WO2017104191A1 - ステレオ撮像ユニット - Google Patents

ステレオ撮像ユニット Download PDF

Info

Publication number
WO2017104191A1
WO2017104191A1 PCT/JP2016/076432 JP2016076432W WO2017104191A1 WO 2017104191 A1 WO2017104191 A1 WO 2017104191A1 JP 2016076432 W JP2016076432 W JP 2016076432W WO 2017104191 A1 WO2017104191 A1 WO 2017104191A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
objective optical
holding
objective
unit
Prior art date
Application number
PCT/JP2016/076432
Other languages
English (en)
French (fr)
Inventor
寛 雲財
洋和 市原
藤井 俊行
輝幸 西原
真弓 今井
淳平 新井
雅大 佐藤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017504127A priority Critical patent/JP6188988B1/ja
Priority to CN201680023914.7A priority patent/CN107529953B/zh
Priority to EP16875177.4A priority patent/EP3275360A4/en
Publication of WO2017104191A1 publication Critical patent/WO2017104191A1/ja
Priority to US15/792,856 priority patent/US20180045948A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2415Stereoscopic endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/053Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion being detachable
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image

Definitions

  • the present invention relates to a stereo imaging unit capable of acquiring two captured images having parallax.
  • each imaging element is positioned and fixed to the holder via an individual centering glass. That is, a centering glass corresponding to each imaging element is held in the holder, and each imaging element is positioned on each centering glass and then held by being bonded to the centering glass.
  • this type of stereo imaging unit generally tends to have a more complicated structure than a monocular imaging unit including a single objective optical system and an imaging element.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a stereo imaging unit capable of acquiring two captured images having appropriate parallax with a simple configuration.
  • a stereo imaging unit includes a first imaging element that receives a first optical image formed by a first objective optical system, and a second objective that forms a pair with the first objective optical system.
  • a second image sensor that receives a second optical image formed by the optical system; and a first image sensor and the second image sensor arranged on an optical path of the first optical image and the second optical image.
  • FIG. 2 The perspective view which shows the whole structure of an endoscope system End view of the tip of the endoscope III-III sectional view of Fig. 2 Expanded cross section of stereo imaging unit An exploded perspective view showing the stereo imaging unit from the base end side
  • FIG. 1 is a perspective view showing the overall configuration of the endoscope system
  • FIG. 2 is an end view of the distal end of the endoscope
  • FIG. 3 is a sectional view taken along line III-III in FIG. 4 is an enlarged sectional view of the stereo imaging unit
  • FIG. 5 is an exploded perspective view showing the stereo imaging unit from the base end side.
  • An endoscope system 1 shown in FIG. 1 includes a stereoscopic endoscope 2 capable of taking a subject in stereo imaging from different viewpoints, a processor 3 to which the stereoscopic endoscope 2 is detachably connected, and a processor 3. And a monitor 5 as a display device for displaying the image signal generated by the above as an endoscopic image.
  • the stereoscopic endoscope 2 of the present embodiment is a rigid endoscope applied to laparoscopic surgery, for example.
  • the stereoscopic endoscope 2 includes an elongated insertion portion 6, an operation portion 7 provided continuously to the proximal end side of the insertion portion 6, a universal cable 8 extending from the operation portion 7 and connected to the processor 3, It is comprised.
  • the insertion portion 6 is provided with a distal end portion 11 mainly composed of a metal member such as stainless steel, a bending portion 12, and a rigid tube portion 13 composed of a metal tube such as stainless steel in order from the distal end side. ing.
  • the insertion portion 6 is a portion to be inserted into the body, and the distal end portion 11 incorporates a stereo imaging unit 30 (see FIG. 3 and the like) for stereo imaging inside the subject.
  • a stereo imaging unit 30 for stereo imaging inside the subject.
  • inside the bending portion 12 and the rigid tube portion 13 are imaging cable bundles 39l and 39r (see FIG. 3) that are electrically connected to the stereo imaging unit 30, and a light guide bundle that transmits illumination light to the distal end portion 11 (see FIG. 3). Etc.) are inserted.
  • the stereoscopic endoscope 2 of the present embodiment exemplifies a rigid endoscope in which the proximal end side of the bending portion 12 is configured by the rigid tube portion 13, but the bending portion is not limited thereto.
  • a soft endoscope in which a proximal end side than 12 is constituted by a flexible tube portion having flexibility may be used.
  • the operation section 7 is provided with an angle lever 15 for remotely operating the bending section 12, and further provided with various switches 16 for operating the light source device of the processor 3, a video system center, and the like.
  • the angle lever 15 is a bending operation means capable of bending the bending portion 12 of the insertion portion 6 in four directions, up, down, left and right here.
  • the bending portion 12 is not limited to a configuration that can be bent in four directions of up, down, left, and right, and may be configured to be capable of bending in only two directions, for example, up and down, or only in left and right.
  • the distal end portion 11 includes a distal end portion main body 20 having a substantially columnar shape, and a distal end cylindrical body 21 having a substantially cylindrical shape with a distal end fixed to the distal end portion main body 20.
  • the distal end of the distal end cylinder body 21 is fitted to the outer periphery of the distal end section main body 20, and the distal end surface 11 a of the distal end section 11 is formed by the end surface of the distal end section main body 20 exposed from the distal end cylinder body 21. ing.
  • the tip body 20 is provided with a pair of observation through-holes 23 l and 23 r opened in the tip surface 11 a side by side (that is, the left and right bending directions by the bending portion 12). ing.
  • a pair of objective optical systems (first and second objective optical systems 31l and 31r) constituting the stereo imaging unit 30 are respectively held in the left and right observation through holes 23l and 23r.
  • Observation windows 24l and 24r are formed on the front end surface 11a.
  • the distal end main body 20 opens on the distal end surface 11a above the observation through holes 23l and 23r (that is, above the upper and lower curved directions by the curved portion 12).
  • a pair of illumination through holes 25l and 25r are provided side by side.
  • a pair of illumination optical systems 27l and 27r that are optically connected to a light guide bundle (not shown) are respectively held in the left and right illumination through holes 25l and 25r, whereby the distal end surface 11a of the distal end portion 11 is illuminated.
  • Windows 26l and 26r are formed.
  • the stereo imaging unit 30 includes a first imaging element 32l that receives an optical image (first optical image) formed by the first objective optical system 31l, and a second objective.
  • a second image sensor 32r that receives an optical image (second optical image) formed by the optical system 31r and an optical path of the first and second optical images, and the first and second image sensors 32l.
  • each of the light receiving surfaces 32la, 32ra is positioned and fixed by bonding, and a single centering glass 34 as an optical member, and the first and second imaging elements 32l, 32r are held via the centering glass 34.
  • a holding frame 35 is positioned and fixed by bonding, and a single centering glass 34 as an optical member, and the first and second imaging elements 32l, 32r are held via the centering glass 34.
  • a holding frame 35 is positioned and fixed by bonding, and a single centering glass 34 as an optical member, and the first and second imaging elements 32l, 32r are held via the centering glass 34.
  • a holding frame 35
  • the first and second imaging elements 32l and 32r are constituted by solid-state imaging elements such as CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor), for example.
  • Cover glasses 33l and 33r for protecting the light receiving surfaces 32la and 32ra are attached to the first and second imaging elements 32l and 32r.
  • FPC boards 38l and 38r are electrically connected to terminal portions (not shown) provided in the first and second imaging elements 32l and 32r, respectively.
  • Each FPC board 38l, 38r has, for example, a digital IC for generating a drive signal for the image sensor, an IC drive power supply stabilization capacitor for stabilizing the drive power of the digital IC, and various types of electrons such as resistors. Each component is mounted by soldering or the like.
  • imaging cable bundles 39l and 39r are electrically connected to the respective FPC boards 38l and 38r.
  • the first and second imaging elements 32l and 32r, the FPC boards 38l and 38r on which various electronic components are mounted, and the imaging cables 39l that are electrically connected to the FPC boards 38l and 38r. , 39r are integrally covered with a single cover body.
  • the centering glass 34 is constituted by a transparent glass substrate that extends in the left-right direction of the distal end portion 11. On the centering glass 34, the light receiving surfaces 32la and 32ra side of the first and second image sensors 32l and 32r are fixed via cover glasses 33l and 33r, respectively.
  • the cover glasses 33l and 33r attached to the light receiving surfaces 32la and 32ra are disposed via an ultraviolet curable transparent adhesive (UV adhesive) or the like.
  • UV adhesive ultraviolet curable transparent adhesive
  • the positioning is fixed in a state of being spaced apart from each other by a predetermined distance.
  • the front end side of the cover body 42 is fixed to the glass holding portion 36.
  • the holding frame 35 is made of, for example, a columnar metal member having a substantially rounded rectangular cross section (see, for example, FIG. 5).
  • a glass holding portion 36 is recessed on the proximal end side of the holding frame 35, and a centering glass 34 is fixed to the glass holding portion 36 with an adhesive or the like.
  • the holding frame 35 is provided with a first objective optical system holding hole 37l and a second objective optical system holding hole 37r at a predetermined interval. They are arranged side by side. These first and second objective optical system holding holes 37l and 37r are configured by through holes whose distal end side is opened at the end face (tip end face 11a) of the holding frame 35 and whose proximal end side communicates with the glass holding portion 36. ing.
  • first and second objective optical systems 31l and 31r are unitized as first and second objective optical system units 40l and 40r. Each is held in a state.
  • the first and second objective optical systems 31l and 31r constitute the first and second objective optical system units 40l and 40r by being held by the first and second lens frames 41l and 41r, respectively.
  • the first and second objective optical system units 40l and 40r are positioned and fixed in the first and second objective optical system holding holes 37l and 37r via an adhesive or the like, whereby the first and first objective optical system units 40l and 40r are positioned and fixed in the first and second objective optical system holding holes 37l and 37r.
  • the two objective optical systems 31l and 31r are integrally held by a single holding frame 35 together with the first and second imaging elements 32l and 32r.
  • the first and second objective optical systems 31l and 31r are corrected in order to optimize the relative positions (distance between optical axes, tilt angle, etc.) of each part by correcting slight processing errors and assembly errors in each part.
  • One of the first and second objective optical system holding holes 37l and 37r (for example, the first objective optical system holding hole 37l) is more than the other (for example, the second objective optical system holding hole 37r). It is constituted by a large-diameter through hole. That is, for example, as shown in FIG. 4, in the present embodiment, the first objective optical system holding hole 371 adds a predetermined adjustment allowance ⁇ r to the inner diameter r into which the first lens frame 41l can be fitted with almost no gap.
  • the second objective optical system holding hole 37r is constituted by a through hole having an inner diameter r into which the second lens frame 41r can be fitted with almost no gap.
  • the first objective optical system unit 40l is in the first objective optical system holding hole 37l in a state in which the distance between the optical axes, the tilt angle, etc. are finely adjusted with respect to the second objective optical system unit 40r. It is fixed to the adhesive.
  • the first and second image pickup elements 32l and 32r are positioned and fixed to the centering glass 34 via the UV adhesive.
  • the relative positions of the first and second imaging elements 32l and 32r on the centering glass 34 are arranged on the light receiving surfaces 32la and 32ra of the first and second imaging elements 32l and 32r, for example.
  • the photoelectric conversion element By observing the photoelectric conversion element or the like through a centering glass 34 under a microscope, the photoelectric conversion element is positioned (centered) with high accuracy. Then, in the state of being positioned as described above, ultraviolet rays are irradiated and the UV adhesive is cured, whereby the first and second imaging elements 32l and 32r (more specifically, the cover glasses 33l and 33r). Is fixed to the centering glass 34.
  • the centering glass 34 holding the first and second image sensors 32l and 32r is fixed to the glass holding part 36 provided on the holding frame 35 with an adhesive or the like. At that time, for example, the centering glass 34 is adjusted so that the second imaging element 32r is positioned at a predetermined position with respect to the second objective optical system holding hole 37r having no adjustment allowance ⁇ r. .
  • the second objective optical system unit 40r is positioned and fixed in the second objective optical system holding hole 37r. That is, the second objective optical system unit 40r inserted into the second objective optical system holding hole 37r has, for example, an optical axis under observation of the second optical image formed on the second image sensor 32r. After adjusting the direction (focus adjustment), it is fixed with an adhesive or the like.
  • the first objective optical system unit 40l is positioned and fixed in the first objective optical system holding hole 37l. That is, the first objective optical system unit 40l inserted into the first objective optical system holding hole 37l has, for example, an optical axis under the observation of the first optical image formed on the first image sensor 32l.
  • Direction adjustment is performed.
  • the first objective optical system unit 40l is based on the comparison between the first optical image formed on the first image sensor 32l and the second optical image formed on the second image sensor 32r. The relative position (distance between optical axes, tilt angle, etc.) with respect to the second objective optical system unit 40r was adjusted within the range of the adjustment allowance set in the first objective optical system holding hole 37l. Then, it is fixed with an adhesive or the like.
  • the first image sensor 32l that receives the first optical image formed by the first objective optical system 31l and the second optical image formed by the second objective optical system 31r.
  • the second image pickup element 32r that receives light and the light receiving surfaces 32la and 32ra of the second image pickup element 32r are positioned and fixed by bonding to a single centering glass 34 disposed on the optical path of the first and second optical images.
  • two captured images having appropriate parallax can be obtained with a simple configuration. it can.
  • the first and second imaging elements 32l and 32r are positioned and fixed on the single centering glass 34 and held on the holding frame 35, whereby the first and second imaging elements are individually centered glass.
  • the number of parts can be reduced and the configuration can be simplified.
  • the relative positions of the first and second imaging elements 32l and 32r are determined on a single centering glass 34 that is smaller in thermal expansion and contraction than the metal holding frame 35, thereby positioning them. Can be accurately performed at an appropriate parallax position, and two captured images having appropriate parallax can be acquired.
  • the first and second imaging elements 32l and 32r are fixed on the single centering glass 34
  • the first and second imaging elements are compared with the configuration in which the first and second imaging elements 32l and 32r are fixed on the individual centering glass. It can suppress that the optical axis space
  • the first and second objective optical system holding holes 37l and 37r in the single holding frame 35 it is possible to suppress an excessive increase in the distance between these optical axes.
  • first and second objective optical systems 31l and 31r are respectively held with high precision by the first and second lens frames 41l and 41r, respectively, and the first and second objective optical system units 40l and 40r are unit units.
  • the first and second objective optical system holding holes 37l and 37r By providing an adjustment allowance in one of the first and second objective optical system holding holes 37l and 37r, the first and second objective optical system holding holes 37l and 37l, Even when 37r is provided, the relative position adjustment of the first and second objective optical systems 31l and 31r can be easily realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

第1の対物光学系31lが形成する第1の光学像を受光する第1の撮像素子32lと、第2の対物光学系31rが形成する第2の光学像を受光する第2の撮像素子32rと、の各受光面32la,32ra側を、第1,第2の光学像の光路上に配置される単一の芯出しガラス34に対して接着によって位置決め固定し、この芯出しガラス34を介して第1,第2の撮像素子32l,32rを保持枠35に保持する。

Description

ステレオ撮像ユニット
 本発明は、視差を有する2つの撮像画像を取得可能なステレオ撮像ユニットに関する。
 近年、医療用内視鏡や工業用内視鏡の分野において、ステレオ撮像ユニットを用いて被検体を立体観察するニーズが高まっている。
 ステレオ撮像ユニットを用いた内視鏡の先端部の構造として、例えば、日本国特開平8-29701号公報には、先端部材に設けた透孔に、2つの対物レンズ系(対物光学系)が一体でマウントされた対物レンズユニットを嵌入し、さらに、2つのCCD(撮像素子)が一体でマウントされたCCDユニットを嵌入させた技術が開示されている。ここで、例えば、日本国特開平8-29701号公報に開示されているように、一般に、各撮像素子は、それぞれ個別の芯出しガラスを介してホルダに位置決め固定される。すなわち、ホルダには各撮像素子に対応する芯出しガラスがそれぞれ保持され、各撮像素子は、各芯出しガラス上において位置決めされた後、当該芯出しガラスに接着されることによって保持される。
 ところで、この種のステレオ撮像ユニットは、一般に、単一の対物光学系及び撮像素子を備えた単眼の撮像ユニットに比べて構造が複雑化する傾向にある。
 また、この種のステレオ撮像ユニットでは2つの撮像画像の視差を最適化する必要があるが、特に、近距離から被検体を拡大して撮像する内視鏡においては、光軸間距離が広くなり、立体感が強くなりすぎる傾向にある。
 本発明は上記事情に鑑みてなされたもので、簡単な構成により、適切な視差を有する2つの撮像画像を取得することができるステレオ撮像ユニットを提供することを目的とする。
 本発明の一態様によるステレオ撮像ユニットは、第1の対物光学系が形成する第1の光学像を受光する第1の撮像素子と、前記第1の対物光学系と対をなす第2の対物光学系が形成する第2の光学像を受光する第2の撮像素子と、前記第1の光学像及び前記第2の光学像の光路上に配置され、前記第1の撮像素子及び前記第2の撮像素子の各受光面側が接着によって位置決め固定された単一の光学部材と、前記光学部材を介して前記第1の撮像素子及び前記第2の撮像素子を保持する保持枠と、を備えたものである。
内視鏡システムの全体構成を示す斜視図 内視鏡の先端部の端面図 図2のIII-III断面図 ステレオ撮像ユニットの拡大断面図 ステレオ撮像ユニットを基端側から示す分解斜視図
 以下、図面を参照して本発明の形態を説明する。図面は本発明の一実施形態に係り、図1は内視鏡システムの全体構成を示す斜視図、図2は内視鏡の先端部の端面図、図3は図2のIII-III断面図、図4はステレオ撮像ユニットの拡大断面図、図5はステレオ撮像ユニットを基端側から示す分解斜視図である。
 図1に示す内視鏡システム1は、被検体を異なる視点からステレオ撮像することが可能な立体内視鏡2と、この立体内視鏡2が着脱自在に接続されるプロセッサ3と、プロセッサ3により生成された画像信号を内視鏡画像として表示する表示装置としてのモニタ5と、を有して構成されている。
 本実施形態の立体内視鏡2は、例えば、腹腔鏡手術に適用される硬性内視鏡である。この立体内視鏡2は、細長の挿入部6と、この挿入部6の基端側に連設する操作部7と、操作部7から延出してプロセッサ3に接続されるユニバーサルケーブル8と、を有して構成されている。
 挿入部6には、主にステンレス等の金属製部材によって構成された先端部11、湾曲部12、及び、ステンレス等の金属管によって構成された硬性管部13が、先端側から順に連設されている。
 この挿入部6は体内に挿入する部分となっており、先端部11には、被検体内をステレオ撮像するためのステレオ撮像ユニット30(図3等参照)が内蔵されている。また、湾曲部12及び硬性管部13の内部には、ステレオ撮像ユニット30と電気的に接続する撮像ケーブル束39l,39r(図3参照)、先端部11に照明光を伝送するライトガイドバンドル(不図示)等が挿通されている。なお、本実施形態の立体内視鏡2は、湾曲部12よりも基端側が硬性管部13によって構成された硬性内視鏡を例示しているが、これに限定されることなく、湾曲部12よりも基端側が可撓性を備えた可撓管部によって構成された軟性内視鏡であっても良い。
 操作部7には、湾曲部12を遠隔操作するためのアングルレバー15が設けられ、さらに、プロセッサ3の光源装置やビデオシステムセンタ等を操作するための各種スイッチ16が設けられている。
 アングルレバー15は、挿入部6の湾曲部12を、ここでは上下左右の4方向に湾曲操作可能な湾曲操作手段である。なお、湾曲部12は、上下左右の4方向に湾曲可能な構成に限定されることなく、例えば、上下のみ、或いは、左右のみの2方向に湾曲操作可能な構成としても良い。
 次に、このような立体内視鏡2の先端部の構成について、図2,3を参照して詳細に説明する。
 図3に示すように、先端部11は、略円柱形状をなす先端部本体20と、この先端部本体20に先端が固定された略円筒形状をなす先端筒体21と、を有して構成されている。ここで、先端部本体20の外周には先端筒体21の先端が嵌合されており、この先端筒体21から露出する先端部本体20の端面によって、先端部11の先端面11aが形成されている。
 図2,3に示すように、先端部本体20には、先端面11aに開口する一対の観察用貫通孔23l,23rが左右(すなわち、湾曲部12による左右の湾曲方向)に並んで設けられている。左右の各観察用貫通孔23l,23rには、ステレオ撮像ユニット30を構成する一対の対物光学系(第1,第2の対物光学系31l,31r)がそれぞれ保持され、これにより、先端部11の先端面11aには観察窓24l,24rが形成されている。
 また、例えば、図2に示すように、観察用貫通孔23l,23rよりも上方(すなわち、湾曲部12による上下の湾曲方向の上方)において、先端部本体20には、先端面11aに開口する一対の照明用貫通孔25l,25rが左右に並んで設けられている。左右の各照明用貫通孔25l,25rには、図示しないライトガイドバンドルと光学的に接続する一対の照明光学系27l,27rがそれぞれ保持され、これにより、先端部11の先端面11aには照明窓26l,26rが形成されている。
 図3~図5に示すように、ステレオ撮像ユニット30は、第1の対物光学系31lが形成する光学像(第1の光学像)を受光する第1の撮像素子32lと、第2の対物光学系31rが形成する光学像(第2の光学像)を受光する第2の撮像素子32rと、第1,第2の光学像の光路上に配置され、第1,第2の撮像素子32l,32rの各受光面32la,32ra側が接着によって位置決め固定された光学部材としての単一の芯出しガラス34と、芯出しガラス34を介して第1,第2の撮像素子32l,32rを保持する保持枠35と、を有して構成されている。
 第1,第2の撮像素子32l,32rは、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子によって構成されている。これら第1,第2の撮像素子32l,32rには、受光面32la,32raを保護するためのカバーガラス33l,33rが貼着されている。
 また、第1,第2の撮像素子32l,32rに設けられた端子部(不図示)にはフレキシブルプリント回路基板(FPC基板)38l,38rがそれぞれ電気的に接続されている。各FPC基板38l,38rには、例えば、撮像素子の駆動信号を発生させるためのデジタルIC、デジタルICの駆動電源を安定化させるためのIC駆動電源安定化用コンデンサ、及び、抵抗等の各種電子部品がハンダ付け等によってそれぞれ実装されている。また、各FPC基板38l,38rには、撮像ケーブル束39l,39rが電気的に接続されている。
 なお、本実施形態において、第1,第2の撮像素子32l,32r、各種電子部品を実装した各FPC基板38l,38r、及び、各FPC基板38l,38rに電気的に接続する各撮像ケーブル39l,39rの先端側は、単一のカバー体42によって一体的に覆われている。
 芯出しガラス34は、先端部11の左右方向に延在する透明なガラス基板によって構成されている。この芯出しガラス34には、第1,第2の撮像素子32l,32rの受光面32la,32ra側が、カバーガラス33l,33rを介してそれぞれ固定されている。
 より具体的には、第1,第2の撮像素子32l,32rは、受光面32la,32raに貼着されたカバーガラス33l,33rが、紫外線硬化型透明接着剤(UV接着剤)等を介して芯出しガラス34に接着されることにより、互いに所定間隔離間された状態にて位置決め固定されている。さらに、ガラス保持部36には、カバー体42の先端側が固設されている。
 保持枠35は、例えば、断面形状が略角丸長方形をなす柱状の金属部材によって構成されている(例えば、図5参照)。保持枠35の基端側にはガラス保持部36が凹設され、このガラス保持部36には、芯出しガラス34が、接着剤等によって固定されている。
 また、例えば、図3,4に示すように、保持枠35には、第1の対物光学系保持孔37lと、第2の対物光学系保持孔37rと、が予め設定された間隔を隔てて左右に並んで設けられている。これら第1,第2の対物光学系保持孔37l,37rは、先端側が保持枠35の端面(先端面11a)において開放されるとともに、基端側がガラス保持部36に連通する貫通孔によって構成されている。
 これら第1,第2の対物光学系保持孔37l,37rには、第1,第2の対物光学系31l,31rが、第1,第2の対物光学系ユニット40l,40rとしてユニット化された状態にて、それぞれ保持されている。
 すなわち、第1,第2の対物光学系31l,31rは、第1,第2のレンズ枠41l,41rにそれぞれ保持されることによって第1,第2の対物光学系ユニット40l,40rを構成する。そして、これら第1,第2の対物光学系ユニット40l,40rが第1,第2の対物光学系保持孔37l,37r内に接着剤等を介して位置決め固定されることにより、第1,第2の対物光学系31l,31rは、第1,第2の撮像素子32l,32rとともに、単一の保持枠35によって一体的に保持されている。
 この場合において、各部の僅かな加工誤差や組立誤差等を補正して第1,第2の対物光学系31l,31rの相対位置(光軸間距離やチルト角等)を適正化するため、第1,第2の対物光学系保持孔37l,37rのうちの何れか一方(例えば、第1の対物光学系保持孔37l)は、他方(例えば、第2の対物光学系保持孔37r)よりも大径な貫通孔によって構成されている。すなわち、例えば、図4に示すように、本実施形態において、第1の対物光学系保持孔37lは、第1のレンズ枠41lを略隙間なく嵌入可能な内径rに所定の調整代Δrを加えた内径を有する貫通孔によって構成されている。一方、第2の対物光学系保持孔37rは、第2のレンズ枠41rを略隙間なく嵌入可能な内径rを有する貫通孔によって構成されている。そして、第1の対物光学系ユニット40lは、第2の対物光学系ユニット40rに対し、光軸間距離やチルト角等が微調整された状態にて、第1の対物光学系保持孔37l内に接着固定されている。
 次に、このような構成のステレオ撮像ユニット30の組立方法の一例について説明する。
 このステレオ撮像ユニット30の組立工程において、先ず、第1,第2の撮像素子32l,32rが、UV接着剤を介して、芯出しガラス34に位置決め固定される。
 この場合において、芯出しガラス34上における第1,第2の撮像素子32l,32rの相対位置は、例えば、第1,第2の撮像素子32l,32rの受光面32la,32raに配列されている光電変換素子等を、芯出しガラス34越しに顕微鏡下で観察することにより、精度良く位置決め(芯出し)される。そして、このように位置決めされた状態において、紫外線が照射され、UV接着剤が硬化されることにより、第1,第2の撮像素子32l,32r(より具体的には、カバーガラス33l,33r)は芯出しガラス34に固定される。
 次の工程において、第1,第2の撮像素子32l,32rを保持した芯出しガラス34が、保持枠35に設けられたガラス保持部36に対し、接着剤等によって固定される。その際、芯出しガラス34は、例えば、第2の撮像素子32rが、調整代Δrを有しない第2の対物光学系保持孔37rに対して予め設定された所定位置に位置するよう調整される。
 次の工程において、第2の対物光学系ユニット40rが、第2の対物光学系保持孔37r内に位置決め固定される。すなわち、第2の対物光学系保持孔37r内に挿入された第2の対物光学系ユニット40rは、例えば、第2の撮像素子32rに結像された第2の光学像の観察下において光軸方向の調整(ピント調整)が行われた後、接着剤等によって固定される。
 次の工程において、第1の対物光学系ユニット40lが、第1の対物光学系保持孔37l内に位置決め固定される。すなわち、第1の対物光学系保持孔37l内に挿入された第1の対物光学系ユニット40lは、例えば、第1の撮像素子32lに結像された第1の光学像の観察下において光軸方向の調整(ピント調整)が行われる。さらに、第1の対物光学系ユニット40lは、第1の撮像素子32lに結像された第1の光学像と第2の撮像素子32rに結像された第2の光学像との比較に基づき、第1の対物光学系保持孔37lに設定された調整代の範囲内において、第2の対物光学系ユニット40rに対する相対位置(光軸間距離、及び、チルト角等)の調整が行われた後、接着剤等によって固定される。
 このような実施形態によれば、第1の対物光学系31lが形成する第1の光学像を受光する第1の撮像素子32lと、第2の対物光学系31rが形成する第2の光学像を受光する第2の撮像素子32rと、の各受光面32la,32ra側を、第1,第2の光学像の光路上に配置される単一の芯出しガラス34に対して接着によって位置決め固定し、この芯出しガラス34を介して第1,第2の撮像素子32l,32rを保持枠35に保持することにより、簡単な構成により、適切な視差を有する2つの撮像画像を取得することができる。
 すなわち、第1,第2の撮像素子32l,32rを単一の芯出しガラス34に位置決め固定して保持枠35に保持することにより、第1,第2の撮像素子を個別の芯出しガラスを介して保持枠に位置決め固定する場合に比べ、部品点数を削減して構成を簡素化することができる。また、金属製の保持枠35に比べて熱膨張や熱収縮の小さい単一の芯出しガラス34上において第1,第2の撮像素子32l,32rの相対位置を確定させることにより、これらの位置決めを適切な視差位置に精度良く行うことができ、適切な視差を有する2つの撮像画像を取得することが可能となる。加えて、単一の芯出しガラス34上に第1,第2の撮像素子32l,32rを固定する構成では、個別の芯出しガラス上に固定する構成に比べ、第1,第2の撮像素子32l,32rの光軸間隔が過剰に広くなることを抑制することができ、立体観察する際の立体感が過剰に強くなることを抑制することができる。
 この場合において、第1の対物光学系31lを保持するための第1の対物光学系保持孔37lと、第2の対物光学系31rを保持するための第2の対物光学系保持孔37rと、を保持枠35に設けることにより、単一の保持枠35によって第1,第2の撮像素子32l,32rのみならず第1,第2の対物光学系31l,31rをも保持することができ、更なる構造の簡素化を実現することができる。加えて、単一の保持枠35に第1,第2の対物光学系保持孔37l,37rを設けることにより、これらの光軸間隔についても過剰に広くなることを抑制することができる。
 また、第1,第2の対物光学系31l,31rを、それぞれ第1,第2のレンズ枠41l,41rにそれぞれ精度良く保持し、第1,第2の対物光学系ユニット40l,40rとしてユニット化した状態にて保持枠35に組み付けることにより、保持枠35に対する第1,第2の対物光学系31l,31rの取付精度を向上することができる。
 また、第1,第2の対物光学系保持孔37l,37rのうちの何れか一方に調整代を設けることにより、単一の保持枠35に第1,第2の対物光学系保持孔37l,37rを設けた場合にも、第1,第2の対物光学系31l,31rの相対的な位置調整を容易に実現することができる。
 なお、本発明は、以上説明した各実施形態に限定されることなく、種々の変形や変更が可能であり、それらも本発明の技術的範囲内である。
 本出願は、2015年12月17日に日本国に出願された特願2015-246015号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (4)

  1.  第1の対物光学系が形成する第1の光学像を受光する第1の撮像素子と、
     前記第1の対物光学系と対をなす第2の対物光学系が形成する第2の光学像を受光する第2の撮像素子と、
     前記第1の光学像及び前記第2の光学像の光路上に配置され、前記第1の撮像素子及び前記第2の撮像素子の各受光面側が接着によって位置決め固定された単一の光学部材と、
     前記光学部材を介して前記第1の撮像素子及び前記第2の撮像素子を保持する保持枠と、を備えたことを特徴とするステレオ撮像ユニット。
  2.  前記保持枠は、前記第1の対物光学系を保持するための第1の対物光学系保持孔と、前記第2の対物光学系を保持するための第2の対物光学系保持孔と、を有することを特徴とする請求項1に記載のステレオ撮像ユニット。
  3.  前記第1の対物光学系保持孔は、第1の対物光学系ユニットとしてユニット化された前記第1の対物光学系を保持し、前記第2の対物光学系保持孔は、第2の対物光学系ユニットとしてユニット化された前記第2の対物光学系を保持することを特徴とする請求項2に記載のステレオ撮像ユニット。
  4.  前記第1の対物光学系保持孔或いは前記第2の対物光学系保持孔の何れか一方は、前記第1の対物光学系ユニット或いは前記第2の対物光学系ユニットの何れか一方を、前記第1の対物光学系ユニット或いは前記第2の対物光学系ユニットの何れか他方に対して位置調整するための調整代を有することを特徴とする請求項3に記載のステレオ撮像ユニット。
PCT/JP2016/076432 2015-12-17 2016-09-08 ステレオ撮像ユニット WO2017104191A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017504127A JP6188988B1 (ja) 2015-12-17 2016-09-08 ステレオ撮像ユニット
CN201680023914.7A CN107529953B (zh) 2015-12-17 2016-09-08 立体摄像单元
EP16875177.4A EP3275360A4 (en) 2015-12-17 2016-09-08 STEREOSCOPIC IMAGING UNIT
US15/792,856 US20180045948A1 (en) 2015-12-17 2017-10-25 Stereo image pickup unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015246015 2015-12-17
JP2015-246015 2015-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/792,856 Continuation US20180045948A1 (en) 2015-12-17 2017-10-25 Stereo image pickup unit

Publications (1)

Publication Number Publication Date
WO2017104191A1 true WO2017104191A1 (ja) 2017-06-22

Family

ID=59055914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076432 WO2017104191A1 (ja) 2015-12-17 2016-09-08 ステレオ撮像ユニット

Country Status (5)

Country Link
US (1) US20180045948A1 (ja)
EP (1) EP3275360A4 (ja)
JP (1) JP6188988B1 (ja)
CN (1) CN107529953B (ja)
WO (1) WO2017104191A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029772A1 (de) * 2017-08-08 2019-02-14 Blazejewski Medi-Tech Gmbh 3d-video-endoskop
WO2020017089A1 (ja) * 2018-07-20 2020-01-23 オリンパス株式会社 撮像ユニット、内視鏡および内視鏡システム
JP6993491B1 (ja) 2020-06-29 2022-01-13 パナソニックi-PROセンシングソリューションズ株式会社 内視鏡製造方法およびカメラデバイスの製造方法
JP2022010945A (ja) * 2020-06-29 2022-01-17 パナソニックi-PROセンシングソリューションズ株式会社 内視鏡モジュール、内視鏡、および内視鏡製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265047A (ja) * 1996-03-27 1997-10-07 Matsushita Electric Ind Co Ltd 電子内視鏡装置
JP2004136033A (ja) * 2002-10-21 2004-05-13 Olympus Corp 立体内視鏡用撮像装置
WO2009104394A1 (ja) * 2008-02-18 2009-08-27 パナソニック株式会社 複眼カメラモジュール
JP2010021283A (ja) * 2008-07-09 2010-01-28 Panasonic Corp 固体撮像装置およびその製造方法
JP2013218252A (ja) * 2012-03-14 2013-10-24 Ricoh Co Ltd カメラ装置、及び測距装置
JP2014002222A (ja) * 2012-06-15 2014-01-09 Ricoh Co Ltd カメラユニット及び測距装置
WO2015166750A1 (ja) * 2014-05-02 2015-11-05 オリンパス株式会社 光学ユニットおよびこの光学ユニットを備えた内視鏡

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2118260A1 (en) * 1994-05-09 1995-11-10 Robert J. Wood Stereo imaging assembly for endoscopic probe
JPH0829701A (ja) * 1994-07-18 1996-02-02 Olympus Optical Co Ltd 立体視内視鏡システム
US5894369A (en) * 1996-11-15 1999-04-13 Fuji Photo Optical Co., Ltd. Lens device with anti-fogging
US6898022B2 (en) * 2002-06-20 2005-05-24 Olympus Corporation Stereo optical system pair for stereo endoscope system
EP2498667A4 (en) * 2009-11-13 2017-12-27 California Institute of Technology Stereo imaging miniature endoscope with single imaging chip and conjugated multi-bandpass filters
EP2474262B1 (en) * 2010-07-09 2013-07-31 Olympus Medical Systems Corp. Stereoscopic endoscope
EP2630543B1 (en) * 2010-10-18 2019-10-09 Reach3D Medical LLC. A STEREOSCOPIC OPTIC Adapter
CN103262522B (zh) * 2010-12-14 2016-11-23 奥林巴斯株式会社 摄像装置
US20140066700A1 (en) * 2012-02-06 2014-03-06 Vantage Surgical Systems Inc. Stereoscopic System for Minimally Invasive Surgery Visualization
CN104822306B (zh) * 2012-12-28 2017-03-08 奥林巴斯株式会社 三维内窥镜
CN103070660A (zh) * 2013-01-18 2013-05-01 浙江大学 三维电子内窥镜摄像装置
JP5730339B2 (ja) * 2013-01-25 2015-06-10 富士フイルム株式会社 立体内視鏡装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265047A (ja) * 1996-03-27 1997-10-07 Matsushita Electric Ind Co Ltd 電子内視鏡装置
JP2004136033A (ja) * 2002-10-21 2004-05-13 Olympus Corp 立体内視鏡用撮像装置
WO2009104394A1 (ja) * 2008-02-18 2009-08-27 パナソニック株式会社 複眼カメラモジュール
JP2010021283A (ja) * 2008-07-09 2010-01-28 Panasonic Corp 固体撮像装置およびその製造方法
JP2013218252A (ja) * 2012-03-14 2013-10-24 Ricoh Co Ltd カメラ装置、及び測距装置
JP2014002222A (ja) * 2012-06-15 2014-01-09 Ricoh Co Ltd カメラユニット及び測距装置
WO2015166750A1 (ja) * 2014-05-02 2015-11-05 オリンパス株式会社 光学ユニットおよびこの光学ユニットを備えた内視鏡

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029772A1 (de) * 2017-08-08 2019-02-14 Blazejewski Medi-Tech Gmbh 3d-video-endoskop
US10983330B2 (en) 2017-08-08 2021-04-20 Blazejewski Medi-Tech Gmbh 3D video endoscope
WO2020017089A1 (ja) * 2018-07-20 2020-01-23 オリンパス株式会社 撮像ユニット、内視鏡および内視鏡システム
JPWO2020017089A1 (ja) * 2018-07-20 2021-08-02 オリンパス株式会社 撮像ユニット、内視鏡および内視鏡システム
JP7181294B2 (ja) 2018-07-20 2022-11-30 オリンパス株式会社 撮像ユニット、内視鏡および内視鏡システム
US11717138B2 (en) 2018-07-20 2023-08-08 Olympus Corporation Imaging unit, endoscope and endoscope system having optical systems with overlapping depth of fields
JP6993491B1 (ja) 2020-06-29 2022-01-13 パナソニックi-PROセンシングソリューションズ株式会社 内視鏡製造方法およびカメラデバイスの製造方法
JP2022010945A (ja) * 2020-06-29 2022-01-17 パナソニックi-PROセンシングソリューションズ株式会社 内視鏡モジュール、内視鏡、および内視鏡製造方法
JP2022024961A (ja) * 2020-06-29 2022-02-09 パナソニックi-PROセンシングソリューションズ株式会社 内視鏡製造方法およびカメラデバイスの製造方法

Also Published As

Publication number Publication date
JPWO2017104191A1 (ja) 2017-12-14
US20180045948A1 (en) 2018-02-15
CN107529953A (zh) 2018-01-02
CN107529953B (zh) 2019-11-22
EP3275360A4 (en) 2019-02-06
EP3275360A1 (en) 2018-01-31
JP6188988B1 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6188988B1 (ja) ステレオ撮像ユニット
EP1371321A1 (en) Electronic endoscope for stereoscopic endoscopy
US9998641B2 (en) Image pickup unit provided in endoscope
US6142932A (en) Front end structure of stereoscopic endoscope including an elongated lens
US9829697B2 (en) Stereo endoscope system
JPH0829701A (ja) 立体視内視鏡システム
JP6210874B2 (ja) 立体観察装置の調整治具及び立体観察システム
JP2023025107A (ja) コンパクトな双眼画像取込みデバイス
WO2015166750A1 (ja) 光学ユニットおよびこの光学ユニットを備えた内視鏡
JP6402012B2 (ja) 内視鏡の撮像光学系及び撮像ユニット並びに内視鏡
JP3599778B2 (ja) 立体視内視鏡システム
JP3257641B2 (ja) 立体視内視鏡装置
JP6342600B1 (ja) ステレオ撮像ユニット
JP6957613B2 (ja) 内視鏡
JP2001221961A (ja) 双眼光学アダプタ
WO2018123140A1 (ja) ステレオ撮像ユニット
CN115137276A (zh) 内窥镜
US6149582A (en) Front end structure of stereoscopic endoscope
JP2019050508A (ja) 立体視撮像装置および立体視内視鏡
JPH1028233A (ja) 内視鏡用撮像装置
JP3478729B2 (ja) 立体内視鏡の先端構造
JPH08122665A (ja) 立体視内視鏡
JP3470999B2 (ja) 立体内視鏡の先端構造
JP2022154576A (ja) 複眼内視鏡
JPH10295637A (ja) 内視鏡用撮像装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017504127

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE