WO2017110464A1 - 成膜装置および成膜方法 - Google Patents

成膜装置および成膜方法 Download PDF

Info

Publication number
WO2017110464A1
WO2017110464A1 PCT/JP2016/086307 JP2016086307W WO2017110464A1 WO 2017110464 A1 WO2017110464 A1 WO 2017110464A1 JP 2016086307 W JP2016086307 W JP 2016086307W WO 2017110464 A1 WO2017110464 A1 WO 2017110464A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
film
film forming
rotational speed
forming apparatus
Prior art date
Application number
PCT/JP2016/086307
Other languages
English (en)
French (fr)
Inventor
英隆 地大
亮二 松田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP16878357.9A priority Critical patent/EP3396016A4/en
Priority to JP2017557854A priority patent/JP6777098B2/ja
Priority to CN201680074911.6A priority patent/CN108368604A/zh
Publication of WO2017110464A1 publication Critical patent/WO2017110464A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0073Reactive sputtering by exposing the substrates to reactive gases intermittently
    • C23C14/0078Reactive sputtering by exposing the substrates to reactive gases intermittently by moving the substrates between spatially separate sputtering and reaction stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate

Definitions

  • the present invention relates to a film forming apparatus and a film forming method, and more particularly to a technique capable of reducing deviation from a target film thickness.
  • Film forming techniques for forming a thin film are widely known. Making the thickness of the thin film uniform is important for realizing the function of the thin film.
  • a multilayer film in which metals, dielectrics, and the like are laminated in multiple layers if the layer thickness varies between layers, the influence on the film thickness of the entire multilayer film is large.
  • An example of the multilayer film is an optical film such as an antireflection film.
  • Patent Document 1 discloses a technique for reducing the difference in film thickness between thin films.
  • the substrate 10 is rotated so that the vapor deposition position on the substrate 10 at the start of vapor deposition matches the vapor deposition position on the substrate 10 at the end of vapor deposition (first embodiment), or the target film thickness unevenness value.
  • the rotation speed of the substrate 10 is set according to a (second embodiment), or the rotation speed of the substrate 10 is set according to the target film thickness spot value a, the film formation speed ⁇ , and the desired film thickness d. (Third embodiment).
  • a main object of the present invention is to provide a film forming apparatus and a film forming method capable of reducing a deviation from a target film thickness.
  • a film forming apparatus reflecting one aspect of the present invention includes the following.
  • a film forming apparatus for a multilayer film of (n + 1) layers or more (n is a positive integer of 1 or more) A rotating body that rotates while supporting the film formation;
  • a film forming apparatus comprising:
  • a film forming method reflecting one aspect of the present invention includes the following.
  • the number of rotations of the rotating body is calculated from the target film thickness of the multilayer film, the film formation rate of the film forming mechanism that is initially set, and the rotation speed of the rotating body that is initially set, and the rotation speed of the rotating body is adjusted.
  • deviation from the target film thickness can be reduced.
  • the film forming apparatus 1 is a multilayer film forming apparatus (sputtering apparatus), and mainly includes a drum 10, a film forming mechanism 20, a monitor mechanism 30, and a control mechanism 40. A plurality of substrates 50 are supported on the drum 10.
  • the drum 10 is an example of a rotating body that rotates while supporting the substrate 50.
  • the substrate 50 is an example of an object to be deposited.
  • a glass substrate is used as the substrate 50.
  • the film forming mechanism 20 is a mechanism for performing a film forming process on the substrate 50, and is a so-called sputtering mechanism.
  • the film forming mechanism 20 has a target 22.
  • the drum 10 (substrate 50) side is an anode and the target 22 side is a cathode, and a high voltage is applied to the cathode side.
  • the gas ion atoms strike the surface of the target 22 and the target material material that has jumped out is deposited on the substrate 50.
  • a monitor mechanism 30 for monitoring the rotational speed of the drum 10 is connected to the drum 10.
  • the monitor mechanism 30 a rotary encoder, a laser speed measuring device, or the like is used.
  • the monitor mechanism 30 may be installed on the rotation shaft thereof, or may be installed on the drum 10 itself.
  • a control mechanism 40 for controlling these is connected to the drum 10, the film forming mechanism 20, and the monitor mechanism 30. According to the film forming apparatus 1 described above, the control mechanism 40 controls the rotation of the drum 10 and the operation of the film forming mechanism 20 based on the monitoring result of the monitor mechanism 30, so that the substrate 50 has (n + 1) layers or more. A multilayer film in which layers are stacked is formed. n is a positive integer of 1 or more.
  • the control mechanism 40 calculates a film formation time from the target film thickness of the multilayer film and the film formation rate of the film formation mechanism 20 that is initially set, and the drum is determined from the calculated film formation time and the rotation speed of the drum 10 that is initially set. A rotational speed of 10 is calculated.
  • the target film thickness is 69 nm
  • the substrate 52 and the substrate 54 are set as shown in FIG. 2A at the start of film formation, the positional relationship between the substrate 52 and the substrate 54 as shown in FIG. Is reversed. That is, the substrate 52 passes the target 22 150 times, and the substrate 54 passes the target 22 only 149 times. Therefore, the thickness of the substrate 54 is about 0.6% thinner than that of the substrate 52, and the thickness of the multilayer film is not uniform.
  • the control mechanism 40 adjusts the rotation speed of the drum 10 to bring the calculated rotation speed of the drum 10 close to an integer.
  • the rotational speed of the drum 10 is adjusted from 65 rpm to 65.217 rpm.
  • the drum 10 continues to rotate at a basically set rotation speed.
  • a minute error may occur and the rotational speed of the drum 10 may fluctuate.
  • the rotation speed of the drum 10 is set to 65 rpm
  • the actual rotation speed of the drum 10 is 65.1 rpm
  • 20% of the substrates 50 supported by the drum 10 have 131 rotations
  • the other 80% of the substrates 50 have 130 rotations
  • the 20% substrate 50 has a multilayer film that is approximately 0.8% thicker.
  • it is preferable that the control mechanism 40 adjusts the rotational speed of the drum 10 in any one of the speed adjustment examples 1 to 3.
  • the control mechanism 40 grasps the rotation speed of the n-th layer drum 10 from the monitoring result of the monitor mechanism 30 and adjusts the rotation speed of the drum 10 after the (n + 1) -th layer.
  • “After the (n + 1) th layer” may refer to only the (n + 1) layer, or may refer to any one or all of the subsequent layers including the (n + 1) layer, (n + 1) It means at least one of the subsequent layers including the layer.
  • the target film thickness is 69 nm and the film formation rate is 0.5 nm / sec
  • the calculated rotation speed of the drum 10 is 65.217 rpm
  • the rotation speed of the n-th drum 10 is Suppose that it fluctuated to 65.4 rpm.
  • the control mechanism 40 controls the rotation of the drum 10 to adjust the rotation speed of the drum 10 in the (n + 1) th and subsequent layers from 65.4 rpm to the original 65.217 rpm.
  • the control mechanism 40 needs to set the measurement interval t [sec] by the monitor mechanism 30 and the rotation speed A of the drum 10 required for one measurement so as to satisfy the conditional expression (1).
  • Ra is the rotation speed [rpm] of the drum 10 in the (n + 1) th and subsequent layers
  • da is the target film thickness [nm] of the multilayer film
  • s is the film formation rate by the film formation mechanism 20 [ nm / sec].
  • conditional expression (1) The left side of the conditional expression (1) is the difference between the rotational speed when the film is formed at the rotational speed of the drum 10 measured by the monitor mechanism 30 and the rotational speed when the film is formed at the actual rotational speed of the drum 10.
  • the maximum “rotational speed error” that can occur is shown.
  • Conditional expression (1) indicates that the error of the rotational speed is ⁇ 5% or less. According to the conditional expression (1), the error in the rotational speed of the drum 10 is within ⁇ 5% between the n-th film formation and the (n + 1) -th film formation. ) When compared with the film formation of the layer, the film can be formed under the same conditions within the range of 90%.
  • the error in the rotational speed on the left side of conditional expression (1) is derived as follows.
  • the maximum error time that occurs in one measurement is t [sec]. This is because the measurement interval by the monitor mechanism 30 is t [sec].
  • Ra ⁇ Rb ((Ra ⁇ T + Ra ⁇ t) / (T + t)) ⁇ ((A / (T + t)) ⁇ 60).
  • the control mechanism 40 grasps the rotational speed of the drum 10 in the mth section (m is a positive integer equal to or greater than 1) from the monitoring result of the monitor mechanism 30, and the (m + 1) th section in the nth layer.
  • the rotational speed of the drum 10 after the first is adjusted. That is, as shown in FIG. 3, when the n-th layer is formed on the assumption that a large number of substrates 50 are sectioned, the rotation speed of the m-th section drum 10 is obtained from the monitoring result of the monitor mechanism 30. , (M + 1) The rotation speed of the drum 10 after the section is adjusted.
  • FIG. 3 shows an example in which a large number of substrates 50 are assumed to be divided into four.
  • the control mechanism 40 needs to set the measurement interval t [sec] by the monitor mechanism 30 and the rotation speed A of the drum 10 required for one measurement so as to satisfy the conditional expression (2).
  • conditional expression (2) Rc is the rotational speed [rpm] of the drum 10 after the (m + 1) th section of the nth layer, dc is the target layer thickness [nm] of the nth layer of the multilayer film, and s is the component.
  • the film formation rate [nm / sec] by the film mechanism 20 is shown respectively.
  • Conditional expression (2) is derived on the same principle as conditional expression (1). According to the conditional expression (2), in the deposition of the nth layer, the error in the rotational speed of the drum 10 is within ⁇ 5% between the deposition of the mth section and the deposition of the (m + 1) th section. When the film formation in the section and the film formation in the (m + 1) th section are compared, the film formation can be performed under the same conditions within the range of 90%.
  • the control mechanism 40 always grasps the rotation speed of the drum 10 from the monitoring result of the monitor mechanism 30, and adjusts the rotation speed of the drum 10 in real time. In the above case 2, the rotation speed of the drum 10 is kept at 65.217 rpm.
  • the rotational speed of the drum 10 is adjusted while the target film thickness of the multilayer film, the film formation rate of the film formation mechanism 20 and the film formation time that are initially set are fixed, and the drum 10
  • the rotation speed is controlled so as to approach an integer. Therefore, unlike the technique according to the first embodiment of Patent Document 1, there is no change in film formation conditions (film formation rate and film formation time) such as an increase in film formation time, and a deviation from the target film thickness occurs. Is suppressed. Even when the layers are compared with each other, since there is no change in the film forming conditions, it is possible to suppress an error in the layer thickness between the layers. From the above, according to the present embodiment, deviation from the target film thickness can be reduced.
  • the control mechanism 40 adjusts the rotation speed of the drum 10 to make the calculated rotation speed of the drum 10 close to an integer (including speed adjustment examples 1 to 3), and further forms a film.
  • the calculated rotation speed of the drum 10 may be made closer to an integer by adjusting the film formation time or the film formation rate of the mechanism 20.
  • the control mechanism 40 controls the operation of one film forming mechanism 20 to form a multilayer film.
  • two film forming mechanisms 20 may be installed, and the control mechanism 40 may alternately control the operations of the two film forming mechanisms 20 to form a multilayer film.
  • a target 22 is installed in one film forming mechanism 20, and a target 23 different from the target 22 is installed in the other film forming mechanism 20.
  • the number of deposition mechanisms 20 can be changed as appropriate, and may be changed according to the number of types of layers of the multilayer film.
  • a detection mechanism 60 that detects the reference position 12 of the drum 10 may be installed.
  • the detection mechanism 60 is connected to the control mechanism 40, and the control mechanism 40 receives the detection result of the detection mechanism 60.
  • An optical sensor or the like is used as the detection mechanism 60.
  • the control mechanism 40 adjusts the rotation speed of the drum 10 to make the calculated rotation speed of the drum 10 close to an integer (including speed adjustment examples 1 to 3).
  • the rotation position of the drum 10 is adjusted based on the detection result of the detection mechanism 60, and the film formation of each layer is performed. It is preferable to start from the reference position 12, end at the reference position 12 of the drum 10, or start from the reference position 12 of the drum 10 and end at the reference position 12 of the drum 10.
  • the film forming apparatus 1 may be provided with an oxygen plasma mechanism 70 for forming an oxide film as a multilayer film.
  • the oxygen plasma mechanism 70 is connected to the control mechanism 40 and controlled by the control mechanism 40.
  • the oxygen plasma mechanism 70 is an example of a second film forming mechanism.
  • FIG. 5 when switching from a time zone 80 for forming one oxide film to a time zone 84 for forming another oxide film, oxygen plasma treatment by the oxygen plasma mechanism 70 is performed.
  • the film forming apparatus 2 is also a multilayer film forming apparatus, and includes a dome 14 and a film forming mechanism 20. A plurality of substrates 50 are supported on the dome 14.
  • the dome 14 is also an example of a rotating body that rotates while supporting the substrate 50.
  • the film forming mechanism 20 has a vapor deposition source 24.
  • the monitor mechanism 30 may be installed on the rotation shaft thereof, or may be installed on the dome 14 itself.
  • the drum 10 of the film forming apparatus 1 is replaced with the dome 14, and the target 22 of the film forming apparatus 1 is replaced with the vapor deposition source 24, and the present invention is applied.
  • the present invention is preferably applied to the film forming apparatus 1 (sputtering apparatus).
  • the film formation conditions slightly vary between the time period immediately after the start of vapor deposition and the subsequent time period, whereas in the sputtering apparatus, the film formation conditions vary little.
  • the raw material of the vapor deposition source 24 decreases and the vapor deposition source 24 needs to be replaced, whereas in the sputtering apparatus, it is basically unnecessary to replace the target 22.
  • the distance from the vapor deposition source 24 to the substrate 50 is relatively long, whereas in the sputtering apparatus, the distance from the target 22 to the substrate 50 is short and it is easy to achieve film formation as designed.
  • the present invention can be particularly suitably used for providing a film forming apparatus and a film forming method capable of reducing a deviation from a target film thickness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

目標膜厚からのずれを低減する成膜装置を提供する。 成膜装置(1)は、(n+1)層以上(nは1以上の正の整数である。)の多層膜の成膜装置である。成膜装置(1)は、基板(50)を支持しながら回転するドラム(10)と、基板(50)に対し成膜処理を行う成膜機構(20)と、ドラム(10)の回転を制御する制御機構(40)であって、多層膜の目標膜厚、初期設定された成膜機構(20)の成膜レートおよび初期設定されたドラム(10)の回転速度からドラム(10)の回転数を算出し、ドラム(10)の回転速度を調整して、算出したドラム(10)の回転数を整数に近づける制御機構(40)と、を備える。

Description

成膜装置および成膜方法
 本発明は成膜装置および成膜方法に関し、特に目標膜厚からのずれを低減しうる技術に関する。
 スパッタリング法や蒸着法といった、薄膜を形成するための成膜技術は広く知られている。薄膜の膜厚を均一化することは、その薄膜の機能を実現するうえで重要である。特に金属や誘電体などを多層にわたり積層する多層膜では、層同士で層厚が変動すると多層膜全体に対する膜厚への影響が大きい。多層膜としては、たとえば反射防止膜などの光学膜がある。
 薄膜の膜厚の差を低減する技術が特許文献1に開示されている。
 特許文献1では、蒸着開始時における基板10上の蒸着位置と蒸着終了時における基板10上の蒸着位置とが一致するように基板10を回転させたり(第1実施形態)、目標膜厚斑値aに応じて基板10の回転速度を設定したり(第2実施形態)、目標膜厚斑値a、成膜速度αおよび所望膜厚dに応じて基板10の回転速度を設定したりしている(第3実施形態)。
特開2003-321770号公報
 しかしながら、多層膜を成膜する場合に、特許文献1の第1実施形態にかかる技術のように、単に成膜開始時の成膜位置と成膜終了時の成膜位置とを一致させようとすると、成膜時間が延長され、目標膜厚からずれが生じる。特許文献1の第2および第3実施形態にかかる技術のように、目標膜厚斑値aなどに応じて基板の回転速度を設定しようとすると、層内の層厚差は抑制されるものの、層同士で微小な層厚の誤差が生じ、これを積層した多層膜においては目標膜厚からずれが生じる。
 したがって、本発明の主な目的は、目標膜厚からのずれを低減することができる成膜装置および成膜方法を提供することにある。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した成膜装置は、以下を有する。
 (n+1)層以上(nは1以上の正の整数である。)の多層膜の成膜装置において、
 被成膜物を支持しながら回転する回転体と、
 前記被成膜物に対し成膜処理を行う成膜機構と、
 前記回転体の回転を制御する制御機構であって、前記多層膜の目標膜厚、初期設定された前記成膜機構の成膜レートおよび初期設定された前記回転体の回転速度から前記回転体の回転数を算出し、前記回転体の回転速度を調整して、算出した前記回転体の回転数を整数に近づける前記制御機構と、
 を備える成膜装置。
 また、上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した成膜方法は、以下を有する。
 被成膜物を支持しながら回転する回転体と、
 前記被成膜物に対し成膜処理を行う成膜機構とを備える成膜装置を用いた、(n+1)層以上(nは1以上の正の整数である。)の多層膜の成膜方法において、
 前記多層膜の目標膜厚、初期設定された前記成膜機構の成膜レートおよび初期設定された前記回転体の回転速度から前記回転体の回転数を算出し、前記回転体の回転速度を調整して、算出した前記回転体の回転数を整数に近づける成膜方法。
 本発明によれば、目標膜厚からのずれを低減することができる。
成膜装置(スパッタリング装置)の構成を示す概念図である。 成膜開始時の基板の位置関係を説明するための図である。 成膜終了時の基板の位置関係を説明するための図である。 n層目におけるm区画目の成膜と(m+1)区画目の成膜との関係を説明するための図である。 図1の成膜装置の変形例を示す図である。 成膜処理(スパッタリング)と酸素プラズマ処理との経時的な関係を示す概略図である。 成膜装置(蒸着装置)の構成を示す概念図である。
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。
[成膜装置]
 図1に示すとおり、成膜装置1は多層膜の成膜装置(スパッタリング装置)であって、主にドラム10、成膜機構20、モニター機構30および制御機構40を備えている。
 ドラム10には複数の基板50が支持されている。ドラム10は基板50を支持しながら回転する回転体の一例である。基板50は被成膜物の一例である。ここでは基板50としてガラス基板が使用されている。
 成膜機構20は基板50に対し成膜処理を行う機構であり、いわゆるスパッタリング機構である。成膜機構20はターゲット22を有している。成膜機構20では、ドラム10(基板50)側を陽極と、ターゲット22側を陰極とし、陰極側に高電圧が印加される。その結果、ガスイオン原子がターゲット22表面を叩き、飛び出したターゲット材料物質が基板50に堆積される。
 ドラム10にはドラム10の回転速度を監視するモニター機構30が接続されている。モニター機構30としてはロータリーエンコーダーやレーザー速度測定器などが使用される。ドラム10がモーターで回転駆動される場合、モニター機構30はその回転軸に設置されてもよいし、ドラム10自体に設置されてもよい。ドラム10、成膜機構20およびモニター機構30にはこれらを制御する制御機構40が接続されている。
 以上の成膜装置1によれば、制御機構40がモニター機構30の監視結果に基づき、ドラム10の回転や成膜機構20の動作を制御して、基板50に対し、(n+1)層以上の層を積層した多層膜を、成膜するようになっている。nは1以上の正の整数である。
[成膜方法]
 続いて、成膜装置1を用いた成膜方法について説明する。
 下記の成膜方法は制御機構40にあらかじめ成膜プログラムとして記憶され、制御機構40がその成膜プログラムを読み出し処理を実行するようになっている。
 制御機構40は、多層膜の目標膜厚、初期設定された成膜機構20の成膜レートから成膜時間を算出し、算出した成膜時間と初期設定されたドラム10の回転速度とからドラム10の回転数を算出する。
<事例1>
 たとえば、目標膜厚が60nmで、成膜レートが0.5nm/secであれば、成膜時間は60/0.5=120sec=2minとなる。ドラム10の回転速度が65rpm(round per minutes)であれば、成膜時のドラム10の回転数は2min×65rpm=130回転となる。
 かかる場合、ドラム10の回転数が整数であるため、基板50のターゲット22を通過する回数は一致し、基板50には目標膜厚の多層膜が成膜される。
<事例2>
 他方、目標膜厚が69nmであれば、成膜時間は69/0.5=138sec=2.3minとなり、成膜時のドラム10の回転数は2.3min×65rpm=149.5回転となる。
 かかる場合、成膜開始時において、基板52と基板54とが図2Aに示すようにセットされていたとすると、成膜終了時においては、図2Bに示すように基板52と基板54との位置関係が逆転する。すなわち、基板52はターゲット22を150回通過し、基板54はターゲット22を149回しか通過しない。そのため、基板54は基板52よりも0.6%程度膜厚が薄くなってしまい、多層膜の膜厚が不均一となる。
 ここで特許文献1の第1実施形態のように、単に成膜開始時の基板52、54の位置と成膜終了時の基板52、54の位置とを一致させようとすると、基板52、54をさらに半回転させる(成膜時間を延長する)必要があり、多層膜の膜厚が目標膜厚からずれる。
 そこで本実施形態では、制御機構40が、ドラム10の回転速度を調整して、算出したドラム10の回転数を整数に近づける。
 上記事例2では、ドラム10の回転速度を65rpmから65.217rpmに調整する。
 かかる場合、ドラム10の回転数は2.3min×65.217rpm=149.999回転となり、ほぼ150回転となる。
 ところで、ドラム10は基本的に設定した回転速度で回転し続ける。
 ただ、微小な誤差が生じ、ドラム10の回転速度が変動しうる場合がある。
 たとえば、上記事例1において、ドラム10の回転速度を65rpmと設定したところ、実際のドラム10の回転速度が65.1rpmであった場合、ドラム10の回転数は2min×65.1=130.2回転となる。かかる場合、ドラム10に支持された基板50のうち、20%の基板50は131回転、他の80%の基板50は130回転となり、20%の基板50では多層膜が約0.8%厚い膜厚になってしまう。このような現象は成膜途中においても起こりうると考えられる。
 そこで本実施形態では、制御機構40が、速度調整例1~3のいずれかでドラム10の回転速度を調整するのが好ましい。
[速度調整例1]
 制御機構40が、モニター機構30の監視結果からn層目のドラム10の回転速度を把握し、(n+1)層目以降のドラム10の回転速度を調整する。「(n+1)層目以降」とは、(n+1)層だけを指してもよいし、(n+1)層を含むその後の層のいずれか1層またはすべての層を指してもよく、(n+1)層を含むその後の層のうち少なくとも1層という意味である。
 たとえば、上記事例2において、目標膜厚が69nmで、成膜レートが0.5nm/secであるとき、算出したドラム10の回転速度が65.217rpmであるところ、n層目のドラム10の回転速度が65.4rpmに変動したとする。このままの回転速度で成膜すると、n層目の回転数は(1秒間の回転数)×(成膜時間)で算出され、(65.4/60)×(69/0.5)=150.42回転となる。n層目の回転数をもっとも整数に近い150回転に近づけるには、n層目のドラム10の回転速度は(150×60)/(69/0.5)=65.217rpmと算出される。ここでは、制御機構40が、ドラム10の回転を制御して、(n+1)層目以降のドラム10の回転速度を65.4rpmからもとの65.217rpmに調整する。
 速度調整例1では、制御機構40が、モニター機構30による計測間隔t[sec]と、1回の計測に要するドラム10の回転数Aとを、条件式(1)を満たすように設定する必要がある。
  (Ra×t×da)/
  (60×(60×s×A+Ra×t×s))≦0.05 … (1)
 条件式(1)中、Raは(n+1)層目以降のドラム10の回転速度[rpm]を、daは多層膜の目標膜厚[nm]を、sは成膜機構20による成膜レート[nm/sec]をそれぞれ表す。
 条件式(1)の左辺は、モニター機構30で計測したドラム10の回転速度で成膜したときの回転数と、実際のドラム10の回転速度で成膜したときの回転数と、の差で発生しうる最大の「回転数の誤差」を示している。
 条件式(1)はかかる回転数の誤差が±5%以下であることを示している。
 条件式(1)によれば、n層目の成膜と(n+1)層目の成膜とでドラム10の回転数の誤差が±5%以下に収まり、n層目の成膜と(n+1)層目の成膜とを比較するとその90%の範囲内で同一の条件で成膜することができる。
 条件式(1)の左辺の回転数の誤差は下記のとおり導出される。
 1回の計測に要する時間T[sec]はT=(A/Ra)×60で表される。
 1回の計測で発生する最大の誤差時間はt[sec]となる。モニター機構30による計測間隔がt[sec]であるためである。
 ドラム10の実際の回転速度Ra[rpm]はRa=(Ra×T+Ra×t)/(T+t)で表される。
 誤差時間tを含むドラム10の回転速度Rb[rpm]はRb=(A/(T+t))×60で表される。
 したがってドラム10の回転速度の誤差(Ra-Rb)[rpm]は
   Ra-Rb=((Ra×T+Ra×t)/(T+t))-((A/(T+t))×60)と表される。
 これにT=(A/Ra)×60を代入すると、
   Ra-Rb=(Ra2×t)/(A×60+Ra×t)と表される。
 かかる回転速度の誤差を回転数に直すと、回転数の誤差は
   (da/s)×(Ra-Rb)/60=(da×Ra2×t)/((s×A×60+s×Ra×t)×60)と表され、条件式(1)が導出される。
[速度調整例2]
 制御機構40が、モニター機構30の監視結果からn層目のm区画目(mは1以上の正の整数である。)のドラム10の回転速度を把握し、n層目の(m+1)区画目以降のドラム10の回転速度を調整する。
 すなわち、図3に示すとおり、多数の基板50を区画化すると仮定して、n層目の成膜を行う場合に、モニター機構30の監視結果からm区画目のドラム10の回転速度を把握し、(m+1)区画目以降のドラム10の回転速度を調整する。「(m+1)区画目以降」とは、(m+1)区画だけを指してもよいし、(m+1)区画を含むその後の区画のいずれか1区画またはすべての区画を指してもよく、(m+1)区画を含むその後の区画のうち少なくとも1区画という意味である。
 なお、図3では多数の基板50を4つに区画化したと仮定した例を示している。
 速度調整例2では、制御機構40が、モニター機構30による計測間隔t[sec]と、1回の計測に要するドラム10の回転数Aとを、条件式(2)を満たすように設定する必要がある。
  (Rc×t×dc)/
  (60×(60×s×A+Rc×t×s))≦0.05 … (2)
 条件式(2)中、Rcはn層目の(m+1)区画目以降のドラム10の回転速度[rpm]を、dcは多層膜のn層目の目標層厚[nm]を、sは成膜機構20による成膜レート[nm/sec]をそれぞれ表す。
 条件式(2)も条件式(1)と同様の原理で導出される。
 条件式(2)によれば、n層目の成膜において、m区画目の成膜と(m+1)区画目の成膜とでドラム10の回転数の誤差が±5%以下に収まり、m区画目の成膜と(m+1)区画目の成膜とを比較するとその90%の範囲内で同一の条件で成膜することができる。
[速度調整例3]
 制御機構40が、モニター機構30の監視結果からドラム10の回転数を常に把握し、ドラム10の回転速度をリアルタイムで調整する。
 上記事例2では、ドラム10の回転速度を65.217rpmに保持し続ける。
 以上の本実施形態によれば、多層膜の目標膜厚、初期設定された成膜機構20の成膜レートおよび成膜時間が固定されたまま、ドラム10の回転速度が調整され、ドラム10の回転数が整数に近づくように制御される。
 したがって特許文献1の第1実施形態にかかる技術のように、成膜時間が延長されるといった、成膜条件(成膜レートおよび成膜時間)の変動がなく、目標膜厚からずれが発生するのが抑制される。層同士を比較した場合も成膜条件に変動がないため、層同士で層厚に誤差が生じるのも抑制される。
 以上から、本実施形態によれば目標膜厚からのずれを低減することができる。
 なお、制御機構40は、上記のとおり、ドラム10の回転速度を調整して、算出したドラム10の回転数を整数に近づけた場合において(速度調整例1~3を含む。)、さらに成膜機構20の成膜時間または成膜レートを調整して、算出したドラム10の回転数をより整数に近づけてもよい。
 上記事例2では、成膜時間を2.3minから2.30002minに調整すると、ドラムの回転数は、2.30002×65.217rpm=150.0005回転となり、より150回転に近くなる。成膜時間を2.30002minとするためには、成膜レートは69nm/2.30002min=0.4999nm/secとなる。
 したがって上記例2では、成膜時間を2.3minから2.30002minに調整するか、または成膜レートを0.5nm/secから0.4999nm/secに調整すればよい。
 上記では、成膜方法をわかりやすく説明するため、制御機構40が1つの成膜機構20の動作を制御して多層膜を成膜する例を説明した。
 図4に示すとおり、2つの成膜機構20を設置し、制御機構40が2つの成膜機構20の動作を交互に制御して多層膜を成膜してもよい。かかる場合、一方の成膜機構20にはターゲット22を、他方の成膜機構20にはターゲット22とは異なるターゲット23を設置する。成膜機構20の設置数は適宜変更可能であり、多層膜の層の種類数に応じて変更されてもよい。
 図4に示すとおり、成膜装置1では、ドラム10の基準位置12を検出する検出機構60が設置されてもよい。検出機構60は制御機構40に接続され、制御機構40は検出機構60の検出結果を受けられる。検出機構60としては光センサーなどが使用される。
 かかる構成において、制御機構40は、上記のとおり、ドラム10の回転速度を調整して、算出したドラム10の回転数を整数に近づけた場合において(速度調整例1~3を含む。)、成膜機構20の成膜時間または成膜レートを調整するのに代えてまたは加えて、検出機構60の検出結果に基づき、ドラム10の回転位置を調整して、各層の成膜を、ドラム10の基準位置12から開始させるか、ドラム10の基準位置12で終了させるか、またはドラム10の基準位置12から開始させかつドラム10の基準位置12で終了させるのが好ましい。
 図4に示すとおり、成膜装置1では、多層膜として酸化膜を成膜するための酸素プラズマ機構70が設置されてもよい。酸素プラズマ機構70は制御機構40に接続され、制御機構40により制御される。酸素プラズマ機構70は第2の成膜機構の一例である。
 かかる構成では、図5に示すとおり、ある一の酸化膜の成膜の時間帯80からその次の他の酸化膜の成膜の時間帯84に切り替わる際に、酸素プラズマ機構70による酸素プラズマ処理のみが行われる時間帯82が存在しうる。
 かかる時間帯82でも、制御機構40は、ドラム10の回転速度を調整して、算出したドラム10の回転数を整数に近づけるのが好ましい。
 上記では、本発明を成膜装置1(スパッタリング装置)に適用した例を示したが、本発明は図6のような成膜装置2(蒸着装置)にも適用可能である。
 成膜装置2も多層膜の成膜装置であり、ドーム14および成膜機構20を有している。ドーム14には複数の基板50が支持されている。ドーム14も基板50を支持しながら回転する回転体の一例である。成膜機構20は蒸着源24を有している。ドーム14がモーターで回転駆動される場合、モニター機構30はその回転軸に設置されてもよいし、ドーム14自体に設置されてもよい。成膜装置2では、成膜装置1のドラム10がドーム14に、成膜装置1のターゲット22が蒸着源24にそれぞれ置き換えられ、本発明が適用される。
 ただ、本発明は好ましくは成膜装置1(スパッタリング装置)に適用されるのがよい。蒸着装置では蒸着開始直後の時間帯とその後の時間帯とで成膜条件にやや変動があるのに対し、スパッタリング装置では成膜条件の変動が少ないためである。蒸着装置では成膜が進行するにつれ蒸着源24の原料が減少し蒸着源24の交換が必要になるのに対し、スパッタリング装置では基本的にターゲット22の交換が不要であるためである。蒸着装置では蒸着源24から基板50までの距離が比較的離れているのに対し、スパッタリング装置ではターゲット22から基板50までの距離が近く設計どおりの成膜が実現され易いためである。
 本発明は、目標膜厚からのずれを低減することができる成膜装置および成膜方法を提供することに、特に好適に利用することができる。
 1 成膜装置(スパッタリング装置)
 2 成膜装置(蒸着装置)
 10 ドラム
 12 基準位置
 14 ドーム
 20 成膜機構
 22、23 ターゲット
 24 蒸着源
 30 モニター機構
 40 制御機構
 50 基板
 52、54 基板
 60 検出機構
 70 酸素プラズマ機構
 80、82、84 時間帯

Claims (18)

  1.  (n+1)層以上(nは1以上の正の整数である。)の多層膜の成膜装置において、
     被成膜物を支持しながら回転する回転体と、
     前記被成膜物に対し成膜処理を行う成膜機構と、
     前記回転体の回転を制御する制御機構であって、前記多層膜の目標膜厚、初期設定された前記成膜機構の成膜レートおよび初期設定された前記回転体の回転速度から前記回転体の回転数を算出し、前記回転体の回転速度を調整して、算出した前記回転体の回転数を整数に近づける前記制御機構と、
     を備える成膜装置。
  2.  請求項1に記載の成膜装置において、
     前記回転体の回転速度を監視するモニター機構を備え、
     前記制御機構が、
     前記モニター機構の監視結果からn層目の前記回転体の回転速度を把握し、(n+1)層目以降の前記回転体の回転速度を調整する成膜装置。
  3.  請求項2に記載の成膜装置において、
     前記制御機構が、
     前記モニター機構による計測間隔t[sec]と、1回の計測に要する前記回転体の回転数Aとを、条件式(1)を満たすように設定する成膜装置。
      (Ra×t×da)/
      (60×(60×s×A+Ra×t×s))≦0.05 … (1)
    [条件式(1)中、Raは(n+1)層目以降の回転体の回転速度[rpm]を、daは多層膜の目標膜厚[nm]を、sは成膜機構による成膜レート[nm/sec]を、それぞれ表す。]
  4.  請求項1に記載の成膜装置において、
     前記回転体の回転速度を監視するモニター機構を備え、
     前記制御機構が、
     前記モニター機構の監視結果からn層目のm区画目(mは1以上の正の整数である。)の前記回転体の回転速度を把握し、n層目の(m+1)区画目以降の前記回転体の回転速度を調整する成膜装置。
  5.  請求項4に記載の成膜装置において、
     前記制御機構が、
     前記モニター機構による計測間隔t[sec]と、1回の計測に要する前記回転体の回転数Aとを、条件式(2)を満たすように設定する成膜装置。
      (Rc×t×dc)/
      (60×(60×s×A+Rc×t×s))≦0.05 … (2)
    [条件式(2)中、Rcはn層目の(m+1)区画目以降の回転体の回転速度[rpm]を、dcは多層膜のn層目の目標層厚[nm]を、sは成膜機構による成膜レート[nm/sec]を、それぞれ表す。]
  6.  請求項1に記載の成膜装置において、
     前記回転体の回転速度を監視するモニター機構を備え、
     前記制御機構が、
     前記モニター機構の監視結果から前記回転体の回転数を常に把握し、前記回転体の回転速度をリアルタイムで調整する成膜装置。
  7.  請求項1~6のいずれか一項に記載の成膜装置において、
     前記制御機構が、
     前記成膜機構による成膜時間または成膜レートを調整して、算出した前記回転体の回転数を整数に近づける成膜装置。
  8.  請求項1~7のいずれか一項に記載の成膜装置において、
     前記回転体の基準位置を検出する検出機構を備え、
     前記制御機構が、
     前記検出機構の検出結果に基づき、前記回転体の回転位置を調整して、各層の成膜を、前記回転体の基準位置から開始させるか、前記回転体の基準位置で終了させるか、または前記回転体の基準位置から開始させかつ前記回転体の基準位置で終了させる成膜装置。
  9.  請求項1~7のいずれか一項に記載の成膜装置において、
     前記被成膜物に対し成膜処理を行う第2の成膜機構を備え、
     前記制御機構が、
     一の前記多層膜の成膜からその次の他の前記多層膜の成膜に切り替わる時間帯でも、前記回転体の回転速度を調整して、算出した前記回転体の回転数を整数に近づける成膜装置。
  10.  被成膜物を支持しながら回転する回転体と、
     前記被成膜物に対し成膜処理を行う成膜機構とを備える成膜装置を用いた、(n+1)層以上(nは1以上の正の整数である。)の多層膜の成膜方法において、
     前記多層膜の目標膜厚、初期設定された前記成膜機構の成膜レートおよび初期設定された前記回転体の回転速度から前記回転体の回転数を算出し、前記回転体の回転速度を調整して、算出した前記回転体の回転数を整数に近づける成膜方法。
  11.  請求項10に記載の成膜方法において、
     前記成膜装置が前記回転体の回転速度を監視するモニター機構を備え、
     前記回転体の回転速度を調整する際に、前記モニター機構の監視結果からn層目の前記回転体の回転速度を把握し、(n+1)層目以降の前記回転体の回転速度を調整する成膜方法。
  12.  請求項11に記載の成膜方法において、
     前記モニター機構による計測間隔t[sec]と、1回の計測に要する前記回転体の回転数Aとを、条件式(1)を満たすように設定する成膜方法。
      (Ra×t×da)/
      (60×(60×s×A+Ra×t×s))≦0.05 … (1)
    [条件式(1)中、Raは(n+1)層目以降の回転体の回転速度[rpm]を、daは多層膜の目標膜厚[nm]を、sは成膜機構による成膜レート[nm/sec]を、それぞれ表す。]
  13.  請求項10に記載の成膜方法において、
     前記成膜装置が前記回転体の回転速度を監視するモニター機構を備え、
     前記回転体の回転速度を調整する際に、前記モニター機構の監視結果からn層目のm区画目(mは1以上の正の整数である。)の前記回転体の回転速度を把握し、n層目の(m+1)区画目以降の前記回転体の回転速度を調整する成膜方法。
  14.  請求項13に記載の成膜方法において、
     前記モニター機構による計測間隔t[sec]と、1回の計測に要する前記回転体の回転数Aとを、条件式(2)を満たすように設定する成膜方法。
      (Rc×t×dc)/
      (60×(60×s×A+Rc×t×s))≦0.05 … (2)
    [条件式(2)中、Rcはn層目の(m+1)区画目以降の回転体の回転速度[rpm]を、dcは多層膜のn層目の目標層厚[nm]を、sは成膜機構による成膜レート[nm/sec]を、それぞれ表す。]
  15.  請求項10に記載の成膜方法において、
     前記成膜装置が前記回転体の回転速度を監視するモニター機構を備え、
     前記回転体の回転速度を調整する際に、前記モニター機構の監視結果から前記回転体の回転数を常に把握し、前記回転体の回転速度をリアルタイムで調整する成膜方法。
  16.  請求項1~15のいずれか一項に記載の成膜方法において、
     前記成膜機構による成膜時間または成膜レートを調整して、算出した前記回転体の回転数を整数に近づける成膜方法。
  17.  請求項1~16のいずれか一項に記載の成膜方法において、
     前記成膜装置が前記回転体の基準位置を検出する検出機構を備え、
     前記検出機構の検出結果に基づき、前記回転体の回転位置を調整して、各層の成膜を、前記回転体の基準位置から開始させるか、前記回転体の基準位置で終了させるか、または前記回転体の基準位置から開始させかつ前記回転体の基準位置で終了させる成膜方法。
  18.  請求項1~16のいずれか一項に記載の成膜方法において、
     前記被成膜物に対し成膜処理を行う第2の成膜機構を備え、
     一の前記多層膜の成膜からその次の他の前記多層膜の成膜に切り替わる時間帯でも、前記回転体の回転速度を調整して、算出した前記回転体の回転数を整数に近づける成膜方法。
PCT/JP2016/086307 2015-12-24 2016-12-07 成膜装置および成膜方法 WO2017110464A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16878357.9A EP3396016A4 (en) 2015-12-24 2016-12-07 FILM-EDITING DEVICE AND FILM-EDGING PROCESS
JP2017557854A JP6777098B2 (ja) 2015-12-24 2016-12-07 成膜装置および成膜方法
CN201680074911.6A CN108368604A (zh) 2015-12-24 2016-12-07 成膜装置以及成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015251021 2015-12-24
JP2015-251021 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110464A1 true WO2017110464A1 (ja) 2017-06-29

Family

ID=59090153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086307 WO2017110464A1 (ja) 2015-12-24 2016-12-07 成膜装置および成膜方法

Country Status (4)

Country Link
EP (1) EP3396016A4 (ja)
JP (1) JP6777098B2 (ja)
CN (1) CN108368604A (ja)
WO (1) WO2017110464A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624854A (zh) * 2018-06-29 2018-10-09 北京铂阳顶荣光伏科技有限公司 一种新型制备薄膜的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250163A (ja) * 1985-04-26 1986-11-07 Nippon Telegr & Teleph Corp <Ntt> 多層薄膜の製造方法および装置
JP2003321770A (ja) 2002-04-26 2003-11-14 Seiko Epson Corp 薄膜の蒸着方法、有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法及び電子機器
JP2006124778A (ja) * 2004-10-28 2006-05-18 Shincron:Kk 薄膜形成装置及び薄膜形成方法
JP2014145091A (ja) * 2013-01-25 2014-08-14 Kobe Steel Ltd 耐摩耗性に優れた積層皮膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69216685T2 (de) * 1991-05-31 1997-05-28 Deposition Sciences Inc Sputteranlage
US6572738B1 (en) * 1999-05-25 2003-06-03 Unaxis Balzers Aktiengesellschaft Vacuum treatment system and process for manufacturing workpieces
JP2006176862A (ja) * 2004-12-24 2006-07-06 Optrex Corp スパッタ成膜装置およびスパッタ成膜方法
CN101952093A (zh) * 2008-01-25 2011-01-19 旭化成株式会社 无缝塑模的制造方法
JP5801302B2 (ja) * 2010-06-30 2015-10-28 株式会社アルバック 成膜装置及び成膜方法
JP5126909B2 (ja) * 2010-10-08 2013-01-23 株式会社シンクロン 薄膜形成方法及び薄膜形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250163A (ja) * 1985-04-26 1986-11-07 Nippon Telegr & Teleph Corp <Ntt> 多層薄膜の製造方法および装置
JP2003321770A (ja) 2002-04-26 2003-11-14 Seiko Epson Corp 薄膜の蒸着方法、有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法及び電子機器
JP2006124778A (ja) * 2004-10-28 2006-05-18 Shincron:Kk 薄膜形成装置及び薄膜形成方法
JP2014145091A (ja) * 2013-01-25 2014-08-14 Kobe Steel Ltd 耐摩耗性に優れた積層皮膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396016A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624854A (zh) * 2018-06-29 2018-10-09 北京铂阳顶荣光伏科技有限公司 一种新型制备薄膜的装置及方法

Also Published As

Publication number Publication date
JP6777098B2 (ja) 2020-10-28
JPWO2017110464A1 (ja) 2018-10-18
EP3396016A1 (en) 2018-10-31
EP3396016A4 (en) 2019-08-28
CN108368604A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
EP2054160B1 (en) Method for producing smooth, dense optical films
RU2352683C2 (ru) Способ напыления на ленточные подложки прозрачного барьерного покрытия из оксида алюминия
KR20130060544A (ko) 나노멀티레이어 코팅층 형성방법 및 형성장치
JP2008223140A (ja) 複数の材料の混合物から構成され、かつ、予め決められた屈折率を有する層を堆積させるための方法およびスパッタ堆積システム
TWI510658B (zh) 成膜裝置及成膜方法
EP1182271B1 (en) Apparatus and method for coating substrate
WO2017110464A1 (ja) 成膜装置および成膜方法
JP2010018851A (ja) 成膜装置
JP2002212720A (ja) スパッタリング方法およびスパッタリング装置
JP2006330485A (ja) 薄膜形成装置及び薄膜形成方法並びに光学薄膜
WO2023079770A1 (ja) 成膜制御装置、成膜装置及び成膜方法
WO2016034197A1 (en) Assembly and method for deposition of material on a substrate
JP6596474B2 (ja) 閉ループ制御
TWI758514B (zh) 反應濺射的膜厚控制方法及裝置
US11802349B2 (en) Method for depositing high quality PVD films
US20200131627A1 (en) Heat treatment apparatus for a vacuum chamber, deposition apparatus for depositing material on a flexible substrate, method of heat treatment of a flexible substrate in a vacuum chamber, and method for processing a flexible substrate
KR20140016220A (ko) 나노멀티레이어 코팅층, 그 형성방법 및 형성장치
JP2003147521A (ja) 薄膜の成膜装置及び成膜方法
JP3608838B2 (ja) 薄膜形成装置および薄膜形成方法
JP2003166055A (ja) 薄膜の成膜装置及び成膜方法
JP2010270354A (ja) 多層膜成膜方法
US20120097529A1 (en) Magnetron coating module and magnetron coating method
JP2008274325A (ja) 成膜方法ならびに成膜装置
JPH11229135A (ja) スパッタ装置および成膜方法
JP5199162B2 (ja) 機能性フィルムの製造方法、及び製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557854

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016878357

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016878357

Country of ref document: EP

Effective date: 20180724