WO2017104793A1 - 乗員の感性向上システム - Google Patents

乗員の感性向上システム Download PDF

Info

Publication number
WO2017104793A1
WO2017104793A1 PCT/JP2016/087532 JP2016087532W WO2017104793A1 WO 2017104793 A1 WO2017104793 A1 WO 2017104793A1 JP 2016087532 W JP2016087532 W JP 2016087532W WO 2017104793 A1 WO2017104793 A1 WO 2017104793A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
driver
sensitivity
detection unit
control
Prior art date
Application number
PCT/JP2016/087532
Other languages
English (en)
French (fr)
Inventor
成人 山脇
貴史 笠岡
昌宏 町澤
範明 金山
快 牧田
知也 松本
雄策 武田
正徳 本田
岡本 宜久
道田 奈々江
利宏 原
篤秀 岸
西川 一男
隆秀 農沢
Original Assignee
国立大学法人広島大学
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学, マツダ株式会社 filed Critical 国立大学法人広島大学
Publication of WO2017104793A1 publication Critical patent/WO2017104793A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/14Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable rotatable, e.g. to permit easy access
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/037Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for occupant comfort, e.g. for automatic adjustment of appliances according to personal settings, e.g. seats, mirrors, steering wheel

Definitions

  • the present invention relates to an occupant sensitivity improvement system.
  • Patent Document 1 discloses that the pattern of cranial nerve activity detected by the electroencephalogram detection apparatus equipped to the subject is decoded, and the decoding result for the target activation pattern is according to the recentness of the decoding result. It is proposed to calculate a reward value and present the reward value to the subject.
  • emotions related to the feeling of excitement of individual drivers often differ even when the driving environment is the same. For example, even if the characteristic of the driving operation system is set so as to make the driver feel excited, another driver may not feel excited. In other words, simply setting the vehicle characteristics to a certain value cannot provide an exciting feeling corresponding to each driver.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a passenger's sensibility improvement system in which each driver can drive while having a predetermined sensitivity state.
  • An occupant sensitivity improving system includes an environment detection unit that detects an environment of a moving object, A driver state detection unit for detecting a state of a driver driving the mobile body; A control object mounted on the mobile body; A first database that stores a basic driver state that is a standard for obtaining a predetermined sensitivity state in correspondence with an environment; A sensitivity state estimation unit that estimates whether or not the driver's sensitivity state is in a predetermined sensitivity state based on the driver state detected by the driver state detection unit; When the sensitivity state estimation unit estimates that the driver's sensitivity state is not the predetermined sensitivity state, the driver state detection unit detects the basic driver state obtained by checking the first database.
  • a control amount determination unit that determines a control amount for the control target so that the sensitivity state estimated by the sensitivity state estimation unit becomes the predetermined sensitivity state based on the driver state;
  • a control unit that controls the control object with a control amount determined by the control amount determination unit;
  • a driver-specific learning value corresponding to the environment detected by the environment detection unit and the driver state detected by the driver state detection unit is determined.
  • the learning department A second database that stores the learning value determined by the learning unit in association with the environment detected by the environment detection unit and the driver state detected by the driver state detection unit;
  • the control amount determination unit is present when the learning value corresponding to the environment detected by the environment detection unit and the driver state detected by the driver state detection unit exists in the second database.
  • a control amount for the control target is determined based on a learning value.
  • each driver can be driven in a state where a predetermined sensitivity state is held.
  • the figure which shows three types of parameters relevant to an excitement The block diagram which shows the example of a control system of this invention.
  • the characteristic view which shows the example of a process of the engine sound generated from a speaker.
  • the flowchart which shows the example of control of this invention.
  • FIG. 1 is a diagram showing an index indicating a driver's sensitivity state.
  • the sensibility state includes a first parameter indicating “pleasant / unpleasant”, a second parameter indicating “active / inactive”, and a third parameter indicating “future-oriented / past-oriented”. Indicated by two parameters. “•” indicates “and”. That is, the sensitivity state is indicated by three-axis (three-dimensional) parameters. As one of the sensitivity states, there is a sensitivity state of “exciting feeling”. In the three-dimensional space shown in FIG.
  • the driver's sensibility state corresponds to the “excitement” sensibility state.
  • sensibility is a broad concept that encompasses various emotions such as excitement, exhilaration, harrara, and throb.
  • “Pleasure” is a state of sensitivity that feels comfortable and interesting, and indicates that there is a sense of fulfillment accompanying the activity. “Uncomfortable” is a sensitivity state in the opposite direction of pleasantness, and is a sensitivity state that feels uninteresting. “Activity” is a sensitivity state in the awake state. “Inactive” is a sensitivity state in the opposite direction of activity, for example, a casual state. “Future-oriented” is a positive sensibility state, for example, a sensibility state that, if you make an effort, it will be right. Note that the future orientation includes, for example, a state of ecstasy among melancholy states. “Past orientation” is a sensitivity state in the opposite direction to the future orientation, for example, a backward sensitivity state.
  • an exciting feeling will be described as an example of the sensitivity state.
  • the evaluation values of the first to third parameters are calculated based on the detected driver state. Then, if the calculated evaluation value is located in an exciting zone in the three-dimensional space shown in FIG. 1, it is estimated that the driver is in an exciting driving state.
  • the first parameter indicating “pleasant / uncomfortable” is “+1”, “+2”, “+3”, “+4”, “+5”, in order, as the level of “pleasant” increases from the origin O. For example, five levels of evaluation values are set.
  • the first parameter has, for example, five levels of evaluation values such as “ ⁇ 1”, “ ⁇ 2”, “ ⁇ 3”, “ ⁇ 4”, and “ ⁇ 5” as the level of the uncomfortable direction increases. Is set. Therefore, a total of 11 evaluation values including the origin O are set as the first parameter.
  • Evaluation values are set in the same manner as the first parameter for the second parameter indicating “active / inactive” and the third parameter indicating “future-oriented / past-oriented”.
  • the second parameter is, for example, in five stages from “O” to “+1”, “+2”, “+3”, “+4”, “+5” in order as the “activity” level increases.
  • An evaluation value is set.
  • the second parameter is, for example, “ ⁇ 1”, “ ⁇ 2”, “ ⁇ 3”, “ ⁇ 4”, and “ ⁇ 5” in order as the “inactive” level increases from the origin O. For example, five levels of evaluation values are set. Therefore, a total of 11 evaluation values including the origin O are set as the second parameter.
  • the third parameter is, for example, in five stages, such as “+1”, “+2”, “+3”, “+4”, “+5” in order from the origin O to the “future-oriented” level.
  • the evaluation value is set.
  • the third parameter is “ ⁇ 1”, “ ⁇ 2”, “ ⁇ 3”, “ ⁇ 4”, “ ⁇ 5” in order from the origin O as the “past orientation” level increases. For example, five levels of evaluation values are set. Therefore, a total of 11 evaluation values including the origin O are set as the third parameter.
  • the first to third parameters have been described as being set with 11-level evaluation values, but the present invention is not limited to this, and evaluation values of 10 levels or less, or 12 levels or more may be set. Good. Alternatively, evaluation values having continuous values may be set for the first to third parameters, respectively.
  • the first to third parameters are in the “excitement” zone (first to third).
  • Each of the parameter evaluation values is “+”), and various devices (control object 14) mounted on the vehicle are controlled. As a result, the sensitivity state of the driver is changed to the “excitement” sensitivity state.
  • FIG. 2 is a block diagram showing an example of a control system U of the passenger sensitivity improving system according to the embodiment of the present invention.
  • the control system U includes a driver state detection unit 1, an environment detection unit 2, a short-term database (DB) 10, a sensitivity state estimation unit 11, a control amount determination unit 12, a control unit 13, a control target 14, a sympathetic control target 14a, A learning unit 15, a long-term database (DB) 16, a passenger state detection unit 21, a sympathetic relationship determination unit 22, and a shared database (DB) 23 are provided.
  • DB long-term database
  • DB shared database
  • the driver state detection unit 1 detects a driver state that is a state of a driver driving the vehicle.
  • the detected driver state is used by the sensitivity state estimation unit 11 described later to estimate the driver's sensitivity state.
  • the driver state detection unit 1 includes, for example, an image sensor such as a CCD camera or a CMOS camera, acquires a driver's face image by photographing the driver's face using the image sensor, and acquires the acquired face image. It is used to detect facial expressions, gaze states (gaze movements, blinks, eye stop, and pupil diameter). Note that the movement of the line of sight, blink, eyeball retention, and pupil diameter may be detected using an eye camera.
  • an image sensor such as a CCD camera or a CMOS camera
  • the driver state detection unit 1 further includes, for example, a heart rate sensor provided in the driver's seat, and detects the driver's breathing state (the number of breaths and the depth of breathing) using the heart rate sensor.
  • the respiratory state may be detected using an image sensor.
  • the driver state detection part 1 is comprised with a resistance sensor, for example, and detects skin resistance using a resistance sensor.
  • the driver state detection unit 1 further includes, for example, a pulse wave sensor provided on the steering handle, and detects a fingertip pulse wave using the pulse wave sensor.
  • the driver state detection unit 1 further includes, for example, a 6ch type myoelectric sensor provided on the steering handle, and detects the muscle state of the driver's upper limb using the myoelectric sensor.
  • the driver state detection unit 1 further includes, for example, a 3ch-type myoelectric sensor provided in the driver's seat, and detects the muscle state of the driver's lower limb using the myoelectric sensor.
  • the driver state detection unit 1 further includes a microphone, and detects the voice information of the driver using the microphone.
  • the audio information for example, information indicating the tone of the voice is included.
  • the driver state detection unit 1 further includes, for example, a load pressure sensor provided in the driver's seat, and detects the seating pressure of the driver with respect to the driver's seat using the load pressure sensor.
  • the driver state detection unit 1 further includes an operation amount detection sensor for detecting an operation amount of the driver for various operation systems such as a steering, an accelerator pedal, a brake pedal, and a shift knob.
  • the operation amount for various operation systems is detected as the driver state.
  • the steering operation amount is performed using, for example, an angle sensor for detecting the steering angle of the steering.
  • the amount of operation of the accelerator pedal is performed using, for example, an angle sensor for detecting the amount of depression of the accelerator pedal.
  • the operation amount of the brake pedal is performed using, for example, an angle sensor for detecting the depression amount of the brake pedal.
  • the operation amount of the shift knob is performed using, for example, a position sensor that detects the position of the shift knob.
  • the environment detection unit 2 detects vehicle interior environment, vehicle exterior environment, travel environment, and vehicle information.
  • vehicle interior environment includes, for example, an air condition (for example, temperature, humidity, and odor) in the vehicle interior, a solar radiation condition, and a room sound.
  • air condition for example, temperature, humidity, and odor
  • the environment detection unit 2 includes a temperature sensor, a humidity sensor, and an odor sensor provided in the vehicle interior, and if these sensors are used to detect the temperature, humidity, and odor in the vehicle interior as the vehicle interior environment, Good.
  • the environment detection unit 2 may further include an illuminance sensor, and may detect daytime, nighttime, clear weather, rainy weather, and snowfall using the illuminance sensor.
  • the environment detection unit 2 may detect an environment outside the passenger compartment using at least one of a temperature sensor and a humidity sensor.
  • the road environment around the vehicle includes, for example, straight roads, curved roads, highways, general roads, and intersections.
  • the environment detection unit 2 may further include a navigation device and an image sensor that captures the surroundings of the vehicle, and may detect the traveling environment using information obtained from the navigation device and the image sensor.
  • vehicle information vehicle speed, engine speed, information related to the steering system, information related to the accelerator pedal system, information related to the brake pedal system, and information related to the transmission
  • the environment detection unit 2 may acquire the vehicle speed using a speedometer and detect the engine speed using an engine speed sensor.
  • the steering angle, steering angular velocity, and turning angle can be used as information related to the steering system.
  • the environment detection unit 2 may detect the steering angular velocity by, for example, detecting the steering angle using a steering angle sensor that detects the steering angle of the wheel and differentiating the steering angle detected by the steering angle sensor.
  • the environment detection part 2 should just detect a turning angle, for example using a yaw rate sensor.
  • Accelerator opening, accelerator depression force, and accelerator depression speed can be used as information related to the accelerator pedal system.
  • the environment detection unit 2 may detect the accelerator opening using, for example, an angle sensor that detects the amount of depression of the accelerator pedal. Moreover, the environment detection part 2 should just detect an accelerator depression force using the load sensor provided in the accelerator pedal, for example.
  • the environment detection unit 2 may detect the accelerator depression speed by differentiating the accelerator depression amount detected by the angle sensor.
  • the amount of brake operation, the brake operation speed, and the brake operation force can be adopted.
  • the currently set transmission speed can be adopted.
  • the environment detection unit 2 may detect the brake operation amount from the measurement value detected by the angle sensor for detecting the depression amount of the brake pedal, for example. Moreover, the environment detection part 2 should just detect the brake operation speed by differentiating the depression amount of the brake pedal which the angle sensor detected, for example. Moreover, the environment detection part 2 should just detect a brake operation force, for example using the load sensor provided in the brake pedal. Moreover, the environment detection part 2 should just detect the gear stage of a transmission using the position sensor which a transmission detects the position of a shift knob, for example. The environment detection unit 2 does not need to detect all the above-described environments, and may detect at least one.
  • the short-term database 10 (an example of a first database) stores a basic driver state that is a predetermined standard so as to obtain a predetermined sensitivity state in association with an environment.
  • a sensitivity state of “exciting feeling” is adopted.
  • the short-term database 10 stores a driver state of an experienced driver, which is a driver state as a model according to a scene (a combination of environments detected by the environment detection unit 2), in association with the environment. That is, in a certain scene, if the driver performs the driving indicated by the basic driver state stored in the short-term database 10, the driver is more likely to get a feeling of excitement.
  • the basic driver state stored in the short-term database 10 includes an operation state such as an appropriate steering operation amount, an appropriate accelerator pedal operation amount, an appropriate brake pedal operation amount, and an appropriate shift knob operation amount, and Any one or more of appropriate gaze states (for example, movement of gaze) are applicable.
  • the sensitivity state estimation unit 11 estimates whether or not the driver's sensitivity state is an “exciting feeling” sensitivity state. Specifically, the sensitivity state estimation unit 11 determines the evaluation values of the first to third parameters from the driver state detected by the driver state detection unit 1. If the evaluation value of the first parameter is “pleasant”, the evaluation value of the second parameter is “active”, and the evaluation value of the third parameter is “future-oriented”, the sensitivity state estimation unit 11 Is estimated to be in the state of “excitement”. In addition, the sensitivity state estimation unit 11 determines (estimates) what factors are insufficient if the driver does not feel the excitement.
  • FIG. 11 is a diagram illustrating the determination table T1.
  • the determination table T1 includes fields of “sensitivity state”, “first parameter”, “second parameter”, and “third parameter”.
  • Kansei state data indicating the types of Kansei states such as “Excitement”, “Anxiety”, “Depression”, “Boring”, and “Depression” are registered.
  • first parameter data indicating whether the evaluation value of the first parameter corresponds to “pleasant” or “uncomfortable” is registered.
  • second parameter data indicating whether the evaluation value of the second parameter corresponds to “active” or “inactive” is registered.
  • third parameter data indicating whether the evaluation value of the third parameter corresponds to “future-oriented” or “past-oriented” is registered.
  • the driver is It is estimated that it is in the sensitivity state.
  • the sensitivity state estimation unit 11 indicates that the driver Estimated to be in a state of sensitivity of “anxiety”.
  • the sensitivity state estimation unit 11 Estimated to be in the state of sensitivity of “depressed”.
  • the sensitivity state estimation unit 11 Presumes that it is in a “feeling bored” sensitivity state.
  • the emotional state estimation unit 11 Is estimated to be in the state of sensitivity of “depression”.
  • the driver state detection unit 1 has (1) facial expression, (2) gaze state (gaze movement, blink, eyeball retention, and pupil diameter), (3) breathing as the driver state. State, (4) skin resistance, (5) finger plethysmogram, (6) upper limb muscle state, (7) lower limb muscle state, (8) audio information, (9) seating pressure, (10) steering , (11) accelerator pedal operation amount, (12) brake pedal operation amount, and (13) shift knob operation amount.
  • the sensitivity state estimation unit 11 substitutes the driver state parameters shown in the above (1) to (13) into predetermined mathematical formulas to calculate the evaluation values of the first to third parameters.
  • the driver state detection unit 1 does not need to detect all the parameters of the driver state shown in the above (1) to (13), and may detect any one or more.
  • (1) facial expressions include, for example, joyful expressions, angry expressions, sadness expressions, and the like.
  • it is converted into a numerical value using a predetermined numerical value.
  • (8) audio information includes joy, anger, sadness, etc., and is quantified by numerical values determined in advance for these.
  • FIG. 12 shows a control object and a control example for improving the excitement that is one of the sensitivity states. Details of FIG. 12 will be described later.
  • the sensitivity state estimation unit 11 extracts a factor that does not make the driver feel excited and outputs the factor to the control amount determination unit 12.
  • the emotional state estimation unit 11 may extract, for example, a parameter having a negative evaluation value from the first to third parameters as a factor that does not cause an exciting feeling. For example, if the evaluation value of the first parameter is negative, the first parameter is extracted as a factor, and if the evaluation value of the second parameter is negative, the second parameter is extracted as a factor and the evaluation value of the third parameter If is negative, the third parameter is extracted as a factor. There may be a plurality of factors.
  • the control amount determination unit 12 determines the difference between the driver state detected by the driver state detection unit 1 and the basic driver state read from the short-term database 10 (for example, the difference in how the eyes move or the steering wheel
  • the control amount in the direction in which the feeling of excitement is improved is determined according to the difference in operation method.
  • the determined control amount is for the control object 14 for removing a factor that does not make the feeling of excitement from the sensitivity state estimation unit 11 felt.
  • the basic driver state includes (1) an appropriate steering operation amount, (2) an appropriate accelerator pedal operation amount, (3) an appropriate brake pedal operation amount, and (4) an appropriate shift knob.
  • the operation amount and (5) an appropriate line-of-sight state are included. Therefore, the control amount determination unit 12 calculates the difference between the parameters of the basic driver state and the corresponding driver state parameter detected by the driver state detection unit 1, and controls the difference in a decreasing direction. What is necessary is just to determine the control amount of the object 14.
  • the control unit 13 outputs the control amount determined by the control amount determination unit 12 to the control target 14. As a result, the driver's excitement is improved.
  • the control object 14 will be described later.
  • FIG. 12 shows a control table T2 in which control methods are registered in advance.
  • This control table T2 is stored in advance in a memory (not shown).
  • the control amount determination unit 12 may determine the control object 14 using the control table T2.
  • the first line of FIG. 12 describes the control contents for improving the evaluation value of the first parameter indicating “pleasant / uncomfortable”.
  • the second line of FIG. 12 describes the control content for improving the evaluation value of the second parameter indicating “active / inactive”.
  • the third line of FIG. 12 describes the control content for improving the evaluation value of the third parameter indicating “future-oriented / past-oriented”.
  • control amount determination unit 12 may select at least one of a projection mapping device and an odor generation device, which will be described later, as the control object 14 if the first parameter has a factor that does not make the user feel excited.
  • control amount determination part 12 is the direction of the projection mapping apparatus and odor generating apparatus in the direction where the difference of the corresponding parameters of the basic driver state mentioned above and the driver state detected by the driver state detection part 1 decreases. What is necessary is just to determine at least one control amount.
  • control amount determination unit 12 determines at least one of the vibrator and the audio device provided in the driver's seat or the steering as the control target 14 if there is a factor that does not make the user feel excited. Then, the control amount determination unit 12 is configured to reduce at least one of the vibrator and the audio device in a direction in which a difference between corresponding parameters of the basic driver state and the driver state detected by the driver state detection unit 1 decreases. What is necessary is just to determine a control amount.
  • control amount of the vibrator for example, a control amount that increases the vibration intensity of the vibrator as the difference between the parameters increases can be employed.
  • control amount of the audio device for example, a control amount for controlling a sound (for example, a sound of an engine sound to be described later) determined in advance to improve the evaluation value of the second parameter can be employed. .
  • the control amount determination unit 12 selects a gain characteristic with a steep rise as the difference between parameters increases, and from the speaker of the audio device according to the selected gain characteristic. What is necessary is just to determine the control amount which controls the sound output.
  • the control amount determination unit 12 determines, as the control target 14, at least one of an odor generation device and a projection mapping device, which will be described later, if there is a factor that does not cause an excitement in the third parameter. Then, the control amount determination unit 12 is configured so that the difference between the corresponding parameters of the basic driver state and the driver state detected by the driver state detection unit 1 decreases in the direction in which the difference between corresponding parameters decreases. What is necessary is just to determine at least one control amount.
  • control amount of the odor generating device for example, as the difference between the parameters increases, there is a control amount that increases the output amount of the odorous substance or a control amount that outputs a predetermined odorous substance according to the difference between the parameters. Can be adopted.
  • control amount of the projection mapping device for example, a control amount that increases the luminance of the output video as the difference between the parameters increases or a control amount that outputs a predetermined video according to the difference between the parameters is adopted. it can.
  • control the control amount determination unit 12 may determine the air conditioning control device as the control target 14 if the third parameter has a factor that does not cause an excitement. Then, the control amount determination unit 12 determines the control amount of the air conditioning control device in a direction in which the difference between the corresponding parameters of the basic driver state and the driver state detected by the driver state detection unit 1 decreases. do it. For example, the control amount determination unit 12 may determine the control amount of the air conditioning control device so that a predetermined temperature change amount and air volume change amount are output according to the difference between the parameters.
  • the control content for improving the “future-oriented / past-oriented” sensibility state is as follows: “By changing the window frame shape, the vehicle can be controlled linearly by increasing the perception of distance. Make it easier and raise future orientation. " Therefore, the control amount determination unit 12 determines the functional liquid crystal film that adjusts the field-of-view restriction area, which will be described later with reference to FIGS. Also good. Then, the control amount determination unit 12 sets the control amount of the functional liquid crystal film in a direction in which the difference between the corresponding parameters of the basic driver state and the driver state detected by the driver state detection unit 1 decreases. Just decide. For example, the control amount determination unit 12 may determine the control amount such that the control amount determination unit 12 is adjusted to a view restriction region having a predetermined shape and size according to the difference between parameters.
  • the functional liquid crystal film is an example of a view restriction device.
  • the control amount determination unit 12 may determine at least one of the steering, the accelerator pedal, the brake pedal, and the shift knob as the control object 14 if the third parameter has a factor that does not make the user feel excited. Then, the control amount determination unit 12 is arranged such that the difference between corresponding parameters of the basic driver state and the driver state detected by the driver state detection unit 1 decreases in the direction in which the steering, the accelerator pedal, the brake pedal, In addition, it is sufficient to determine at least one control amount of the shift knob.
  • the control amount determination unit 12 selects a characteristic with a large slope, and uses the selected characteristic to determine a control amount according to the operation amount. Just decide.
  • the steering, accelerator pedal, brake pedal, and shift knob are examples of the driving operation system.
  • a difference between corresponding parameters for example, a total value of differences between corresponding parameters may be employed.
  • the driver state detected by the driver state detection unit 1 described above, the environment detected by the environment detection unit 2, and the control amount from the control unit 13 are input to the learning unit 15.
  • the learning unit 15 performs learning using feedback control. That is, in the learning unit 15, when the control amount is output from the control unit 13, the driver state detected by the driver state detection unit 1 is a feeling state of “exciting feeling” by the feeling state estimation unit 11. Is determined as a learning value, the determined learning value is associated with the detected driver state and the environment. Then, the learning unit 15 stores a learning value associated with the driver state and the environment in the long-term database (second database) 16. Specifically, the learning unit 15 stores the driver state, the environment, the learned value, and the control object 14 in association with each other in the long-term database 16.
  • the learning unit 15 stores a control amount in which the driver state and the environment are the same in a memory (not shown) until a predetermined number (for example, two or more) of control amounts in which the driver state and the environment are the same is output. Hold temporarily.
  • the learning unit 15 calculates, for example, an average value of the predetermined number of control amounts when the number of retained control amounts having the same driver state and environment reaches a predetermined number, and calculates the calculated average value as a learning value. It may be determined as In this case, the learning unit 15 calculates a weighted average value so that the degree of reflection of the new control amount with respect to the old control amount is larger than the predetermined control amount, and learns the calculated weighted average value. It may be determined as a value.
  • the learning unit 15 may select a control amount having the highest evaluation value for the feeling of excitement as the learning value.
  • the learning unit 15 holds a control amount in which each evaluation value of the first to third parameters is a predetermined value (for example, 3) or more, and determines a control amount having the maximum total value of the evaluation values as a learning value. May be.
  • the control amount determination unit 12 can output the learning value as a control amount to the control unit 13. In this case, the control amount determination unit 12 determines the control amount without using the basic driver state stored in the short-term database 10. As described above, when a long period of time elapses, learning values are stored in the long-term database 16 for every scene (or most scenes). As a result, the control amount determination unit 12 can acquire, from the long-term database 16, a control amount that can obtain a feeling of excitement for each driver according to the driver state and environment after a long period of time. .
  • the learning unit 15 determines the control amount determined by comparing the driver state detected by the driver state detection unit 1 with the basic driver state stored in the short-term database 10.
  • a control amount obtained by weighting the learning value stored in the long-term database 16 by a predetermined ratio may be determined as the final control amount.
  • the learning unit 15 determines the driver state detected by the driver state detection unit 1 and the basic driver state stored in the short-term database 10 so that the evaluation values of the first to third parameters are the highest values.
  • the control amount determined by the comparison with the learning value stored in the long-term database 16 may be weighted at a predetermined ratio.
  • the predetermined ratio a value such that the control amount determined by comparing the detected basic driver state and the basic driver state is 60% and the learning value of the long-term database 16 is 40% can be adopted.
  • the learning value stored in the long-term database 16 indicates the control amount unique to the driver. Then, the learning value stored in the long-term database 16 is output (copied) to an external storage medium (for example, an SD card) and transplanted (copied) to a storage area corresponding to the long-term database 16 of another vehicle. . As a result, in this other vehicle, it becomes possible to immediately set a learning value that allows the corresponding driver to obtain a feeling of excitement.
  • an external storage medium for example, an SD card
  • the driver can obtain a feeling of excitement and at the same time, can obtain sympathy with the passenger (especially passenger in the passenger seat).
  • the body of the driver and the passenger is synchronized and shakes.
  • the driver and the passenger are looking at different scenery, such synchronization is unlikely to occur.
  • the passenger state detection unit 21 includes a load pressure sensor provided in a driver's seat or a seat cushion and a load pressure sensor provided in a passenger seat (for example, a passenger seat). Then, the sympathetic relationship determination unit 22 detects the body shakes of the driver and the passenger from the outputs of both load pressure sensors, and compares the detected body shakes to determine the degree of sympathy state (sympathy level). ) May be determined.
  • the empathy level may be indicated by two levels of whether or not the user is in the sympathetic state, may be indicated by three or more levels, or may be indicated by a continuous numerical value.
  • the detection result of the load pressure sensor corresponds to an example of a passenger state.
  • the detection result of the load pressure sensor constituting the passenger state detection unit 21 and the driver state detected by the driver state detection unit 1 are input to the sympathetic relationship determination unit 22.
  • the sympathetic relationship determination unit 22 calculates the sympathy level of the driver and the passenger by comparing both detection results. If the calculated sympathy level is equal to or higher than a predetermined value, the driver and the passenger are in the sympathy state. If the calculated empathy level is less than the predetermined value, it is determined that the driver and the passenger are not in the empathy state.
  • the control amount determination unit 12 controls the control target 14a for sympathy in order to improve the sympathy level of the driver and the passenger. Determine the amount. Then, the control unit 13 controls the sympathetic control target 14 a using the control amount determined by the control amount determination unit 12.
  • the sympathetic control target 14a is constituted by, for example, a variable passenger seat that can change the direction of the passenger's body.
  • the control amount determination unit 12 may determine the control amount of the sympathetic control target 14a so that the direction of the passenger's body is changed in the driver's line-of-sight direction, for example.
  • control amount determination unit 12 may determine the control amount so that, for example, the seat cushion provided in the passenger seat is slightly rotated in the horizontal direction toward the driver's line of sight.
  • the control amount determination unit 12 may determine, for example, a control amount for displacing the direction of the side support provided on the left and right sides of the passenger seat so that the direction of the passenger's body faces the driver's line of sight.
  • the direction of the sympathetic person's line of sight toward the driver's line of sight corresponds to, for example, directing the passenger's line of sight to an object on which the driver is supposed to be gazing. This corresponds to directing the gaze direction of the sympathetic person to a point away from the driver by a certain distance (for example, 5 to 10 m) on the gaze direction of the person.
  • the sympathetic control target 14a is constituted by, for example, a head-up display (an example of a line-of-sight guidance device). Then, the control amount determination unit 12 displays an arrow mark that guides the sight line of the passenger in the driver's line of sight using a head-up display that projects an image on the front windshield in front of the passenger seat occupant. May be determined as the control amount.
  • the sympathetic control target 14a is constituted by, for example, a projection mapping device (an example of a line-of-sight guidance device) provided at a high position in the vehicle interior (for example, the ceiling). Then, the control amount determination unit 12 may determine, as the control amount, a command for displaying an arrow mark that guides the line of sight of the passenger in the driver's line of sight in the front position of the passenger. In order to simplify the control, the control amount determination unit 12 uses the shared database 23 for the control for improving the level of empathy independently of the control for improving the driver's excitement. do it.
  • the sympathetic relationship determination unit 22 stores the control amount of the sympathetic control target 14 a in the shared database 23 in association with the driver state detected by the sensitivity state estimation unit 11 and the environment detected by the environment detection unit 2. . Then, the control amount determination unit 12 uses the driver state and environment detection unit 2 detected by the driver state detection unit 1 when the sympathy relationship determination unit 22 determines that the driver and the passenger are not in the sympathy state. It is determined whether or not a control amount corresponding to the detected environment is stored in the shared database 23. And if the said corresponding control amount is memorize
  • the empathy relationship determination unit 22 may store the empathy level in association with the control amount in the shared database 23 in addition to the detected driver state and environment.
  • FIG. 3 is a graph showing the relationship between the steering operation amount and the vehicle bending amount.
  • a characteristic ⁇ indicates a basic setting (basic characteristic).
  • the characteristic ⁇ 1 is a quick steering characteristic in which the amount of vehicle bending with respect to the steering operation amount is larger than the characteristic ⁇ .
  • the characteristic ⁇ 2 is a stable steering characteristic in which the amount of bending of the vehicle with respect to the amount of steering operation is smaller than the characteristic ⁇ . If the steering characteristic is changed in a direction approaching the characteristic ⁇ 1, the amount of bending of the vehicle with respect to the steering operation amount increases, leading to driver activation and comfort.
  • Each characteristic ⁇ , ⁇ 1, ⁇ 2 is linear.
  • the actual change in physical quantity is set to a substantially logarithmic relationship as shown in FIG. 4, for example.
  • FIG. 4 an actual setting having hysteresis in the operation direction and the operation return direction is indicated by r1, and the characteristic indicated by r1 is simplified and indicated by a logarithmic function is indicated by r2.
  • the linear characteristics shown in FIG. 3 are preferably set in the same manner for other operating systems such as an accelerator pedal and a brake pedal. That is, it is preferable that the characteristic setting is a linear relationship as sensitivity, and that the change in physical quantity is a characteristic of approximately logarithmic setting.
  • FIG. 5 is a diagram showing an example of a variable window frame structure.
  • the hatched area is a view-restricting area that can be changed. That is, the front window glass 51 has an upper edge portion partitioned by the roof 52, left and right side edge portions partitioned by the pair of left and right front pillars 53, and a lower edge portion partitioned by the instrument panel 54.
  • the window frame structure of the front window glass 51 is partitioned by the roof 52, the pair of left and right front pillars 53, and the instrument panel 54.
  • the window frame structure itself of the front window glass 51 cannot be changed.
  • the window frame structure of the front window glass 51 has a general inverted trapezoidal shape.
  • the driver is visually influenced by the size and shape of the partitioned front window glass 51.
  • a steering handle 55 is provided on the left side.
  • a meter hood 56 is provided in front of the steering handle 55.
  • a left-hand drive vehicle is employed.
  • the front window glass 51 is provided with a field-of-view restriction area indicated by a hatched area.
  • This field-of-view restriction area is configured by attaching a color type or monochrome type functional liquid crystal film to an area indicated by hatching, for example.
  • the visibility restriction region switches the transparency between the visibility securing state which is a transparent state and the visibility restriction state which is a translucent or non-transparent state. Can do.
  • a state where the view restriction region is set to the maximum area is shown.
  • the visual field restriction region has an overall annular shape so as to surround the entire peripheral edge of the front window glass 51. More specifically, an upper view restriction region S1 that is long in the vehicle width direction along the upper edge portion of the front window glass 51, and a lower view restriction region S2 that is long in the vehicle width direction along the lower edge portion of the front window glass 51. And a left visual field restriction region S3 that is long in the vertical direction along the inner peripheral edge portion of the left front pillar 53, and a right visual field restriction region S4 that is long in the vertical direction along the inner peripheral edge portion of the right front pillar 53. The left end portions of the upper view restriction region S1 and the lower view restriction region S2 are connected by the left view restriction region S3.
  • the upper view restriction region S1 and the lower view restriction region S2 are connected to each other at the right ends by the right view restriction region S4.
  • the upper view restriction area S1, the lower view restriction area S2, the left view restriction area S3, and the right view restriction area S4 are described as the view restriction area S when they are not distinguished from each other.
  • the visual field restriction region S is in a visual field securing state by cutting off the energization to the functional liquid crystal film.
  • the visibility is limited.
  • the transmittance and color are changed by changing the energization mode.
  • the transmittance can be changed in the range of 0% to 60%.
  • the color can be changed between black, gray, green, and blue.
  • the view restriction state in the maximum range is shown for each of the upper view restriction region S1, the lower view restriction region S2, the left view restriction region S3, and the right view restriction region S4.
  • the upper view restriction region S1, the lower view restriction region S2, the left view restriction region S3, and the right view restriction region S4 can be partially set in the view restriction state. This aspect in which the visibility is partially limited is clarified by comparing FIG. 6 and FIG. 7 with FIG.
  • the upper view restriction region S1 and the lower view restriction region S2 are in a view restriction state.
  • the left view restriction region S3 and the right view restriction region S4 are in a view securing state.
  • the upper view restriction region S1 is configured in such a shape that the center portion in the vehicle width direction protrudes downward most and the downward protrusion amount decreases in a substantially linear manner toward the outer side in the vehicle width direction.
  • the lower view restriction region S2 is formed in a mountain shape that is gently curved so that the center portion in the vehicle width direction protrudes most upward and the upward protrusion amount gradually decreases toward the outside in the vehicle width direction. Yes.
  • the optical flows Y61 and Y62 heading obliquely upward are directed in a direction along the outer edge shape of the upper view restriction region S1.
  • the optical flow refers to the direction in which the scenery recognized by the driver during traveling flows.
  • the optical flows Y63 and Y64 heading obliquely downward are directed in a direction along the outer edge shape of the lower view restriction region S2.
  • the view restriction region S has a preferable shape in terms of driving refreshment and drowsiness prevention.
  • the shape of the lower view restriction region S2 can prevent the driver from recognizing the vicinity of the vehicle, particularly when traveling at high speed. Therefore, the lower view restriction region S2 has a preferable shape in order to reduce driver fatigue and prevent inactivation. Further, the shape of the upper view restriction region S1 in FIG. 6 is a preferable shape for shielding the upper view portion that is less visible directly by the driver and reducing glare and reducing fatigue. . Note that, in the upper view restriction region S1 and the lower view restriction region S2, for example, the transmittance may be gradually changed so as to approach the outer peripheral edge portion of the front window glass 51. Further, in the view restriction region S, the transmittance of the entire range may be constant.
  • region S may be set low at the time of fine weather, and a visual field restriction
  • FIG. 7 is a view showing a substantially triangular field-of-view restriction region S71 set at the right end of the front window glass 51.
  • the view restriction region S71 has a shape in which the inner peripheral edge extends substantially linearly in the vertical direction.
  • setting the field-of-view restriction region S71 is preferable for adding a near view and correcting perspective.
  • the field-of-view restriction area S71 is provided on the passenger seat side, but may be provided on the driver seat side. In this case, the optical flow is shielded at an angle substantially perpendicular to each of the upper end portion and the lower end portion of the front pillar 53 on the side close to the driver's seat.
  • the view restriction region S shown in FIGS. 6 and 7 is an example, and may be set to an appropriate position, area, and shape in accordance with the driver state.
  • the driver state can be guided in the active direction, the future-oriented direction, or the pleasant direction.
  • FIG. 8 shows an example of emphasizing control of engine sound when generating engine sound as sound from the speaker of the audio device toward the vehicle interior.
  • FIG. 8 shows an example in which the gains of the fourth, sixth, and eighth orders of the engine sound as the bass sound are amplified according to the accelerator opening, and the fourth, sixth, and eighth orders are emphasized. It is shown.
  • engine sound having a sound pressure corresponding to the accelerator operation and acceleration can be output from the speaker of the audio device.
  • the driver is drowsy (inactive state), past-oriented or even uncomfortable, the sound of the engine sound can be used to guide in the active, future-oriented, and pleasant directions. .
  • the 4th, 6th, and 8th gains indicated by the solid lines have characteristics that the rise is sharper than the 4th, 6th, and 8th gains of the bass sound.
  • control objects and control directions (control amounts) for guiding the driver in the active direction, the future-oriented direction, or the pleasant direction can be selected.
  • the accelerator characteristic may be changed.
  • the brake characteristics may be changed.
  • the brake characteristic the characteristic which shows the relationship of the deceleration with respect to operation reaction force or a brake operation amount is employable.
  • the steering characteristics may be changed.
  • the steering characteristic it is possible to employ a characteristic indicating the relationship between the operation reaction force or the steering angle of the vehicle (for example, the yaw rate).
  • a region ⁇ indicated by a one-dot chain line in FIG. 5 is configured by a thin film color display (an example of a video device). Further, by projecting mapping the region ⁇ by a projection mapping device (an example of a video device) provided at a high place (for example, a ceiling) in the vehicle interior, at least one of the color, brightness, and pattern of the region ⁇ or any arbitrary These two may be changed.
  • the region ⁇ may be set at a position where it can be easily seen from the passenger seated in the passenger seat.
  • the region ⁇ is set to a region including the upper edge portion of the side door, the rear edge portion of the instrument panel 54, and the lower portion of the front pillar 53.
  • the display mode of the region ⁇ a display mode is adopted in which the size and depth of the “shibo”, which is often used as a pattern for the interior material of the passenger compartment, is sequentially changed from the side closer to the passenger to the side farther from the passenger. .
  • the driver becomes more blurred as the “shibo” located farther away, and a sense of depth can be produced. This also makes it possible to emphasize the sense of unity with the occupant's vehicle and improve the quality of the image.
  • the driver state is guided in the active direction, the future-oriented direction, or the pleasant direction. It becomes possible to do.
  • the region ⁇ can be set corresponding to any one of the passenger seat, the driver's seat, the left and right rear seats, or any plurality of seats. Also, the region ⁇ can be set on the ceiling inner wall. In addition, by changing the brightness and color of an illumination lamp installed at an appropriate location in the vehicle interior, the driver may be stimulated by light to improve the excitement of the driver.
  • An air-conditioning control device can be adopted as the control object 14 that improves the excitement.
  • the driver is stimulated by changing the temperature or changing the air volume, and the driver's excitement can be improved.
  • a scent generator may be employed as the control object 14.
  • a scent generating device that can generate a plurality of types of scents may be employed. And what is necessary is just to select the fragrance which improves an exciting feeling, and to make it output from a scent generator.
  • an exciting feeling may be improved by providing a vibrator on a steering handle or a seat to give a minute vibration to the driver.
  • FIG. 2 in blocks other than the driver state detection unit 1, the environment detection unit 2, the passenger state detection unit 21, and the control target 14, the microcomputer configuring the control system U executes a predetermined control program. This is realized.
  • the flowchart of FIG. 9 and FIG. 10 described later shows the control contents of the control system U.
  • the driver state detector 1 detects the driver state
  • the environment detector 2 detects the environment.
  • the sensitivity state estimation unit 11 reads the basic driver state corresponding to the environment detected in Q1 from the short-term database 10.
  • the sensitivity state estimation unit 11 determines whether or not the driver's sensitivity state is an exciting sensitivity state based on the driver state detected in Q1.
  • the control amount determination unit 12 determines whether or not a learning value corresponding to the driver state and environment detected in Q1 exists in the long-term database 16. Initially, since the learning value does not exist in the long-term database 16, it is determined NO in Q5. In this case, in Q6, the control amount determination unit 12 selects the control target 14 that increases the excitement based on the basic driver state read in Q2 and the driver state detected in Q1, The control amount of the selected control object 14 is determined. In Q7, the control unit 13 outputs the control amount determined in Q6 to the control target 14 selected in Q6.
  • the learning unit 15 determines whether or not the storage value of the control amount temporarily held in a memory (not shown) for determining the final learning value is a predetermined number or more (for example, 5 or more). . Initially, since the stored value temporarily held is less than the predetermined number, NO is determined in Q8, and the process proceeds to Q9. In Q9, the learning unit 15 temporarily holds the current stored value in an unillustrated memory. That is, in Q9, the environment and the driver state detected in Q1, the control object 14 selected in Q6, and the control amount of the control object 14 are stored in association with each other. Here, the learning unit 15 may store the evaluation values of the first to third parameters in association with these pieces of information.
  • the learning unit 15 may calculate a learning value using a stored value whose evaluation value is equal to or greater than a predetermined value.
  • the learning value may be calculated using the stored value when the evaluation values of the first to third parameters are positive, that is, using the stored value when an exciting feeling is obtained.
  • the learning unit 15 averages the stored values. The learning value is determined by calculating the value. In Q11, the learning unit 15 stores the determined learning value in the long-term database 16. When the processes of Q9 and Q11 are completed, the process returns to Q1.
  • the control amount determination unit 12 determines the existing learning value as a final control amount as it is.
  • the method for determining the learning value is as described above.
  • the final control amount output to the control target 14 is “a control amount determined based on the detected driver state and the basic driver state” and “learned value”. It is also possible to determine using both.
  • FIG. 10 is a flowchart showing a control example for making the driver sympathize with the passenger.
  • the driver state detection unit 1 detects the driver state
  • the passenger state detection unit 21 detects the passenger state
  • the environment detection unit 2 detects the environment.
  • the sympathy relationship determination unit 22 calculates a sympathy state (sympathy level) based on the driver state and the passenger state detected in Q21.
  • the sympathy relationship determination unit 22 determines whether or not the sympathy level calculated in Q22 is equal to or greater than a predetermined value. If the empathy level is equal to or higher than the predetermined value, that is, if the driver and the passenger are in the empathy state (YES in Q23), the process is returned to Q21. If the empathy level is less than the predetermined value, that is, if the driver and the passenger are not in the empathy state (NO in Q23), the process proceeds to Q24. In Q24, the control amount determination unit 12 determines whether or not the shared database 23 stores a control amount corresponding to at least one of the driver state and the environment detected in Q21.
  • the control amount determination unit 12 performs the above-described control for enhancing empathy.
  • the sympathetic relationship determination unit 22 stores the control amount performed for enhancing sympathy in the shared database 23 in association with the driver state and the passenger state detected in Q21.
  • the control amount determination unit 12 determines the control amount for obtaining empathy using the stored value stored in the shared database 23.
  • the learning value is determined by feeding back the empathy level, and the learning value at which the empathy level equal to or higher than a predetermined value can be stored in the shared database 23.
  • the sympathetic relationship determination unit 22 may store at least the environment, the sympathy level, the control target, and the control amount in the shared database 23 in association with each other.
  • the control amount determination unit 12 may correct the control amount in consideration of the empathy level stored in the shared database 23. For example, if the level of empathy is high, the correction of the control amount is unnecessary, but if the level of empathy is low (or not), the control amount may be corrected in a direction in which the level of empathy increases. That is, the control amount may be determined in consideration of the improvement of the driver's excitement and the improvement of the empathy level.
  • a sensibility state such as a feeling of sensation or a feeling of throb can be selected as appropriate.
  • a sensibility state such as a feeling of sensation or a feeling of throb
  • a plurality of basic driver states having different sensitivity states may be stored in the short-term database 10 so that the driver may manually select which sensitivity state the driver wants to improve.
  • the vehicle which consists of a four-wheeled vehicle was shown as a moving body used as a driving
  • Examples of the moving body include vehicles other than four-wheeled vehicles (for example, two-wheeled vehicles), various construction machines and construction machines, transport machines such as forklifts often used in factories and sites, and ships (particularly small ships). ), As well as airplanes (especially small airplanes).
  • vehicles other than four-wheeled vehicles for example, two-wheeled vehicles
  • various construction machines and construction machines for example, transport machines such as forklifts often used in factories and sites, and ships (particularly small ships).
  • ships particularly small ships.
  • airplanes especially small airplanes.
  • the mobile body may be one that is remotely operated by the driver (for example, a drone, a helicopter, etc.).
  • the moving body and the environment may be pseudo (virtual).
  • a driving simulator corresponds to a pseudo one.
  • step or step group shown in the flowchart can be grasped as a function (means for exhibiting) the control system U has.
  • object of the present invention is not limited to what is explicitly stated, but also implicitly includes providing what is substantially preferred or expressed as an advantage.
  • An occupant sensitivity improving system includes an environment detection unit that detects an environment of a moving object, A driver state detection unit for detecting a state of a driver driving the mobile body; A control object mounted on the mobile body; A first database that stores a basic driver state that is a standard for obtaining a predetermined sensitivity state in correspondence with an environment; A sensitivity state estimation unit that estimates whether or not the driver's sensitivity state is in a predetermined sensitivity state based on the driver state detected by the driver state detection unit; When the sensitivity state estimation unit estimates that the driver's sensitivity state is not the predetermined sensitivity state, the driver state detection unit detects the basic driver state obtained by checking the first database.
  • a control amount determination unit that determines a control amount for the control target so that the sensitivity state estimated by the sensitivity state estimation unit becomes the predetermined sensitivity state based on the driver state;
  • a control unit that controls the control object with a control amount determined by the control amount determination unit;
  • a driver-specific learning value corresponding to the environment detected by the environment detection unit and the driver state detected by the driver state detection unit is determined.
  • the learning department A second database that stores the learning value determined by the learning unit in association with the environment detected by the environment detection unit and the driver state detected by the driver state detection unit;
  • the control amount determination unit is present when the learning value corresponding to the environment detected by the environment detection unit and the driver state detected by the driver state detection unit exists in the second database.
  • a control amount for the control target is determined based on a learning value.
  • the learning value is stored in the second database while driving is continued, and each driver operates in a predetermined sensitivity state by performing control using the learning value.
  • the control target and the control amount are determined with reference to a basic driver state that is set in advance so that a predetermined sensitivity state can be obtained. Therefore, the control target and the control amount are preferable for appropriately obtaining a predetermined sensitivity state.
  • the controlled object and the controlled variable are determined in consideration of the environment that influences the sensory state as much as possible, the controlled object and the controlled variable are preferable for obtaining a predetermined sensitive state regardless of the environmental difference. .
  • control amount determination unit is configured to perform basic driving corresponding to an environment detected by the environment detection unit when the sensitivity state estimation unit estimates that the driver's sensitivity state is not the predetermined sensitivity state.
  • the person state may be acquired by collating the first database.
  • the basic driver state corresponding to the environment can be acquired from the first database.
  • control amount determination unit when the control amount determination unit has learning values corresponding to the environment detected by the environment detection unit and the driver state detected by the driver state detection unit in the second database.
  • the existing learning value may be determined as a control amount for the control target.
  • a predetermined sensitivity state can be obtained with certainty and simplification of control can be achieved. Further, by using the stored contents of the second database in another vehicle, the driver can immediately drive the other vehicle in a predetermined sensitivity state.
  • the predetermined sensitivity state is a sensitivity state related to a feeling of excitement
  • the sensitivity state estimation unit includes an evaluation value of a first parameter related to comfort and discomfort, an evaluation value of a second parameter related to activity and inactivity, and a future
  • the evaluation value of the third parameter relating to the orientation and the past orientation is calculated, and based on the calculated three kinds of evaluation values, it is determined whether or not the driver's sensitivity state is a sensitivity state related to the exciting feeling. Also good.
  • the driver can drive with a feeling of excitement, which not only makes the driving itself fun but also improves the driving skill. Further, by determining the excitement using many parameters, the excitement can be accurately determined for many drivers having different sensitivities.
  • the sensitivity state estimation unit indicates that the evaluation value of the first parameter is pleasant, the evaluation value of the second parameter is active, and the evaluation value of the third parameter is future-oriented.
  • the state of the three parameters when the excitement can be obtained can be specified, and the control object for obtaining or improving the excitement can be specified accurately.
  • the environment detection unit may detect at least one of an indoor environment of the mobile body, an outdoor environment of the mobile body, and a state of the mobile body.
  • the specific environment to be detected is provided.
  • control target may be configured by a driving operation system.
  • the driving operation system can be controlled to realize a predetermined sensitivity state (for example, an exciting feeling).
  • control target may be configured by an audio device that generates sound in the room of the moving body.
  • a predetermined sensibility state for example, a feeling of excitement
  • a feeling of excitement can be realized using sound generated from the audio device.
  • control target may be configured by a variable view restriction device installed on the front window glass.
  • a predetermined sensibility state for example, an exciting feeling
  • a predetermined sensibility state can be realized by changing the field of view of the front window glass.
  • control target may be configured by a video device that outputs a video for changing the brightness, color, or pattern of the interior material in the moving body.
  • control target may be a variable seat.
  • a predetermined sensitivity state for example, an exciting feeling
  • a passenger state detection unit that detects the state of the passenger
  • Sympathy relationship determination for determining the level of empathy between the driver and the passenger based on the passenger state detected by the passenger state detection unit and the driver state detected by the driver state detection unit
  • a control object for empathy for increasing the empathy level The control amount determination unit may determine the control amount of the control target for empathy so that the empathy level is increased when the empathy level determined by the empathy relationship determination unit is lower than a predetermined value.
  • the passenger and the driver can be brought into a predetermined sensitivity state by empathizing the passenger and the driver.
  • the empathy control device is configured by a gaze guidance device that prompts the passenger to change the gaze direction, and when the sympathy level is lower than a predetermined value, the gaze direction of the passenger is set to the gaze direction of the driver. You may be guided to
  • the passenger's sympathy for the driver can be enhanced by a technique called gaze guidance.
  • the present invention is preferable for driving each driver in a predetermined sensitivity state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Seats For Vehicles (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)

Abstract

運転者がわくわく感を有するか否かを判定する感性状態推定部(11)と、わくわく感を有しないと判定された場合、検出された運転者状態と環境検出部(2)で検出された環境とに対応する基本運転者状態を短期データベース(10)から読み出し、検出された運転者状態とを比較することにより、わくわく感を向上させるための制御対象と制御量とを決定する制御量決定部(12)と、決定された制御量と検出された環境及び運転者状態とに基づいて運転者固有の学習値を長期データベース(16)に記憶させる学習部(15)とを備える。制御量決定部(12)は、長期データベースに学習値が存在する状態となった後は、学習値を加味して制御対象に対する制御量が決定する。

Description

乗員の感性向上システム
 本発明は、乗員の感性向上システムに関するものである。
 脳機能を亢進させるために、特許文献1には、被験者に装備された脳波検知装置により検知された脳神経の活動のパターンをデコード化して、目標活性化のパターンに対するデコード結果の近時度に応じて報酬値を算出し、この報酬値を被験者に対して呈示することが提案されている。
 ところで、最近の車両では、運転することに所定の感性状態、例えば、運転者にわくわく感を抱かせることが求められている。運転に際して運転者にわくわく感を抱かせることは、運転そのものが楽しくなるだけでなく、運転技量の向上にも繋がる。
 一方、個々の運転者が抱くわくわく感に関する感情は、走行環境等が同一であっても相違することが多い。例えば、運転操作系の特性を、ある運転者にとってわくわく感を抱くような設定としても、別の運転者にとってはわくわく感を抱かないこともある。つまり、車両の特性をある一定のものに設定しただけでは、個々の運転者に対応してわくわく感を得ることができないものとなる。
特開2013-99392号公報
 本発明は以上のような事情を勘案してなされたもので、その目的は、個々の運転者が所定の感性状態を抱いた状態で運転できる乗員の感性向上システムを提供することにある。
 本発明の一態様に係る乗員の感性向上システムは、移動体の環境を検出する環境検出部と、
 前記移動体を運転する運転者の状態を検出する運転者状態検出部と、
 前記移動体に搭載される制御対象と、
 所定の感性状態が得られるような規範となる基本運転者状態を環境に対応させて記憶する第1データベースと、
 前記運転者状態検出部で検出された運転者状態に基づいて、前記運転者の感性状態が所定の感性状態にあるか否かを推定する感性状態推定部と、
 前記感性状態推定部によって前記運転者の感性状態が前記所定の感性状態でないと推定された場合、前記第1データベースを照合して得られる基本運転者状態と前記運転者状態検出部で検出された運転者状態とに基づいて、前記感性状態推定部で推定された感性状態が前記所定の感性状態となるように前記制御対象に対する制御量を決定する制御量決定部と、
 前記制御量決定部で決定された制御量で前記制御対象を制御する制御部と、
 前記制御量決定部により決定された制御量に基づき、前記環境検出部により検出された環境と前記運転者状態検出部により検出された運転者状態とに対応する運転者固有の学習値を決定する学習部と、
 前記学習部で決定された学習値を、前記環境検出部により検出された環境と前記運転者状態検出部により検出された運転者状態と対応づけて記憶する第2データベースとを備え、
 前記制御量決定部は、前記第2データベースに、前記環境検出部により検出された環境と前記運転者状態検出部により検出された運転者状態とに対応する学習値が存在する場合、前記存在する学習値に基づいて前記制御対象に対する制御量を決定する、ことを特徴とする。
 この構成によれば、個々の運転者を所定の感性状態を抱かせた状態で運転させることができる。
わくわく感に関連する3種類のパラメータを示す図。 本発明の制御系統例を示すブロック図。 操作系の特性変更例を示す図。 人間の感じるリニア感と物理特性との相違を示す図。 可変式の窓枠形状の一例を示す図であって、視界制限領域をハッチングで示した図。 視界制限領域の一例を示す図。 視界制限領域の別の例を示す図。 スピーカから発生されるエンジン音の加工例を示す特性図。 本発明の制御例を示すフローチャート。 本発明の制御例を示すフローチャート。 3種類のパラメータの組み合わせと感性との関係例を示す図。 わくわく感を向上させるための制御対象および制御手法の例を示す図。
 図1は、運転者の感性状態を示す指標を示す図である。図1に示すように、感性状態は、「快・不快」を示す第1パラメータと、「活性・非活性」を示す第2パラメータと、「未来志向・過去志向」を示す第3パラメータという3つのパラメータで示される。「・」は及びを示す。すなわち、感性状態は、3軸(3次元)のパラメータで示される。そして、感性状態の一つでとして「わくわく感」の感性状態がある。図1に示す3次元空間において、第1パラメータが「快」のゾーンにあり、且つ、第2パラメータが「活性」のゾーンにあり、且つ、第3パラメータが「未来志向」のゾーンにある場合、運転者の感性状態は「わくわく感」の感性状態に該当する。ここで、感性とは、わくわく、うきうき、はらはら、どきどき等のさまざまな感情を包含する広い概念である。
 「快」は、心地よいこと、面白いことを感じている感性状態であり、活動に伴う充実感があることを示す。「不快」は、快の反対方向の感性状態であり、面白くないと感じている感性状態である。「活性」は、覚醒状態のときの感性状態である。「非活性」は、活性の反対方向の感性状態であり、例えば、漫然状態が該当する。「未来志向」は、前向きな感性状態であり、例えば、自分が努力したらその通りになるという感性状態である。なお、未来志向には、例えば、躁鬱状態のうち躁の状態も含まれる。「過去志向」は未来志向の反対方向の感性状態であり、例えば、後ろ向きな感性状態が該当する。
 以下の記載では、感性状態の一つとしてわくわく感を例に挙げて説明する。本発明では、後述するように、検出された運転者状態に基づいて、第1~第3パラメータの評価値が算出される。そして、算出された評価値が、図1に示す3次元空間において、わくわく感のゾーンに位置していれば、運転者はわくわく感の運転状態にあると推定される。「快・不快」を示す第1パラメータは、原点Oから、「快」のレベルが大きくなるにつれて、順に、「+1」、「+2」、「+3」、「+4」、「+5」というように、例えば5段階の評価値が設定される。また、第1パラメータは、不快方向のレベルが大きくなるにつれて「-1」、「-2」、「-3」、「-4」、「-5」というように、例えば5段階の評価値が設定される。よって、第1パラメータは原点Oを含めて合計11段階の評価値が設定される。
 「活性・非活性」を示す第2パラメータ及び「未来志向・過去志向」を示す第3パラメータについても、第1パラメータと同じようにして評価値が設定される。
 すなわち、第2パラメータは、原点Oから、「活性」のレベルが大きくなるにつれて、順に、「+1」、「+2」、「+3」、「+4」、「+5」というように、例えば5段階の評価値が設定される。また、第2パラメータは、原点Oから、「非活性」のレベルが大きくなるにつれて、順に、「-1」、「-2」、「-3」、「-4」、「-5」というように、例えば5段階の評価値が設定される。よって、第2パラメータは原点Oを含めて合計11段階の評価値が設定される。
 また、第3パラメータは、原点Oから、「未来志向」のレベルが大きくなるにつれて、順に、「+1」、「+2」、「+3」、「+4」、「+5」というように、例えば5段階の評価値が設定される。また、第3パラメータは、原点Oから、「過去志向」のレベルが大きくなるにつれて、順に、「-1」、「-2」、「-3」、「-4」、「-5」というように、例えば5段階の評価値が設定される。よって、第3パラメータは原点Oを含めて合計11段階の評価値が設定される。
 ここでは、第1~第3パラメータはそれぞれ11段階の評価値が設定されるとして説明したが、本発明はこれに限定されず、10段階以下、又は12段階以上の評価値が設定されてもよい。或いは、第1~第3パラメータはそれぞれ連続的な値を持つ評価値が設定されてもよい。
 そして、本実施形態は、感性状態の判定結果が、「わくわく感」のゾーンに無いときは、第1~第3パラメータがそれぞれ「わくわく感」のゾーン内に入るように(第1~第3パラメータの評価値が、それぞれ、「+」となるように)、車両に搭載された各種機器類(制御対象14)を制御する。これにより、運転者の感性状態が「わくわく感」の感性状態にされる。
 図2は、本発明の実施形態に係る乗員の感性向上システムの制御系統Uの一例を示すブロック図である。制御系統Uは、運転者状態検出部1、環境検出部2、短期データベース(DB)10、感性状態推定部11、制御量決定部12、制御部13、制御対象14、共感用制御対象14a、学習部15、長期データベース(DB)16、同乗者状態検出部21、共感関係判定部22、及び共有データベース(DB)23を備える。
 運転者状態検出部1は、車両を運転する運転者の状態である運転者状態を検出する。検出された運転者状態は、後述する感性状態推定部11により、運転者の感性状態を推定するために用いられる。
 運転者状態検出部1は、例えば、CCDカメラ或いはCMOSカメラ等の画像センサを含み、画像センサを用いて運転者の顔を撮影することで運転者の顔画像を取得し、取得した顔画像を用いて、顔の表情、視線状態(視線の移動、瞬目(まばたき)、眼球停留、及び瞳孔径)を検出する。なお、視線の移動、瞬目、眼球停留、及び瞳孔径はアイカメラを用いて検出されてもよい。
 また、運転者状態検出部1は、例えば、運転席に設けられた心拍センサを更に含み、心拍センサを用いて、運転者の呼吸状態(呼吸回数や呼吸の深さ)を検出する。なお、呼吸状態は画像センサを用いて検出されてもよい。また、運転者状態検出部1は、例えば、抵抗センサで構成され、抵抗センサを用いて皮膚抵抗を検出する。また、運転者状態検出部1は、例えば、ステアリングハンドルに設けられた脈波センサを更に含み、脈波センサを用いて指尖脈波を検出する。
 また、運転者状態検出部1は、例えばステアリングハンドルに設けられた6ch式の筋電センサを更に含み、この筋電センサを用いて運転者の上肢の筋肉の状態を検出する。また、運転者状態検出部1は、例えば、運転席に設けられた3ch式の筋電センサを更に含み、この筋電センサを用いて、運転者の下肢の筋肉の状態の検出する。
 また、運転者状態検出部1は、マイクを更に含み、マイクを用いて運転者の音声情報を検出する。音声情報としては、例えば声の調子を示す情報が含まれる。
 また、運転者状態検出部1は、例えば、運転席に設けられた荷重圧センサを更に含み、荷重圧センサを用いて運転席に対する運転者の着座圧を検出する。
 なお、上記の他、運転者状態検出部1は、ステアリング、アクセルペダル、ブレーキペダル、及びシフトノブ等の各種操作系に対する運転者の操作量を検出するための操作量検出センサを更に含み、操作量検出センサを用いて、各種操作系に対する操作量を運転者状態として検出する。ステアリングの操作量は、例えば、ステアリングの操舵角を検出するための角度センサを用いて行われる。アクセルペダルの操作量は、例えば、アクセルペダルの踏みこみ量を検出するための角度センサを用いて行われる。ブレーキペダルの操作量は、例えば、ブレーキペダルの踏みこみ量を検出するための角度センサを用いて行われる。シフトノブの操作量は、例えば、シフトノブの位置を検出する位置センサを用いて行われる。
 環境検出部2は、車室内環境、車室外環境、走行環境、及び車両情報を検出する。車室内環境としては、例えば、車室内の空気状態(例えば、温度、湿度、及び臭い)、日射状態、及び室内音等が含まれる。
 例えば、環境検出部2は、車室内に設けられた温度センサ、湿度センサ、及び臭いセンサを含み、これらのセンサを用いて、車室内の温度、湿度、及び臭いを車室内環境として検出すればよい。
 車室外環境としては、特に天候が採用される。例えば、環境検出部2は、照度センサを更に含み、照度センサを用いて、昼間、夜間、晴れ、雨天、及び降雪を検出してもよい。また、環境検出部2は、照度センサに加えて、温度センサ及び湿度センサの少なくとも一方を用いて、車室外環境を検出してもよい。
 走行環境としては、車両周辺の道路環境が採用され、例えば、直線路、カーブ路、高速道路、一般道路、及び交差点付近等が含まれる。環境検出部2は、ナビゲーション装置や、車両の周囲を撮影する画像センサを更に含み、ナビゲーション装置及び画像センサから得られる情報を用いて、走行環境を検出すればよい。
 車両情報としては、車速、エンジン回転数、ステアリング系に関する情報、アクセルペダル系に関する情報、ブレーキペダル系に関する情報、及び変速機に関する情報が採用できる。環境検出部2は、例えば、速度計を用いて車速を取得し、エンジン回転数センサを用いてエンジンの回転数を検出すればよい。
 ステアリング系に関する情報としては、操舵角、操舵角速度、及び旋回角度が採用できる。環境検出部2は、例えば、車輪の操舵角を検出する操舵角センサを用いて操舵角を検出し、操舵角センサが検出した操舵角を微分することで操舵角速度を検出すればよい。また、環境検出部2は、例えば、ヨーレートセンサを用いて旋回角度を検出すればよい。
 アクセルペダル系に関する情報としては、アクセル開度、アクセル踏み込み力、及びアクセル踏み込み速度が採用できる。環境検出部2は、例えば、アクセルペダルの踏みこみ量を検出する角度センサを用いてアクセル開度を検出すればよい。また、環境検出部2は、例えば、アクセルペダルに設けられた荷重センサを用いてアクセル踏みこみ力を検出すればよい。また、環境検出部2は、角度センサが検出したアクセルの踏みこみ量を微分することで、アクセル踏みこみ速度を検出すればよい。
 ブレーキペダル系に関する情報としては、ブレーキ操作量、ブレーキ操作速度、及びブレーキ操作力が採用できる。変速機に関する情報としては、現在設定されている変速機の変速段が採用できる。
 環境検出部2は、例えば、ブレーキペダルの踏みこみ量を検出するための角度センサが検出した計測値からブレーキ操作量を検出すればよい。また、環境検出部2は、例えば、角度センサが検出したブレーキペダルの踏みこみ量を微分することで、ブレーキ操作速度を検出すればよい。また、環境検出部2は、例えば、ブレーキペダルに設けられた荷重センサを用いてブレーキ操作力を検出すればよい。また、環境検出部2は、例えば、変速機がシフトノブの位置を検出する位置センサを用いて変速機の変速段を検出すればよい。なお、環境検出部2は、上述した環境を全て検出する必要はなく、少なくとも1つを検出すればよい。
 短期データベース10(第1データベースの一例)は、所定の感性状態が得られるように予め定められた規範となる基本運転者状態を環境と対応づけて記憶する。所定の感性状態としては、「わくわく感」の感性状態が採用される。詳細には、短期データベース10は、シーン(環境検出部2が検出した環境の組み合わせ)に応じて手本となる運転者状態であるベテランドライバの運転者状態を、環境と対応づけて記憶する。すなわち、あるシーンにおいて、短期データベース10に記憶されている基本運転者状態が示す運転を運転者が行えば、運転者は、わくわく感を得る可能性が高くなる。短期データベース10に記憶されている基本運転者状態は、適切なステアリングの操作量、適切なアクセルペダルの操作量、適切なブレーキペダルの操作量、及び適切なシフトノブの操作量等の操作状態、並びに、適切な視線状態(例えば、視線の移動)のいずれか1つ以上が該当する。
 感性状態推定部11は、運転者状態検出部1で検出された運転者状態に基づいて、運転者の感性状態が「わくわく感」の感性状態であるか否かを推定する。詳細には、感性状態推定部11は、運転者状態検出部1で検出された運転者状態から第1~第3パラメータのそれぞれの評価値を決定する。そして、感性状態推定部11は、第1パラメータの評価値が「快」、第2パラメータの評価値が「活性」、且つ、第3パラメータの評価値が「未来志向」であれば、運転者が「わくわく感」の感性状態にあると推定する。また、感性状態推定部11は、運転者がわくわく感を感じていなければ、どのような要因が不足しているかを判定(推定)する。なお、感性状態推定部11は、図11に示す判定テーブルT1を用いて運転者の感性状態を推定すればよい。図11は、判定テーブルT1を示す図である。判定テーブルT1は、「感性状態」、「第1パラメータ」、「第2パラメータ」、及び「第3パラメータ」のフィールドを備える。
 「感性状態」のフィールドには、「わくわく感」、「不安感」、「憂鬱感」、「退屈感」、及び「うつ感」といった感性状態の種類を示すデータが登録されている。「第1パラメータ」のフィールドには、第1パラメータの評価値が「快」及び「不快」のいずれに該当するかを示すデータが登録されている。「第2パラメータ」のフィールドには、第2パラメータの評価値が「活性」及び「非活性」のいずれに該当するかを示すデータが登録されている。「第3パラメータ」のフィールドには、第3パラメータの評価値が「未来志向」及び「過去志向」のいずれに該当するかを示すデータが登録されている。
 図11の例では、第1パラメータの評価値が「快」、第2パラメータの評価値が「活性」、及び第3パラメータの評価値が「未来志向」を示せば、運転者は「わくわく感」の感性状態にあると推定される。
 また、感性状態推定部11は、第1パラメータの評価値が「快」、第2パラメータの評価値が「活性」、及び第3パラメータの評価値が「過去志向」を示せば、運転者は「不安感」の感性状態にあると推定する。
 また、感性状態推定部11は、第1パラメータの評価値が「不快」、第2パラメータの評価値が「活性」、及び第3パラメータの評価値が「未来志向」を示せば、運転者は「憂鬱感」の感性状態にあると推定する。
 また、感性状態推定部11は、第1パラメータの評価値が「不快」、第2パラメータの評価値が「非活性」、及び第3パラメータの評価値が「未来志向」を示せば、運転者は「退屈感」の感性状態にあると推定する。
 また、感性状態推定部11は、第1パラメータの評価値が「不快」、第2パラメータの評価値が「非活性」、及び第3パラメータの評価値が「過去志向」を示せば、運転者は「うつ感」の感性状態にあると推定する。
 なお、図11において、「・・・」で示される感性状態のフィールドには、第1~第3パラメータの評価値に応じて妥当な感性状態が格納されている。
 上述したように、運転者状態検出部1は、運転者状態として、(1)顔の表情、(2)視線状態(視線の移動、瞬目、眼球停留、及び瞳孔径)、(3)呼吸状態、(4)皮膚抵抗、(5)指尖脈波、(6)上肢の筋肉の状態、(7)下肢の筋肉の状態、(8)音声情報、(9)着座圧、(10)ステアリングの操作量、(11)アクセルペダルの操作量、(12)ブレーキペダルの操作量、(13)シフトノブの操作量を検出する。
 したがって、感性状態推定部11は、上記(1)~(13)に示される運転者状態のパラメータを第1~第3パラメータの各評価値を算出するために予め定められた数式に代入することで、第1~第3パラメータの各評価値を算出すればよい。なお、運転者状態検出部1は、上記(1)~(13)に示される運転者状態のパラメータの全てを検出する必要はなく、いずれか1以上を検出すればよい。なお、(1)~(13)に示される運転者状態のパラメータにおいて、(1)顔の表情は、例えば、喜びの表情、怒りの表情、及び悲しみの表情等が含まれ、これらの表情に対して事前に定められた数値を用いて数値化される。また、(8)音声情報は、喜び、怒り、悲しみ等が含まれこれらに対して事前に定められた数値によって数値化される。
 図12には、感性状態の一つであるわくわく感を向上させるための制御対象と制御例が示されている。図12の詳細については後述する。
 また、感性状態推定部11は、運転者の感性状態が「わくわく感」の感性状態でないと判定した場合、わくわく感を感じさせない要因を抽出し、制御量決定部12に出力する。ここで、感性状態推定部11は、例えば、第1~第3パラメータのうち、マイナスの評価値を持つパラメータをわくわく感を感じさせない要因と抽出すればよい。例えば、第1パラメータの評価値がマイナスであれば、第1パラメータが要因として抽出され、第2パラメータの評価値がマイナスであれば、第2パラメータが要因として抽出され、第3パラメータの評価値がマイナスであれば、第3パラメータが要因として抽出される。なお、要因は複数の場合もあり得る。
 制御量決定部12は、運転者状態検出部1で検出された運転者状態と、短期データベース10から読み出した基本運転者状態との差分(例えば、目線の移動の仕方の相違や、ステアリングハンドルの操作の仕方の相違等)に応じて、わくわく感が向上する方向の制御量を決定する。決定される制御量は、感性状態推定部11からのわくわく感を感じさせない要因を除去するための制御対象14についてのものとなる。
 基本運転者状態には、上述したように(1)適切なステアリングの操作量、(2)適切なアクセルペダルの操作量、(3)適切なブレーキペダルの操作量、(4)適切なシフトノブの操作量、及び(5)適切な視線状態が含まれる。よって、制御量決定部12は、これらの基本運転者状態のパラメータと、運転者状態検出部1により検出された対応する運転者状態のパラメータとの差分を算出し、差分が減少する方向に制御対象14の制御量を決定すればよい。
 制御部13は、制御量決定部12により決定された制御量を制御対象14に出力する。これにより、運転者のわくわく感が向上される方向へと誘導されることになる。なお、制御対象14について後述する。
 図12を参照する。図12には、制御方式が事前に登録された制御テーブルT2が示されている。この制御テーブルT2は図略のメモリに事前に記憶されている。制御量決定部12は、この制御テーブルT2を用いて制御対象14を決定すればよい。図12の1行目には、「快・不快」を示す第1パラメータの評価値を向上させるための制御内容が記載されている。図12の2行目には、「活性・非活性」を示す第2パラメータの評価値を向上させるための制御内容が記載されている。図12の3行目には、「未来志向・過去志向」を示す第3パラメータの評価値を向上させるための制御内容が記載されている。
 図12の1行目には、「快・不快」の感性状態を向上させる制御内容として、「プロジェクションマッピングによる上質感向上による空間の快適性の向上」及び「臭いによる快・不快の誘導」と記載されている。したがって、制御量決定部12は、わくわく感にさせない要因が第1パラメータにあるのであれば、後述されるプロジェクションマッピング装置及び臭い発生装置の少なくとも一方を制御対象14として選択すればよい。そして、制御量決定部12は、上述した基本運転者状態と運転者状態検出部1で検出された運転者状態との対応するパラメータ同士の差分が減少する方向にプロジェクションマッピング装置及び臭い発生装置の少なくとも一方の制御量を決定すればよい。
 図12の2行目には、「活性・非活性」の感性状態を向上させる制御内容として、「音や振動による覚醒状態のコントロール」及び「漫然状態を視線運動により検出し、視線運動がおきやすい刺激を音等により誘導する」と記載されている。したがって、制御量決定部12は、わくわく感にさせない要因が第2パラメータにあるのであれば、運転席やステアリングに設けられたバイブレータ及びオーディオ機器の少なくとも一方を制御対象14として決定する。そして、制御量決定部12は、上述した基本運転者状態と運転者状態検出部1で検出された運転者状態との対応するパラメータ同士の差分が減少する方向にバイブレータ及びオーディオ機器の少なくとも一方の制御量を決定すればよい。バイブレータの制御量としては、例えば、パラメータ同士の差分が増大するほどバイブレータの振動強度を上げる制御量が採用できる。また、オーディオ機器の制御量としては、例えば、第2パラメータの評価値を向上させるために事前に定められたサウンド(例えば、後述するエンジン音のサウンド等)を制御するための制御量が採用できる。詳細には、図8に示されるように、制御量決定部12は、パラメータ同士の差分が増大するにつれて、立ち上がりの急峻なゲイン特性を選択し、選択したゲイン特性にしたがって、オーディオ機器のスピーカから出力される音を制御する制御量を決定すればよい。
 図12の3行目には、「未来志向・過去志向」の感性状態を向上させる制御内容として、「成功事例を誘発するような臭い及び光の刺激を与える」と記載されている。したがって、制御量決定部12は、わくわく感にさせない要因が第3パラメータにあるのであれば、後述する臭い発生装置及びプロジェクションマッピング装置の少なくとも一方を制御対象14として決定する。そして、制御量決定部12は、上述した基本運転者状態と運転者状態検出部1で検出された運転者状態との対応するパラメータ同士の差分が減少する方向に臭い発生装置及びプロジェクションマッピング装置の少なくとも一方の制御量を決定すればよい。臭い発生装置の制御量としては、例えば、パラメータ同士の差分が増大するにつれて、臭い物質の出力量を増大させる制御量或いはパラメータ同士の差分に応じて予め定められた臭い物質を出力させる制御量が採用できる。プロジェクションマッピング装置の制御量としては、例えば、パラメータ同士の差分が増大するにつれて、出力される映像の輝度を上げる制御量或いはパラメータ同士の差分に応じて予め定められた映像を出力させる制御量が採用できる。
 また、図12の3行目には、「未来志向・過去志向」の感性状態を向上させる制御内容として、「体温を未来志向にもっていくようにコントロールする」と記載されている。したがって、制御量決定部12は、わくわく感にさせない要因が第3パラメータにあるのであれば、空調制御装置を制御対象14として決定してもよい。そして、制御量決定部12は、上述した基本運転者状態と運転者状態検出部1で検出された運転者状態との対応するパラメータ同士の差分が減少する方向に空調制御装置の制御量を決定すればよい。例えば、制御量決定部12は、パラメータ同士の差分に応じて予め定められた温度変化量及び風量変化量が出力されるように空調制御装置の制御量を決定すればよい。
 また、図12の3行目には、「未来志向・過去志向」の感性状態を向上させる制御内容として、「窓枠形状の変更により距離感の知覚能力をあげることにより車をリニアにコントロールしやすくして、未来志向を上げる」と記載されている。したがって、制御量決定部12は、わくわく感にさせない要因が第3パラメータにあるのであれば、図5~図7で後述する視界制限領域を調節する機能性液晶フィルムを制御対象14として決定してもよい。そして、制御量決定部12は、上述した基本運転者状態と運転者状態検出部1で検出された運転者状態との対応するパラメータ同士の差分が減少する方向に機能性液晶フィルムの制御量を決定すればよい。例えば、制御量決定部12は、パラメータ同士の差分に応じて予め定められた形状及び大きさを持つ視界制限領域に調節されるように制御量を決定すればよい。なお、機能性液晶フィルムは視界制限装置の一例である。
 また、図12の3行目には、「未来志向・過去志向」の感性状態を向上させる制御内容として、「ステアリングやシフトのリニア感を向上させて、車をコントロールしやすくすることにより、未来志向を上げる」と記載されている。したがって、制御量決定部12は、わくわく感にさせない要因が第3パラメータにあるのであれば、ステアリング、アクセルペダル、ブレーキペダル、及びシフトノブの少なくとも1つを制御対象14として決定すればよい。そして、制御量決定部12は、上述した基本運転者状態と運転者状態検出部1で検出された運転者状態との対応するパラメータ同士の差分が減少する方向にステアリング、アクセルペダル、ブレーキペダル、及びシフトノブのすくなくとも1つの制御量を決定すればよい。この場合、図3で後述されるように、制御量決定部12は、パラメータ同士の差分が増大するにつれて、傾斜が大きな特性を選択し、選択した特性を用いて操作量に応じた制御量を決定すればよい。なお、ステアリング、アクセルペダル、ブレーキペダル、及びシフトノブは運転操作系の一例である。なお、対応するパラメータ同士の差分としては、例えば、対応するパラメータ同士の差分の合計値が採用されてもよい。
 前述した運転者状態検出部1で検出された運転者状態と、環境検出部2で検出された環境と、制御部13からの制御量とは、学習部15に入力される。学習部15は、フィードバック制御を利用した学習を行う。すなわち、学習部15は、制御部13から制御量が出力されたときに、運転者状態検出部1で検出された運転者状態が、感性状態推定部11により「わくわく感」の感性状態であると判定された場合、出力された制御量を学習値として決定し、決定した学習値を検出された運転者状態と環境と対応づける。そして、学習部15は、運転者状態と環境とに対応づけた学習値を、長期データベース(第2データベース)16に記憶する。詳細には、学習部15は、運転者状態と環境と学習値と制御対象14とを対応付けて長期データベース16に記憶する。
 学習部15は、運転者状態と環境とが同じである制御量が所定個数(例えば、2個以上)出力されるまで、運転者状態と環境とが同じである制御量を図略のメモリに一時的に保持しておく。そして、学習部15は、運転者状態と環境とが同じである制御量の保持数が所定個数になったとき、所定個数の制御量の例えば平均値を算出し、算出した平均値を学習値として決定すればよい。この場合、学習部15は、所定個数の制御量のうち、新しい制御量が古い制御量に対して学習値への反映度合いが大きくなるよう重み付け平均値を算出し、算出した重み付け平均値を学習値として決定してもよい。
 また、学習部15は、わくわく感についての評価値が最も高くなる制御量を学習値として選択してもよい。例えば、学習部15は、第1~第3パラメータの各評価値がそれぞれ所定値(例えば3)以上となる制御量を保持し、各評価値の合計値が最大の制御量を学習値として決定してもよい。
 ある運転者状態である環境のときに、長期データベース16に学習値が存在する場合は、制御量決定部12は、この学習値を制御量として制御部13に出力することができる。この場合、制御量決定部12は、短期データベース10に記憶された基本運転者状態を用いずに制御量を決定する。このように、長期間が経過すると、長期データベース16にはあらゆるシーン(あるいは殆どのシーン)について学習値が記憶されるようになる。その結果、制御量決定部12は、長期間が経過すると、運転者状態及び環境に応じた、個々の運転者がわくわく感の感性状態が得られる制御量を長期データベース16から取得することができる。
 なお、学習値をより最適化するために、学習部15は、運転者状態検出部1で検出される運転者状態と短期データベース10が記憶する基本運転者状態との比較により決定される制御量と、長期データベース16が記憶する学習値とを所定割合で重み付けした制御量を、最終的な制御量として決定してもよい。この場合、学習部15は、第1~第3パラメータの評価値がそれぞれ最高値となるように、運転者状態検出部1で検出される運転者状態と短期データベース10が記憶する基本運転者状態との比較により決定される制御量と、長期データベース16が記憶する学習値とを所定割合で重み付けすればよい。所定割合としては、検出された基本運転者状態と基本運転者状態との比較により決定される制御量を60%、長期データベース16の学習値を40%にするというような値が採用できる。
 このように、長期データベース16に記憶されている学習値は運転者固有の制御量を示すことになる。そして、長期データベース16に記憶されている学習値を、外部の記憶媒体(例えばSDカード等)に出力(コピー)して、他の車両の長期データベース16に相当する記憶領域に移植(コピー)させる。これにより、この他の車両において、該当する運転者が「わくわく感」の感性状態を得られる学習値を即座に設定することが可能になる。
 ここで、運転者が「わくわく感」の感性状態を得るのと同時に、同乗者(特に助手席乗員)との共感も得ることができればより好ましい。実験結果によれば、運転者と同乗者とに対してある景色を同時に目視させると、運転者と同乗者との身体がシンクロ(同期)して揺れるようになる。一方、運転者と同乗者とが互いに別の景色を見ているときは、このような同期は生じ難い。
 例えば、同乗者状態検出部21は、運転席或いはシートクッションに設けられた荷重圧センサで構成されると共に、同乗者席(例えば助手席)に設けられた荷重圧センサで構成される。そして、共感関係判定部22は、両荷重圧センサの出力から運転者と同乗者とのそれぞれの身体の揺れを検出し、検出した身体の揺れを比較することにより、共感状態の度合い(共感レベル)を判定すればよい。ここで、共感レベルは、例えば、共感状態にあるか否かの2段階で示されてもよいし、3段階以上で示されてもよいし、連続的な数値により示されてもよい。また、荷重圧センサの検出結果が同乗者状態の一例に該当する。
 図2において、同乗者状態検出部21を構成する荷重圧センサの検出結果と、運転者状態検出部1が検出した運転者状態とは、共感関係判定部22に入力される。共感関係判定部22は、両検出結果を比較することで、運転者及び同乗者の共感レベルを算出し、算出した共感レベルが所定値以上であれば、運転者及び同乗者は共感状態にあると判定し、算出した共感レベルが所定値未満であれば、運転者及び同乗者は共感状態にないと判定する。
 制御量決定部12は、共感関係判定部22により運転者及び同乗者が共感状態にないと判定された場合、運転者及び同乗者の共感レベルを向上させるために、共感用制御対象14aの制御量を決定する。そして、制御部13は、制御量決定部12により決定された制御量を用いて共感用制御対象14aを制御する。ここで、共感用制御対象14aは、例えば、同乗者の身体の向きが変更可能な可変式の同乗者席で構成される。この場合、制御量決定部12は、例えば、運転者の視線方向に同乗者の身体の向きが変更されるように共感用制御対象14aの制御量を決定すればよい。詳細には、制御量決定部12は、例えば、同乗者席に設けられたシートクッションが運転者の視線方向へ向けて水平方向に若干回動されるように制御量を決定すればよい。或いは、制御量決定部12は、例えば、同乗者の身体の向きが運転者の視線方向を向くように同乗者席の左右に設けられたサイドサポートの向きを変位させる制御量を決定してもよい。ここで、共感者の視線方向を運転者の視線方向に向けるとは、例えば、運転者が注視していることが想定される物体に同乗者の視線方向を向けることが該当し、例えば、運転者の視線方向上において運転者から一定の距離(例えば、5~10m)だけ離れた地点に共感者の視線方向を向けることが該当する。
 同乗者が特に助手席乗員のときは、共感用制御対象14aは、例えば、ヘッドアップディスプレイ(視線誘導装置の一例)で構成される。そして、制御量決定部12は、助手席乗員の前方にあるフロントウインドガラスに映像を投影するヘッドアップディスプレイを用いて運転者の視線方向へ助手席乗員の視線を誘導する矢印マークを表示させるコマンドを制御量として決定すればよい。
 また、同乗者が特に助手席乗員のときは、共感用制御対象14aは、例えば、車室内高所(例えば、天井)に設けられたプロジェクションマッピング装置(視線誘導装置の一例)で構成される。そして、制御量決定部12は、助手席乗員の前方位置に運転者の視線方向へ助手席乗員の視線を誘導する矢印マークを表示させるコマンドを制御量として決定すればよい。なお、制御の簡単化等のために、制御量決定部12は、共有データベース23を、運転者のわくわく感を向上させるための制御とは別個独立して共感レベルを向上させるための制御に利用すればよい。
 共感関係判定部22は、共感用制御対象14aの制御量を、感性状態推定部11により検出された運転者状態と、環境検出部2により検出された環境と対応付けて共有データベース23に記憶させる。そして、制御量決定部12は、共感関係判定部22により運転者及び同乗者が共感状態にないと判定された場合、運転者状態検出部1で検出された運転者状態及び環境検出部2で検出された環境とに対応する制御量が共有データベース23に記憶されているか否かを判定する。そして、制御量決定部12は、前記対応する制御量が共有データベース23に記憶されていれば、該当する制御量を用いて共感用制御対象14aを制御すればよい。なお、共感関係判定部22は、検出された運転者状態及び環境に加えて共感レベルを制御量と対応付けて共有データベース23に記憶させてもよい。
 次に、わくわく感の感性状態を向上させるための具体例について説明する。まず、図3は、ステアリングの操作量と車両の曲がり量との関係を示すグラフである。図3において、特性αは基本設定(基本特性)を示す。特性α1は、特性αに対してステアリングの操作量に対する車両の曲がり量が大きなクイックなステアリング特性である。特性α2は、特性αに対してステアリングの操作量に対する車両の曲がり量が小さい安定したステアリング特性である。特性α1に近づく方向へステアリング特性を変更すると、ステアリングの操作量に対する車両の曲がり量が増大するので、運転者の活性化や快化に繋がる。各特性α、α1、α2はそれぞれ線形とされている。
 これは、線形な特性とすることにより、車両を意のままに繰れるという運転者の感覚が強くなるためである。なお、このような線形特性にするには、実際の物理量の変化については、例えば、図4に示すようにほぼ対数的な関係の設定にする。図4では、操作方向と操作戻し方向とでヒステリシスを有するようにされた実際の設定がr1で示され、このr1に示す特性を簡単化して対数的な関数で示したものがr2で示される。図3に示すリニアな特性の設定は、アクセルペダルやブレーキペダル等他の操作系についても同じようにするのが好ましい。すなわち、感性としてリニアな関係となる特性設定で、物理量の変化としては略対数的な設定の特性にすることが好ましい。
 図5は、可変式の窓枠構造の一例を示す図である。図5において、ハッチングを付した領域が、変更可能な視界制限領域である。すなわち、フロントウインドガラス51は、上縁部がルーフ52により仕切られ、左右の側縁部が左右一対のフロントピラー53で仕切られ、下縁部がインストルメントパネル54で仕切られる。このように、フロントウインドガラス51の窓枠構造が、ルーフ52と左右一対のフロントピラー53とインストルメントパネル54とによって仕切られた構造となっている。フロントウインドガラス51の窓枠構造自体は変更不可能である。フロントウインドガラス51の窓枠構造は、一般的な逆台形形状を持っている。運転者は、この仕切られたフロントウインドガラス51の大きさ及び形状から視覚的な影響を受ける。図5において、左方にはステアリングハンドル55が設けられている。ステアリングハンドル55の前方には、メータフード56が設けられている。図5の例では、左ハンドル車の車両が採用されている。
 フロントウインドガラス51には、ハッチングを付した領域で示される視界制限領域が設定されている。この視界制限領域は、例えばカラー式又はモノクロ式の機能性液晶フィルムをハッチングで示した領域に貼り付けることにより構成される。機能性液晶フィルムへの通電状態を変更することにより、視界制限領域は、透明な状態である視界確保状態と、半透明あるいは非透明な状態である視界制限状態との間で透過度を切り換えることができる。図5の例では、視界制限領域が最大面積にされた状態が示されている。
 視界制限領域は、フロントウインドガラス51の全周縁部を取り囲むように全体的に環状の形状を持っている。より具体的には、フロントウインドガラス51の上縁部に沿って車幅方向に長い上視界制限領域S1と、フロントウインドガラス51の下縁部に沿って車幅方向に長い下視界制限領域S2と、左のフロントピラー53の内周縁部に沿って上下方向に長い左視界制限領域S3と、右のフロントピラー53の内周縁部に沿って上下方向に長い右視界制限領域S4とを備える。上視界制限領域S1と下視界制限領域S2とは、左の端部同士が、左視界制限領域S3により連結されている。また、上視界制限領域S1と下視界制限領域S2とは、右の端部同士が、右視界制限領域S4により連結されている。なお、以下の説明で、上視界制限領域S1、下視界制限領域S2、左視界制限領域S3、及び右視界制限領域S4は、それぞれ、区別されない場合、視界制限領域Sと記述される。
 視界制限領域Sは、機能性液晶フィルムへの通電をカットすることにより、視界確保状態になる。一方、機能性液晶フィルムを通電すると、視界制限状態になる。視界制限状態においては、通電態様を変更することにより、その透過率及び色が変更される。例えば、視界制限状態においては、透過率は、0%~60%の範囲で変更可能である。また、視界制限状態においては、例えば黒色と灰色と緑色と青色とで色が変更可能となっている。
 図5の例では、上視界制限領域S1、下視界制限領域S2、左視界制限領域S3、及び右視界制限領域S4について、それぞれ、最大範囲での視界制限状態が示されている。但し、これは一例であり、上視界制限領域S1、下視界制限領域S2、左視界制限領域S3、及び右視界制限領域S4は、それぞれ、部分的に視界制限状態にすることが可能である。この部分的に視界制限状態とする態様は、図6及び図7と図5とを対比させることにより明確となる。
 図6は、上視界制限領域S1と下視界制限領域S2とが視界制限状態にされている。一方、左視界制限領域S3と右視界制限領域S4とは視界確保状態とされている。図6では、上視界制限領域S1は、車幅方向中央部がもっとも下方に突出し、車幅方向外側に向かうにつれてほほ直線状に下方への突出量が小さくなるような形状で構成されている。また、下視界制限領域S2は、車幅方向中央部が最も上方に突出し、車幅方向外側に向かうにつれて徐々に上方への突出量が小さくなるように緩やかに湾曲された山形形状で構成されている。図6に示すように視界制限領域Sを設定することより、走行中(特に高速走行中)において、斜め上方に向かうオプティカルフローY61,Y62が上視界制限領域S1の外縁形状に沿う方向に向く。なお、オプティカルフローとは、走行中に運転者が認識する景色が流れる方向を指す。また、斜め下方に向かうオプティカルフローY63,Y64が下視界制限領域S2の外縁形状に沿う方向に向く。これにより、視界制限領域Sは、運転の爽快感や眠気防止の上で好ましい形状となる。
 図6において、下視界制限領域S2の形状は、特に高速走行の際に、車両近傍部分を運転者に認識させないようにすることができる。そのため、下視界制限領域S2は、運転者の疲労軽減及び非活性化の防止を図る上で好ましい形状となる。また、図6の上視界制限領域S1の形状は、運転者が直接的には視認することが少ない上方の視界部分を遮蔽して、眩しさの低減及び疲労低減を図る上で好ましい形状となる。なお、上視界制限領域S1及び下視界制限領域S2において、例えばフロントウインドガラス51の外周縁部に近づくほど透過率が低くなるように徐々に変化してもよい。また、視界制限領域Sにおいて、全範囲の透過率を一定にしてもよい。また、晴天時において、視界制限領域Sの透過率が低く設定され、視界制限度合いが高められてもよい。また、視界制限領域Sにおいて、曇天等の周囲が暗い状態において、晴天時に比べて透過率が高められてもよい。同様に、視界制限領域Sの色が変化されてもよい。例えば、晴天時において、視界制限領域Sは黒色等のダーク系の色が設定され、曇天時において、視界制限領域Sは例えば青色系の明るい色が設定されてもよい。また、視界制限領域Sは、例えばフロントウインドガラス51の外周縁部に近づくほど色が濃くされてもよい。
 図7は、フロントウインドガラス51の右端部に設定された略三角形状の視界制限領域S71を示した図である。視界制限領域S71は、内周縁部が上下方向に略直線状に延びる形状を持つ。図7に示すように視界制限領域S71を設定することにより、近景の付加や遠近感の補正に好ましいものとなる。また、図7では、視界制限領域S71は、助手席側に設けられているが、運転席側に設けられてもよい。この場合、運転席に近い側のフロントピラー53の上端部および下端部のそれぞれに対して、オプティカルフローがほぼ垂直に近い角度で遮蔽される。そのため、運転者の前方への注意を向上させ、運転の安定感を向上させることができる。図6及び図7に示す視界制限領域Sは、一例であり、運転者状態に応じて、適切な位置、面積、及び形状に設定されてもよい。上述のような視界制限領域Sを利用した窓枠形状を変更することにより、活性方向、未来志向方向、或いは快方向へと運転者状態を誘導することが可能となる。
 図8は、オーディオ機器のスピーカから車室内に向けてサウンドとしてのエンジン音を発生する際に、エンジン音を強調制御する例を示す。図8では、アクセル開度に応じて、ベースサウンドとしてのエンジン音のうち4次、6次、8次の音のゲインが増幅され、4次、6次、8次の音が強調された例が示されている。このような設定により、アクセル操作や加速度に応じた音圧を持つエンジン音をオーディオ機器のスピーカから出力させることができる。これにより、適切な音圧のフィードバックにより、明確な音色となって力強い鼓動感やハーモニックスによる伸び感を持つエンジン音をオーディオ機器のスピーカから出力させることができる。特に、運転者が眠気を生じていたり(非活性の状態)、過去志向のとき、さらには不快なときに、エンジン音のサウンドを利用して活性方向、未来志向方向、及び快方向へ誘導できる。
 図8の例では、実線で示す4次、6次、8次のゲインは、ベースサウンドの4次、6次、8次のゲインに比べて立ち上がりが急峻な特性を持っているいる。
 なお、活性方向、未来志向方向あるいは快方向へと運転者を誘導する制御対象および制御方向(制御量)は種々選択できる。例えば、アクセル特性が変更されてもよい。ここで、アクセル特性としては、操作反力又はアクセル開度に対するエンジン出力の関係を示す特性が採用できる。また、ブレーキ特性が変更されてもよい。ここで、ブレーキ特性としては、操作反力又はブレーキ操作量に対する減速度の関係を示す特性が採用できる。また、ステアリング特性が変更されてもよい。ここで、ステアリング特性としては、操作反力又は操舵角に対する車両の曲がり量(例えばヨーレート)の関係を示す特性が採用できる。
 ここで、車室内装材の色、輝度、或いは模様を変更することにより、運転者状態が活性方向、未来志向方向、或いは快方向へと誘導されてもよい。すなわち、図5の一点鎖線で示す領域βが、薄膜のカラー表示器(映像装置の一例)で構成されている。また、車室内の高所(例えば、天井)に設けられたプロジェクションマッピング装置(映像装置の一例)により領域βをプロジェクションマッピングすることで、領域βの色、輝度、及び模様の少なくとも1つ或いは任意の2つが変更されてもよい。領域βは、実施形態では、助手席に着座している助手席乗員から目視されやすい位置に設定されればよい。図5の例では、領域βは、サイドドアの上縁部と、インストルメントパネル54の後縁部と、フロントピラー53の下部とを含む領域に設定されている。
 車室内装材の色を、例えば明るい色系へ変更する、及び/又は、車室内装材の輝度を高くすることにより、活性方向、未来志向方向、或いは快方向へと運転者を誘導することができる。そこで、領域βの表示態様として、車室内装材の模様として多く用いられている「しぼ」の大きさや深さを、乗員に近い側から遠い側へ向けて順次に変更する表示態様を採用する。これにより、運転者は、遠くに位置する「しぼ」ほどぼやけて見えるようになり、奥行き感を演出できる。また、これにより、乗員の車両との一体感を強調させたり、上質感を向上させることも可能となる。また、明るい色系に領域βの表示態様を変更することや、輝度が高くなるように領域βの表示態様を変更することにより、活性方向、未来志向方向、或いは快方向へ運転者状態を誘導することが可能となる。
 なお、領域βは、助手席、運転席、左右の後席の任意の1つ座席、或いは任意の複数の座席に対応して設定することもできる。また、領域βは、天井内壁に設定することもできる。この他、車室内の適宜の箇所に設置された照明ランプの明るさや色合いを変更することで、運転者に対して光による刺激を付与し、運転者のわくわく感を向上させてもよい。
 わくわく感を向上させる制御対象14としては、空調制御装置が採用できる。この場合、例えば、温度変更や風量変更により運転者に刺激が付与され、運転者のわくわく感を向上させることができる。また、制御対象14として、香り発生装置が採用されてもよい。この場合、例えば複数種類の香りを発生させることができる香り発生装置を採用すればよい。そして、わくわく感を向上させる香りを選択し、香り発生装置から出力させればよい。また、ステアリングハンドルや座席にバイブレータを設け、運転者に微少振動を付与することで、わくわく感を向上させてもよい。
 次に、図9に示すフローチャートを参照しつつ、本発明の制御例について説明する。なお、以下の説明でQはステップを示す。また、図2において、運転者状態検出部1、環境検出部2、同乗者状態検出部21、及び制御対象14以外のブロックは、制御系統Uを構成するマイクロコンピュータが所定の制御プログラムを実行することで実現される。図9及び後述する図10のフローチャートは、制御系統Uの制御内容を示す。
 まず、Q1において、運転者状態検出部1が運転者状態を検出し、環境検出部2が環境を検出する。Q2において、感性状態推定部11は、Q1で検出された環境に対応する基本運転者状態を短期データベース10から読み出す。Q3において、感性状態推定部11は、Q1で検出された運転者状態に基づいて、運転者の感性状態がわくわく感の感性状態であるか否かを判定する。
 Q3の判定結果が、わくわく感の感性状態を示せば(Q4でYES)、処理はQ8に進む。一方、Q3の判定結果が、わくわく感の感性状態を示さなければ(Q4でNO)、処理はQ5に進む。
 Q5において、制御量決定部12は、Q1で検出された運転者状態及び環境に対応する学習値が長期データベース16に存在するか否かを判定する。当初は長期データベース16に学習値が存在しないので、Q5でNOと判定される。この場合、Q6において、制御量決定部12は、Q2で読み出された基本運転者状態と、Q1で検出された運転者状態とに基づいて、わくわく感を増大させる制御対象14の選択と、選択した制御対象14の制御量とを決定する。Q7において、制御部13は、Q6で選択された制御対象14に対して、Q6で決定された制御量を出力する。
 Q8において、学習部15は、最終的な学習値を決定するために図略のメモリに一時的に保持する制御量の記憶値が所定数以上(例えば5以上)であるか否かを判定する。当初は、一時的に保持される記憶値が所定数未満なので、Q8でNOと判定され、処理はQ9に進む。Q9において、学習部15は、今回の記憶値を図略のメモリに一時的に保持する。すなわち、Q9では、Q1で検出された環境及び運転者状態と、Q6で選択された制御対象14及びその制御対象14の制御量とが対応付けて記憶される。ここで、学習部15は、これらの情報に対して第1~第3パラメータのそれぞれの評価値を対応づけて記憶してもよい。この場合、学習部15は、評価値が所定値以上である記憶値を用いて学習値を算出してもよい。例えば、第1~第3パラメータのそれぞれの評価値がプラスの場合の記憶値を用いて、すなわち、わくわく感が得られた場合の記憶値を用いて学習値を算出してもよい。
 Q8の判別でYESのとき、つまり、Q9で記憶されている記憶値が、あるシーン(同じ環境で同じ運転者状態)において所定数以上であれば、Q10において、学習部15は記憶値の平均値を算出することで学習値を決定する。Q11において、学習部15は、決定した学習値を長期データベース16に記憶する。なお、Q9,Q11の処理が終了すると処理はQ1にリターンする。
 Q5の判別でYESのとき、つまり、長期データベース16に学習値が存在する場合、Q12において、制御量決定部12は、存在する学習値をそのまま最終的な制御量として決定する。なお、学習値の決定の手法は前述したとおりである。また、制御対象14に出力される最終的な制御量は、既述のように、「検出された運転者状態と基本運転者状態とに基づいて決定される制御量」と「学習値」との両方を用いて決定することもできる。
 図10は、運転者に対して同乗者を共感させるための制御例を示すフローチャートである。まず、Q21において、運転者状態検出部1は運転者状態を検出し、同乗者状態検出部21は同乗者状態を検出し、環境検出部2は環境を検出する。Q22において、共感関係判定部22は、Q21で検出された運転者状態と同乗者状態とに基づいて、共感状態(共感レベル)を算出する。
 Q23において、共感関係判定部22は、Q22で算出された共感レベルが所定値以上であるか否かを判定する。共感レベルが所定値以上である、すなわち、運転者と同乗者とが共感状態にある場合(Q23でYES)、処理はQ21にリターンされる。共感レベルが所定値未満である、すなわち、運転者と同乗者とが共感状態にない場合(Q23でNO)、処理はQ24に進む。Q24において、制御量決定部12は、共有データベース23に、Q21で検出された運転者状態及び環境の少なくとも一方に対応する制御量が記憶されているか否を判定する。Q24の判別でNOの場合、Q25において、制御量決定部12は、共感を高めるための上述の制御を行う。Q26において、共感関係判定部22は、共感を高めるために行われた制御量をQ21で検出された運転者状態及び同乗者状態と対応付けて共有データベース23に記憶する。Q24の判別でYESの場合、Q27において、制御量決定部12は、共有データベース23に記憶されている記憶値を用いて、共感を得るための制御量を決定する。
 以上実施形態について説明したが、本発明は、実施形態に限定されるものではなく、特許請求の範囲の記載された範囲において適宜の変更が可能である。本発明は、共感を得るための制御を実行するときに、共感レベルをフィードバックして学習値を決定し、所定値以上の共感レベルが得られる学習値を共有データベース23に記憶させることもできる。この場合、共感関係判定部22は、少なくとも環境と共感レベルと制御対象と制御量とを対応づけて共有データベース23に記憶すればよい。
 制御量決定部12は、共有データベース23に記憶された共感レベルも加味して、制御量を補正してもよい。例えば、共感レベルが高い状態であれば、制御量の補正は不用であるが、共感レベルが低い(あるいは無い)ときは、共感レベルが高まる方向へ制御量を補正してもよい。すなわち、運転者のわくわく感の向上と共感レベルの向上との兼ね合いで制御量を決定してもよい。
 所定の感性状態としては、わくわく感ではなく、はらはら感やどきどき感というような感性状態が適宜選択できる。例えば、スポーツ走行に不慣れな運転者に対して、スポーツ走行の醍醐味を感じてもらうために、あえて、はらはら感やどきどき感を向上させるように制御することができる。また、短期データベース10に、感性状態が互いに相違する基本運転者状態を複数記憶させておき、運転者がどの感性状態を向上させる制御を望むのかをマニュアル選択させるようにしてもよい。運転対象となる移動体として4輪自動車からなる車両を示したが、これは一例である。移動体としては、例えば、4輪自動車以外の車両(例えば二輪自動車)、各種の建設機械及び工事用機械、工場や敷地内で使用されることの多いフォークリフト等の搬送機械、船舶(特に小型船舶)、並びに飛行機(特に小型飛行機)が採用されてもよい。
 また、移動体は、運転者により遠隔操作されるもの(例えばドローンやヘリコプタ等)であってもよい。さらに、移動体や環境は、擬似的(バーチャル)なものであってもよい。例えば、擬似的なものとしてはドライビングシミュレータが該当する。
 フローチャートに示す各ステップあるいはステップ群は、制御系統Uの有する機能(を発揮する手段)として把握することができる。勿論、本発明の目的は、明記されたものに限らず、実質的に好ましいあるいは利点として表現されたものを提供することをも暗黙的に含むものである。
 (実施形態の纏め)
 本発明の実施形態に係る乗員の感性向上システムは、移動体の環境を検出する環境検出部と、
 前記移動体を運転する運転者の状態を検出する運転者状態検出部と、
 前記移動体に搭載される制御対象と、
 所定の感性状態が得られるような規範となる基本運転者状態を環境に対応させて記憶する第1データベースと、
 前記運転者状態検出部で検出された運転者状態に基づいて、前記運転者の感性状態が所定の感性状態にあるか否かを推定する感性状態推定部と、
 前記感性状態推定部によって前記運転者の感性状態が前記所定の感性状態でないと推定された場合、前記第1データベースを照合して得られる基本運転者状態と前記運転者状態検出部で検出された運転者状態とに基づいて、前記感性状態推定部で推定された感性状態が前記所定の感性状態となるように前記制御対象に対する制御量を決定する制御量決定部と、
 前記制御量決定部で決定された制御量で前記制御対象を制御する制御部と、
 前記制御量決定部により決定された制御量に基づき、前記環境検出部により検出された環境と前記運転者状態検出部により検出された運転者状態とに対応する運転者固有の学習値を決定する学習部と、
 前記学習部で決定された学習値を、前記環境検出部により検出された環境と前記運転者状態検出部により検出された運転者状態と対応づけて記憶する第2データベースとを備え、
 前記制御量決定部は、前記第2データベースに、前記環境検出部により検出された環境と前記運転者状態検出部により検出された運転者状態とに対応する学習値が存在する場合、前記存在する学習値に基づいて前記制御対象に対する制御量を決定する、ことを特徴とする。
 この構成によれば、運転を続けているうちに第2データベースに学習値が記憶されていき、この学習値を利用した制御を行うことによって、個々の運転者が所定の感性状態で運転することが可能となる。また、制御対象及び制御量は、所定の感性状態が得られるように予め定められた基本運転者状態を参照して決定される。そのため、制御対象及び制御量は、所定の感性状態を適切に得る上で好ましいものとなる。さらに、感性状態に少なからず影響を与える環境も考慮して制御対象及び制御量が決定されるので、制御対象及び制御量は環境の相違にかかわらず所定の感性状態を得る上でも好ましいものとなる。
 上記構成において、前記制御量決定部は、前記感性状態推定部によって前記運転者の感性状態が前記所定の感性状態でないと推定された場合、前記環境検出部で検出された環境に対応する基本運転者状態を前記第1データベースを照合して取得してもよい。
 この構成によれば、環境に対応する基本運転者状態を第1データベースから取得できる。
 上記構成において、前記制御量決定部は、前記第2データベースに前記環境検出部により検出された環境と前記運転者状態検出部により検出された運転者状態とに対応する学習値が存在するときは、前記存在する学習値を前記制御対象に対する制御量として決定してもよい。
 この場合、所定の感性状態を確実に得ることができると共に、制御の簡単化を図ることができる。また、第2データベースの記憶内容を他の車両で用いることにより、運転者は当該他の車両について、即座に所定の感性状態で運転することが可能となる。
 上記構成において、前記所定の感性状態は、わくわく感に関する感性状態であり、
 前記感性状態推定部は、前記運転者状態検出部により検出された運転者状態に基づいて、快及び不快に関する第1パラメータの評価値と、活性及び非活性に関する第2パラメータの評価値と、未来志向及び過去志向に関する第3パラメータの評価値とを算出し、前記算出した3種類の評価値に基づいて、前記運転者の感性状態が前記わくわく感に関する感性状態であるか否かを判定してもよい。
 この場合、運転者はわくわく感を抱いた状態で運転することができ、運転そのものが楽しくなるだけでなく、運転技量の向上にも繋がる。また、わくわく感を多くのパラメータを用いて判定することにより、感性が相違する多くの運転者について、わくわく感を精度よく判定することができる。
 上記構成において、前記感性状態推定部は、前記第1パラメータの評価値が快を示し、かつ、前記第2パラメータの評価値が活性を示し、かつ、前記第3パラメータの評価値が未来志向を示す場合、前記運転者が前記わくわく感の感性状態にあると判定してもよい。
 この場合、わくわく感が得られるときの3つのパラメータの状態を特定して、わくわく感を得る或いは向上させるための制御対象を的確に特定することができる。
 上記構成において、前記環境検出部は、前記移動体の室内環境と移動体の室外環境と移動体の状態との少なくとも1つを検出してもよい。
 この場合、検出される環境の具体的なものが提供される。
 上記構成において、前記制御対象は、運転操作系で構成されてもよい。
 この場合、運転操作系を制御して、所定の感性状態(例えば、わくわく感)を実現することができる。
 上記構成において、前記制御対象は、前記移動体の室内に音を発生させるオーディオ機器により構成されてもよい。
 この場合、オーディオ機器から発生される音を利用して、所定の感性状態(例えばわくわく感)を実現することができる。
 上記構成において、前記制御対象は、フロントウインドガラスに設置された可変式の視界制限装置で構成されてもよい。
 この場合、フロントウインドガラスの視界領域を変更することによって、所定の感性状態(例えばわくわく感)を実現できる。
 上記構成において、前記制御対象は、前記移動体における内装材の輝度、色、または模様を変更するための映像を出力する映像装置で構成されてもよい。
 この場合、車室内の雰囲気を変更することで、所定の感性状態(例えばわくわく感)を向上させることができる。
 上記構成において、前記制御対象は、可変式の座席で構成されてもよい。
 この場合、例えば、座席の向きを変えることにより、所定の感性状態(例えばわくわく感)を実現できる。
 上記構成において、同乗者の状態を検出する同乗者状態検出部と、
 前記同乗者状態検出部により検出される同乗者状態と、前記運転者状態検出部で検出される運転者状態とに基づいて、前記運転者と前記同乗者との共感レベルを判定する共感関係判定部と、
 前記共感レベルを高めるための共感用制御対象とを更に備え、
 前記制御量決定部は、前記共感関係判定部により判定された共感レベルが、所定値より低い場合、前記共感レベルが高まるように、前記共感用制御対象の制御量を決定してもよい。
 この場合、同乗者及び運転者を共感をさせることにより、同乗者及び運転者を所定の感性状態にすることができる。
 上記構成において、前記共感用制御装置は、前記同乗者の視線方向の変更を促す視線誘導装置で構成され、前記共感レベルが所定値よりも低いときは同乗者の視線方向を運転者の視線方向へと誘導してもよい。
 この場合、視線誘導という手法によって、運転者に対する同乗者の共感を高めることができる。
 本発明は、運転者個々について、所定の感性状態で運転させる上で好ましいものとなる。

Claims (13)

  1.  移動体の環境を検出する環境検出部と、
     前記移動体を運転する運転者の状態を検出する運転者状態検出部と、
     前記移動体に搭載される制御対象と、
     所定の感性状態が得られるような規範となる基本運転者状態を環境に対応させて記憶する第1データベースと、
     前記運転者状態検出部で検出された運転者状態に基づいて、前記運転者の感性状態が所定の感性状態にあるか否かを推定する感性状態推定部と、
     前記感性状態推定部によって前記運転者の感性状態が前記所定の感性状態でないと推定された場合、前記第1データベースを照合して得られる基本運転者状態と前記運転者状態検出部で検出された運転者状態とに基づいて、前記感性状態推定部で推定された感性状態が前記所定の感性状態となるように前記制御対象に対する制御量を決定する制御量決定部と、
     前記制御量決定部で決定された制御量で前記制御対象を制御する制御部と、
     前記制御量決定部により決定された制御量に基づき、前記環境検出部により検出された環境と前記運転者状態検出部により検出された運転者状態とに対応する運転者固有の学習値を決定する学習部と、
     前記学習部で決定された学習値を、前記環境検出部により検出された環境と前記運転者状態検出部により検出された運転者状態と対応づけて記憶する第2データベースとを備え、
     前記制御量決定部は、前記第2データベースに、前記環境検出部により検出された環境と前記運転者状態検出部により検出された運転者状態とに対応する学習値が存在する場合、前記存在する学習値に基づいて前記制御対象に対する制御量を決定する、ことを特徴とする乗員の感性向上システム。
  2.  請求項1に記載の乗員の感性向上システムにおいて、
     前記制御量決定部は、前記感性状態推定部によって前記運転者の感性状態が前記所定の感性状態でないと推定された場合、前記環境検出部で検出された環境に対応する基本運転者状態を前記第1データベースを照合して取得する乗員の感性向上システム。
  3.  請求項1又は2に記載の乗員の感性向上システムにおいて、
     前記制御量決定部は、前記第2データベースに前記環境検出部により検出された環境と前記運転者状態検出部により検出された運転者状態とに対応する学習値が存在するときは、前記存在する学習値を前記制御対象に対する制御量として決定する、ことを特徴とする乗員の感性向上システム。
  4.  請求項1~3のいずれか1項に記載の乗員の感性向上システムにおいて、
     前記所定の感性状態は、わくわく感に関する感性状態であり、
     前記感性状態推定部は、前記運転者状態検出部により検出された運転者状態に基づいて、快及び不快に関する第1パラメータの評価値と、活性及び非活性に関する第2パラメータの評価値と、未来志向及び過去志向に関する第3パラメータの評価値とを算出し、前記算出した3種類の評価値に基づいて、前記運転者の感性状態が前記わくわく感に関する感性状態であるか否かを判定する、ことを特徴とする乗員の感性向上システム。
  5.  請求項4に記載の乗員の感性向上システムにおいて、
    おいて、
     前記感性状態推定部は、前記第1パラメータの評価値が快を示し、かつ、前記第2パラメータの評価値が活性を示し、かつ、前記第3パラメータの評価値が未来志向を示す場合、前記運転者が前記わくわく感の感性状態にあると判定する、ことを特徴とする乗員の感性向上システム。
  6.  請求項1~5のいずれか1項に記載の乗員の感性向上システムにおいて、
     前記環境検出部は、前記移動体の室内環境と移動体の室外環境と移動体の状態との少なくとも1つを検出する、ことを特徴とする乗員の感性向上システム。
  7.  請求項1~6のいずれか1項に記載の乗員の感性向上システムにおいて、
     前記制御対象は、運転操作系で構成されている、ことを特徴とする乗員の感性向上システム。
  8.  請求項1~7のいずれか1項に記載の乗員の感性向上システムにおいて、
     前記制御対象は、前記移動体の室内に音を発生させるオーディオ機器により構成されている、ことを特徴とする乗員の感性向上システム。
  9.  請求項1~8のいずれか1項に記載の乗員の感性向上システムにおいて、
     前記制御対象は、フロントウインドガラスに設置された可変式の視界制限装置で構成されている、ことを特徴とする乗員の感性向上システム。
  10.  請求項1~9のいずれか1項に記載の乗員の感性向上システムにおいて、
     前記制御対象は、前記移動体における内装材の輝度、色、または模様を変更するための映像を出力する映像装置で構成されている、ことを特徴とする乗員の感性向上システム。
  11.  請求項1~10のいずれか1項に記載の乗員の感性向上システムにおいて、
     前記制御対象は、可変式の座席で構成されている、ことを特徴とする乗員の感性向上システム。
  12.  請求項1~11のいずれか1項に記載の乗員の感性向上システムにおいて、
     同乗者の状態を検出する同乗者状態検出部と、
     前記同乗者状態検出部により検出される同乗者状態と、前記運転者状態検出部で検出される運転者状態とに基づいて、前記運転者と前記同乗者との共感レベルを判定する共感関係判定部と、
     前記共感レベルを高めるための共感用制御対象とを更に備え、
     前記制御量決定部は、前記共感関係判定部により判定された共感レベルが、所定値より低い場合、前記共感レベルが高まるように、前記共感用制御対象の制御量を決定する、ことを特徴とする乗員の感性向上システム。
  13.  請求項12に記載の乗員の感性向上システムにおいて、
     前記共感用制御装置は、前記同乗者の視線方向の変更を促す視線誘導装置で構成され、前記共感レベルが所定値よりも低いときは同乗者の視線方向を運転者の視線方向へと誘導する、ことを特徴とする乗員の感性向上システム。
PCT/JP2016/087532 2015-12-17 2016-12-16 乗員の感性向上システム WO2017104793A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-246009 2015-12-17
JP2015246009A JP6731718B2 (ja) 2015-12-17 2015-12-17 乗員の感性向上システム

Publications (1)

Publication Number Publication Date
WO2017104793A1 true WO2017104793A1 (ja) 2017-06-22

Family

ID=59056622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087532 WO2017104793A1 (ja) 2015-12-17 2016-12-16 乗員の感性向上システム

Country Status (2)

Country Link
JP (1) JP6731718B2 (ja)
WO (1) WO2017104793A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110147160A (zh) * 2018-02-07 2019-08-20 本田技研工业株式会社 信息提供装置和信息提供方法
JP2020071766A (ja) * 2018-11-01 2020-05-07 コベルコ建機株式会社 感性フィードバック制御装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6613290B2 (ja) * 2017-11-28 2019-11-27 株式会社Subaru 運転アドバイス装置及び運転アドバイス方法
JP2019111909A (ja) * 2017-12-22 2019-07-11 クラリオン株式会社 報知装置、及び報知方法
KR102491730B1 (ko) * 2017-12-27 2023-01-27 현대자동차주식회사 차량 및 그 제어 방법
JP2020195429A (ja) * 2019-05-30 2020-12-10 テイ・エス テック株式会社 シート

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125749U (ja) * 1988-02-22 1989-08-28
JP2006069449A (ja) * 2004-09-03 2006-03-16 Toyota Motor Corp 疲労低減シート装置
JP2006092430A (ja) * 2004-09-27 2006-04-06 Denso Corp 音楽再生装置
JP2007148917A (ja) * 2005-11-29 2007-06-14 Aisin Aw Co Ltd 運転支援装置
JP2008126766A (ja) * 2006-11-17 2008-06-05 Fuji Heavy Ind Ltd 車両の運動制御装置
JP2009101830A (ja) * 2007-10-23 2009-05-14 Toyota Motor Corp 車両用制御装置
JP2009261586A (ja) * 2008-04-24 2009-11-12 Toyota Motor Corp 心理状態推定装置
JP2009269461A (ja) * 2008-05-07 2009-11-19 Toyota Motor Corp 車両用減光制御装置
WO2016035268A1 (ja) * 2014-09-03 2016-03-10 株式会社デンソー 車両の走行制御システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129366A (ja) * 2007-11-27 2009-06-11 Fuji Heavy Ind Ltd 車両の感性推定システム
US20100309434A1 (en) * 2008-02-15 2010-12-09 Koninklijke Philips Electronics N.V. Fragrance dispenser

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125749U (ja) * 1988-02-22 1989-08-28
JP2006069449A (ja) * 2004-09-03 2006-03-16 Toyota Motor Corp 疲労低減シート装置
JP2006092430A (ja) * 2004-09-27 2006-04-06 Denso Corp 音楽再生装置
JP2007148917A (ja) * 2005-11-29 2007-06-14 Aisin Aw Co Ltd 運転支援装置
JP2008126766A (ja) * 2006-11-17 2008-06-05 Fuji Heavy Ind Ltd 車両の運動制御装置
JP2009101830A (ja) * 2007-10-23 2009-05-14 Toyota Motor Corp 車両用制御装置
JP2009261586A (ja) * 2008-04-24 2009-11-12 Toyota Motor Corp 心理状態推定装置
JP2009269461A (ja) * 2008-05-07 2009-11-19 Toyota Motor Corp 車両用減光制御装置
WO2016035268A1 (ja) * 2014-09-03 2016-03-10 株式会社デンソー 車両の走行制御システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110147160A (zh) * 2018-02-07 2019-08-20 本田技研工业株式会社 信息提供装置和信息提供方法
US11312389B2 (en) 2018-02-07 2022-04-26 Honda Motor Co., Ltd. Providing information to vehicle occupants based on emotions
CN110147160B (zh) * 2018-02-07 2022-08-09 本田技研工业株式会社 信息提供装置和信息提供方法
JP2020071766A (ja) * 2018-11-01 2020-05-07 コベルコ建機株式会社 感性フィードバック制御装置
WO2020090659A1 (ja) * 2018-11-01 2020-05-07 コベルコ建機株式会社 感性フィードバック制御装置
CN112867973A (zh) * 2018-11-01 2021-05-28 神钢建机株式会社 感性反馈控制装置
JP7154954B2 (ja) 2018-11-01 2022-10-18 コベルコ建機株式会社 感性フィードバック制御装置
US11926991B2 (en) 2018-11-01 2024-03-12 Kobelco Construction Machinery Co., Ltd. Sensibility feedback control device

Also Published As

Publication number Publication date
JP6731718B2 (ja) 2020-07-29
JP2017109635A (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
WO2017104793A1 (ja) 乗員の感性向上システム
US10710608B2 (en) Provide specific warnings to vehicle occupants before intense movements
US11449294B2 (en) Display system in a vehicle
US20210118192A1 (en) Image display system
CN108706012B (zh) 车辆驾驶支援系统
US20110310001A1 (en) Display reconfiguration based on face/eye tracking
JP2017520446A (ja) 動的照明装置および動的照明方法
JP2014167438A (ja) 情報通知装置
CN111201503A (zh) 在机动车辆中运行至少一副虚拟现实眼镜的方法和系统
JP6756174B2 (ja) 車両制御装置
CN110383142A (zh) 用于机动车的娱乐系统和用于运行娱乐系统的方法
JP6776681B2 (ja) ドライバ状態判定装置、及びドライバ状態判定プログラム
JP2017039373A (ja) 車両用映像表示システム
US20150378155A1 (en) Method for operating virtual reality glasses and system with virtual reality glasses
CN115402333A (zh) 基于驾驶员情绪的车内互动控制系统、方法及存储介质
US20180022357A1 (en) Driving recorder system
KR20160109243A (ko) 운전자의 사고를 예방할 수 있는 스마트 감성조명 장치
JP2005329800A (ja) 車載機器制御装置
CN112566808A (zh) 运行布置在机动车中的显示装置的方法和在机动车中使用的显示装置
Diels et al. Design strategies to alleviate motion sickness in rear seat passengers-a test track study
JPWO2020208804A1 (ja) 表示制御装置、表示制御方法、及び表示制御プログラム
JP6160566B2 (ja) 車両制御装置
KR101727466B1 (ko) 자동차의 스마트 가니쉬 및 자동차
JP6428748B2 (ja) 運転支援システム
JP6428691B2 (ja) 車両の室内指標表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875767

Country of ref document: EP

Kind code of ref document: A1