WO2015062115A1 - 一种热固性树脂组合物及其用途 - Google Patents

一种热固性树脂组合物及其用途 Download PDF

Info

Publication number
WO2015062115A1
WO2015062115A1 PCT/CN2013/086617 CN2013086617W WO2015062115A1 WO 2015062115 A1 WO2015062115 A1 WO 2015062115A1 CN 2013086617 W CN2013086617 W CN 2013086617W WO 2015062115 A1 WO2015062115 A1 WO 2015062115A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin composition
tungsten
composition according
total mass
Prior art date
Application number
PCT/CN2013/086617
Other languages
English (en)
French (fr)
Inventor
杜翠鸣
柴颂刚
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to JP2016526403A priority Critical patent/JP6118466B2/ja
Priority to US15/033,299 priority patent/US10053547B2/en
Publication of WO2015062115A1 publication Critical patent/WO2015062115A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5398Phosphorus bound to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0887Tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides

Definitions

  • thermosetting resin composition and use thereof
  • the present invention relates to a thermosetting resin composition and use thereof, and in particular to a thermosetting resin composition and a prepreg and a laminate prepared from the thermosetting resin composition.
  • the low thermal expansion coefficient resin structure is special and the cost is high; and the method of increasing the inorganic filler content can not only effectively reduce the thermal expansion coefficient of the composite, but also the cost can be greatly reduced.
  • highly filled resins can significantly reduce the drilling processability of the laminate. Therefore, the use of a block filler such as talc as a lubricant improves the workability, but the effect is not remarkable, and the addition of these block fillers further deteriorates the interlayer adhesion.
  • LEDs light-emitting diodes
  • the copper clad laminate and the cover film In addition to the insulation properties, the copper clad laminate and the cover film also need to have a good shading function, avoiding as much as possible Light from the LED source is transmitted from the back of the board, wasting energy, and reducing brightness.
  • materials such as carbon black and aniline black are often used in the industry to add to the copper clad laminate and the cover film to impart black function to the sheet.
  • CN 102190865 A discloses a copper clad laminate-forming epoxy resin composition which imparts black characteristics to a copper clad laminate mainly by using aniline black.
  • Patent CN 101851390 A discloses a black cover film which mainly imparts black characteristics to a cover film by using carbon black powder.
  • black pigments often cause problems: Carbon-based black pigment carbon black can significantly affect the insulation properties of copper clad laminates and cover films, while black pigment aniline black composed of benzene rings and nitrogen elements can significantly affect the coverage.
  • one of the objects of the present invention is to provide a thermosetting resin composition capable of suppressing drilling processability and interlayer adhesion even with a highly filled inorganic filler. Deterioration, the laminate obtained by using the thermosetting resin composition has a low coefficient of thermal expansion, excellent drilling processability and heat resistance, high interlayer adhesion, and excellent mechanical properties and chemical stability.
  • thermosetting resin composition comprising: a thermosetting resin, an inorganic filler, and a tungsten compound.
  • the invention adds a tungsten compound and an inorganic filler to the thermosetting resin, which not only can reduce the thermal expansion coefficient of the laminate and improve the mechanical properties of the laminate, but also significantly improve the drilling processability of the laminate, and can obviously improve the between the thermosetting resin and the inorganic filler.
  • the compatibility and the interlayer adhesion of the laminate realize that the high-filled inorganic filler can suppress the drilling processability and the deterioration of the interlayer adhesion, and the obtained laminate has a low coefficient of thermal expansion and is excellent. Drilling processability and heat resistance, high interlayer adhesion And excellent mechanical properties and chemical stability.
  • the thermosetting resin to which the tungsten compound is added is suitable for any production process such as laminate production, PCB production, etc., and the formulation and process are improved and the operation is simple.
  • the wear resistance of the drill is significantly reduced by the thermosetting resin composition to which the tungsten compound is added.
  • the tungsten compound is selected from the group consisting of an organic tungsten compound or/and an inorganic tungsten compound.
  • the tungsten compound is selected from the group consisting of tungsten disulfide, tetrathiotungstic acid amine, tungsten tetrabromide oxide, tungsten tetrachloride, tungsten tetrabromide, zinc tungstate, calcium tungstate, magnesium tungstate, ammonium tungstate , tungsten selenide, tungsten oxide, tungsten dioctyldithiocarbamate, dithiophenol tungsten, 3,4-didecyltoluene tungsten, ammonium diisopropyl dithiophosphate, organic tungsten molybdenum Any one or a mixture of at least two of a tungsten compound of a dithiocarbamate, an aromatic tungsten compound or a lanthanum aryl thiophosphate.
  • the mixture is, for example, a mixture of tungsten disulfide and tetrathiotungstic acid amine, a mixture of tungsten tetrabromide and tungsten tetrachloride, a mixture of tungsten tetrabromide and zinc tungstate, a mixture of calcium tungstate and magnesium tungstate, a mixture of ammonium tungstate and tungsten selenide, a mixture of tungsten oxide and tungsten dioctyldithiocarbamate, a mixture of tungsten disulfide and 3,4-didecyltoluene, an amine diisopropyl
  • the tungsten compound contains S and P elements, and the lubricating effect is further improved, and the improvement in drilling processability is further excellent.
  • the molecule contains polar atoms such as S and P. These more active components are affected by the surface energy of the metal, and can be affinity-affected with the metal surface and firmly adsorbed on the metal surface, which is substantially half of the metal surface. Chemical and semi-physical adsorption. When the mechanical movement is carried out, the frictional metal surface load pressure rises, and the polar molecules will rapidly undergo a series of complicated chemical reactions under the special high temperature, high pressure and catalysis in the friction environment.
  • the tungsten element in the tungsten compound also A specific element in the component is absorbed reasonably and effectively to form a cover film similar to a layered friction reducer, which has a small particle size and a strong adsorption force.
  • the tungsten compound is selected from the group consisting of tungsten disulfide, tetrathiotungstic acid amine, tungsten tetrabromide oxide, tungsten tetrachloride, tungsten tetrabromide or tungsten arsenyl thiophosphate.
  • tungsten disulfide tetrathiotungstic acid amine
  • tungsten tetrabromide oxide tungsten tet
  • thermosetting resin can not only significantly improve the drilling processability of the laminate, but also improve the compatibility between the thermosetting resin and the inorganic filler and the interlayer adhesion of the laminate, thereby realizing even the highly filled inorganic filler. It is possible to suppress the deterioration of the drilling processability and the adhesion between the layers, and it is also possible to effectively block the UV light and reduce the light transmittance, and to realize the preparation of the black copper clad laminate without deteriorating the insulation property.
  • the above-mentioned tungsten compound Compared with a black pigment such as aniline black, the above-mentioned tungsten compound has good heat resistance, stable physical and chemical properties, strong chemical resistance, good dispersibility, and no adverse effect on reactivity of a thermosetting resin, and is particularly suitable for use in a laminate. Use of a thermosetting resin composition.
  • the content of the tungsten compound is 0.001 to 30% by weight, preferably 0.1 to 15% by weight based on the total mass of the thermosetting resin composition.
  • the content of the tungsten compound is a mass percentage of the total mass of the thermosetting resin composition, for example, 1 wt%, 3 wt%, 5 wt%, 7 wt%, 9 wt%, 11 wt%, 13 wt%, 17 wt%, 19 wt%, 21 wt%, 23 wt% 25 wt%, 27 wt% or 29 wt%. If the amount is less than 0.001% by weight based on the total mass of the resin composition, no significant effect can be obtained.
  • the original overall properties of the resin composition are affected.
  • the amount used is 0.1 to 15% by weight based on the total mass of the resin composition, the performance of the tungsten compound is best, and the dispersibility and fluidity of the resin composition are also optimum.
  • the inorganic filler is selected from the group consisting of silica, boehmite, alumina, talc, mica, kaolin, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc stannate, zinc oxide, titanium oxide, boron nitride Any one or at least two of calcium carbonate, barium sulfate, barium titanate, aluminum borate, potassium titanate, E glass powder, S glass powder, D glass powder, NE glass powder, hollow fine powder or boehmite mixture.
  • the mixture such as a mixture of silica and boehmite, a mixture of alumina and talc, a mixture of mica and kaolin, a mixture of aluminum hydroxide and magnesium hydroxide, a mixture of zinc borate and zinc stannate, zinc oxide and oxidation a mixture of titanium, a mixture of boron nitride and calcium carbonate, a mixture of barium sulfate and barium titanate, boron a mixture of aluminum acid and potassium titanate, a mixture of E glass powder and S glass powder, a mixture of D glass powder and NE glass powder, a mixture of hollow fine powder and boehmite, a mixture of silica, boehmite and alumina, a mixture of talc, mica and kaolin, a mixture of aluminum hydroxide, magnesium hydroxide and zinc borate, a mixture of zinc stannate, zinc oxide and titanium oxide, a mixture of boron nitride, calcium carbonate and barium s
  • the inorganic filler is contained in an amount of 10 to 80% by weight, preferably 20 to 60% by weight based on the total mass of the thermosetting resin composition.
  • the content of the inorganic filler is set to 20 to 60% by weight based on the total mass of the thermosetting resin composition, the formability and low thermal expansion of the thermosetting resin composition can be favorably maintained.
  • the highly filled inorganic filler is realized, the drilling processability and the interlaminar adhesion are also suppressed, and the obtained laminate has a low coefficient of thermal expansion and excellent drilling processability. And heat resistance, high interlayer adhesion, and excellent mechanical properties and chemical stability.
  • the content of the inorganic filler is, for example, 23% by weight, 28% by weight, 32% by weight, 37% by weight, 42% by weight, 47% by weight, 52% by weight, 57% by weight, 62% by weight, 67% by weight, and 72% by weight based on the total mass of the thermosetting resin composition. , 76wt 0 /c ⁇ 78wt%.
  • the inorganic filler has an average particle diameter of 0.1 to 100 ⁇ m, preferably 0.5 to 20 ⁇ m.
  • the average particle diameter of the inorganic filler By setting the average particle diameter of the inorganic filler to ⁇ . ⁇ or more, the fluidity at the time of high filling in the thermosetting resin composition can be favorably maintained. By setting it to ⁇ or less, the probability of mixing coarse particles can be reduced and the occurrence of coarse particle defects can be suppressed.
  • the average particle diameter refers to a particle diameter at a point corresponding to a volume of 50% when the cumulative volume distribution curve based on the particle diameter is obtained by taking the total volume of the particles as 100%, and the laser diffraction scattering method can be used. Particle size distribution determination.
  • the thermosetting resin accounts for 20 to 70% by weight, preferably 25 to 65% by weight, and further preferably 30 to 60% by weight based on the total mass of the thermosetting resin composition.
  • the thermosetting resin accounts for the total quality of the thermosetting resin composition
  • the mass percentage of the amount is, for example, 23 wt%, 26 wt%, 31 wt%, 35 wt%, 39 wt%, 43 wt%, 47 wt%, 51 wt%, 55 wt%, 59 wt%, 63 wt% or 67 wt%.
  • the thermosetting resin composition further comprises a curing agent, wherein the curing agent accounts for 1 to 30% by weight, preferably 4 to 25% by weight, more preferably 10 to 20% by weight based on the total mass of the thermosetting resin composition.
  • the mass percentage of the curing agent to the total mass of the thermosetting resin composition is, for example, 2 wt%, 5 wt%, 8 wt%, 11 wt%, 14 wt%, 17 wt%, 19 wt%, 22 wt%, 26 wt% or 28 wt%.
  • the thermosetting resin composition further comprises an accelerator, the accelerator comprising 0 to 10% by weight of the total mass of the thermosetting resin composition, excluding 0, preferably 1 to 10% by weight, further preferably 2 to 8% by weight.
  • the mass percentage of the accelerator to the total mass of the thermosetting resin composition is, for example, 0.5 wt%, 1.5 wt%, 2.5 wt%, 3.5 wt%, 4.5 wt%, 5.5 wt%, 6.5 wt%, 7.5 wt%, 8.5 wt%. 0 /c ⁇ 9.5wt%.
  • the thermosetting resin composition further comprises a silicon germanium coupling agent or/and a wetting and dispersing agent.
  • the silicon germanium coupling agent is not particularly limited as long as it is a silicon germanium coupling agent which is usually used in the surface treatment of inorganic barium. Specific examples include ⁇ -aminopropyltriethoxysilane,
  • Ammonia-silicone system such as ⁇ - ⁇ -(aminoethyl:)- ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidyloxypropyltrimethoxysilane, etc., ⁇ - ⁇ Anionic silicon such as vinyl silane based on acryloxypropyltrimethoxysilane and ⁇ ⁇ _( ⁇ _vinyl phenyl acylaminoethyl) _ ⁇ _ aminopropyltrimethoxysilane hydrazine hydrochloride
  • phenylsilicone, and the like one or at least two of them may be selected and used in appropriate combination.
  • the wetting dispersant is not particularly limited as long as it is a dispersion stabilizer used in the coating material.
  • a wet dispersing agent such as Disperbyk-110, 111, 180, 161, BYK-W996, W9010, W903 manufactured by BYK Chemie Japan can be cited.
  • thermosetting resin composition means that it may include other components in addition to the components, and these other components impart different characteristics to the resin composition.
  • the "include” of the present invention may be replaced by a closed “for” or “consisting of”. Regardless of the thermosetting resin composition package What component is contained, and the sum of the components of the thermosetting composition as a percentage by mass of the thermosetting resin composition is 100%.
  • thermosetting resin composition may further contain various additives, and specific examples thereof include flame retardants, antioxidants, heat stabilizers, antistatic agents, ultraviolet absorbers, pigments, colorants, lubricants, and the like. . These various additives may be used singly or in combination of two or more kinds.
  • the preparation method of one of the resin compositions of the present invention can be prepared by mixing, stirring, and mixing the above-mentioned thermosetting resin, inorganic filler, tungsten compound, curing agent and accelerator, and various additives by a known method.
  • Another object of the present invention is to provide a resin glue obtained by dissolving or dispersing a thermosetting resin composition as described above in a solvent.
  • the solvent in the present invention is not particularly limited, and specific examples thereof include alcohols such as methanol, ethanol, and butanol, ethyl cellosolve, butyl cellosolve, ethylene glycol-methyl ether, carbitol, and butyl.
  • Ethers such as carbitol, ketones such as acetone, butanone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, aromatic hydrocarbons such as toluene, xylene, and mesitylene, ethoxylate
  • An ester such as ethyl acetate or ethyl acetate; a nitrogen-containing solvent such as hydrazine, hydrazine-dimethylformamide, hydrazine, hydrazine-dimethylacetamide or hydrazine-methyl-2-pyrrolidone.
  • solvents may be used singly or in combination of two or more.
  • aromatic hydrocarbon solvents such as toluene, xylene, and mesitylene, and acetone, butanone, methyl ethyl ketone, and methyl group.
  • a ketone flux such as butyl ketone or cyclohexanone is used in combination.
  • the amount of the solvent to be used can be selected by those skilled in the art according to their own experience, so that the obtained resin glue can reach a viscosity suitable for use.
  • An emulsifier may be added during the process of dissolving or dispersing the resin composition as described above in a solvent. By dispersing by an emulsifier, the filler or the like can be uniformly dispersed in the glue.
  • a third object of the present invention is to provide a prepreg comprising a reinforcing material and a thermosetting resin composition as described above adhered thereto by dipping and drying.
  • a fourth object of the present invention is to provide a laminate comprising at least one prepreg as described above.
  • the present invention has the following beneficial effects:
  • the invention adds a tungsten compound and an inorganic filler to the thermosetting resin, can not only reduce the thermal expansion coefficient of the laminate and the mechanical properties of the laminate, but also significantly improve the drilling processability of the laminate, and can obviously improve the thermosetting resin and the inorganic filler.
  • the compatibility between the interlayer and the interlayer adhesion of the laminate enables the deterioration of the drilling processability and the adhesion between the layers even if the highly filled inorganic filler is obtained, and the obtained laminate has a low coefficient of thermal expansion and is excellent. Drilling processability and heat resistance, high interlayer adhesion, and excellent mechanical properties and chemical stability.
  • Brominated bisphenol A type epoxy resin (Dow Chemical, epoxy equivalent 435, bromine content 19%, product name DER530), dicyandiamide, 2-methylimidazole, tungsten compound, inorganic filler, soluble in organic solvent Medium, mechanically stirred and emulsified to prepare 65wt% of glue, then impregnated with glass fiber cloth, heated to dry to form prepreg, copper foil placed on both sides, and heated to form a copper foil substrate.
  • the thermal expansion coefficient, the UV transmittance, the transmittance, the dispersibility effect evaluation, the volume resistivity, and the drill processability were as follows, and the results are shown in Table 1.
  • a copper clad laminate using a resin composition was obtained in the same manner as in Example 1 except that carbon black powder was used instead of the tungsten compound.
  • the measurement and evaluation results are shown in Table 2.
  • a copper clad laminate using a resin composition was obtained in the same manner as in Example 1 except that aniline black was used instead of the tungsten compound.
  • the measurement and evaluation results are shown in Table 2.
  • a copper clad laminate using a resin composition was obtained in the same manner as in Example 1 except that the tungsten compound was not blended.
  • the measurement and evaluation results are shown in Table 2.
  • a copper clad laminate using a resin composition was obtained in the same manner as in Example 1 except that the tungsten compound, the inorganic filler and the pigment were not blended.
  • the measurement and evaluation results are shown in Table 2.
  • the integrated sphere method was used using a transmission reflectance tester manufactured by American Lanfei Company.
  • the laminate was peeled off, cut into a size of 5 mm square, placed on a conductive paste, and sprayed with gold to prepare a test piece for observation.
  • the interface between the filler and the resin was observed by a scanning electron microscope and evaluated.
  • the laminate was cut into a size of 5 mm square, injection molded with a resin, placed on a conductive paste, and sprayed with gold to prepare a test piece for observation.
  • the dispersion of the filler in the resin was observed by a scanning electron microscope and evaluated.
  • 100 ml of the resin composition was placed in a 100 ml stopper cylinder, and allowed to stand at room temperature of 25 ° C to measure the time during which the precipitate was retained to the bottom of the settling tube, and the stability was evaluated.
  • the laminate was cut into test pieces of 100 mm ⁇ 100 mm, and the surface copper foil was prepared into a specific pattern. After high temperature treatment, 500 V DC voltage was applied to the sample using a high resistance meter and stabilized after 60 s, and the volume resistance was calculated. The higher the value, the larger the volume resistivity, indicating that the electrical insulation of the laminate is better.
  • Two well-drilled drill shafts in a 6-axis drilling machine are used for drilling.
  • Six new knives are drilled per plate, and each hole is drilled with 3000 holes.
  • the cutting edge of the drill is observed using a test microscope, and the blade tip wear and tear is measured.
  • the distance between the intersection of the vertical line and the central axis and the upper edge of the wear is measured as the size of the drill, and the wear rate of the drill is calculated by the following formula to evaluate the workability of the drill.
  • Wear rate% distance between the trailing edge of the borehole and the center axis / distance between the front edge of the borehole and the central axis X 100%
  • brominated bisphenol quinone type epoxy resin (Dow Chemical, epoxy equivalent 435, bromine content 19%, Product name DER530), 24 parts by weight of novolac resin (Japan Group Rong, hydroxyl equivalent 105, product name TD2090), 0.05 parts by weight of 2-methylimidazole, tungsten compound, dissolved in organic solvent, mechanically stirred and emulsified to make 65wt % of the glue, then impregnated with a glass fiber cloth, dried and dried to form a prepreg, placed on both sides of the copper foil, and heated to form a copper foil substrate.
  • a copper clad laminate using the resin composition was obtained in the same manner as in Example 7 except that carbon black powder was used instead of the tungsten compound.
  • the results of the measurement and evaluation are shown in Table 4. Comparative example 6
  • a copper clad laminate using the resin composition was obtained in the same manner as in Example 7 except that aniline black was used instead of the tungsten compound.
  • the results of the measurement and evaluation are shown in Table 4. Comparative example 7
  • a copper clad laminate using a resin composition was obtained in the same manner as in Example 7 except that the tungsten compound was not blended.
  • the results of the measurement and evaluation are shown in Table 4. Comparative Example 8
  • Example 12 A copper clad laminate using a resin composition was obtained in the same manner as in Example 7 except that the tungsten compound, the inorganic filler and the pigment were not blended. The results of the measurement and evaluation are shown in Table 4. Table 3 Ingredients / parts by mass Example 7 Example 8 Example 9 Example 10 Example 11 Example 12
  • the addition of a tungsten compound not only can significantly improve the drilling processability of the laminate, but also effectively block UV light and reduce light transmittance, regardless of whether it is a DICY curing or a phenolic curing thermosetting resin composition.
  • the UV transmittance of the laminate can be reduced from 35 to 46% to 0.01 to 0.6%, and the light transmittance can be reduced from 3 to 4% to 0.1 to 0.8%. Quite obvious, and its comprehensive performance is excellent.
  • the dispersibility and stability of the resin composition to which the tungsten compound is added are also remarkably superior to those of the resin composition to which the tungsten compound is not added.
  • Comparative Examples 4 and 8 it can be seen from Comparative Examples 4 and 8 that since the inorganic filler is not added to the composition, the thermal expansion coefficient thereof is remarkably increased, and it can be seen that the addition of the inorganic filler can significantly reduce the thermal expansion coefficient of the composite material, and can be compared with Comparative Examples 3 and 7, It can be seen that the inorganic filler also has a synergistic barrier effect on UV light transmittance and light transmittance. In Comparative Examples 1 and 5, since the carbon black powder was contained, the electrical insulating properties were remarkably deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明涉及一种热固性树脂组合物。该组合物包括20~70wt%热固性树脂,1~30wt%固化剂,0~10wt%促进剂,钨化合物及无机填料,可通过含浸方式制成预浸料或通过涂布方式制成涂成物。该组合物可以明显降低层压板的热膨胀系数,而且能有效的阻挡UV光和降低光透射率。

Description

说 明 书 一种热固性树脂组合物及其用途 技术领域
本发明涉及一种热固性树脂组合物及其用途, 具体涉及一种热固性树脂组 合物及由该热固性树脂组合物制备得到的预浸料和层压板。
背景技术
随着电子产品向小型化、 多功能化、 高性能化及高可靠性方面的迅速发展, 印制电路板开始朝着高精度、 高密度、 高性能、 微孔化、 薄型化和多层化方向 迅猛发展, 其应用范围越来越广泛, 已从工业用大型电子计算机、 通讯仪表、 电气测量、 国防及航空、 航天等部门迅速进入到民用电器及其相关产品。 而基 体材料在很大程度上决定了印制电路板的性能, 因此迫切需要开发新一代的基 体材料。 作为未来新一代的基体材料必须具备高的耐热性、 低的热膨胀系数以 及优异的化学稳定性和机械性能。
为了降低层压板的热膨胀系数, 通常会选用低热膨胀系数的树脂或提高无 机填料的含量。 但是低热膨胀系数树脂结构较为特殊, 成本较高; 而采用提高 无机填料含量的方式不仅能有效降低复合物的热膨胀系数, 而且成本也能大大 降低。 但高填充化树脂会明显降低层压板的钻孔加工性。 因此有人采用加入滑 石等块状填料作为润滑剂, 改善加工性, 但是效果不明显, 而且这些块状填料 的加入更进一步恶化了层间粘合力。
此外, 近年来, 由于 LED (发光二极管) 的低能耗、 高效率的突出特点, 已被广泛应用于电器指示、 LED显示屏、 LED背光源、 景观照明、 室内装饰等 领域。 LED 的高速发展, 也推动了功能性覆铜板和覆盖膜的发展。 该覆铜板和 覆盖膜除了具有的绝缘等性能以外, 还需要具有良好的遮光功能, 尽可能地避 免 LED光源的光线从板材背面透过、 浪费能源、 降低光亮度。 为了赋予覆铜板 和覆盖膜以黑色特性, 目前业界较常使用炭黑和苯胺黑等材料添加到覆铜板和 覆盖膜中以赋予板材黑色功能。
CN 102190865A公开了一种制作覆铜板的环氧树脂组合物, 其主要利用苯 胺黑赋予覆铜板以黑色特性。 专利 CN 101851390A公开了一种黑色覆盖膜, 其 主要利用炭黑粉赋予覆盖膜以黑色特性。 然而, 黑色颜料也经常带来种种问题: 以碳为主的黑色颜料炭黑会显著影响覆铜板和覆盖膜的绝缘性能, 而以苯环和 氮元素组成的黑色颜料苯胺黑则会显著影响覆铜板和覆盖膜尤其是有卤体系覆 铜板和覆盖膜的耐热性能。
发明内容
针对现有技术中存在的问题, 本发明的目的之一在于提供一种热固性树脂 组合物, 所述热固性树脂组合物即便高填充化无机填料也能抑制钻孔加工性以 及层间粘合力的恶化, 采用该热固性树脂组合物得到的层压板具有低的热膨胀 系数、 优异的钻孔加工性和耐热性、 高的层间粘合力以及优异的机械性能和化 学稳定性。
为了达到上述目的, 本发明采用了如下技术方案:
一种热固性树脂组合物, 所述热固性树脂组合物包括: 热固性树脂、 无机 填料以及钨化合物。
本发明在热固性树脂中添加钨化合物和无机填料, 不仅可以降低层压板的 热膨胀系数及提高层压板的机械性能, 以及明显改善层压板的钻孔加工性, 而 且能明显改善热固性树脂与无机填料间的相容性和层压板的层间粘合力, 实现 了即便高填充化无机填料也能抑制钻孔加工性以及层间粘合力的恶化, 得到的 层压板具有低的热膨胀系数、 优异的钻孔加工性和耐热性、 高的层间粘合力以 及优异的机械性能和化学稳定性。 而且, 添加钨化合物的热固性树脂适应任意 层压板制作、 PCB制作等生产工艺, 配方、 工艺改善操作简便。
由于钨化合物摩擦系数低, 润滑性好, 添加钨化合物的热固性树脂组合物 对钻刀的磨损能明显降低。
优选地, 所述钨化合物选自有机钨化合物或 /和无机钨化合物。
优选地, 所述钨化合物选自二硫化钨、 四硫代钨酸胺、 四溴氧化钨、 四氯 化钨、 四溴化钨、 钨酸锌、 钨酸钙、 钨酸镁、 钨酸铵、 硒化钨、 氧化钨、 二辛 基二硫代氨基甲酸钨、 二硫酚合钨、 3,4-二巯基甲苯合钨、 胺基二异丙基二硫代 磷酸钨、 有机钨钼配合物、 二硫代氨基甲酸钨化合物、 芳烃钨化合物或垸 (芳) 基胺基硫代磷酸钨中的任意一种或者至少两种的混合物。 所述混合物例如二硫 化钨和四硫代钨酸胺的混合物, 四溴氧化钨和四氯化钨的混合物, 四溴化钨和 钨酸锌的混合物, 钨酸钙和钨酸镁的混合物, 钨酸铵和硒化钨的混合物, 氧化 钨和二辛基二硫代氨基甲酸钨的混合物,二硫酚合钨和 3,4-二巯基甲苯合钨的混 合物, 胺基二异丙基二硫代磷酸钨和有机钨钼配合物的混合物, 二硫代氨基甲 酸钨化合物、 芳烃钨化合物和垸 (芳)基胺基硫代磷酸钨的混合物。
优选地, 所述钨化合物含有 S和 P元素, 则润滑效果更佳, 对钻孔加工性 的改善更加优异。 分子中含有 S和 P等极性原子, 这些活性较强的组分受金属 表面能的影响, 能与金属表面发生亲和、 牢固地吸附在金属表面上, 实质上是 和金属表面发生了半化学和半物理性的吸附。 当机械运动进行后, 摩擦金属表 面负荷压力升高, 极性分子就会在摩擦环境中特殊的高温、 高压和催化等作用 下, 迅速发生一系列复杂的化学反应, 钨化合物中的钨元素也会合理而有效的 吸收组分中特定元素, 形成类似于层状减摩剂的覆盖膜, 该减磨剂粒度小而且 吸附力强。 优选地, 所述钨化合物选自二硫化钨、 四硫代钨酸胺、 四溴氧化钨、 四氯 化钨、 四溴化钨或垸 (芳)基胺基硫代磷酸钨中的任意一种或者至少两种的混合 物。 在热固性树脂中添加上述钨化合物, 不仅可以明显改善层压板的钻孔加工 性和改善热固性树脂与无机填料间的相容性以及层压板的层间粘合力, 实现即 便高填充化无机填料也能抑制钻孔加工性以及层间粘合力的恶化, 还可以有效 的阻挡 UV光及降低光透过率, 在不恶化绝缘性的情况下, 实现黑色覆铜板的 制备。 上述钨化合物与苯胺黑等黑色颜料相比, 其耐热性好, 物理化学性能稳 定, 耐化学性强, 分散性好, 同时对热固性树脂的反应性等无副作用, 特别适 合用于层压板用热固性树脂组合物的使用。
优选地, 所述钨化合物的含量为热固性树脂组合物总质量的 0.001~30wt%, 优选 0.1~15wt%。所述钨化合物的含量为热固性树脂组合物总质量的质量百分比 例如为 lwt%、 3wt%、 5wt%、 7wt%、 9wt%、 llwt%、 13wt%、 17wt%、 19wt%、 21wt%、 23wt%、 25wt%、 27wt%或 29wt%。 该用量若低于树脂组合物总质量的 0.001wt%, 不能产生明显的效果, 若高于树脂组合物总质量的 30wt%, 则会影 响树脂组合物的原有的整体性能。使用量为树脂组合物总质量的 0.1~15wt%时钨 化合物的性能发挥的最好, 而且树脂组合物的分散性和流动性也最佳。
优选地, 所述无机填料选自二氧化硅、 勃姆石、 氧化铝、 滑石、 云母、 高 岭土、 氢氧化铝、 氢氧化镁、 硼酸锌、 锡酸锌、 氧化锌、 氧化钛、 氮化硼、 碳 酸钙、 硫酸钡、 钛酸钡、 硼酸铝、 钛酸钾、 E玻璃粉、 S 玻璃粉、 D 玻璃粉、 NE 玻璃粉、 中空微粉或勃姆石中的任意一种或者至少两种的混合物。 所述混 合物例如二氧化硅和勃姆石的混合物, 氧化铝和滑石的混合物, 云母和高岭土 的混合物, 氢氧化铝和氢氧化镁的混合物, 硼酸锌和锡酸锌的混合物, 氧化锌 和氧化钛的混合物, 氮化硼和碳酸钙的混合物, 硫酸钡和钛酸钡的混合物, 硼 酸铝和钛酸钾的混合物, E玻璃粉和 S玻璃粉的混合物, D玻璃粉和 NE玻璃粉 的混合物, 中空微粉和勃姆石的混合物, 二氧化硅、 勃姆石和氧化铝的混合 物, 滑石、 云母和高岭土的混合物, 氢氧化铝、 氢氧化镁和硼酸锌的混合物, 锡酸锌、 氧化锌和氧化钛的混合物, 氮化硼、 碳酸钙和硫酸钡的混合物, 钛酸 钡、 硼酸铝和钛酸钾的混合物, E玻璃粉、 S玻璃粉和 D玻璃粉的混合物, NE 玻璃粉、 中空微粉和勃姆石的混合物。
优选地, 所述无机填料的含量为热固性树脂组合物总质量的 10~80wt%, 优选 20~60wt%。 通过将无机填充材料的含量设为热固性树脂组合物总质量的 20~60wt%, 可以良好地保持热固性树脂组合物的成形性和低热膨胀。 采用本发 明的技术方案, 实现了高填充化无机填料的情况下, 也能抑制钻孔加工性以及 层间粘合力的恶化, 得到的层压板具有低的热膨胀系数、 优异的钻孔加工性和 耐热性、 高的层间粘合力以及优异的机械性能和化学稳定性。
所述无机填料的含量为热固性树脂组合物总质量的质量百分比例如为 23wt%、 28wt%、 32wt%、 37wt%、 42wt%、 47wt%、 52wt%、 57wt%、 62wt%、 67wt%、 72wt%、 76wt0/c^ 78wt%。
优选地, 所述无机填料的平均粒径为 0.1~100μπι, 优选为 0.5~20μπι。 通过 将无机填料平均粒径设为 Ο.ΐμπι 以上, 可以良好地保持热固性树脂组合物中高 填充时的流动性。 通过设为 ΙΟΟμπι以下, 可以减少粗大粒子的混入概率且抑制 引起粗大粒子不良的发生。 在此, 平均粒径是指将粒子的总体积作为 100%而 求出基于粒径的累积度数分布曲线时, 刚好相当于体积为 50%的点的粒径, 可 以以使用激光衍射散射法的粒度分布测定。
优选地, 所述热固性树脂占热固性树脂组合物总质量的 20~70wt%, 优选 25~65wt%, 进一歩优选 30~60wt%。 所述热固性树脂占热固性树脂组合物总质 量的质量百分比例如为 23wt%、 26wt%、 31wt%、 35wt%、 39wt%、 43wt%、 47wt%、 51wt%、 55wt%、 59wt%、 63wt%或 67wt%。
优选地, 所述热固性树脂组合物还包括固化剂, 所述固化剂占热固性树脂 组合物总质量的 l~30wt%, 优选 4~25wt%, 进一歩优选 10~20wt%。 所述固化 剂占热固性树脂组合物总质量的质量百分比例如为 2wt%、 5wt%、 8wt%、 llwt%、 14wt%、 17wt%、 19wt%、 22wt%、 26wt%或 28wt%。
优选地, 所述热固性树脂组合物还包括促进剂, 所述促进剂占热固性树脂 组合物总质量的 0~10wt%, 不包括 0, 优选 l~10wt%, 进一歩优选 2~8wt%。 所 述促进剂占热固性树脂组合物总质量的质量百分比例如为 0.5wt%、 1.5wt%、 2.5wt%、 3.5wt%、 4.5wt%、 5.5wt%、 6.5wt%、 7.5wt%、 8.5wt0/c^ 9.5wt%。
优选地, 所述热固性树脂组合物还包括硅垸偶联剂或 /和润湿分散剂。 作为 这些硅垸偶联剂, 只要是通常在无机条理俺表面处理中所使用的硅垸偶联剂即 可, 其并没有特别的限定。 作为具体例可列举出, γ-氨丙基三乙氧基硅垸、
Ν-β- (氨乙基:) -γ_氨丙基三甲氧基硅垸等氨硅垸系、 γ-缩水甘油醚氧丙基三甲氧 基硅垸等环氧硅垸系、 γ-甲基丙烯酰氧丙基三甲氧基硅垸等乙烯基硅垸系、 Ν·β_(Ν_乙烯基苯偶酰基氨乙基) _γ_氨丙基三甲氧基硅垸盐酸盐等阴离子硅垸 系、 苯基硅垸系等, 可以选择其中的 1种或者至少 2种适当组合使用。 另外, 湿润分散剂只要是在涂料中使用的分散稳定剂, 就没有特别的限定。 可列举出 例如 BYKChemie Japan 制的 Disperbyk-110、 111、 180、 161、 BYK-W996 , W9010、 W903等湿润分散剂。
本发明所述的 "包括", 意指其除所述组份外, 还可以包括其他组份, 这些 其他组份赋予所述树脂组合物不同的特性。 除此之外, 本发明所述的 "包括", 还可以替换为封闭式的 "为"或 "由……组成"。 不管所述热固性树脂组合物包 含何种成分, 所述热固性组合物的各组分占热固性树脂组合物的质量百分比之 和为 100%。
例如, 所述热固性树脂组合物还可以含有各种添加剂, 作为具体例, 可以 举出阻燃剂、 抗氧剂、 热稳定剂、 抗静电剂、 紫外线吸收剂、 颜料、 着色剂或 润滑剂等。 这些各种添加剂可以单独使用, 也可以两种或者两种以上混合使用。
作为本发明树脂组合物之一的制备方法, 可以通过公知的方法配合、 搅拌、 混合所述的热固性树脂、 无机填料、 钨化合物、、 固化剂和促进剂, 以及各种添 加剂, 来制备。
本发明的目的之二在于提供一种树脂胶液, 其是将如上所述的热固性树脂 组合物溶解或分散在溶剂中得到。
作为本发明中的溶剂, 没有特别限定, 作为具体例, 可以举出甲醇、 乙醇、 丁醇等醇类, 乙基溶纤剂、 丁基溶纤剂、 乙二醇-甲醚、 卡必醇、 丁基卡必醇等 醚类, 丙酮、 丁酮、 甲基乙基甲酮、 甲基异丁基甲酮、 环己酮等酮类, 甲苯、 二甲苯、 均三甲苯等芳香族烃类, 乙氧基乙基乙酸酯、 醋酸乙酯等酯类, Ν,Ν- 二甲基甲酰胺、 Ν,Ν-二甲基乙酰胺、 Ν-甲基 -2-吡咯垸酮等含氮类溶剂。 上述溶 剂可以单独使用一种, 也可以两种或者两种以上混合使用, 优选甲苯、 二甲苯、 均三甲苯等芳香族烃类溶剂与丙酮、 丁酮、 甲基乙基甲酮、 甲基异丁基甲酮、 环己酮等酮类熔剂混合使用。 所述溶剂的使用量本领域技术人员可以根据自己 的经验来选择, 使得到的树脂胶液达到适于使用的粘度即可。
在如上所述的树脂组合物溶解或分散在溶剂的过程中, 可以添加乳化剂。 通过乳化剂进行分散, 可以使填料等在胶液中分散均匀。
本发明的目的之三在于提供一种预浸料, 其包括增强材料及通过浸渍干燥 后附着在其上的如上所述的热固性树脂组合物。 本发明的目的之四在于提供一种层压板, 所述层压板含有至少一张如上所 述的预浸料。
与已有技术相比, 本发明具有如下有益效果:
本发明在热固性树脂中添加钨化合物和无机填料, 不仅可以降低层压板的 热膨胀系数及提高的层压板的机械性能, 以及明显改善层压板的钻孔加工性, 而且能明显改善热固性树脂与无机填料间的相容性和层压板的层间粘合力, 实 现了即便高填充化无机填料也能抑制钻孔加工性以及层间粘合力的恶化, 得到 的层压板具有低的热膨胀系数、 优异的钻孔加工性和耐热性、 高的层间粘合力 以及优异的机械性能和化学稳定性。
此外, 通过选择一定的钨化合物, 还可以有效的阻挡 UV光及降低光透过 率, 在不恶化绝缘性的情况下, 实现耐热性优异的黑色覆铜板的制备。
具体实施方式
为更好地说明本发明, 便于理解本发明的技术方案, 本发明的典型但非限 制性的实施例如下:
将溴化双酚 A型环氧树脂 (陶氏化学, 环氧当量 435, 溴含量 19%, 产品 名 DER530)、 双氰胺, 2-甲基咪唑, 钨化合物, 无机填料, 溶于有机溶剂中, 机械搅拌、 乳化配制成 65wt%的胶液, 然后含浸玻璃纤维布, 经过加热干燥后 形成预浸料 (prepreg) , 两面放置铜箔, 加压加热制成铜箔基板。
使用得到的覆铜层压板, 用以下示出的方法, 热膨胀系数、 UV透过率、 透 射率、 分散性效果评价、 体积电阻率、 钻刀加工性, 结果见表 1。
A)钨化合物:
A-1二硫化钨, 长沙市华京粉体材料科技有限公司
A-2四硫代钨酸胺, 昊睿化学有限公司 A-3垸 (芳:)基胺基硫代磷酸钨, 上海东理科技有限公司
B)无机填料
B-1熔融球形硅微粉, 电气化学工业株式会社, SFP30M, 平均粒径 0.5um B-2熔融不规则二氧化硅, 新加坡矽比科, 525, 平均粒径 2um
B-3复合硅微粉, 新加坡矽比科, G2C, 平均粒径 2um
B-4勃姆石, Nabaltec, AOH30
B-5勃姆石, Nabaltec, AOH60
C) 颜料
C-1炭黑粉, 德国德古萨公司, FW200
C-2苯胺黑, 德国德古萨公司, BS890
比较例 1
除了使用炭黑粉替代钨化合物使用外, 用于实施例 1 同样的方法, 得到使 用树脂组合物的覆铜板。 测定、 评价结果示于表 2。
比较例 2
除了使用苯胺黑替代钨化合物使用外, 用于实施例 1 同样的方法, 得到使 用树脂组合物的覆铜板。 测定、 评价结果示于表 2。
比较例 3
除了不配合钨化合物外, 用于实施例 1 同样的方法, 得到使用树脂组合物 的覆铜板。 测定、 评价结果示于表 2。
比较例 4
除了不配合钨化合物、 无机填料和颜料外, 用于实施例 1 同样的方法, 得 到使用树脂组合物的覆铜板。 测定、 评价结果示于表 2。
1、 热膨胀率的测定 利用蚀刻液去除覆铜层叠板的铜箔后, 切成 5mmX 5mm见方的大小制作试 验片。 使用 TMA试验装置以升温速度 10°C/min, 测定该试验片在 30~260°C下 的 Z轴方向 (玻璃布垂直方向)的平均线热膨胀率。 热膨胀率越小, 效果越好。
2、 UV透过率
利用蚀刻液去除覆铜层叠板的铜箔后, 切成 lOOmmx 100mm的试验片。 使 用波长为 365nm的 3kW的紫外光灯进行照射。把照度计探头放置于光源的玻璃 平台上并对准紫外光, 记录光度计上所显示的光强度达到 25mv/cm2时的值, 空 白样的值为 A, 测试样的值为 B, 根据以下公式计算紫外光透过率: γ=Β/ΑΧ 100%, 透过率越小, 说明对紫外光的阻挡能力越好。
3、 透射率
使用美国蓝菲公司生产的透射反射率测试仪使用积分球法测试。
4、 填料与树脂间的结合界面评价
将层压板进行剥离后切断 5mm见方的大小, 置于导电胶上、 喷金, 制成观 察用试验片。 用扫描电子显微镜观察, 观察填料与树脂间的界面, 并对其进行 评价。
5、 填料在树脂中的分散均匀性评价
层压板切断成 5mm见方的大小, 以树脂进行注型, 置于导电胶上、 喷金, 制成观察用试验片。 用扫描电子显微镜观察, 观察填料在树脂中的分散情况, 并对其进行评价。
6、 树脂组合物的稳定性评价
将 100ml树脂组合物置于 100ml的带塞量筒内, 于 25 °C的室温中静置, 测 定沉淀物滞留至沉降管的底部的时间, 评价稳定性。
7、 电绝缘性的测定 将层压板切成 lOOmmX 100mm的试验片, 将其表面铜箔制备成特定图案, 经高温处理后, 使用高阻计在试样上施加 500V直流电压并经 60s稳定后读数, 并计算得到体积电阻率, 数值越大, 体积电阻率越大, 说明层压板的电绝缘性 越好。
8、 钻孔加工性的评价
选用 6轴钻床中两个效果较为相近的钻轴进行钻孔, 每块板钻 6把新刀, 每把刀钻 3000个孔, 然后使用检测显微镜观察钻头刀刃部分, 测定刀刃尖端磨 损后退量以测量垂直线与中轴线交点与磨损上边缘的距离为钻刀尺寸, 通过以 下公式计算钻刀磨损率来评价钻孔加工性。
磨损率%=钻孔后边缘与中轴线距离 /钻孔前边缘与中轴线距离 X 100%
表 1 成分 /质量份 实施例 1 实施例 2 实施例 3 实施例 4 实施例 5 实施例 6
DER530 100 100 100 100 100 100 双氰胺 3 3 3 3 3 3
2-甲基咪唑 0.05 0.05 0.05 0.05 0.05 0.05
A)钨化合物
A-1 5 5
A-2 10 1
A-3 5 5
B)无机填料
B-1 80 80 80
B-2 80
B-3 80 50
B-4 30 测定 /评价
钻刀的磨损率 /% 79 60 70 76 65 66 热膨胀系数 /% 2.0 1.9 2.1 2.2 2.2 2.3
UV透过率 /% 0.02 0.01 0.03 0.02 0.03 0.05 透射率 /% 0.48 0.2 0.52 0.50 0.49 0.7 颜色 黑色 黑色 黑色 黑色 黑色 黑色 分散性 ο ο ο ο ο ο 稳定性 /天 11 14 16 11 15 11 体积电阻率/ ΜΩ· η 3.94Ε+6 3.47Ε+6 4.3Ε+6 3.89Ε+6 3.56Ε+6 3.85Ε+6 表 2
Figure imgf000013_0001
表 1和表 2备注: "〇"表示优, "△"表示良好, " X "表示差。
实施例 7-12
100重量份溴化双酚 Α型环氧树脂(陶氏化学,环氧当量 435,溴含量 19%, 产品名 DER530)、 24重量份线型酚醛树脂 (日本群荣, 羟基当量 105, 产品名 TD2090 ) , 0.05重量份 2-甲基咪唑, 钨化合物, 溶于有机溶剂中, 机械搅拌乳化 配制成 65wt%的胶水, 然后含浸玻璃纤维布, 经过加热干燥后形成预浸料 (prepreg) , 两面放置铜箔, 加压加热制成铜箔基板。
使用得到的覆铜层压板, 用上述示出的方法, 对热膨胀系数、 UV透过率、 体积电阻率、 分散性效果评价、 钻孔加工性, 结果见表 3。 比较例 5
除了使用炭黑粉替代钨化合物使用外, 用于实施例 7 同样的方法, 得到使 用树脂组合物的覆铜板。 测定、 评价结果示于表 4。 比较例 6
除了使用苯胺黑替代钨化合物使用外, 用于实施例 7 同样的方法, 得到使 用树脂组合物的覆铜板。 测定、 评价结果示于表 4。 比较例 7
除了不配合钨化合物外, 用于实施例 7 同样的方法, 得到使用树脂组合物 的覆铜板。 测定、 评价结果示于表 4。 比较例 8
除了不配合钨化合物、 无机填料和颜料外, 用于实施例 7 同样的方法, 得 到使用树脂组合物的覆铜板。 测定、 评价结果示于表 4。 表 3 成分 /质量份 实施例 7 实施例 8 实施例 9 实施例 10 实施例 11 实施例 12
DER530 100 100 100 100 100 100 酚醛树脂 24 24 24 24 24 24
2-甲基咪唑 0.05 0.05 0.05 0.05 0.05 0.05
A)钨化合物 A-l 10 3
A-2 30 0.5
A-3 3 3
B)无机填料
B-l 60 60
B-2 60
B-3 60 60 40
B-5 20 测定 /评价
钻刀的磨损率 /% 70 55 65 76 60 80 热膨胀系数 /% 2.0 2.1 2.3 2.3 2.3 2.3
UV透过率 /% 0.03 0.01 0.03 0.02 0.04 0.06 透射率 /% 0.3 0.2 0.47 0.50 0.53 0.80 颜色 黑色 黑色 黑色 黑色 黑色 黑色 分散性 ο ο ο ο ο ο 稳定性 /天 12 16 14 12 13 12 体积电阻率/ ΜΩ· η 3.85Ε+6 4.03Ε+6 4.1E+6 3.95Ε+6 4.2Ε+6 4.35Ε+6 表 4 成分 /质量份 比较例 1 比较例 2 比较例 3 比较例 4
DER530 100 100 100 100 酚醛树脂 24 24 24 24
2-甲基咪唑 0.05 0.05 0.05 0.05 无机填料
B-1 60 60 60
C1 3
C2 3 测定 /评价
钻刀的磨损率 /% 93 95 96 49 热膨胀系数 /% 2.1 2.1 2.2 4.6 uv透过率 /% 0.04 0.03 38 43
透射率 /% 0.83 0.75 3.08 3.78
颜色 黑色 黑色 乳白色 乳白色
分散性 Δ Δ Δ ο
稳定性 /天 4 3 5 - 体积电阻率/ ΜΩ·«η 9.3 Ε+4 3.67 Ε+6 4.29Ε+6 4.26Ε+6 表 3和表 4备注: "〇"表示优, "△"表示良好, " X "表示差。
从表 1〜表 4可以看出, 不管是在 DICY固化还是酚醛固化的热固性树脂组 合物, 使用添加钨化合物不仅能明显改善层压板的钻孔加工性, 而且能效阻挡 UV光和降低光透射率, 添加少量的钨化合物, 即可将层压板的 UV光透过率从 35~46%降低至 0.01~0.6%, 而光透射率则可从 3~4%降低至 0.1~0.8%, 其效果相 当明显, 且其综合性能优异。 另外, 从表 1〜表 4可以看出, 添加钨化合物的树 脂组合物的分散性与稳定性也明显优于没有添加钨化合物的树脂组合物分散性 与稳定性。 从对比例 4和 8可以看出, 由于组合物中没有添加无机填料, 其热 膨胀系数明显增加, 可见无机填料的加入可明显降低复合材料的热膨胀系数, 与比较例 3和 7相比照, 还可看出, 无机填料对 UV光透过率和光透射率也有 协同阻挡改善的作用。 对于比较例 1和 5而言, 由于含有炭黑粉, 所以电绝缘 性明显劣化。
申请人声明, 本发明通过上述实施例来说明本发明的详细方法, 但本发明 并不局限于上述详细方法, 即不意味着本发明必须依赖上述详细方法才能实施。 所属技术领域的技术人员应该明了, 对本发明的任何改进, 对本发明产品各原 料的等效替换及辅助成分的添加、 具体方式的选择等, 均落在本发明的保护范 围和公开范围之内。

Claims

权 利 要 求 书
1、 一种热固性树脂组合物, 其特征在于, 所述热固性树脂组合物包括: 热 固性树脂、 无机填料以及钨化合物。
2、 如权利要求 1所述的热固性树脂组合物, 其特征在于, 所述钨化合物选 自有机钨化合物或 /和无机钨化合物。
3、 如权利要求 1所述的热固性树脂组合物, 其特征在于, 所述钨化合物选 自二硫化钨、 四硫代钨酸胺、 四溴氧化钨、 四氯化钨、 四溴化钨、 钨酸锌、 钨 酸钙、 钨酸镁、 钨酸铵、 硒化钨、 氧化钨、 二辛基二硫代氨基甲酸钨、 二硫酚 合钨、 3,4-二巯基甲苯合钨、 胺基二异丙基二硫代磷酸钨、 有机钨钼配合物、 二 硫代氨基甲酸钨化合物、芳烃钨化合物或垸 (芳)基胺基硫代磷酸钨中的任意一种 或者至少两种的混合物。
4、 如权利要求 1所述的热固性树脂组合物, 其特征在于, 所述钨化合物含 有 S和 P元素。
5、 如权利要求 1所述的热固性树脂组合物, 其特征在于, 所述钨化合物选 自二硫化钨、 四硫代钨酸胺、 四溴氧化钨、 四氯化钨、 四溴化钨或烷 (芳:)基胺基 硫代磷酸钨中的任意一种或者至少两种的混合物。
6、 如权利要求 1所述的热固性树脂组合物, 其特征在于, 所述钨化合物的 含量为热固性树脂组合物总质量的 0.001~30wt%。
7、 如权利要求 6所述的热固性树脂组合物, 其特征在于, 所述钨化合物的 含量为热固性树脂组合物总质量的 0.1~15wt%。
8、 如权利要求 1所述的热固性树脂组合物, 其特征在于, 所述无机填料选 自二氧化硅、 勃姆石、 氧化铝、 滑石、 云母、 高岭土、 氢氧化铝、 氢氧化镁、 硼酸锌、 锡酸锌、 氧化锌、 氧化钛、 氮化硼、 碳酸钙、 硫酸钡、 钛酸钡、 硼酸 铝、 钛酸钾、 E玻璃粉、 S玻璃粉、 D玻璃粉、 NE玻璃粉、 中空微粉或勃姆石 中的任意一种或者至少两种的混合物。
9、 如权利要求 1所述的热固性树脂组合物, 其特征在于, 所述无机填料的 含量为热固性树脂组合物总质量的 10~80wt%。
10、 如权利要求 9所述的热固性树脂组合物, 其特征在于, 所述无机填料 的含量为热固性树脂组合物总质量的 20~60wt%。
11、 如权利要求 1 所述的热固性树脂组合物, 其特征在于, 所述无机填料 的平均粒径为 0.1~100μπι。
12、 如权利要求 11所述的热固性树脂组合物, 其特征在于, 所述无机填料 的平均粒径为 0.5~20μπι。
13、 如权利要求 1 所述的热固性树脂组合物, 其特征在于, 所述热固性树 脂占热固性树脂组合物总质量的 20~70wt%。
14、 如权利要求 13所述的热固性树脂组合物, 其特征在于, 所述热固性树 脂占热固性树脂组合物总质量的 25~65wt%。
15、 如权利要求 14所述的热固性树脂组合物, 其特征在于, 所述热固性树 脂占热固性树脂组合物总质量的 30~60wt%。
16、 如权利要求 1 所述的热固性树脂组合物, 其特征在于, 所述热固性树 脂组合物还包括固化剂, 所述固化剂占热固性树脂组合物总质量的 l~30wt%。
17、 如权利要求 16所述的热固性树脂组合物, 其特征在于, 所述固化剂占 热固性树脂组合物总质量的 4~25wt%。
18、 如权利要求 17所述的热固性树脂组合物, 其特征在于, 所述固化剂占 热固性树脂组合物总质量的 10~20wt%。
19、 如权利要求 1 所述的热固性树脂组合物, 其特征在于, 所述热固性树 脂组合物还包括促进剂, 所述促进剂占热固性树脂组合物总质量的 0~10wt%, 不包括 0。
20、 如权利要求 19所述的热固性树脂组合物, 其特征在于, 所述促进剂占 热固性树脂组合物总质量的 l~10wt%。
21、 如权利要求 20所述的热固性树脂组合物, 其特征在于, 所述促进剂占 热固性树脂组合物总质量的 2~8wt%。
22、 一种树脂胶液, 其特征在于, 其是将如权利要求 1-21之一所述的热固 性树脂组合物溶解或分散在溶剂中得到。
23、 一种预浸料, 其特征在于, 其包括增强材料及通过浸渍干燥后附着在 其上的如权利要求 1-21之一所述的热固性树脂组合物。
24、 一种层压板, 其特征在于, 所述层压板含有至少一张如权利要求 23所 述的预浸料。
PCT/CN2013/086617 2013-10-29 2013-11-06 一种热固性树脂组合物及其用途 WO2015062115A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016526403A JP6118466B2 (ja) 2013-10-29 2013-11-06 熱硬化性樹脂組成物及びその用途
US15/033,299 US10053547B2 (en) 2013-10-29 2013-11-06 Thermosetting resin composition and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310526318.9 2013-10-29
CN201310526318.9A CN103554844B (zh) 2013-10-29 2013-10-29 一种热固性树脂组合物及其用途

Publications (1)

Publication Number Publication Date
WO2015062115A1 true WO2015062115A1 (zh) 2015-05-07

Family

ID=50009218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086617 WO2015062115A1 (zh) 2013-10-29 2013-11-06 一种热固性树脂组合物及其用途

Country Status (4)

Country Link
US (1) US10053547B2 (zh)
JP (1) JP6118466B2 (zh)
CN (1) CN103554844B (zh)
WO (1) WO2015062115A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2014DN07967A (zh) 2012-03-27 2015-05-01 Mitsubishi Gas Chemical Co
WO2015152162A1 (ja) * 2014-03-31 2015-10-08 三菱瓦斯化学株式会社 ドリル孔あけ用エントリーシート
TWI675907B (zh) * 2015-01-21 2019-11-01 日商Jsr股份有限公司 固體攝像裝置
EP3434734A4 (en) * 2016-04-05 2019-09-25 Hitachi Chemical Co., Ltd. RESIN COMPOSITION, BARRIER MATERIAL AGAINST HYDROGEN GAS, CURED PRODUCT, COMPOSITE MATERIAL, AND STRUCTURE
CN106739220A (zh) * 2016-12-28 2017-05-31 江阴市明康绝缘玻纤有限公司 耐热性酚醛纸紫外光屏蔽覆铜板
CN111902469B (zh) * 2018-03-20 2023-04-14 东丽株式会社 预浸料坯及纤维增强复合材料
CN109796729A (zh) * 2019-02-21 2019-05-24 莫爱军 一种纳米复合吸波材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212396A (ja) * 1997-01-30 1998-08-11 Hitachi Chem Co Ltd 電子部品封止用エポキシ樹脂成形材料及び電子部品
CN1705110A (zh) * 2004-05-31 2005-12-07 信越化学工业株式会社 半导体密封用环氧树脂组合物以及半导体装置
JP2008179724A (ja) * 2007-01-25 2008-08-07 Nitto Denko Corp 半導体封止用エポキシ樹脂組成物およびそれを用いて得られた半導体装置
CN101463181A (zh) * 2009-01-08 2009-06-24 西安交通大学 一种自润滑复合材料及自润滑复合材料模具的制造方法
JP2009138075A (ja) * 2007-12-05 2009-06-25 Hitachi Chem Co Ltd 樹脂組成物、それを用いたプリプレグ、および積層板
JP2012134411A (ja) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd プリント配線板用樹脂組成物、プリプレグ、積層板、樹脂シート、プリント配線板及び半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819592A (en) * 1973-08-27 1974-06-25 Uniroyal Inc Molecular weight regulation of ethylene-alpha-olefin copolymers
US4560716A (en) * 1983-08-30 1985-12-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Rust preventing epoxy resin compositions
JPS62132960A (ja) * 1985-12-06 1987-06-16 Ube Ind Ltd ポリイミド樹脂成形体
US6610406B2 (en) * 2000-03-23 2003-08-26 Henkel Locktite Corporation Flame retardant molding compositions
US6432540B1 (en) 2000-03-23 2002-08-13 Loctite Corporation Flame retardant molding compositions
JP3700771B2 (ja) 2001-04-02 2005-09-28 日本電気株式会社 タンタルコンデンサおよびエポキシ樹脂組成物
US20040214377A1 (en) * 2003-04-28 2004-10-28 Starkovich John A. Low thermal expansion adhesives and encapsulants for cryogenic and high power density electronic and photonic device assembly and packaging
CN101125995A (zh) * 2007-09-28 2008-02-20 王新虎 一种防螺纹粘着磨损自润滑涂料及其制备方法
CN102190865B (zh) 2010-03-16 2012-12-26 上海国纪电子有限公司 环氧树脂胶液、含其的半固化片和覆铜板,及其制备方法
CN101851390B (zh) 2010-05-19 2012-05-23 广东生益科技股份有限公司 黑色无卤环氧树脂组合物以及使用其制备的覆盖膜
JP5757749B2 (ja) * 2010-05-19 2015-07-29 富士フイルム株式会社 重合性組成物
JP5552922B2 (ja) * 2010-06-29 2014-07-16 セントラル硝子株式会社 核分裂生成物の分離材及びその製造方法、並びに該分離材を用いた核分裂生成物の分離方法
JP2012099697A (ja) * 2010-11-04 2012-05-24 Denki Kagaku Kogyo Kk 回路基板、電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212396A (ja) * 1997-01-30 1998-08-11 Hitachi Chem Co Ltd 電子部品封止用エポキシ樹脂成形材料及び電子部品
CN1705110A (zh) * 2004-05-31 2005-12-07 信越化学工业株式会社 半导体密封用环氧树脂组合物以及半导体装置
JP2008179724A (ja) * 2007-01-25 2008-08-07 Nitto Denko Corp 半導体封止用エポキシ樹脂組成物およびそれを用いて得られた半導体装置
JP2009138075A (ja) * 2007-12-05 2009-06-25 Hitachi Chem Co Ltd 樹脂組成物、それを用いたプリプレグ、および積層板
CN101463181A (zh) * 2009-01-08 2009-06-24 西安交通大学 一种自润滑复合材料及自润滑复合材料模具的制造方法
JP2012134411A (ja) * 2010-12-24 2012-07-12 Sumitomo Bakelite Co Ltd プリント配線板用樹脂組成物、プリプレグ、積層板、樹脂シート、プリント配線板及び半導体装置

Also Published As

Publication number Publication date
CN103554844A (zh) 2014-02-05
US20160264745A1 (en) 2016-09-15
JP2016524033A (ja) 2016-08-12
US10053547B2 (en) 2018-08-21
JP6118466B2 (ja) 2017-04-19
CN103554844B (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
WO2015062115A1 (zh) 一种热固性树脂组合物及其用途
TW201514227A (zh) 一種熱固性樹脂組合物及其用途
TWI609035B (zh) Thermosetting resin composition and prepreg, laminate and printed circuit board containing the same
TWI585160B (zh) 無鹵無磷矽樹脂組合物以及使用它的預浸料、層壓板、 覆銅板以及印製電路板
TW201609901A (zh) 樹脂組成物、預浸體、覆金屬箔疊層板、及印刷電路板
JP2008297429A (ja) 接着剤組成物、接着剤シートおよび接着剤つき銅箔
WO2018120589A1 (zh) 一种改性聚苯醚树脂及其应用
KR101760629B1 (ko) 열경화성 수지 조성물 및 그 용도
WO2016107067A1 (zh) 一种无卤热固性树脂组合物及使用它的预浸料和印制电路用层压板
CN108148352B (zh) 热固性树脂组合物、预浸料、层压板和印制电路板
JP2013010860A (ja) プリント配線板用樹脂組成物、プリプレグ、積層板、及びプリント配線板
CN109486111B (zh) 一种热固性树脂组合物及其用途
WO2017107586A1 (zh) 一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板
CN103497486B (zh) 一种热固性树脂组合物及其用途
JP2012025845A (ja) 樹脂組成物ワニスの製造方法、プリプレグ、積層板
CN103360725B (zh) 一种绝缘性好的热固性树脂组合物、预浸料及覆金属箔板
TWI658929B (zh) Prepregs, laminates and printed circuit boards
JP2016119480A (ja) プリント配線板用樹脂組成物、プリプレグ、積層板、及びプリント配線板
CN109438923B (zh) 一种预浸料及其用途
WO2019126928A1 (zh) 热固性树脂组合物、预浸料、层压板和印制电路板
TWI549923B (zh) 熔合填料及其製法與應用
WO2020133338A1 (zh) 一种热固性树脂组合物及包含其的预浸料、层压板和高频电路基板
TW201531524A (zh) 一種無鹵樹脂組合物及其用途
WO2020133472A1 (zh) 树脂组合物、预浸料、层压板以及覆金属箔层压板
JP2009051969A (ja) プリプレグ用エポキシ樹脂組成物、それを用いたプリプレグ、積層板、プリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016526403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15033299

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13896367

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13896367

Country of ref document: EP

Kind code of ref document: A1