무선 전력 전송 방식이 구비될 수 있으며, 2개 이상의 무선 파워 송신기로부터 동시에 무선 전력을 수신할 수도 있다. 여기서, 무선 전력 전송 방식은 상기 전자기 유도 방식, 전자기 공진 방식, RF 무선 파워 전송 방식 중 적어도 하나를 포함할 수 있다.
실시예는 무선 전력 전송을 위하여 저주파(50kHz)부터 고주파(15MHz)까지의 다양한 종류의 주파수 대역을 선택적으로 사용하며, 시스템 제어를 위하여 데이터 및 제어신호를 교환할 수 있는 통신시스템을 포함할 수도 있다.
실시예는 배터리를 사용하거나 필요로 하는 전자기기를 사용하는 휴대단말 산업, 스마트 시계 산업, 컴퓨터 및 노트북 산업, 가전기기 산업, 전기자동차 산업, 의료기기 산업, 로봇 산업 등 다양한 산업분야에 적용될 수 있다.
특히 실시예에 따른 무선 전력 수신기는 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션, MP3 player, 전동 칫솔, 전자 태그, 조명 장치, 리모콘, 낚시찌 등의 소형 전자 기기 등에 탑재될 수 있으나, 이에 국한되지는 아니하며 본 발명에 따른 무선 전력 수신 수단이 장착되어 배터리 충전이 가능한 기기라면 족하다. 본 발명의 다른 일 실시예에 따른 무선 파워 수신기는 차량, 무인 항공기, 에어 드론 등에도 탑재될 수 있다.
실시예는하나 또는 복수개의 전송 코일을 사용하여 한 개 이상의 다수기기에 전력 전송이 가능한 시스템을 고려할 수 있다.
실시예에 따르면 스마트폰, 노트북 등 모바일기기에서의 배터리 부족문제를 해결할 수 있고, 일 예로 테이블에 무선충전패드를 놓고 그 위에서 스마트폰, 노트북을 사용하면 자동으로 배터리가 충전되어 장시간 사용할 수 있게 된다. 또한 까페, 공항, 택시, 사무실, 식당 등 공공장소에 무선충전패드를 설치하면 모바일기기 제조사별로 상이한 충전단자에 상관없이 다양한 모바일기기를 충전할 수 있다. 또한 무선전력전송 기술이 청소기, 선풍기 등의 생활가전제품에 적용되면 전원케이블을 찾아 다닐 필요가 없게 되고 가정 내에서 복잡한 전선이 사라지면서 건물 내 배선이 줄고 공간활용 폭도 넓어질 수 있다. 또한 현재의 가정용 전원으로 전기자동차를 충전할 경우 많은 시간이 소요되지만 무선전력전송 기술을 통해서 고전력을 전송한다면 충전시간을 줄일 수 있게 되고 주차장 바닥에 무선충전시설을 설치하게 되면 전기자동차 주변에 전원케이블을 준비 해야 하는 불편함을 해소 할 수 있다.
실시예에서 사용되는 용어와 약어는 다음과 같다.
무선전력전송 시스템 (Wireless Power Transfer System): 자기장 영역 내에서 무선 전력 전송을 제공하는 시스템
송신장치(Wireless Power Transfer System-Charger; Power Transfer Unit: PTU ): 자기장 영역 내에서 전력수신기에게 무선전력전송을 제공하며 시스템 전체를 관리하는 장치로 송신장치 또는 송신기로 지칭할 수 있다.
수신장치(Wireless Power Receiver System-Device; Power Receiver Unit: PRU ): 자기장 영역 내에서 전력송신기로부터 무선전력 전송을 제공받는 장치로 수신장치 또는 수신기로 지칭할 수 있다.
충전 영역(Charging Area): 자기장 영역 내에서 실제적인 무선 전력 전송이 이루어지는 지역이며, 응용 제품의 크기, 요구 전력, 동작주파수에 따라 변할 수 있다.
S 파라미터(Scattering parameter): S 파라미터는 주파수 분포상에서 입력전압 대 출력전압의 비로 입력 포트 대 출력 포트의 비(Transmission; S21) 또는 각각의 입/출력 포트의 자체 반사값, 즉 자신의 입력에 의해 반사되어 돌아오는 출력의 값(Reflection; S11, S22).
품질 지수 Q(Quality factor): 공진에서 Q의 값은 주파수 선택의 품질을 의미하고 Q 값이 높을수록 공진 특성이 좋으며, Q 값은 공진기에서 저장되는 에너지와 손실되는 에너지의 비로 표현됨.
무선으로 전력을 전송하는 원리를 살펴보면, 무선 전력 전송 원리로 크게 자기 유도 방식과 자기 공진 방식이 있다.
자기 유도 방식은 소스 인덕터(Ls)와 부하 인덕터(Ll)를 서로 근접시켜 한쪽의 소스 인덕터(Ls)에 전류를 흘리면 발생하는 자속을 매개로 부하 인덕터(Ll)에도 기전력이 발생하는 비접촉 에너지 전송기술이다. 그리고 자기공진 방식은 2개의 공진기를 결합하는 것으로 2개의 공진기 간의 고유 주파수에 의한 자기 공진이 발생하여 동일 주파수로 진동 하면서 동일 파장 범위에서 전기장 및 자기장을 형성시키는 공명 기법을 활용하여 에너지를 무선으로 전송하는 기술이다.
도 1은 자기 유도 방식 등가회로이다.
도 1을 참조하면, 자기 유도 방식 등가회로에서 송신장치는 전원을 공급하는 장치에 따른 소스 전압(Vs), 소스 저항(Rs), 임피던스 매칭을 위한 소스 커패시터(Cs) 그리고 수신장치와의 자기적 결합을 위한 소스 코일(Ls)로 구현될 수 있고, 수신장치는 수신장치의 등가 저항인 부하 저항(Rl), 임피던스 매칭을 위한 부하 커패시터(Cl) 그리고 송신장치와의 자기적 결합을 위한 부하 코일(Ll)로 구현될 수 있고, 소스 코일(Ls)과 부하 코일(Ll)의 자기적 결합 정도는 상호 인덕턴스(Msl)로 나타낼 수 있다.
도 1에서 임피던스 매칭을 위한 소스 커패시터(Cs)와 부하 커패시터(Cl)이 없는 오로지 코일로만 이루어진 자기 유도 등가회로로부터 입력전압 대 출력전압의 비(S21)를 구하여 이로부터 최대 전력 전송 조건을 찾으면 최대 전력 전송 조건은 이하 수학식 1을 충족한다.
수학식 1
Ls/Rs=Ll/Rl
상기 수학식 1에 따라 송신 코일(Ls)의 인덕턴스와 소스 저항(Rs)의 비와 부하 코일(Ll)의 인덕턴스와 부하 저항(Rl)의 비가 같을 때 최대 전력 전송이 가능하다. 인덕턴스만 존재하는 시스템에서는 리액턴스를 보상할 수 있는 커패시터가 존재하지 않기 때문에 최대 전력 전달이 이루이지는 지점에서 입/출력 포트의 자체 반사값(S11)의 값은 0이 될 수 없고, 상호 인덕턴스(Msl) 값에 따라 전력 전달 효율이 크게 변화할 수 있다. 그리하여 임피던스 매칭을 위한 보상 커패시터로써 송신장치에 소스 커패시터(Cs)가 부가될 수 있고, 수신장치에 부하 커패시터(Cl)가 부가될 수 있다. 상기 보상 커패시터(Cs, Cl)는 예로 수신 코일(Ls) 및 부하 코일(Ll) 각각에 직렬 또는 병렬로 연결될 수 있다. 또한 임피던스 매칭을 위하여 송신장치 및 수신장치 각각에는 보상 커패시터 뿐만 아니라 추가적인 커패시터 및 인덕터와 같은 수동 소자가 더 부가될 수 있다.
도 2는 자기 공진 방식 등가회로이다.
도 2를 참조하면, 자기 공진 방식 등가회로에서 송신장치는 소스 전압(Vs), 소스 저항(Rs) 그리고 소스 인덕터(Ls)의 직렬 연결로 폐회로를 구성하는 소스 코일(Source coil)과 송신측 공진 인덕터(L1)와 송신측 공진 커패시터(C1)의 직렬 연결로 폐회로를 구성하는 송신측 공진 코일(Resonant coil)로 구현되고, 수신장치는 부하 저항(Rl)와 부하 인덕터(Ll)의 직렬 연결로 폐회로를 구성하는 부하 코일(Load coil)과 수신측 공진 인덕터(L2)와 수신측 공진 커패시터(C2)의 직렬 연결로 폐회로를 구성하는 수신측 공진 코일로 구현되며, 소스 인덕터(Ls)와 송신측 인덕터(L1)는 K01의 결합계수로 자기적으로 결합되고, 부하 인덕터(Ll)와 부하측 공진 인덕터(L2)는 K23의 결합계수로 자기적으로 결합되고, 송신측 공진 인덕터(L1)와 수신측 공진 인덕터(L2)는 K12의 결합 계수로 자기적으로 결합된다. 또 다른 실시예의 등가회로에서는 소스 코일 및/또는 부하 코일을 생략하고 송신측 공진 코일과 수신측 공진 코일만으로 이루어질 수도 있다.
자기 공진 방식은 두 공진기의 공진 주파수가 동일할 때에는 송신장치의 공진기의 에너지의 대부분이 수신장치의 공진기로 전달되어 전력 전달 효율이 향상될 수 있고, 자기 공진 방식에서의 효율은 이하 수학식 2를 충족할 때 좋아진다.
수학식 2
k/Γ >> 1 (k는 결합계수, Γ 감쇄율)
자기 공진 방식에서 효율을 증가시키기 위하여 임피던스 매칭을 위한 소자를 부가할 수 있고, 임피던스 매칭 소자는 인덕터 및 커패시터와 같은 수동 소자가 될 수 있다.
이와 같은 무선 전력 전송 원리를 바탕으로 자기 유도 방식 또는 자기 공진 방식으로 전력을 전달하기 위한 무선전력전송 시스템을 살펴본다.
<송신장치>
도 3a 및 도 3b는 무선전력전송 시스템을 구성하는 서브 시스템 중 하나로 송신장치를 나타낸 블록도이다.
도 3a를 참조하면, 실시예에 따른 무선전력전송 시스템은 송신장치(1000)와 상기 송신장치(1000)로부터 무선으로 전력을 전송받는 수신장치(2000)를 포함할 수 있다. 상기 송신장치(1000)는 입력되는 교류 신호를 전력 변환하여 교류 신호로 출력하는 전력변환부(101)와 상기 전력변환부(101)로부터 출력되는 교류 신호에 기초하여 자기장을 생성하여 충전 영역 내의 수신장치(2000)에 전력을 제공하는 공진회로부(102) 및 상기 전력변환부(101)의 전력 변환을 제어하고, 상기 전력변환부(101)의 출력 신호의 진폭과 주파수를 조절하고, 상기 공진회로부(102)의 임피던스 매칭을 수행하며, 상기 전력변환부(101) 및 상기 공진회로부(102)로부터 임피던스, 전압, 전류 정보를 센싱하며, 상기 수신장치(2000)와 무선 통신할 수 있는 제어부(103)를 포함할 수 있다. 상기 전력변환부(101)는 교류신호를 직류로 변환하는 전력변환부, 직류의 레벨을 가변하여 직류를 출력하는 전력변환부, 직류를 교류로 변환하는 전력변환부 중 적어도 하나를 포함할 수 있다. 그리고 상기 공진회로부(102)는 코일과 상기 코일과 공진할 수 있는 임피던스 매칭부를 포함할 수 있다. 또한 상기 제어부(103)는 임피던스, 전압, 전류 정보를 센싱하기 위한 센싱부와 무선 통신부를 포함할 수 있다.
구체적으로 도 3b를 참조하면, 상기 송신장치(1000)는 송신측 교류/직류 변환부(1100), 송신측 직류/교류 변환부(1200), 송신측 임피던스 매칭부(1300), 송신 코일부(1400) 그리고 송신측 통신 및 제어부(1500)을 포함할 수 있다.
송신측 교류/직류 변환부(1100)는 송신측 통신 및 제어부(1500)의 제어 하에 외부로부터 제공되는 교류 신호를 직류 신호로 변환하는 전력 변환부로써, 상기 송신측 교류/직류 변환부(1100)는 서브 시스템으로 정류기(1110)와 송신측 직류/직류 변환부(1120)을 포함할 수 있다. 상기 정류기(1110)는 제공되는 교류 신호를 직류 신호로 변환하는 시스템으로써 이를 구현하는 실시예로 고주파수 동작 시 상대적으로 높은 효율을 가지는 다이오드 정류기, 원-칩(one-chip)화가 가능한 동기 정류기 또는 원가 및 공간 절약이 가능하고 및 데드 타임(Dead time)의 자유도가 높은 하이브리드 정류기가 될 수 있다. 다만 이에 한정되는 것은 아니고, 교류를 직류로 변환하는 시스템이라면 적용 가능하다. 또한 상기 송신측직류/직류 변환부(1120)는 송신측 통신 및 제어부(1500)의 제어 하에 상기 정류기(1110)으로부터 제공되는 직류 신호의 레벨을 조절하는 것으로 이를 구현하는 예로 입력 신호의 레벨을 낮추는 벅 컨버터(Buck converter), 입력 신호의 레벨을 높이는 부스트 컨버터(Boost converter), 입력 신호의 레벨을 낮추거나 높일 수 있는 벅 부스트 컨버터(Buck Boost converter) 또는 축 컨버터(Cuk converter)가 될 수 있다. 또한 상기 송신측 직류/직류 변환부(1120)는 전력 변환 제어 기능을 하는 스위치소자와 전력 변환 매개 역할 또는 출력 전압 평활 기능을 하는 인덕터및 커패시터, 전압 이득을 조절 또는 전기적인 분리 기능(절연 기능)을 하는 트랜스 등을 포함할 수 있으며, 입력되는 직류 신호에 포함된 리플 성분 또는 맥동 성분(직류 신호에 포함된 교류 성분)을 제거하는 기능을 할 수 있다. 그리고 상기 송신측 직류/직류 변환부(1120)의 출력 신호의 지령치와 실제 출력치와의 오차는 피드백 방식을 통해 조절될 수 있고, 이는 상기 송신측 통신 및 제어부(1500)에 의하여 이루어 질 수 있다.
송신측 직류/교류 변환부(1200)는 송신측 통신 및 제어부(1500)의 제어 하에 송신측 교류/직류 변환부(1100)으로부터 출력되는 직류 신호를 교류 신호로 변환하고, 변환된 교류 신호의 주파수를 조절할 수 있는 시스템으로 이를 구현하는 예로 하프 브릿지 인버터(Half bridge inverter) 또는 풀 브릿지 인버터(Full bridge inverter)가 있다. 그리고 무선전력전송 시스템은 직류를 교류로 변환하는 다양한 증폭기가 적용될 수 있고, 예로 A급, B급, AB급, C급, E 급 F급 증폭기가 있다. 또한 상기 송신측 직류/교류 변환부(1200)는 출력 신호의 주파수를 생성하는 오실레이터(Ocillator)와 출력 신호를 증폭하는 파워 증폭부를 포함할 수 있다.
상기 교류/직류 변환부(1100) 및 송신측 직류/교류 변환부(1200)의 구성은 교류 전력 공급기로 대체할 수 있으며, 생략되거나 또 다른 구성으로 대체할 수도 있다.
송신측 임피던스 매칭부(1300)는 서로 다른 임피던스를 가진 지점에서 반사파를 최소화하여 신호의 흐름을 좋게 한다. 송신장치(1000)와 수신장치(2000)의 두 코일은 공간적으로 분리되어 있어 자기장의 누설이 많으므로 상기 송신장치(1000)와 수신장치(2000)의 두 연결단 사이의 임피던스 차이를 보정하여 전력 전달 효율을 향상시킬 수 있다. 상기 송신측 임피던스 매칭부(1300)는 인덕터, 커패시터 그리고 저항 소자 중 적어도 하나로 구성될 수 있고, 통신 및 제어부(1500)의 제어 하에 상기 인덕터의 인덕턴스와 커패시터의 커패시턴스 그리고 저항의 저항 값을 가변하여 임피던스 매칭을 위한 임피던스 값을 조정할 수 있다. 그리고 무선전력전송 시스템이 자기 유도 방식으로 전력을 전송하는 경우, 송신측 임피던스 매칭부(1300)는 직렬 공진 구조 또는 병렬 공진 구조를 가질 수 있고, 송신장치(1000)와 수신장치(2000) 사이의 유도 결합 계수를 증가시켜 에너지 손실을 최소화 할 수 있다. 그리고 무선전력전송 시스템이 자기 공진 방식으로 전력을 전송하는 경우, 송신측 임피던스 매칭부(1300)는송신장치(1000)와 수신장치(2000) 간의 이격 거리가 변화되거나 금속성 이물질(FO; Foreign Object), 다수의 디바이스에 의한 상호 영향 등에 따라 코일의 특성의 변화로 에너지 전송 선로상의 매칭 임피던스 변화에 따른 임피던스 매칭의 실시간 보정을 가능하게 할 수 있고, 그 보정 방식으로써 커패시터를 이용한 멀티 매칭 방식, 멀티 안테나를 이용한 매칭 방식, 멀티 루프를 이용한 방식 등이 될 수 있다.
송신측 코일(1400)은 복수개의 코일 또는 단수개의 코일로 구현될 수 있고, 송신측 코일(1400)이 복수개로 구비되는 경우 이들은 서로 이격되어 배치되거나 서로 중첩되어 배치될 수 있고, 이들이 중첩되어 배치되는 경우 중첩되는 면적은 자속 밀도의 편차를 고려하여 결정할 수 있다. 또한 송신측 코일(1400)을 제작할 때 내부 저항 및 방사 저항을 고려하여 제작할 수 있고, 이 때 저항 성분이 작으면 품질 지수(Quality factor)가 높아지고 전송 효율이 상승할 수 있다.
통신 및 제어부(1500)는 송신측 제어부(1510)와 송신측 통신부(1520)를 포함할 수 있다. 상기 송신측 제어부(1510)는 수신장치(2000)의 전력 요구량, 현재 충전량, 수신장치의 정류기 출력단의 전압(Vrect), 복수 수신장치의 각 충전 효율 그리고 무선 전력 방식중 적어도 하나 이상을 고려하여 상기 송신측 교류/직류 변환부(1100)의 출력 전압(또는 송신 코일에 흐르는 전류(Itx_coil)을 조절하는 역할을 할 수 있다. 그리고 최대 전력 전송 효율를 고려하여 상기 송신측 직류/교류 변환부(1200)를 구동하기 위한 주파수 및 스위칭 파형들을 생성하여 전송될 전력을 제어할 수 있다. 또한 수신장치(2000)의 저장부(미도시)로부터 독출한 제어에 요구되는 알고리즘, 프로그램 또는 어플리케이션을 이용하여 수신장치(2000)의 동작 전반을 제어할 수 있다. 한편 상기 송신측 제어부(1510)는 마이크로프로세서, 마이크로컨트롤유닛(Micro Controller Unit) 또는 마이콤(Micom)이라고 지칭할 수 있다. 상기 송신측 통신부(1520)는 수신측 통신부(2620)와 통신을 수행할 수 있고, 통신 방식의 일 예로 블루투스, NFC, Zigbee 등의 근거리 통신 방식을 이용할 수 있다. 상기 송신측 통신부(1520)와 수신측 통신부(2620)는 서로간에 충전 상황 정보 및 충전 제어 명령 등의 송수신을 진행할 수 있다. 그리고 상기 충전 상황 정보로는 수신장치(2000)의 개수, 배터리 잔량, 충전 횟수, 사용량, 배터리 용량, 배터리 비율 그리고 송신장치(1000)의 전송 전력량 등을 포함할 수 있다. 또한 송신측 통신부(1520)는 수신장치(2000)의 충전 기능을 제어하는 충전 기능 제어 신호를 송신할 수 있고, 상기 충전 기능 제어 신호는 수신장치(2000)를 제어하여 충전 기능을 인에이블(enabled) 또는 디스에이블(disabled)하게 하는 제어 신호일 수 있다.
이처럼, 송신측 통신부(1520)는 별도의 모듈로 구성되는 아웃-오브-밴드(out-of-band) 형식으로 통신될 수도 있으나 이에 한정되는 것은 아니며, 송신장치가 전송하는 전력신호를 이용하여 수신장치가 송신장치에 전달하는 피드백 신호를 이용하고, 송신장치가 전송하는 전력신호의 주파수를 쉬프트(Frequency shift)를 이용하여 송신장치가 수신장치에 신호를 전송하는 인-밴드(in-band) 형식으로 통신을 수행할 수도 있다. 예를 들어, 수신장치는 피드백 신호를 변조하여 충전 개시, 충전 종료, 배터리 상태 등의 정보를 피드백 신호를 통해 송신기에 전달할 수도 있다. 또한 상기 송신측 통신부(1520)는 상기 송신측 제어부(1510)와 별도로 구성될 수 있고, 상기 수신장치(2000) 또한 수신측 통신부(2620)가 수신 장치의 제어부(2610)에 포함되거나 별도로 구성될 수 있다.
또한 실시예에 따른 무선전력전송 시스템의 송신장치(1000)는 검출부(1600)를 추가로 구비할 수 있다.
상기 검출부(1600)는 송신측 교류/직류 변환부(1100)의 입력 신호, 송신측 교류/직류 변환부(1100)의 출력 신호, 송신측 직류/교류 변환부(1200)의 입력 신호, 송신측 직류/교류 변환부(1200)의 출력 신호, 송신측 임피던스 매칭부(1300)의 입력 신호, 송신측 임피던스 매칭부(1300)의 출력 신호, 송신측 코일(1400)의 입력 신호 또는 송신측 코일(1400) 상의 신호 중 적어도 하나를 검출할 수 있다. 일 예로, 상기 신호는 전류에 대한 정보, 전압에 대한 정보 또는 임피던스에 대한 정보 중 적어도 어느 하나를 포함할 수 있다. 검출된 신호는 통신 및 제어부(1500)로 피드백되고 이를 기초로 상기 통신 및 제어부(1500)는 송신측 교류/직류 변환부(1100), 송신측 직류/교류 변환부(1200), 송신측 임피던스 매칭부(1300)를 제어할 수 있다. 또한 상기 검출부(1600)의 검출 결과를 기초하여 상기 통신 및 제어부(1500)는 FOD(Foreign object detection)를 수행할 수 있다. 그리고 상기 검출되는 신호는 전압 및 전류 중 적어도 하나일 수 있다. 한편 상기 검출부(1600)는 통신 및 제어부(1500)와 상이한 하드웨어로 구성되거나, 하나의 하드웨어로 구현될 수 있다.
<수신장치>
도 4a 및 도 4b는 무선전력전송 시스템을 구성하는 서브 시스템 중 하나로 수신부(또는, 수신 장치)를 나타낸 블록도이다.
도 4a를 참조하면, 실시예에 따른 무선전력전송 시스템은 송신부(1000)와 상기 송신부(1000)로부터 무선으로 전력을 전송받는 수신부(2000)를 포함할 수 있다. 상기 수신장치(2000)는 상기 송신장치(1000)로부터 전송되는 교류 신호를 수신하는 수신측 공진회로부(201), 상기 수신측 공진회로부(201)로부터의 교류 전력을 전력 변환하여 직류 신호로 출력하는 수신측 전력변환부(202)와 상기 수신측 전력변환부(202)로부터 출력되는 직류 신호를 수신하여 충전되는 부하(2500) 그리고 상기 수신측 공진회로부(201)의 전류 전압을 센싱하거나, 상기 수신측 공진회로부(201)의 임피던스 매칭을 수행하거나, 상기 수신측 전력변환부(202)의 전력 변환을 제어하고, 상기 수신측 전력변환부(202)의 출력 신호의 레벨을 조절하거나, 상기 수신측 전력변환부(202)의 입력 또는 출력 전압이나 전류를 센싱 하거나, 상기 수신측 전력변환부(202)의 출력 신호의 상기 부하(2500)로의 공급 여부를 제어하거나, 상기 송신장치(1000)와 통신할 수 있는 수신측 제어부(203)를 포함할 수 있다. 그리고 상기 수신측 전력변환부(202)는 교류신호를 직류로 변환하는 전력변환부, 직류의 레벨을 가변하여 직류를 출력하는 전력변환부, 직류를 교류로 변환하는 전력변환부를 포함할 수 있다. 또한 도 4b를 참조하면, 실시예에 따른 무선전력전송 시스템은 송신장치(또는, 송신 장치)(1000)와 상기 송신장치(1000)로부터 무선으로 전력을 전송받는 수신장치(또는, 수신 장치)(2000)를 포함할 수 있고, 상기 수신장치(2000)는수신측 코일부(2100) 및 수신측 임피던스 매칭부(2200)로 구성된 수신측 공진회로부(2120), 수신측 교류/직류 변환부(2300), 직류/직류변환부(2400), 부하(2500) 및 수신측 통신 및 제어부(2600)를 포함할 수 있다. 그리고 상기 수신측 교류/직류 변환부(2300)는 교류 신호를 직류 신호로 정류하는 정류부로 지칭할 수 있다.
수신측 코일부(2100)은 자기 유도 방식 또는 자기 공진 방식을 통해 전력을 수신할 수 있다. 이와 같이 전력 수신 방식에 따라서 유도 코일 또는 공진 코일 중 적어도 하나 이상을 포함할 수 있다.
일 실시예로, 수신측 코일부(2100)는 근거리 통신용 안테나(NFC: Near Field Communication)와 함께 휴대단말에 배치될 수 있다. 그리고 상기 수신측 코일부(2100)은송신측 코일부(1400)와 동일할 수도 있고, 수신 안테나의 치수는 수신장치(200)의 전기적 특성에 따라 달라질 수도 있다.
수신측 임피던스 매칭부(2200)는 송신기(1000)와 수신기(2000) 사이의 임피던스 매칭을 수행한다.
상기 수신측교류/직류 변환부(2300)는 수신측 코일부(2100)으로부터 출력되는 교류 신호를 정류하여 직류 신호를 생성한다. 그리고 상기 수신측 교류/직류 변환부(2300)의 출력 전압은 정류 전압(Vrect)로 지칭할 수 있고,수신측 통신 및 제어부(2600)는 상기 수신측 교류/직류 변환부(2300)의 출력 전압을 검출하거나 변경할 수 있고,상기 수신측 교류/직류 변환부(2300)의 출력 전압의 최소값인 최소 정류 전압(Vrect_min)(또는 최소 출력 전압(Vrect_min)으로 지칭), 최대값인 최대 정류 전압(Vrect_max)(또는 최대 출력 전압(Vrect_max)으로 지칭), 상기 최소값과 최대값 사이의 값 중 어느 하나의 전압 값을 가지는 최적 정류 전압(Vrect_set)(또는 최적 출력 전압(Vrect_set)으로 지칭)에 대한 정보와 같은 상태 파라미터 정보를 송신장치(1000)에 전송할 수 있다.
수신측 직류/직류 변환부(2400)는 수신측 교류/직류 변환부(2300)에서 출력되는 직류 신호의 레벨을 부하(2500)의 용량에 맞게 조정할 수 있다.
상기 부하(2500)는 배터리, 디스플레이, 음성 출력 회로, 메인 프로세서 그리고 각종 센서들을 포함할 수 있다.
수신측 통신 및 제어부(2600)는 송신측 통신 및 제어부(1500)로부터 웨이크-업 전력에 의해 활성화 될 수 있고, 상기 송신측 통신 및 제어부(1500)와 통신을 수행하고, 수신장치(2000)의 서브 시스템의 동작을 제어할 수 있다.
상기 수신장치(2000)는 단수 또는 복수개로 구성되어 송신장치(1000)로부터 동시에 에너지를 무선으로 전달 받을 수 있다. 즉 자기 공진 방식의 무선전력전송 시스템에서는 하나의 송신장치(1000)로부터 복수의 타켓 수신장치(2000)가 전력을 공급받을 수 있다. 이때 상기 송신장치(1000)의 송신측 매칭부(1300)는 복수개의 수신장치(2000)들 사이의 임피던스 매칭을 적응적으로 수행할 수 있다. 이는 자기 유도 방식에서 서로 독립적인 수신측 코일부를 복수개 구비하는 경우에도 동일하게 적용될 수 있다.
또한 상기 수신장치(2000)가 복수개로 구성된 경우 전력 수신 방식이 동일한 시스템이거나, 서로 다른 종류의 시스템이 될 수 있다. 이 경우, 송신장치(1000)는 자기 유도 방식 또는 자기 공진 방식으로 전력을 전송하는 시스템이거나 양 방식을 혼용한 시스템일 수 있다.
한편 무선전력전송 시스템의 신호의 크기와 주파수 관계를 살펴보면, 자기 유도 방식의 무선 전력 전송의 경우, 송신장치(1000)에서 송신측 교류/직류 변환부(1100)은 수십 또는 수백 V대(예를 들어 110V~220V)의 수십 또는 수백 Hz 대(예를 들어 60Hz)의 교류 신호를 인가 받아 수V 내지 수십V, 수백V(예를 들어 10V~20V)의 직류 신호로 변환하여 출력할 수 있고, 송신측 직류/교류 변환부(1200)는 직류 신호를 인가 받아 KHz대(예를 들어 125KHz)의 교류 신호를 출력할 수 있다. 그리고 수신장치(2000)의수신측 교류/직류 변환부(2300)는 KHz대(예를 들어 125KHz)의 교류 신호를 입력 받아 수V 내지 수십V, 수백V대(예를 들어 10V~20V)의 직류 신호로 변환하여 출력할 수 있고, 수신측 직류/직류변환부(2400)는 부하(2500)에 적합한, 예를 들어 5V의 직류 신호를 출력하여 상기 부하(2500)에 전달할 수 있다. 그리고 자기 공진 방식의 무선 전력 전송의 경우, 송신장치(1000)에서 송신측 교류/직류 변환부(1100)은 수십 또는 수백 V대(예를 들어 110V~220V)의 수십 또는 수백 Hz 대(예를 들어 60Hz)의 교류 신호를 인가 받아 수V 내지 수십V, 수백V(예를 들어 10V~20V)의 직류 신호로 변환하여 출력할 수 있고, 송신측 직류/교류 변환부(1200)는 직류 신호를 인가받아 MHz대(예를 들어 6.78MHz)의 교류 신호를 출력할 수 있다. 그리고 수신장치(2000)의수신측 교류/직류 변환부(2300)는 MHz(예를 들어 6.78MHz)의 교류 신호를 입력 받아 수V 내지 수십V, 수백V(예를 들어 10V~20V)의 수신측 직류 신호로 변환하여 출력할 수 있고, 직류/직류변환부(2400)는 부하(2500)에 적합한, 예를 들어 5V의 직류 신호를 출력하여 상기 부하(2500)에 전달할 수 있다.
도 5는 본 발명의 실시예에 따른 무선전력전송 송신장치를 나타낸 블록도이다.
도 5를 참조하면, 본 발명의 제1 및 제2 실시예에 따른 송신장치(1000)의 송신측 직류/교류 변환부(1200)는 제1 및 제2 직류/교류 변환부(1210, 1220)을 포함할 수 있고, 송신측 임피던스 매칭부(1300)는 제1 및 제2 임피던스 매칭부(1310, 1320)를 포함할 수 있다. 그리고 송신측 코일부(1400)는 제1 및 제2 송신측 코일부(1410, 1420)를 포함할 수 있다.
제1 실시예에 따른 상기 송신장치(1000)는 제1 송신측 코일부(1410)와 제2 송신측 코일부(1420) 그리고 상기 제2 송신측 코일부(1420) 양단에 연결된 공진회로를 포함하는 손실 억제부(1430)을 포함할 수 있다. 그리고 상기 손실 억제부(1430)의 공진 회로는 상기 제1 송신측 코일부(1410)를 구동하기 위한 제1 주파수의 신호에서 공진할 수 있다. 그리고 상기 공진회로는 적어도 하나의 커패시터와 적어도 하나의 인덕터를 포함할 수 있다. 그리고 상기 공진회로는 직렬 공진회로일 수 있다. 또한 상기 손실 억제부(1430)는 상기 제2 송신측 코일부(1420)를 구동하기 위한 제2 주파수에서 기 설정된 임피던스의 크기 이상의 임피던스의 크기를 가질 수 있다. 이 때 상기 기 설정된 임피던스의 크기는 상기 제2 주파수에서 상기 손실 억제부(1430)가 상기 제2 송신측 코일부(1420)에 끼치는 영향의 최소화를 고려하여 미리 설정된 임계치일 수 있다.
제2 실시예에 따른 상기 송신장치(1000)는 제1 송신측 코일부(1410)와 제2 송신측 코일부(1420) 그리고 상기 제2 송신측 코일부(1420)의 양단에 연결된 스위치부(1430)를 포함할 수 있다. 상기 스위치부(1430)는 적어도 하나의 스위치 소자를 포함하고, 상기 스위치부(1430)는 상기 제1 송신측 코일부(1410)를 구동하여 무선 전력을 전송할 때 턴 온(Turn On)됨으로써 단락되어 상기 제2 송신측 코일부(1420) 양단에 도선이 병렬 연결된 것과 같은 효과를 가져오고, 상기 제2 송신측 코일부(1420)를 구동하여 무선 전력을 전송할 때 턴 오프(Turn Off)됨으로써 개방되어 상기 제2 송신측 코일부(1420)의 양단에 무한대의 저항이 병렬 연결된 것과 같은 효과를 가져올 수 있다.
제1 및 제2 실시예에 따른 상기 제1 송신측 코일부(1410)는 공진형 코일부일 수 있고, 이 경우 상기 제1 직류/교류 변환부(1210)는 상기 공진형 코일부(1410)에 제1 주파수인 6.78MHz 또는 6.78MHz 근방의 주파수를 가진 교류 전력을 제공할 수 있으며, 상기 제1 임피던스 매칭부(1310)는 상기 공진형 코일부(1410)와 수신장치(200)의 수신측 코일부(2100)간의 임피던스 매칭을 수행할 수 있다.
또한 제1 및 제2 실시예에 따른 상기 제2 송신측 코일부(1420)는 유도형 코일부일 수 있고, 이 경우 상기 제2 직류/교류 변환부(1220)는 상기 유도형 코일부(1420)에 제2 주파수인 125KHz 또는 125KHz 근방의 주파수를 가진 교류 전력을 제공할 수 있으며, 상기 제2 임피던스 매칭부(1320)는 상기 유도형 코일부(1420)와 수신장치(200)의 수신측 코일부(2100)간의 임피던스 매칭을 수행할 수 있다.
한편 제1 및 제2 실시예에 따른 송신측 통신 및 제어부(1500)는 상기 제1 직류/교류 변환부(1210) 또는 제2 직류/교류 변환부(1220) 중 어느 하나를 제어하여 송신장치(1000)가 자기 공진 방식 또는 자기 유도 방식으로 무선 전력을 전송하도록 할 수 있다. 즉, 상기 송신측 통신 및 제어부(1500)는 상기 제1 직류/교류 변환부(1210)가 구동하도록 상기 제1 직류/교류 변환부(1210)를 인에이블(enable)하고 상기 제2 직류/교류 변환부(1220)가 구동하지 않도록 상기 제2 직류/교류 변환부(1220)를 디스에이블(disable)하고, 상기 공진형 코일부(1410)에 제1 주파수의 신호를 공급함으로써 자기 공진 방식으로 송신장치(1000)가 수신장치(2000)로 전력 전송을 하고, 상기 송신측 통신 및 제어부(1500)는 상기 제2 직류/교류 변환부(1220)를 인에이블(enable)하고 상기 제1 직류/교류 변환부(1210)를 디스에이블(disable)하고, 상기 유도형 코일부(1420)에 제2 주파수의 신호를 공급함으로써 자기 유도 방식으로 송신장치(1000)가 수신장치(2000)로 전력을 전송하게 할 수 있다.
한편 제2 실시예에 따르면, 제1 직류/교류 변환부(1210)를 구동시키고, 상기 제2 직류/교류 변환부(1220)를 구동 시키지 않는 경우, 상기 제1 직류/교류 변환부(1210)의 동작에 동기하여 상기 송신측 통신 및 제어부(1500)로부터의 스위칭 제어 신호에 의해 스위치부(1430)의 스위치 소자를 단락시키고, 상기 제2 직류/교류 변환부(1220)를 구동시키고, 상기 제1 직류/교류 변환부(1210)를 구동 시키지 않는 경우, 상기 제2 직류/교류 변환부(1220)의 동작에 동기하여 상기 송신측 통신 및 제어부(1500)로부터의 스위칭 제어 신호에 의해 스위치부(1430)의 스위치 소자를 개방시킬 수 있다.
도 6 및 도 7은 본 발명의 실시예에 따른 송신측 코일부의 구조를 나타낸 도면이다.
도 6 및 도 7을 참조하면, 본 발명의 제1 및 제2 실시예에 따른 송신측 코일부(1400)는 코일이 실장되는 코일 인쇄회로기판(Printed circuit board; 3100)과 상기 코일 인쇄회로기판(3100)의 일면에 부착된 차폐제(3200) 그리고 상기 차폐제(3200)의 일면에 부착되고 상기 코일에 전기적 신호를 전송하는 송신 인쇄회로기판(3300)을 포함할 수 있다. 또한 상기 코일 인쇄회로기판(3100) 상에는 공진형 코일부(1410)를 구성하는 공진 코일(1411)과 유도형 코일부(1420)를 구성하는 유도 코일(1421)이 형성될 수 있다. 상기 공진 코일(1411)은 상기 코일 인쇄회로기판(3100)의 가장자리를 둘러싸며 배치될 수 있고, 상기 유도 코일(1421)은 상기 코일 인쇄회로기판(3100)의 중심 영역에 배치되어 상기 공진 코일(1411)이 상기 유도 코일(1421)을 감쌀 수 있다.
상기 제1 및 제2 실시예에 따른 차폐제(3200)는 상기 코일 인쇄회로기판(3100)과 상기 송신 인쇄회로기판(3300)을 전기적으로 격리하여, 상기 송신 인쇄회로기판(3300)의 구동에 따라 발생하는 전자기장의 상기 공진 및 유도 코일(1411, 1421)에 미치는 영향과 상기 공진 및 유도 코일(1411, 1421)의 구동에 따라 발생하는 전자기장의 상기 송신 인쇄회로기판(3300)에 미치는 영향을 최소화 할 수 있다.
도 8은 본 발명의 제1 및 제2 실시예에 따른 송신측 코일부를 나타낸 블록도이고, 도 9는 제1 실시예에 따른 송신측 코일부의 등가 회로도이다.
<제1 실시예에 따른 송신측 코일부 >
도 8 및 도 9를 참조하면, 본 발명의 제1 실시예에 따른 송신측 코일부(1400)는 공진형 코일부(1410)와 유도형 코일부(1420) 그리고 손실 억제부(1430)를 포함할 수 있다.
상기 손실 억제부(1430)는 상기 유도형 코일부(1420)와 제2 임피던스 매칭부(1320) 사이에 연결되고, 구체적으로 상기 유도형 코일부(1420)와 병렬 연결되고, 상기 제2 임피던스 매칭부(1320)와 병렬로 연결될 수 있다.
상기 손실 억제부(1430)는 상기 공진형 코일부(1410)에 제1 구동 주파수의 교류 신호가 공급될 때, 상기 유도형 코일부(1420)의 양단을 단락, 다시 말해 상기 유도형 코일부(1420)의 양단을 0V로 만드는 기능을 할 수 있다.
각 구성을 등가회로로 표현하면, 상기 유도형 코일부(1420)는 제1 인덕터(L1)로 표현할 수 있고, 상기 제2 임피던스 매칭부(1320)는 상기 유도형 코일부(1420)의 일단에 일단이 연결되고 타단이 제1 노드(N1)에 연결된 제1 커패시터(C1), 상기 일단이 상기 제1 노드(N1)에 연결되고 타단이 제2 노드(N2)에 연결된 제2 커패시터(C2), 일단이 상기 제1 노드(N1)에 연결되고 타단이 제2 직류/교류 변환부(1220)의 일단에 연결된 제2 인덕터(L2) 그리고 일단이 상기 제2 노드(N2)에 연결되고 타단이 상기 제2 직류/교류 변환부(1220)의 타단에 연결된 제3 인덕터(L3)로 표현할 수 있으며, 상기 상기 공진형 코일부(1410)는 제4 인덕터(L4)로 표현할 수 있다.
상기 손실 억제부(1430)는 손실 억제용 커패시터(Cp) 및 손실 억제용 인덕터(Lp)를 포함할 수 있다.
상기 손실 억제용 커패시터(CP)와 상기 손실 억제용 인덕터(Lp)는 서로 직렬 연결되어 상기 제1 인덕터(L1) 양단에 연결될 수 있다. 다시 말해 상기 제1 커패시터(C1)의 일단과 상기 제2 노드(N2) 사이에 연결될 수 있다.
이하 손실 억제부(1430)의 기능을 구체적으로 살펴본다.
상기 손실 억제부(1430)가 연결되지 않은 상태에서, 제1 주파수(f1)의 신호가 공진형 코일부(1410)에 인가될 때 상기 공진형 코일부(1410)에서 유도형 코일부(1420) 측을 바라본 입력 임피던스(Zin), 즉 상기 제4 인덕터(L4)에서 유도형 코일부(1420) 측을 바라본 입력 임피던스(Zin)을 구하면 하기 수학식 3을 충족할 수 있다.
수학식 3
Figure PCTKR2015010519-appb-I000001
Figure PCTKR2015010519-appb-I000002
Figure PCTKR2015010519-appb-I000003
(상기 수학식에서
Figure PCTKR2015010519-appb-I000004
이고 M1은 상호 인덕턴스이고, k이는 결합계수이고,
Figure PCTKR2015010519-appb-I000005
는 제1 주파수이며, Z1=R1+jX1을 의미한다)
상기 수학식 3에서 입력 임피던스(Zin)의 리얼 파트(Real part)가 존재함으로 알 수 있고, 이러한 리얼 파트에 의하여 전력 손실이 발생할 수 있다.
상기 손실 억제부(1430)가 연결된 상태에서, 제1 주파수(f1)의 신호가 공진형 코일부(1410)에 인가되고, 상기 손실 억제부(1430)가 상기 제1 주파수(f1)에 의하여 공진 상태가 되는 경우, 상기 공진형 코일부(1410)에서 유도형 코일부(1420) 측을 바라본 입력 임피던스(Zin), 즉 상기 제4 인덕터(L4)에서 유도형 코일부(1420) 측을 바라본 입력 임피던스(Zin)을 구하면 하기 수학식 4를 충족할 수 있다.
수학식 4
Figure PCTKR2015010519-appb-I000006
Figure PCTKR2015010519-appb-I000007
Figure PCTKR2015010519-appb-I000008
상기 수학식 4에서 입력 임피던스(Zin)는 리얼 파트(Real part)가 존재하지 않음을 알 수 있고, 이러한 리얼 파트에 부 존재로 인하여 제1 주파수(f1)로 공진형 코일부(1410)을 구동하는 경우 유도형 코일부(1420)에서의 전력 손실이 이상적으로는 0, 실제적으로는 전력 손실이 최소화됨을 알 수 있다.
도 10은 손실 억제부의 주파수에 따른 임피던스 크기를 나타낸 그래프이다.
도 10을 참조하면, 손실 억제부(1430)의 주파수에 따른 임피던스 크기를 살펴보면, 특정 주파수에서 임피던스(Z) 크기가 최소가 되는 것을 알 수 있다. 즉, 상기 특정 주파수를 공진형 코일부(1410)를 구동하기 위한 제1 주파수(f1)가 되도록 상기 손실 억제부(1430)가 포함하는 소자 값을 셋팅(Setting)할 수 있다. 구체적으로 상기 손실 억제부(1430)의 손실 억제용 커패시터(Cp)와 손실 억제용 인덕터(Lp)가 직렬 연결되고, 제1 주파수(f1)에서 이들이 직렬 공진하여 등가적으로 단락회로처럼 동작 하도록, 하기 수학식 5를 충족하는 손실 억제용 커패시터(Cp)의 커패시턴스 값과 손실 억제용 인덕터(Lp)의 인덕턴스 값을 설정할 수 있다.
수학식 5
Figure PCTKR2015010519-appb-I000009
예를 들어 상기 제1 주파수(f1)가 6.78MHz인 이고 손실 억제용 인덕터(Lp)의 인덕턴스가 5.516uH인 경우, 손실 억제용 커패시터(Cp)의 커패시턴스는 0.1nF이 될 수 있고, 그에 따라 손실 억제부(1430)의 임피던스가 하기 수학식 6을 충족할 수 있다. 그리하여 6.78MHz에서 상기 손실 억제부(1430)가 직렬 공진하여 유도형 코일부(1420) 양단에 도선이 연결된 효과를 가지도록 하고, 전술한 수학식 4에 따라 입력 임피던스(Zin)의 리얼 파트를 제거할 수 있다. 그리하여 송신장치(1000)가 자기 공진 방식으로 무선 전력을 전송하는 경우, 유도형 코일부(1420)에서의 전력 손실을 최소화 할 수 있다.
수학식 6
Figure PCTKR2015010519-appb-I000010
본 발명에 따른 실시예는 공진형 코일부(1410)의 입력단의 임피던스에서 저항(Real part) 성분이 최소가 되도록 하여 공진형 코일부(1410)와 유도형 코일부(1420)의 간섭에 의하여 전력 로스(Loss)를 최소화하며, 각각의 자기 유도 방식의 전력 전송과 자기 공진 방식의 전력 전송이 각각 독립적으로 동작하도록 할 수 있다.
또한 유도 코일부(1420) 양단에 손실 억제용 커패시터(Cp)와 손실 억제용 인덕터(Lp)를 직렬 연결하여 제1 주파수(f1)인 6.78MHz에서 공진하도록 함으로써 공진형 코일부(1410)에서 바라보는 임피던스에서는 리얼(Real) 성분은 존재하지 않고, 허수(imaginary) 성분만 남게 됨으로써 공진형 코일부(1410)와 유도형 코일부(1420)의 유도성 커플링(inductive coupling)에 의한 손실 발생이 제거됨을 알 수 있다. 또한, 손실 억제용 커패시터(Cp)와 손실 억제용 인덕터(Lp)의 직렬연결로 인하여 자기 유도 방식으로 송신장치(1000)가 동작하는데 있어서 손실 억제부(1430)의 영향을 최소화할 필요가 있다. 구체적으로 그림10에서 볼 수 있는 것과 같이 자기 유도 방식으로 송신장치(1000)가 동작하는 제2 주파수(일 예로 200kHz, f2)에서 손실 억제용 커패시터(Cp)와 손실 억제용 인덕터(Lp)의 직렬 연결은 고(High) 임피던스가 되어, 유도형 코일부(1420)의 양단에 개방회로가 연결된 것과 같은 효과를 가짐으로써 자기 유도 방식으로 송신장치(1000)의 동작할 때 상기 손실 억제부(1430)가 끼치는 영향은 매우 작다. 예를 들어 손실 억제용 인덕터(Lp)의 인덕턴스로 5.516uH인 인덕터와, 손실 억제용 커패시터(Cp)의 커패시턴스로 0.1nF의 커패시터를 사용하는 경우, 제1 주파수(일 예로 200kHz, f1)에서 손실 억제부(1430)의 임피던스 값은 하기 수학식 7과 같이 매우 큰 값임을 알 수 있다.
수학식 7
Figure PCTKR2015010519-appb-I000011
손실 억제용 커패시터(Cp)와 손실 억제용 인덕터(Lp)의 곱의 값의 범위를 정할 수 있는데, 손실 억제용 커패시터(Cp)와 손실 억제용 인덕터(Lp)의 값이 식7에서 도출한 값과 정확히 일치할 필요가 없이, 그 근처 값을 가지더라도 제1 주파수(f1)에서는 손실 억제용 커패시터(Cp)와 손실 억제용 인덕터(Lp)의 직렬 연결 회로인 손실 억제부(1430)의 임피던스는 작은 값을 가지므로 입력 임피던스(Zin)의 저항 성분이 최소가 될 수 있고 그에 따라 또한 하나의 코일 인쇄회로기판(3100)에 실장되어 서로 인접한 공진형 코일부(1410)와 유도형 코일부(1420)간의 유도성 커플링(Inductive coupling)에 의해 발생할 수 있는 전력 손실을 줄여줄 수 있는 효과를 얻을 수 있다.
한편 상기 손실 억제부(1430)은 가변 커패시터 및 가변 인덕터를 포함할 수 있다. 상기 가변 커패시터의 커패시턴스와 가변 인덕터의 인덕턴스는 송신측 통신 및 제어부(1500)의 제어 하에 변경될 수 있다. 예를 들어 제1 직류/교류 변환부(1210)을 구동하여 공진형 코일부(1410)에 제1 주파수를 가진 교류 신호를 전송할 때 상기 제1 주파수가 가변되면, 상기 송신측 통신 및 제어부(1500)는 가변 커패시터의 커패시턴스와 가변 인덕터의 인덕턴스 중 적어도 하나를 변경하여 상기 손실 억제부(1430)가 가변된 주파수에서 직렬 공진하도록 하고 그에 따라 공진형 코일부(1410)와 유도형 코일부(1420)간의 유도성 커플링(Inductive coupling)에 의해 발생할 수 있는 전력 손실을 최소화 할 수 있다.
도 11은 본 발명의 실시예에 따른 송신장치에서 제1 및 제2 송신측 직류/교류 변환부와 제1 및 제2 송신측 임피던스 매칭부 그리고 제1 및 제2 송신측 코일부를 나타낸 도면이다.
도 11을 참조하면, 제1 송신측 직류/교류 변환부(1210)는 교류/직류 변환부(1100)로부터 제1 직류 신호(DC1)를 제5 노드(Ne) 노드로 입력 받아 제3 및 제4 노드(Nc, Nd) 양단으로 교류 신호를 출력할 수 있다. 그리고 상기 제3 및 제4 노드(Nc, Nd) 양단의 교류 신호에 의해 제1 송신측 코일부(1410)에 전류가 흐르고, 흐르는 전류에 의해 발생한 자속을 매개로 수신장치(2000)의 수신측 코일부(2100)에 전력을 전송한다.
상기 제1 송신측 직류/교류 변환부(1210)는 제1 및 제2 스위치(Sa, Sb)와 제1 및 제2 고주파 필터부(1211, 1212)를 포함할 수 있다. 상기 제1 고주파 필터부(1211)는 제3 및 제5 노드(Nc, Ne) 사이에 접속되고, 상기 제2 고주파 필터부(1212)는 제4 및 제5 노드(Nd, Ne) 사이에 접속될 수 있다. 그리고 제1 스위치(Sa)는 제3 노드(Nc)와 기준 접지 사이에 접속될 수 있고, 제2 스위치(Sb)는 제4 노드(Nd)와 기준 접지 사이에 접속될 수 있다.
상기 제1 및 제2 스위치(Sa, Sb)에는 상기 제1 및 제2 스위치(Sa, Sb)가 서로 교번하며 도통할 수 있도록 펄스 폭 변조 신호(Pulse width modulation signal)가 공급될 수 있고, 상기 상기 제1 및 제2 스위치(Sa, Sb)는 송신측 통신 및 제어부(1500)에 의하여 제1 주파수로 동작할 수 있다. 그리고 상기 제1 및 제2 고주파 필터부(1211, 1212)는 제5 노드(Ne)로부터 제공된 직류 신호(DC1)에 포함된 고주파 신호를 감쇠시킬 수 있고, 상기 제1 및 제2 고주파 필터부(1211, 1212) 각각은 적어도 하나 이상의 초크 코일(RFC)로 이루어질 수 있다.
상기 제1 송신측 임피던스 매칭부(1310)는 제3 내지 제5 커패시터(C3, C4, C5)를 포함할 수 있고, 상기 제3 커패시터(C3)는 제1 및 제3 노드(Na, Nc) 사이에 접속되고, 제4 커패시터(C4)는 제1 및 제2 노드(Na, Nb) 사이에 접속되고, 제5 커패시터(C5)는 제2 및 제4 노드(Na, Nd) 사이에 접속될 수 있다.
상기 제1 송신측 코일부(1410)는 공진형 코일부로써 제1 및 제2 노드(Na, Nb) 사이에 접속될 수 있다.
또한 손실 엑제부(1430)는 상기 제1 송신측 코일부(1410) 양단, 즉 제1 및 제2 노드(Na, Nb) 사이에 접속될 수 있다.
상기 제2 송신측 직류/교류 변환부(1220)는 교류/직류 변환부(1100)로부터 제2 직류 신호(DC2)를 제5 노드(N5) 노드로 입력 받아 제3 및 제4 노드(N3, N4) 양단으로 교류 신호를 출력할 수 있다. 그리고 상기 제3 및 제4 노드(N3, N4) 양단의 교류 신호에 의해 제2 송신측 코일부(1420)에 전류가 흐르고, 흐르는 전류에 의해 발생한 자속을 매개로 수신장치(2000)의 수신측 코일부(2100)에 전력을 전송한다.
상기 제2 송신측 직류/교류 변환부(1220)는 제1 내지 제4 스위치(S1, S2, S3, S4)를 포함할 수 있고, 상기 제1 스위치(S1)는 제3 노드(N3)와 제5 노드(N5) 사이에 접속될 수 있고, 상기 제2 스위치(S2)는 제3 노드(N3)와 기준 접지 사이에 접속될 수 있고, 상기 제3 스위치(S3)는 제4 노드(N4)와 제5 노드(N5) 사이에 접속될 수 있고, 상기 제4 스위치(S4)는 제4 노드(N4)와 기준 접지 사이에 접속될 수 있다.
상기 제1 및 제4 스위치(S1, S4)는 동일 위상, 제2 및 제3 스위치(S2, S3)는 동일 위상 그리고 제1 및 제2 스위치(S1, S2)는 반대 위상을 가지고 스위칭 할 수 있다. 그리고 송신측 통신 및 제어부(1500)에 의하여 제2 주파수로 동작할 수 있다.
상기 제2 송신측 임피던스 매칭부(1320)는 제1 노드(N1)와 제3 노드(N3) 사이에 접속된 제2 인덕터(L2), 제2 노드(N2)와 제4 노드(N4) 사이에 접속된 제3 인덕터(L3), 제1 노드(N1)와 제6 노드(N6) 사이에 접속된 제1 커패시터(C1) 및 제1 노드(N1)와 제2 노드(N2) 사이에 접속된 제2 커패시터(C2)를 포함할 수 있다.
상기 제2 송신측 코일부(1420)는 유도형 코일부로써 제1 및 제2 노드(N1, N2) 사이에 접속될 수 있다.
도 12는 본 발명의 실시예에 따른 송신장치가 제1 주파수 하에서 자기 공진 방식으로 전력을 공급 시 등가회로를 나타낸 도면이다.
도 12를 참조하면, 송신장치(1000)가 자기 공진 방식으로 전력을 전송할 때, 제1 송신측 직류/교류 변환부(1210)에 제1 직류 신호(DC1)가 공급되고, 제2 송신측 직류/교류 변환부(1220)에 제2 직류 신호(DC2)의 공급이 차단될 수 있다. 그리고 송신측 통신 및 제어부(1500)에 의하여 상기 제1 송신측 직류/교류 변환부(1210)의 제1 및 제2 스위치(Sa, Sb)가 제1 주파수로 동작하고, 손실 억제부(1430)의 직렬 공진 주파수가 제1 주파수 또는 상기 제1 주파수에 근접한 주파수일 때 상기 손실 억제부(1430)는 단락 회로처럼 동작한다. 따라서 상기 손실 억제부(1430)는 제6 및 제2 노드(N6, N2) 사이에 연결된 유도형 코일부(1420)에 도선이 병렬 연결된 효과를 가져와 상기 공진형 코일부(1410)에서 상기 유도형 코일부(1420)를 바라본 입력 임피던스(Zin)에서 저항 성분이 최소가 되도록 할 수 있고, 그에 따라 상기 공진현 코일부(1410)에서 발생한 자속이 유도형 코일부(1420)에 쇄교하면서 발생하는 전력 손실을 최소화할 수 있다.
도 13은 본 발명의 실시예에 따른 송신장치가 제2 주파수 하에서 자기 유도 방식으로 전력을 공급 시 등가회로를 나타낸 도면이다.
도 13을 참조하면, 송신장치(1000)가 자기 유도 방식으로 전력을 전송할 때, 제1 송신측 직류/교류 변환부(1210)에 제1 직류 신호(DC1)의 공급이 차단되고, 제2 송신측 직류/교류 변환부(1220)에 제2 직류 신호(DC2)가 공급될 수 있다. 그리고 송신측 통신 및 제어부(1500)에 의하여 상기 제2 송신측 직류/교류 변환부(1220)의 제1 내지 제4 스위치(S1~S4)가 제2 주파수로 동작하고, 손실 억제부(1430)는 상기 제2 주파수에서 고 임피던스를 가져 개방 회로처럼 동작한다. 따라서 자기 유도 방식으로 전력을 전송할 때 송신장치(1000)의 동작에 미치는 영향을 최소화할 수 있다.
<제2 실시예에 따른 송신측 코일부>
도 14는 제2 실시예에 따른 송신측 코일부의 등가 회로도이다.
도 8 및 도 14를 참조하면, 본 발명의 제2 실시예에 따른 송신측 코일부(1400)는 공진형 코일부(1410)와 유도형 코일부(1420) 그리고 스위치부(1430)를 포함할 수 있다.
상기 스위치부(1430)는 상기 유도형 코일부(1420)와 제2 임피던스 매칭부(1320) 사이에 연결되고, 구체적으로 상기 유도형 코일부(1420)와 병렬 연결되고, 상기 제2 임피던스 매칭부(1320)와 병렬로 연결될 수 있다.
상기 스위치부(1430)는 상기 공진형 코일부(1410)에 제1 구동 주파수의 교류 신호가 공급될 때, 상기 유도형 코일부(1420)의 양단을 단락, 다시 말해 상기 유도형 코일부(1420)의 양단을 0V로 만드는 기능을 할 수 있다.
각 구성을 등가회로로 표현하면, 상기 유도형 코일부(1420)는 제1 인덕터(L1)로 표현할 수 있고, 상기 제2 임피던스 매칭부(1320)는 상기 유도형 코일부(1420)의 일단에 일단이 연결되고 타단이 제1 노드(N1)에 연결된 제1 커패시터(C1), 상기 일단이 상기 제1 노드(N1)에 연결되고 타단이 제2 노드(N2)에 연결된 제2 커패시터(C2), 일단이 상기 제1 노드(N1)에 연결되고 타단이 제2 직류/교류 변환부(1220)의 일단에 연결된 제2 인덕터(L2) 그리고 일단이 상기 제2 노드(N2)에 연결되고 타단이 상기 제2 직류/교류 변환부(1220)의 타단에 연결된 제3 인덕터(L3)로 표현할 수 있으며, 상기 상기 공진형 코일부(1410)는 제4 인덕터(L4)로 표현할 수 있다.
상기 스위치부(1430)는 송신측 통신 및 제어부(1500)로부터의 스위칭 제어 신호에 따라 구동할 수 있는 스위치 소자를 포함할 수 있다.
상기 스위치 소자는 상기 제1 인덕터(L1) 양단에 연결, 즉 상기 제1 인덕터(L1)와 병렬 연결될 수 있다. 다시 말해 상기 제1 커패시터(C1)의 일단과 상기 제2 노드(N2) 사이에 연결될 수 있다.
이하 스위치부(1430)의 기능을 구체적으로 살펴본다.
상기 스위치부(1430)가 연결되지 않은 상태에서, 제1 주파수(f1)의 신호가 공진형 코일부(1410)에 인가될 때 상기 공진형 코일부(1410)에서 유도형 코일부(1420) 측을 바라본 입력 임피던스(Zin), 즉 상기 제4 인덕터(L4)에서 유도형 코일부(1420) 측을 바라본 입력 임피던스(Zin)을 구하면 전술한 수학식 3을 충족할 수 있다.
상기 수학식 3에서 입력 임피던스(Zin)의 리얼 파트(Real part)가 존재함으로 알 수 있고, 이러한 리얼 파트에 의하여 전력 손실이 발생할 수 있다.
상기 스위치부(1430)가 연결된 상태에서, 제1 주파수(f1)의 신호가 공진형 코일부(1410)에 인가되고, 상기 스위치부(1430)가 단락 상태가 되는 경우, 상기 공진형 코일부(1410)에서 유도형 코일부(1420) 측을 바라본 입력 임피던스(Zin), 즉 상기 제4 인덕터(L4)에서 유도형 코일부(1420) 측을 바라본 입력 임피던스(Zin)을 구하면 전술한 수학식4를 충족할 수 있다.
상기 수학식 4에서 입력 임피던스(Zin)는 리얼 파트(Real part)가 존재하지 않음을 알 수 있고, 이러한 리얼 파트에 부 존재로 인하여 제1 주파수(f1)로 공진형 코일부(1410)을 구동하는 경우 유도형 코일부(1420)에서의 전력 손실이 이상적으로는 0, 실제적으로는 전력 손실이 최소화됨을 알 수 있다.
도 15는 본 발명의 실시예에 따른 송신장치에서 제1 및 제2 송신측 직류/교류 변환부와 제1 및 제2 송신측 임피던스 매칭부 그리고 제1 및 제2 송신측 코일부를 나타낸 도면이다.
도 15를 참조하면, 제1 송신측 직류/교류 변환부(1210)는 교류/직류 변환부(1100)로부터 제1 직류 신호(DC1)를 제5 노드(Ne) 노드로 입력 받아 제3 및 제4 노드(Nc, Nd) 양단으로 교류 신호를 출력할 수 있다. 그리고 상기 제3 및 제4 노드(Nc, Nd) 양단의 교류 신호에 의해 제1 송신측 코일부(1410)에 전류가 흐르고, 흐르는 전류에 의해 발생한 자속을 매개로 수신부(2000)의 수신측 코일부(2100)에 전력을 전송한다.
상기 제1 송신측 직류/교류 변환부(1210)는 제1 및 제2 스위치(Sa, Sb)와 제1 및 제2 고주파 필터부(1211, 1212)를 포함할 수 있다. 상기 제1 고주파 필터부(1211)는 제3 및 제5 노드(Nc, Ne) 사이에 접속되고, 상기 제2 고주파 필터부(1212)는 제4 및 제5 노드(Nd, Ne) 사이에 접속될 수 있다. 그리고 제1 스위치(Sa)는 제3 노드(Nc)와 기준 접지 사이에 접속될 수 있고, 제2 스위치(Sb)는 제4 노드(Nd)와 기준 접지 사이에 접속될 수 있다.
상기 제1 및 제2 스위치(Sa, Sb)에는 상기 제1 및 제2 스위치(Sa, Sb)가 서로 교번하며 도통할 수 있도록 펄스 폭 변조 신호(Pulse width modulation signal)가 공급될 수 있고, 상기 상기 제1 및 제2 스위치(Sa, Sb)는 송신측 통신 및 제어부(1500)에 의하여 제1 주파수로 동작할 수 있다. 그리고 상기 제1 및 제2 고주파 필터부(1211, 1212)는 제5 노드(Ne)로부터 제공된 직류 신호(DC1)에 포함된 고주파 신호를 감쇠시킬 수 있고, 상기 제1 및 제2 고주파 필터부(1211, 1212) 각각은 적어도 하나 이상의 초크 코일(RFC)로 이루어질 수 있다.
상기 제1 송신측 임피던스 매칭부(1310)는 제3 내지 제5 커패시터(C3, C4, C5)를 포함할 수 있고, 상기 제3 커패시터(C3)는 제1 및 제3 노드(Na, Nc) 사이에 접속되고, 제4 커패시터(C4)는 제1 및 제2 노드(Na, Nb) 사이에 접속되고, 제5 커패시터(C5)는 제2 및 제4 노드(Na, Nd) 사이에 접속될 수 있다.
상기 제1 송신측 코일부(1410)는 공진형 코일부로써 제1 및 제2 노드(Na, Nb) 사이에 접속될 수 있다.
또한 스위치부(1430)는 상기 제1 송신측 코일부(1410) 양단, 즉 제1 및 제2 노드(Na, Nb) 사이에 접속될 수 있다.
상기 제2 송신측 직류/교류 변환부(1220)는 교류/직류 변환부(1100)로부터 제2 직류 신호(DC2)를 제5 노드(N5) 노드로 입력 받아 제3 및 제4 노드(N3, N4) 양단으로 교류 신호를 출력할 수 있다. 그리고 상기 제3 및 제4 노드(N3, N4) 양단의 교류 신호에 의해 제2 송신측 코일부(1420)에 전류가 흐르고, 흐르는 전류에 의해 발생한 자속을 매개로 수신부(2000)의 수신측 코일부(2100)에 전력을 전송한다.
상기 제2 송신측 직류/교류 변환부(1220)는 제1 내지 제4 스위치(S1, S2, S3, S4)를 포함할 수 있고, 상기 제1 스위치(S1)는 제3 노드(N3)와 제5 노드(N5) 사이에 접속될 수 있고, 상기 제2 스위치(S2)는 제3 노드(N3)와 기준 접지 사이에 접속될 수 있고, 상기 제3 스위치(S3)는 제4 노드(N4)와 제5 노드(N5) 사이에 접속될 수 있고, 상기 제4 스위치(S4)는 제4 노드(N4)와 기준 접지 사이에 접속될 수 있다.
상기 제1 및 제4 스위치(S1, S4)는 동일 위상, 제2 및 제3 스위치(S2, S3)는 동일 위상 그리고 제1 및 제2 스위치(S1, S2)는 반대 위상을 가지고 스위칭 할 수 있다. 그리고 송신측 통신 및 제어부(1500)에 의하여 제2 주파수로 동작할 수 있다.
상기 제2 송신측 임피던스 매칭부(1320)는 제1 노드(N1)와 제3 노드(N3) 사이에 접속된 제2 인덕터(L2), 제2 노드(N2)와 제4 노드(N4) 사이에 접속된 제3 인덕터(L3), 제1 노드(N1)와 제6 노드(N6) 사이에 접속된 제1 커패시터(C1) 및 제1 노드(N1)와 제2 노드(N2) 사이에 접속된 제2 커패시터(C2)를 포함할 수 있다.
상기 제2 송신측 코일부(1420)는 유도형 코일부로써 제1 및 제2 노드(N1, N2) 사이에 접속될 수 있다.
도 16은 본 발명의 실시예에 따른 송신장치가 제1 주파수 하에서 자기 공진 방식으로 전력을 공급 시 등가회로를 나타낸 도면이다.
도 16을 참조하면, 송신장치(1000)가 자기 공진 방식으로 전력을 전송할 때, 제1 송신측 직류/교류 변환부(1210)에 제1 직류 신호(DC1)가 공급되고, 제2 송신측 직류/교류 변환부(1220)에 제2 직류 신호(DC2)의 공급이 차단될 수 있다. 그리고 스위치부(1430)는 단락될 수 있다. 따라서 상기 스위치부(1430)는 제6 및 제2 노드(N6, N2) 사이에 연결된 유도형 코일부(1420)에 도선이 병렬 연결된 효과를 가져와 상기 공진형 코일부(1410)에서 상기 유도형 코일부(1420)를 바라본 입력 임피던스(Zin)에서 저항 성분이 최소가 되도록 할 수 있고, 그에 따라 상기 공진현 코일부(1410)에서 발생한 자속이 유도형 코일부(1420)에 쇄교하면서 발생하는 전력 손실을 최소화할 수 있다.
도 17은 본 발명의 실시예에 따른 송신장치가 제2 주파수 하에서 자기 유도 방식으로 전력을 공급 시 등가회로를 나타낸 도면이다.
도 17을 참조하면, 송신장치(1000)가 자기 유도 방식으로 전력을 전송할 때, 제1 송신측 직류/교류 변환부(1210)에 제1 직류 신호(DC1)의 공급이 차단되고, 제2 송신측 직류/교류 변환부(1220)에 제2 직류 신호(DC2)가 공급될 수 있다. 그리고 스위치부(1430)는 개방될 수 있다. 따라서 스위치부(1430)는 개방 회로처럼 동작하여 자기 유도 방식으로 전력을 전송할 때 송신장치(1000)의 동작에 미치는 영향을 최소화할 수 있다.이와 같이 본 발명의 제1 및 제2 실시예는 자기 공진 방식과 자기 유도 방식에 따른 무선 전력 전송이 복합적으로 가능한 송신장치(1000)의 경우, 하나의 코일 인쇄회로기판(3100)에 공진형 코일부(1410)와 유도형 코일부(1420)가 함께 실장되므로 상기 공진형 코일부(1410)와 유도형 코일부(1420)가 서로간의 상호 간섭을 일으켜 손실이 발생할 수 있으나, 일반적으로 유도형 코일부(1420)에서 발생한 자기장이 공진형 코일부(1410)에 결합되어 손실되는 양은 매우 작으나, 그 반대인 공진형 코일부(1410)에서 발생한 자기장이 유도형 코일부(1420)에 결합되어 발생하는 손실은 매우 클 수 있는 점을 고려하여 손실 억제부(1430)를 통해 공진형 코일부(1410)에서 유도형 코일부(1420)측을 바라본 입력 임피던스(Zin)에서 나타나는 반사 임피던스에서 실수 부분을 제거함으로써 전력 손실을 최소화할 수 있다.
이상에서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술할 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.
본 발명은 무선으로 전력을 송수신 할 수 있는 무선충전분야에서 이용할 수 있다.

Claims (20)

  1. 공진형 코일부;
    유도형 코일부; 및
    상기 유도형 코일부 양단에 연결된 직렬 공진회로를 포함하는 손실 억제부;
    상기 손실 억제부는 상기 공진형 코일부를 구동하기 위한 제1 주파수에서 공진하는 무선전력 송신장치.
  2. 제1 항에 있어서,
    상기 직렬 공진회로는
    적어도 하나의 커패시터와 적어도 하나의 인덕터를 포함하는 무선전력 송신장치.
  3. 제1 항에 있어서,
    상기 손실 억제부는 상기 유도형 코일부를 구동하기 위한 제2 주파수에서 기 설정된 임피던스의 크기 이상의 임피던스의 크기를 가지는 무선전력 송신장치.
  4. 제3 항에 있어서,
    제1 직류 신호를 변환하여 상기 공진형 코일부에 상기 제1 주파수를 가진 교류 신호를 전달하는 제1 직류/교류 변환부; 및
    제2 직류 신호를 변환하여 상기 유도형 코일부에 상기 제2 주파수를 가진 교류 신호를 전달하는 제2 직류/교류 변환부;를 더 포함하는 무선전력 송신장치.
  5. 제4 항에 있어서,
    상기 제1 및 제2 직류/교류 변환부의 동작을 제어하는 제어부;를 더 포함하고,
    상기 제어부는 상기 제1 직류/교류 변환부를 인에이블(enable)시키고, 상기 제2 직류/교류 변환부를 디스에이블(disable) 시켜, 상기 제1 직류/교류 변환부가 상기 공진형 코일부에 상기 제1 주파수를 가진 교류 신호를 전달하도록 상기 제1 직류/교류 변환부를 제어하고, 상기 제2 직류/교류 변환부를 인에이블(enable)시키고, 상기 제1 직류/교류 변환부를 디스에이블(disable) 시켜, 상기 제2 직류/교류 변환부가 상기 유도형 코일부에 상기 제2 주파수를 가진 교류 신호를 전달하도록 상기 제2 직류/교류 변환부를 제어하는 무선전력 송신장치.
  6. 제4 항에 있어서,
    교류 신호를 입력 받아 상기 제1 및 제2 직류/교류 변환부에 상기 제1 및 제2 직류 신호를 공급하는 교류/직류 변환부;를 더 포함하고,
    상기 제1 직류/교류 변환부는,
    상기 교류/직류 변환부 및 제1 노드 사이에 연결된 제1 고주파 필터부;
    상기 교류/직류 변환부 및 제2 노드 사이에 연결된 제2 고주파 필터부;
    상기 제1 노드와 제3 노드 사이에 연결된 제1 스위치; 및
    상기 제2 노드와 상기 제3 노드 사이에 연결된 제2 스위치;를 포함하고,
    상기 공진형 코일부는 상기 제1 및 제2 노드 사이에 연결된 무선전력 송신장치.
  7. 제4 항에 있어서,
    교류 신호를 입력 받아 상기 제1 및 제2 직류/교류 변환부에 상기 제1 및 제2 직류 신호를 공급하는 교류/직류 변환부;를 더 포함하고,
    상기 제2 직류/교류 변환부는,
    상기 교류/직류 변환부 및 제1 노드 사이에 연결된 제1 스위치;
    상기 제1 노드 및 제3 노드 사이에 연결된 제2 스위치;
    상기 교류/직류 변환부 및 제2 노드 사이에 연결된 제3 스위치; 및
    상기 제2 노드 및 상기 제3 노드 사이에 연결된 제4 스위치;를 포함하고,
    상기 유도형 코일부는 상기 제1 및 제2 노드 사이에 연결된 무선전력 송신장치.
  8. 제3 항에 있어서,
    상기 제1 주파수는 6.78MHz이고
    상기 제2 주파수는 125KHz인 무선전력 송신장치.
  9. 제1 항에 있어서,
    상기 손실 억제부는,
    서로 직렬 연결된 가변 커패시터 및 가변 인덕터를 포함하는 무선전력 송신장치.
  10. 제9 항에 있어서,
    상기 제1 주파수가 가변될 때 상기 가변 커패시터의 커패시턴스 및 상기 가변 인덕터의 인덕턴스 중 적어도 하나가 변하는 무선전력 송신장치.
  11. 공진형 코일부;
    유도형 코일부; 및
    상기 유도형 코일부 양단에 연결된 스위치 소자;
    상기 스위치 소자는 상기 공진형 코일부 또는 상기 유도형 코일부 중 어느 하나에 의한 전력 전송 시 턴 온(Turn On) 또는 턴 오프(Turn Off)되는 무선전력 송신장치.
  12. 제11 항에 있어서,
    상기 스위치 소자는 상기 공진형 코일부에 의한 전력 전송 시 턴 온되는 무선전력 송신장치.
  13. 제11 항에 있어서,
    상기 스위치 소자는 상기 유도형 코일부에 의한 전력 전송 시 턴 오프되는 무선전력 송신장치.
  14. 제13 항에 있어서,
    제1 직류 신호를 변환하여 상기 공진형 코일부에 제1 주파수를 가진 교류 신호를 전달하는 제1 직류/교류 변환부; 및
    제2 직류 신호를 변환하여 상기 유도형 코일부에 제2 주파수를 가진 교류 신호를 전달하는 제2 직류/교류 변환부;를 더 포함하는 무선전력 송신장치.
  15. 제14 항에 있어서,
    상기 제1 및 제2 직류/교류 변환부의 동작 및 상기 스위치 소자의 동작을 제어하는 제어부;를 더 포함하고,
    상기 제어부는 상기 제1 직류/교류 변환부를 인에이블(enable)시키고, 상기 제2 직류/교류 변환부를 디스에이블(disable) 시켜, 상기 제1 직류/교류 변환부가 상기 공진형 코일부에 상기 제1 주파수를 가진 교류 신호를 전달하도록 상기 제1 직류/교류 변환부를 제어하고,
    상기 제어부는 상기 스위치 소자를 턴 온시키는 무선전력 송신장치.
  16. 제14 항에 있어서,
    상기 제1 및 제2 직류/교류 변환부의 동작을 제어하는 제어부;를 더 포함하고,
    상기 제어부는 상기 제2 직류/교류 변환부를 인에이블(enable)시키고, 상기 제1 직류/교류 변환부를 디스에이블(disable) 시켜, 상기 제2 직류/교류 변환부가 상기 유도형 코일부에 상기 제2 주파수를 가진 교류 신호를 전달하도록 상기 제2 직류/교류 변환부를 제어하고,
    상기 제어부는 상기 스위치 소자를 턴 오프시키는 무선전력 송신장치.
  17. 제14 항에 있어서,
    교류 신호를 입력 받아 상기 제1 및 제2 직류/교류 변환부에 상기 제1 및 제2 직류 신호를 공급하는 교류/직류 변환부;를 더 포함하고,
    상기 제1 직류/교류 변환부는,
    상기 교류/직류 변환부 및 제1 노드 사이에 연결된 제1 고주파 필터부;
    상기 교류/직류 변환부 및 제2 노드 사이에 연결된 제2 고주파 필터부;
    상기 제1 노드와 제3 노드 사이에 연결된 제1 스위치; 및
    상기 제2 노드와 상기 제3 노드 사이에 연결된 제2 스위치;를 포함하고,
    상기 공진형 코일부는 상기 제1 및 제2 노드 사이에 연결된 무선전력 송신장치.
  18. 제14 항에 있어서,
    교류 신호를 입력 받아 상기 제1 및 제2 직류/교류 변환부에 상기 제1 및 제2 직류 신호를 공급하는 교류/직류 변환부;를 더 포함하고,
    상기 제2 직류/교류 변환부는,
    상기 교류/직류 변환부 및 제1 노드 사이에 연결된 제1 스위치;
    상기 제1 노드 및 제3 노드 사이에 연결된 제2 스위치;
    상기 교류/직류 변환부 및 제2 노드 사이에 연결된 제3 스위치; 및
    상기 제2 노드 및 상기 제3 노드 사이에 연결된 제4 스위치;를 포함하고,
    상기 유도형 코일부는 상기 제1 및 제2 노드 사이에 연결된 무선전력 송신장치.
  19. 제11 항에 있어서,
    상기 공진형 코일부의 구동 시 상기 공진형 코일부에 6.78MHz 주파수의 교류 신호가 공급되는 무선전력 송신장치.
  20. 제11 항에 있어서,
    상기 유도형 코일부의 구동 시 상기 유도형 코일부에 125KHz 주파수의 교류 신호가 공급되는 무선전력 송신장치.
PCT/KR2015/010519 2014-12-10 2015-10-05 무선전력 송신장치 WO2016093478A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/534,899 US10326315B2 (en) 2014-12-10 2015-10-05 Wireless power transmission apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0177607 2014-12-10
KR1020140177607A KR20160070539A (ko) 2014-12-10 2014-12-10 무선전력 송신부
KR1020140177608A KR20160070540A (ko) 2014-12-10 2014-12-10 무선전력 송신부
KR10-2014-0177608 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016093478A1 true WO2016093478A1 (ko) 2016-06-16

Family

ID=56107625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010519 WO2016093478A1 (ko) 2014-12-10 2015-10-05 무선전력 송신장치

Country Status (2)

Country Link
US (1) US10326315B2 (ko)
WO (1) WO2016093478A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10826300B2 (en) 2015-07-17 2020-11-03 Mediatek Inc. Drive circuits for multi-mode wireless power transmitter
DE102015213981A1 (de) * 2015-07-24 2017-01-26 Conti Temic Microelectronic Gmbh Detektion eines Fremdkörpers in einem elektromagnetischen Feld, insbesondere mit Hilfe eines NFC Chips
KR102572577B1 (ko) * 2016-04-15 2023-08-30 삼성전자주식회사 무선 충전을 제어하는 충전 장치 및 방법
WO2018053419A1 (en) * 2016-09-19 2018-03-22 The Medical College Of Wisconsin, Inc. Strongly coupled fourth-order resonance coil system for enhanced signal detection
EP3346581B1 (en) * 2017-01-04 2023-06-14 LG Electronics Inc. Wireless charger for mobile terminal in vehicle
US10734847B2 (en) * 2017-08-23 2020-08-04 Apple Inc. Wireless power system with coupling-coefficient-based coil selection
WO2019133803A1 (en) * 2017-12-29 2019-07-04 The Trustees Of Princeton University System and method for reactance steering network (rsn)
BR112020017299A2 (pt) * 2018-02-28 2020-12-15 Massachusetts Institute Of Technology Transformador de energia sem núcleo
KR102544616B1 (ko) * 2018-04-10 2023-06-19 삼성전자주식회사 무선 전력 전송 시스템 및 그 시스템을 포함하는 디스플레이 장치
US11139690B2 (en) * 2018-09-21 2021-10-05 Solace Power Inc. Wireless power transfer system and method thereof
US10998776B2 (en) 2019-04-11 2021-05-04 Apple Inc. Wireless power system with in-band communications
CN117652075A (zh) 2021-09-29 2024-03-05 三星电子株式会社 包括用于减少谐波的尺寸减小的逆变器的无线电力发送器
US20230352976A1 (en) * 2022-04-27 2023-11-02 SWR Technology Inc. Efficient and Low Profile Wireless Power Transfer System

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120044842A (ko) * 2010-10-28 2012-05-08 숭실대학교산학협력단 무선 에너지 전송을 위한 송신단 구조
KR20130025935A (ko) * 2013-02-08 2013-03-12 한국전자통신연구원 무선 전력 전송 장치
KR20140008918A (ko) * 2012-07-13 2014-01-22 스키너스 주식회사 벽면녹화 구조물 및 그 제조방법
KR20140077591A (ko) * 2012-12-14 2014-06-24 삼성전자주식회사 무선 전력 전송 장치, 무선 전력 수신 장치, 무선 전력 전송 시스템 및 무선 전력 전송 방법
KR20140096879A (ko) * 2013-01-29 2014-08-06 엘지이노텍 주식회사 무선 전력 송신 장치 및 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110062841A (ko) 2009-12-04 2011-06-10 한국전자통신연구원 무선 전력 전송 장치
KR101985815B1 (ko) 2011-10-24 2019-06-05 삼성전자주식회사 무선전력 수신 장치, 무선전력 수신 장치에서 무선전력 수신을 제어하는 방법 및 그 장치
KR101991341B1 (ko) 2013-01-04 2019-06-20 삼성전자 주식회사 무선 전력 수신 장치 및 무선 전력 전송 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120044842A (ko) * 2010-10-28 2012-05-08 숭실대학교산학협력단 무선 에너지 전송을 위한 송신단 구조
KR20140008918A (ko) * 2012-07-13 2014-01-22 스키너스 주식회사 벽면녹화 구조물 및 그 제조방법
KR20140077591A (ko) * 2012-12-14 2014-06-24 삼성전자주식회사 무선 전력 전송 장치, 무선 전력 수신 장치, 무선 전력 전송 시스템 및 무선 전력 전송 방법
KR20140096879A (ko) * 2013-01-29 2014-08-06 엘지이노텍 주식회사 무선 전력 송신 장치 및 방법
KR20130025935A (ko) * 2013-02-08 2013-03-12 한국전자통신연구원 무선 전력 전송 장치

Also Published As

Publication number Publication date
US10326315B2 (en) 2019-06-18
US20170338696A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
WO2016093478A1 (ko) 무선전력 송신장치
WO2017065526A1 (ko) 무전전력전송 시스템 및 이의 구동 방법
WO2016195249A1 (ko) 무전전력전송 시스템 및 이의 구동 방법
WO2019004753A1 (ko) 멀티 코일 기반의 무선전력 전송장치 및 방법
WO2017069469A1 (ko) 무선 신호를 송수신하기 위한 무선 전력 송신기, 무선 전력 수신기, 무선 시스템 및 이의 동작 방법
WO2017026721A1 (ko) 무선 전력 전송 시스템 및 이의 구동 방법
WO2017034143A1 (ko) 무전전력전송 시스템 및 이의 구동 방법
WO2015009042A1 (en) Method and apparatus for detecting coupling region
WO2012111969A2 (en) Apparatus and method for high efficiency variable power transmission
WO2016052865A1 (ko) 무선전력전송 시스템
WO2014092339A1 (en) Wirless power receiver and method of controlling the same
WO2015008917A1 (en) Method and apparatus for network communication in wireless power transmission system
WO2017007163A1 (ko) 무선 전력 송신 장치의 동작 방법
WO2015012563A1 (en) Method and apparatus for controlling interference in wireless power transmission system
WO2018194337A1 (ko) 무선 충전을 위한 무선 전력 송신 장치
WO2012086973A2 (en) System for wireless power transmission and reception using in-band communication
WO2015012509A1 (en) Power transmitting unit (ptu) and power receiving unit (pru), and communication method of ptu and pru in wireless power transmission system
WO2020050592A1 (ko) 무선전력 전송 시스템에서 가변 통신 속도를 지원하는 장치 및 방법
WO2016133322A1 (ko) 무선 전력 송신 장치 및 무선 전력 송신 방법
WO2017023064A1 (ko) 무선 전력 전송 시스템 및 이의 구동 방법
WO2014073932A1 (en) Power supplying apparatus and wireless power transmitterpower transmitter
WO2014119871A1 (en) Wireless power transmitting apparatus and method thereof
WO2021066611A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이들을 이용한 전력 보정 방법
WO2013151290A1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
WO2017119622A1 (ko) 무선 전력 송신기 및 수신기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866762

Country of ref document: EP

Kind code of ref document: A1