WO2017110517A1 - ダブル及びシングルアンカー型イソマルトメガロ糖、その製造方法及びその利用 - Google Patents

ダブル及びシングルアンカー型イソマルトメガロ糖、その製造方法及びその利用 Download PDF

Info

Publication number
WO2017110517A1
WO2017110517A1 PCT/JP2016/086678 JP2016086678W WO2017110517A1 WO 2017110517 A1 WO2017110517 A1 WO 2017110517A1 JP 2016086678 W JP2016086678 W JP 2016086678W WO 2017110517 A1 WO2017110517 A1 WO 2017110517A1
Authority
WO
WIPO (PCT)
Prior art keywords
sims
glucopyranose
anchor
mixture
dims
Prior art date
Application number
PCT/JP2016/086678
Other languages
English (en)
French (fr)
Inventor
淳夫 木村
原 博
ビーラヌッチ ラング
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2017110517A1 publication Critical patent/WO2017110517A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins

Definitions

  • the present invention relates to a double anchor type isomaltomegalosaccharide (hereinafter referred to as DIMS), a production method thereof and use thereof.
  • the present invention further relates to a single anchor type isomaltomegalosaccharide (hereinafter referred to as N-SIMS) having an anchor sugar chain at the non-reducing end of the isomaltomegalosugar chain, a method for producing the same, and use thereof.
  • DIMS double anchor type isomaltomegalosaccharide
  • N-SIMS single anchor type isomaltomegalosaccharide
  • cyclodextrin which is a kind of cyclic maltooligosaccharide, has the ability to solubilize these compounds, but has the following two problems.
  • the molecular size of the poorly water-soluble compound is limited. Cyclodextrin captures poorly water-soluble compounds by its cyclic structure (inclusion). On the other hand, since the ring size is determined, a complex cannot be formed with a poorly water-soluble compound whose molecular size does not match. (It does not form a complex with a compound having an excessively large or too small molecular weight.)
  • Non-patent Documents 1 and 2 Solubilization technology using single anchor isomaltomegalosaccharide is known (Non-patent Documents 1 and 2). Maltooligosaccharides having a relatively long chain length have a solubilizing action. However, it is very weak.
  • Non-patent literature 1 Shinoki A, Lang W, Thawornkuno C, Kang HK, Kumagai Y, Okuyama M, Mori H, Kimura A, Ishizuka S, Hara H: A novel mechanism for promotion of quercetin glycoside absorption by megalo ⁇ -1,6-glucosaccharide in the rat small intestine.Food Chemistry 136 (2): 293-296, 2013.
  • Non-Patent Document 2 Lang W, Kumagai Y, Sadahiro J, Maneesan J, Okuyama M, Mori H, Sakairi N, Kimura A: Different molecular complexity of linear isomaltomegalosaccharides and ⁇ -cyclodextrin for enhancing a solubility of azo ethyl red: towards the dye biodegradation. Bioresource Technology 169: 518-524, 2014. The entire description of Non-Patent Documents 1 and 2 is hereby specifically incorporated by reference.
  • Isomalto-oligosaccharides having a relatively long chain length have the effect of solubilizing coexisting substances in water, and anchor to the non-reducing end of the isomaltomegalosaccharide chain as described in Non-Patent Documents 1 and 2.
  • R-SIMS single anchor isomaltomegalosaccharide
  • this single anchor isomaltomegalosaccharide does not show solubilizing ability for some poorly water-soluble compounds, and its solubilizing ability is generally very weak.
  • the present invention has a new solubilizing ability such as cyclodextrin that has no limitation on the molecular size of a poorly water-soluble compound and that allows easy dissociation of the poorly water-soluble compound from a complex formed with the poorly water-soluble compound.
  • the purpose is to provide material.
  • the present invention includes a poorly water-soluble compound using a material having a solubilizing ability, a method for preparing an aqueous solution of a poorly water-soluble compound and an aqueous solution of the poorly water-soluble compound, and a material having a solubilizing ability. It is also an object to provide an aqueous solution-containing composition.
  • the present invention is as follows.
  • a double anchor type isomaltomegalosaccharide (hereinafter referred to as DIMS) having anchor sugar chains at both ends of the isomaltomegalosugar chain,
  • the isomaltomegalo sugar chain is composed of glucopyranose linked by ⁇ 1-6 bonds, and the polymerization degree of glucopyranose is in the range of 10 to 100
  • the anchor sugar chain on the reducing end side of the isomaltomegalo sugar chain is composed of glucopyranose linked by ⁇ 1-4 bond, and the degree of polymerization of glucopyranose is in the range of 2-20.
  • the DIMS wherein the anchor sugar chain on the non-reducing end side of the isomaltomegalo sugar chain is glucopyranose linked by an ⁇ 1-4 bond, and the degree of polymerization of glucopyranose is in the range of 1-50.
  • N-SIMS A single anchor type isomaltomegalosaccharide having an anchor sugar chain at the non-reducing end of the isomaltomegalosugar chain
  • the isomaltomegalo sugar chain is composed of glucopyranose linked by ⁇ 1-6 bonds, the degree of polymerization of glucopyranose is in the range of 10 to 100, and the anchor sugar chain is linked to an glucopyranose linked by ⁇ 1-4 bonds.
  • N-SIMS which is a pyranose and the degree of polymerization of glucopyranose is in the range of 1-100.
  • N-SIMS The N-SIMS according to [4], wherein the total degree of polymerization of glucopyranose of the isomaltomegalo sugar chain and the anchor sugar chain is in the range of 11 to 200.
  • [8] A method for producing DIMS or a mixture thereof according to any one of [1] to [3], Glycotransfer of a single-anchored isomaltomegalosaccharide (hereinafter referred to as R-SIMS) having an anchor sugar chain at the reducing end of the isomaltomegalo sugar chain and a sugar donor substrate by an enzyme exhibiting a sugar transfer activity Subject to reaction to obtain DIMS or a mixture thereof.
  • R-SIMS single-anchored isomaltomegalosaccharide
  • the isomaltomegalo sugar chain of R-SIMS is composed of glucopyranose linked by ⁇ 1-6 bonds, and the degree of polymerization of glucopyranose is in the range of 10-100
  • the anchor sugar chain of the R-SIMS is composed of glucopyranose linked by ⁇ 1-4 bonds, and the polymerization degree of glucopyranose is in the range of 2 to 20. A method involving that.
  • IMS Isomaltomegalosaccharide
  • a sugar donor substrate Isomaltomegalosaccharide
  • an enzyme exhibiting a transglycosylation activity Isomaltomegalosaccharide
  • the isomaltomegalo sugar chain of IMS is composed of glucopyranose linked by ⁇ 1-6 bonds, and the polymerization degree of glucopyranose is in the range of 10-100. A method involving that.
  • the isomaltomegalo sugar chain of R-SIMS is composed of glucopyranose linked by ⁇ 1-6 bonds, and the degree of polymerization of glucopyranose is in the range of 10-100
  • the anchor sugar chain of the R-SIMS is composed of glucopyranose linked by ⁇ 1-4 bonds, and the polymerization degree of glucopyranose is in the range of 2 to 20
  • the isomaltomegalo sugar chain of IMS is composed of glucopyranose linked by ⁇ 1-6 bonds, and the polymerization degree of glucopyranose is in the range of 10-100. A method involving that.
  • the donor substrate is at least one selected from the group consisting of oligosaccharides and polysaccharides;
  • the enzyme exhibiting the sugar transfer activity is at least one enzyme selected from the group consisting of ⁇ -glucosidase, D-enzyme (heterogenizing enzyme), amylase and amylosucrase and CGTase [8] to [8] [10] The method according to any one of [10].
  • a method for producing an aqueous solution of a poorly water-soluble compound comprising: A poorly water-soluble compound and (i) a DIMS as described in any one of [1] to [3] or a mixture thereof, (ii) an N-SIMS as described in any one of [4] to [6] or a A mixture, or (iii) at least one DIMS according to any one of [1] to [3] and at least one N-SIMS according to any one of [4] to [6] Mixing said mixture with water or a water-containing solvent.
  • the water-containing solvent is a solvent composed of water and at least one organic solvent, and the organic solvent is an edible organic solvent.
  • a poorly water-soluble compound and (i) a DIMS or a mixture thereof according to any one of [1] to [3], or (ii) an N-SIMS according to any one of [4] to [6] A mixture thereof, or (iii) at least one DIMS according to any one of [1] to [3] and at least one N-SIMS according to any one of [4] to [6] A composition comprising a mixture of [19] The composition according to [18], further comprising an edible organic solvent. [20] The composition according to [18] or [19], wherein the poorly water-soluble compound is a medicinal component, and the composition is a pharmaceutical composition containing an effective amount of the poorly water-soluble compound.
  • [22] [1] to [3] DIMS or a mixture thereof according to any one of [1] to [3], or N-SIMS or a mixture thereof according to any one of [4] to [6], [1] to [3]
  • Dissolution promoter [23] The dissolution accelerator according to [22], wherein the poorly water-soluble compound is a compound classified as BCS class 2.
  • the present invention it is possible to provide a technique for solubilizing a hardly soluble compound with double anchor type isomaltomegalosaccharide (DIMS).
  • DIMS double anchor type isomaltomegalosaccharide
  • This solubilization technique is not due to inclusion, but rather due to relatively loose interactions with ⁇ -1,6 chains (with some contributions of ⁇ -1,4 chains).
  • the anchor structure that stabilizes complex formation is relatively easily degraded and shortened by ⁇ -amylase, and has the property of making it easier to release the target substance in the intestine.
  • the present invention can also provide a technique for solubilizing a hardly soluble compound with a single anchor type isomaltomegalosaccharide (R-SIMS) having an anchor sugar chain at the reducing end of the isomaltomegalosugar chain.
  • R-SIMS isomaltomegalosaccharide
  • FIG. 1 shows an NMR signal of an anomeric proton of R-SIMS having a long single anchor at the reducing end.
  • FIG. 2 shows the NMR signal of the anomeric proton of R-SIMS having a short single anchor at the reducing end.
  • FIG. 3 shows the NMR signal of the anomeric proton of DIMS (total average polymerization degree 26).
  • FIG. 4 shows the NMR signal of the anomeric proton of DIMS (total average degree of polymerization 62).
  • FIG. 5-1 shows the NMR signals of the four types of N-SIMS obtained in Example 2.
  • FIG. 5-2 shows the NMR signals of the four types of N-SIMS obtained in Example 2.
  • FIG. 5-3 shows the NMR signals of the four types of N-SIMS obtained in Example 2.
  • FIG. 5-4 shows the NMR signals of the four types of N-SIMS obtained in Example 2.
  • FIG. 6-2 shows the results of flavonoid solubilization by DIMS.
  • FIG. 6-3 shows the results of flavonoid solubilization by DIMS.
  • FIG. 6-4 shows the results of flavonoid solubilization by DIMS.
  • FIG. 6-5 shows the results of flavonoid solubilization by DIMS.
  • FIG. 6-6 shows the results of flavonoid solubilization by DIMS.
  • FIG. 7-1 shows the results of flavonoid solubilization by DIMS.
  • FIG. 7-2 shows the results of flavonoid solubilization by DIMS.
  • FIG. 8 shows the relative solubility of ibuprofen with various megalosaccharides (5.0 mM) such as DIMS.
  • FIG. 9 shows the relative solubility (control water) of ibuprofen with 4 types of N-SIMS (1-10 mM). Yellow square, N-SIMS (25-7); Black circle, N-SIMS (24-19); Red triangle, N-SIMS (24-32); White inverted triangle, N-SIMS (22-53).
  • the structure of N-SIMS is represented by N-SIMS (XY), where X represents the average degree of polymerization of isomaltomegalo sugar chains and Y represents the average degree of polymerization of non-reducing end anchor sugar chains.
  • the present invention relates to a DIMS having anchor sugar chains at both ends of an isomaltomegalo sugar chain.
  • the isomaltomegalosugar chain in this DIMS is composed of glucopyranose linked by ⁇ 1-6 bonds, and the polymerization degree of glucopyranose is in the range of 10-100.
  • the lower limit of the degree of polymerization of this glucopyranose can be, for example, 10, 15, 20, 25, 30, 35, 40, 45 or 50.
  • the upper limit of the degree of polymerization of this glucopyranose can be, for example, 100, 95, 90, 85, 80, 75, 70, 65, 60 or 55.
  • the anchor sugar chain on the reducing end side of the isomaltomegalo sugar chain in DIMS is composed of glucopyranose linked by an ⁇ 1-4 bond, and the polymerization degree of glucopyranose is in the range of 2-20.
  • the lower limit of the polymerization degree of glucopyranose can be, for example, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • the upper limit of the degree of polymerization of this glucopyranose can be, for example, 20, 19, 18, 17, 16, 15, 14, 13, 12, or 11.
  • the anchor sugar chain on the non-reducing end side of the isomaltomegalo sugar chain in DIMS is glucopyranose linked by an ⁇ 1-4 bond, and the degree of polymerization of glucopyranose is in the range of 1-50.
  • the lower limit of the degree of polymerization of glucopyranose can be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25.
  • the upper limit of the degree of polymerization of this glucopyranose can be, for example, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 35, or 30.
  • the total degree of polymerization of glucopyranose of the isomaltomegalo sugar chain and the two anchor sugar chains in the DIMS of the present invention can be in the range of 13-170.
  • the lower limit of the total degree of polymerization can be, for example, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, or 70.
  • the upper limit of the total degree of polymerization is, for example, 170, 165, 160, 155, 150, 145, 140, 135, 130, 125, 120, 115, 110, 105, 100, 95, 90, 85, 80, or 75.
  • the DIMS of the present invention can be one kind of compound or a mixture of two or more kinds of DIMS.
  • the DIMS contained in the mixture includes the case where either one or two of isomaltomegaloglycan and two anchor sugar chains are common and the remaining sugar chains are different from those of isomaltmegalo sugar chain and two anchor sugar chains. Everything can be different.
  • the average degree of polymerization of the mixture can be, for example, in the range of 13 to 170.
  • the lower limit of the average degree of polymerization of this mixture can be, for example, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or 70.
  • the upper limit of the average degree of polymerization of this mixture is, for example, 170, 165, 160, 155, 150, 145, 140, 135, 130, 125, 120, 115, 110, 105, 100, 95, 90, 85, 80, Or 75.
  • N-SIMS ⁇ Single anchor type isomaltomegalosaccharide
  • the present invention also includes N-SIMS having an anchor sugar chain at the non-reducing end of the isomaltomegalo sugar chain.
  • the isomaltomegalo sugar chain of N-SIMS is composed of glucopyranose linked by ⁇ 1-6 bonds, and the degree of polymerization of glucopyranose is in the range of 10-100.
  • the degree of polymerization of glucopyranose linked by this ⁇ 1-6 bond can be the same as in DIMS.
  • the anchor sugar chain is glucopyranose linked by ⁇ 1-4 bonds, and the degree of polymerization of glucopyranose is in the range of 1-100.
  • the lower limit of the degree of polymerization of glucopyranose linked by an ⁇ 1-4 bond can be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25.
  • the upper limit of the degree of polymerization of this glucopyranose can be, for example, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, or 30.
  • the total degree of polymerization of glucopyranose of the isomaltomegalo sugar chain and anchor sugar chain of N-SIMS can be, for example, in the range of 11-200.
  • the N-SIMS of the present invention can be one type of compound, but can also be a mixture of two or more types of N-SIMS. There may be a case where one of the N-SIMS isomaltomegalo sugar chain and the anchor sugar chain contained in the mixture is different, and a case where both the isomaltomegalo sugar chain and the anchor sugar chain are different.
  • N-SIMS is a mixture of two or more N-SIMS
  • the average degree of polymerization of the mixture of N-SIMS can be, for example, in the range of 11 to 200.
  • the present invention also includes a mixture of DIMS and N-SIMS.
  • Each of DIMS and N-SIMS may be a single compound or a mixture thereof.
  • the average degree of polymerization of the mixture of DIMS and N-SIMS can range from 11 to 200, for example.
  • the present invention includes a method for producing the DIMS of the present invention or a mixture thereof.
  • an R-SIMS having an anchor sugar chain at the reducing end of an isomaltomegalo sugar chain and a sugar donor substrate are used for a glycosyltransferase reaction by an enzyme exhibiting a sugar transfer activity (a glycosyltransferase).
  • a glycosyltransferase a glycosyltransferase
  • the present invention includes a method for producing the N-SIMS of the present invention or a mixture thereof.
  • N-SIMS in which isomaltomegalosaccharide (IMS) and a sugar donor substrate are subjected to a glycosyltransferase reaction by a glycosyltransferase and an anchor sugar chain is added to the non-reducing end of IMS or a mixture thereof Including that.
  • the present invention is a method for producing a mixture of the above-described DIMS and N-SIMS of the present invention, wherein R-SIMS and IMS and a sugar donor substrate are subjected to a transglycosylation reaction by an enzyme exhibiting a saccharide transfer activity. To obtain a mixture of DIMS and N-SIMS.
  • the reaction scheme is shown below by taking the production method of DIMS and N-SIMS as an example.
  • Black circles indicate glucopyranose residues linked by ⁇ 1-6 bonds. Open circles indicate glucopyranose residues linked by ⁇ 1-4 bonds. The hatched white and black circles indicate the glucopyranose residue at the reducing end. Production is performed by an enzyme having transglycosylation activity such as CGTase.
  • R-SIMS One raw material in the method for producing DIMS or a mixture thereof is R-SIMS.
  • the isomaltomegalo sugar chain constituting R-SIMS is composed of glucopyranose linked by ⁇ 1-6 bonds, and the degree of polymerization of glucopyranose is in the range of 10-100.
  • the anchor sugar chain on the reducing end side of the isomaltomegalosugar chain constituting R-SIMS is composed of glucopyranose linked by ⁇ 1-4 bonds, and the polymerization degree of glucopyranose is in the range of 2-20.
  • R-SIMS used as a raw material can be, for example, the compounds described in Non-Patent Documents 1 and 2.
  • IMS One raw material in the method for producing N-SIMS or a mixture thereof is IMS, and the isomaltomegalosugar chain of IMS is composed of glucopyranose linked by ⁇ 1-6 bonds, and the degree of polymerization of glucopyranose is 10 to 100 It is a range.
  • the isomaltomegalo sugar chain of IMS has the same meaning as that described for N-SIMS as the isomaltomegalo sugar chain in N-SIMS.
  • R-SIMS and IMS both of which are the same as those described in the above DIMS production method and N-SIMS production method.
  • the other raw material is a sugar donor substrate.
  • the sugar donor substrate is, for example, cyclodextrin.
  • the cyclodextrin can be one cyclodextrin selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin, or a mixture of two or more cyclodextrins.
  • any of the cyclodextrins can be used alone, but a mixture of two or more kinds of cyclodextrins can also be used.
  • the degree of polymerization of the anchor sugar chain added to the non-reducing end can be controlled.
  • the glycosyltransferase can be, for example, cyclomaltodextrin glucanotransferase (CGTase) when the sugar donor substrate is cyclodextrin.
  • CGTase can add a sugar chain opened by cyclodextrin as an anchor sugar chain to the non-reducing end of R-SIMS or IMS using cyclodextrin as a substrate, DIMS or a mixture thereof, N-SIMA or a mixture thereof Can be generated respectively.
  • CGTase can add a sugar chain opened by cyclodextrin as an anchor sugar chain to the non-reducing end of R-SIMS or IMS using cyclodextrin as a substrate, DIMS or a mixture thereof, N-SIMA or a mixture thereof.
  • the sugar chain in which the cyclodextrin is opened can be further added to the non-reducing end of DIMS or N-SIMA in which the anchor sugar chain has already been added to the non-reducing end.
  • the degree of polymerization of the anchor sugar chain at the non-reducing end varies depending on the degree of multiple addition of sugar chains opened by cyclodextrin.
  • the degree of polymerization of the anchor sugar chain at the non-reducing end varies depending on the type of cyclodextrin used as a raw material.
  • the polymerization degree is determined by two polymerization degrees: a polymerization degree determined by the type of cyclodextrin and a polymerization degree determined by the degree of multiple addition of sugar chains in which the cyclodextrin is opened.
  • CGTase considering the optimum pH and temperature of CGTase, for example, a stable range including pH 5 to 6, a temperature range of 30 to 60 ° C, preferably 40 to 60 ° C, R- The reaction is carried out in an aqueous solution containing, for example, 1 to 10 times the molar ratio of cyclodextrin to SIMS (for example, R-SIMS is 0.01 to 0.1 mol / L) for 1 to 12 hours, preferably 1 to 6 hours. Can be implemented.
  • an oligosaccharide for example, sucrose or malto-oligosaccharide
  • a polysaccharide for example, starch
  • an oligosaccharide for example, sucrose or maltooligosaccharide
  • a polysaccharide for example, starch
  • ⁇ -glucosidase D-enzyme (heterogenizing enzyme) is used as the glucosyltransferase.
  • At least one enzyme selected from the group consisting of amylase and amylosucrase and CGTase can be used. The reaction in these cases can also be appropriately determined in consideration of the type of sugar donor substrate to be used and the type of glucosyltransferase.
  • the present invention includes a method for producing an aqueous solution of a poorly water-soluble compound.
  • This method comprises a poorly water-soluble compound and (i) DIMS or a mixture thereof, (ii) N-SIMS or a mixture thereof, or (iii) a mixture of at least one DIMS and at least one N-SIMS. Mixing in water or a solvent containing water.
  • the anchor type isomaltomegalosaccharides (i) to (iii) are hereinafter referred to as A-IMSs.
  • the poorly water-soluble compound is not limited as long as it is a compound having low solubility in water or a solvent containing water (for example, a buffer solution or a cell culture solution).
  • the poorly water-soluble compound can be, for example, a compound classified as BCS class 2.
  • BCS is an abbreviation for Biopharmaceutics Classification System, classifying according to the level of solubility and membrane permeability of compounds that can be active ingredients of pharmaceuticals, and the bioabsorption characteristics of compounds corresponding to each class It is a way to organize.
  • BCS class 2 is a class in which compounds having low solubility and high membrane permeability are classified. Regarding the solubility of compounds, evaluation by DMSO precipitation method and Shake-flask method is known.
  • the membrane permeability of a compound As for the membrane permeability of a compound, a method using an artificial membrane and a permeability evaluation using cultured cells are known.
  • the evaluation method for determining whether the poorly water-soluble compound to be dissolved belongs to BCS class 2 is not particularly limited.
  • a compound that is not classified into BCS class 2 can be used in the production of an aqueous solution using the A-IMS of the present invention as a poorly water-soluble compound in the present invention.
  • the A-IMS of the present invention to be used can be appropriately determined according to the kind of the poorly water-soluble compound.
  • the ability of the A-IMS of the present invention to solubilize a poorly water-soluble compound to be made into an aqueous solution can be tested in advance.
  • the solubilizing ability of DIMS for a poorly water-soluble compound varies depending on the degree of polymerization of isomaltomegalo sugar chains and the degree of polymerization of two anchor sugar chains.
  • Solubilization ability for poorly water-soluble compounds can vary depending on the degree of polymerization of isomaltomegalo sugar chains and the degree of polymerization of anchor sugar chains.
  • the type of N-SIMS contained in the mixture varies depending on the degree of polymerization of isomaltomegaloglycan and the degree of polymerization of anchor sugar chain
  • the composition ratio of N-SIMS contained thereby the solubilization ability with respect to a poorly water-soluble compound can change.
  • the solubilization ability with respect to a poorly water-soluble compound can change with the kind, composition ratio, etc. of DIMS and N-SIMS.
  • the following table shows changes in solubility due to differences in the degree of polymerization of quercetin glycoside, which is a poorly water-soluble compound, and anchor sugar chains at the reducing end and non-reducing end of DIMS. Specific experimental methods and conditions are shown in Example 4.
  • the table below shows that when the degree of polymerization of the anchor sugar chain at the reducing end is constant and the degree of polymerization of the anchor sugar chain at the non-reducing end is changed, the degree of polymerization of the anchor sugar chain at the non-reducing end increases. It can be seen that the solubility of glycoside (Q3G in the table) is increased.
  • the solvent containing water is a solvent containing water and at least one substance, and there is no particular limitation on the type and concentration of the substance.
  • an inorganic salt, an organic acid salt, a buffering agent, a solvent composed of an organic solvent, or the like can be given.
  • the organic solvent may be an edible organic solvent.
  • the edible organic solvent can be, for example, ethanol, acetic acid, lactic acid, and the like.
  • the method of the present invention can include heating a hardly water-soluble compound to a temperature equal to or higher than the melting point of the compound, and mixing the hardly water-soluble compound heated and dissolved with a solvent containing A-IMSs.
  • a solvent containing A-IMS By mixing the hardly water-soluble compound dissolved by heating with a solvent containing A-IMS, dissolution of the hardly water-soluble compound can be promoted.
  • whether or not to use a hardly water-soluble compound dissolved by heating can be appropriately selected depending on the type of the compound. All operations can be performed at room temperature.
  • the present invention includes a dissolution accelerator for making a poorly water-soluble compound into an aqueous solution containing the A-IMS of the present invention.
  • the A-IMS is as described above.
  • the poorly water-soluble compound is, for example, a compound classified as BCS class 2, but is not intended to be limited thereto.
  • the dissolution promoter of the present invention can be used, for example, by the method described in the method for producing an aqueous solution of the poorly water-soluble compound of the present invention.
  • the present invention includes a composition comprising a poorly water-soluble compound and the A-IMS of the present invention.
  • the poorly water-soluble compound has the same meaning as described in the above production method, and the A-IMS of the present invention has the same meaning as the above-described description of the A-IMS of the present invention.
  • the composition of the present invention can further contain a solvent.
  • the solvent can be, for example, water or a solvent containing water and at least one substance, and contains water and at least one substance described in the method for producing an aqueous solution of a poorly water-soluble compound of the present invention. Synonymous with solvent.
  • the kind and amount of the solvent used can be appropriately selected according to the purpose of use of the composition of the present invention.
  • a poorly water-soluble compound is a medicinal component
  • the composition may be a pharmaceutical composition containing an effective amount of the poorly water-soluble compound.
  • the poorly water-soluble compound is a component for food and drink
  • the composition may be a composition for food and drink or a raw material composition for food and drink.
  • the type and concentration of the A-IMS of the present invention and the type and concentration of the poorly water-soluble compound can be appropriately selected according to the intended use of the composition of the present invention.
  • Example 1 Synthesis of Double Anchor Type Isomaltomegalosaccharide (DIMS) First, a single anchor body was prepared, and an ⁇ -1,4 glucose chain was added thereto to prepare a double anchor body. First, preparation of a single anchor body is described, and its production was performed using dextrin dextranase (abbreviated as DDase; EC 2.4.1.2) produced by Gluconobacter oxydans ATCC 11894.
  • DIDA dextrin dextranase
  • DDase from bacterial cells The bacterium was shake-cultured in a medium (pH 5.95; total 1 L) consisting of 5% fructose and 0.5% yeast extract at 30 ° C. for 2 days (turbidity obtained from absorption at 600 nm was about 2). The cells were collected by centrifugation (11,300 ⁇ g, 4 ° C., 20 minutes) and washed with 50 mL of 25 mM sodium acetate buffer (pH 4.2).
  • DDase bound to the cells by treatment with 1% maltotriose (Nihon Shokuhin Kako Co., Ltd., Tokyo) [50 mL of 25 mM sodium acetate buffer (pH 4.2); 30 ° C; 200 hours in 3 hours Stirring of rpm] and DDase were collected by centrifugation (11,300 ⁇ g, 4 ° C., 20 minutes).
  • maltotriose Nahon Shokuhin Kako Co., Ltd., Tokyo
  • the enzyme solution [50 mL; 25 mM sodium acetate buffer (pH 4.2)] obtained in the previous section was used for the preparation of the single anchor body.
  • the composition of the reaction solution was as follows: Carbohydrate consisting of 200 mM maltohexaose and maltoheptaose [abbreviated as G6 / G7; Nippon Shokuhin Kako Co., Ltd., Tokyo]; U / mL; see the following * for the definition of enzyme unit U), which was carried out at 45 ° C. for 4-5 days with a stirring reaction (100 rpm).
  • the reaction was stopped by heat treatment at 100 ° C. for 20 minutes, and the heat-denatured enzyme protein was removed by centrifugation (5,800 ⁇ g, 4 ° C., 20 minutes).
  • Enzyme activity (1 U) is affected by DDase acting on 15 mM maltotetraose ⁇ ⁇ [25 mM sodium acetate buffer (pH 4.2); 35 °C; 80 ⁇ L reaction solution], 1 ⁇ mol per minute in the heterogeneous reaction The amount of enzyme that liberates maltotriose.
  • Methanol was added to the reaction solution to a final concentration of 40%, and the by-product polysaccharide dextran was removed by standing at 4 ° C. for 30 minutes and centrifuging (13,000 ⁇ g, 4 ° C., 10 minutes).
  • the final concentration was 90% by adding methanol to the supernatant, and the single anchor body was collected by precipitation. That is, centrifugation (13,000 xg, 4 ° C., 10 minutes) was performed after stationary precipitation at 4 ° C. for 30 minutes. “Solubilization with a small amount of water / addition of 90% methanol / stationary precipitation / centrifugation” was repeated three times or more for the obtained precipitate.
  • the structural formula of the single anchor body (Single-) having a long anchor portion is as described above.
  • the NMR signal of the anomeric proton is shown in FIG.
  • H1 ( ⁇ 4), H1 ( ⁇ 6), H1 ⁇ and H1 ⁇ represent ⁇ 1-4 and ⁇ 1-6 linked glucose residues and ⁇ -anomers of reducing terminal glucose and anomeric protons of ⁇ -anomer, respectively.
  • the sample is a long-chain single-anchor having an average degree of polymerization of 11 ⁇ -6 binding moiety.
  • the production method was prepared by “cutting the anchor portion by allowing ⁇ -amylase to act on a single anchor body having a long anchor portion”.
  • the composition of the reaction solution is a single anchor with a long 25% anchor part, 50 mM sodium maleate buffer (pH 6.9), 0.5% porcine pancreatic ⁇ -amylase (type IA; Sigma-Aldrich Chemie Gmbh., Steinheim, Germany) 0.01% CaCl 2 and the reaction was carried out overnight at 37 ° C.
  • ⁇ -Amylase was inactivated by heat treatment at 100 ° C.
  • the structural formula of the single anchor body (Single +) having a short anchor portion is as described above.
  • the NMR signal of the anomeric proton is shown in FIG. H1 ( ⁇ 4), H1 ( ⁇ 6), H1 ⁇ and H1 ⁇ represent ⁇ 1-4 and ⁇ 1-6 linked glucose residues, ⁇ -anomers of reducing terminal glucose and anomeric protons of ⁇ -anomers, respectively.
  • the soot sample is a short-chain single-anchor having an average degree of polymerization of 11 ⁇ -6 binding moieties of 11.
  • Double anchor body Double anchors were prepared using a transglycosylation reaction catalyzed by CGTase (Amano Enzyme, Nagoya) with single or long anchor anchors.
  • Black circles indicate glucopyranose residues linked by ⁇ 1-6 bonds. Open circles indicate glucopyranose residues linked by ⁇ 1-4 bonds. The hatched white circle indicates the reducing end glucopyranose residue.
  • the composition of the reaction solution was 200 mM ⁇ -cyclodextrin (abbreviated as ⁇ CD; Wako Pure Chemical Industries, Ltd., Osaka), 40 mM anchor part is a short or long chain single anchor body, 50 mM sodium acetate buffer (
  • the reaction was performed at 55 ° C. for 1 hour or 4 hours.
  • the reaction was stopped by heating at 100 ° C. for 20 minutes.
  • the unreacted single anchor is treated with dextran glucosidase [exo-type enzyme that cleaves only ⁇ -1,6 glucoside bond; 0.5 U / mL; 50 mM sodium acetate buffer (pH 5.3); 37 ° C; overnight]
  • dextran glucosidase exo-type enzyme that cleaves only ⁇ -1,6 glucoside bond; 0.5 U / mL; 50 mM sodium acetate buffer (pH 5.3); 37 ° C; overnight]
  • the reaction was stopped by the
  • the structural formula of the obtained double anchor body (total average degree of polymerization 26: used for flavonoid solubilization experiments) is as follows.
  • the NMR signal of the anomeric proton is shown in FIG. H1 ( ⁇ 4), H1 ( ⁇ 6), H1 ⁇ and H1 ⁇ represent ⁇ 1-4 and ⁇ 1-6 -bound glucose residues, ⁇ -anomers of reducing terminal glucose and anomeric protons of ⁇ -anomers, respectively.
  • the structural formula of the obtained double anchor body (total average degree of polymerization 62: used for ibuprofen solubilization experiment) is as follows.
  • the NMR signal of the anomeric proton is shown in FIG. H1 ( ⁇ 4), H1 ( ⁇ 6), H1 ⁇ and H1 ⁇ represent ⁇ 1-4 and ⁇ 1-6 -bound glucose residues, ⁇ -anomers of reducing terminal glucose and anomeric protons of ⁇ -anomers, respectively.
  • Example 2 (1) Method for producing non-reducing terminal single anchor type isomaltomegalosaccharide (N-SIMS)
  • the black circle is a glucopyranose residue linked by ⁇ 1-6 bond
  • Open circles represent glucopyranose residues linked by ⁇ 1-4 bonds.
  • the shaded black circle indicates the reducing end glucopyranose residue.
  • the composition of the reaction solution was 100 mM ⁇ -cyclodextrin ( ⁇ CD; Wako Pure Chemical Industries, Ltd., Osaka), 20mM isomaltomegalosaccharide (average degree of polymerization 7, 19, and 32 (Pharmacosmos, Holbaek, Denmark) or average
  • the polymerization degree was 53 (Amersham Biosciences AB, Upsala, Sweden), 50 mM sodium acetate buffer (pH 6.0) and 1.74 U / mL CGTase, and the reaction was performed at 20 ° C. for 3 hours. The reaction was stopped by heating at 100 ° C. for 20 minutes.
  • Unreacted isomaltomegalosaccharide is treated with dextran glucosidase (exo-enzyme that cleaves only ⁇ -1,6 glucoside bond; 6.25 U / mL; 50 mM sodium acetate buffer (pH 5.3); 37 °C; ⁇ overnight)
  • dextran glucosidase exo-enzyme that cleaves only ⁇ -1,6 glucoside bond; 6.25 U / mL; 50 mM sodium acetate buffer (pH 5.3); 37 °C; ⁇ overnight
  • the reaction was stopped by heat treatment at 100 ° C. for 10 minutes.
  • the heat-denatured enzyme protein was removed by centrifugation (12,000 x g, 4 ° C for 20 minutes).
  • N-SIMS non-reducing end anchor polymerization degrees (average values) of N-SIMS obtained from isomaltomegalosaccharides having an average degree of polymerization of 7, 19, 32 and 53 were 25, 24, 24 and 22, respectively. These are referred to as N-SIMS (25-7), N-SIMS (24-19), N-SIMS (24-32) and N-SIMS (22-53), respectively.
  • H1 ( ⁇ 4), H1 ( ⁇ 6), H1 ⁇ and H1 ⁇ are ⁇ 1-4 and ⁇ 1-6 linked glucose residues, ⁇ -anomer of reducing terminal glucose and anomeric proton of ⁇ -anomer. Respectively.
  • the soot sample is a single anchor body having an average degree of polymerization of ⁇ 1-6 binding moiety of 7 and an average degree of polymerization of 25 non-reducing terminal ⁇ 1-4 binding moiety.
  • H1 ( ⁇ 4), H1 ( ⁇ 6), H1 ⁇ and H1 ⁇ are ⁇ 1-4 and ⁇ 1-6 linked glucose residues, ⁇ -anomer of reducing terminal glucose and anomeric proton of ⁇ -anomer. Respectively.
  • the sample is a single anchor with an average degree of polymerization of ⁇ 1-6 binding moiety of 19 and an average degree of polymerization of non-reducing terminal ⁇ 1-4 binding moiety of 24.
  • H1 ( ⁇ 4), H1 ( ⁇ 6), H1 ⁇ and H1 ⁇ are ⁇ 1-4 and ⁇ 1-6 linked glucose residues, ⁇ -anomers of reducing terminal glucose and anomeric protons of ⁇ -anomer. Respectively.
  • the soot sample is a single anchor body having an average degree of polymerization 32 of ⁇ 1-6 binding portion and an average degree of polymerization 24 of non-reducing terminal ⁇ 1-4 binding portion.
  • H1 ( ⁇ 4), H1 ( ⁇ 6), H1 ⁇ and H1 ⁇ are ⁇ 1-4 and ⁇ 1-6 linked glucose residues, ⁇ -anomer of reducing terminal glucose and anomeric proton of ⁇ -anomer. Respectively.
  • the sample is a single anchor having an average degree of polymerization 53 of the ⁇ 1-6 binding portion and an average degree of polymerization 22 of the non-reducing terminal ⁇ 1-4 binding portion.
  • Example 3 Flavonoid solubilization test method (1) Dispensing 100 ⁇ L of anchor type megalosaccharide (prepared in Example 1) at final concentrations of 0, 5, 10, 20 mM (2) Add flavonoids with MQ water so that the final concentration is 1, 5, 10 mM. Suspend by treating for 5 min with an ultrasonic cleaner and 30 sec with ultrasonic crushing (3) Add to tube containing 100 ⁇ L of megalo sugar (4) 37 °C 30 min incubation (5) Centrifugation (20 °C, 5 min, 9300 g), supernatant recovery (6) Dilute with 50% MeOH and measure by LC-MS
  • Solubilized flavonoids 15 isoflavones: Genistein-7-glucoside (Genistin) Daidzein-7-glucoside (Daidzin) Genistein * Daidzein * Flavon: Apigenin-7-glucoside Luteolin-7-glucoside Flavonol: Quercetin * Quercetin-3-glucoside (Isoquercitrin) Quercetin-4'-glucoside Kaempferol-3-glucoside Myricetin 3-rhamnoside (Myricitrin) Flabanon: Naringenin-7-rhamnoglucoside (Naringin) Hesperetin * Hesperetin-7-rhamnoglucoside (Hesperidin) Stilbene: Resveratrol * * aglycone
  • FIGS. 6-1 to 6-6 The results of flavonoid solubilization with double anchor type linear isomaltomegalosaccharide are shown in FIGS. 6-1 to 6-6, and FIGS. 7-1 and 7-2.
  • FIGS. 6-1 to 6-6 are examples of flavonoids that are solubilized more strongly by double anchor type linear isomaltomegalosaccharide than by single anchor type linear isomaltomegalosaccharide.
  • FIGS. 7-1 and 7-2 show examples of flavonoids that are solubilized only by the double anchor type.
  • Example 4 Ibuprofen solubilization experiment
  • Single anchor R-SIMA and double anchor DIMS Pre-heat an aqueous solution containing single-anchor R-SIMA (5.0 mM) or double-anchor DIMS (5.0 mM) at 100 ° C for 10 minutes, and add 0.1 mL of excess powdered ibuprofen (1 mg; sodium salt; melting point 77 ° C; Nacalai Tesque, Kyoto). Then, it hold
  • the method for measuring ibuprofen phase solubility is shown in the following scheme.
  • the relative solubility of ibuprofen with various megalosaccharides (5.0 mM) is shown in FIG.
  • the solubility of ibuprofen in water only is 0.82 mM (control value, equivalent to 1.0 on the vertical axis)
  • Example 6 In the same manner as in Example 3, using 25 mM anchor type isomaltomegalosaccharide (below) and quercetin glycoside having a final concentration equivalent to 10 mM, the concentration of quercetin glycoside in the centrifugal supernatant was determined by HPLC (UV absorption). The water solubilization of the quercetin glycoside was tested by measuring. The results are shown in the table below.
  • the following table shows the results of changes in solubility due to differences in the degree of polymerization of the quercetin glycoside, which is a poorly water-soluble compound, and the anchor sugar chain at the reducing end and the non-reducing end of DIMS. From the table below, it can be seen that the solubility of the quercetin glycoside increases when the degree of polymerization of the anchor sugar chain at the reducing end is constant and the degree of polymerization of the anchor sugar chain at the non-reducing end increases.
  • the present invention is useful in fields requiring the promotion of dissolution of hardly soluble compounds such as ingredients for foods and beverages and pharmaceuticals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本発明は、イソマルトメガロ糖鎖の両末端にアンカー糖鎖をそれぞれ有するダブルアンカー型イソマルトメガロ糖(DIMS)、及びイソマルトメガロ糖鎖の非還元末端にアンカー糖鎖を有するシングルアンカー型イソマルトメガロ糖(N-SIMS)に関する。イソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノース重合度が10~100の範囲である。還元末端側のアンカー糖鎖は、α1-4結合で連結したグルコピラノースからなり、グルコピラノース重合度が2~20の範囲である(DIMS)。非還元末端側のアンカー糖鎖は、α1-4結合で連結したグルコピラノースであり、かつグルコピラノースの重合度が1~50の範囲(DIMS)及び1~100の範囲(N-SIMS)である。本発明によれば、水難溶性化合物の分子サイズに対する制限がなく、かつ水難溶性化合物と形成された複合体からの水難溶性化合物の解離が容易である、新たな可溶化能力を有する材料を提供することかできる。

Description

ダブル及びシングルアンカー型イソマルトメガロ糖、その製造方法及びその利用
 本発明は、ダブルアンカー型イソマルトメガロ糖(以下、DIMSと称する)、その製造方法及びその利用に関する。さらに本発明は、イソマルトメガロ糖鎖の非還元末端にアンカー糖鎖を有するシングルアンカー型イソマルトメガロ糖(以下、N-SIMSと称する)、その製造方法及びその利用に関する。
関連出願の相互参照
 本出願は、2015年12月21日出願の日本特願2015-248676号の優先権を主張し、その全記載は、ここに特に開示として援用される。
 低分子マルトオリゴ糖には難水溶性化合物の水への可溶化能はなく、また、鎖長の比較的長いマルトオリゴ糖には可溶化作用はあるが、非常に弱い。難水溶性化合物の可溶化に関する従来の技術として、「シクロデキストリン(環状オリゴ糖;マルトオリゴ糖が環状化した糖質でグルコース・サイズが6~8が代表例)」がある。但し、シクロデキストリン自体が難溶性で、また包接作用がサイズに依存するため、適用できるBCSクラス2化合物は限定され、さらに鎖長の異なるα、β、γ-シクロデキストリンを使い分ける必要性がある。
 直鎖のマルトオリゴ糖には、フラボノイドやイブプロフェンに対する可溶化能はほとんどない。また、環状マルトオリゴ糖の一種であるシクロデキストリンには、これら化合物に対する可溶化能はあるが、次に示す2つの課題がある。
(1)水難溶性化合物の分子サイズが限定的である。シクロデキストリンはその環状構造で水難溶性化合物を捉える(包接)。一方、環サイズは決まっているため、分子サイズが合致しない水難溶性化合物とは複合体を形成できない。(分子量が過大や過小な化合物とは複合体形成しない。)
(2)複合体の解離が困難である。難溶性化合物を包接した複合体は安定で、また消化酵素であるα-アミラーゼによる加水分解を受けにくい。そのため、腸内では対象化合物(フラボノイドなどのBCSクラス2化合物)は放出されにくく、生体利用性がかえって悪くなる場合がある。
 シングルアンカーイソマルトメガロ糖を用いた可溶化技術が知られている(非特許文献1及び2)。鎖長の比較的長いマルトオリゴ糖には可溶化作用がある。しかし、非常に弱いものである。
非特許文献1:Shinoki A, Lang W, Thawornkuno C, Kang HK, Kumagai Y, Okuyama M, Mori H, Kimura A, Ishizuka S, Hara H: A novel mechanism for promotion of quercetin glycoside absorption by megalo α-1,6-glucosaccharide in the rat small intestine. Food Chemistry 136(2):293-296, 2013. 
非特許文献2:Lang W, Kumagai Y, Sadahiro J, Maneesan J, Okuyama M, Mori H, Sakairi N, Kimura A: Different molecular complexity of linear isomaltomegalosaccharides and β-cyclodextrin for enhancing a solubility of azo ethyl red: towards the dye biodegradation. Bioresource Technology 169:518-524, 2014.
非特許文献1及び2の全記載は、ここに特に開示として援用される。
 鎖長の比較的長いイソマルトオリゴ糖には共存する物質を水に対して可溶化する作用があり、非特許文献1及び2に記載されているようにイソマルトメガロ糖鎖の非還元末端にアンカー糖鎖を付加したシングルアンカーイソマルトメガロ糖(R-SIMS)を用いた可溶化の提案がなされている。しかし、このシングルアンカーイソマルトメガロ糖は、いくつかの難水溶性化合物については可溶化能を示さず、その可溶化能は総じて非常に弱いものである。
 本発明は、シクロデキストリンのように、水難溶性化合物の分子サイズに対する制限がなく、かつ水難溶性化合物と形成された複合体からの水難溶性化合物の解離が容易である、新たな可溶化能力を有する材料を提供することを目的とする。さらに、本発明は、この可溶化能力を有する材料を用いた、水難溶性化合物の溶解促進剤及び水難溶性化合物の水溶液の調製方法、及び可溶化能力を有する材料を用いた、水難溶性化合物を含む水溶液含有組成物を提供することも目的とする。
 本発明は以下のとおりである。
[1]
イソマルトメガロ糖鎖の両末端にアンカー糖鎖をそれぞれ有するダブルアンカー型イソマルトメガロ糖(以下、DIMSと称する)であって、
前記イソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲であり、
前記イソマルトメガロ糖鎖の還元末端側の前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が2~20の範囲であり、
前記イソマルトメガロ糖鎖の非還元末端側の前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースであり、かつグルコピラノースの重合度が1~50の範囲である、DIMS。
[2]
前記イソマルトメガロ糖鎖及び2つのアンカー糖鎖のグルコピラノースの重合度の合計は、13~170の範囲である[1]に記載のDIMS。
[3]
[1]~[2]のいずれか1項に記載の少なくとも2種のDIMSの混合物であって、平均重合度が13~170の範囲である、前記混合物。
[4]
イソマルトメガロ糖鎖の非還元末端にアンカー糖鎖を有するシングルアンカー型イソマルトメガロ糖(以下、N-SIMSと称する)であって、
前記イソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲であり、かつ
前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースであり、かつグルコピラノースの重合度が1~100の範囲である、N-SIMS。
[5]
前記イソマルトメガロ糖鎖及びアンカー糖鎖のグルコピラノースの重合度の合計は、11~200の範囲である[4]に記載のN-SIMS。
[6]
[4]~[5]のいずれか1項に記載の少なくとも2種のN-SIMSの混合物であって、平均重合度が11~200の範囲である、前記混合物。
[7]
[1]~[2]のいずれか1項に記載の少なくとも1種のDIMS及び[4]~[5]のいずれか1項に記載の少なくとも1種のN-SIMSの混合物であって、平均重合度が11~200の範囲である、前記混合物。
[8]
[1]~[3]のいずれか1項に記載のDIMS又はその混合物の製造方法であって、
イソマルトメガロ糖鎖の還元末端にアンカー糖鎖を有するシングルアンカー型イソマルトメガロ糖(以下、R-SIMSと称する)と、糖供与体基質とを、糖質の転移活性を示す酵素による糖転移反応に供して、DIMS又はその混合物を得る、
但し、前記R-SIMSのイソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲であり、
前記R-SIMSの前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が2~20の範囲である、
ことを含む方法。
[9]
[4]~[6]のいずれか1項に記載のN-SIMS又はその混合物の製造方法であって、
イソマルトメガロ糖(以下、IMSと称する)と糖供与体基質とを、糖質の転移活性を示す酵素による糖転移反応に供して、N-SIMS又はその混合物を得る、
但し、前記IMSのイソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲である、
ことを含む方法。
[10]
[1]~[3]のいずれか1項に記載の少なくとも1種のDIMS及び[4]~[6]のいずれか1項に記載の少なくとも1種のN-SIMSの混合物の製造方法であって、R-SIMS及びIMSと、糖供与体基質とを、糖質の転移活性を示す酵素による糖転移反応に供して、DIMS及びN-SIMSの混合物を得る、
但し、前記R-SIMSのイソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲であり、
前記R-SIMSの前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が2~20の範囲であり、
前記IMSのイソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲である、
ことを含む方法。
[11]
前記糖供与体基質がシクロデキストリンであり、かつ前記糖質の転移活性を示す酵素が、シクロマルトデキストリングルカノトランスフェラーゼ(CGTaseと略称)である[8]~[10]のいずれか1項に記載の方法。
[12]
前記シクロデキストリンが、α-シクロデキストリン、β-シクロデキストリン、及びγ-シクロデキストリンから成る群から選ばれる1種または2種以上である、[11]に記載の製造方法。
[13]
前記供与体基質がオリゴ糖及び多糖から成る群から選ばれる少なくとも1種であり、
かつ前記糖質の転移活性を示す酵素が、α-グルコシダーゼ、D-酵素(不均一化酵素)、アミラーゼ及びアミロスクラーゼから成る群から選ばれる少なくとも1種の酵素及びCGTaseである[8]~[10]のいずれか1項に記載の方法。
[14]
水難溶性化合物の水溶液を製造する方法であって、
水難溶性化合物と(i)[1]~[3]のいずれか一項に記載のDIMS若しくはその混合物、(ii)[4]~[6]のいずれか一項に記載のN-SIMS若しくはその混合物、又は(iii)[1]~[3]のいずれか一項に記載の少なくとも1種のDIMS及び[4]~[6]のいずれか一項に記載の少なくとも1種のN-SIMSの混合物とを水又は水を含有する溶媒中で混合することを含む、前記方法。
[15]
前記水を含有する溶媒は、水及び少なくとも1種の有機溶媒から成る溶媒であり、前記有機溶媒は可食性有機溶媒である、[14]に記載の製造方法。
[16]
水難溶性化合物を、この化合物の融点以上に加熱すること、及び加熱溶解した水難溶性化合物を、(i)DIMS若しくはその混合物、(ii)N-SIMS若しくはその混合物、又は(iii)少なくとも1種のDIMS及び少なくとも1種のN-SIMSの混合物を含有する溶媒と混合すること、を含む[14]又は[15]に記載の製造方法。
[17]
水難溶性化合物が、BCSクラス2に分類される化合物である、[14]~[16]のいずれか一項に記載の製造方法。
[18]
水難溶性化合物、及び(i)[1]~[3]のいずれか一項に記載のDIMS若しくはその混合物、(ii)[4]~[6]のいずれか一項に記載のN-SIMS若しくはその混合物、又は(iii)[1]~[3]のいずれか一項に記載の少なくとも1種のDIMS及び[4]~[6]のいずれか一項に記載の少なくとも1種のN-SIMSの混合物を含む組成物。
[19]
可食性有機溶媒をさらに含む[18]に記載の組成物。
[20]
水難溶性化合物が薬効成分であり、前記組成物は有効量の前記水難溶性化合物を含有する医薬用組成物である[18]又は[19]に記載の組成物。
[21]
水難溶性化合物が飲食品用成分であり、前記組成物は飲食品用組成物又は飲食品用原料組成物である[18]又は[19]に記載の組成物。
[22]
[1]~[3]のいずれか一項に記載のDIMS若しくはその混合物、又は[4]~[6]のいずれか一項に記載のN-SIMS若しくはその混合物、[1]~[3]のいずれか一項に記載の少なくとも1種のDIMS及び[4]~[6]のいずれか一項に記載の少なくとも1種のN-SIMSの混合物を含有する、水難溶性化合物を水溶液化するための溶解促進剤。
[23]
水難溶性化合物が、BCSクラス2に分類される化合物である、[22]に記載の溶解促進剤。
 本発明によれば、ダブルアンカー型イソマルトメガロ糖(DIMS)による難溶性化合物の可溶化技術を提供することができる。この可溶化技術は、包接作用によるものではなく、α-1,6鎖による比較的緩い相互作用によるものである(若干のα-1,4鎖の寄与もある)と考えられる。また複合体形成を安定化しているアンカー構造は、比較的容易にα-アミラーゼにより分解・短鎖長化され、腸内で対象物質をより放出しやすくする性質を持っている。さらに本発明は、イソマルトメガロ糖鎖の還元末端にアンカー糖鎖を有するシングルアンカー型イソマルトメガロ糖(R-SIMS)による難溶性化合物の可溶化技術も提供することができる。
図1は、長鎖シングルアンカーを還元末端に有するR-SIMSのアノメリック プロトンのNMRシグナルを示す。
図2は、短鎖シングルアンカーを還元末端に有するR-SIMSのアノメリック プロトンのNMRシグナルを示す。
図3は、DIMS(合計平均重合度26)のアノメリック プロトンのNMRシグナルを示す。
図4は、DIMS(合計平均重合度62)のアノメリック プロトンのNMRシグナルを示す。
図5-1は、実施例2で得られた4種類のN-SIMSのNMRシグナルを示す。
図5-2は、実施例2で得られた4種類のN-SIMSのNMRシグナルを示す。
図5-3は、実施例2で得られた4種類のN-SIMSのNMRシグナルを示す。
図5-4は、実施例2で得られた4種類のN-SIMSのNMRシグナルを示す。
図6-1は、DIMSによるフラボノイド可溶化結果を示す。(より強く可溶化されるフラボノイド類) (Control: MQ水、Single+: 20 mM R-SIMS (DP=12)、Single-: 20 mM R-SIMS (DP=14)、Double: 20 mM SIMS (DP=17.6))
図6-2は、DIMSによるフラボノイド可溶化結果を示す。(より強く可溶化されるフラボノイド類) (Control: MQ水、Single+: 20 mM R-SIMS (DP=12)、Single-: 20 mM R-SIMS (DP=14)、Double: 20 mM SIMS (DP=17.6))
図6-3は、DIMSによるフラボノイド可溶化結果を示す。(より強く可溶化されるフラボノイド類) (Control: MQ水、Single+: 20 mM R-SIMS (DP=12)、Single-: 20 mM R-SIMS (DP=14)、Double: 20 mM SIMS (DP=17.6))
図6-4は、DIMSによるフラボノイド可溶化結果を示す。(より強く可溶化されるフラボノイド類) (Control: MQ水、Single+: 20 mM R-SIMS (DP=12)、Single-: 20 mM R-SIMS (DP=14)、Double: 20 mM SIMS (DP=17.6))
図6-5は、DIMSによるフラボノイド可溶化結果を示す。(より強く可溶化されるフラボノイド類) (Control: MQ水、Single+: 20 mM R-SIMS (DP=12)、Single-: 20 mM R-SIMS (DP=14)、Double: 20 mM SIMS (DP=17.6))
図6-6は、DIMSによるフラボノイド可溶化結果を示す。(より強く可溶化されるフラボノイド類) (Control: MQ水、Single+: 20 mM R-SIMS (DP=12)、Single-: 20 mM R-SIMS (DP=14)、Double: 20 mM SIMS (DP=17.6))
図7-1は、DIMSによるフラボノイド可溶化結果を示す。(ダブルアンカー型のみで可溶化されるフラボノイド類)(Control: MQ水、Single+: R-SIMS (DP=12)、Single-: 20 mM R-SIMS (DP=14)、Double: 20 mM SIMS (DP=17.6))
図7-2は、DIMSによるフラボノイド可溶化結果を示す。(ダブルアンカー型のみで可溶化されるフラボノイド類)(Control: MQ水、Single+: R-SIMS (DP=12)、Single-: 20 mM R-SIMS (DP=14)、Double: 20 mM SIMS (DP=17.6))
図8は、DIMS等各種メガロ糖(5.0 mM)によるイブプロフェンの相対溶解度を示す。
図9は、4種類のN-SIMS(1~10 mM)によるイブプロフェンの相対溶解度(水を対照)を示す。黄四角, N-SIMS(25-7); 黒丸, N-SIMS(24-19); 赤三角, N-SIMS(24-32); 白逆三角, N-SIMS(22-53)。N-SIMSの構造をN-SIMS(X-Y)で表示したが、Xはイソマルトメガロ糖鎖の平均重合度を、Yは非還元末端アンカー糖鎖の平均重合度を表す。
<ダブルアンカー型イソマルトメガロ糖(DIMS)>
 本発明は、イソマルトメガロ糖鎖の両末端にアンカー糖鎖をそれぞれ有するDIMSに関する。このDIMSにおける前記イソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲である。このグルコピラノースの重合度の下限は、例えば、10、15、20、25、30、35、40、45又は50であることができる。このグルコピラノースの重合度の上限は、例えば、100、95、90、85、80、75、70、65、60又は55であることができる。
 DIMSにおける前記イソマルトメガロ糖鎖の還元末端側の前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が2~20の範囲である。このグルコピラノースの重合度の下限は、例えば、2、3、4、5、6、7、8、9又は10であることができる。このグルコピラノースの重合度の上限は、例えば、20、19、18、17、16、15、14、13、12又は11であることができる。
 DIMSにおける前記イソマルトメガロ糖鎖の非還元末端側の前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースであり、かつグルコピラノースの重合度が1~50の範囲である。このグルコピラノースの重合度の下限は、例えば、1、2、3、4、5、6、7、8、9、10、15、20又は25であることができる。このグルコピラノースの重合度の上限は、例えば、50、49、48、47、46、45、44、43、42、41、40、35、又は30であることができる。
 本発明のDIMSにおけるイソマルトメガロ糖鎖及び2つのアンカー糖鎖のグルコピラノースの重合度の合計は、13~170の範囲であることができる。この重合度の合計の下限は、例えば、13、15、20、25、30、35、40、45、50、55、60、65、又は70であることができる。この重合度の合計の上限は、例えば、170、165、160、155、150、145、140、135、130、125、120、115、110、105、100、95、90、85、80、又は75であることができる。
 本発明のDIMSは、1種類の化合物であることもできるが、2種以上のDIMSの混合物であることもできる。混合物に含まれるDIMSは、イソマルトメガロ糖鎖及び2つのアンカー糖鎖のいずれか1つ又は2つが共通で,残りの糖鎖が異なる場合と、イソマルトメガロ糖鎖及び2つのアンカー糖鎖の全てが異なる場合があり得る。
 DIMSが2種以上のDIMSの混合物である場合、混合物の平均重合度は、例えば、13~170の範囲であることができる。
 この混合物の平均重合度の下限は、例えば、13、15、20、25、30、35、40、45、50、55、60、65又は70であることができる。この混合物の平均重合度の上限は、例えば、170、165、160、155、150、145、140、135、130、125、120、115、110、105、100、95、90、85、80、又は75であることができる。
<シングルアンカー型イソマルトメガロ糖(N-SIMS)>
 本発明は、イソマルトメガロ糖鎖の非還元末端にアンカー糖鎖を有するN-SIMSも包含する。N-SIMSの前記イソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲である。このα1-6結合で連結したグルコピラノースの重合度は、DIMSの場合と同様であることができる。前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースであり、かつグルコピラノースの重合度が1~100の範囲である。α1-4結合で連結したグルコピラノースの重合度下限は、例えば、1、2、3、4、5、6、7、8、9、10、15、20又は25であることができる。このグルコピラノースの重合度の上限は、例えば、100、95、90、85、80、75、70、65、60、55、50、45、40、35、又は30であることができる。N-SIMSの前記イソマルトメガロ糖鎖及びアンカー糖鎖のグルコピラノースの重合度の合計は、例えば、11~200の範囲であることができる。
 本発明のN-SIMSは、1種類の化合物であることもできるが、2種以上のN-SIMSの混合物であることもできる。混合物に含まれるN-SIMSイソマルトメガロ糖鎖及びアンカー糖鎖のいずれか一方の糖鎖が異なる場合と、イソマルトメガロ糖鎖及びアンカー糖鎖の両方が異なる場合があり得る。
 N-SIMSが2種以上のN-SIMSの混合物である場合、N-SIMSの混合物の平均重合度は、例えば、11~200の範囲であることができる。
<DIMSとN-SIMSの混合物>
 本発明は、DIMSとN-SIMSの混合物も包含する。DIMS及びN-SIMSは、それぞれ単独の化合物であっても、それぞれ混合物であっても良い。DIMSとN-SIMSの混合物の平均重合度は、例えば、11~200の範囲であることができる。
<製造方法>
 本発明は、上記本発明のDIMS又はその混合物の製造方法を包含する。この製造方法は、イソマルトメガロ糖鎖の還元末端にアンカー糖鎖を有するR-SIMSと、糖供与体基質とを、糖質の転移活性を示す酵素(糖質転移酵素)による糖転移反応に供して、R-SIMSの非還元末端にアンカー糖鎖を付加したDIMS又はその混合物を得る、ことを含む。
 さらに本発明は、上記本発明のN-SIMS又はその混合物の製造方法を包含する。この製造方法は、イソマルトメガロ糖(IMS)と糖供与体基質とを、糖質転移酵素による糖転移反応に供して、IMSの非還元末端にアンカー糖鎖を付加したN-SIMS又はその混合物を得る、ことを含む。
 さらに本発明は、上記本発明のDIMS及びN-SIMSの混合物の製造方法であって、R-SIMS及びIMSと、糖供与体基質とを、糖質の転移活性を示す酵素による糖転移反応に供して、DIMS及びN-SIMSの混合物を得る、ことを含む。
 以下にDIMS及びN-SIMSの製造方法を例に、反応スキームで示す。
Figure JPOXMLDOC01-appb-C000001
 黒丸はα1-6結合で連結するグルコピラノース残基を示す。
 白丸はα1-4結合で連結するグルコピラノース残基を示す。
 斜線を付した白丸及び黒丸は還元末端のグルコピラノース残基を示す。
 生産はCGTaseなどの糖転移活性を有する酵素によってなされる。
 DIMS又はその混合物の製造方法における一方の原料は、R-SIMSである。前記のR-SIMSを構成するイソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲である。R-SIMSを構成するイソマルトメガロ糖鎖の還元末端側のアンカー糖鎖は、α1-4結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が2~20の範囲である。これらイソマルトメガロ糖鎖及びアンカー糖鎖は、DIMSにおいて説明したものと同義である。原料として用いるR-SIMSは、例えば、非特許文献1及び2に記載の化合物であることができる。
 N-SIMS又はその混合物の製造方法における一方の原料はIMSであり、IMSのイソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲である。IMSのイソマルトメガロ糖鎖は、N-SIMSにおいてN-SIMSのイソマルトメガロ糖鎖として説明したものと同義である。
 DIMS及びN-SIMSの混合物の製造方法における一方の原料は、R-SIMS及びIMSであり、いずれも、上記DIMSの製造方法、及びN-SIMSの製造方法で説明したものと同様である。
 他方の原料は、糖供与体基質である。糖供与体基質は、例えば、シクロデキストリンである。シクロデキストリンは、α-シクロデキストリン、β-シクロデキストリン、及びγ-シクロデキストリンから成る群から選ばれる1種のシクロデキストリン、または2種以上のシクロデキストリンの混合物であることができる。シクロデキストリンは、いずれかのシクロデキストリンを単独で使用することもできるが、2種以上のシクロデキストリンの混合物を用いることもできる。使用するシクロデキストリンの種類を選択することで、非還元末端に付加されるアンカー糖鎖の重合度を制御することができる。また、2種以上のシクロデキストリンの混合物を用いる場合も同様であり、混合物中のシクロデキストリンの種類や混合割合などで非還元末端に付加されるアンカー糖鎖の重合度を制御することができる。
 糖質転移酵素は、糖供与体基質がシクロデキストリンの場合、例えば、シクロマルトデキストリングルカノトランスフェラーゼ(CGTase)であることができる。CGTaseは、シクロデキストリンを基質として、R-SIMS又はIMSの非還元末端に、シクロデキストリンが開環した糖鎖をアンカー糖鎖として付加することができ、DIMS又はその混合物、N-SIMA又はその混合物をそれぞれ生成させることができる。シクロデキストリンが開環した糖鎖は、少なくとも1つ付加することで、DIMS又はその混合物、N-SIMA又はその混合物を生成させることができる。シクロデキストリンが開環した糖鎖は、既に非還元末端にアンカー糖鎖が付加した、DIMS又はN-SIMAの非還元末端に、さらに付加することもできる。シクロデキストリンが開環した糖鎖の多重の付加の程度により、非還元末端のアンカー糖鎖の重合度は、変化する。また、原料として使用するシクロデキストリンの種類によっても、非還元末端のアンカー糖鎖の重合度は、変化する。シクロデキストリンが複数のシクロデキストリンの混合物である場合には、シクロデキストリンの種類により決まる重合度とシクロデキストリンが開環した糖鎖の多重の付加の程度により決まる重合度の2つの重合度により決まる。
 CGTaseを用いる場合は、CGTaseの至適pH及び至適温度を考慮して、例えば、pH5~6を含む安定域の範囲、温度30~60℃の範囲、好ましくは40~60℃で、R-SIMSに対するシクロデキストリンのモル比を例えば1~10倍(例として、R-SIMSを0.01~0.1mol/L)を含有する水溶液中で1~12時間、好ましくは1~6時間反応させることで実施できる。
 R-SIMSに対してモル比で1~10倍のシクロデキストリン(例えば、R-SIMSを0.01~0.1mol/L)を含有する水溶液中で1~12時間、好ましくは1~6時間経過させることで実施できる。
 シクロデキストリン以外の糖供与体基質の例としては、オリゴ糖(例えば、スクロース又はマルトオリゴ糖)又は多糖(例えば、澱粉)などを用いることができる。糖供与体基質として、オリゴ糖(例えば、スクロース又はマルトオリゴ糖)又は多糖(例えば、澱粉)などを用いる場合には、糖質転移酵素としては、α-グルコシダーゼ、D-酵素(不均一化酵素)、アミラーゼ及びアミロスクラーゼから成る群から選ばれる少なくとも1種の酵素及びCGTaseを用いることができる。これらの場合の反応も、用いる糖供与体基質の種類と、糖質転移酵素の種類を考慮して適宜決定することができる。
<水難溶性化合物の水溶液製造方法>
 本発明は、水難溶性化合物の水溶液を製造する方法を包含する。この方法は、水難溶性化合物と本発明の(i)DIMS若しくはその混合物、(ii)N-SIMS若しくはその混合物、又は(iii)少なくとも1種のDIMS及び少なくとも1種のN-SIMSの混合物、とを水又は水を含有する溶媒中で混合することを含む。上記(i)~(iii)のアンカー型イソマルトメガロ糖類を以下A-IMS類と称する。
 水難溶性化合物は、水や水を含有する溶媒(例えば、緩衝液や細胞培養液等)に対する溶解性が低い化合物であれば制限はない。水難溶性化合物は、例えば、BCSクラス2に分類される化合物であることができる。BCSとは、Biopharmaceutics Classification Systemの略語であり、医薬品の有効成分と成り得る化合物の溶解性と膜透過性のそれぞれの高低に応じてクラス分けを行い、各クラスに対応した化合物の生体吸収特性を整理する方法である。BCSクラス2は、低い溶解性と高い膜透過性を有する化合物が分類されるクラスである。化合物の溶解性に関しては、DMSO析出法及びShake flask法による評価が知られている。化合物の膜透過性に関しては、人工膜を用いた方法や培養細胞を用いた透過性評価が知られている。本発明において、溶解の対象とする水難溶性化合物がBCSクラス2に属するか否かを判断するための評価方法は、特に制限はない。また、BCSクラス2に分類されない化合物であっても、水に対する溶解性の低い化合物は、本発明においては、水難溶性化合物として本発明のA-IMS類を用いる水溶液の製造に用いることができる。
 使用する本発明のA-IMS類は、水難溶性化合物の種類に応じて適宜決定することができる。使用するA-IMS類を決定するに当たっては、事前に、水溶液化したい水難溶性化合物に対する、本発明のA-IMS類の可溶化能力を試験することもできる。例えば、DIMSの水難溶性化合物に対する可溶化能力は、イソマルトメガロ糖鎖の重合度、2つのアンカー糖鎖のそれぞれの重合度により変化する。また、DIMSの混合物を用いる場合には、混合物に含まれるDIMSの種類(イソマルトメガロ糖鎖の重合度、2つのアンカー糖鎖のそれぞれの重合度により変化)及び含まれるDIMSの組成比により、水難溶性化合物に対する可溶化能力は変化し得る。N-SIMSの水難溶性化合物に対する可溶化能力は、イソマルトメガロ糖鎖の重合度、アンカー糖鎖の重合度により変化する。また、N-SIMSの混合物を用いる場合には、混合物に含まれるN-SIMSの種類(イソマルトメガロ糖鎖の重合度、アンカー糖鎖の重合度により変化)及び含まれるN-SIMSの組成比により、水難溶性化合物に対する可溶化能力は変化し得る。DIMS及びN-SIMSの混合物については、DIMS及びN-SIMSの種類や組成比等により水難溶性化合物に対する可溶化能力は変化し得る。
 例えば、水難溶性化合物であるケルセチン配糖体と、DIMSの還元末端及び非還元末端のアンカー糖鎖の重合度の違いによる溶解性の変化を以下の表に示す。具体的な実験方法及び条件は実施例4に示す。下記の表は、還元末端のアンカー糖鎖の重合度を一定で、非還元末端のアンカー糖鎖の重合度を変化させると、非還元末端のアンカー糖鎖の重合度が大きくなることで、ケルセチン配糖体(表ではQ3G)の溶解性が増すことが分かる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-C000003
 水を含有する溶媒は、水及び少なくとも1種の物質を含有する溶媒であり、前記物質の種類や濃度等には特に制限はない。例えば、無機塩、有機酸塩、あるいは緩衝剤、さらには有機溶媒から成る溶媒等も挙げることができる。また、前記有機溶媒は可食性有機溶媒であることができる。可食性有機溶媒は、例えば、エタノール、酢酸、乳酸等であることができる。
 本発明の方法は、水難溶性化合物を、この化合物の融点以上に加熱すること、及び加熱溶解した水難溶性化合物を、A-IMS類を含有する溶媒と混合すること、を含むことができる。加熱溶解した水難溶性化合物を、A-IMS類を含有する溶媒と混合することで、水難溶性化合物の溶解を促進することができる。但し、加熱溶解した水難溶性化合物を用いるか否かは化合物の種類に応じて適宜選択できる。全ての操作を常温で実施することもできる。
<溶解促進剤>
 本発明は、前記本発明のA-IMS類を含有する、水難溶性化合物を水溶液化するための溶解促進剤を包含する。A-IMS類は前述のとおりである。水難溶性化合物は、例えば、BCSクラス2に分類される化合物であるが、それに限定される意図ではない。本発明の溶解促進剤は、例えば、上記本発明の水難溶性化合物の水溶液の製造方法で説明した方法で使用できる。
<組成物>
 本発明は、水難溶性化合物、及び本発明のA-IMS類を含む組成物を包含する。水難溶性化合物は、上記製造方法での説明と同義であり、本発明のA-IMS類は、前述の本発明のA-IMS類の説明と同義である。
 本発明の組成物は、溶媒をさらに含むことができる。溶媒は、例えば、水又は水及び少なくとも1種の物質を含有する溶媒であることができ、前記本発明の水難溶性化合物の水溶液の製造方法で説明した、水及び少なくとも1種の物質を含有する溶媒と同義である。溶媒の種類及び使用量は、本発明の組成物の使用目的に応じて適宜選択することができる。
 本発明の組成物は、水難溶性化合物が薬効成分であり、前記組成物は有効量の前記水難溶性化合物を含有する医薬用組成物であることができる。
 本発明の組成物は、水難溶性化合物が飲食品用成分であり、前記組成物は飲食品用組成物又は飲食品用原料組成物であることができる。
 本発明の組成物における、本発明のA-IMS類の種類及び濃度、水難溶性化合物の種類及び濃度は、本発明の組成物の使用目的に応じて適宜選択することができる。
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。
実施例1
ダブルアンカー型イソマルトメガロ糖(DIMS)の合成
 最初にシングルアンカー体を調製し、それにα-1,4グルコース鎖を付加させることでダブルアンカー体を作製した。まず、シングルアンカー体の調製について述べるが、その生産をGluconobacter oxydans ATCC 11894が産するデキストリンデキストラナーゼ(DDaseと略称; EC 2.4.1.2)を用いて行った。
(1)菌体からのDDase:
 本菌を5%フラクトースと0.5%酵母エキスからなる培地(pH 5.95;合計1 L)中で30℃、2日間震盪培養した(600 nmの吸収から求めた濁度は約2)。菌体を遠心分離(11,300 xg、4℃、20分間)で回収し、50 mLの25 mM酢酸ナトリウム緩衝液(pH 4.2)で洗浄した。菌体に結合したDDaseの遊離を1% マルトトリオース(日本食品化工(株)、東京)による処理で行い [50 mLの25 mM 酢酸ナトリウム緩衝液(pH 4.2);30℃;3時間で200 rpmの撹拌]、遠心分離(11,300 xg、4℃、20分間)でDDaseを回収した。
(2)還元末端のアンカー部分が長いシングルアンカー体:
Figure JPOXMLDOC01-appb-C000004
 次にアンカー部分が長いシングルアンカー体(Single-と表記)の調製方法を説明する。前項で得られた酵素液 [50 mL;25 mM 酢酸ナトリウム緩衝液(pH 4.2)] を当該シングルアンカー体の調製に用いた。反応液の組成は、200 mM マルトヘキサオースとマルトへプタオースからなる糖質 [G6/G7と略称;日本食品化工(株)、東京]、25 mM酢酸ナトリウム緩衝液(pH 4.2)およびDDase(1.5 U/mL;酵素単位Uの定義は下記の*を参照)であり、45℃で4~5日間の撹拌反応(100 rpm)で行った。100℃で20分間の加熱処理で反応を停止させ、加熱変性した酵素蛋白を遠心分離(5,800 xg、4℃、20分間)で除いた。
 *酵素活性(1 U)は、DDaseが15 mMマルトテトラオースに作用し [25 mM酢酸ナトリウム緩衝液(pH 4.2);35℃;80μLの反応液]、その不均一化反応で1分間に1μmol のマルトトリオースを遊離させる酵素量とした。
 反応液にメタノールを加え終濃度40%とし、副生成する多糖のデキストランを4℃で30分間の静置と遠心分離(13,000 xg、4℃、10分間)で除いた。上清にメタノールの追加で終濃度を90%とし、シングルアンカー体を沈殿回収した。すなわち、4℃で30分間の静置沈殿の後に遠心分離(13,000 xg、4℃、10分間)を行った。得られた沈殿に対し「少量の水による可溶化/90%メタノール添加/静置沈殿/遠心分離」を3回以上繰り返した。その後、さらに4℃に冷却した90%メタノールで沈殿を1回洗浄した。(90%メタノール分画の目的は、オリゴ糖や単糖の除去である)以上のアルコール分画で単離したアンカー部分が長いシングルアンカー体を濃縮し、イオン交換樹脂(Amberlite MB-4;オルガノ(株)、東京)に供することで塩を除き、凍結乾燥した(粉末標品の調製)。
 得られたアンカー部分が長いシングルアンカー体(Single-)の構造式は前記の通りである。アノメリック プロトンのNMRシグナルを図1に示す。図中、H1(→4)、H1(→6)、H1αおよびH1βは、α1-4およびα1-6結合したグルコース残基と還元末端グルコースのα-アノマーとβ-アノマーのアノメリック プロトンをそれぞれ示す。試料は、α1-6結合部分の平均重合度が11の長鎖シングルアンカー体である。
(3)還元末端のアンカー部分が短いシングルアンカー体:
Figure JPOXMLDOC01-appb-C000005
 次に、アンカー部分が短いシングルアンカー体(Single+と表記)の調製を述べる。製法は「アンカー部分が長いシングルアンカー体にα-アミラーゼを作用させ、アンカー部分の切断」により作製した。反応液の組成は、25%アンカー部分が長いシングルアンカー体、50 mM マレイン酸ナトリウム緩衝液(pH 6.9)、0.5%ブタ膵臓α-アミラーゼ(タイプI-A;Sigma-Aldrich Chemie Gmbh., Steinheim, Germany)、0.01% CaCl2であり、37℃で一晩の反応を行った。α-アミラーゼは100℃で10分間の加熱処理で失活させ、遠心分離(5,800 xg、4℃、20分間)で除いた。目的のアンカー部分が短いシングルアンカー体の精製(切断したアンカー部分との分離)は、前項で述べた90%メタノール分画の手法で行った。本糖の粉末標品は、凍結乾燥により調製した。
 得られたアンカー部分が短いシングルアンカー体(Single+)の構造式は前記の通りである。アノメリック プロトンのNMRシグナルを図2に示す。H1(→4)、H1(→6)、H1αおよびH1βは、α1-4およびα1-6結合したグルコース残基と還元末端グルコースのα-アノマーとβ-アノマーのアノメリック プロトンをそれぞれ示す。 試料は、α1-6結合部分の平均重合度が11の短鎖シングルアンカー体である。
(4)ダブルアンカー体:
 ダブルアンカー体は、アンカー部分が短鎖あるいは長鎖のシングルアンカー体にCGTase(天野エンザイム、名古屋)が触媒する糖転移反応を用いて作製した。
Figure JPOXMLDOC01-appb-C000006
 黒丸はα1-6結合で連結するグルコピラノース残基を示す。
 白丸はα1-4結合で連結するグルコピラノース残基を示す。
 斜線を付した白丸は還元末端のグルコピラノース残基を示す。
 反応液の組成は、200 mM α-シクロデキストリン(αCDと略称;和光純薬工業(株)、大阪)、40 mMアンカー部分が短鎖あるいは長鎖のシングルアンカー体、50 mM酢酸ナトリウム緩衝液(pH 5.5)および1.74 U/mLのCGTaseであり、55℃で1時間あるいは4時間の反応を行った。100℃で20分間の加熱で反応停止させた。未反応のシングルアンカー体はデキストラングルコシダーゼ [α-1,6グルコシド結合のみを切断するエキソ型酵素;0.5 U/mL;50 mM酢酸ナトリウム緩衝液(pH 5.3);37℃;一晩]の処理で分解させ、上記と同様の加熱処理で反応を停止した。αCD・オリゴ糖・単糖の除去をゲル濾過法および分画分子量サイズ8,000のセルロース膜(Spectrum Laboratories, Inc., Rancho Dominguez, CA, USA)を用いた透析(純水に対し)により行った。凍結乾燥により粉末標品を得た。なお、CGTaseの1時間反応でゲル濾過法分離のダブルアンカー体(合計平均重合度26)はフラボノイド可溶化実験に用い、CGTase 4時間反応でセルロース膜分画のダブルアンカー体(合計平均重合度62)はイブプロフェン可溶化実験に使用した。
 得られたダブルアンカー体(合計平均重合度26:フラボノイド可溶化実験に使用)の構造式は以下の通りである。アノメリック プロトンのNMRシグナルを図3に示す。H1(→4)、H1(→6)、H1αおよびH1βは、α1-4およびα1-6 結合したグルコース残基と還元末端グルコースのα-アノマーとβ-アノマーのアノメリック プロトンをそれぞれ示す。
Figure JPOXMLDOC01-appb-C000007
 得られたダブルアンカー体(合計平均重合度62:イブプロフェン可溶化実験に使用)の構造式は以下の通りである。アノメリック プロトンのNMRシグナルを図4に示す。H1(→4)、H1(→6)、H1αおよびH1βは、α1-4およびα1-6 結合したグルコース残基と還元末端グルコースのα-アノマーとβ-アノマーのアノメリック プロトンをそれぞれ示す。
Figure JPOXMLDOC01-appb-C000008
実施例2
(1)非還元末端シングルアンカー型イソマルトメガロ糖(N-SIMS)の製造方法
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 黒丸はα1-6結合で連結するグルコピラノース残基を、
 白丸はα1-4結合で連結するグルコピラノース残基を、
 斜線を付した黒丸は還元末端のグルコピラノース残基を示す。(以下同様)
 反応液の組成は、100 mM α-シクロデキストリン(αCD; 和光純薬工業(株)、大阪)、20 mMイソマルトメガロ糖(平均重合度7、19および32(Pharmacosmos, Holbaek, Denmark)あるいは平均重合度53(Amersham Biosciences AB, Uppsala, Sweden))、50 mM酢酸ナトリウム緩衝液(pH 6.0)および1.74 U/mLのCGTaseであり、20℃で3時間の反応を行った。100℃で20分間の加熱で反応停止させた。未反応のイソマルトメガロ糖はデキストラングルコシダーゼ(α-1,6グルコシド結合のみを切断するエキソ型酵素; 6.25 U/mL; 50 mM酢酸ナトリウム緩衝液(pH 5.3); 37℃; 一晩)の処理で分解させ、100℃で10分間の加熱処理で反応を停止した。熱変性した酵素蛋白質を遠心分離(12,000 x g, 4℃で20分)で除いた。N-SIMSからのαCD・オリゴ糖・単糖の分離を90%エタノール分画(2回)および透析(分画分子量サイズ2,000のセルロース膜(Spectrum Laboratories, Inc., Rancho Dominguez, CA, USA))により行った。イオン交換樹脂処理(MB4; オルガノ、東京)で塩を除き、凍結乾燥により粉末標品を得た。
(2)構造解析
 CGTaseの受容体基質に使用した4種類のイソマルトメガロ糖(平均重合度7、19、32および53)をNMR分析に供すると、α1-6結合のみが存在した。一方、N-SIMSには22~25残基のα1-4グルコシド糖鎖が見出され、β-アミラーゼの消化実験も本糖鎖が非還元末端に位置することを支持した。得られた4種類のN-SIMSのNMRシグナルを示す(図5-1~図5-4)。なお、平均重合度7、19、32および53のイソマルトメガロ糖から得られたN-SIMSの非還元末端アンカー重合度(平均値)はそれぞれ25、24、24および22であった。各々をN-SIMS(25-7)、N-SIMS(24-19)、N-SIMS(24-32)およびN-SIMS(22-53)と称する。
Figure JPOXMLDOC01-appb-C000011
 図5-1中、H1(→4)、H1(→6)、H1αおよびH1βは、α1-4およびα1-6結合したグルコース残基と還元末端グルコースのα-アノマーとβ-アノマーのアノメリック プロトンをそれぞれ示す。 試料は、α1-6結合部分の平均重合度7および非還元末端α1-4結合部分の平均重合度25のシングルアンカー体である。
Figure JPOXMLDOC01-appb-C000012
 図5-2中、H1(→4)、H1(→6)、H1αおよびH1βは、α1-4およびα1-6結合したグルコース残基と還元末端グルコースのα-アノマーとβ-アノマーのアノメリック プロトンをそれぞれ示す。試料は、α1-6結合部分の平均重合度19および非還元末端α1-4結合部分の平均重合度24のシングルアンカー体である。
Figure JPOXMLDOC01-appb-C000013
 図5-3中、H1(→4)、H1(→6)、H1αおよびH1βは、α1-4およびα1-6結合したグルコース残基と還元末端グルコースのα-アノマーとβ-アノマーのアノメリック プロトンをそれぞれ示す。 試料は、α1-6結合部分の平均重合度32および非還元末端α1-4結合部分の平均重合度24のシングルアンカー体である。
Figure JPOXMLDOC01-appb-C000014
 図5-4中、H1(→4)、H1(→6)、H1αおよびH1βは、α1-4およびα1-6結合したグルコース残基と還元末端グルコースのα-アノマーとβ-アノマーのアノメリック プロトンをそれぞれ示す。試料は、α1-6結合部分の平均重合度53および非還元末端α1-4結合部分の平均重合度22のシングルアンカー体である。
実施例3
フラボノイド可溶化試験法
(1) 終濃度0, 5, 10, 20 mMのアンカー型メガロ糖(実施例1で調製)を100μLずつ分注
(2) フラボノイドは終濃度が1, 5, 10 mMとなるよう、MQ水を添加、
  超音波洗浄機で5 min、超音波破砕で30 sec処理して懸濁
(3) メガロ糖100μLが入ったチューブに添加
(4) 37℃ 30 min incubation
(5) 遠心分離(20℃, 5 min, 9300 g), 上清回収
(6) 50% MeOHで希釈し、LC-MSで測定
ダブルアンカー型メガロ糖(実施例1で調製)
DP=12 (非還元側のα-1,4結合); DP=11 (α-1,6結合); DP=3 (還元側のα-1,4結合)。ゲル濾過法による単離、CGTase反応時間は1 hr。
シングルアンカー型メガロ糖(Sngle+):DP=11 (α-1,6結合); DP=3 (還元側のα-1,4結合)。
可溶化を検討したフラボノイド 15種類
イソフラボン:Genistein-7-glucoside (Genistin)
                Daidzein-7-glucoside (Daidzin)
                Genistein*
                Daidzein*
フラボン:      Apigenin-7-glucoside
                Luteolin-7-glucoside
フラボノール:Quercetin*
                Quercetin-3-glucoside (Isoquercitrin)
                Quercetin-4'-glucoside
                Kaempferol-3-glucoside
                Myricetin 3-rhamnoside (Myricitrin) 
フラバノン:    Naringenin-7-rhamnoglucoside (Naringin)
                Hesperetin*
                Hesperetin-7-rhamnoglucoside (Hesperidin)
スチルベン: Resveratrol*
* aglycone
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 ダブルアンカー型直鎖イソマルトメガロ糖によるフラボノイド可溶化結果を図6-1~6-6、並びに図7-1及び7-2に示す。図6-1~6-6は、ダブルアンカー型直鎖イソマルトメガロ糖により、シングルアンカー型直鎖イソマルトメガロ糖に比べて、より強く可溶化されるフラボノイド類の例である。図7-1及び7-2は、ダブルアンカー型のみで可溶化されるフラボノイド類の例を示す。
実施例4
イブプロフェン可溶化実験
(1) シングルアンカー体R-SIMA及びダブルアンカー体DIMS
 シングルアンカー体R-SIMA(5.0 mM)やダブルアンカー体DIMS(5.0 mM)を含む水溶液を100℃で10分間予備加熱し、0.1 mLを過剰量の粉末イブプロフェン(1 mg;ナトリウム塩;融点は77℃;ナカライテスク(株)、京都)に加えた。その後、80℃で1時間保持し、4℃に冷却した。12,000 xg(4℃、10分間)の遠心分離を行い、難溶性のイブプロフェンを沈殿除去した。上清を回収し、イブプロフェンの溶解量を264 nmの吸収から求めた(吸光度測定における希釈は50 mM炭酸ナトリウム緩衝液 (pH 11)を用いて行った)。
ダブルアンカー体: DP=42 (非還元側のα-1,4結合); DP=17 (α-1,6結合); DP=3 (還元側のα-1,4結合)。膜分離(分子量分画8,000)による単離、CGTase反応時間は4 hr。
シングルアンカー型メガロ糖(Sngle+):DP=17 (α-1,6結合); DP=3 (還元側のα-1,4結合)。
 イブプロフェンの相溶解度の測定法を以下のスキームに示す。
 各種メガロ糖(5.0 mM)によるイブプロフェンの相対溶解度を図8に示す。水のみに対するイブプロフェンの溶解度は0.82 mMである(コントロール値で、縦軸の1.0に相当)
Figure JPOXMLDOC01-appb-C000018
(2) シングルアンカー体N-SIMA
 イブプロフェン可溶化実験の方法は、(1)と同じである。但し、4種類のN-SIMS をそれぞれ1~10mMの範囲の濃度とした。可溶化結果を図9に示す。N-SIMS(32-24)が最も高い水溶化能を示し、その他はほぼ同じ値であった。
 イブプロフェン可溶化実験(1)及び(2)の結果(イブプロフェン相対溶解度、メガロ糖:5.0 mM)のまとめを以下の表に示す。
Figure JPOXMLDOC01-appb-T000019
 イブプロフェン相対溶解度はDIMSが最も高く、次にN-SIMSであった。その相対溶解度はR-SIMS(表中Single-及びSingle+)を上回り、N-SIMSで3~3.5倍及びDIMSで6~7倍であった。
実施例6
 実施例3と同様に、25mMアンカー型イソマルトメガロ糖(下記)と終濃度が10mM相当になるケルセチン配糖体を用いて、HPLC(UV吸収)で遠心上清中のケルセチン配糖体濃度を測定することでケルセチン配糖体の水可溶化を試験した。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-C000020
 水難溶性化合物であるケルセチン配糖体と、DIMSの還元末端及び非還元末端のアンカー糖鎖の重合度の違いによる溶解性の変化の結果を以下の表に示す。下記の表から、還元末端のアンカー糖鎖の重合度を一定で、非還元末端のアンカー糖鎖の重合度が大きくなることで、ケルセチン配糖体の溶解性が増すことが分かる。
Figure JPOXMLDOC01-appb-T000021
 本発明は、飲食品用成分や医薬品等の難溶解性化合物の溶解促進を必要とする分野に有用である。

Claims (23)

  1. イソマルトメガロ糖鎖の両末端にアンカー糖鎖をそれぞれ有するダブルアンカー型イソマルトメガロ糖(以下、DIMSと称する)であって、
    前記イソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲であり、
    前記イソマルトメガロ糖鎖の還元末端側の前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が2~20の範囲であり、
    前記イソマルトメガロ糖鎖の非還元末端側の前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースであり、かつグルコピラノースの重合度が1~50の範囲である、DIMS。
  2. 前記イソマルトメガロ糖鎖及び2つのアンカー糖鎖のグルコピラノースの重合度の合計は、13~170の範囲である請求項1に記載のDIMS。
  3. 請求項1~2のいずれか1項に記載の少なくとも2種のDIMSの混合物であって、平均重合度が13~170の範囲である、前記混合物。
  4. イソマルトメガロ糖鎖の非還元末端にアンカー糖鎖を有するシングルアンカー型イソマルトメガロ糖(以下、N-SIMSと称する)であって、
    前記イソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲であり、かつ
    前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースであり、かつグルコピラノースの重合度が1~100の範囲である、N-SIMS。
  5. 前記イソマルトメガロ糖鎖及びアンカー糖鎖のグルコピラノースの重合度の合計は、11~200の範囲である請求項4に記載のN-SIMS。
  6. 請求項4~5のいずれか1項に記載の少なくとも2種のN-SIMSの混合物であって、平均重合度が11~200の範囲である、前記混合物。
  7. 請求項1~2のいずれか1項に記載の少なくとも1種のDIMS及び請求項4~5のいずれか1項に記載の少なくとも1種のN-SIMSの混合物であって、平均重合度が11~200の範囲である、前記混合物。
  8. 請求項1~3のいずれか1項に記載のDIMS又はその混合物の製造方法であって、
    イソマルトメガロ糖鎖の還元末端にアンカー糖鎖を有するシングルアンカー型イソマルトメガロ糖(以下、R-SIMSと称する)と、糖供与体基質とを、糖質の転移活性を示す酵素による糖転移反応に供して、DIMS又はその混合物を得る、
    但し、前記R-SIMSのイソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲であり、
    前記R-SIMSの前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が2~20の範囲である、
    ことを含む方法。
  9. 請求項4~6のいずれか1項に記載のN-SIMS又はその混合物の製造方法であって、
    イソマルトメガロ糖(以下、IMSと称する)と糖供与体基質とを、糖質の転移活性を示す酵素による糖転移反応に供して、N-SIMS又はその混合物を得る、
    但し、前記IMSのイソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲である、
    ことを含む方法。
  10. 請求項1~3のいずれか1項に記載の少なくとも1種のDIMS及び請求項4~6のいずれか1項に記載の少なくとも1種のN-SIMSの混合物の製造方法であって、R-SIMS及びIMSと、糖供与体基質とを、糖質の転移活性を示す酵素による糖転移反応に供して、DIMS及びN-SIMSの混合物を得る、
    但し、前記R-SIMSのイソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲であり、
    前記R-SIMSの前記アンカー糖鎖は、α1-4結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が2~20の範囲であり、
    前記IMSのイソマルトメガロ糖鎖は、α1-6結合で連結したグルコピラノースからなり、かつグルコピラノースの重合度が10~100の範囲である、
    ことを含む方法。
  11. 前記糖供与体基質がシクロデキストリンであり、かつ前記糖質の転移活性を示す酵素が、シクロマルトデキストリングルカノトランスフェラーゼ(CGTaseと略称)である請求項8~10のいずれか1項に記載の方法。
  12. 前記シクロデキストリンが、α-シクロデキストリン、β-シクロデキストリン、及びγ-シクロデキストリンから成る群から選ばれる1種または2種以上である、請求項11に記載の製造方法。
  13. 前記供与体基質がオリゴ糖及び多糖から成る群から選ばれる少なくとも1種であり、
    かつ前記糖質の転移活性を示す酵素が、α-グルコシダーゼ、D-酵素(不均一化酵素)、アミラーゼ及びアミロスクラーゼから成る群から選ばれる少なくとも1種の酵素及びCGTaseである請求項8~10のいずれか1項に記載の方法。
  14. 水難溶性化合物の水溶液を製造する方法であって、
    水難溶性化合物と(i)請求項1~3のいずれか一項に記載のDIMS若しくはその混合物、(ii)請求項4~6のいずれか一項に記載のN-SIMS若しくはその混合物、又は(iii)請求項1~3のいずれか一項に記載の少なくとも1種のDIMS及び請求項4~6のいずれか一項に記載の少なくとも1種のN-SIMSの混合物とを水又は水を含有する溶媒中で混合することを含む、前記方法。
  15. 前記水を含有する溶媒は、水及び少なくとも1種の有機溶媒から成る溶媒であり、前記有機溶媒は可食性有機溶媒である、請求項14に記載の製造方法。
  16. 水難溶性化合物を、この化合物の融点以上に加熱すること、及び加熱溶解した水難溶性化合物を、(i)DIMS若しくはその混合物、(ii)N-SIMS若しくはその混合物、又は(iii)少なくとも1種のDIMS及び少なくとも1種のN-SIMSの混合物を含有する溶媒と混合すること、を含む請求項14又は15に記載の製造方法。
  17. 水難溶性化合物が、BCSクラス2に分類される化合物である、請求項14~16のいずれか一項に記載の製造方法。
  18. 水難溶性化合物、及び(i)請求項1~3のいずれか一項に記載のDIMS若しくはその混合物、(ii)請求項4~6のいずれか一項に記載のN-SIMS若しくはその混合物、又は(iii)請求項1~3のいずれか一項に記載の少なくとも1種のDIMS及び請求項4~6のいずれか一項に記載の少なくとも1種のN-SIMSの混合物を含む組成物。
  19. 可食性有機溶媒をさらに含む請求項18に記載の組成物。
  20. 水難溶性化合物が薬効成分であり、前記組成物は有効量の前記水難溶性化合物を含有する医薬用組成物である請求項18又は19に記載の組成物。
  21. 水難溶性化合物が飲食品用成分であり、前記組成物は飲食品用組成物又は飲食品用原料組成物である請求項18又は19に記載の組成物。
  22. 請求項1~3のいずれか一項に記載のDIMS若しくはその混合物、又は請求項4~6のいずれか一項に記載のN-SIMS若しくはその混合物、請求項1~3のいずれか一項に記載の少なくとも1種のDIMS及び請求項4~6のいずれか一項に記載の少なくとも1種のN-SIMSの混合物を含有する、水難溶性化合物を水溶液化するための溶解促進剤。
  23. 水難溶性化合物が、BCSクラス2に分類される化合物である、請求項22に記載の溶解促進剤。
PCT/JP2016/086678 2015-12-21 2016-12-09 ダブル及びシングルアンカー型イソマルトメガロ糖、その製造方法及びその利用 WO2017110517A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-248676 2015-12-21
JP2015248676A JP6655246B2 (ja) 2015-12-21 2015-12-21 ダブル及びシングルアンカー型イソマルトメガロ糖、その製造方法及びその利用

Publications (1)

Publication Number Publication Date
WO2017110517A1 true WO2017110517A1 (ja) 2017-06-29

Family

ID=59090191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086678 WO2017110517A1 (ja) 2015-12-21 2016-12-09 ダブル及びシングルアンカー型イソマルトメガロ糖、その製造方法及びその利用

Country Status (2)

Country Link
JP (1) JP6655246B2 (ja)
WO (1) WO2017110517A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110526951A (zh) * 2018-05-24 2019-12-03 青岛海洋生物医药研究院股份有限公司 杨梅素衍生物及在制备治疗降血糖和降血脂药物中的应用
CN114235878A (zh) * 2021-12-17 2022-03-25 浙江大学 基于核磁共振技术的异麦芽酮糖异核长程耦合谱的测试方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417061B1 (ja) 2018-02-20 2018-10-31 国立大学法人北海道大学 α−1,6−グルコシル転移活性を有する酵素
JP6650546B1 (ja) 2019-08-01 2020-02-19 日本食品化工株式会社 α−1,6−グルコシル転移反応を触媒する活性を有するタンパク質

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147801A (en) * 1980-04-19 1981-11-17 Hayashibara Biochem Lab Inc Alpha-glycosylpullulan
JPH0614790A (ja) * 1991-12-13 1994-01-25 Ensuiko Sugar Refining Co Ltd α−グルコシル糖化合物の製造方法
JPH06271596A (ja) * 1993-03-17 1994-09-27 Nippon Kagaku Kikai Seizo Kk オリゴ糖およびその製造方法
JP2007181452A (ja) * 2005-12-06 2007-07-19 Hokkaido Univ デキストラン生成酵素遺伝子、デキストラン生成酵素およびその製造方法、デキストランの製造方法
WO2009011125A1 (ja) * 2007-07-19 2009-01-22 National University Corporation Hokkaido University 新規イソマルトオリゴ糖合成酵素
JP2012525840A (ja) * 2009-05-08 2012-10-25 ライクスユニヴェルシタイト・フローニンゲン (α1→4)および(α1→6)グリコシド結合を含むグルコオリゴ糖、その使用、およびそれを提供する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147801A (en) * 1980-04-19 1981-11-17 Hayashibara Biochem Lab Inc Alpha-glycosylpullulan
JPH0614790A (ja) * 1991-12-13 1994-01-25 Ensuiko Sugar Refining Co Ltd α−グルコシル糖化合物の製造方法
JPH06271596A (ja) * 1993-03-17 1994-09-27 Nippon Kagaku Kikai Seizo Kk オリゴ糖およびその製造方法
JP2007181452A (ja) * 2005-12-06 2007-07-19 Hokkaido Univ デキストラン生成酵素遺伝子、デキストラン生成酵素およびその製造方法、デキストランの製造方法
WO2009011125A1 (ja) * 2007-07-19 2009-01-22 National University Corporation Hokkaido University 新規イソマルトオリゴ糖合成酵素
JP2012525840A (ja) * 2009-05-08 2012-10-25 ライクスユニヴェルシタイト・フローニンゲン (α1→4)および(α1→6)グリコシド結合を含むグルコオリゴ糖、その使用、およびそれを提供する方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ATSUO KIMURA: "Chokusa no Anchor-gata Isomaltomegalosaccharides: Seisan · Kino · Oyo", PROCEEDINGS OF THE ANNUAL MEETING OF JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2016 *
HIROSHI HARA: "Anchor-gata Isomaltomegalosaccharides no Seiri Sayo", PROCEEDINGS OF THE ANNUAL MEETING OF JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2016 *
LANG, W. ET AL.: "Different molecular complexity of linear-isomaltomegalosaccharides and beta-cyclodextrin on enhancing solubility of azo dye ethyl red: Towards dye biodegradation.", BIORESOUR. TECHNOL., vol. 169, 2014, pages 518 - 524, XP055396486 *
SADAHIRO, J. ET AL.: "Extracellular and cell - associated forms of Gluconobacter oxydans dextran dextrinase change their localization depending on the cell growth.", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 456, 2015, pages 500 - 505, XP055396490 *
SHIN'ICHI KITAMURA ET AL.: "Anchor-gata Isomaltomegalosaccharides no Bunshi Tokusei no Kaiseki", PROCEEDINGS OF THE ANNUAL MEETING OF JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2016 *
SHINOKI, A. ET AL.: "A novel mechanism for the promotion of quercetin glycoside absorption by megalo alpha-1,6-glucosaccharide in the rat small intestine.", FOOD CHEM., vol. 136, 2013, pages 293 - 296, XP028955838 *
YUSUKE IMAI ET AL.: "Anchor-gata Isomaltomegalosaccharides o Mochiita Flavonoid no Kayoka to Bioavailability no Kojo", PROCEEDINGS OF THE ANNUAL MEETING OF JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2016 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110526951A (zh) * 2018-05-24 2019-12-03 青岛海洋生物医药研究院股份有限公司 杨梅素衍生物及在制备治疗降血糖和降血脂药物中的应用
CN114235878A (zh) * 2021-12-17 2022-03-25 浙江大学 基于核磁共振技术的异麦芽酮糖异核长程耦合谱的测试方法

Also Published As

Publication number Publication date
JP2017114943A (ja) 2017-06-29
JP6655246B2 (ja) 2020-02-26

Similar Documents

Publication Publication Date Title
WO2017110517A1 (ja) ダブル及びシングルアンカー型イソマルトメガロ糖、その製造方法及びその利用
Bertrand et al. Leuconostoc mesenteroides glucansucrase synthesis of flavonoid glucosides by acceptor reactions in aqueous-organic solvents
Lee et al. Transglycosylation of naringin by Bacillus stearothermophilus maltogenic amylase to give glycosylated naringin
JP4043015B2 (ja) 糖転移物の製造方法
JP7183174B2 (ja) 分岐αグルカン
JP3150266B2 (ja) 環状構造を有するグルカンおよびその製造方法
Charoensapyanan et al. Enzymatic synthesis of propyl-α-glycosides and their application as emulsifying and antibacterial agents
Svensson et al. Efficient synthesis of a long carbohydrate chain alkyl glycoside catalyzed by cyclodextrin glycosyltransferase (CGTase)
EP2428578B1 (en) Glucuronic acid-containing glucan, process for production of same, and use of same
Seibel et al. Identification of new acceptor specificities of glycosyltransferase R with the aid of substrate microarrays
Nawaji et al. Enzymatic α-glucosaminylation of maltooligosaccharides catalyzed by phosphorylase
US6677142B1 (en) Polysaccharides containing α-1,4-glucan chains and method for producing same
EP2636749B1 (en) Non-reducing end-modified glucan, method for producing same, and use thereof
EP2401389B1 (en) Synthesis of long-chain alkyl glycosides
EP0675137B1 (en) Glucans having a cycle structure, and processes for preparing the same
JP2886249B2 (ja) ガラクトシル―マルトオリゴ糖誘導体、その製造法およびα―アミラーゼ活性測定方法
JP4023539B2 (ja) 有効物質の抽出方法および精製方法
Côté et al. Glucosylation of raffinose via alternansucrase acceptor reactions
JP5858686B2 (ja) 難水溶性ポリフェノール類の糖付加物の製造方法
CA3041417C (en) Chitooligosaccharide of specific structure, preparation method therefor and use thereof
Tian et al. Glycosylation of flavonoids by sucrose-and starch-utilizing glycoside hydrolases: A practical approach to enhance glycodiversification
Wu et al. A practical approach to producing the single-arm linear dextrin, a chimeric glucosaccharide containing an (α-1→ 4) linked portion at the nonreducing end of an (α-1→ 6) glucochain
JP5953034B2 (ja) 糖質関連酵素を擬似粉末状態の糖質原料と反応させる糖質複合体の製造方法とその生産物
WO2000012747A1 (en) Method for enzymatic synthesis of glycosides, disaccharides, and oligosaccharides
JP2002249523A (ja) 蛋白質精製用担体、その製造方法及びそれを用いた蛋白質の精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878409

Country of ref document: EP

Kind code of ref document: A1