WO2017113745A1 - 一种热界面材料及其制备方法、导热片和散热系统 - Google Patents

一种热界面材料及其制备方法、导热片和散热系统 Download PDF

Info

Publication number
WO2017113745A1
WO2017113745A1 PCT/CN2016/090003 CN2016090003W WO2017113745A1 WO 2017113745 A1 WO2017113745 A1 WO 2017113745A1 CN 2016090003 W CN2016090003 W CN 2016090003W WO 2017113745 A1 WO2017113745 A1 WO 2017113745A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium metal
metal foil
carbon nanotubes
interface material
thermal interface
Prior art date
Application number
PCT/CN2016/090003
Other languages
English (en)
French (fr)
Inventor
二瓶瑞久
周晓松
太田庆新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16880542.2A priority Critical patent/EP3321958B1/en
Priority to KR1020187005386A priority patent/KR102070741B1/ko
Publication of WO2017113745A1 publication Critical patent/WO2017113745A1/zh
Priority to US15/890,164 priority patent/US20180179429A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition

Definitions

  • the invention relates to the technical field of materials, in particular to a thermal interface material and a preparation method thereof, a thermal conductive sheet and a heat dissipation system.
  • the thermal interface material TIM is used to fill the contact interface between the heating element and the heat sink member to reduce the contact thermal resistance.
  • the thermal interface material with better thermal conductivity in the industry is formed by growing an array of carbon nanotubes on both surfaces of a zirconium metal foil.
  • the interface thermal resistance of the zirconium metal foil in the thermal interface material is large, the thermal conductivity of the thermal interface material is relatively poor.
  • the application provides a thermal interface material and a preparation method thereof, a thermal conductive sheet and a heat dissipation system, which reduce the interface thermal resistance of the thermal interface material and improve the thermal conductivity of the thermal interface material.
  • an embodiment of the present application provides a thermal interface material, including a zirconium metal foil and a carbon nanotube array, the zirconium metal foil having a first surface and a second surface opposite to the first surface, the carbon The carbon nanotubes in the array of nanotubes are distributed over the first surface and the second surface, and the first and second surfaces of the zirconium metal foil comprise bare zirconium metal.
  • the interface thermal resistance of the thermal interface material is lowered, and the thermal conductivity of the thermal interface material is improved.
  • the first surface and the second surface of the zirconium metal foil are both bare zirconium metal, and the zirconium metal is exposed on both sides of the zirconium metal foil At the same time, the interface thermal resistance of the thermal interface material is further reduced, and the thermal conductivity of the thermal interface material is improved.
  • the carbon nanotubes in the carbon nano-array are perpendicular to the first surface and The second surface
  • the carbon nanotubes in the carbon nano-array are perpendicular to the first surface and the second surface
  • there is no absolute one-hundredth of the carbon nanotubes are perpendicular to The first surface and the second surface are understood to satisfy the error percentage in the prior art in the art, that is, the carbon nanotubes in the carbon nano-array are considered to be perpendicular to the first surface and the second surface
  • the density of the carbon nanotubes in the carbon nanotube array is relatively uniform, and the carbon nanotube direction is not biased to one side to cause a density difference.
  • the carbon nanotube array The space between the adjacent two carbon nanotubes is filled with a resin, and may be, for example, a silicone resin. Since the thermal interface material thermal resistance is mainly caused by the air between the metal oxide and the carbon nanotubes on the surface of the metal substrate at the interface, and even a high-density carbon nanotube array, between the carbon nanotubes Air is present, therefore, in order to reduce the interfacial thermal resistance of the thermal interface material, a higher thermal conductivity material can be used instead of air filling between the carbon nanotubes.
  • the thermal conductivity of the resin is greater than 0.1 W/m.k, and the thermal conductivity of the thermal interface material can be ensured.
  • the density of the carbon nanotube array in which the nanotubes are distributed on the first surface in the carbon nanotube array is equal to the density of the carbon nanotube array distributed on the second surface.
  • the thermal interface material and the heat sink interface can be realized when the thermal interface material in the embodiment is used. Better contact and improved thermal conductivity.
  • the mass density of the carbon nanotubes in the thermal interface material is 0.16-0.5 g/cm3.
  • the thermal density of the carbon nanotubes in the thermal interface material is high, and the thermal interface material has better thermal conductivity.
  • the mass density of the carbon nanotubes in the thermal interface material reaches 0.16-0.5 g/cm3
  • the density can reach about 10 times the mass density of the carbon nanotubes in the thermal interface material produced by the conventional growth process, which greatly improves the density. Thermal conductivity of thermal interface materials.
  • two adjacent ones of the carbon nanotube arrays The gap between the carbon nanotubes is between 10 and 100 nm.
  • the carbon nanotubes with smaller gaps are difficult to grow, and some even cannot. Growth, the gap between two adjacent carbon nanotubes in the carbon nanotube array is between 10 and 100 nm, which not only ensures the heat conduction effect of the carbon nanotube array, but also does not increase the difficulty of the growth of the carbon nanotube array.
  • the zirconium metal foil has a thickness of 10 to 100 ⁇ m. Due to the high density of the carbon nanotubes in the present application, the zirconium metal foil needs to have a certain thickness guarantee. Otherwise, even if it is evenly distributed, the zirconium metal foil may be easily deformed, so the zirconium metal foil may have a thickness of 10 to 100 ⁇ m.
  • the carbon nanotubes may be multi-walled carbon nanotubes, having a diameter of 10 to 20 nm and a length of 30 to 100 ⁇ m.
  • an embodiment of the present application provides a method for preparing a thermal interface material, including:
  • both surfaces of the zirconium metal foil After forming the carbon nanotube array on both surfaces of the zirconium metal foil, reducing the two surfaces of the zirconium metal foil to obtain the thermal interface material, the zirconium metal in the thermal interface material Both surfaces of the foil include bare zirconium metal.
  • the two surfaces of the zirconium metal foil are subjected to a reduction reaction, so that the two surfaces of the zirconium metal foil in the obtained interface material include bare
  • the zirconium metal reduces the interfacial thermal resistance of the thermal interface material and improves the thermal conductivity of the thermal interface material.
  • the thermal interface material The two surfaces of the medium-zirconium metal foil are bare zirconium metal. When the zirconium metal foil is exposed on both sides of the zirconium metal foil, the thermal resistance of the thermal interface material is further reduced, and the thermal conductivity of the thermal interface material is improved.
  • the reducing the two surfaces of the zirconium metal foil comprises:
  • H2 can be reduced with O atoms in the surface oxide of zirconium metal foil to form H2O, the reduction effect is good, and the interface thermal resistance of the thermal interface material can be effectively reduced.
  • the inventors have empirically demonstrated that during the annealing and reduction process in the H2 atmosphere, the H2 flow rate is 5 ⁇ 100SCCM, the pressure is 0.005 ⁇ 0.5MPa, the annealing temperature is 350 ⁇ 650°C, and the annealing time is 5 ⁇ 30min, the effect of H2 and O atom in the surface oxide of zirconium metal foil is the best.
  • the method further includes:
  • a vapor deposition process is employed in a vacuum to fill a resin between two adjacent carbon nanotubes in the carbon nanotube array to obtain a thermal interface material.
  • thermal interface material thermal resistance is mainly caused by the air between the metal oxide and the carbon nanotubes on the surface of the metal substrate at the interface, and even a high-density carbon nanotube array, between the carbon nanotubes Air is present, therefore, in order to reduce the interfacial thermal resistance of the thermal interface material, a higher thermal conductivity material can be used instead of air filling between the carbon nanotubes.
  • the steaming process conditions are: a temperature of 100 to 300 ° C, and a working gas pressure of 5 to 50 Torr.
  • the carbon nanotubes are grown on both surfaces of the zirconium metal foil to form an array of carbon nanotubes on both surfaces of the zirconium metal foil, including:
  • the two surfaces are distributed with a catalyst
  • the zirconium metal foil is placed in a vacuum reaction chamber, and the airflow diffusion control device is further disposed in the vacuum reaction chamber, the airflow diffusion control device includes a first airflow diffusion control sheet and a second airflow diffusion control sheet, a first airflow diffusion control sheet is located on one surface side of the zirconium metal foil, and the second airflow diffusion control sheet is located on the other surface side of the zirconium metal foil;
  • the mixed gas source being blown to one surface of the zirconium metal foil through the first air flow diffusion control sheet, the mixed gas source passing through the second a gas diffusion control sheet is blown onto the other surface of the zirconium metal foil, and carbon nanotubes are grown on both surfaces of the zirconium metal foil for 5-20 minutes to form the carbon nanotube array, wherein the vacuum reaction chamber is total
  • the gas pressure is 10 to 100 Torr, and the growth temperature is 500 to 900 °C.
  • the distance between the first airflow diffusion control sheet and a surface of the zirconium metal foil is 0.1 mm to 20 mm.
  • the size of the through hole on the first air flow diffusion control sheet is 0.1 mm to 10.0 mm, and the number of through holes is 1 to 100 pieces/cm 2 . Under such conditions, the flow of the vacuum chamber in a very small range of mixed gas sources can ensure relative flow. Uniformly stable to ensure uniform growth of the carbon nanotube array.
  • C2H2 accounts for 2-50%
  • Ar accounts for 50-98%
  • the ratio is A range of mixed gas sources can effectively ensure that carbon nanotubes grow high density carbon nanotube arrays.
  • the embodiment of the present application provides a thermally conductive sheet made of the thermal interface material according to any of the first aspect or the first aspect.
  • the embodiment of the present application provides a heat dissipation system, including a heat generating component, a heat sink, and a heat conductive sheet, wherein the heat conductive sheet is the thermal interface material according to any of the first aspect or the first aspect.
  • the heat generating component is disposed on a side of the heat sink, and the heat conducting sheet is placed between the heat generating component and the heat sink, so that the heat generating component transfers heat to the heat through the heat conducting sheet
  • the heat sink is used for heat dissipation.
  • the interface thermal resistance of the thermal interface material is lowered, and the thermal conductivity of the thermal interface material is improved.
  • FIG. 1 is a schematic view of one embodiment of a thermal interface material in the present application
  • FIG. 2 is a schematic view of another embodiment of a thermal interface material in the present application.
  • FIG. 3 is a schematic diagram of an embodiment of a heat dissipation system in the present application.
  • FIG. 4 is a schematic view of one embodiment of a method of preparing a thermal interface material in the present application.
  • the present application provides a thermal interface material and a preparation method thereof, a thermal conductive sheet and a heat dissipation system, which reduce the interface thermal resistance of the thermal interface material and improve the thermal conductivity of the thermal interface material.
  • Carbon nanotubes also known as bucky tubes, are one-dimensional quantum materials with a special structure (radial size is nanometer-scale, axial dimension is on the order of micrometers, and both ends of the tube are substantially sealed).
  • the carbon nanotubes are mainly composed of a plurality of coaxial tubes of a plurality of layers of carbon atoms arranged in a hexagonal shape.
  • the layer is maintained at a fixed distance between the layers, about 0.34 nm, and generally has a diameter of 2 to 20 nm, and can be divided into a zigzag shape, an armchair type, and a spiral type according to different orientations of the carbon hexagon in the axial direction.
  • spiral carbon nanotubes have chirality, while zigzag and armchair carbon nanotubes have no chirality.
  • the unique molecular structure of carbon nanotubes makes it have significant electronic properties, extensive nanoelectronics and optoelectronics, and field emission. Electron sources, high-strength composites, sensors and actuators, thermal conductive materials, optical materials, conductive films, nanoscale stencils and holes.
  • Acetylene Molecular formula C2H2, commonly known as wind coal and calcium carbide gas, is the smallest volume in the series of alkyne compounds. A member of the group is mainly used for industrial purposes, such as carbon nanotube growth. Acetylene is a colorless, highly flammable gas at room temperature.
  • Argon non-metallic element, element symbol Ar, argon is a monoatomic molecule, the element is a colorless, odorless and odorless gas, which is the most abundant in the air in rare gases. Due to the high content in nature, argon is currently The rare gas first discovered. Chemically very inactive, but its compound, hydrogen argon, has been produced. Argon cannot be burned or ignited and is often used as a protective gas.
  • Distillation process A method in which a metal, alloy or compound to be plated is heated and melted in a vacuum chamber to escape in a molecular or atomic state and deposited on the surface of the material to be formed to form a solid film or coating.
  • SCCM Volume flow unit, English full name standard-state cubic centimeter per minute, Chinese full name standard conditions in milliliters per minute, often used in chemical reactions.
  • Torr Chinese is called “tread", the pressure unit, the original 1 Torr means “the pressure of the mercury in the small straight pipe is one millimeter higher", and the normal atmospheric pressure can raise the mercury by 760 mm, so 1 Torr is set as the atmosphere. 1/760 times the pressure.
  • one embodiment of the thermal interface material in the present application includes a zirconium metal foil 1 and a carbon nanotube array 2 having a first surface and a second surface opposite the first surface,
  • the carbon nanotubes in the carbon nanotube array 2 are distributed on the first surface and the second surface, and the first surface and the second surface of the zirconium metal foil 1 include bare zirconium metal.
  • the interface thermal resistance of the thermal interface material is lowered, and the thermal conductivity of the thermal interface material is improved.
  • the first surface and the second surface of the zirconium metal foil may be bare zirconium metal.
  • the carbon nanotubes in the carbon nano-array are perpendicular to the first surface and the second surface, and it should be noted that the carbon nanotubes in the carbon nano-array are perpendicular to the first surface and In the second surface, in actual production, there is no absolute 100% carbon nanotubes perpendicular to the first surface and the second surface, which can be understood as satisfying the error percentage in the prior art in the art, ie It is considered that the carbon nanotubes in the carbon nano-array are perpendicular to the first surface and the second surface. At this time, the density of the carbon nanotubes in the carbon nanotube array is relatively uniform, and the direction of the carbon nanotubes is not biased to one side. Cause Density difference.
  • the thermal interface material thermal resistance is mainly caused by the air between the metal oxide and the carbon nanotubes on the surface of the metal substrate at the interface, and even a high-density carbon nanotube array, between the carbon nanotubes Air is present. Therefore, in order to reduce the interface thermal resistance of the thermal interface material, a material with higher thermal conductivity may be used instead of air filling between the carbon nanotubes.
  • the carbon nanotube array is The space between the adjacent two carbon nanotubes is filled with a resin, and may be, for example, a silicone resin.
  • the thermal conductivity of the resin is greater than 0.1 W/mk, and the thermal conductivity of the thermal interface material can be ensured at this time. performance.
  • the density of the carbon nanotube array in which the nanotubes are distributed on the first surface in the carbon nanotube array is equal to the density of the carbon nanotube array distributed on the second surface, and It is understood that the equal density described herein does not mean that they are absolutely equal, but in the art, the density difference percentage is satisfied, and the density and distribution of the carbon nanotube arrays distributed on the first surface are in the second The density of the carbon nanotube array on the surface is uniform and there is no significant difference in effect.
  • the thermal interface material and the heat sink interface can be realized when the thermal interface material in the embodiment is used. Better contact and improved thermal conductivity.
  • the mass density of the carbon nanotubes in the thermal interface material is high, and the thermal interface material has better thermal conductivity.
  • the mass density of the carbon nanotubes in the thermal interface material reaches 0.16-0.5. g/cm3, this density can reach about 10 times the mass density of carbon nanotubes in the thermal interface material produced by the conventional growth process, which greatly improves the thermal conductivity of the thermal interface material.
  • the carbon nanotubes in the thermal interface material The mass density is 0.3 to 0.5 g/cm3.
  • the zirconium metal foil Due to the high density of the carbon nanotubes in the present application, the zirconium metal foil needs to have a certain thickness guarantee. Otherwise, even if it is evenly distributed, the zirconium metal foil may be easily deformed, so the zirconium metal foil may have a thickness of 10 to 100 ⁇ m, preferably 30. ⁇ 60 ⁇ m.
  • the carbon nanotubes may be multi-walled carbon nanotubes, and may have a diameter of 10-20 nm and a length of 30-100 ⁇ m.
  • the gap between two adjacent carbon nanotubes in the carbon nanotube array is between 10 and 100 nm.
  • the pitch of the carbon nanotubes is too small, the carbon nanotubes can be further increased, but the carbon nanotubes are carbon nanotubes.
  • the density of the carbon nanotubes is easily lowered and the growth of the carbon nanotubes is difficult due to the excessive density, which is mainly due to the limitation of the flow rate of the carbon source gas (for example, C2H2) ( That is to say, the carbon nanotubes are too dense to pass through the gas, so that a sufficient stable carbon source cannot be provided, and some of the carbon nanotubes are stopped from growing. Therefore, the gap between the carbon nanotubes should be an appropriate distance.
  • the carbon source gas for example, C2H2
  • the gap between two adjacent carbon nanotubes is between 10 and 100 nm, which not only ensures the heat conduction effect of the carbon nanotube array, but also increases the difficulty of the growth of the carbon nanotube array, and is further preferred.
  • the gap between two adjacent carbon nanotubes in the carbon nanotube array is between 30 and 70 nm.
  • a thermal conductive sheet is also prepared, and the thermal conductive sheet is made of the above thermal interface material.
  • a heat dissipation system is further provided.
  • the heat dissipation system includes a heat generating component 31, a heat sink 32, and a heat conductive sheet 33.
  • the heat conductive sheet 33 is a heat conductive sheet as described above, and the heat conduction is performed.
  • the heat-generating sheet 31 is disposed on the side of the heat sink 32, and the heat-conductive sheet 33 is placed between the heat-generating member 31 and the heat sink to cause the heat generation.
  • the piece 31 transfers heat to the heat sink 32 through the heat transfer sheet 33 to dissipate heat.
  • the following describes an embodiment of a method for preparing a thermal interface material in the embodiment of the present application.
  • an embodiment of a method for preparing a thermal interface material in an embodiment of the present application includes:
  • the two surfaces of the zirconium metal foil in the thermal interface material comprise bare zirconium metal.
  • the two surfaces of the zirconium metal foil are subjected to a reduction reaction, so that the obtained interface material is a zirconium metal foil.
  • Both surfaces include bare zirconium metal, which reduces the interfacial thermal resistance of the thermal interface material and improves the thermal conductivity of the thermal interface material.
  • both surfaces of the zirconium metal foil in the thermal interface material are bare zirconium metal, When the zirconium metal foil is exposed on both sides of the zirconium metal, the interface thermal resistance of the thermal interface material is further reduced, and the thermal conductivity of the thermal interface material is improved.
  • the reducing reaction is performed on the two surfaces of the zirconium metal foil, including:
  • H2 can be reduced with O atoms in the surface oxide of zirconium metal foil to form H2O, the reduction effect is good, and the interface thermal resistance of the thermal interface material can be effectively reduced.
  • the inventors have empirically demonstrated that during the annealing and reduction process in the H2 atmosphere, the H2 flow rate is 5 to 100 SCCM, the gas pressure is 0.005 to 0.5 MPa, the annealing treatment temperature is 350 to 650 ° C, and the annealing treatment time is performed. When it is 5 to 30 minutes, the effect of reducing the O atom in the surface oxide of the zirconium metal foil is the best.
  • the thermal interface material thermal resistance is mainly caused by the air between the metal oxide and the carbon nanotubes on the surface of the metal substrate at the interface, and even a high-density carbon nanotube array, between the carbon nanotubes There is air, therefore, in order to reduce the interfacial thermal resistance of the thermal interface material, a higher thermal conductivity material may be used instead of air filling between the carbon nanotubes.
  • the two surfaces of the zirconium metal foil may be After performing the reduction reaction, the method further includes:
  • a vapor deposition process is employed in a vacuum to fill a resin between two adjacent carbon nanotubes in the carbon nanotube array to obtain a thermal interface material.
  • the steaming process conditions are: a temperature of 100 to 300 ° C, and a working gas pressure of 5 to 50 Torr.
  • the carbon nanotubes are grown on both surfaces of the zirconium metal foil to form an array of carbon nanotubes on both surfaces of the zirconium metal foil, including:
  • the zirconium metal foil having two catalysts distributed on the surface thereof is placed in a vacuum reaction chamber, and a gas flow diffusion control device is further disposed in the vacuum reaction chamber.
  • the airflow diffusion control device includes a first airflow diffusion control sheet and a second airflow diffusion control sheet, the first airflow diffusion control sheet being located on one surface side of the zirconium metal foil, and the second airflow diffusion control sheet being located at the zirconium The other surface side of the metal foil;
  • the distance between the first airflow diffusion control sheet and one surface of the zirconium metal foil is 0.1 mm to 20 mm
  • the size of the through hole on the first airflow diffusion control sheet is 0.1 mm to 10.0 mm
  • the number of the through holes is 1 ⁇ 100 / cm2
  • C2H2 accounts for 2-50%
  • Ar accounts for 50-98%.
  • the mixed gas source in the ratio range can effectively ensure that the carbon nanotubes grow high density carbon nanotube arrays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种热界面材料及其制备方法、导热片和散热系统,该热界面材料包括锆金属箔(1)和碳纳米管阵列(2),锆金属箔具有第一表面以及与第一表面相对的第二表面,碳纳米管阵列中碳纳米管分布在第一表面和第二表面,锆金属箔的第一表面和第二表面包括裸露的锆金属。其降低了热界面材料的界面热阻,提高了热界面材料的导热性能。

Description

一种热界面材料及其制备方法、导热片和散热系统
本申请要求于2015年12月29日提交中国专利局、申请号为201511009829.9、发明名称为“一种热界面材料及其制备方法、导热片和散热系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及材料技术领域,特别涉及一种热界面材料及其制备方法、导热片和散热系统。
背景技术
电子设备中芯片等发热元件工作时产生的热量通常需借助散热器件实现热量向外部的扩散。从微观角度看,发热元件与散热器件之间的接触界面都存在很多的凹凸不平,需使用热界面材料(Thermal Interface Materials,TIM)填充发热元件与散热器件的接触界面,降低接触热阻。随着电子设备的微型化、轻量化和高密度化的发展。
目前,业界导热效果比较好的热界面材料是通过在锆金属箔的两个表面生长碳纳米管阵列而形成的。但由于该热界面材料内锆金属箔的界面热阻较大,所以导致该热界面材料的导热性能相对较差。
发明内容
本申请提供了一种热界面材料及其制备方法、导热片和散热系统,降低了热界面材料的界面热阻,提高了热界面材料的导热性能。
第一方面,本申请实施例提供一种热界面材料,包括锆金属箔和碳纳米管阵列,所述锆金属箔具有第一表面以及与所述第一表面相对的第二表面,所述碳纳米管阵列中碳纳米管分布在所述第一表面和所述第二表面,所述锆金属箔的第一表面和第二表面包括裸露的锆金属。
本申请实施例中,由于锆金属箔的第一表面和第二表面包括裸露的锆金属,降低了热界面材料的界面热阻,提高了热界面材料的导热性能。
结合第一方面,在第一方面的第一种可能的实施方式下,所述锆金属箔的第一表面和第二表面均为裸露的锆金属,在锆金属箔两面均为裸露的锆金属 时,进一步降低了热界面材料的界面热阻,提高了热界面材料的导热性能。
结合第一方面或第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式下,所述碳纳米阵列中碳纳米管垂直于所述第一表面和所述第二表面,需要说明的是,此处碳纳米阵列中碳纳米管垂直于所述第一表面和所述第二表面,实际生产中,并不存在绝对百分百的碳纳米管均垂直于所述第一表面和所述第二表面,可以理解为,满足本领域现有技术中误差百分比,即认为碳纳米阵列中碳纳米管垂直于所述第一表面和所述第二表面,此时,碳纳米管阵列中的碳纳米管密度即相对均匀,不会碳纳米管方向均偏向某一边而造成密度差异。
结合第一方面、第一方面的第一种可能的实施方式或第一方面的第二种可能的实施方式,在第一方面的第三种可能的实施方式下,所述碳纳米管阵列中相邻两个碳纳米管之间的空隙中填充有树脂,例如可以是硅树脂。由于热界面材料界面热阻主要是由于界面处金属基材表面的金属氧化物和碳纳米管之间的空气导致的,而且,即使是高密度的碳纳米管阵列,在碳纳米管之间依然存在空气,因此,为了降低热界面材料的界面热阻,可以采用更高热导率的材料替代碳纳米管之间的空气填充。
结合第一方面的第三种可能的实施方式,在第一方面的第四种可能的实施方式下,所述树脂的热导率大于0.1W/m.k,可以保证热界面材料的导热性能。
结合第一方面或第一方面的第一种可能的实施方式至第一方面的第四种可能的实施方式中任一种可能的实施方式,在第一方面的第五种可能的实施方式下,所述碳纳米管阵列中纳米管分布在所述第一表面的碳纳米管阵列的密度与分布在所述第二表面的碳纳米管阵列的密度相等。
由于所述碳纳米管阵列中碳纳米管均匀分布在锆金属箔的第一表面和第二表面,从而使得在使用本实施例中热界面材料时,热界面材料和散热器界面之间可以实现更好的接触,提高导热性能。
结合第一方面或第一方面的第一种可能的实施方式至第一方面的第五种可能的实施方式中任一种可能的实施方式,在第一方面的第六种可能的实施方式下,所述热界面材料中碳纳米管的质量密度为0.16~0.5g/cm3,
热界面材料中碳纳米管的质量密度高,则热界面材料的导热效果更好,本 申请中由于热界面材料中碳纳米管的质量密度达到0.16~0.5g/cm3,这个密度可以达到常规生长工艺生产的热界面材料中碳纳米管的质量密度的10倍左右,极大的提升了热界面材料的导热性能。
结合第一方面或第一种可能的实施方式至第六种可能的实施方式中任一种可能的实施方式,在第七种可能的实施方式下,所述碳纳米管阵列中相邻两个碳纳米管之间的空隙在10~100nm,碳纳米管之间这个空隙越小,使得碳纳米管的密度更大,导热效果更好,更小间隙的碳纳米管生长困难,有的甚至无法生长,碳纳米管阵列中相邻两个碳纳米管之间的空隙在10~100nm,既保证了碳纳米管阵列的导热效果,又不会增加碳纳米管阵列生长实现的难度。
结合第一方面或第一方面的第一种可能的实施方式至第一方面的第七种可能的实施方式中任一种可能的实施方式,在第一方面的第八种可能的实施方式下,所述锆金属箔厚度为10~100μm。由于本申请中碳纳米管的高密度,因此锆金属箔需要有一定厚度保证,不然即使均匀分布,可能也容易造成锆金属箔变形,所以所述锆金属箔厚度可以为10~100μm。
结合第一方面或第一方面的第一种可能的实施方式或第一方面的第八种可能的实施方式中任一种可能的实施方式,在第一方面的第九种可能的实施方式下,所述碳纳米管可以为多壁碳纳米管,直径可以为10~20nm,长度可以为30~100μm。
第二方面,本申请实施例提供一种热界面材料的制备方法,包括:
在锆金属箔的两个表面生长碳纳米管,以在所述锆金属箔的两个表面均形成碳纳米管阵列;
在所述锆金属箔的两个表面均形成所述碳纳米管阵列之后,对所述锆金属箔的两个表面进行还原反应,以得到所述热界面材料,所述热界面材料中锆金属箔的两个表面包括裸露的锆金属。
由于在所述锆金属箔的两个表面均形成所述碳纳米管阵列之后,对所述锆金属箔的两个表面进行还原反应,使得得到的界面材料中锆金属箔的两个表面包括裸露的锆金属,降低了热界面材料的界面热阻,提高了热界面材料的导热性能。
结合第二方面,在第一方面的第一种可能的实施方式下,所述热界面材料 中锆金属箔的两个表面均为裸露的锆金属,在锆金属箔两面均为裸露的锆金属时,进一步降低了热界面材料的界面热阻,提高了热界面材料的导热性能。
结合第二方面或第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式下,所述对所述锆金属箔的两个表面进行还原反应,包括:
将两个表面生长有所述碳纳米管阵列的锆金属箔放在H2气氛中进行退火还原处理
由于H2可以的与锆金属箔表面氧化物中的O原子进行还原反应,生成H2O,还原效果好,可以有效降低了热界面材料的界面热阻。
结合第二方面的第二种可能的实施方式,在第二方面的第三种可能的实施方式下,发明人经过实际测试论证,在所述H2气氛中进行退火还原处理过程中,H2流量为5~100SCCM,气压为0.005~0.5MPa,退火处理温度为350~650℃,退火处理时间为5~30min时,H2与锆金属箔表面氧化物中的O原子进行还原反应的效果最佳。
结合第二方面或第二方面的第一种可能的实施方式至第二方面的的第三种可能的实施方式中任一可能的实施方式,在第二方面的第四种可能的实施方式下,所述在对所述锆金属箔的两个表面进行还原反应之后,所述方法还包括:
在真空中采用蒸渡工艺,在所述碳纳米管阵列中相邻两个碳纳米管之间填充树脂,得到热界面材料。
由于热界面材料界面热阻主要是由于界面处金属基材表面的金属氧化物和碳纳米管之间的空气导致的,而且,即使是高密度的碳纳米管阵列,在碳纳米管之间依然存在空气,因此,为了降低热界面材料的界面热阻,可以采用更高热导率的材料替代碳纳米管之间的空气填充。
结合第二方面的第四种可能的实施方式,在第二方面的第五种可能的实施方式下,所述蒸渡工艺条件:温度为100~300℃,工作气压为5~50Torr。
结合第二方面或第二方面的第一种可能的实施方式至第二方面的的第五种可能的实施方式中任一可能的实施方式,在第二方面的第六种可能的实施方式下,所述在锆金属箔的两个表面生长碳纳米管,以在所述锆金属箔的两个表面均形成碳纳米管阵列,包括:
在锆金属箔的两个表面分布金属颗粒催化剂后,将两个表面分布有催化剂 的所述锆金属箔放入真空反应腔中,所述真空反应腔内还放置有气流扩散控制装置,所述气流扩散控制装置包括第一气流扩散控制片和第二气流扩散控制片,所述第一气流扩散控制片位于所述锆金属箔的一个表面侧,所述第二气流扩散控制片位于所述锆金属箔的另一表面侧;
在真空反应腔中控制均匀通入C2H2和Ar混合气源,所述混合气源通过所述第一气流扩散控制片吹到所述锆金属箔的一个表面,所述混合气源通过所述第二气流扩散控制片吹到所述锆金属箔的另一个表面,在所述锆金属箔的两个表面生长碳纳米管5~20min,形成所述碳纳米管阵列,其中,所述真空反应腔中总气压在10~100Torr,生长温度为500~900℃。
结合第二方面的第六种可能的实施方式,在第二方面的第七种可能的实施方式下,所述第一气流扩散控制片与锆金属箔的一个表面的距离0.1mm~20mm,所述第一气流扩散控制片上的通孔的尺寸0.1mm~10.0mm,通孔的数量1~100个/cm2,此种条件下,真空腔在极小范围的混合气源的通过气流可以保证相对均匀稳定,从而确保碳纳米管阵列均匀生长。
结合第二方面的第七种可能的实施方式,在第二方面的第八种可能的实施方式下,所述混合气源中,C2H2占2~50%,Ar占50~98%,此比例范围的混合气源可以有效保证碳纳米管生长高密度的碳纳米管阵列。
第三方面,本申请实施例提供一种导热片,所述导热片由如第一方面或第一方面中任一可能的实施方式所述的热界面材料制成。
第四方面,本申请实施例提供一种散热系统,包括发热件、散热器以及导热片,所述导热片由如第一方面或第一方面中任一可能的实施方式所述的热界面材料制成,所述发热件位于所述散热器一侧,所述导热片贴置于所述发热件与所述散热器之间,以使所述发热件通过所述导热片将热量传递至所述散热器来进行散热。
在本申请实施例中,由于锆金属箔的第一表面和第二表面包括裸露的锆金属,降低了热界面材料的界面热阻,提高了热界面材料的导热性能。
附图说明
图1是本申请中热界面材料的一个实施例示意图;
图2是本申请中热界面材料的另一个实施例示意图;
图3是本申请中散热系统的一个实施例示意图;
图4是本申请中热界面材料的制备方法的一个实施例示意图。
具体实施方式
本申请提供了本申请提供了一种热界面材料及其制备方法、导热片和散热系统,降低了热界面材料的界面热阻,提高了热界面材料的导热性能。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面首先简单介绍本申请实施例中涉及的基础概念。
碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2~20nm,并且根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和螺旋型三种。其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性,碳纳米管独特的分子结构使它具有显著的电子特性,广泛纳米电子学和光电子学,场发射电子源,高强度复合材料,传感器与致动器,热导材料,光学材料,导电薄膜,纳米级的模版与孔洞等。
乙炔:分子式C2H2,俗称风煤和电石气,是炔烃化合物系列中体积最小 的一员,主要作工业用途,例如碳纳米管生长等。乙炔在室温下是一种无色、极易燃的气体。
氩:非金属元素,元素符号Ar,氩是单原子分子,单质为无色、无臭和无味的气体,是稀有气体中在空气中含量最多的一个,由于在自然界中含量很多,氩是目前最早发现的稀有气体。化学性极不活泼,但是已制得其化合物——氟氩化氢。氩不能燃烧,也不能助燃,常用作保护气体。
蒸渡工艺:在真空室中把欲镀金属、合金或化合物加热融化,使其呈分子或原子状态逸出,沉积到被渡材料表面而形成固态薄膜或涂层的方法。
SCCM:体积流量单位,英文全称standard-state cubic centimeter per minute,中文全称标准状况下毫升每分钟,常用于化学反应中。
Torr:中文称“托”,压强单位,原本的1Torr是指“将幼细直管内的水银顶高一毫米之压力”,而正常之大气压力可以将水银升高760mm,故此将1Torr定为大气压力的1/760倍。
下面介绍本申请实施例中热界面材料的实施例。
如图1所示,本申请中热界面材料一个实施例包括锆金属箔1和碳纳米管阵列2,所述锆金属箔1具有第一表面以及与所述第一表面相对的第二表面,所述碳纳米管阵列2中碳纳米管分布在所述第一表面和所述第二表面,所述锆金属箔1的第一表面和第二表面包括裸露的锆金属。
本实施例中,由于锆金属箔的第一表面和第二表面包括裸露的锆金属,降低了热界面材料的界面热阻,提高了热界面材料的导热性能。
本申请实施例中,为了进一步降低了热界面材料的界面热阻,提高了热界面材料的导热性能,所述锆金属箔的第一表面和第二表面可以均为裸露的锆金属。
可选的,所述碳纳米阵列中碳纳米管垂直于所述第一表面和所述第二表面,需要说明的是,此处碳纳米阵列中碳纳米管垂直于所述第一表面和所述第二表面,实际生产中,并不存在绝对百分百的碳纳米管均垂直于所述第一表面和所述第二表面,可以理解为,满足本领域现有技术中误差百分比,即认为碳纳米阵列中碳纳米管垂直于所述第一表面和所述第二表面,此时,碳纳米管阵列中的碳纳米管密度即相对均匀,不会导致碳纳米管方向均偏向某一边而造成 密度差异。
由于热界面材料界面热阻主要是由于界面处金属基材表面的金属氧化物和碳纳米管之间的空气导致的,而且,即使是高密度的碳纳米管阵列,在碳纳米管之间依然存在空气,因此,为了降低热界面材料的界面热阻,可以采用更高热导率的材料替代碳纳米管之间的空气填充,可选的,如图2所示,所述碳纳米管阵列中相邻两个碳纳米管之间的空隙中填充有树脂,例如可以是硅树脂。
在碳纳米管阵列中相邻两个碳纳米管之间的空隙中填充树脂的情况下,进一步优选的,所述树脂的热导率大于0.1W/m.k,此时可以保证热界面材料的导热性能。
在本申请的一些实施例中,所述碳纳米管阵列中纳米管分布在所述第一表面的碳纳米管阵列的密度与分布在所述第二表面的碳纳米管阵列的密度相等,可以理解的是,此处描述的密度相等并不是指绝对相等,而是本领域技术中,满足密度差异百分比,使分布在所述第一表面的碳纳米管阵列的密度与分布在所述第二表面的碳纳米管阵列的密度均匀,不会有明显的影响效果的差异。
由于所述碳纳米管阵列中碳纳米管均匀分布在锆金属箔的第一表面和第二表面,从而使得在使用本实施例中热界面材料时,热界面材料和散热器界面之间可以实现更好的接触,提高导热性能。
在碳纳米管组成的热界面材料中,热界面材料中碳纳米管的质量密度高,则热界面材料的导热效果更好,本申请中热界面材料中碳纳米管的质量密度达到0.16~0.5g/cm3,这个密度可以达到常规生长工艺生产的热界面材料中碳纳米管的质量密度的10倍左右,极大的提升了热界面材料的导热性能,优选的,热界面材料中碳纳米管的质量密度为0.3~0.5g/cm3。
由于本申请中碳纳米管的高密度,因此锆金属箔需要有一定厚度保证,不然即使均匀分布,可能也容易造成锆金属箔变形,所以所述锆金属箔厚度可以为10~100μm,优选30~60μm。
可选的,本申请中,所述碳纳米管可以为多壁碳纳米管,直径可以为10~20nm,长度可以为30~100μm。
可选的,所述碳纳米管阵列中相邻两个碳纳米管之间的空隙在10~100nm, 碳纳米管之间这个空隙越小,使得碳纳米管的密度更大,导热效果更好,当然由于碳纳米管间距过小,虽然可以进一步增大碳纳米管的密度,但碳纳米管碳管间距小到一定程度后,在碳纳米管生长时,由于密度过大,容易降低碳纳米管的生长质量和碳纳米管的生长难度,这主要是因为碳源气体(例如C2H2)流速的限制(就是说碳纳米管太密集气体无法很顺畅地通过,从而无法提供充足稳定的碳源,会使部分碳纳米管停止生长,所以碳纳米管之间空隙应该是一个适当的距离,本申请实施例中,碳纳米管阵列中相邻两个碳纳米管之间的空隙在10~100nm,既保证了碳纳米管阵列的导热效果,又不会增加碳纳米管阵列生长实现的难度,进一步优选的,碳纳米管阵列中相邻两个碳纳米管之间的空隙在30~70nm。
本申请实施例中,还提供一种导热片,该导热片由上述热界面材料制作而成。
本申请实施例中,还提供一种散热系统,如图3所示,该散热系统包括发热件31、散热器32以及导热片33,所述导热片33为如上所述的导热片,该导热片由上述热界面材料制作而成,所述发热件31位于所述散热器32一侧,所述导热片33贴置于所述发热件31与所述散热器之间,以使所述发热件31通过所述导热片33将热量传递至所述散热器32来进行散热。
下面介绍本申请实施例中热界面材料的制备方法的实施例。
请参阅图4,本申请实施例中热界面材料的制备方法的一个实施例包括:
401、在锆金属箔的两个表面生长碳纳米管,以在所述锆金属箔的两个表面均形成碳纳米管阵列;
402、在所述锆金属箔的两个表面均形成所述碳纳米管阵列之后,对所述锆金属箔的两个表面进行还原反应,以得到所述热界面材料;
其中,所述热界面材料中锆金属箔的两个表面包括裸露的锆金属。
本实施例中,由于在所述锆金属箔的两个表面均形成所述碳纳米管阵列之后,对所述锆金属箔的两个表面进行还原反应,使得得到的界面材料中锆金属箔的两个表面包括裸露的锆金属,降低了热界面材料的界面热阻,提高了热界面材料的导热性能。
可选的,所述热界面材料中锆金属箔的两个表面均为裸露的锆金属,,在 锆金属箔两面均为裸露的锆金属时,进一步降低了热界面材料的界面热阻,提高了热界面材料的导热性能。
可选的,所述对所述锆金属箔的两个表面进行还原反应,包括:
将两个表面生长有所述碳纳米管阵列的锆金属箔放在H2气氛中进行退火还原处理
由于H2可以的与锆金属箔表面氧化物中的O原子进行还原反应,生成H2O,还原效果好,可以有效降低了热界面材料的界面热阻。
可选的,发明人经过实际测试论证,在所述H2气氛中进行退火还原处理过程中,H2流量为5~100SCCM,气压为0.005~0.5MPa,退火处理温度为350~650℃,退火处理时间为5~30min时,H2与锆金属箔表面氧化物中的O原子进行还原反应的效果最佳。
由于热界面材料界面热阻主要是由于界面处金属基材表面的金属氧化物和碳纳米管之间的空气导致的,而且,即使是高密度的碳纳米管阵列,在碳纳米管之间依然存在空气,因此,为了降低热界面材料的界面热阻,可以采用更高热导率的材料替代碳纳米管之间的空气填充,可选的,所述在对所述锆金属箔的两个表面进行还原反应之后,所述方法还包括:
在真空中采用蒸渡工艺,在所述碳纳米管阵列中相邻两个碳纳米管之间填充树脂,得到热界面材料。
可选的,所述蒸渡工艺条件:温度为100~300℃,工作气压为5~50Torr。
可选的,所述在锆金属箔的两个表面生长碳纳米管,以在所述锆金属箔的两个表面均形成碳纳米管阵列,包括:
在锆金属箔的两个表面分布金属颗粒催化剂后,将两个表面分布有催化剂的所述锆金属箔放入真空反应腔中,所述真空反应腔内还放置有气流扩散控制装置,所述气流扩散控制装置包括第一气流扩散控制片和第二气流扩散控制片,所述第一气流扩散控制片位于所述锆金属箔的一个表面侧,所述第二气流扩散控制片位于所述锆金属箔的另一表面侧;
在真空反应腔中控制均匀通入C2H2和Ar混合气源,所述混合气源通过所述第一气流扩散控制片吹到所述锆金属箔的一个表面,所述混合气源通过所述第二气流扩散控制片吹到所述锆金属箔的另一个表面,在所述锆金属箔的两 个表面生长碳纳米管5~20min,形成所述碳纳米管阵列,其中,所述真空反应腔中总气压在10~100Torr,生长温度为500~900℃。
可选的,所述第一气流扩散控制片与锆金属箔的一个表面的距离0.1mm~20mm,所述第一气流扩散控制片上的通孔的尺寸0.1mm~10.0mm,通孔的数量1~100个/cm2,此种条件下,真空腔在极小范围的混合气源的通过气流可以保证相对均匀稳定,从而确保碳纳米管阵列均匀生长。
可选的,所述混合气源中,C2H2占2~50%,Ar占50~98%,此比例范围的混合气源可以有效保证碳纳米管生长高密度的碳纳米管阵列。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (20)

  1. 一种热界面材料,其特征在于,包括锆金属箔和碳纳米管阵列,所述锆金属箔具有第一表面以及与所述第一表面相对的第二表面,所述碳纳米管阵列中碳纳米管分布在所述第一表面和所述第二表面,所述锆金属箔的第一表面和第二表面包括裸露的锆金属。
  2. 根据权利要求1所述的材料,其特征在于,所述锆金属箔的第一表面和第二表面均为裸露的锆金属。
  3. 根据权利要求1或2所述的材料,其特征在于,所述碳纳米阵列中碳纳米管垂直于所述第一表面和所述第二表面。
  4. 根据权利要求1至3中任一所述的材料,其特征在于,所述碳纳米管阵列中相邻两个碳纳米管之间的空隙中填充有树脂。
  5. 根据权利要求4所述的材料,其特征在于,所述树脂的热导率大于0.1W/m.k。
  6. 根据权利要求1至5中任一所述的材料,其特征在于,所述碳纳米管阵列中纳米管分布在所述第一表面的碳纳米管阵列的密度与分布在所述第二表面的碳纳米管阵列的密度相等。
  7. 根据权利要求1至6中任一所述的材料,其特征在于,
    所述热界面材料中碳纳米管的质量密度为0.16~0.5g/cm3
  8. 根据权利要求1至7中任一所述的材料,其特征在于,
    所述碳纳米管阵列中相邻两个碳纳米管之间的空隙在10~100nm。
  9. 根据权利要求1至8中任一所述的材料,其特征在于,
    所述锆金属箔厚度为10~100μm。
  10. 一种热界面材料的制备方法,其特征在于,包括:
    在锆金属箔的两个表面生长碳纳米管,以在所述锆金属箔的两个表面均形成碳纳米管阵列;
    在所述锆金属箔的两个表面均形成所述碳纳米管阵列之后,对所述锆金属箔的两个表面进行还原反应,以得到所述热界面材料,所述热界面材料中锆金属箔的两个表面包括裸露的锆金属。
  11. 根据权利要求10所述的方法,其特征在于,所述热界面材料中锆金 属箔的两个表面均为裸露的锆金属。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述对所述锆金属箔的两个表面进行还原反应,包括:
    将两个表面生长有所述碳纳米管阵列的锆金属箔放在H2气氛中进行退火还原处理。
  13. 根据权利要求12所述的方法,其特征在于,在所述H2气氛中进行退火还原处理过程中,H2流量为5~100SCCM,气压为0.005~0.5MPa,退火处理温度为350~650℃,退火处理时间为5~30min。
  14. 根据权利要求10至13中任一所述的方法,其特征在于,所述在对所述锆金属箔的两个表面进行还原反应之后,所述方法还包括:
    在真空中采用蒸渡工艺,在所述碳纳米管阵列中相邻两个碳纳米管之间填充树脂,得到热界面材料。
  15. 根据权利要求14所述的方法,其特征在于,所述蒸渡工艺条件:
    温度为100~300℃,工作气压为5~50Torr。
  16. 根据权利要求10至15中任一所述的方法,其特征在于,
    所述在锆金属箔的两个表面生长碳纳米管,以在所述锆金属箔的两个表面均形成碳纳米管阵列,包括:
    在锆金属箔的两个表面分布金属颗粒催化剂后,将两个表面分布有催化剂的所述锆金属箔放入真空反应腔中,所述真空反应腔内还放置有气流扩散控制装置,所述气流扩散控制装置包括第一气流扩散控制片和第二气流扩散控制片,所述第一气流扩散控制片位于所述锆金属箔的一个表面侧,所述第二气流扩散控制片位于所述锆金属箔的另一表面侧;
    在真空反应腔中控制均匀通入C2H2和Ar混合气源,所述混合气源通过所述第一气流扩散控制片吹到所述锆金属箔的一个表面,所述混合气源通过所述第二气流扩散控制片吹到所述锆金属箔的另一个表面,在所述锆金属箔的两个表面生长碳纳米管5~20min,形成所述碳纳米管阵列,其中,所述真空反应腔中总气压在10~100Torr,生长温度为500~900℃。
  17. 根据权利要求16所述的方法,其特征在于,所述第一气流扩散控制片与锆金属箔的一个表面的距离0.1mm~20mm,所述第一气流扩散控制片上 的通孔的尺寸0.1mm~10.0mm,通孔的数量1~100个/cm2
  18. 根据权利要求17所述的方法,其特征在于,所述第二气流扩散控制片与锆金属箔的另一个表面的距离0.1mm~20mm,所述第二气流扩散控制片上的通孔的尺寸0.1mm~10.0mm,通孔的数量1~100个/cm2
  19. 根据权利要求16至18中任一所述的方法,其特征在于,
    所述混合气源中,C2H2占2~50%,Ar占50~98%。
  20. 一种散热系统,其特征在于,包括发热件、散热器以及导热片,所述导热片由如权利要求1至9中任一所述的热界面材料制成,所述发热件位于所述散热器一侧,所述导热片贴置于所述发热件与所述散热器之间,以使所述发热件通过所述导热片将热量传递至所述散热器来进行散热。
PCT/CN2016/090003 2015-12-29 2016-07-14 一种热界面材料及其制备方法、导热片和散热系统 WO2017113745A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16880542.2A EP3321958B1 (en) 2015-12-29 2016-07-14 Method for manufacturing thermal interface material
KR1020187005386A KR102070741B1 (ko) 2015-12-29 2016-07-14 열 인터페이스 재료, 열 인터페이스 재료의 제조 방법, 열 전도성 패드 및 열 싱크 시스템
US15/890,164 US20180179429A1 (en) 2015-12-29 2018-02-06 Thermal Interface Material, Method For Preparing Thermal Interface Material, Thermally Conductive Pad, And Heat Dissipation System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511009829.9A CN105679723B (zh) 2015-12-29 2015-12-29 一种热界面材料及其制备方法、导热片和散热系统
CN201511009829.9 2015-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/890,164 Continuation US20180179429A1 (en) 2015-12-29 2018-02-06 Thermal Interface Material, Method For Preparing Thermal Interface Material, Thermally Conductive Pad, And Heat Dissipation System

Publications (1)

Publication Number Publication Date
WO2017113745A1 true WO2017113745A1 (zh) 2017-07-06

Family

ID=56189663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090003 WO2017113745A1 (zh) 2015-12-29 2016-07-14 一种热界面材料及其制备方法、导热片和散热系统

Country Status (5)

Country Link
US (1) US20180179429A1 (zh)
EP (1) EP3321958B1 (zh)
KR (1) KR102070741B1 (zh)
CN (1) CN105679723B (zh)
WO (1) WO2017113745A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679723B (zh) * 2015-12-29 2018-12-14 华为技术有限公司 一种热界面材料及其制备方法、导热片和散热系统
CN106281257A (zh) * 2016-08-12 2017-01-04 曹蕊 一种具有石墨烯的热界面材料及其制备方法
CN107727263A (zh) * 2017-10-19 2018-02-23 华为技术有限公司 热电偶和温度传感器
CN207235347U (zh) * 2017-11-22 2018-04-13 深圳市蓝禾技术有限公司 无线充电器
EP3522211B1 (en) * 2018-01-31 2020-09-30 Nolato Silikonteknik AB Delivery roll and method for manufacturing thereof
CN110306167B (zh) * 2019-06-06 2021-06-04 沈阳航空航天大学 一种原位生长cnt层增强轻质合金胶接界面强度的方法
CN116734649B (zh) * 2023-08-08 2023-10-27 中国空气动力研究与发展中心高速空气动力研究所 基于红外光学调控的自适应热管理装置及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131655A1 (en) * 2006-03-21 2008-06-05 Barbara Wacker Double Layer Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices
CN101899288A (zh) * 2009-05-27 2010-12-01 清华大学 热界面材料及其制备方法
CN103367275A (zh) * 2013-07-10 2013-10-23 华为技术有限公司 一种界面导热片及其制备方法、散热系统
US8617650B2 (en) * 2006-09-28 2013-12-31 The Hong Kong University Of Science And Technology Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor depositon
CN105679723A (zh) * 2015-12-29 2016-06-15 华为技术有限公司 一种热界面材料及其制备方法、导热片和散热系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI463615B (zh) * 2004-11-04 2014-12-01 Taiwan Semiconductor Mfg Co Ltd 以奈米管為基礎之具方向性導電黏著
US20060231946A1 (en) * 2005-04-14 2006-10-19 Molecular Nanosystems, Inc. Nanotube surface coatings for improved wettability
CN100358132C (zh) * 2005-04-14 2007-12-26 清华大学 热界面材料制备方法
WO2008153609A1 (en) * 2007-02-07 2008-12-18 Seldon Technologies, Inc. Methods for the production of aligned carbon nanotubes and nanostructured material containing the same
US8919428B2 (en) * 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
JP5239768B2 (ja) * 2008-11-14 2013-07-17 富士通株式会社 放熱材料並びに電子機器及びその製造方法
US9296190B1 (en) * 2011-05-04 2016-03-29 Arizona Board Of Regents On Behalf Of The University Of Arizona Composite materials and methods for their production
WO2013046291A1 (ja) * 2011-09-26 2013-04-04 富士通株式会社 放熱材料及びその製造方法並びに電子機器及びその製造方法
CN106463483A (zh) * 2014-05-30 2017-02-22 华为技术有限公司 散热结构及其合成方法
US10370752B2 (en) * 2015-04-08 2019-08-06 Iowa State University Research Foundation, Inc. Imprinting bulk amorphous alloys at room temperature

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131655A1 (en) * 2006-03-21 2008-06-05 Barbara Wacker Double Layer Carbon Nanotube-Based Structures and Methods for Removing Heat from Solid-State Devices
US8617650B2 (en) * 2006-09-28 2013-12-31 The Hong Kong University Of Science And Technology Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor depositon
CN101899288A (zh) * 2009-05-27 2010-12-01 清华大学 热界面材料及其制备方法
CN103367275A (zh) * 2013-07-10 2013-10-23 华为技术有限公司 一种界面导热片及其制备方法、散热系统
CN105679723A (zh) * 2015-12-29 2016-06-15 华为技术有限公司 一种热界面材料及其制备方法、导热片和散热系统

Also Published As

Publication number Publication date
CN105679723B (zh) 2018-12-14
EP3321958A4 (en) 2018-10-31
CN105679723A (zh) 2016-06-15
US20180179429A1 (en) 2018-06-28
KR102070741B1 (ko) 2020-01-29
KR20180034546A (ko) 2018-04-04
EP3321958A1 (en) 2018-05-16
EP3321958B1 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
WO2017113745A1 (zh) 一种热界面材料及其制备方法、导热片和散热系统
US8617650B2 (en) Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor depositon
JP6132768B2 (ja) 放熱材料及びその製造方法
JP2007009213A (ja) 熱伝導材料及びその製造方法
JP2009091174A (ja) グラフェンシートの製造方法
JP2010241680A (ja) グラフェンの製造方法
JP2009286688A (ja) カーボンナノチューブフィルムの製造方法
JP2009267419A (ja) 熱界面材料の製造方法
WO2014203547A1 (ja) 接合シート及びその製造方法、並びに放熱機構及びその製造方法
JP6202104B2 (ja) シート状構造体、これを用いた電子機器、シート状構造体の製造方法、及び電子機器の製造方法
JP2016522996A (ja) 放熱構造及びその合成方法
JP2007076925A (ja) カーボンナノチューブの作製方法及びその固定方法
TWI312380B (zh)
JP2008201648A (ja) カーボンナノチューブの製造装置およびカーボンナノチューブの製造方法
JP2010171200A (ja) 半導体パッケージ放熱用部品
JP2005272271A (ja) カーボンナノチューブの製造方法及び半導体装置の製造方法
JP2009260169A (ja) ヒートシンク及び放熱装置
JP6244651B2 (ja) シート状構造体及びその製造方法、並びに電子装置及びその製造方法
JP5673325B2 (ja) カーボンナノチューブの形成方法及び熱拡散装置
JP2010253730A (ja) 放熱材料、プリント基板およびプリント基板の製造方法
JP4861448B2 (ja) ニッケルシリサイドナノワイヤの製造方法
JP5857830B2 (ja) カーボンナノチューブシート及びその製造方法
US7799252B2 (en) Method for making a thermal interface material having carbon nanotube array
KR102109930B1 (ko) 보론 나이트라이드(bn) 층의 연속적인 형성 방법, 이를 이용한 전계 효과 트랜지스터 소자의 제조 방법, 및 이로부터 제조된 전계 효과 트랜지스터
CN106281257A (zh) 一种具有石墨烯的热界面材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016880542

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187005386

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE