WO2017101540A1 - 一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板 - Google Patents
一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板 Download PDFInfo
- Publication number
- WO2017101540A1 WO2017101540A1 PCT/CN2016/099131 CN2016099131W WO2017101540A1 WO 2017101540 A1 WO2017101540 A1 WO 2017101540A1 CN 2016099131 W CN2016099131 W CN 2016099131W WO 2017101540 A1 WO2017101540 A1 WO 2017101540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermosetting resin
- resin composition
- boron nitride
- weight
- nano
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/092—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/38—Layered products comprising a layer of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/42—Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/09—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/107—Ceramic
- B32B2264/108—Carbon, e.g. graphite particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/302—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2461/00—Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
- C08J2461/04—Condensation polymers of aldehydes or ketones with phenols only
- C08J2461/06—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Definitions
- the invention belongs to the technical field of copper clad laminates, and relates to a thermosetting resin composition and a prepreg, a laminate and a printed circuit board containing the same.
- a resin having good thermal conductivity in the glue In order to improve the thermal conductivity of the substrate, it is usually preferred to use a resin having good thermal conductivity in the glue or to increase the addition amount of a conventional heat conductive filler such as aluminum nitride and aluminum oxide, but the resin having good thermal conductivity is expensive, and a large amount of heat conduction is added.
- the filler also deteriorates the adhesion of the thermal conductive adhesive layer to the copper foil and the metal substrate, and the solder dipping resistance and the withstand voltage performance are lowered.
- CN101767481A adopts the method of adding thermal conductive filler alumina and aluminum nitride to improve the thermal conductivity of the substrate, and obtains a copper clad plate with a certain thermal conductivity.
- the thermal conductivity of the substrate raw material and the amount of filler added the thermal conductivity of the substrate is not too high. .
- the thermal conductivity of boron nitride is higher than that of aluminum nitride and aluminum oxide. Therefore, boron nitride has been selected as a heat conductive filler in the prior art to improve the thermal conductivity of the sheet.
- boron nitride sheet structure due to the boron nitride sheet structure, a layer is formed in the sheet. The shape distribution makes it difficult to form a heat conduction path in the vertical direction of the sheet, and it is difficult to effectively exhibit its high heat conductivity.
- CN 102909905 A discloses a composite thermally conductive thin layer which is composed of a low areal density porous carrier and a heat conducting medium uniformly supported on a carrier;
- the low areal density porous carrier is a porous fabric, a nonwoven fabric, a carrier
- the thickness is 5 ⁇ m to 80 ⁇ m, and the areal density of the carrier is between 5 g/m 2 and 30 g/m 2 .
- the heat conductive medium is a mixture of one or more of carbon nanotubes, graphene, boron nitride fine powder, expanded graphite fine powder, diamond fine powder, and nano carbon fiber, and the heat conductive medium content is 5 mg/mL to 100 mg/mL.
- CN 103923463A discloses the use of aluminum, silver, nickel, zinc oxide, aluminum oxide, magnesium oxide, aluminum nitride, boron nitride, silicon nitride, diamond, graphite, carbon nanotubes, metal silicon, carbon fibers, fullerenes. Or a mixture thereof as a thermally conductive filler, and added in an amount of 100 parts by volume of the organopolysiloxane, and 100 to 2500 parts by volume of a thermally conductive filler is added.
- CN 103756321A discloses that 30 to 60 parts of a large-diameter heat-conductive filler having a particle diameter of 10 to 150 ⁇ m and a small-diameter heat-conductive filler having a particle diameter of 1 to 500 nm may be used, and 3 to 10 parts; At least one of carbonyl iron powder, copper powder, and aluminum powder, and the small-diameter heat-conductive filler is at least one of multi-wall carbon nanotubes, graphene, and diamond powder.
- thermally conductive fillers can be used, but it does not discuss how the specific thermally conductive filler affects the final thermal conductivity. Further, as described above, since the boron nitride sheet-like structure is distributed in a sheet form in the sheet material, it is difficult to form a heat conduction path in the vertical direction of the sheet material, and it is difficult to effectively exhibit its high heat conductivity. Therefore, how to use boron nitride efficiently is still one of the technical problems.
- thermosetting resin composition and a prepreg, a laminate and a printed circuit board containing the same.
- the present invention provides a thermosetting resin composition
- a thermosetting resin composition comprising, by weight of each component, of a total mass percentage of the thermosetting resin composition: a thermosetting resin, a curing agent, 15 to 60% by weight of boron nitride, and 0.01 to 1% by weight of nanodiamond.
- the invention adopts a method of adding nano diamond and boron nitride to a thermosetting resin to improve the thermal conductivity of the sheet. It has been found that a very small amount of nano-diamond is added to the thermosetting resin for compounding with boron nitride, and after effective dispersion, the thermal conductivity of the sheet can be significantly improved. This is because the thermal conductivity of nanodiamond itself is between 1300 and 2400 W/(mK). When it is uniformly dispersed in the resin glue with boron nitride, the nano-effect of nano-diamond particles and its synergistic effect with boron nitride promotes heat conduction. Formation of the pathway.
- the nano-diamond particles can be filled between the boron nitride sheets to form a bridging effect, increase the contact area of the heat-conducting path, and reduce the interface thermal resistance, thereby improving the thermal conductivity of the sheet, and significantly improving the boron nitride.
- the content of the nanodiamond is 0.01 to 1% by weight, such as 0.05% by weight, 0.1% by weight, 0.15% by weight, 0.2% by weight, 0.25% by weight, 0.3% by weight, 0.35, based on the total mass of the thermosetting resin composition.
- the boron nitride is contained in an amount of 15 to 60% by weight, such as 18% by weight, 21% by weight, 24% by weight, 27% by weight, 30% by weight, 33% by weight, 36% by weight, 39% by weight, based on the total mass of the thermosetting resin composition. 42 wt%, 45 wt%, 48 wt%, 51 wt%, 54 wt% or 57 wt%, preferably 30 to 60 wt%.
- the mass ratio of boron nitride to nanodiamond is 100 to 5000:1, for example, 110:1, 130:1, 150:1, 200:1, 300:1, 400:1, 400 1, 500: 1, 600: 1, 700: 1, 800: 1, 900: 1, 1000: 1, 1200: 1, 1500: 1, 1800: 1, 2000: 1, 2500: 1, 3000: 1 4000:1, 4500:1 or 4800:1, preferably 300 to 2000:1. If the mass ratio of boron nitride to nanodiamond is less than 100:1, the cost of the sheet will be significantly increased. At the same time, the amount of nanodiamond added is higher and the difficulty of dispersion is increased. If the mass ratio is higher than 5000:1, the synergistic effect of the two to improve the thermal conductivity is not significant.
- the nanodiamond has an average particle diameter of 1 to 300 nm, for example, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 10 nm, 30 nm, 50 nm, 80 nm, 100 nm, 120 nm, 140 nm, 160 nm, 180 nm, 200 nm. 220 nm, 240 nm, 260 nm, 280 nm or 290 nm, preferably 4 to 6 nm. If the average particle diameter is less than 1 nm, the manufacturing cost and the dispersion difficulty are greatly increased. If the average particle diameter is more than 300 nm, the effect of improving the thermal conductivity of the substrate is remarkably affected.
- the boron nitride has an average particle diameter of 1 to 10 ⁇ m, for example, 1.5 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m or 9 ⁇ m.
- the thermosetting resin accounts for 20 to 70% by weight, such as 21% by weight, 24% by weight, 27% by weight, 31% by weight, 35% by weight, 39% by weight, 43% by weight, 47% by weight, 51% by weight, and 55% by weight based on the total mass of the thermosetting resin composition. 59 wt%, 63 wt%, 66 wt% or 69 wt%.
- thermosetting resin is any one or a mixture of at least two of an epoxy resin, a phenol resin, a benzoxazine resin, a cyanate ester, a PPO or a liquid crystal resin.
- the curing agent has a mass of 1 to 30% by weight, such as 2% by weight, 5% by weight, 8% by weight, 11% by weight, 14% by weight, 17% by weight, 20% by weight, 23% by weight, 26% by weight or less, based on the total mass of the thermosetting resin composition. 29wt%.
- the thermosetting resin composition further comprises a curing accelerator having a mass of 0 to 10% by weight based on the total mass of the thermosetting resin composition and excluding 0, for example, 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight, 2.5 Wt%, 3 wt%, 3.5 wt%, 4 wt%, 4.5 wt%, 5 wt%, 5.5 wt%, 6 wt%, 6.5 wt%, 7 wt%, 7.5 wt%, 8 wt%, 8.5 wt%, 9 wt% or 9.5 wt %.
- a curing accelerator having a mass of 0 to 10% by weight based on the total mass of the thermosetting resin composition and excluding 0, for example, 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight, 2.5 Wt%, 3 wt%, 3.5 wt%, 4 wt%, 4.5 wt%, 5 wt%,
- thermosetting resin composition of the present invention comprises, by weight of each component, the total mass percentage of the thermosetting resin composition:
- thermosetting resin 20 to 70 wt% thermosetting resin, 1 to 30 wt% curing agent, 0 to 10 wt% curing agent accelerator, 15 to 60 wt% boron nitride, and 0.01 to 1 wt% nanodiamond.
- thermosetting resin composition may further comprise a high aspect ratio thermally conductive filler, preferably silicon. Any one or a combination of at least two of gray stone, silicon carbide whiskers, zinc oxide whiskers or ceramic whiskers.
- thermosetting resin composition further includes an inorganic filler.
- the inorganic filler comprises silica, boehmite, talc, mica, kaolin, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc stannate, zinc oxide, titanium oxide, aluminum oxide, aluminum nitride, Glass powder or hollow fine powder of boron nitride, calcium carbonate, barium sulfate, barium titanate, aluminum borate, potassium titanate or E glass, S glass, D glass, NE glass, etc., the above fillers may be used alone or at least two Mixed use.
- the present invention provides a resin glue obtained by dissolving or dispersing a thermosetting resin composition as described above in a solvent.
- the present invention provides a prepreg comprising a reinforcing material and a thermosetting resin composition as described above adhered thereto by dipping and drying.
- the invention provides a laminate comprising at least one prepreg as described above.
- the present invention provides a metal foil-clad laminate comprising one or at least two laminated prepregs as described above and a prepreg coated on the laminate Metal foil on the side or sides.
- the metal foil-clad laminate is a high thermal conductivity aluminum-based copper clad laminate
- the insulating layer between the copper foil and the aluminum plate is a thermosetting resin composition as described above.
- the present invention has the following beneficial effects:
- the invention adopts a method of adding nano diamond and boron nitride to a thermosetting resin to improve the thermal conductivity of the sheet.
- a very small amount of nano-diamond is added to the thermosetting resin for compounding with boron nitride, and after effective dispersion, the thermal conductivity of the sheet can be remarkably improved. This is due to the thermal conductivity of nanodiamond itself. 1300 ⁇ 2400W / (m. K), when it is uniformly dispersed in the resin glue with boron nitride, the nano-effect of the nano-diamond particles and its synergistic effect with boron nitride will promote the formation of the heat conduction path.
- the nano-diamond particles can be filled between the boron nitride sheets to form a bridging effect, increase the contact area of the heat-conducting path, and reduce the interface thermal resistance, thereby improving the thermal conductivity of the sheet, and significantly improving the boron nitride.
- the problem of poor thermal conductivity between the layers makes the prepared copper clad plate have a thermal conductivity of 2.22-3.52 w/mk and good thermal conductivity.
- Brominated epoxy resin (55.34wt%), brominated novolac resin (26.63wt%), epoxy resin (2.77wt%), imidazole accelerator (0.11wt%, 2MI produced by Japan's four countries), nano Diamond (0.15wt%) and boron nitride (15wt%) are dissolved in an organic solvent, mechanically stirred and emulsified to prepare a 65wt% glue solution, then impregnated with a glass fiber cloth, and dried to form a prepreg after heating. Copper foil was placed on both sides and heated to form a copper foil substrate.
- Brominated epoxy resin (45.49wt%), brominated novolac resin (21.83wt%), epoxy resin (2.29wt%), imidazole accelerator (0.09wt%, 2MI produced by Japan's four countries), nano Diamond (0.3wt%) and boron nitride (30wt%) are dissolved in an organic solvent, mechanically stirred and emulsified to form a 65wt% glue, then impregnated with a glass fiber cloth, and dried to form a prepreg after heating and drying. Copper foil was placed on both sides and heated to form a copper foil substrate.
- Brominated epoxy resin (45.59wt%), brominated novolac resin (21.93wt%), epoxy resin (2.29wt%), imidazole accelerator (0.09wt%, 2MI produced by Japan's four countries), nano Diamond (0.1wt%) and boron nitride (30wt%) are dissolved in an organic solvent, mechanically stirred and emulsified to prepare a 65wt% glue solution, then impregnated with a glass fiber cloth, and dried to form a prepreg after heating and drying. Copper foil was placed on both sides and heated to form a copper foil substrate.
- Brominated epoxy resin (45.675wt%), brominated novolac resin (21.93wt%), epoxy resin (2.29wt%), imidazole accelerator (0.09wt%, 2MI produced by Japan's four countries), nano Diamond (0.015wt%) and boron nitride (30wt%) are dissolved in an organic solvent, mechanically stirred and emulsified to prepare a 65wt% glue solution, then impregnated with a glass fiber cloth, and dried to form a prepreg after heating and drying. Copper foil was placed on both sides and heated to form a copper foil substrate.
- Brominated epoxy resin (26.098wt%), brominated novolac resin (12.53wt%), epoxy resin (1.31wt%), imidazole accelerator (0.05wt%, 2MI produced by Japan's four countries), nano Diamond (0.012wt%) and boron nitride (60wt%) are dissolved in an organic solvent, mechanically stirred and emulsified to form a 65wt% glue solution, then impregnated with a glass fiber cloth, and dried to form a prepreg after heating and drying. Copper foil was placed on both sides and heated to form a copper foil substrate.
- Brominated epoxy resin 25.81wt%), brominated novolac resin (12.33wt%), epoxy resin (1.31wt%), imidazole accelerator (0.05wt%, 2MI produced by Japan's four countries), nano Diamond (0.5wt%) and boron nitride (60wt%) are dissolved in an organic solvent, mechanically stirred and emulsified to form a 65wt% glue solution, then impregnated with a glass fiber cloth, and dried to form a prepreg after heating and drying. Copper foil was placed on both sides and heated to form a copper foil substrate.
- Brominated epoxy resin 45.69wt%), brominated novolac resin (21.93wt%), epoxy resin (2.29wt%), imidazole accelerator (0.09wt%, 2MI produced by Japan's four countries), nitrogen Boron (30wt%) is dissolved in an organic solvent, mechanically stirred and emulsified to form a 65wt% glue, then impregnated with glass fiber cloth, dried to form a prepreg, placed on both sides of the copper foil, pressurized heating A copper foil substrate is formed.
- Brominated epoxy resin (65.18wt%), brominated novolac resin (31.28wt%), epoxy resin (3.26wt%), imidazole accelerator (0.13wt%, 2MI produced by Japan's four countries), nano Diamond (0.15wt%) is dissolved in an organic solvent, mechanically stirred and emulsified to form a 65wt% glue solution, then impregnated with glass fiber cloth, heated to dry to form a prepreg, placed on both sides of the copper foil, pressurized heating A copper foil substrate is formed.
- Brominated epoxy resin (45.19wt%), brominated novolac resin (21.43wt%), epoxy resin (2.29wt%), imidazole accelerator (0.09wt%, 2MI produced by Japan's four countries), nano Diamond (1wt%) and boron nitride (30wt%) are dissolved in an organic solvent, mechanically stirred and emulsified to form a 65wt% glue solution, then impregnated with glass fiber cloth, dried by heating to form a prepreg, two sides Put A copper foil is placed and heated to form a copper foil substrate.
- Brominated epoxy resin (45.687wt%), brominated novolac resin (21.93wt%), epoxy resin (2.29wt%), imidazole accelerator (0.09wt%, 2MI produced by Japan's four countries), nano Diamond (0.003wt%) and boron nitride (30wt%) are dissolved in an organic solvent, mechanically stirred and emulsified to prepare a 65wt% glue solution, then impregnated with glass fiber cloth, and dried to form a prepreg after heating and drying. Copper foil was placed on both sides and heated to form a copper foil substrate.
- Brominated epoxy resin (58.64wt%), brominated novolac resin (28.20wt%), epoxy resin (2.94wt%), imidazole accelerator (0.12wt%, 2MI produced by Japan's four countries), nano Diamond (0.1wt%) and boron nitride (10wt%) are dissolved in an organic solvent, mechanically stirred and emulsified to prepare a 65wt% glue, then impregnated with a glass fiber cloth, and dried to form a prepreg after heating and drying. Copper foil was placed on both sides and heated to form a copper foil substrate.
- Brominated epoxy resin (22.81wt%), brominated novolac resin (10.97wt%), epoxy resin (1.14wt%), imidazole accelerator (0.05wt%, 2MI produced by Japan's four countries), nano Diamond (0.03wt%) and boron nitride (65wt%) are dissolved in an organic solvent, mechanically stirred and emulsified to form a 65wt% glue solution, then impregnated with a glass fiber cloth, and dried to form a prepreg after heating. Copper foil was placed on both sides and heated to form a copper foil substrate.
- Brominated epoxy resin (34.966wt%), cyanate ester (34.966%), imidazole accelerator (0.065wt%, 2MI produced by Japan's four countries), nanodiamond (0.003wt%), boron nitride (30wt %) dissolved in organic solvent, mechanically stirred, emulsified to prepare 65wt% of glue, then impregnated
- the glass fiber cloth is heated and dried to form a prepreg, and copper foil is placed on both sides, and heated to form a copper foil substrate.
- the copper foil substrates prepared in the examples of the present invention and the comparative examples were tested for thermal conductivity and cross-sectional voids.
- the test methods are as follows:
- the thermal conductivity is measured using the ASTM D5470 standard method.
- Plate void The plate was sliced, gold-plated, and a scanning electron microscope was used to observe whether there were holes in the cross section of the slice.
- Comparative Example 3-4 when the ratio of boron nitride to nano-diamond is less than 100:1, the content of nano-diamond is too high, the dispersibility and fluidity of the resin system are deteriorated, and the plate has voids, and the thermal conductivity is not significantly improved; When the ratio of boron nitride to nano-diamond is higher than 5000:1, the synergistic heat conduction effect of the two is not obvious, and the thermal conductivity of the sheet is not significantly improved. It can be seen from Comparative Examples 5-6 that when the boron nitride addition amount is less than 15% by weight, the guide The heat path is difficult to form, and the thermal conductivity of the sheet is not improved.
- thermosetting resin composition of the present invention describes the thermosetting resin composition of the present invention and the prepreg, laminate and printed circuit board containing the same according to the above embodiments, but the present invention is not limited to the above embodiment, that is, does not mean The invention must be implemented in accordance with the above embodiments. It should be apparent to those skilled in the art that any modifications of the present invention, equivalent substitution of the various materials of the products of the present invention, addition of auxiliary components, selection of specific means, and the like, are all within the scope of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板,所述热固性树脂组合物按各组分占热固性树脂组合物总的质量百分比包括:热固性树脂、固化剂、15-60wt%氮化硼和0.01-1wt%纳米金刚石。在热固性树脂中加入极少量的纳米金刚石用来和氮化硼复配使用,均匀分散在树脂胶液中时,纳米金刚石颗粒的纳米效应及其与氮化硼的协同作用会促进导热通路的形成,另外,纳米金刚石颗粒可以填充在氮化硼片之间,起到架桥作用,增加导热通路的接触面积,显著提高板材导热性,从而显著改善了氮化硼片层间导热不佳的问题,使得制备得到的覆铜板的导热系数为2.22-3.52w/m.k,具有良好的导热性。
Description
本发明属于覆铜板技术领域,涉及一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板。
随着电子产品向高密度化、多功能化和“轻、薄、小”化发展,使得电路板上元件组装密度和集成度越来越高,工作时单位面积电路板散发的热量越来越多。如果基板散热性不好,就会导致电路板上元器件温度过高,从而使得元器件的工作稳定性、可靠性等降低,所以对基板的散热性要求越来越迫切,要求基板具有高的导热系数和低的热阻。
为了提高基板的导热性能,通常会选择在胶液中使用导热性好的树脂或提高传统导热填料如氮化铝和氧化铝的添加量,但是导热性好的树脂成本较高,而添加大量导热填料又会使导热胶层与铜箔和金属基板的粘结性变差,耐浸焊和耐电压性能降低。
CN101767481A采用添加导热填料氧化铝和氮化铝的方法改善基板的导热性,并得到了一定导热系数的覆铜板,但由于基板原材料本身导热系数及填料添加量的限制,基板导热系数并不太高。
氮化硼的导热系数较氮化铝和氧化铝高,故有已有技术中选择使用氮化硼作为导热填料,提高板材导热系数,但由于氮化硼片状结构,在板材中成片层状分布,在板材垂直方向上不易形成导热通路,难以有效发挥其高导热特性。
CN 102909905A公开了一种复合导热薄层,该导热薄层是由低面密度多孔的载体和均匀附载在载体上的导热介质构成;低面密度多孔的载体是多孔的织
物、无纺布,载体的厚度5μm~80μm,载体的面密度为5g/m2~30g/m2之间。导热介质是碳纳米管、石墨烯、氮化硼微粉、膨胀石墨微粉、金刚石微粉、纳米碳纤维中的一种或几种的混合物,导热介质含量为5mg/mL~100mg/mL。
CN 103923463A公开了可采用由铝、银、镍、氧化锌、氧化铝、氧化镁、氮化铝、氮化硼、氮化硅、金刚石、石墨、纳米碳管、金属硅、碳纤维、富勒烯,或它们的混合物作为导热填料,且其添加量为100体积份的有机聚硅氧烷,加入100~2500体积份的导热填料。
CN 103756321A公开了可采用粒径为10~150微米的大粒径导热填料30~60份、粒径为1~500纳米的小粒径导热填料3~10份;大粒径导热填料为石墨、羰基铁粉、铜粉、铝粉中的至少一种,小粒径导热填料为多壁碳纳米管、石墨烯、金刚石粉末中的至少一种。
上述现有技术均是笼统的公开了可以采用哪些导热填料,但是,对于具体导热填料如何影响最终的导热效果并未进行讨论。而且,如前所述,由于氮化硼片状结构,在板材中成片层状分布,在板材垂直方向上不易形成导热通路,难以有效发挥其高导热特性。因此,关于氮化硼如何高效使用仍是技术难题之一。
发明内容
针对已有技术的问题,本发明的目的在于提供一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板。
为了实现上述目的,本发明采用了如下技术方案:
一方面,本发明提供一种热固性树脂组合物,其按各组分占热固性树脂组合物总的质量百分比包括:热固性树脂、固化剂、15~60wt%氮化硼和0.01~1wt%纳米金刚石。
本发明采用在热固性树脂中添加纳米金刚石和氮化硼的方法,改善板材导热性。实验发现,在热固性树脂中加入极少量的纳米金刚石用来和氮化硼复配使用,经过有效分散,可以显著提高板材导热性。这是由于纳米金刚石本身导热系数在1300~2400W/(m.K),当其与氮化硼均匀分散在树脂胶液中时,纳米金刚石颗粒的纳米效应及其与氮化硼的协同作用会促进导热通路的形成。另外,纳米金刚石颗粒可以填充在氮化硼片之间,起到架桥作用,增加导热通路的接触面积,减小界面热阻,从而起到提高板材导热性的作用,显著改善了氮化硼片层间导热不佳的问题。
在本发明中,所述纳米金刚石的含量为热固性树脂组合物总质量的0.01~1wt%,例如0.05wt%、0.1wt%、0.15wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、0.4wt%、0.45wt%、0.5wt%、0.55wt%、0.6wt%、0.65wt%、0.7wt%、0.75wt%、0.8wt%、0.85wt%、0.9wt%或0.95wt%,优选为0.03~0.5wt%。如果纳米金刚石含量低于0.01wt%,那么其对基材导热性改善效果不明显,如果高于1wt%,则会明显提高板材成本。
在本发明中,所述氮化硼的含量占热固性树脂组合物总质量的15~60wt%,例如18wt%、21wt%、24wt%、27wt%、30wt%、33wt%、36wt%、39wt%、42wt%、45wt%、48wt%、51wt%、54wt%或57wt%,优选为30~60wt%。
在本发明中,优选地,氮化硼和纳米金刚石的质量比为100~5000∶1,例如110∶1、130∶1、150∶1、200∶1、300∶1、400∶1、400∶1、500∶1、600∶1、700∶1、800∶1、900∶1、1000∶1、1200∶1、1500∶1、1800∶1、2000∶1、2500∶1、3000∶1、4000∶1、4500∶1或4800∶1,优选为300~2000∶1。如果氮化硼和纳米金刚石的质量比低于100∶1,则会显著提高板材成本,同时,纳米金刚石添加量较高,分散难度增加。如果质量比高于5000∶1,则两者协同作用改善导热性效果不明显。
优选地,所述纳米金刚石的平均粒径为1~300nm,例如2nm、3nm、4nm、5nm、6nm、7nm、8nm、10nm、30nm、50nm、80nm、100nm、120nm、140nm、160nm、180nm、200nm、220nm、240nm、260nm、280nm或290nm,优选为4~6nm。如果平均粒径小于1nm,则会极大提高制造成本及分散难度,如果平均粒径大于300nm,则会明显影响对基板导热性的改善效果。
优选地,所述氮化硼的平均粒径为1~10μm,例如1.5μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm或9μm。
优选地,所述热固性树脂占热固性树脂组合物总质量的20~70wt%,例如21wt%、24wt%、27wt%、31wt%、35wt%、39wt%、43wt%、47wt%、51wt%、55wt%、59wt%、63wt%、66wt%或69wt%。
优选地,所述热固性树脂为环氧树脂、酚醛树脂、苯并噁嗪树脂、氰酸酯、PPO或液晶树脂中的任意一种或者至少两种的混合物。
优选地,所述固化剂的质量占热固性树脂组合物总质量的1~30wt%,例如2wt%、5wt%、8wt%、11wt%、14wt%、17wt%、20wt%、23wt%、26wt%或29wt%。
优选地,所述热固性树脂组合物还包括固化促进剂,其质量占热固性树脂组合物总质量的0~10wt%且不包括0,例如0.5wt%、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%、4.5wt%、5wt%、5.5wt%、6wt%、6.5wt%、7wt%、7.5wt%、8wt%、8.5wt%、9wt%或9.5wt%。
优选地,本发明所述热固性树脂组合物,其按各组分占热固性树脂组合物总的质量百分比包括:
20~70wt%热固性树脂、1~30wt%固化剂、0~10wt%固化剂促进剂、15~60wt%氮化硼和0.01~1wt%纳米金刚石。
优选地,所述热固性树脂组合物还可以包含高长径比导热填料,优选为硅
灰石、碳化硅晶须、氧化锌晶须或陶瓷晶须等中的任意一种或者至少两种的组合。
优选地,所述热固性树脂组合物,还包括无机填料。
优选地,所述无机填料包括二氧化硅、勃姆石、滑石、云母、高岭土、氢氧化铝、氢氧化镁、硼酸锌、锡酸锌、氧化锌、氧化钛、氧化铝、氮化铝、氮化硼、碳酸钙、硫酸钡、钛酸钡、硼酸铝、钛酸钾或E玻璃、S玻璃、D玻璃、NE玻璃等的玻璃粉或中空微粉,以上所述填料可以单独使用或至少两种混合使用。
另一方面,本发明提供一种树脂胶液,其是将如上所述的热固性树脂组合物溶解或分散在溶剂中得到。
另一方面,本发明提供一种预浸料,其包括增强材料及通过浸渍干燥后附着在其上的如上所述的热固性树脂组合物。
另一方面,本发明提供一种层压板,所述层压板含有至少一张如上所述的预浸料。
另一方面,本发明提供一种覆金属箔层压板,所述覆金属箔层压板包括一张或至少两张叠合的如上所述的预浸料以及覆于叠合后的预浸料一侧或两侧的金属箔。
优选地,所述覆金属箔层压板为高导热铝基覆铜板,在铜箔与铝板之间的绝缘层为如上所述的热固性树脂组合物。
与已有技术相比,本发明具有如下有益效果:
本发明采用在热固性树脂中添加纳米金刚石和氮化硼的方法,改善板材导热性。在热固性树脂中加入极少量的纳米金刚石用来和氮化硼复配使用,经过有效分散,可以显著提高板材导热性。这是由于纳米金刚石本身导热系数在
1300~2400W/(m.K),当其与氮化硼均匀分散在树脂胶液中时,纳米金刚石颗粒的纳米效应及其与氮化硼的协同作用会促进导热通路的形成。另外,纳米金刚石颗粒可以填充在氮化硼片之间,起到架桥作用,增加导热通路的接触面积,减小界面热阻,从而起到提高板材导热性的作用,显著改善了氮化硼片层间导热不佳的问题,使得制备得到的覆铜板的导热系数为2.22-3.52w/m.k,具有良好的导热性。
下面通过具体实施方式来进一步说明本发明的技术方案。
为了更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明做进一步描述。
实施例1
将溴化环氧树脂(55.34wt%)、溴化线性酚醛树脂(26.63wt%)、环氧树脂(2.77wt%)、咪唑类促进剂(0.11wt%,日本四国化成生产的2MI)、纳米金刚石(0.15wt%)、氮化硼(15wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
实施例2
将溴化环氧树脂(45.49wt%)、溴化线性酚醛树脂(21.83wt%)、环氧树脂(2.29wt%)、咪唑类促进剂(0.09wt%,日本四国化成生产的2MI)、纳米金刚石(0.3wt%)、氮化硼(30wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
实施例3
将溴化环氧树脂(45.59wt%)、溴化线性酚醛树脂(21.93wt%)、环氧树脂(2.29wt%)、咪唑类促进剂(0.09wt%,日本四国化成生产的2MI)、纳米金刚石(0.1wt%)、氮化硼(30wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
实施例4
将溴化环氧树脂(45.675wt%)、溴化线性酚醛树脂(21.93wt%)、环氧树脂(2.29wt%)、咪唑类促进剂(0.09wt%,日本四国化成生产的2MI)、纳米金刚石(0.015wt%)、氮化硼(30wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
实施例5
将溴化环氧树脂(26.098wt%)、溴化线性酚醛树脂(12.53wt%)、环氧树脂(1.31wt%)、咪唑类促进剂(0.05wt%,日本四国化成生产的2MI)、纳米金刚石(0.012wt%)、氮化硼(60wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
实施例6
将溴化环氧树脂(25.81wt%)、溴化线性酚醛树脂(12.33wt%)、环氧树脂(1.31wt%)、咪唑类促进剂(0.05wt%,日本四国化成生产的2MI)、纳米金刚石(0.5wt%)、氮化硼(60wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
实施例7
将溴化环氧树脂(34.96wt%)、氰酸酯(34.96wt%)、咪唑类促进剂(0.065wt%,日本四国化成生产的2MI)、纳米金刚石(0.015wt%)、氮化硼(30wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
对比例1
将溴化环氧树脂(45.69wt%)、溴化线性酚醛树脂(21.93wt%)、环氧树脂(2.29wt%)、咪唑类促进剂(0.09wt%,日本四国化成生产的2MI)、氮化硼(30wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
对比例2
将溴化环氧树脂(65.18wt%)、溴化线性酚醛树脂(31.28wt%)、环氧树脂(3.26wt%)、咪唑类促进剂(0.13wt%,日本四国化成生产的2MI)、纳米金刚石(0.15wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
对比例3
将溴化环氧树脂(45.19wt%)、溴化线性酚醛树脂(21.43wt%)、环氧树脂(2.29wt%)、咪唑类促进剂(0.09wt%,日本四国化成生产的2MI)、纳米金刚石(1wt%)、氮化硼(30wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放
置铜箔,加压加热制成铜箔基板。
对比例4
将溴化环氧树脂(45.687wt%)、溴化线性酚醛树脂(21.93wt%)、环氧树脂(2.29wt%)、咪唑类促进剂(0.09wt%,日本四国化成生产的2MI)、纳米金刚石(0.003wt%)、氮化硼(30wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
对比例5
将溴化环氧树脂(58.64wt%)、溴化线性酚醛树脂(28.20wt%)、环氧树脂(2.94wt%)、咪唑类促进剂(0.12wt%,日本四国化成生产的2MI)、纳米金刚石(0.1wt%)、氮化硼(10wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
对比例6
将溴化环氧树脂(22.81wt%)、溴化线性酚醛树脂(10.97wt%)、环氧树脂(1.14wt%)、咪唑类促进剂(0.05wt%,日本四国化成生产的2MI)、纳米金刚石(0.03wt%)、氮化硼(65wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
对比例7
将溴化环氧树脂(34.966wt%)、氰酸酯(34.966%)、咪唑类促进剂(0.065wt%,日本四国化成生产的2MI)、纳米金刚石(0.003wt%)、氮化硼(30wt%)溶入有机溶剂中,机械搅拌、乳化配制成65wt%的胶液,然后含浸
玻璃纤维布,经过加热干燥后形成预浸料(prepreg),两面放置铜箔,加压加热制成铜箔基板。
对本发明实施例以及对比例制备的铜箔基板进行导热系数以及横断面空洞情况的测试,测试方法如下:
导热系数使用ASTM D5470标准方法进行测量。
板材空洞:将板材制作成切片,进行喷金处理,用扫描电子显微镜观察切片横断面上是否有空洞。
铜箔基板的导热系数以及横断面空洞情况的测试结果如表1所示。
表1
由表1可以看出,纳米金刚石和氮化硼复配使用,在氮化硼含量为15%~60%纳米金刚石含量为0.01%~1%且两者比例为100-5000∶1范围内时,可以显著改善板材导热性,同时,由实施例1和对比例1-2结果可以看出,为达到相同的导热系数,添加少量纳米金刚石和氮化硼复配可以大量减少氮化硼的用量。由对比例3-4可以看出,当氮化硼与纳米金刚石比例低于100∶1时,纳米金刚石含量过高,恶化树脂体系分散性和流动性,板材出现空洞,导热性提升不显著;当氮化硼与纳米金刚石比例高于5000∶1时,两者协同导热效果不明显,板材导热性提升不显著。由对比例5-6可以看出,当氮化硼添加量低于15wt%时,导
热通路难以形成,板材导热性提升不明显,当氮化硼添加量高于60wt%时,会恶化树脂体系分散性及流动性,板材出现空洞,导热性提升不明显。通过对比例7,同样可以发现,当氮化硼与纳米金刚石比例高于5000∶1时,两者协同导热效果不明显,板材导热性提升不显著。
以上所述,仅为本发明的较佳实施例,并非对本发明的组合物的含量作任何限制,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,凡是依据本发明的技术实质或组合物成份或含量对以上实施例所作的任何细微修改、等同变化与修饰,均属于本发明技术方案的范围内。
申请人声明,本发明通过上述实施例来说明本发明的热固性树脂组合物以及含有它的预浸料、层压板和印制电路板,但本发明并不局限于上述实施例,即不意味着本发明必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
Claims (10)
- 一种热固性树脂组合物,其特征在于,其按各组分占热固性树脂组合物总的质量百分比包括:热固性树脂、固化剂、15~60wt%氮化硼和0.01~1wt%纳米金刚石。
- 根据权利要求1所述的热固性树脂组合物,其特征在于,所述氮化硼的含量占热固性树脂组合物总质量的30~60wt%。
- 根据权利要求1或2所述的热固性树脂组合物,其特征在于,所述纳米金刚石的含量为热固性树脂组合物总质量的0.03~0.5wt%。
- 根据权利要求1-3中任一项所述的热固性树脂组合物,其特征在于,所述氮化硼和纳米金刚石的质量比为100~5000∶1,优选为300~2000∶1;优选地,所述纳米金刚石的平均粒径为1~300nm,优选为4~6nm;优选地,所述氮化硼的平均粒径为1~10μm。
- 根据权利要求1-4中任一项所述的热固性树脂组合物,其特征在于,所述热固性树脂占热固性树脂组合物总质量的20~70wt%;优选地,所述热固性树脂为环氧树脂、酚醛树脂、苯并噁嗪树脂、氰酸酯、PPO或液晶树脂中的任意一种或者至少两种的混合物;优选地,所述固化剂的质量占热固性树脂组合物总质量的1~30wt%;优选地,所述热固性树脂组合物还包括固化促进剂,其质量占热固性树脂组合物总质量的0~10wt%且不包括0;优选地,所述热固性树脂组合物还包括高长径比导热填料,优选为硅灰石、碳化硅晶须、氧化锌晶须或陶瓷晶须等中的任意一种或者至少两种的组合;优选地,所述热固性树脂组合物还包括无机填料;优选地,所述无机填料为二氧化硅、勃姆石、滑石、云母、高岭土、氢氧化铝、氢氧化镁、硼酸锌、锡酸锌、氧化锌、氧化钛、氧化铝、氮化铝、氮化 硼、碳酸钙、硫酸钡、钛酸钡、硼酸铝、钛酸钾、E玻璃、S玻璃、D玻璃或NE玻璃中的任意一种或至少两种的组合。
- 一种树脂胶液,其特征在于,所述树脂胶液是将如权利要求1-5中任一项所述的热固性树脂组合物溶解或分散在溶剂中得到。
- 一种预浸料,其特征在于,所述预浸料包括增强材料及通过浸渍干燥后附着在其上的如权利要求1-5中任一项所述的热固性树脂组合物。
- 一种层压板,其特征在于,所述层压板包含至少一张如权利要求7所述的预浸料。
- 一种覆金属箔层压板,其特征在于,所述覆金属箔层压板包括一张或至少两张叠合的如权利要求7所述的预浸料以及覆于叠合后的预浸料一侧或两侧的金属箔。
- 一种印制电路板,其特征在于,所述印制电路板包括一张或至少两张叠合的如权利要求7所述的预浸料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510954099.3A CN105419237A (zh) | 2015-12-17 | 2015-12-17 | 一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板 |
CN201510954099.3 | 2015-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017101540A1 true WO2017101540A1 (zh) | 2017-06-22 |
Family
ID=55497801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/099131 WO2017101540A1 (zh) | 2015-12-17 | 2016-09-14 | 一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN105419237A (zh) |
TW (1) | TWI609035B (zh) |
WO (1) | WO2017101540A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111073217A (zh) * | 2019-12-23 | 2020-04-28 | 科化新材料泰州有限公司 | 一种半导体封装用高导热低应力环氧塑封料 |
CN111154126A (zh) * | 2020-01-16 | 2020-05-15 | 哈尔滨工业大学 | 一种纳米金刚石修饰氮化硼高柔性高导热复合薄膜的制备方法 |
US20200406586A1 (en) * | 2018-03-07 | 2020-12-31 | Denka Company Limited | Temporary bonding body of ceramic resin composite and metal plate, method for producing same, object to be transported including the temporary bonding body, and method for transporting same |
CN112888198A (zh) * | 2020-12-30 | 2021-06-01 | 恩达电路(深圳)有限公司 | 多层盲埋孔导热厚铜板生产方法 |
CN113829700A (zh) * | 2021-09-27 | 2021-12-24 | 江苏耀鸿电子有限公司 | 一种耐电压耐高温的高频覆铜基板及其制备方法 |
CN113980423A (zh) * | 2021-11-15 | 2022-01-28 | 国网甘肃省电力公司庆阳供电公司 | 一种新型导热阻燃聚合物绝缘材料及其制备方法 |
CN114015196A (zh) * | 2021-11-03 | 2022-02-08 | 郑州中南杰特超硬材料有限公司 | 一种能够提高导热性的金刚石石墨烯复合材料的制备方法 |
CN115139589A (zh) * | 2022-06-27 | 2022-10-04 | 厦门英勒威新材料科技有限公司 | 一种高导热覆铜板及其制备方法 |
CN115820183A (zh) * | 2022-12-23 | 2023-03-21 | 深圳市道尔科技有限公司 | 一种耐高温高强度、高导热胶的制备方法 |
CN117050460A (zh) * | 2023-09-13 | 2023-11-14 | 江苏耀鸿电子有限公司 | 一种覆铜板用bn微粉增强酚醛树脂及其制备方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105419237A (zh) * | 2015-12-17 | 2016-03-23 | 广东生益科技股份有限公司 | 一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板 |
CN106280049B (zh) * | 2016-08-15 | 2019-01-29 | 江苏泰特尔新材料科技有限公司 | 一种高导热聚苯乙烯树脂基复合材料及其制备方法 |
CN106273925B (zh) * | 2016-08-15 | 2019-01-29 | 江苏泰特尔新材料科技有限公司 | 一种新型高导热绝缘垫片 |
CN106832751B (zh) * | 2016-12-30 | 2019-01-18 | 泰州市光明电子材料有限公司 | 一种高导热绝缘材料的制备方法 |
CN107639906B (zh) * | 2017-07-17 | 2018-08-28 | 常州中英科技股份有限公司 | 一种高导热含氟树脂基半固化片及其制备的覆铜板 |
CN109320911A (zh) * | 2018-09-17 | 2019-02-12 | 张万里 | 一种高韧性绝缘电路板基板及其制备方法 |
CN111393714B (zh) * | 2020-03-25 | 2021-11-05 | 合烯电子科技(江苏)有限公司 | 用于界面导热材料的氮化硼复合结构填料的制备方法 |
CN113308005A (zh) * | 2021-05-28 | 2021-08-27 | 惠州市纵胜电子材料有限公司 | 一种高强度抗静电3d片材及其制备方法 |
CN114775295B (zh) * | 2022-03-24 | 2024-01-09 | 华南师大(清远)科技创新研究院有限公司 | 一种碳纳米管增强玻璃纤维复合材料及pcb板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101974208A (zh) * | 2010-08-20 | 2011-02-16 | 广东生益科技股份有限公司 | 高导热树脂组合物及使用其制作的高导热覆金属箔板 |
US20130099149A1 (en) * | 2011-10-25 | 2013-04-25 | Samsung Electro-Mechanics Co., Ltd. | Insulating layer composition for substrate, and prepeg and substrate using the same |
CN104527159A (zh) * | 2014-12-11 | 2015-04-22 | 广东生益科技股份有限公司 | 可降解导热铝基覆铜板用热固性树脂组合物、导热铝基覆铜板、制备方法及其回收方法 |
CN104781325A (zh) * | 2012-09-28 | 2015-07-15 | 卡尔博迪昂有限公司 | 含有纳米金刚石的热塑性热复合材料 |
CN105419237A (zh) * | 2015-12-17 | 2016-03-23 | 广东生益科技股份有限公司 | 一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101580626B (zh) * | 2009-01-24 | 2012-02-08 | 南亚塑胶工业股份有限公司 | 一种高导热无卤难燃树脂组合物及其预浸渍体及涂层物 |
SG10201504246UA (en) * | 2010-06-02 | 2015-06-29 | Mitsubishi Gas Chemical Co | Resin composition, and prepreg and laminated sheet using the same |
CN104559881A (zh) * | 2013-10-25 | 2015-04-29 | 上海联浪新材料科技有限公司 | 一种纳米结构光热双固化透明导热环氧胶及其制备方法 |
EP3087153A2 (en) * | 2013-12-27 | 2016-11-02 | Carbodeon Ltd Oy | Nanodiamond containing composite and a method for producing the same |
-
2015
- 2015-12-17 CN CN201510954099.3A patent/CN105419237A/zh active Pending
-
2016
- 2016-03-14 TW TW105107815A patent/TWI609035B/zh not_active IP Right Cessation
- 2016-09-14 WO PCT/CN2016/099131 patent/WO2017101540A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101974208A (zh) * | 2010-08-20 | 2011-02-16 | 广东生益科技股份有限公司 | 高导热树脂组合物及使用其制作的高导热覆金属箔板 |
US20130099149A1 (en) * | 2011-10-25 | 2013-04-25 | Samsung Electro-Mechanics Co., Ltd. | Insulating layer composition for substrate, and prepeg and substrate using the same |
CN104781325A (zh) * | 2012-09-28 | 2015-07-15 | 卡尔博迪昂有限公司 | 含有纳米金刚石的热塑性热复合材料 |
CN104527159A (zh) * | 2014-12-11 | 2015-04-22 | 广东生益科技股份有限公司 | 可降解导热铝基覆铜板用热固性树脂组合物、导热铝基覆铜板、制备方法及其回收方法 |
CN105419237A (zh) * | 2015-12-17 | 2016-03-23 | 广东生益科技股份有限公司 | 一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200406586A1 (en) * | 2018-03-07 | 2020-12-31 | Denka Company Limited | Temporary bonding body of ceramic resin composite and metal plate, method for producing same, object to be transported including the temporary bonding body, and method for transporting same |
US12083784B2 (en) * | 2018-03-07 | 2024-09-10 | Denka Company Limited | Temporary bonding body of ceramic resin composite and metal plate, method for producing same, object to be transported including the temporary bonding body, and method for transporting same |
CN111073217B (zh) * | 2019-12-23 | 2022-10-14 | 江苏科化新材料科技有限公司 | 一种半导体封装用高导热低应力环氧塑封料 |
CN111073217A (zh) * | 2019-12-23 | 2020-04-28 | 科化新材料泰州有限公司 | 一种半导体封装用高导热低应力环氧塑封料 |
CN111154126A (zh) * | 2020-01-16 | 2020-05-15 | 哈尔滨工业大学 | 一种纳米金刚石修饰氮化硼高柔性高导热复合薄膜的制备方法 |
CN112888198A (zh) * | 2020-12-30 | 2021-06-01 | 恩达电路(深圳)有限公司 | 多层盲埋孔导热厚铜板生产方法 |
CN113829700A (zh) * | 2021-09-27 | 2021-12-24 | 江苏耀鸿电子有限公司 | 一种耐电压耐高温的高频覆铜基板及其制备方法 |
CN114015196A (zh) * | 2021-11-03 | 2022-02-08 | 郑州中南杰特超硬材料有限公司 | 一种能够提高导热性的金刚石石墨烯复合材料的制备方法 |
CN113980423A (zh) * | 2021-11-15 | 2022-01-28 | 国网甘肃省电力公司庆阳供电公司 | 一种新型导热阻燃聚合物绝缘材料及其制备方法 |
CN115139589A (zh) * | 2022-06-27 | 2022-10-04 | 厦门英勒威新材料科技有限公司 | 一种高导热覆铜板及其制备方法 |
CN115139589B (zh) * | 2022-06-27 | 2024-03-19 | 厦门英勒威新材料科技有限公司 | 一种高导热覆铜板及其制备方法 |
CN115820183A (zh) * | 2022-12-23 | 2023-03-21 | 深圳市道尔科技有限公司 | 一种耐高温高强度、高导热胶的制备方法 |
CN115820183B (zh) * | 2022-12-23 | 2023-06-27 | 深圳市道尔科技有限公司 | 一种耐高温高强度、高导热胶的制备方法 |
CN117050460A (zh) * | 2023-09-13 | 2023-11-14 | 江苏耀鸿电子有限公司 | 一种覆铜板用bn微粉增强酚醛树脂及其制备方法 |
CN117050460B (zh) * | 2023-09-13 | 2024-01-23 | 江苏耀鸿电子有限公司 | 一种覆铜板用bn微粉增强酚醛树脂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201723094A (zh) | 2017-07-01 |
TWI609035B (zh) | 2017-12-21 |
CN105419237A (zh) | 2016-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017101540A1 (zh) | 一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板 | |
Cao et al. | Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres | |
Shtein et al. | Thermally conductive graphene-polymer composites: size, percolation, and synergy effects | |
Liu et al. | High thermal conductive epoxy based composites fabricated by multi-material direct ink writing | |
TWI649196B (zh) | 具有導電及抗脫層性質之複合材料 | |
CN106947436A (zh) | 一种热界面材料及其制备和应用 | |
TWI431032B (zh) | A resin composition, and a circuit substrate using the same | |
JP7055279B2 (ja) | 表面粗化六方晶窒化ホウ素粒子及びその製造方法、並びに、組成物、樹脂シート、プリプレグ、金属箔張積層板、プリント配線板 | |
WO2015180206A1 (zh) | 一种热固性树脂夹心预浸体、制备方法及覆铜板 | |
JP2008189818A (ja) | 熱伝導性樹脂組成物および熱伝導性シートとその製造方法 | |
WO2019022070A1 (ja) | 熱伝導シート | |
JP2008297429A (ja) | 接着剤組成物、接着剤シートおよび接着剤つき銅箔 | |
WO2010141432A1 (en) | Thermally conductive circuit subassemblies, method of manufacture thereof, and articles formed therefrom | |
JP5652307B2 (ja) | 加熱加圧成形用プリプレグおよび積層板 | |
WO2012105701A1 (ja) | 導電性粒子及びこれを用いた異方性導電材料 | |
WO2015062115A1 (zh) | 一种热固性树脂组合物及其用途 | |
Kumar et al. | Epoxy‐based composite adhesives: effect of hybrid fillers on thermal conductivity, rheology, and lap shear strength | |
CN111378212B (zh) | 一种树脂组合物、包含其的预浸料以及天线用介质基板 | |
Chen et al. | Thermal and electrical anisotropy of polymer matrix composite materials reinforced with graphene nanoplatelets and aluminum-based particles | |
WO2020153377A1 (ja) | 熱伝導性樹脂シート | |
Su et al. | Enhanced thermal conductivity of functionalized-graphene/boron nitride flexible laminated composite adhesive via a facile latex approach | |
JP2011132540A5 (zh) | ||
KR20210087026A (ko) | 질화붕소 나노 재료, 및 수지 조성물 | |
WO2018235920A1 (ja) | 樹脂材料、樹脂材料の製造方法及び積層体 | |
JP2020180245A (ja) | パウダー分散液、積層体の製造方法、積層体及びプリント基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16874600 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16874600 Country of ref document: EP Kind code of ref document: A1 |