WO2017110940A1 - 半導体素子及びそれを用いた電気機器 - Google Patents

半導体素子及びそれを用いた電気機器 Download PDF

Info

Publication number
WO2017110940A1
WO2017110940A1 PCT/JP2016/088234 JP2016088234W WO2017110940A1 WO 2017110940 A1 WO2017110940 A1 WO 2017110940A1 JP 2016088234 W JP2016088234 W JP 2016088234W WO 2017110940 A1 WO2017110940 A1 WO 2017110940A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
layer
electrode
semiconductor element
semiconductor layer
Prior art date
Application number
PCT/JP2016/088234
Other languages
English (en)
French (fr)
Inventor
勇輝 霍間
隆司 関谷
重和 笘井
絵美 川嶋
義弘 上岡
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016159351A external-priority patent/JP6975530B2/ja
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020187016656A priority Critical patent/KR102506724B1/ko
Priority to CN201680074791.XA priority patent/CN108431963B/zh
Priority to US16/064,210 priority patent/US10374045B2/en
Publication of WO2017110940A1 publication Critical patent/WO2017110940A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/247Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Definitions

  • the present invention relates to a semiconductor element, and a Schottky barrier diode, a junction transistor, an electronic circuit, and an electric device using the semiconductor element.
  • Examples of power semiconductor materials that realize large current and low power consumption include new materials such as Si, SiC, and GaN. Gallium oxide and diamond are also attracting attention as next-generation materials. On the other hand, since these are based on the use of a single crystal, it is difficult to grow a single crystal on a different substrate, and there is a disadvantage that the selection of the substrate is limited.
  • the crystal structure suitable as a power semiconductor is 4H—SiC, and a dielectric breakdown electric field of 3 MV / cm or more is realized.
  • the lattice mismatch is large, it is difficult to epitaxially grow a single crystal with few defects on Si with a high yield.
  • it is 3C-SiC, it can be epitaxially grown by performing microfabrication on the Si wafer or using the Si (211) surface, but the band gap is narrowed, so the dielectric breakdown electric field remains at 1.2 MV / cm. .
  • GaN has a dielectric breakdown electric field of 3 MV / cm or more like 4H-SiC, and attempts have been made to grow crystals on Si for mass production.
  • a buffer layer such as AlN
  • Non-Patent Document 1 in a unipolar power device, the relationship of the following equation is established in order to obtain the minimum On resistance, and the optimum carrier concentration is determined when the breakdown voltage design and the semiconductor material type are determined. The However, it has been difficult to control the carrier concentration in an amorphous or polycrystalline semiconductor. (Wherein, epsilon S is the dielectric constant of the material, E C is the maximum breakdown electric field, q is the elementary charge, BV is the breakdown voltage is the design value, the N D is the carrier concentration.)
  • An object of the present invention is to provide a semiconductor device having a high breakdown voltage and a low resistance that does not require initial carrier concentration control.
  • the inventors of the present invention have performed an operation different from the design guideline for the conventional unipolar power device as long as the semiconductor layer and the electrode satisfy a predetermined relational expression. Based on the principle, it has been found that a semiconductor device having a high withstand voltage and a low resistance can be obtained by using exogenous carriers without depending on the carrier concentration, and the present invention has been completed.
  • epsilon is the dielectric constant of the semiconductor layer (F / cm)
  • V e is the forward effective voltage between the Schottky electrode and the ohmic electrode (V)
  • q elementary charges
  • L is a distance (cm) between the ohmic electrode and the Schottky electrode.
  • the Schottky electrode includes at least one metal selected from Pd, Mo, Pt, Ir, Ru, W, Cr, Re, Te, Mn, Os, Fe, Rh, Co, and Ni, or an oxide thereof. 4.
  • 10. 10 The semiconductor device according to claim 1, wherein the semiconductor layer is interposed between the ohmic electrode and the Schottky electrode. 11. Furthermore, it has a conductive silicon substrate, 11.
  • the semiconductor element of the present invention includes a pair of spaced ohmic electrodes and a Schottky electrode, and a semiconductor layer in contact with the ohmic electrode and the Schottky electrode, and satisfies the following formula (I).
  • epsilon is the dielectric constant of the semiconductor layer (F / cm)
  • V e is the forward effective voltage between the Schottky electrode and the ohmic electrode (V)
  • q are elementary charges (1.602 ⁇ 10 ⁇ 19 C)
  • L is a distance (cm) between the ohmic electrode and the Schottky electrode.
  • the lower limit of n may be 0, but is preferably 1 ⁇ 10 10 or more.
  • the carrier concentration is calculated by CV (capacitance-voltage) measurement using the following equation (see APPLIED PHYSICS LETTERS, 101, 113505 (2012)).
  • A area of the portion where the Schottky electrode and the ohmic electrode overlap (cm 2)
  • C Measured capacitance value (F) ⁇ s : relative permittivity ( ⁇ ) ⁇ 0 : dielectric constant of vacuum (8.854 ⁇ 10 ⁇ 14 F / cm)
  • N depl carrier concentration (cm ⁇ 3 )
  • V bi Built-in voltage
  • k Boltzmann constant (8.617 ⁇ 10 ⁇ 5 eV / K)
  • T Sample temperature during measurement (K)
  • q Elementary charge (1.602 ⁇ 10 ⁇ 19 C)
  • V Applied voltage (V)
  • Ve can be set to 0.1 V as described later.
  • the dielectric constant ⁇ can be determined from the product of the relative dielectric constant and the dielectric constant of vacuum using the relative dielectric constant of the literature value if the composition and crystal system of the semiconductor species are determined. Moreover, when there are few report examples in literature, or when dispersion
  • the carrier concentration in the semiconductor layer is reduced. Specifically, the dopant concentration in the semiconductor is reduced.
  • the dopant concentration in the semiconductor is reduced.
  • a semiconductor in which hydrogen atoms or oxygen vacancies existing in a semiconductor function as a dopant such as an oxide semiconductor
  • forming a film with few defects and high film density is effective in reducing carrier concentration.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention.
  • This semiconductor element 1 (vertical type) has a Schottky electrode 10, a semiconductor layer 30, and an ohmic electrode 20 in this order. Furthermore, the conductive substrate 40 is provided on the side opposite to the semiconductor layer 30 side of the Schottky electrode 10.
  • FIG. 2 is a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention.
  • the semiconductor element 2 (vertical type) includes a Schottky electrode 10, a semiconductor layer 30, and an ohmic electrode 20 in this order.
  • the conductive substrate 40 is provided on the side opposite to the semiconductor layer 30 side of the ohmic electrode 20.
  • the semiconductor element 3 in FIG. 3 differs from the element 2 in FIG. 2 only in that the ohmic electrode 20 is wide.
  • FIG. 4 is a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention.
  • the Schottky electrode 10 and the ohmic electrode 20 are arranged on the first surface of the first and second surfaces of the semiconductor layer 30 facing each other with a space therebetween.
  • an insulating substrate 60 is provided on the second surface of the semiconductor layer 30.
  • the initial carrier concentration of the semiconductor layer is small, and the extrinsic carrier functions as a main factor of electrical conduction.
  • the semiconductor layer has a low trap density and does not interfere with the conduction of exogenous carriers.
  • Patent Document 1 there is a relationship in the following equation, which is based on a carrier concentration design guideline of a conventional unipolar power device, and there is a problem in controllability of carrier concentration. (Wherein, n, epsilon, V e, q and L are the same as the formula (I).)
  • the semiconductor element of the present invention has a small reverse leakage current, a low forward On resistance, and can extract a large current. Moreover, even if an inexpensive silicon substrate or metal substrate is used as the conductive substrate, good rectification characteristics are exhibited. Furthermore, even when the oxide semiconductor layer is formed by a method having excellent productivity such as sputtering, excellent rectification characteristics are exhibited.
  • the semiconductor device of the present invention is particularly excellent for vertical Schottky barrier diode applications.
  • the applied voltage V means a voltage applied to the drift layer.
  • Ve is defined as a forward effective voltage.
  • a device such as a Schottky barrier diode, a junction field effect transistor (JFET), or a metal oxide semiconductor field effect transistor (MOSFET) has a pair of ohmic electrodes and a Schottky electrode between semiconductor layers. ), The exogenous carrier functions as the main factor of electrical conduction.
  • JFET junction field effect transistor
  • MOSFET metal oxide semiconductor field effect transistor
  • the dielectric constant ⁇ is a product of the relative dielectric constant ⁇ r of the semiconductor and the dielectric constant ⁇ 0 of the vacuum (8.854 ⁇ 10 ⁇ 14 (8.854E-14) [F / cm]).
  • ⁇ r is a parameter that varies depending on the material, but is preferably 3 to 20, more preferably 5 to 16, and still more preferably 9 to 13. If the relative dielectric constant is too low, the injection of exogenous carriers is reduced, and there is a possibility that a high current cannot be obtained. If the relative dielectric constant is too large, the parasitic capacitance may increase and hysteresis may occur in the current characteristics.
  • the voltage applied to the unipolar device when the actual forward characteristic is used is usually about 0.5 V to 1.5 V, and the built-in voltage V bi is usually about 0.7 to 1.3 V.
  • V can be regarded as about 0.1V. Since the value of the elementary charge is 1.602 ⁇ 10 ⁇ 19 C / piece, assuming that ⁇ r is 10, the upper limit value of the carrier concentration n is a pair of ohmic electrodes and Schottky electrodes of the semiconductor layer in view of the formula (I) The distance L is determined as shown in Table 1.
  • L is preferably 10 nm ⁇ L ⁇ 100,000, more preferably 20 nm ⁇ L ⁇ 10000 nm, still more preferably 30 nm ⁇ L ⁇ 1000 nm, and most preferably 50 nm ⁇ L ⁇ 300 nm. If the distance L between the electrodes is too short, there is a risk that a problem will occur in terms of breakdown voltage. If L is too large, the current value may decrease or the film thickness of the semiconductor layer may increase in the vertical element, and it may take time to form the film. is there.
  • L and n are preferably represented by the following formula (Ia), more preferably by the following formula (Ib), further preferably by the following formula (Ic), and particularly preferably by the following formula (Id).
  • n, ⁇ , Ve, q and L are the same as those in the formula (I).
  • n is too low, the trap existing inside the semiconductor layer is affected, and the contribution of the diffusion current increases, which may deteriorate the current characteristics.
  • n is equal to or greater than ⁇ V e / qL 2 in the formula (I)
  • the contribution of the drift current increases, approaching the conventional operating characteristics, and hardly causing the effects of the present invention.
  • the semiconductor element of the present invention has a pair of ohmic electrodes and a Schottky electrode between semiconductor layers.
  • V BD 2-fold design breakdown voltage
  • V BD ⁇ EcL / 2 V BD ⁇ EcL next, in the same L contrasted
  • Ec is the maximum dielectric breakdown electric field
  • L is the interelectrode length.
  • the initial carrier concentration in the semiconductor layer is low, and when the forward voltage is applied, when the extrinsic carrier draws a perpendicular line from the outer periphery of the Schottky electrode surface to the ohmic surface, the ohmic electrode surface becomes Schottky.
  • FIG. 5 is a view for explaining an electrode surface of the semiconductor element of FIG.
  • the outer peripheral portion of the Schottky electrode surface is a portion indicated by reference numeral 12
  • the ohmic electrode surface is a portion indicated by reference numeral 22.
  • a vertical line drawn from the outer peripheral portion 12 of the Schottky electrode surface toward the ohmic electrode surface 22 is indicated by a symbol A.
  • the lower part of the semiconductor layer is generally an ohmic electrode, but when the ohmic electrode is inside the perpendicular from the Schottky electrode, the Schottky electrode can be easily attached to the lower part of the semiconductor layer. It can be used.
  • a field relaxation structure such as a guard ring to reduce the reverse leakage current. Can be omitted or reduced.
  • the exogenous carrier is dominant unipolar power device, the breakdown voltage as described above for the V BD ⁇ ECL, the dielectric breakdown field than the measurement results of the inter-electrode length L and the breakdown voltage V BD can be readily determined.
  • the breakdown voltage per L corresponds to the dielectric breakdown electric field.
  • L can be reduced in designing the same withstand voltage element, so that the injection of extrinsic carriers increases, and an element with lower resistance can be provided.
  • the breakdown voltage per L it is preferably 0.5 MV / cm or more, more preferably 0.8 MV / cm or more, still more preferably 1.0 MV / cm or more, and particularly preferably 3.0 MV / cm or more.
  • the breakdown voltage per L can be obtained by measuring the breakdown voltage (V) and dividing by the length of L. For example, in the case of a Schottky barrier diode, when a reverse voltage is swept, the first voltage value that reaches a current value of 1 ⁇ 10 ⁇ 3 A is defined as a breakdown voltage.
  • the breakdown voltage per L can be adjusted by selecting the material of the semiconductor layer.
  • the material of the semiconductor layer when the material of the semiconductor layer is a semiconductor layer including a band gap of 1 eV or more and amorphous or polycrystalline, it can be 0.5 MV / cm or more.
  • a material having a band gap of 2 eV or more it can be 1.0 MV / cm or more, and in the case of a semiconductor layer having a band gap of 2 eV or more and containing amorphous or polycrystal, it can be 3.0 MV / cm or more.
  • the characteristic temperature is a parameter that represents the characteristic of the bottom level of the conduction band that is unique to amorphous and polycrystals.
  • the following formula ( follows the characteristics of 5).
  • the characteristic temperature Tc is a parameter such that Tc> T, and has a large value when the number of tail levels is large and the conduction of exogenous carriers injected by the trap is hindered.
  • Current-voltage measurement is performed, and it can be seen from Equation (5) that the slope of the Log (J) -Log (V) graph is l + 1. Therefore, l is obtained from the slope and Tc is calculated.
  • a constant value of Tc with respect to an applied voltage in a certain continuous range is an indicator that the semiconductor layer has a bottom level.
  • Tc ⁇ 1500K is preferable, Tc ⁇ 900K is more preferable, and Tc ⁇ 600K is more preferable.
  • the characteristic temperature can be obtained from the slope of the graph of Log (J) -Log (V) after current-voltage measurement.
  • the characteristic temperature can be reduced by improving the short-range order of the atomic structure in an amorphous or polycrystalline semiconductor. For example, in the case of an amorphous metal oxide semiconductor, a low-density film tends to have low short-range order and a high characteristic temperature. In an amorphous metal oxide semiconductor film formed by sputtering, there is a relationship between density and film formation conditions.
  • a high-density film can be easily obtained.
  • the amorphous or polycrystalline semiconductor layer is a metal oxide semiconductor containing one or more elements selected from In, Zn, Ga, and Sn, a highly targeted s orbital can be used, and therefore, the influence of periodic potential disturbances. It is hard to receive and characteristic temperature tends to become low.
  • ⁇ Diffusion layer stacking (limited to vertical elements)> N-th when the following equation (6) and a lower semiconductor layer having a carrier concentration n L is (L 1, L 2, ⁇ L n) (n L and L n counted toward the Schottky electrode to the ohmic electrode position represents the carrier concentration and thickness of the low carrier concentration layer) and a carrier concentration n h is higher semiconductor layer (d 1, d 2, ⁇ d n-1) (n h and d n are Schottky
  • a semiconductor element (vertical type) having a repetitive structure in the drift layer can be obtained by the carrier concentration and the film thickness of the nth layer having the highest carrier concentration when counted from the electrode to the ohmic electrode.
  • n L represents the carrier concentration of the nth low-concentration layer when counted from the Schottky electrode toward the ohmic electrode
  • represents the dielectric constant of the nth low-concentration semiconductor layer.
  • q represents an elementary charge
  • L n is low n-th carrier concentration Represents the thickness of the semiconductor layer.
  • Ln is preferably 10 nm ⁇ Ln ⁇ 1000 nm, more preferably 20 nm ⁇ Ln ⁇ 300 nm, still more preferably 30 nm ⁇ Ln ⁇ 200 nm, and particularly preferably 30 nm ⁇ Ln ⁇ 100 nm. If Ln is too short, the variation becomes large, and if Ln is too long, the resistance value may be increased. Further, dn is preferably 3 nm ⁇ dn ⁇ 30 nm, more preferably 5 nm ⁇ dn ⁇ 10 nm.
  • n h is preferably the following formula (6-a), more preferably the following formula (6-b), and still more preferably the following formula (6-c).
  • q represents an elementary charge
  • d n the film thickness of the n th carrier high concentration of the semiconductor layer.
  • nh is too large, the semiconductor layer having a high carrier concentration may suppress the extension of the depletion layer when a reverse bias is applied, which may make it difficult to maintain the breakdown voltage. If nh is too small, it is necessary to inject extrinsic carriers into a layer having a high carrier concentration during forward application, and as a result, a plurality of semiconductor layers having a low carrier concentration behave as one layer having a low carrier concentration. The value may be high.
  • a layer having a low carrier concentration is preferably in contact with the Schottky electrode.
  • the semiconductor layer is not particularly limited, but is preferably composed of polycrystalline or amorphous. Moreover, it is preferable to be comprised from a metal oxide semiconductor, and it is more preferable to comprise from the metal oxide semiconductor containing 1 or more elements selected from In, Zn, Ga, Sn, and Al. When it is amorphous, it has excellent large-area uniformity, and is effective in reducing impact ionization when a reverse bias is applied and improving withstand voltage. If it is polycrystalline, it has large area uniformity and good conduction characteristics. When the semiconductor layer is manufactured from a metal oxide semiconductor, a film forming method with a large area using a sintered sputtering target can be employed.
  • the s orbital conduction characteristics of the metal element can be used, so that amorphous, polycrystalline, Even so, the orbits overlap and the semiconductor layer has excellent conduction characteristics.
  • the metal oxide semiconductor can include one or more metal oxides.
  • the metal oxide include oxides of In, Sn, Ge, Ti, Zn, Y, Sm, Ce, Nd, Ga, or Al. It is desirable to be composed of one or more elements selected from In, Zn, Ga, and Sn.
  • the metal of the metal oxide semiconductor may consist essentially of one or more selected from In, Sn, Ge, Ti, Zn, Y, Sm, Ce, Nd, Ga, and Al. Further, for example, 95 atomic% or more, 98 atomic% or more, or 99 atomic% or more of the metal is selected from In, Sn, Ge, Ti, Zn, Y, Sm, Ce, Nd, Ga, and Al. It may be the above.
  • the metal oxide constituting the metal oxide semiconductor preferably satisfies the atomic ratios of the following formulas (A) to (C). With such a composition, a high breakdown voltage and a low On resistance can be obtained. 0 ⁇ x / (x + y + z) ⁇ 0.8 (A) 0 ⁇ y / (x + y + z) ⁇ 0.8 (B) 0 ⁇ z / (x + y + z) ⁇ 1.0 (C) (Wherein x represents the number of atoms of one or more elements selected from In, Sn, Ge and Ti, y represents the number of atoms of one or more elements selected from Zn, Y, Sm, Ce and Nd; z represents the number of one or more atoms selected from Ga and Al. )
  • x is more than 0.8, when x is In or Sn, the insulating property of the metal oxide is lowered, and there is a possibility that a Schottky junction is difficult to be obtained.
  • x is Ge or Ti, the metal oxide is oxidized. There is a possibility that the insulating property of the object becomes high and heat may be generated due to ohmic loss.
  • compositions (A) to (C) are represented by the following formulas (A-1) to (C-1), respectively. 0 ⁇ x / (x + y + z) ⁇ 0.7 (A-1) 0 ⁇ y / (x + y + z) ⁇ 0.8 (B-1)
  • z is Ga: 0.02 ⁇ z / (x + y + z) ⁇ 1.0
  • z Al: 0.005 ⁇ z / (x + y + z) ⁇ 0.5 (C-1) (Wherein x, y and z are the same as those in the above formulas (A) to (C)).
  • z is Ga, if it is less than 0.02, oxygen in the metal oxide tends to be desorbed, and the electrical characteristics may vary.
  • compositions (A) to (C) are represented by the following formulas (A-2) to (C-2), respectively.
  • 0.1 ⁇ y / (x + y + z) ⁇ 0.5 (B-2) 0.03 ⁇ z / (x + y + z) ⁇ 0.5 (C-2)
  • x and y are the same as the above formulas (A) to (C), and z is Ga.
  • compositions (A) and (C) are preferably represented by the following formulas (A-3) and (C-3), respectively. 0 ⁇ x / (x + y + z) ⁇ 0.25 (A-3) 0.3 ⁇ z / (x + y + z) ⁇ 1.0 (C-3) (In the formula, x, y and z are the same as the above formulas (A) and (C).)
  • the metal oxide constituting the metal oxide semiconductor layer may be amorphous or crystalline, and the crystal may be microcrystalline or single crystal. Preferably, the metal oxide is amorphous or microcrystalline.
  • the metal oxide is a single crystal, crystal growth is started from a seed crystal, or a method such as MBE (molecular beam epitaxy) or PLD (pulse laser deposition) is used.
  • MBE molecular beam epitaxy
  • PLD pulse laser deposition
  • crystal defects are likely to occur, and when used as a device that allows electricity to flow in the vertical direction, the crystal defects may cause defects.
  • the heating temperature, time, etc. are appropriately adjusted so that the particle size does not become too large.
  • metal oxides have strong ionic bonding properties unlike covalent bonds such as Si semiconductors, the levels generated by dangling bonds are close to conductive bands and filled bodies. Accordingly, the metal oxide has a smaller difference in electrical characteristics such as mobility depending on the structure as compared with Si, SiC, and the like. If such a property of the metal oxide is positively used, a high-current diode and a switching element with high breakdown voltage and high reliability can be provided with a high yield regardless of a single crystal.
  • amorphous means that a clear diffraction spot cannot be obtained when a cross section in the film thickness direction of a metal oxide layer is obtained and evaluated by an electron diffraction method such as a transmission electron microscope. Say. It is desirable to acquire a diffraction image from a broad region having an electron beam irradiation area of about 10 nm. A clear spot means that a symmetrical diffraction point is observed from a diffraction image.
  • amorphous includes a case where a part is crystallized or microcrystallized. When a partially crystallized portion is irradiated with an electron beam, a diffraction image may be observed.
  • Microcrystalline structure refers to a crystal grain size that is submicron or smaller and has no clear grain boundaries.
  • Polycrystalline refers to a crystal grain size exceeding micron size and having clear grain boundaries.
  • the carrier concentration of each layer constituting the metal oxide semiconductor layer is usually 1 ⁇ 10 11 to 1 ⁇ 10 18 cm ⁇ 3 , for example, 1 ⁇ 10 13 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the carrier concentration can be obtained by CV measurement, for example.
  • the properties required for the diode include high-speed switching, high breakdown voltage, and low On resistance, but these characteristics can be achieved by using a semiconductor element using a metal oxide. This is because metal oxides originally have a wide band gap and a high breakdown voltage. In addition, it tends to be n-type due to oxygen vacancies and is difficult to form p-type, which is suitable for high-speed switching.
  • the heat treatment conditions may be set to, for example, 500 ° C. or less and within 1 hour, although depending on the type of element forming the metal oxide layer. A stable amorphous state can be obtained by heating at a low temperature of 500 ° C. or lower.
  • the film thickness of the semiconductor layer is not limited, but is usually 100 to 8000 nm.
  • the metal which comprises a Schottky electrode is not specifically limited, Preferably Pd, Mo, Pt, Ir, Ru, Ni, W, Cr, Re, Te, Mn, Os, Fe, Rh and One or more metals selected from Co (including alloys) or oxides of these metals, more preferably one or more metals selected from Pd, Pt, Ir and Ru (including alloys) or of these metals It is an oxide.
  • a metal or a metal oxide that forms a good Schottky contact with the above-described pressure-resistant layer of the oxide semiconductor layer is preferable. More preferably, Pd oxide, Pt oxide, Ir oxide, and Ru oxide form a high Schottky barrier in combination with an oxide semiconductor. In general, these oxides may form semiconductors and insulators depending on the state of oxidation. However, by selecting the composition and film forming conditions, a metal state with a high carrier density can be maintained, and It is possible to form a good Schottky contact with the contact. In order to form a Schottky electrode with good oxide, it is preferable that the carrier concentration of the Schottky electrode is 10 18 cm ⁇ 3 or more.
  • the contact with the oxide semiconductor layer becomes a pn junction, and the characteristics of the Schottky diode such as a high-speed response may be impaired.
  • the carrier concentration can be obtained, for example, by hole measurement.
  • the production method for obtaining the metal oxide layer is not particularly limited, a method of performing reactive sputtering of the metal target in an oxygen-containing atmosphere can be suitably used.
  • the thickness of the Schottky electrode is usually 2 nm to 500 nm, preferably 5 nm to 200 nm. If it is too thin, it may be affected by the metal in contact with it and the On resistance during forward bias may increase. If it is too thick, the resistance of the device itself may increase the On resistance at the time of forward bias, or the flatness of the Schottky interface may be deteriorated and the withstand voltage may be lowered.
  • the Schottky electrode is provided with a plurality of layers of metals or metal oxides having different compositions on the side opposite to the side in contact with the semiconductor layer. Can be stacked.
  • the material of the ohmic electrode is not particularly limited as long as it can form a good ohmic connection with the semiconductor layer, but preferably one or more selected from Ti, Mo, Ag, In, Al, W, Co and Ni It is a metal (including an alloy) or a compound thereof (oxide or the like), more preferably one or more metals (including an alloy) selected from Mo, Ti, Au, Ag, and Al, or a compound thereof.
  • the ohmic electrode can be composed of a plurality of layers. For example, a Mo electrode layer is used in contact with the semiconductor layer, and in order to extract a large current, a metal layer such as Au or Al is further laminated thickly, and this layer can be used as a base for wire bonding.
  • the thickness of the ohmic electrode is usually 10 nm to 5 ⁇ m.
  • the film formation method of each layer is not particularly limited, but CVD methods such as thermal CVD method, CAT-CVD method, photo CVD method, mist CVD method, MO-CVD method, plasma CVD method, MBE, ALD Conventional film formation methods such as atomic level control, ion plating, ion beam sputtering, magnetron sputtering and other PVD methods, doctor blade methods, injection methods, extrusion methods, hot pressing methods, sol-gel methods, aerosol deposition methods, etc.
  • a method using a known ceramic process, a coating method, a spin coating method, a printing method, a spray method, an electrodeposition method, a plating method, a wet method such as a micelle electrolysis method, or the like can be used.
  • the method for forming the semiconductor layer is preferably sputtering when a metal oxide semiconductor is selected. It is preferable to select at least one film forming gas from rare gases, oxygen, hydrogen, and water.
  • the distance between the sputtering target and the substrate (TS interval) is preferably 10 mm to 200 mm. If the TS interval is too short, there is a possibility that discharge cannot be performed. If the TS interval is too long, the film quality of the semiconductor may be sparse and the film may have a large characteristic temperature.
  • Substrate The substrate of the semiconductor element is not particularly limited, and a known substrate can be used. Examples of the substrate include a conductive substrate, a semiconductor substrate, and an insulating substrate.
  • a conductive substrate can be used as shown in FIGS.
  • the conductive substrate can be placed in contact with the Schottky electrode or the ohmic electrode.
  • a conventionally known substrate having excellent surface smoothness such as a silicon single crystal substrate, a silicon polycrystalline substrate, or a silicon crystal substrate can be used.
  • a semiconductor substrate such as a SiC substrate, a GaN substrate, or a GaAs substrate can be used.
  • a metal substrate having excellent conductivity such as an Al substrate, a Cu substrate, or a Ni substrate can also be used. In consideration of mass productivity and cost, a silicon substrate is preferable.
  • n-type, i-type, and p-type silicon substrates depending on the presence / absence and type of doping, but n-type or p-type having a small electric resistance is preferable for flowing a current in the vertical direction.
  • Conventionally known B, P, Sb and the like can be used as the dopant.
  • As or red phosphorus may be used as a dopant.
  • an insulating substrate can be used as shown in FIG.
  • the insulating substrate can be placed in contact with the semiconductor layer.
  • the insulating substrate is not particularly limited as long as it has insulating properties, and any substrate generally used can be selected as long as the effects of the present invention are not lost.
  • quartz glass, barium borosilicate glass, aluminoborosilicate glass, aluminosilicate glass, etc. heat resistance that can withstand the processing temperature of this production process, in addition to non-alkali glass substrates and ceramic substrates produced by the fusion method and float method
  • a plastic substrate or the like having the above can be used.
  • a dielectric substrate may also be used as the insulating substrate.
  • the dielectric substrate examples include a lithium niobate substrate, a lithium tantalate substrate, a zinc oxide substrate, a quartz substrate, and a sapphire substrate.
  • a substrate in which an insulating film or a dielectric film is provided on the surface of a metal substrate such as a stainless alloy may be used.
  • An insulating film may be formed over the substrate as a base film.
  • a single layer or a stacked layer such as a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a silicon nitride oxide film can be formed by a CVD method, a sputtering method, or the like.
  • the material of the semiconductor substrate is not particularly limited as long as the surface smoothness is maintained.
  • a semiconductor substrate a Si substrate, a GaN substrate, a SiC substrate, a GaP substrate, a GaAs substrate, a ZnO substrate, a Ga 2 O 3 substrate, a GaSb substrate, an InP substrate, and an InAs whose carrier concentration is adjusted to 1 ⁇ 10 18 cm ⁇ 3 or less.
  • Examples include a substrate, an InSb substrate, a ZnS substrate, a ZnTe substrate, and a diamond substrate.
  • the semiconductor substrate may be single crystal or polycrystalline. Further, an amorphous substrate or a substrate partially containing amorphous may be used.
  • a substrate in which a semiconductor film is formed using a technique such as CVD (chemical vapor deposition) on a conductor substrate, a semiconductor substrate, or an insulating substrate may be used.
  • a substrate having an arbitrary structure, layer structure, circuit, wiring, electrode, or the like made of a plurality of materials on the above-described conductive substrate, semiconductor substrate, or insulating substrate may be used.
  • Examples of materials having an arbitrary structure include composite materials of various metals and insulators such as a metal that forms a back end of line on a large scale integrated circuit (LSI), an interlayer insulating film, and the like.
  • LSI large scale integrated circuit
  • interlayer insulating film and the like.
  • the layer structure is not particularly limited, and is an electrode layer, an insulating layer, a semiconductor layer, a dielectric layer, a protective film layer, a stress buffer layer, a light shielding layer, an electron / hole injection layer, an electron / hole transport layer, a light emitting layer.
  • Known layers such as an electron / hole blocking layer, a crystal growth layer, an adhesion improving layer, a memory layer, a liquid crystal layer, a capacitor layer, and a power storage layer can be used.
  • an insulating layer generally Al, Si, Sc, Ti, V, Cr, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Examples thereof include an oxide insulating film and a nitride film containing one or more metals selected from the group consisting of Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, and Au.
  • oxide semiconductor layers, organic semiconductor layers such as pentacene, and the like are widely used regardless of the crystalline state of single crystal, polycrystal, or amorphous.
  • a lithium niobate layer As the dielectric layer, a lithium niobate layer, a lithium tantalate layer, a zinc oxide layer, a quartz substrate layer, a sapphire layer, a BaTiO 3 layer, a Pb (Zr, Ti) O 3 (PZT) layer, (Pb, La) ( Zr, Ti) O 3 (PLZT) layer, Pb (Zr, Ti, Nb) O 3 (PZTN) layer, Pb (Ni, Nb) O 3 —PbTiO 3 (PNN-PT) layer, Pb (Ni, Nb) O 3 —PbZnO 3 (PNN—PZ) layer, Pb (Mg, Nb) O 3 —PbTiO 3 (PMN—PT) layer, SrBi 2 Ta 2 O 9 (SBT) layer, (K, Na) TaO 3 layer, (K, Na) NbO 3 layer, BiFeO 3 layer, Bi (Nd, La
  • the protective film layer As a film of the protective film layer, a film having excellent insulating properties regardless of inorganic materials and organic materials and low permeability of water or the like can be used.
  • Examples of the stress buffer layer include an AlGaN layer.
  • Examples of the light shielding layer include a black matrix layer containing a metal, a metal-organic material, and a color filter layer.
  • Examples of the electron / hole injection layer include an oxide semiconductor layer and an organic semiconductor layer.
  • Examples of the electron / hole transport layer include an oxide semiconductor layer and an organic semiconductor layer.
  • Examples of the light emitting layer include an inorganic semiconductor layer and an organic semiconductor layer.
  • Examples of the electron / hole blocking layer include an oxide semiconductor layer.
  • Examples of the base material include a power generation device, a light emitting device, a sensor, a power conversion device, an arithmetic device, a protection device, an optoelectronic device, a display, a memory, a semiconductor device having a back end of line, and a power storage device.
  • the layer having a layer structure may be a single layer or two or more layers.
  • the semiconductor device of the present invention includes a power semiconductor device, a (rectifying) diode device, a Schottky barrier diode device, an electrostatic discharge (ESD) protection diode, a transient voltage protection (TVS) protection diode, a light emitting diode, and a metal semiconductor field effect transistor (MESFET). ), Junction field effect transistor (JFET), metal oxide semiconductor field effect transistor (MOSFET), Schottky source / drain MOSFET, avalanche multiplication type photoelectric conversion element, solid-state imaging device, solar cell element, photosensor element, display It can be used as an element, a resistance change memory, or the like. In particular, since a large current can be taken out, it is also suitable for power applications. An electronic circuit using this element can be used for electrical equipment, electronic equipment, vehicles, power engines, and the like.
  • Example 1 An n-type Si substrate (diameter 4 inches, thickness 250 ⁇ m) having a resistivity of 0.001 ⁇ ⁇ cm was mounted on a sputtering apparatus (manufactured by Anelva: E-200S), and the following laminated electrodes were formed. However, in order to eliminate the contact resistance with the prober during measurement, the back surface of the substrate was treated with Ti 100 nm / Au 50 nm.
  • Ti is deposited to a thickness of 15 nm in a DC 50 W, Ar atmosphere, then Pd is deposited to a thickness of 50 nm in a DC 50 W, Ar atmosphere, and finally, PdO is formed as a Schottky electrode in a mixed gas atmosphere of DC 50 W, Ar and O 2 at 20 nm. A film was formed.
  • An oxide having this composition is hereinafter referred to as “InGaZnO (1: 1: 1).
  • the atomic ratios other than oxygen are similarly described for other composite oxides” as well.
  • the substrate was taken out and annealed in an electric furnace at 300 ° C. for 1 hour in air.
  • This substrate was again set in a sputtering apparatus together with an area mask for electrodes (hole diameter 50 ⁇ m), and then Mo was deposited to a thickness of 150 nm as an ohmic electrode (diameter 50 ⁇ m).
  • an Al electrode was formed to a thickness of 2 ⁇ m using the same mask.
  • the film forming conditions were both DC 100 W and Ar atmosphere.
  • an aging treatment in the atmosphere at 200 ° C. for 1 hour was performed.
  • the element structure has a Schottky electrode at the lower part of the semiconductor layer. When a perpendicular line is drawn from the outer periphery of the Schottky electrode toward the ohmic electrode surface, the ohmic electrode surface has the perpendicular line.
  • the configuration was characterized by being inside.
  • the interelectrode distance L was obtained from a cross-sectional TEM (transmission electron microscope) image and a cross-sectional TEM EDX (energy-dispersive X-ray spectroscopy) image.
  • the layer containing InGaZnO is a semiconductor layer
  • the Schottky electrode is a PdO layer
  • the ohmic electrode is Mo
  • the location where the contrast of the TEM cross-sectional image coincides with the layer containing InGaZnO in EDX is the semiconductor layer
  • the distance L between the electrodes Defined.
  • the semiconductor layer was sandwiched between Pd and Mo by EDX, and the distance L between the electrodes was 200 nm.
  • the effective area A of the electrode represents an area included in the semiconductor layer among the pair of spaced ohmic electrodes and Schottky electrodes.
  • the area of the ohmic electrode having a diameter of 50 ⁇ m can be regarded as A.
  • the following B1505 CMU unit was used, and the measurement was performed with the voltage superimposed by bias T.
  • the measurement frequency was 1 kHz, and the AC amplitude was 0.03V.
  • Identification of the electrode type was performed after the identification of the semiconductor layer, assuming that the electrode type sandwiching the semiconductor layer material was an ohmic electrode and a Schottky electrode.
  • the metal or metal compound containing Mo and Pd was estimated to be an ohmic electrode or a Schottky electrode. From confirmation of the rectification characteristics, it was determined that the Mo side was ohmic and the Pd side was a Schottky electrode type.
  • the XPS spectrum was confirmed by Ar-sputtering the device to the depth method by depth direction XPS (X-ray photoelectron spectroscopy).
  • the oxygen-derived peak in the XPS Mo spectrum gradually increases with the concentration of oxygen contained in InGaZnO, and in the Mo layer away from InGaZnO, the XPS spectrum focusing on Mo Since 90% or more of the above could be attributed to pure Mo, the ohmic electrode was assumed to be Mo.
  • the oxygen-derived peak in the XPS Pd spectrum from the InGaZnO side toward Pd does not decrease gradually with the concentration of oxygen contained in InGaZnO, and a certain amount of oxygen is present in Pd. It was in a state included. Further, among the regions where Pd is observed in the EDX image, the contrast of the TEM image is clearly recognized, and the electron density of 20 nm is smaller than the pure Pd between the pure Pd region and the InGaZnO region in the depth direction XPS. There was a region containing Pd. For this reason, the Schottky electrode was a layer made of Pd or PdO of about 20 nm. As shown in Table 2-1, it was expressed as Pd (PdO).
  • the crystallinity was evaluated by an electron diffraction method during cross-sectional TEM observation of the semiconductor layer.
  • a diffraction image was obtained from an area of 10 nm or more in diameter. Since a spot shape could not be confirmed in the diffraction image at a plurality of points in a direction parallel to the film thickness direction and the cross section, the semiconductor layer was judged to be amorphous, that is, amorphous.
  • the following B1505 CMU unit was used, and the measurement was performed with the voltage superimposed by bias T.
  • the measurement frequency was 1 kHz, and the AC amplitude was 0.03V. It was confirmed that this semiconductor element satisfies the following formula (I). From the above, the dielectric constant was calculated from the relative dielectric constant 16 of InGaZnO, Ve was 0.1 V, L was 200 nm, and the magnitude relationship was determined.
  • the withstand voltage can be obtained by measuring the breakdown voltage (V) and dividing it by the length of L.
  • V breakdown voltage
  • the first voltage value that reached the current value of 1 ⁇ 10 ⁇ 3 A when the reverse voltage was swept was defined as the breakdown voltage.
  • the current value was 1 ⁇ 10 ⁇ 3 A at ⁇ 62V, so the breakdown voltage was defined as ⁇ 62V.
  • the breakdown voltage per L is 3.1 MV / cm, which is an absolute value divided by 200 nm.
  • Examples 2-5, 9, 18-19 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Tables 2-1 and 2-2. The results are shown in Tables 2-1 and 2-2. In addition, the semiconductor elements of these examples satisfied the formula (I).
  • Example 6 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 2-1. The results are listed in Table 2-1. Further, the semiconductor device of this example satisfied the formula (I). In this example, the ohmic electrode of Example 1 was changed from Mo to Ti. During the evaluation of L, it was confirmed that the TEM image contrast containing InGaZnO was shorter than 200 nm due to oxygen extraction of the Ti electrode, and the thickness of the semiconductor layer was 180 nm.
  • Example 7 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 2-1. The results are listed in Table 2-1. Further, the semiconductor device of this example satisfied the formula (I).
  • the film was formed with only Ar consistently at 70 nm without sputtering with a mixed gas of Ar and O 2 .
  • the oxygen-derived peak in the XPS Pd spectrum from the InGaZnO side toward Pd gradually decreases with the oxygen concentration contained in InGaZnO, and oxygen is contained in Pd. I could not be determined.
  • the Schottky electrode was determined to be a layer made of Pd of about 70 nm. As shown in Table 2-1, it was expressed as Pd.
  • Example 8 An n-type Si substrate (diameter 4 inches, thickness 250 ⁇ m) having a resistivity of 0.001 ⁇ ⁇ cm was mounted on a sputtering apparatus (manufactured by Anelva: E-200S), and the following laminated electrodes were formed as ohmic layers. However, in order to eliminate the contact resistance with the prober during measurement, the back surface of the substrate was treated with Ti 100 nm / Au 50 nm.
  • Ti was deposited to a thickness of 15 nm in a DC50W, Ar atmosphere
  • Ni was then deposited to a thickness of 50 nm in a DC50W, Ar atmosphere
  • Mo was deposited as an ohmic electrode in a thickness of 20 nm in a DC50W, Ar atmosphere.
  • this substrate was set in a sputtering apparatus (ULVAC: CS-200) together with a semiconductor area mask, and an InGaZnO (1: 1: 1) film having a thickness of 200 nm was formed as a breakdown voltage layer (semiconductor layer).
  • the film forming conditions were DC 300 W, a mixed gas atmosphere of Ar and H 2 O (H 2 O concentration: 1 vol%).
  • the distance between the sputtering target and the substrate (TS interval) was 80 mm.
  • the substrate was taken out and annealed in an electric furnace at 300 ° C. for 1 hour in air.
  • This substrate was again set in the sputtering apparatus together with the electrode area mask (hole diameter 50 ⁇ m), and then a PdO film was formed in a thickness of 50 nm using a mixed gas of argon and oxygen as a Schottky electrode (diameter 50 ⁇ m). Thereafter, a Pd electrode was formed to a thickness of 100 nm using the same mask.
  • the film forming conditions were both DC 100 W and Ar atmosphere.
  • an aging treatment in the atmosphere at 200 ° C. for 1 hour was performed.
  • the element structure has an ohmic electrode at the lower part of the semiconductor layer. When a perpendicular is drawn from the outer periphery of the Schottky electrode toward the ohmic electrode surface, the ohmic electrode surface is inside the perpendicular. It was the structure characterized by being in.
  • the obtained semiconductor element was evaluated in the same manner as in Example 1. The results are listed in Table 2-1. Further, the semiconductor device of this example satisfied the formula (I).
  • Example 10 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 2-1. The results are listed in Table 2-1. Further, the semiconductor device of this example satisfied the formula (I). In this example, as a result of increasing the annealing temperature after forming the semiconductor layer to 500 ° C., a change was observed in the diffraction image at the time of cross-sectional TEM measurement. Diffraction spots were present while being broad, and the spot positions changed with respect to a plurality of measurement points. Therefore, this semiconductor film was judged to be polycrystalline. Further, it was observed that the thickness of the semiconductor layer was changed to 190 nm with crystallization.
  • Example 11 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 2-2. The results are listed in Table 2-2. Further, the semiconductor device of this example satisfied the formula (I).
  • Ru is used for the Schottky electrode.
  • the structure is Si / Ti / Ru / RuO / InGaZnO / Mo. RuO was formed by sputtering with a mixed gas of Ar and oxygen.
  • Example 12 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 2-2. The results are listed in Table 2-2. Further, the semiconductor device of this example satisfied the formula (I).
  • Ni was used for the Schottky electrode.
  • the structure is Si / Ti / Ni / NiO / InGaZnO / Mo. NiO was formed by sputtering with a mixed gas of Ar and oxygen.
  • Example 13 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 2-2. The results are listed in Table 2-2. Further, the semiconductor device of this example satisfied the formula (I). In this example, the semiconductor layer was sputtered using an InSnZnO (1: 1: 1) target.
  • Example 14 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 2-2. The results are listed in Table 2-2. Further, the semiconductor device of this example satisfied the formula (I). It was sputtered using a Ga 2 O 3 target semiconductor layer. Since it was an insulating sputtering target, the film forming conditions of RF300W were used instead of DC300W.
  • Example 15 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 2-2. The results are listed in Table 2-2. Further, the semiconductor device of this example satisfied the formula (I). In this example, the atmosphere during the formation of the semiconductor layer was Ar 100 volume%, and the semiconductor annealing temperature was 150 ° C. in the zone. Sputtering was performed on the semiconductor layer using a Ga 2 O 3 target. Since it was an insulating sputtering target, the film forming conditions of RF300W were used instead of DC300W.
  • Example 16 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 2-2. The results are listed in Table 2-2. Further, the semiconductor device of this example satisfied the formula (I). In this example, sputtering was performed using an InAlO (93: 7) target for the semiconductor layer. A change was observed in the diffraction image obtained during the cross-sectional TEM measurement. Diffraction spots were present while being broad, and the spot positions changed with respect to a plurality of measurement points. However, no change in spot position was observed even when diffraction images were taken in the film thickness direction. Therefore, this semiconductor film was judged to be polycrystalline (columnar).
  • Example 17 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 2-2. The results are listed in Table 2-2. Further, the semiconductor device of this example satisfied the formula (I). In this example, sputtering was performed on the semiconductor layer using an InGaO (1: 1) target. In addition, the annealing temperature was increased to 600 ° C. in order to obtain crystallinity. Accordingly, as in Example 8, as shown in FIG. 2, the PdO Schottky electrode is positioned above the semiconductor layer. This is to prevent PdO from being reduced to Pd at a high temperature and reducing the Schottky barrier property. A change was observed in the diffraction image obtained during the cross-sectional TEM measurement.
  • Example 20 A semiconductor device was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 2-2. The results are listed in Table 2-2.
  • a Schottky electrode is provided on the upper part of the semiconductor layer, and when a perpendicular is drawn from the outer periphery of the Schottky electrode to the ohmic electrode surface, the ohmic electrode surface has the perpendicular line.
  • the configuration is characterized by being on the outside. Although the expression (I) was satisfied, a decrease in breakdown voltage and an increase in leakage current were observed as compared with Example 8.
  • Comparative Example 1 A semiconductor element was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 3. The results are listed in Table 3.
  • the atmosphere during film formation of InGaZnO was set to 100 volume% Ar.
  • annealing after the semiconductor film formation was not performed.
  • the carrier concentration was out of the range of the formula (I).
  • the withstand voltage was also 0.1 MV / cm, making it difficult to adapt to power applications.
  • the leak current exceeded the compliance current value of 100 mA when -5 V was applied, and measurement was impossible. Therefore, in Table 3, it was expressed as> 1.0 ⁇ 10 ⁇ 3 A.
  • Comparative Example 2 A semiconductor element was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 3. The results are listed in Table 3. In this example, the formation of the Pd / PdO layer was omitted, and the Schottky electrode was Ti. As a result, although the rectification characteristic was observed, the carrier concentration was out of the range of the formula (I). Moreover, the leakage current was high and the withstand voltage was 0.3 MV / cm, making it difficult to adapt to power applications.
  • Comparative Example 3 A semiconductor element was manufactured and evaluated in the same manner as in Example 1 except that the film formation conditions were changed as shown in Table 3. The results are listed in Table 3.
  • sputtering was performed using an In 2 O 3 target for the semiconductor layer.
  • a change was observed in the diffraction image obtained during the cross-sectional TEM measurement. Diffraction spots were present while being broad, and the spot positions changed with respect to a plurality of measurement points. However, no change in spot position was observed even when diffraction images were taken in the film thickness direction. Therefore, this semiconductor film was judged to be polycrystalline (columnar).
  • the carrier concentration is high, and the manufactured Schottky diode cannot obtain a rectification ratio, and the carrier concentration measurement is impossible by the CV measurement.
  • the forward “power” continued to maintain a value of 2 or less in the range of 2 to 3 V, it was judged that the relationship of formula (5) did not hold, and the characteristic temperature was regarded as being unevaluable. A decrease in breakdown voltage and an increase in leakage current were observed.
  • the semiconductor element of the present invention can be used for a Schottky barrier diode or a junction transistor. Furthermore, these can be used in electronic circuits and are used in various electrical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Ceramic Capacitors (AREA)

Abstract

離間する一対のオーミック電極20及びショットキー電極10と、前記オーミック電極20と前記ショットキー電極10に接する半導体層30を有し、下記式(I)(式中、nは前記半導体層のキャリア濃度(cm-3)、εは前記半導体層の誘電率(F/cm)、Vは前記オーミック電極と前記ショットキー電極の間の順方向実効電圧(V)、qは素電荷(C)、Lは前記オーミック電極と前記ショットキー電極の間の距離(cm)である。)を満たすことを特徴とする半導体素子1。

Description

半導体素子及びそれを用いた電気機器
 本発明は、半導体素子、並びにそれを用いたショットキーバリアダイオード、ジャンクショントランジスタ、電子回路及び電気機器に関する。
 大電流、低消費電力を実現するパワー半導体材料として、Siをはじめとして、SiC、GaN等の新材料が挙げられる。また、酸化ガリウム、ダイヤモンドも次世代材料として注目されている。一方で、これらは単結晶での利用を基本としているために、異種基板上での単結晶成長が困難であり、基板の選定が制限される欠点を有する。
 SiCに関しては、パワー半導体として好適な結晶構造は4H-SiCとされ、絶縁破壊電界として3MV/cm以上を実現している。しかしながら、格子の不整合が大きいため、Si上に欠陥の少ない単結晶を歩留まりよくエピタキシャル成長させるのは困難である。3C-SiCであれば、Siウェハーに微細加工を施すか、Si(211)面を使用することでエピタキシャル成長できるが、バンドギャップが狭くなるため、絶縁破壊電界は1.2MV/cmに留まっている。また、GaNも4H-SiCと同様に絶縁破壊電界が3MV/cm以上であり、量産のためSi上に結晶成長する試みがなされている。しかし、Siと格子の不整合の点ではSiCほどではないものの、AlN等のバッファ層を介さないと結晶成長が困難であり、量産性に課題があった。
 そこで、特許文献1のような多結晶又はアモルファスの酸化物半導体を用いた異種基板との整合を図ったパワーデバイスへの展開が実施されている。一般に非特許文献1に記載されるように、ユニポーラのパワーデバイスでは、最低On抵抗を得るために下記式の関係が成立し、耐圧設計及び半導体材料種が決まると、最適なキャリア濃度が決定される。しかしながら、アモルファス又は多結晶半導体ではキャリア濃度の制御が困難であった。
Figure JPOXMLDOC01-appb-M000002
(式中、εは材料の誘電率、Eは最大絶縁破壊電界、qは素電荷、BVは設計値である耐圧、Nはキャリア濃度である。)
WO2015/025499A1
"Fundamentals of Power Semiconductor Devices",B.Jayant Baliga,Springer Science & Business Media,2010/04/02
 本発明の目的は、初期キャリア濃度制御を必要としない高耐圧かつ低抵抗な半導体素子を提供することである。
 本発明者らは、初期キャリアの濃度調整が困難であった課題に対し、鋭意研究の結果、半導体層と電極が所定の関係式を満たせば、従来のユニポーラパワーデバイスに関する設計指針とは異なる動作原理により、キャリア濃度に依存しないで外因性キャリアを利用して、高耐圧かつ低抵抗な半導体素子が得られることを見い出し、本発明を完成させた。
 本発明によれば、以下の半導体素子等が提供される。
1.離間する一対のオーミック電極及びショットキー電極と、
 前記オーミック電極と前記ショットキー電極に接する半導体層を有し、
 下記式(I)を満たすことを特徴とする半導体素子。
Figure JPOXMLDOC01-appb-M000003
(式中、nは前記半導体層のキャリア濃度(cm-3)、εは前記半導体層の誘電率(F/cm)、Vは前記オーミック電極と前記ショットキー電極の間の順方向実効電圧(V)、qは素電荷(C)、Lは前記オーミック電極と前記ショットキー電極の間の距離(cm)である。)
2.前記半導体層が、金属酸化物からなることを特徴とする1に記載の半導体素子。
3.前記金属酸化物が、In、Zn、Ga、Sn及びAlから選択される1以上の元素を含有することを特徴とする2に記載の半導体素子。
4.前記ショットキー電極が、Pd、Mo、Pt、Ir、Ru、W、Cr、Re、Te、Mn、Os、Fe、Rh、Co及びNiから選択される1以上の金属又はその酸化物を含むことを特徴とする1~3のいずれかに記載の半導体素子。
5.前記オーミック電極が、Ti、Mo、Ag、In、Al、W、Co及びNiから選択される1以上の金属又はその化合物を含むことを特徴とする1~4のいずれかに記載の半導体素子。
6.前記半導体層が、アモルファス又は多結晶を含むことを特徴とする1~5のいずれかに記載の半導体素子。
7.前記半導体層の特性温度が、1500K以下であることを特徴する1~6のいずれかに記載の半導体素子。
8.ショットキー電極面の外周部からオーミック電極面へ向かって垂線を引いたときに、前記オーミック電極面が前記垂線の内側にあることを特徴とする1~7のいずれかに記載の半導体素子。
9.耐圧が0.5MV/cm以上であることを特徴とする1~8のいずれかに記載の半導体素子。
10.前記半導体層が、前記オーミック電極と前記ショットキー電極の間に介在することを特徴とする1~9のいずれかに記載の半導体素子。
11.さらに、導電性シリコン基板を有し、
 前記オーミック電極又は前記ショットキー電極が前記導電性シリコン基板に接することを特徴とする10に記載の半導体素子。
12.前記半導体層の一表面の上に、前記オーミック電極と前記ショットキー電極が間隔をあけて存在することを特徴とする1~9のいずれかに記載の半導体素子。
13.1~12のいずれかに記載の半導体素子を用いたことを特徴とするショットキーバリアダイオード。
14.1~12のいずれかに記載の半導体素子を用いたことを特徴とするジャンクショントランジスタ。
15.1~12のいずれかに記載の半導体素子、13に記載のショットキーバリアダイオード又は14に記載のジャンクショントランジスタを用いたことを特徴とする電子回路。
16.15に記載の電子回路を用いたことを特徴とする電気機器、電子機器、車両、又は動力機関。
 本発明によれば、初期キャリア濃度制御を必要としない高耐圧かつ低抵抗な半導体素子が提供できる。
本発明の一実施形態である半導体素子の概略断面図である。 本発明の他の実施形態である半導体素子の概略断面図である。 本発明の他の実施形態である半導体素子の概略斜視図である。 本発明の他の実施形態である半導体素子の概略斜視図である。 図2の半導体素子の電極面を説明するための図である。
 本発明の半導体素子は、離間する一対のオーミック電極及びショットキー電極と、オーミック電極とショットキー電極に接する半導体層を有し、下記式(I)を満たす。
Figure JPOXMLDOC01-appb-M000004
(式中、nは前記半導体層のキャリア濃度(cm-3)、εは前記半導体層の誘電率(F/cm)、Vは前記オーミック電極と前記ショットキー電極の間の順方向実効電圧(V)、qは素電荷(1.602×10-19C)、Lは前記オーミック電極と前記ショットキー電極の間の距離(cm)である。)
 nの下限は0でもよいが、好ましくは1×1010以上である。
 より好ましくは以下の式(I-1)を満たし、さらに好ましくは以下の式(I-2)を満たす。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上記式において、キャリア濃度は下記式を用いCV(キャパシタンス-ボルテージ)測定により算出する(APPLIED PHYSICS LETTERS,101,113505(2012)参照)。
Figure JPOXMLDOC01-appb-M000007
A:ショットキー電極及びオーミック電極が重複する部分の面積(cm
C:測定されたキャパシタンス値(F)
ε:比誘電率(-)
ε:真空の誘電率(8.854 × 10-14 F/cm)
depl:キャリア濃度(cm-3
bi:ビルトイン電圧(V)
k:ボルツマン定数(8.617×10-5 eV/K )
T:測定時のサンプル温度(K)
q:素電荷(1.602×10-19 C)
V:印加電圧(V)
 Lは実施例記載の方法で求めることができる。
 Veは、後述するように、0.1Vとできる。
 誘電率εに関しては、半導体種の組成及び結晶系が決まれば、文献値の比誘電率を利用して、比誘電率及び真空の誘電率の積から決定することができる。また、文献での報告例が少なかったり、報告例によってばらつきが大きい場合、実測することも可能である。実測する場合、CV測定の膜厚依存性より、3点以上の膜厚(L)のキャパシタンス値を測定し、縦軸にC/A、横軸に1/Lをプロットするとその傾きが誘電率εとなることを利用して算出することが可能である。
 半導体素子が式(I)を満たすようになるためには、半導体層中のキャリア濃度を低減させる。具体的には、半導体中のドーパント濃度を低減する。例えば、酸化物半導体のように、半導体中に存在する水素原子又は酸素欠損がドーパントとして機能する半導体の場合、欠陥が少なく膜密度が高い膜を形成することがキャリア濃度低減に効果がある。
 図1は、本発明の一実施形態である半導体素子の概略断面図である。
 この半導体素子1(縦型)は、ショットキー電極10、半導体層30、オーミック電極20をこの順に有する。さらに、ショットキー電極10の半導体層30側と反対側に、導電性基板40を有する。
 図2は、本発明の他の実施形態である半導体素子の概略断面図である。
 この半導体素子2(縦型)は、ショットキー電極10、半導体層30、オーミック電極20をこの順に有する。さらに、オーミック電極20の半導体層30側と反対側に、導電性基板40を有する。また、オーミック電極20の両側には絶縁層50があり、オーミック電極20と両側の絶縁層50で、1層を形成している。図3の半導体素子3は、図2の素子2と、オーミック電極20の幅が広いことだけが異なる。
 図4は、本発明の他の実施形態である半導体素子の概略断面図である。
 この半導体素子4(横型)は、半導体層30の対向する第1及び第2の面の内、第1の面の上に、ショットキー電極10とオーミック電極20が間隔をあけて配置されている。さらに、半導体層30の、第2の面に、絶縁性基板60を有する。
 上記式(I)を満たす本発明の半導体素子では、半導体層の初期キャリア濃度が小さく、外因性キャリアが電気伝導の主因子として機能する。半導体層はトラップ密度が小さく、外因性キャリアの伝導を妨げない。
 尚、特許文献1では、下記式の関係にあり、従来のユニポーラパワーデバイスのキャリア濃度設計指針に基いており、キャリア濃度の制御性に問題があった。
Figure JPOXMLDOC01-appb-M000008
(式中、n、ε、V、q及びLは、式(I)と同じである。)
 本発明の半導体素子は、逆方向漏れ電流が小さく、順方向On抵抗が低く、大電流を取り出せる。また、導電性基板として、安価なシリコン基板や金属基板を用いても、良好な整流特性を発現する。さらに、酸化物半導体層を、スパッタ等の生産性に優れた方式で製膜しても、良好な整流特性を発現する。本発明の半導体素子は、特に縦型ショットキーバリアダイオード用途に優れている。
<式(I)について>
 一般的にキャリアが存在しない絶縁体において下記式(1)が成立する。
   Jins=(9/8)με(V/L) (1)
ins:電流密度(A/cm
μ:移動度(cm/V・s)
ε:物質の誘電率(F/cm)
V:印加電圧(V)
L:電流が流れる領域の厚さ(cm)。
 一方で、キャリアが存在する導電体に関しては下記式(2)が成立する。
   Johm=qnμ(V/L) (2)
ohm:電流密度(A/cm
q:素電荷(1.602×10-19C)
n:キャリア濃度(cm-3
μ:移動度(cm/V・s)
V:印加電圧(V)
L:電流が流れる領域の厚さ(cm)。
 Jins=Johmとなる条件においては、下記式(3)が成立する。
Figure JPOXMLDOC01-appb-M000009
(式中、n、ε、V、q及びLは、式(1),(2)と同じである。)
 従って、下記式(4)が成立する場合、Jins>Johmとなり絶縁性伝導の寄与が大きいことを意味する。即ち、外因性キャリアが電気伝導の主因子として機能することを意味する。
Figure JPOXMLDOC01-appb-M000010
(式中、n、ε、V、q及びLは、式(1),(2)と同じである。)
 ユニポーラで整流特性を示す、ショットキーバリアダイオード、接合型電界効果トランジスタ(JFET)、金属酸化膜半導体電界効果トランジスタ(MOSFET)においては、ドリフト領域が存在し、一般的には、ドリフト領域において上記式(2)の関係が成り立っている。この場合、印加電圧Vはドリフト層に印加される電圧を意味する。上記式(I)においてVeを順方向実効電圧と定義するが、これは実際のデバイス構成を考えた場合、印加電圧Vに対して、バンドベンディングを解消するためのビルトイン電圧Vbi等の寄与を除いたドリフト層への実効的な電圧を意味する。
 ショットキーバリアダイオード、接合型電界効果トランジスタ(JFET)、金属酸化膜半導体電界効果トランジスタ(MOSFET)等のデバイスにおいて、半導体層の間に一対のオーミック電極及びショットキー電極を有し、上記式(I)が成り立っていれば、外因性キャリアが電気伝導の主因子として機能する。
 誘電率εは、半導体の比誘電率εrと真空の誘電率ε0(8.854×10-14(8.854E-14)[F/cm])の積である。εrは材料によって異なるパラメータであるが、好ましくは3~20、より好ましくは5~16、さらに好ましくは9~13である。比誘電率が低すぎると、外因性キャリアの注入が少なくなり、高電流が得られない恐れがある。比誘電率が大きすぎると、寄生容量の増加や電流特性にヒステリシスが生じる恐れがある。
 順方向実効電圧Veに関しては、実際の順方向特性使用時のユニポーラデバイスへの印加電圧が通常0.5V~1.5V程度であり、ビルトイン電圧Vbiが通常0.7~1.3V程度あることを考慮すると、Veは0.1V程度とみなすことができる。素電荷の値は1.602×10-19C/個なので、εrを10と仮定すると、式(I)を鑑み、キャリア濃度nの上限値は、半導体層の一対のオーミック電極及びショットキー電極の間隔Lで決まり、表1のようになる。
Figure JPOXMLDOC01-appb-T000011
 Lは、好ましくは10nm<L<100000nm、より好ましくは20nm<L<10000nm、さらに好ましくは30nm<L<1000nm、最も好ましくは50nm<L<300nmである。電極間間隔Lが短かすぎると、耐圧の観点で問題が生じる恐れがあり、Lが大きすぎると電流値の低下又は縦型素子では半導体層の膜厚が増え成膜に時間がかかる恐れがある。
 Lとnは、好ましくは下記式(I-a)、より好ましくは下記式(I-b)、さらに好ましくは下記式(I-c)、特に好ましくは下記式(I-d)に示す関係を満たす。
Figure JPOXMLDOC01-appb-M000012
(式中、n、ε、Ve、q及びLは、式(I)と同じである。)
 nが低すぎると、半導体層内部に存在するトラップが影響し拡散電流の寄与が大きくなり、電流特性が劣化する恐れがある。一方、nが式(I)のεV/qL以上になると、ドリフト電流の寄与が大きくなり、従来の動作特性に近づき本発明の効果が発生しにくい。
<半導体素子の耐圧>
 本発明の半導体素子は、半導体層の間に一対のオーミック電極及びショットキー電極を有する。従来のパワーデバイスと比較して、設計キャリア濃度が低くなったため、耐圧VBDの設計が、VBD~EcL/2であったのに対し、VBD~EcLとなり、同一L対比にて2倍程度の耐圧向上が期待できる。ここで、Ecは最大絶縁破壊電界であり、Lは電極間長である。
 また、従来のパワーデバイスでは、初期キャリア濃度が高いために、逆バイアスを印加したときのリーク電流が大きく、ショットキー電極面の外周部(側面)からオーミック電極面へ向かって垂線を引いたときに、オーミック電極面がショットキー面からの垂線に内包されるような素子構成を取ることが困難であった。本発明では、半導体層中の初期キャリア濃度が低く、順方向電圧印加時には外因性キャリアが、ショットキー電極面の外周部からオーミック面へ向かって垂線を引いたときに、オーミック電極面がショットキー面からの垂線へ内包される範囲内のみ注入される。一方で、逆バイアス印加時には半導体層の全体に渡ってキャリアが存在しないため、回り込みによるリーク電流の影響が少ない。
 図5は、図2の半導体素子の電極面を説明するための図である。図5において、ショットキー電極面の外周部は符号12で示す部分であり、オーミック電極面は符号22で示す部分である。ショットキー電極面の外周部12からオーミック電極面22へ向かって引いた垂線は符号Aで示す。
 縦型のパワーデバイスでは、半導体層下部がオーミック電極となっていることが一般的であるが、オーミック電極がショットキー電極からの垂線の内側にあるとき、半導体層下部に容易にショットキー電極を用いることが可能となる。また、通常のパワーデバイスではガードリング等の電界緩和構造を用い逆方向リーク電流の低減を図っていることが知られているが、この様な構成によりプロセスデメリットとなっていたこれらの電界緩和構造を省略もしくは削減することが可能である。
 外因性キャリアが支配的なユニポーラなパワーデバイスでは、前述のように耐圧はVBD~EcLとなるため、電極間長Lと耐圧VBDの測定結果より絶縁破壊電界を容易に決定できる。ここでLあたりの耐圧が絶縁破壊電界に相当する。膜厚あたりの耐圧が高いと、同一耐圧素子を設計する上でLを小さくできるので外因性キャリアの注入が増加し、より低抵抗な素子を提供することができる。Lあたりの耐圧に関して、好ましくは0.5MV/cm以上、より好ましくは0.8MV/cm以上、さらに好ましくは1.0MV/cm以上、特に好ましくは3.0MV/cm以上である。Lあたりの耐圧は、ブレークダウン電圧(V)を測定し、Lの長さで割り返すことによって求めることができる。例えば、ショットキーバリアダイオードの場合、逆方向電圧を掃引した場合に、1×10-3Aの電流値に到達した最初の電圧値をブレークダウン電圧と定義する。
 また、Lあたりの耐圧は半導体層の材料選択によって調整できる。本発明において、半導体層の材料が、バンドギャップ1eV以上かつアモルファス又は多結晶を含む半導体層のとき、0.5MV/cm以上となり得る。バンドギャップ2eV以上の材料のとき1.0MV/cm以上となり、バンドギャップ2eV以上かつアモルファス又は多結晶を含む半導体層のとき、3.0MV/cm以上となり得る。
<特性温度>
 特性温度はアモルファスや多結晶体に特有な伝導帯下端の裾準位の特徴を表すパラメータであり、伝導帯下端に裾準位を有す外因性キャリアが支配的な半導体に関しては、下記式(5)の特性に従う。
Figure JPOXMLDOC01-appb-M000013
J:電流密度(A/cm
u:移動度(cm/V・s)
:半導体の有効状態密度(cm-3
:伝導帯下端部における裾準位密度(cm-3
ε:物質の誘電率(F/cm)
V:印加電圧(V)
L:電流が流れる領域の厚さ(cm)
e:素電荷(1.602×10-19 C)
l:Tc/T
Tc:特性温度(K)
T:実温度(K)
 特性温度Tcは、Tc>Tとなるパラメータであり、裾準位数が多く、トラップによって注入された外因性キャリアの伝導が妨げられる場合、大きな値となる。電流-電圧測定を実施し、Log(J)-Log(V)のグラフの傾きがl+1であることが式(5)より分かるので、傾きよりlを求め、Tcを算出する。ただし、ある連続した範囲の印加電圧に対してTcの値が一定であることが、半導体層が裾準位を有する指標となる。Tc<1500Kであることが好ましく、より好ましくはTc<900K,さらに好ましくはTc<600Kである。Tcの値が大きいと裾準位にトラップされる外因性キャリア数が増え、デバイス特性が高抵抗化する恐れがある。
 特性温度は電流-電圧測定を実施し、Log(J)-Log(V)のグラフの傾きより求めることができる。特性温度はアモルファス又は多結晶半導体において原子構造の短距離秩序性を向上することで低減することができる。例えば、アモルファス金属酸化物半導体の場合、密度の低い膜では短距離秩序性が低く、特性温度が高くなる傾向にある。スパッタリングによって成膜されたアモルファス金属酸化物半導体において密度と成膜条件には関係性が認められる。ターゲット-基板距離が近い程、スパッタリング圧力が低い程、成膜時の基板温度が高い程もしくは成膜後のアニール温度が高い程、又はスパッタリング成膜時のターゲットへの印加電圧が高い程、高密度な膜が形成し易い。またスパッタリング成膜時にスパッタリングガスとしてH又はHOを0.1~10体積%添加すると高密度な膜が得られ易い。アモルファス又は多結晶半導体層がIn、Zn、Ga及びSnから選択される1以上の元素を含有する金属酸化物半導体であると、対象性の高いs軌道を利用できるため、周期ポテンシャルの乱れの影響を受けにくく、特性温度が低くなり易い。
<ドリフト層の積層化(縦型の素子限定)>
 下記式(6)となるキャリア濃度nの低い半導体層(L,L,・・・L)(n及びLはショットキー電極からオーミック電極に向かって数えたときにn番目に位置するキャリア濃度の低い層のキャリア濃度及び膜厚を表す)とキャリア濃度nが高い半導体層(d,d,・・・dn-1)(n及びdはショットキー電極からオーミック電極に向かい数えたときにn番目に位置するキャリア濃度の高い層のキャリア濃度及び膜厚を表す)でドリフト層に繰り返し構造を有する半導体素子(縦型)を得ることができる。
Figure JPOXMLDOC01-appb-M000014
(式中、nはショットキー電極からオーミック電極に向かって数えたときにn番目に位置するキャリア濃度の低い層のキャリア濃度を表し、εはn番目のキャリア濃度の低い半導体層の誘電率を表し、Vはn番目のキャリア濃度の低い半導体層に印加される実効電圧(Ve=0.1Vとしてよい)を表し、qは素電荷を表し、Lはn番目のキャリア濃度の低い半導体層の膜厚を表す。)
 単層のドリフト構成よりも、積層化することで耐圧の向上及び抵抗値の減少が期待できる。この場合、Lnは、好ましくは10nm<Ln<1000nm、より好ましくは20nm<Ln<300nm、さらに好ましくは30nm<Ln<200nm、特に好ましくは30nm<Ln<100nmである。Lnが短かすぎるとばらつきが大きくなり、Lnが長すぎると抵抗値が高くなる恐れがある。また、dnは、好ましくは3nm<dn<30nm、より好ましくは5nm<dn<10nmである。dnが長すぎると、逆バイアス印加時に空乏層がショットキー電極からオーミック電極までの全域に広がらず耐圧の観点で問題が生じる恐れがある。dnが短すぎると、LnとLn+1の間仕切り層としての役割を果たさず積層構成として機能しない恐れがある。nは、好ましくは下記式(6-a)、より好ましくは下記式(6-b)、さらに好ましくは下記式(6-c)である。
Figure JPOXMLDOC01-appb-M000015
(式中、εはn番目のキャリア濃度の高い半導体層の誘電率を表し、Vはn番目のキャリア濃度の高い半導体層に印加される実効電圧(Ve=0.1Vとしてよい)を表し、qは素電荷を表し、dはn番目のキャリア濃度の高い半導体層の膜厚を表す。)
 nが大きすぎると、キャリア濃度が高い半導体層にて逆バイアス印加時の空乏層の伸びが抑制され耐圧の維持が困難となる恐れがある。nが小さすぎると、順方向印加時にキャリア濃度の高い層にも外因性キャリアの注入が必要となり、結果として複数のキャリア濃度の低い半導体層が一つのキャリア濃度の低い層として振る舞ってしまい抵抗値が高くなる恐れがある。
 ショットキー電極に接するのはキャリア濃度が低い層が好ましい。
<半導体素子の直列連結>
 従来のユニポーラパワーデバイスの耐圧設計では、定格耐圧の電圧が印加されたときにショットキーメタル側の半導体界面の電界強度が絶縁破壊電界付近に達しており、半導体素子の連結が困難であった。例えば、ショットキーバリアダイオードの場合、600V耐圧の素子を複数直列に連結しても600V以上の耐圧を得ることは困難であった。本発明の、初期キャリア濃度が低く外部注入キャリアを用いる半導体素子(パワーデバイス)では、複数直列に接続した場合、連結した個数分、耐圧が定格耐圧の積で増加する。従って、容易に所望の耐圧の素子を提供できる。
<半導体素子の構成層>
(1)半導体層
 半導体層は、特に限定されないが、多結晶又はアモルファスから構成されることが好ましい。また、金属酸化物半導体から構成されることが好ましく、In、Zn、Ga、Sn及びAlから選択される1以上の元素を含有する金属酸化物半導体から構成されることがより好ましい。アモルファスであると、大面積均一性に優れ、逆バイアス印加時のインパクトイオン化を低減し耐圧向上に効果がある。多結晶であると、大面積均一性かつ伝導特性が良い。半導体層を金属酸化物半導体から製造するときは、焼結体スパッタリングターゲットを用いた大面積性に優れる成膜方法を採用することができる。半導体層にIn、Zn、Ga、Sn及びAlから選択される1以上の元素を含有する金属酸化物半導体を利用することで、金属元素のs軌道の伝導特性を利用できるためアモルファス、多結晶となっても、軌道が重なり合い、伝導特性に優れた半導体層となる。
 金属酸化物半導体は、1又は2以上の金属酸化物を含むことができる。金属酸化物として、In,Sn,Ge,Ti、Zn,Y,Sm,Ce、Nd、Ga又はAlの酸化物等が挙げられる。In、Zn、Ga及びSnから選択される1以上の元素から構成されることが望ましい。
 金属酸化物半導体の金属は、本質的に、In,Sn,Ge,Ti、Zn,Y,Sm,Ce、Nd、Ga及びAlから選択される1以上からなってもよい。また、金属の、例えば、95原子%以上、98原子%以上、又は99原子%以上が、In,Sn,Ge,Ti、Zn,Y,Sm,Ce、Nd、Ga及びAlから選択される1以上であってもよい。
 金属酸化物半導体を構成する金属酸化物は、下記式(A)~(C)の原子比を満たすと好ましい。このような組成であると、高耐圧、低On抵抗とすることができる。
  0≦x/(x+y+z)≦0.8 (A)
  0≦y/(x+y+z)≦0.8 (B)
  0≦z/(x+y+z)≦1.0 (C)
(式中、xはIn,Sn,Ge及びTiから選択される1種以上の元素の原子数を表し、
 yはZn,Y,Sm,Ce及びNdから選択される1種以上の元素の原子数を表し、
 zはGa及びAlから選択される1種以上の原子数を表す。)
 xが0.8を超えると、xがIn又はSnの場合は、金属酸化物の絶縁性が低くなり、ショットキー接合が得にくくなる恐れがあり、xがGe又はTiの場合は、金属酸化物の絶縁性が高くなり、オーム損による発熱の原因となる恐れがある。
 より好ましくは、上記の組成(A)~(C)は、それぞれ下記式(A-1)~(C-1)である。
  0≦x/(x+y+z)≦0.7 (A-1)
  0≦y/(x+y+z)≦0.8 (B-1)
  zがGaのとき:0.02≦z/(x+y+z)≦1.0
  zがAlのとき:0.005≦z/(x+y+z)≦0.5 (C-1)
(式中、x、y及びzは上記式(A)~(C)と同じである。)
 zがGaのとき、0.02を下回ると、金属酸化物中の酸素が脱離しやすくなり、電気的特性がバラつく恐れがある。
 さらに好ましくは、上記の組成(A)~(C)は、それぞれ下記式(A-2)~(C-2)である。
  0.1≦x/(x+y+z)≦0.5 (A-2)
  0.1≦y/(x+y+z)≦0.5 (B-2)
  0.03≦z/(x+y+z)≦0.5 (C-2)
(式中、x及びyは上記式(A)~(C)と同じであり、zはGaである。)
 また、上記の組成(A)及び(C)は、好ましくはそれぞれ下記式(A-3)及び(C-3)である。
  0≦x/(x+y+z)≦0.25 (A-3)
  0.3≦z/(x+y+z)≦1.0 (C-3)
(式中、x、y及びzは上記式(A),(C)と同じである。)
 金属酸化物半導体層を構成する金属酸化物は、非晶質でも結晶質でもよく、結晶は、微結晶でも単結晶でもよい。好ましくは、金属酸化物は非晶質又は微結晶である。金属酸化物を単結晶とするときは、種結晶を起点として結晶成長させるか、MBE(分子線エピタキシー)やPLD(パルスレーザー堆積)等の方法を用いる。SiO表面や金属表面上で結晶成長させると、結晶欠陥が発生しやすく、縦方向に電気を流すデバイスとして使用したときに、この結晶欠陥が不具合の原因となる恐れがある。SiO表面や金属表面上で結晶成長させる場合は、粒径が大きくなりすぎないように、加熱温度、時間等を適切に調整する。
 一方、非晶質の場合、未結合手が存在しても結晶欠陥として存在しないため、電気特性のバラつきや大幅な特性劣化を緩和することができる。さらに金属酸化物はSi半導体等の共有結合と異なりイオン結合性が強いため、未結合手によってできる準位は導電帯や充満体に近い。従って、金属酸化物は、SiやSiC等と比較して、構造による移動度等の電気特性の差が小さい。金属酸化物のこのような性質を積極的に利用すると、単結晶に拘らずとも、高耐圧で信頼性の高い大電流ダイオードやスイッチング素子を高い歩留まりで提供することができる。
 ここで、「非晶質」とは、金属酸化物層の膜厚方向の断面を取得し、透過電子顕微鏡等の電子線回折手法により、評価した場合に明瞭な回折スポットが得られないもののことを言う。電子線の照射エリア10nm程度のブロードな領域から、回折像を取得することが望ましい。明瞭なスポットとは対称性を持つ回折点が回折像から観察されることを意味する。
 また、「非晶質」は一部に結晶化や微結晶化した部分がある場合も含む。一部結晶化した部分に電子線を照射すると、回折像が認められることがある。
 「微結晶構造」とは、結晶粒径のサイズがサブミクロン以下であり、明解な粒界が存在しないものを言う。
 「多結晶」とは、結晶粒径のサイズがミクロンサイズを超え、明解な粒界が存在するものを言う。
 金属酸化物半導体層を構成する各層のキャリア濃度は、通常1×1011~1×1018cm-3であり、例えば1×1013~1×1018cm-3である。キャリア濃度は、例えばCV測定により求めることができる。
 ダイオードに求められる性質には、高速スイッチングや高耐圧、低On抵抗があるが、金属酸化物を用いた半導体素子を用いればこれらの特性を両立することができる。金属酸化物は元来バンドギャップが広く、高耐圧であるからである。また、酸素欠損によりn型になりやすく、p型ができにくいことも高速スイッチングに向いている。
 On抵抗を下げるには移動度を高めるため結晶化させるとよいが、結晶粒界ができない程度に止めることが好ましい。結晶粒界にはしばしばポアが存在し、電界がかかったときに分極が生じ、この分極が耐圧性能を低下させる恐れがある。耐電圧の低下が著しい場合は、非晶質のままで用いる方が好ましい。非晶質として用いる場合は、金属酸化物層を形成する元素の種類にもよるが、加熱処理条件を例えば500℃以下、1時間以内に設定すればよい。500℃以下の低温で加熱することで、安定な非晶質状態を得ることができる。
 半導体層の膜厚は限定されないが、通常100~8000nmである。
(2)ショットキー電極
 ショットキー電極を構成する金属は、特に限定されないが、好ましくはPd、Mo、Pt、Ir、Ru、Ni、W、Cr、Re、Te、Mn、Os、Fe、Rh及びCoから選択される1以上の金属(合金を含む)又はこの金属の酸化物であり、より好ましくはPd,Pt,Ir及びRuから選択される1以上の金属(合金を含む)又はこの金属の酸化物である。
 また、前述の酸化物半導体層の耐圧層と良好なショットキー接触を形成する金属又は金属酸化物が好ましい。より好ましくは、酸化物半導体との組み合わせにおいて、高いショットキー障壁を形成する、Pd酸化物、Pt酸化物、Ir酸化物、Ru酸化物である。
 これらの酸化物は、一般的には酸化の状態によって半導体や絶縁体を形成する場合があるが、組成や製膜条件を選ぶことで高キャリア密度の金属状態を維持し、酸化物半導体との接触で、良好なショットキー接触を形成することが可能である。酸化物が良好なショットキー電極を形成するためには、好ましくは、ショットキー電極のキャリア濃度は1018cm-3以上であることが望ましい。1018cm-3未満であると、酸化物半導体層との接触はp-n接合となり、高速応答等のショットキーダイオードの特長が損なわれる場合がある。キャリア濃度は、例えばホール測定等で求めることができる。
 金属酸化物層を得るための製造方法としては特に限定されないが、酸素含入雰囲気下で、当該金属ターゲットの反応性スパッタを行なう方法を、好適に用いることができる。
 ショットキー電極の厚みは通常2nm~500nm、好ましくは5nm~200nmである。薄すぎると接触する金属により影響を受けて順方向バイアス時のOn抵抗が増加する恐れがある。厚すぎると自身の抵抗で、やはり順方向バイアス時のOn抵抗が増加したり、ショットキー界面の平坦性が悪くなり、耐電圧性が低下する恐れがある。
 ショットキー電極は、基板や電流取出し電極との接触抵抗の低減や、密着性を向上させるために、半導体層と接する側の反対側に、複数の組成の異なる金属や金属酸化物からなる層を積層することができる。
(3)オーミック電極
 オーミック電極の材料は、半導体層と良好なオーミック接続ができれば、特に限定されないが、好ましくはTi、Mo、Ag、In、Al、W、Co及びNiから選択される1以上の金属(合金を含む)又はその化合物(酸化物等)であり、より好ましくはMo、Ti、Au、Ag及びAlから選択される1以上の金属(合金を含む)又はその化合物である。また、オーミック電極を複数の層で構成することもできる。例えば、半導体層に接する方に、Mo電極層を用い、大電流を取り出すために、さらにAuやAl等の金属層を厚く積層し、この層をワイヤボンディングの土台とすることができる。
 オーミック電極の厚みは通常10nm~5μmである。
(4)製膜方法
 各層の製膜方法は特に限定されないが、熱CVD法、CAT-CVD法、光CVD法、ミストCVD法、MO-CVD法、プラズマCVD法等のCVD法、MBE、ALD等の原子レベル制御の製膜方法、イオンプレーティング、イオンビームスパッタリング、マグネトロンスパッタリング等のPVD法、ドクターブレード法、射出法、押出し法、熱間加圧法、ゾルゲル法、エアロゾルデポジション法等の従来公知のセラミックス工程を用いる方法、塗布法、スピンコート法、印刷法、スプレー法、電着法、メッキ法、ミセル電解法等の湿式法等を用いることができる。
 半導体層の成膜方法は、金属酸化物半導体を選択する場合、スパッタリングが好ましい。成膜ガスは、希ガス、酸素、水素、水の中から少なくとも1種類以上を選択することが好ましい。スパッタリングターゲットと基板距離(TS間隔)は好ましくは、10mm~200mmである。TS間隔が短かすぎると放電ができない恐れがある。TS間隔が長すぎる場合、半導体の膜質が疎になり、特性温度が大きな膜になってしまう可能性がある。
(5)基板
 半導体素子の基板は特に限定されず公知のものを使用できる。基板としては、導電性基板、半導体基板、絶縁性基板等が挙げられる。
 縦型半導体素子では、図1,2に示すように、導電性基板を用いることができる。導電性基板は、ショットキー電極又はオーミック電極と接触して配置できる。導電性基板として、シリコン単結晶基板、シリコン多結晶基板、シリコン結晶基板等、従来公知の表面平滑性に優れた基板を用いることができる。またシリコン基板以外にもSiC基板,GaN基板、GaAs基板等の半導体基板を用いることができる。Al基板、Cu基板、Ni基板等の導電性に優れた金属基板も利用できる。量産性やコストを考慮するとシリコン基板が好ましい。シリコン基板はドーピングの有無、種類によってn型、i型、p型が存在するが、縦方向に電流を流す上では、電気抵抗の小さいn型又はp型が好ましい。ドーパントとしては従来公知のB,P,Sb等を用いることができる。特に抵抗を下げたい場合は、Asや赤リンをドーパントとしてもよい。
 横型半導体素子では、図4に示すように、絶縁性基板を用いることができる。絶縁性基板は半導体層と接触して配置できる。絶縁性基板として、絶縁性を有すものであれば特に制限はなく、本発明の効果を失わない範囲で一般に用いられているものを任意に選択できる。例えば、石英ガラス、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、アルミノシリケートガラス等、フュージョン法やフロート法で作製される無アルカリガラス基板、セラミック基板の他、本作製工程の処理温度に耐えうる耐熱性を有するプラスチック基板等を用いることができる。
 また、絶縁性基板として誘電性基板も用いてもよい。
 誘電性基板としては、ニオブ酸リチウム基板、タンタル酸リチウム基板、酸化亜鉛基板、水晶基板、サファイア基板等が挙げられる。
 また、ステンレス合金等の金属基板の表面に絶縁膜や誘電膜を設けた基板を用いてもよい。また基板に下地膜として絶縁膜を形成してもよい。下地膜として、CVD法やスパッタリング法等を用いて、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、又は窒化酸化珪素膜等の単層又は積層を形成できる。
 半導体基板は、表面の平滑性が保たれていれば、材料は特に限定されない。
 半導体基板としては、キャリア濃度を1×1018cm-3以下に調整したSi基板、GaN基板、SiC基板、GaP基板、GaAs基板、ZnO基板、Ga基板、GaSb基板、InP基板、InAs基板、InSb基板、ZnS基板、ZnTe基板、ダイヤモンド基板等が挙げられる。
 半導体基板は単結晶でも、多結晶でもよい。また、非晶質基板又は非晶質を部分的に含む基板でもよい。導電体基板、半導体基板、絶縁性基板の上に、CVD(化学気相成長)等の手法を用いて半導体膜を形成した基板を使用してもよい。
 基板として、上述の導電性基板、半導体基板又は絶縁性基板上に、複数の材料からなる任意の構造、層構造、回路、配線、電極等を有する基材を用いてもよい。
 任意の構造の材料としては、例えば、大規模集積回路(LSI)上のバックエンドオブラインを形成する金属、層間絶縁膜等の様々な金属や絶縁物の複合材料が挙げられる。
 層構造の層としては、特に限定されず、電極層、絶縁層、半導体層、誘電体層、保護膜層、応力緩衝層、遮光層、電子/ホール注入層、電子/ホール輸送層、発光層、電子/ホールブロッキング層、結晶成長層、密着性向上層、メモリ層液晶層、キャパシタ層、蓄電層等の公知の層を用いることができる。
 電極層としては、一般にAl層、Si層、Sc層、Ti層、V層、Cr層、Ni層、Cu層、Zn層、Ga層、Ge層、Y層、Zr層、Nb層、Mo層、Tc層、Ru層、Rh層、Pd層、Ag層、Cd層、In層、Sn層、Sb層、Te層、Hf層、Ta層、W層、Re層、Os層、Ir層、Pt層、Au層、これらの層の金属を1以上含む合金層、及び酸化物電極層等が挙げられる。酸化物半導体やSi等の半導体のキャリア濃度を増加して、電極層に用いることも可能である。
 絶縁層としては、一般にAl、Si、Sc、Ti、V、Cr、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、Hf、Ta、W、Re、Os、Ir、Pt及びAuからなる群から選択される1以上の金属を含む酸化物絶縁膜、窒化膜等が挙げられる。
 半導体層としては、Si層、GaN層、SiC層、GaP層、GaAs層、GaSb層、InP層、InAs層、InSb層、ZnS層、ZnTe層、ダイヤモンド層、Ga、ZnO、InGaZnO等の酸化物半導体層、ペンタセン等の有機半導体層等、単結晶、多結晶、アモルファスの結晶状態によらず広く挙げられる。
 誘電体層としては、ニオブ酸リチウム層、タンタル酸リチウム層、酸化亜鉛層、水晶基板層、サファイア層、BaTiO層、Pb(Zr,Ti)O(PZT)層、(Pb,La)(Zr,Ti)O(PLZT)層、Pb(Zr,Ti,Nb)O(PZTN)層、Pb(Ni,Nb)O-PbTiO(PNN-PT)層、Pb(Ni,Nb)O-PbZnO(PNN-PZ)層、Pb(Mg,Nb)O-PbTiO(PMN-PT)層、SrBiTa(SBT)層、(K,Na)TaO層、(K,Na)NbO層、BiFeO層、Bi(Nd,La)TiO層(x=2.5~3.0)、HfSiO(N)層、HfO-Al層、La層、La-Al層等が挙げられる。
 保護膜層の膜としては、無機物、有機物問わず絶縁性に優れ、水等の透過性が低い膜が挙げられる。保護膜層としては、例えば、SiO層、SiNx層(x=1.20~1.33)、SiON層、Al層等が挙げられる。
 応力緩衝層としては、AlGaN層等が挙げられる。
 遮光層としては、例えば金属、金属-有機物等を含むブラックマトリックス層、カラーフィルタ層が挙げられる。
 電子/ホール注入層としては、酸化物半導体層、有機半導体層等が挙げられる。
 電子/ホール輸送層としては、酸化物半導体層、有機半導体層等が挙げられる。
 発光層としては、無機半導体層、有機半導体層等が挙げられる。
 電子/ホールブロッキング層としては、酸化物半導体層等が挙げられる。
 基材としては、発電デバイス、発光デバイス、センサ、電力変換デバイス、演算デバイス、保護デバイス、オプトエレクトロニクスデバイス、ディスプレイ、メモリ、バックエンドオブラインを有する半導体デバイス、蓄電デバイス等が挙げられる。
 層構造の層は、単層でもよく、2以上の層でもよい。
 本発明の半導体素子は、パワー半導体素子、(整流)ダイオード素子、ショットキーバリアダイオード素子、静電気放電(ESD)保護ダイオード、過渡電圧保護(TVS)保護ダイオード、発光ダイオード、金属半導体電界効果トランジスタ(MESFET)、接合型電界効果トランジスタ(JFET)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、ショットキーソース/ドレインMOSFET、アバランシェ増倍型光電変換素子、固体撮像素子、太陽電池素子、光センサ素子、表示素子、抵抗変化メモリ等として用いることができる。特に、大電流を取り出せるため、パワー用途にも適している。この素子を用いた電子回路は、電気機器、電子機器、車両、動力機関等に用いることができる。
実施例1
 抵抗率0.001Ω・cmのn型Si基板(直径4インチ、厚さ250μm)をスパッタリング装置(アネルバ製:E-200S)に装着し、以下の積層電極を成膜した。ただし基板裏面に対しては測定時プローバとのコンタクト抵抗を解消するために、Ti100nm/Au50nm処理をした。まずTiを、DC50W、Ar雰囲気で15nm成膜し、次いでPdを、DC50W、Ar雰囲気で50nm成膜し、最後にショットキー電極として、PdOを、DC50W、ArとOの混合ガス雰囲気で20nm成膜した。
 次に、この基板を半導体用エリアマクスとともにスパッタリング装置(ULVAC製:CS-200)にセットし、耐圧層(半導体層)としてInGaZnO(In:Ga:Zn(原子比)=1:1:1、この組成の酸化物を以下「InGaZnO(1:1:1)」と記載する。他の複合酸化物についても酸素以外の原子比を同様に記載する。)を200nm成膜した。成膜条件は、DC300W、ArとHOの混合ガス雰囲気(HO濃度:1体積%)とした。スパッタリングターゲット-基板間距離(TS間隔)は80mmとした。この基板を取り出し、電気炉によって空気中300℃の条件で1時間アニールした。この基板を再度、電極用エリアマクス(穴直径50μm)とともにスパッタリング装置にセットした後、オーミック電極(直径50μm)としてMoを150nm成膜した。その後、Al電極を同一のマスクを用い2μm成膜した。成膜条件はどちらも、DC100W、Ar雰囲気とした。最終処理として200℃1時間の大気下エージング処理を施した。
 尚、素子構成は図1に示すように、半導体層下部にショットキー電極を有し、ショットキー電極の外周部からオーミック電極面へ向かって垂線を引いたときに、オーミック電極面が前記垂線の内側にあることを特徴とする構成となっていた。
<電極間距離L>
 電極間距離Lは断面TEM(透過電子顕微鏡)像及び断面TEMのEDX(エネルギ一分散型X線分光法)像より取得した。InGaZnOを含む層を半導体層とし、ショットキー電極をPdO層、オーミック電極をMoとして仮定し、TEM断面像のコントラストがEDXにてInGaZnOを含む層と一致する箇所を半導体層とし電極間距離Lと定義した。また上記半導体層はEDXによりPdとMoに挟まれており、電極間距離Lは200nmであった。
 半導体層が逆方向バイアスで空乏化しており、順方向バイアス化で抵抗層として機能することを利用し、半導体として機能するべき厚みが上記Lで問題ないことをCV(容量-電圧)測定により確認した。逆方向電圧印加時の最小の容量値Cmin及び順方向電圧印加時の最大の容量値Cmaxより、C/A=ε×ε/dの関係式を用い、Cminに対する膜厚dmin,Cmaxに対する膜厚dmaxを求め、その差分がLに対しL±50%の値に収まっていたので、電極間距離Lは200nmであると検証した。ただし、本成膜手法のInGaZnO(1:1:1)の比誘電率は、膜厚測定より16であることを確認していたので、ε=16を使用した。一般にInGaZnOの比誘電率は10~19程度の値であることが報告されている。
C:容量値(F)
A:電極の実効面積(cm
d:半導体として機能している膜厚(cm)
ε:比誘電率
ε:真空の誘電率、8.854E-14[F/cm]
 ここで、電極の実効面積Aは、離間する一対のオーミック電極及びショットキー電極のうち、半導体層に対して互いに内包する面積を表す。本実施例に関しては直径50μmのオーミック電極の面積をAとみなすことができる。
 尚、CV測定時は下記B1505のCMUユニットを用い、バイアスTにより電圧を重畳して測定を実施した。測定周波数は1kHzを用い、AC振幅は0.03Vとした。
<電極種の同定>
 電極種の同定は、上記半導体層の同定後、半導体層材料を挟み込む電極種をオーミック電極及びショットキー電極とみなし実施された。断面EDX像で、Mo及びPdを含む金属又は金属化合物がオーミック電極又はショットキー電極と推定された。整流特性の確認より、Mo側がオーミック、Pd側がショットキー電極種であると判断した。さらに、深さ方向XPS(X線光電子分光法)により、素子を深さ方法へArスパッタリングしながらXPSスペクトルを確認した。Mo/InGaZnO界面に向かってMo側よりXPSのMoスペクトル中の酸素由来のピークが、InGaZnOに含まれる酸素濃度に伴ってなだらかに増加し、かつInGaZnOから離れたMo層ではMoに着目したXPSスペクトルの9割以上が純Moに帰属できたので、オーミック電極はMoであるとした。
 一方、InGaZnO/PdO界面ではInGaZnO側よりPdに向かってXPSのPdスペクトル中の酸素由来のピークが、InGaZnOに含まれる酸素濃度に伴ってなだらかに減少せずに、ある一定程度の酸素がPd中に含まれた状態であった。また、EDX像でPdが観察される領域のうち、明確にTEM像のコントラストが認められ、深さ方向XPSにて純Pdの領域とInGaZnOの領域間に20nmの電子密度が純Pdに比べ少ないPdを含む領域が存在した。このことより、ショットキー電極は20nm程度のPd又はPdOからなる層とした。表2-1に示すようにPd(PdO)と表記した。
<結晶性の評価>
 半導体層の断面TEM観察時に電子線回折手法により、結晶性の評価を行った。電子線の照射エリアは直径10nm以上の領域より回折像を取得した。膜厚方向及び断面とは平行な方向の複数点において、回折像にスポット形状が確認できなかったため、半導体層は非晶質すなわちアモルファスと判断した。
<電気特性結果>
 得られた素子について、キーサイト・テクノロジー社製B1505(HVSMU,HCSMU,MFCMU,MPSMU搭載)、バイアスT(N1272A)、回路切替機(N1258A)、及びカスケード社製高電圧プローバEPS 150 TESLAを用いて電圧(V)-電流特性(J)及び電圧(V)-容量(C)特性を測定した。また、以下の各項目について評価を行った。結果を表2-1に示す。
 ただし、測定時にはショットキー電極側に上記各SMU又はCMUが配置され、バイアスが印加される。オーミック電極側は0V印加の状態である。
(1)キャリア濃度の測定
 上記装置及び前述したCV測定を用いキャリア濃度を取得した。縦軸にA/Cをとり、横軸に印加電圧Vをとったグラフを作製し、0V~2V間を起点とする、直線の傾きが-2/(εε0 depl)に比例することを利用して、キャリア濃度n=Ndeplとして半導体層のキャリア濃度を求めた。キャリア濃度は表2-1に示すように1.0×1014cm-3であった。また、CV測定の挙動より半導体はn型であることが確認できた。
 尚、CV測定時は下記B1505のCMUユニットを用い、バイアスTにより電圧を重畳して測定を実施した。測定周波数は1kHzを用い、AC振幅は0.03Vとした。
 本半導体素子は、以下の式(I)を満たすことが確認できた。尚、上記より誘電率はInGaZnOの比誘電率16から算出し、Veは0.1V、Lは200nmとして、大小関係を決定した。
Figure JPOXMLDOC01-appb-M000016
(2)特性温度の測定
 前述した方法に従って特性温度を求めた。上記装置のHCSMUを利用し、順方向バイアスが素子に印加されるよう(HCSMUは正の電圧を印加する)に0V~3Vまで印加した。縦軸にLogJ-LogVの差分値(LogJ-LogJ)/(LogV-LogV)すなわちJ-V特性の『べき』をとり、横軸にVを取った。ここで、Jは電流密度(A/cm)を意味し、測定電流値(A)を上記電極の実効面積で割った値である。J,J,V,Vは測定点1,2の電流密度及び印加電圧値である。2V~3Vの範囲で平均の『べき』が2.5となり、本区間での『べき』の最大最小値が平均値に対し±0.5となったので、本半導体層は伝導度下端に裾準位を持つ半導体として前述の式(5)が適用できるとみなした。前述の式(5)により、『べき』2.5がl+1に等しく、l=Tc/Tであり、測定時の実温度は300Kであったので、特性温度は450Kと求まった。
(3)耐圧の決定
 前述したとおり、耐圧は、ブレークダウン電圧(V)を測定し、Lの長さで割り返すことによって求めることができる。本ショットキーバリアダイオードの場合、逆方向電圧を掃引した場合に、1x10-3Aの電流値に到達した最初の電圧値をブレークダウン電圧と定義した。HVSMUを用い、逆方向に電圧を印加した際、-62Vで電流値が1x10-3Aとなったのでブレークダウン電圧を-62Vと定義した。Lあたりの耐圧は200nmで割り返した絶対値である3.1MV/cmである。
(4)順方向オン抵抗Ron@2Vの決定
 前述のとおり、上記装置のHCSMUを利用し、順方向バイアスが素子に印加されるよう(HCSMUは正の電圧を印加する)に0V~2Vまで印加した。2V印加時の電流密度J2V測定し、順方向オン抵抗Ron@2V=2[V]/J2V[A/cm]と定義し算出した。
(5)リーク電流値@-5Vの決定
 HVSMUを用い、逆方向に-5Vの電圧を印加した際の電流密度を求めた。-5.0×10-8A/cmであったので絶対値を取り、リーク電流値@-5Vを5.0×10-8A/cmと決定した。
実施例2~5、9、18~19
 表2-1,2-2に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-1,2-2に記載する。また、これら実施例の半導体素子は式(I)は満たしていた。
実施例6
 表2-1に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-1に記載する。また、この実施例の半導体素子は式(I)は満たしていた。
 この実施例では、実施例1のオーミック電極をMoからTiに変更した。
 Lの評価の際に、Ti電極の酸素引き抜きによりInGaZnOを含むTEM像コントラストが200nmよりも短くなっており、半導体層の厚みが180nmであることが確認された。
実施例7
 表2-1に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-1に記載する。また、この実施例の半導体素子は式(I)は満たしていた。
 この実施例では、ショットキー電極作製時のPdのスパッタリングの際に、Ar及びO混合ガスでスパッタリングしないで、70nm一貫してArのみで成膜した。
 その結果、InGaZnO/PdO界面ではInGaZnO側よりPdに向かってXPSのPdスペクトル中の酸素由来のピークが、InGaZnOに含まれる酸素濃度に伴ってなだらかに減少しており、Pd中に酸素が含まれていると断定できなかった。また、EDX像でPdが観察される領域のうち、明確にTEM像のコントラストが認められる領域が存在しなかった。このことより、ショットキー電極は70nm程度のPdからなる層と判断した。表2-1に示すようにPdと表記した。
実施例8
 抵抗率0.001Ω・cmのn型Si基板(直径4インチ、厚さ250μm)をスパッタリング装置(アネルバ製:E-200S)に装着し、オーミック層として以下の積層電極を成膜した。ただし基板裏面に対しては測定時プローバとのコンタクト抵抗を解消するために、Ti100nm/Au50nm処理をした。まずTiを、DC50W、Ar雰囲気で15nm成膜し、次いでNiを、DC50W、Ar雰囲気で50nm成膜し、最後に、オーミック電極として、Moを、DC50W、Ar雰囲気で20nm成膜した。
 次に、この基板を半導体用エリアマクスとともにスパッタリング装置(ULVAC製:CS-200)にセットし、耐圧層(半導体層)としてInGaZnO(1:1:1)を200nm成膜した。成膜条件は、DC300W、ArとHOの混合ガス雰囲気(HO濃度:1体積%)とした。スパッタリングターゲット-基板間距離(TS間隔)は80mmとした。この基板を取り出し、電気炉によって空気中300℃の条件で1時間アニールした。この基板を再度、電極用エリアマクス(穴直径50μm)とともにスパッタリング装置にセットした後、ショットキー電極(直径50μm)として、Pdターゲットをアルゴン及び酸素の混合ガスにてPdOを50nm成膜した。その後、Pd電極を同一のマスクを用い100nm成膜した。成膜条件はどちらも、DC100W、Ar雰囲気とした。最終処理として200℃1時間の大気下エージング処理を施した。
 尚、素子構成は図2に示すように、半導体層下部にオーミック電極を有し、ショットキー電極の外周部からオーミック電極面へ向かって垂線を引いたときに、オーミック電極面が前記垂線の内側にあることを特徴とする構成となっていた。
 得られた半導体素子について実施例1と同様にして評価した。結果を表2-1に記載する。また、この実施例の半導体素子は式(I)は満たしていた。
実施例10
 表2-1に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-1に記載する。また、この実施例の半導体素子は式(I)は満たしていた。
 この実施例では、半導体層成膜後のアニール温度を500℃に上昇した結果、断面TEM測定時の回折像に変化が見られた。回折スポットがブロードながらも存在し、複数点の測定箇所に対しスポット位置が変化した。よって本半導体膜は多結晶であると判断した。また、結晶化に伴い、半導体層の厚みも190nmと変化したことが観察された。
実施例11
 表2-2に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-2に記載する。また、この実施例の半導体素子は式(I)は満たしていた。
 この実施例では、ショットキー電極にRuを用いた。Si/Ti/Ru/RuO/InGaZnO/Moの構成となっている。RuOはArと酸素の混合ガスによるスパッタリングによって形成した。
実施例12
 表2-2に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-2に記載する。また、この実施例の半導体素子は式(I)は満たしていた。
 この実施例では、ショットキー電極にNiを用いた。Si/Ti/Ni/NiO/InGaZnO/Moの構成となっている。NiOはArと酸素の混合ガスによるスパッタリングによって形成した。
実施例13
 表2-2に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-2に記載する。また、この実施例の半導体素子は式(I)は満たしていた。
 この実施例では、半導体層にInSnZnO(1:1:1)ターゲットを用いスパッタリングした。
実施例14
 表2-2に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-2に記載する。また、この実施例の半導体素子は式(I)は満たしていた。
 半導体層にGaターゲットを用いスパッタリングした。絶縁性のスパッタリングターゲットだったため、DC300Wに変わりRF300Wの成膜条件を用いた。
実施例15
 表2-2に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-2に記載する。また、この実施例の半導体素子は式(I)は満たしていた。
 この実施例では、半導体層成膜時の雰囲気をAr100体積%とし、半導体アニールの温度を帯域中150℃とした。半導体層にGaターゲットを用いスパッタリングした。絶縁性のスパッタリングターゲットだったため、DC300Wに変わりRF300Wの成膜条件を用いた。
実施例16
 表2-2に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-2に記載する。また、この実施例の半導体素子は式(I)は満たしていた。
 この実施例では、半導体層にInAlO(93:7)ターゲットを用いスパッタリングした。得られた断面TEM測定時の回折像に変化が見られた。回折スポットがブロードながら存在し、複数点の測定箇所に対しスポット位置が変化した。ただし、膜厚方向に回折像をとってもスポット位置の変化は観察されなかった。よって本半導体膜は多結晶(柱状)であると判断した。
実施例17
 表2-2に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-2に記載する。また、この実施例の半導体素子は式(I)は満たしていた。
 この実施例では、半導体層にInGaO(1:1)ターゲットを用いスパッタリングした。また、結晶性を得るためにアニール温度を600℃に高温化した。それに伴い、実施例8と同様に、図2に示すように、半導体層上部にPdOショットキー電極が位置する構成とした。これはPdOが高温では還元されてPdとなり、ショットキーバリア性が低減するのを抑制するためである。
 得られた断面TEM測定時の回折像に変化が見られた。回折スポットがブロードながら存在し、複数点の測定箇所に対しスポット位置が変化した。ただし、膜厚方向に回折像をとってもスポット位置の変化は観察されなかった。よって本半導体膜は多結晶(柱状)であると判断した。
実施例20
 表2-2に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表2-2に記載する。
 この実施例では、図3に示すように、半導体層上部にショットキー電極を有し、ショットキー電極の外周部からオーミック電極面へむかって垂線を引いたときに、オーミック電極面が前記垂線の外側にあることを特徴とする構成とした。
 式(I)は満足したものの、実施例8に比べ耐圧の低下及びリーク電流の上昇が観察された。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
比較例1
 表3に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表3に記載する。
 この実施例では、InGaZnOの成膜時の雰囲気をAr100体積%とした。また、半導体成膜後のアニールを実施しなかった。この結果、キャリア濃度が式(I)の範囲外となった。また、耐圧も0.1MV/cmとなりパワー用途への適応が困難な特性となった。リーク電流は-5V印加時に測定装置のコンプライアンス電流値100mAを上回っており、測定不可能であった。よって、表3では>1.0×10-3Aと表記した。
比較例2
 表3に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表3に記載する。
 この実施例では、Pd/PdO層の成膜を省略し、ショットキー電極がTiとなるようにした。結果、整流特性は観察されたものの、キャリア濃度が式(I)の範囲外となった。また、リーク電流が高く、耐圧も0.3MV/cmとなりパワー用途への適応が困難な特性となった。
比較例3
 表3に示すように成膜条件を変更した他は、実施例1と同様にして半導体素子を製造し評価した。結果を表3に記載する。
 この実施例では、半導体層にInターゲットを用いスパッタリングした。得られた断面TEM測定時の回折像に変化が見られた。回折スポットがブロードながら存在し、複数点の測定箇所に対しスポット位置が変化した。ただし、膜厚方向に回折像をとってもスポット位置の変化は観察されなかった。よって本半導体膜は多結晶(柱状)であると判断した。
 電気特性は、キャリア濃度が高く、作製したショットキーダイオードは整流比が得られず、キャリア濃度測定がCV測定では不可能であった。また、順方向の『べき』も2~3V範囲で2以下の値を維持し続けたので式(5)の関係性は成り立っていないと判断し、特性温度は評価できないとみなした。耐圧の低下及びリーク電流の上昇が観察された。
Figure JPOXMLDOC01-appb-T000019
 本発明の半導体素子は、ショットキーバリアダイオードやジャンクショントランジスタに用いることができる。さらに、これらは電子回路に用いることができ、各種電気機器に利用される。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (16)

  1.  離間する一対のオーミック電極及びショットキー電極と、
     前記オーミック電極と前記ショットキー電極に接する半導体層を有し、
     下記式(I)を満たすことを特徴とする半導体素子。
    Figure JPOXMLDOC01-appb-M000001
    (式中、nは前記半導体層のキャリア濃度(cm-3)、εは前記半導体層の誘電率(F/cm)、Vは前記オーミック電極と前記ショットキー電極の間の順方向実効電圧(V)、qは素電荷(C)、Lは前記オーミック電極と前記ショットキー電極の間の距離(cm)である。)
  2.  前記半導体層が、金属酸化物からなることを特徴とする請求項1に記載の半導体素子。
  3.  前記金属酸化物が、In、Zn、Ga、Sn及びAlから選択される1以上の元素を含有することを特徴とする請求項2に記載の半導体素子。
  4.  前記ショットキー電極が、Pd、Mo、Pt、Ir、Ru、W、Cr、Re、Te、Mn、Os、Fe、Rh、Co及びNiから選択される1以上の金属又はその酸化物を含むことを特徴とする請求項1~3のいずれかに記載の半導体素子。
  5.  前記オーミック電極が、Ti、Mo、Ag、In、Al、W、Co及びNiから選択される1以上の金属又はその化合物を含むことを特徴とする請求項1~4のいずれかに記載の半導体素子。
  6.  前記半導体層が、アモルファス又は多結晶を含むことを特徴とする請求項1~5のいずれかに記載の半導体素子。
  7.  前記半導体層の特性温度が、1500K以下であることを特徴する請求項1~6のいずれかに記載の半導体素子。
  8.  ショットキー電極面の外周部からオーミック電極面へ向かって垂線を引いたときに、前記オーミック電極面が前記垂線の内側にあることを特徴とする請求項1~7のいずれかに記載の半導体素子。
  9.  耐圧が0.5MV/cm以上であることを特徴とする請求項1~8のいずれかに記載の半導体素子。
  10.  前記半導体層が、前記オーミック電極と前記ショットキー電極の間に介在することを特徴とする請求項1~9のいずれかに記載の半導体素子。
  11.  さらに、導電性シリコン基板を有し、
     前記オーミック電極又は前記ショットキー電極が前記導電性シリコン基板に接することを特徴とする請求項10に記載の半導体素子。
  12.  前記半導体層の一表面の上に、前記オーミック電極と前記ショットキー電極が間隔をあけて存在することを特徴とする請求項1~9のいずれかに記載の半導体素子。
  13.  請求項1~12のいずれかに記載の半導体素子を用いたことを特徴とするショットキーバリアダイオード。
  14.  請求項1~12のいずれかに記載の半導体素子を用いたことを特徴とするジャンクショントランジスタ。
  15.  請求項1~12のいずれかに記載の半導体素子、請求項13に記載のショットキーバリアダイオード又は請求項14に記載のジャンクショントランジスタを用いたことを特徴とする電子回路。
  16.  請求項15に記載の電子回路を用いたことを特徴とする電気機器、電子機器、車両、又は動力機関。
PCT/JP2016/088234 2015-12-25 2016-12-21 半導体素子及びそれを用いた電気機器 WO2017110940A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187016656A KR102506724B1 (ko) 2015-12-25 2016-12-21 반도체 소자 및 그것을 사용한 전기 기기
CN201680074791.XA CN108431963B (zh) 2015-12-25 2016-12-21 半导体元件和使用该半导体元件的电气设备
US16/064,210 US10374045B2 (en) 2015-12-25 2016-12-21 Semiconductor device and electric apparatus using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015254761 2015-12-25
JP2015-254761 2015-12-25
JP2016159351A JP6975530B2 (ja) 2015-12-25 2016-08-15 半導体素子及びそれを用いた電気機器
JP2016-159351 2016-08-15

Publications (1)

Publication Number Publication Date
WO2017110940A1 true WO2017110940A1 (ja) 2017-06-29

Family

ID=59090719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088234 WO2017110940A1 (ja) 2015-12-25 2016-12-21 半導体素子及びそれを用いた電気機器

Country Status (2)

Country Link
TW (2) TWI769929B (ja)
WO (1) WO2017110940A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832644A (zh) * 2017-07-06 2020-02-21 株式会社田村制作所 肖特基势垒二极管
JP2021031375A (ja) * 2019-08-29 2021-03-01 信越化学工業株式会社 積層構造体、半導体装置及び結晶性酸化膜の成膜方法
JP2021031374A (ja) * 2019-08-29 2021-03-01 信越化学工業株式会社 積層構造体及び半導体装置並びに積層構造体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169055B (zh) * 2018-12-05 2023-08-08 三菱电机株式会社 半导体装置及半导体装置的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165532A (ja) * 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物を利用した半導体デバイス
WO2015025500A1 (ja) * 2013-08-19 2015-02-26 出光興産株式会社 酸化物半導体基板及びショットキーバリアダイオード

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207559B2 (en) * 2008-07-14 2012-06-26 Texas Instruments Incorporated Schottky junction-field-effect-transistor (JFET) structures and methods of forming JFET structures
JP2013058741A (ja) * 2011-08-17 2013-03-28 Hitachi Cable Ltd 金属塩化物ガス発生装置、ハイドライド気相成長装置、及び窒化物半導体テンプレート
KR102226985B1 (ko) * 2013-08-19 2021-03-11 이데미쓰 고산 가부시키가이샤 산화물 반도체 기판 및 쇼트키 배리어 다이오드
US9543290B2 (en) * 2014-01-23 2017-01-10 International Business Machines Corporation Normally-off junction field-effect transistors and application to complementary circuits

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165532A (ja) * 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物を利用した半導体デバイス
WO2015025500A1 (ja) * 2013-08-19 2015-02-26 出光興産株式会社 酸化物半導体基板及びショットキーバリアダイオード

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832644A (zh) * 2017-07-06 2020-02-21 株式会社田村制作所 肖特基势垒二极管
CN110832644B (zh) * 2017-07-06 2023-11-03 株式会社田村制作所 肖特基势垒二极管
US11923464B2 (en) 2017-07-06 2024-03-05 Tamura Corporation Schottky barrier diode
JP2021031375A (ja) * 2019-08-29 2021-03-01 信越化学工業株式会社 積層構造体、半導体装置及び結晶性酸化膜の成膜方法
JP2021031374A (ja) * 2019-08-29 2021-03-01 信越化学工業株式会社 積層構造体及び半導体装置並びに積層構造体の製造方法
JP7078582B2 (ja) 2019-08-29 2022-05-31 信越化学工業株式会社 積層構造体、半導体装置及び結晶性酸化膜の成膜方法
JP7078581B2 (ja) 2019-08-29 2022-05-31 信越化学工業株式会社 積層構造体及び半導体装置並びに積層構造体の製造方法

Also Published As

Publication number Publication date
TW201735358A (zh) 2017-10-01
TW202205671A (zh) 2022-02-01
TWI769929B (zh) 2022-07-01
TWI751999B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
JP6975530B2 (ja) 半導体素子及びそれを用いた電気機器
KR102531224B1 (ko) 적층체
JP7084465B2 (ja) 酸化物半導体基板及びショットキーバリアダイオード
JP6976858B2 (ja) 積層体
KR102413244B1 (ko) 구조물, 그 제조 방법, 반도체 소자 및 전자 회로
JP6803232B2 (ja) 新規な積層体
KR20160043968A (ko) 산화물 반도체 기판 및 쇼트키 배리어 다이오드
WO2017110940A1 (ja) 半導体素子及びそれを用いた電気機器
KR101665863B1 (ko) 정류 다이오드 및 그 제조방법
JP2017118048A (ja) 積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187016656

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878827

Country of ref document: EP

Kind code of ref document: A1