WO2017101520A1 - 氮化物底层及其制作方法 - Google Patents

氮化物底层及其制作方法 Download PDF

Info

Publication number
WO2017101520A1
WO2017101520A1 PCT/CN2016/097869 CN2016097869W WO2017101520A1 WO 2017101520 A1 WO2017101520 A1 WO 2017101520A1 CN 2016097869 W CN2016097869 W CN 2016097869W WO 2017101520 A1 WO2017101520 A1 WO 2017101520A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
buffer layer
strip
nitride
nitride underlayer
Prior art date
Application number
PCT/CN2016/097869
Other languages
English (en)
French (fr)
Inventor
林文禹
陈圣昌
钟志白
徐宸科
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2017101520A1 publication Critical patent/WO2017101520A1/zh
Priority to US15/859,493 priority Critical patent/US10431713B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • C23C16/0263Irradiation with laser or particle beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Definitions

  • the present invention relates to the field of semiconductor fabrication, and more particularly to a nitride underlayer structure capable of improving surface cracks and a method of fabricating the same.
  • a sputter A1N material is used as a buffer layer for further growing a nitride film on a sapphire substrate, and a high quality underlayer material can be obtained, and light for the light emitting diode
  • the output power is greatly improved.
  • the XRD (102) diffraction half-wave width can be greatly reduced.
  • the surface of the sputtered A1N buffer layer is very flat, does not form a discontinuous film surface, and does not provide a path for stress relief, resulting in severe surface cracking.
  • the present invention provides a nitride underlayer structure using a sputtering type A1N having a strip-like strip hole.
  • the layer serves as a buffer layer, thereby providing a path of stress relaxation before the nitride film is grown on the buffer layer, which can improve the lattice quality of the nitride underlayer structure and improve surface cracking.
  • the technical solution of the present invention is: nitride underlayer structure, from bottom to top, including: substrate, sputtering type A1 N buffer layer, MOCVD grown Al x l ni - x - y Ga y N layer (0 ⁇ x ⁇ l, 0 ⁇ y ⁇ l), wherein the sputtering type A1N buffer layer has a flat surface with strip holes inside to provide a path for stress release [0006]
  • the hole is in communication with a sidewall of the A1N buffer layer.
  • the thickness of the sputtering type A1N buffer layer is ⁇ or less.
  • the hole has a depth of 0.1 to 05 ⁇ m and a width of 100 to 500 ⁇ m.
  • the present invention provides a method for fabricating a nitride underlayer, comprising the steps of: 1) providing a substrate, forming a strip of material on the surface thereof; 2) splashing on the strip of material and the substrate Plating an A1N material layer to form a flat film; 3 ) scanning back and forth from the substrate end with a laser beam to decompose the strip material layer to form a sputtered A1N buffer layer having a flat surface and strip-shaped holes therein 4) forming an Al x l ni — x — y Ga y N layer (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ l) on the sputtering type A1N buffer layer by MOCVD; wherein the strip material layer
  • the energy gap E1, the energy gap E2 of the laser beam, and the energy gap E3 of the A1N buffer layer are as follows: E1 ⁇ E 2 ⁇ E3.
  • the step 3) further comprises: removing the residue generated after the decomposition of the A1N material layer by wet etching to form a strip-shaped hole communicating with the sidewall of the A1N buffer layer.
  • the strip material layer is selected from gallium nitride.
  • a laser beam having a wavelength of 248 nm is selected.
  • the present invention also provides another method for fabricating a nitride underlayer, comprising the steps of: 1) providing a substrate, sputtering an A1N material layer on the surface thereof to form a flat film; 2) from the substrate end Scanning back and forth with a laser beam to partially decompose the inner portion of the A1N material layer to form a sputtered A1N buffer layer having a flat surface and strip-like holes therein; 3) forming Al on the sputtered A1N buffer layer by MOCVD x I ni — x — y Ga yN layer (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ l); wherein the relationship between the energy gap E2 of the laser beam and the energy gap E3 of the A1N buffer layer is: E2>E3.
  • the step 2) further comprises: removing the residue generated after the decomposition of the A1N material layer by wet etching to form a strip-shaped hole communicating with the sidewall of the A1N buffer layer.
  • a laser beam having a wavelength of 193 nm is selected.
  • the aforementioned nitride underlayer structure can be applied to a light emitting diode, particularly a deep ultraviolet light emitting diode.
  • a high lattice quality and crack-free A1N underlayer can be obtained by the above-described fabrication method, and then the growth of each epitaxial material layer is performed to obtain a light-emitting diode having high luminous efficiency.
  • FIG. 1 is a schematic view showing the structure of a nitride underlayer according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a nitride light emitting diode according to an embodiment of the present invention.
  • FIG. 3 is a flow diagram of fabricating a nitride underlayer in accordance with an embodiment of the present invention.
  • 4 to 8 are schematic diagrams showing respective process structures for fabricating a nitride underlayer according to the flow chart shown in FIG. 3.
  • FIG. 9 is a flow chart of another method of fabricating a nitride underlayer in accordance with an implementation of the present invention.
  • a preferred embodiment of a nitride underlayer 100 of the present invention comprises a substrate 110, a sputtered A1N buffer layer 120 grown on the substrate 110 using P VD, and grown by MOCVD.
  • the substrate 1 is selected from the group consisting of, but not limited to, sapphire, aluminum nitride, gallium nitride, silicon, silicon carbide, and the surface structure thereof is a planar structure. In this embodiment, a sapphire flat substrate is used.
  • the sputter-type A1N buffer layer 120 has a flat upper surface 120a having a strip-shaped hole structure 130 therein, which communicates with the sidewall of the sputter-type A1N buffer layer 120 to release stress.
  • the sputtering-type A1N buffer layer is retained to enhance the subsequent lattice quality of a nitride film such as A1N, and is introduced into the strip-type hole layer to achieve stress release and solve the nitride. Film surface crack problem.
  • the A1N material layer allows for light emission down to a wavelength of about 200 nanometers, and is particularly suitable for deep ultraviolet LED growth.
  • the Al x l n — x — y Ga y N layer 140 of the nitride underlayer structure 100 is selected from an A1N material, and the n-type semiconductor layer 200, the active layer 300, and the p-type semiconductor layer 400 are formed on the A1N underlayer 100.
  • AlGaN materials can be used to achieve high-quality UV LEDs with wavelengths from 210 to 365 nm.
  • step S110 140 which is described below in conjunction with FIGS. 4-8.
  • a strip material layer 150 is formed on the sapphire wafer substrate 110, and the strip material layer is made of a low energy gap material.
  • a GaN material is selected, and a GaN material layer is deposited on the sapphire wafer substrate 110 by MOCVD or PVD, and then patterned to form a strip structure.
  • a layer of A1N material is sputtered on the surface of the strip of material material 150 and the substrate 110 to form a flat film 120.
  • a laser beam having a wavelength of 248 nm and a spot diameter of 0.3 mm is selected for scanning, and the energy gap E1 of the strip material layer 150 (the energy gap is 3.4) and the energy gap of the laser beam E2 (the energy gap is 5)
  • the relationship with the energy gap E3 (energy gap 6.1) of the A1N buffer layer 120 is: E 1 ⁇ E2 ⁇ E3, so that the strip material layer 150 can be decomposed faster, while the sputtering type A1N buffer layer 140 is kept intact, and then
  • the residual Ga metal generated by the laser decomposition of the strip-shaped GaN material layer is removed by wet etching, thereby obtaining a sputtering-type A1N buffer layer 120 having a flat surface and having a depth of 0.1 to 0.5 ⁇ m, and a width of the strip-shaped hole. It is about 300 ⁇ .
  • the A1N layer 130 is grown on the A1N buffer layer 120 by MOCVD, and a good stress release can be achieved by the embedded strip-shaped holes.
  • a patterned substrate (PSS) or a secondary epitaxy is required.
  • PSS patterned substrate
  • the film is continuously flattened after the holes are formed, and an A1N epitaxial layer having a thickness of 5 to 10 ⁇ m is grown.
  • a strip-shaped low energy gap material layer 150 is first formed between the substrate 110 and the sputter-type A1N buffer layer 120, and then the laser light is scanned from one side of the substrate to decompose the energy gap material layer 150.
  • the surface of the sputtered A1N buffer layer is kept very flat.
  • the colloidal hole layer for releasing the stress is formed inside, and the crack-free A1N film can be formed directly on the sputtered A1N buffer layer by MOCVD, thereby avoiding the growth of the thick A1N. Problems such as secondary growth.
  • FIG. 9 shows another flow chart for fabricating a nitride underlayer according to an embodiment of the present invention, which includes the step S21 0-230.
  • a layer of A1N material is sputtered on the surface of the sapphire flat substrate to form a flat surface.
  • a laser beam is scanned back and forth from the substrate end to partially decompose the inner portion of the A1N material layer, and the residue generated by the decomposition of the A1N material layer is removed by wet etching, thereby forming a flat surface and having strip-like holes inside.
  • a sputtered A1N buffer layer then, an Al x In x y Ga y N layer is formed on the sputtered A1N buffer layer by MOCVD.
  • the sputtering of the A1N material layer is performed by using a laser beam having a wavelength of 193 nm and a spot directly of 0.5 mm. Therefore, the relationship between the energy gap E2 of the laser beam and the energy gap E3 of the A1N buffer layer satisfies E2>E3.
  • the purpose of decomposing a portion of the A1N material layer is achieved, thereby obtaining a sputter-type A1N buffer layer 120 having a flat surface and a strip-shaped hole therein, the strip-shaped hole having a depth of 0.01 to 0.1 ⁇ m and a width of about 500 ⁇ m.
  • the scanning is performed by directly using a laser beam having a larger energy gap than the A1N material, and the step S110 in the first embodiment can be omitted, and the hole depth formed is shallow.

Abstract

一种氮化物底层结构及其制作方法,采用具有开放式条状孔洞(130)的溅射式AlN层作为缓冲层(120),从而在氮化物薄膜生长于该缓冲层(120)之前提供应力释放的路径,提升氮化物底层结构的晶格质量并且改善表面裂纹。此外还提供一种采用该氮化物底层结构的发光二极管结构。

Description

氮化物底层及其制作方法
技术领域
[0001] 本发明涉及半导体制备领域, 具体为一种可以改善表面裂纹的氮化物底层结构 及其制作方法。
背景技术
[0002] 发展深紫外发光二极管, 生长高晶格质量且无裂纹的 A1N材料是首要克服的关 键技术, 目前在蓝宝石衬底上使用 V/III渐变法(V/III multi-growth mode modification)、 脉冲式 NH3法(NH3 pulsed flow method)、 两步法(two-step method)、 三步法 (three-step method)以及高低温交替法 ( low and high temperature alternation)等皆可以得到一定程度的晶格质量且近乎无裂纹的 A1N薄膜。
技术问题
[0003] 越来越多的试验结果证实, 在蓝宝石衬底上使用溅射式 (Sputter) A1N材料作为 进一步生长氮化物薄膜的缓冲层, 可以得到高品质的底层材料, 并且对于发光 二极管的光输出功率有较大的提升。 例如, 在蓝宝石衬底上溅射 A1N层作为缓冲 层, 再采用 MOCVD生长 A1N薄膜于该溅射式 A1N缓冲层上, 可以大幅降低 XRD (102)衍射半波宽。 然而, 溅射式 A1N缓冲层表面非常平整, 不会形成不连续的 薄膜表面, 无法提供应力释放的路径, 导致表面裂纹严重。
问题的解决方案
技术解决方案
[0004] 为了解决氮化物薄膜生长在溅射式 A1N缓冲层上会出现表面裂纹严重的问题, 本发明提供了一种氮化物底层结构, 采用具有一幵放式条状孔洞的溅射式 A1N层 作为缓冲层, 从而在氮化物薄膜生长于该缓冲层之前提供应力释放的路径, 可 以提升氮化物底层结构的晶格质量并且改善表面裂纹。
[0005] 本发明的技术方案为: 氮化物底层结构, 从下至上依次包括: 衬底, 溅射式 A1 N缓冲层, MOCVD生长的 Al xln ixyGa yN层 (0≤x≤l, 0<y≤l) , 其中所述溅射 式 A1N缓冲层具有平坦的表面, 其内部具有条状孔洞, 用以提供应力释放的路径 [0006] 优选地, 所述孔洞与所述 A1N缓冲层的侧壁连通。
[0007] 优选地, 所述溅射式 A1N缓冲层的厚度为 Ι μηι以下。
[0008] 优选地, 所述孔洞的深度为 0.1~05μηι, 宽度为 100~500μηι。
[0009] 本发明同吋提供一种氮化物底层的制作方法, 包括步骤: 1) 提供衬底, 在其 表面上形成条状材料层; 2) 在所述条状材料层及衬底上溅镀 A1N材料层, 形成 平坦的薄膜; 3) 从所述衬底端以激光束来回扫描, 使所述条状材料层分解, 从 而形成表面平坦、 内部具有条状孔洞的溅射式 A1N缓冲层; 4) 采用 MOCVD在所 述溅射式 A1N缓冲层上形成 Al xln ixyGa yN层 (0≤x≤l, 0<y≤l) ; 其中, 所述 条状材料层的能隙 El、 激光束的能隙 E2和 A1N缓冲层的能隙 E3的关系为: E1 < E 2< E3。
[0010] 进一步地, 所述步骤 3) 中还包括: 湿法蚀刻去除所述 A1N材料层分解后产生的 残余物, 形成与所述 A1N缓冲层的侧壁连通的条状孔洞。
[0011] 优选地, 所述条状材料层选用氮化镓。
[0012] 优选地, 所述步骤 3) 中选用波长为 248nm的激光束。
[0013] 本发明还提供了另一种氮化物底层的制作方法, 包括步骤: 1) 提供衬底, 在 其表面上溅镀 A1N材料层, 形成平坦的薄膜; 2) 从所述衬底端以激光束来回扫 描, 使所述 A1N材料层内部部分分解, 从而形成表面平坦、 内部具有条状孔洞的 溅射式 A1N缓冲层; 3) 采用 MOCVD在所述溅射式 A1N缓冲层上形成 Al xIn ixyGa yN层 (0≤x≤l, 0<y≤l) ; 其中, 所述激光束的能隙 E2和 A1N缓冲层的能隙 E3 的关系为: E2〉E3。
[0014] 进一步地, 所述步骤 2) 中还包括: 湿法蚀刻去除所述 A1N材料层分解后产生的 残余物, 形成与所述 A1N缓冲层的侧壁连通的条状孔洞。
[0015] 优选地, 所述步骤 2) 中选用波长为 193nm的激光束。
[0016] 前述氮化物底层结构可应用于发光二极管, 特别是深紫外发光二极管。 采用前 述制作方法可以获得高晶格质量且无裂纹的 A1N底层, 然后再进行各外延材料 层的生长, 从而获得高发光效率的发光二极管。
[0017] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
发明的有益效果
对附图的简要说明
附图说明
[0018] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0019] 图 1为根据本发明实施的一种氮化物底层结构示意图。
[0020] 图 2为根据本发明实施的一种氮化物发光二极管示意图。
[0021] 图 3为根据本发明实施的一种制作氮化物底层的流程图。
[0022] 图 4~8为根据图 3所示流程图制作氮化物底层的各个过程结构示意图。
[0023] 图 9为根据本发明实施的另一种制作氮化物底层的流程图。
本发明的实施方式
[0024] 在本发明被详细描述之前, 应当注意在以下的说明内容中, 类似的组件是以相 同的编号来表示。
[0025] 参看图 1, 本发明氮化物底层 100的一个较佳实施例, 包含一衬底 110、 一采用 P VD生长在该衬底 110上的溅射式 A1N缓冲层 120, 一采用 MOCVD生长的 Al Jn ,_x_y Ga yN层 140 (0<x≤l , 0<y≤l) 。 其中, 衬底 110衬底 1的选取包括但不限于蓝宝 石、 氮化铝、 氮化镓、 硅、 碳化硅, 其表面结构为平面结构, 在本实施例中, 选用蓝宝石平片衬底。 溅射式 A1N缓冲层 120具有平坦的上表面 120a, 内部具有 条状孔洞结构 130, 该条状孔洞 130与溅射式 A1N缓冲层 120的侧壁连通, 以释放 应力。 在本实施例之氮化物底层结构中, 保留溅射式 A1N缓冲层能够提升后续诸 如 A1N等氮化物薄膜晶格质量的优点, 并导入幵放式条状孔洞层以达到应力释放 , 解决氮化物薄膜表面裂纹问题。
[0026] 图 2显示了一种生长于上述氮化物底层结构 100上的 LED结构, 至少还包括 n型 半导体层 200、 有源层 300和 p型半导体层 400。 一般, A1N材料层可允许实现低至 约 200纳米波长的光发射, 特别适用于进行深紫外 LED生长。 在该实施例中, 氮 化物底层结构 100的 Al xln ixyGa yN层 140选用 A1N材料, n型半导体层 200、 有源 层 300和 p型半导体层 400形成于 A1N底层 100上, 采用 AlGaN材料, 可实现波长为 210~365nm的高品质紫外 LED。
[0027] 图 3显示了根据本发明实施的一种制作氮化物底层的流程图, 其包括步骤 S110 140, 下面结合图 4~8进行说明。
[0028] 参看图 4, 在蓝宝石平片衬底 110上形成条状材料层 150, 该条状材料层选用低 能隙材料。 在本实施例中选用 GaN材料, 先采用 MOCVD方法或 PVD方法在蓝宝 石平片衬底 110上沉积一 GaN材料层, 然后再进行图案化处理形成条状结构。
[0029] 参看图 5, 在该条状材料层 150和衬底 110的表面溅镀 A1N材料层, 形成一平坦的 薄膜 120。
[0030] 参看图 6和 7, 使用激光束由蓝宝石衬底 110—端入射, 回来扫描将条状材料层 1 50分解, 并湿法蚀刻去除该条状材料层分解后的残余物, 得到一个具有幵放式 条状孔洞层 130的溅射式 A1N缓冲层 120。 在本实施例中, 选用波长为 248nm、 光 斑直径为 0.3mm的激光束进行扫描, 条状材料层 150的能隙 E1 (能隙为 3.4) 、 激 光束的能隙 E2 (能隙为 5) 和 A1N缓冲层 120的能隙 E3 (能隙为 6.1) 的关系为: E 1 < E2 < E3, 故条状材料层 150可以被较快分解, 而保持溅射式 A1N缓冲层 140完 整, 再采用湿法蚀刻去除该条状 GaN材料层经激光分解后产生的残余 Ga金属, 从而获得表面平坦、 内部具有的溅射式 A1N缓冲层 120, 该条状孔洞的深度为 0.1 ~0.5μηι, 宽度约为 300μηι。
[0031] 参看图 8, 采用 MOCVD在射式 A1N缓冲层 120生长 A1N层 130, 藉由嵌入的幵放 式条状孔洞可达良好的应力释放。
[0032] 一般, 在氮化物外延薄膜中导入孔洞层, 需采用图型化衬底(PSS)或二次外延 。 在 A1N底层结构中, 由于 A1N外延侧向生长速率很低, 形成孔洞后继续将薄膜 长平, 须生长厚度为 5~10μηι的 A1N外延层。 在本实施例中, 首先在衬底 110与溅 射式 A1N缓冲层 120之间形成条状低能隙材料层 150, 然后采用激光从衬底一侧进 行扫描, 使该能隙材料层 150分解, 保留了溅射式 A1N缓冲层表面非常平整的特 性, 同吋在内部形成了用于释放应力的幵放式孔洞层, 后续可直接采用 MOCVD 在该溅射式 A1N缓冲层上形成无裂纹的 A1N薄膜, 避免了生长很厚的 A1N、 进行 二次生长等问题。
[0033] 图 9显示了根据本发明实施的另一种制作氮化物底层的流程图, 其包括步骤 S21 0-230= 首先, 在蓝宝石平片衬底的表面上溅镀 A1N材料层, 形成平坦的薄膜; 接着, 从该衬底端以激光束来回扫描, 使该 A1N材料层内部部分分解, 湿法蚀刻 去除该 A1N材料层分解后产生的残余物, 从而形成表面平坦、 内部具有条状孔洞 的溅射式 A1N缓冲层; 然后, 采用 MOCVD在所述溅射式 A1N缓冲层上形成 Al xIn x— yGa yN层。 在本实施例中, 采用波长为 193nm、 光斑直接为 0.5mm的激光束进 行扫描该溅镀 A1N材料层, 因此, 激光束的能隙 E2和 A1N缓冲层的能隙 E3的关系 满足 E2〉E3, 达到可以分解部分 A1N材料层的目的, 从而获得表面平坦、 内部具 有条状孔洞的溅射式 A1N缓冲层 120, 该条状孔洞的深度为 0.01~0.1μηι, 宽度约 为 500μηι。
[0034] 在本实施例中, 采用直接采用能隙大于 A1N材料的激光束进行扫描, 可省略实 施例 1中的步骤 S110, 其形成的孔洞深度较浅。
[0035] 很明显地, 本发明的说明不应理解为仅仅限制在上述实施例, 而是包括利用本 发明构思的所有可能的实施方式。

Claims

权利要求书
[权利要求 1] 氮化物底层, 从下至上依次包括: 衬底, 溅射式 A1N缓冲层, MOCV
D生长的 AUn i_x_yGa yN层 (0≤x≤l, 0<y≤l) , 其特征在于: 所述溅 射式 A1N缓冲层具有平坦的表面, 其内部具有条状孔洞, 用于提供应 力释放的路径。
[权利要求 2] 根据权利要求 1所述的氮化物底层, 其特征在于: 所述孔洞与所述 A1
N缓冲层的侧壁连通。
[权利要求 3] 根据权利要求 1所述的氮化物底层, 其特征在于: 所述溅射式 A1N缓 冲层的厚度为 Ι μηι以下。
[权利要求 4] 根据权利要求 1所述的氮化物底层, 其特征在于: 所述孔洞的高度为 0
.01~0.5μηι。
[权利要求 5] 氮化物底层的制作方法, 包括步骤:
1) 提供衬底, 在其表面上形成条状材料层;
2) 在所述条状材料层及衬底上溅镀 A1N材料层, 形成平坦的薄膜;
3) 从所述衬底端以激光束来回扫描, 使所述条状材料层分解, 从而 形成表面平坦、 内部具有条状孔洞的溅射式 A1N缓冲层;
4) 采用 MOCVD在所述溅射式 A1N缓冲层上形成 Al Jn ^ xyGa yN层 (0 <x≤l , 0<y≤l) ;
其中, 所述条状材料层的能隙 El、 激光束的能隙 E2和 A1N缓冲层的 能隙 E3的关系为: E1 < E2< E3。
[权利要求 6] 根据权利要求 5所述的氮化物底层的制作方法, 其特征在于: 所述条 状材料层选用氮化镓。
[权利要求 7] 根据权利要求 6所述的氮化物底层的制作方法, 其特征在于: 所述步 骤 3) 中还包括: 湿法蚀刻去除所述条状材料层经激光分解后产生的 残余 Ga金属, 形成与所述 A1N缓冲层的侧壁连通的条状孔洞。
[权利要求 8] 根据权利要求 5所述的氮化物底层的制作方法, 其特征在于: 所述激 光束选用波长为 248nm的激光。
[权利要求 9] 氮化物底层的制作方法, 包括步骤: 1) 提供衬底, 在其表面上溅镀 A1N材料层, 形成平坦的薄膜;
2) 从所述衬底端以激光束来回扫描, 使所述 A1N材料层内部部分分 解, 从而形成表面平坦、 内部具有条状孔洞的溅射式 A1N缓冲层;
3) 采用 MOCVD在所述溅射式 A1N缓冲层上形成 Al Jn !^Ga yN层 (0 <x≤l , 0<y≤l) ;
其中, 所述激光束的能隙 E2和 A1N缓冲层的能隙 E3的关系为: E2 〉E3。
[权利要求 10] 根据权利要求 9所述的氮化物底层的制作方法, 其特征在于: 所述激 光束选用波长为 193nm的激光。
[权利要求 11] 根据权利要求 5所述的氮化物底层的制作方法, 其特征在于: 所述步 骤 2) 中还包括: 湿法蚀刻去除所述 A1N材料层分解后产生的残余物
, 形成与所述 A1N缓冲层的侧壁连通的条状孔洞。
[权利要求 12] 发光二极管, 从下至上依次包括: 衬底, 溅射式 A1N缓冲层, MOCV
D生长的 Al xIn i_x_yGa yN层 (0≤x≤l, 0<y≤l) , n型半导体层, 有源 层和 p型半导层, 其特征在于: 所述溅射式 A1N缓冲层具有平坦的表 面, 其内部具有条状孔洞, 以释放应力。
[权利要求 13] 根据权利要求 12所述的发光二极管, 其特征在于: 所述发光二极管的 发光波长为 365nm~210nm。
PCT/CN2016/097869 2015-12-14 2016-09-02 氮化物底层及其制作方法 WO2017101520A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/859,493 US10431713B2 (en) 2015-12-14 2017-12-30 Nitride underlayer and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510921684.3A CN105428481B (zh) 2015-12-14 2015-12-14 氮化物底层及其制作方法
CN201510921684.3 2015-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/859,493 Continuation US10431713B2 (en) 2015-12-14 2017-12-30 Nitride underlayer and fabrication method thereof

Publications (1)

Publication Number Publication Date
WO2017101520A1 true WO2017101520A1 (zh) 2017-06-22

Family

ID=55506539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097869 WO2017101520A1 (zh) 2015-12-14 2016-09-02 氮化物底层及其制作方法

Country Status (3)

Country Link
US (1) US10431713B2 (zh)
CN (1) CN105428481B (zh)
WO (1) WO2017101520A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850508A (zh) * 2020-07-22 2020-10-30 湘能华磊光电股份有限公司 一种降低接触电阻的led外延结构及其生长方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428481B (zh) * 2015-12-14 2018-03-16 厦门市三安光电科技有限公司 氮化物底层及其制作方法
CN106206892A (zh) * 2016-08-29 2016-12-07 扬州中科半导体照明有限公司 用于氮化物生长的具有双缓冲层的外延片的制备方法
CN108269887A (zh) * 2016-12-30 2018-07-10 北京大学 一种基于图形化蓝宝石衬底和预溅射技术的AlN薄膜的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964382A (zh) * 2009-07-21 2011-02-02 展晶科技(深圳)有限公司 提高光萃取效率的半导体光电结构及其制造方法
CN102194930A (zh) * 2010-03-09 2011-09-21 Lg伊诺特有限公司 用于制造发光器件的基板和用于制造发光器件的方法
CN102779914A (zh) * 2012-08-01 2012-11-14 厦门市三安光电科技有限公司 具有电流阻挡效应的垂直发光二极管及其制作方法
CN103262215A (zh) * 2010-12-16 2013-08-21 应用材料公司 具有物理气相沉积形成氮化铝缓冲层的氮化镓类发光二极管的制造
CN103608897A (zh) * 2011-05-20 2014-02-26 财团法人首尔大学校产学协力团 半导体薄膜结构以及其形成方法
CN104037290A (zh) * 2014-05-23 2014-09-10 南昌大学 一种AlyInxGa1-x-yN薄膜的外延结构及生长方法
CN105428481A (zh) * 2015-12-14 2016-03-23 厦门市三安光电科技有限公司 氮化物底层及其制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925753B2 (ja) * 1997-10-24 2007-06-06 ソニー株式会社 半導体素子およびその製造方法ならびに半導体発光素子
KR100304664B1 (ko) * 1999-02-05 2001-09-26 윤종용 GaN막 제조 방법
US6972382B2 (en) * 2003-07-24 2005-12-06 Motorola, Inc. Inverted microvia structure and method of manufacture
KR101094403B1 (ko) * 2004-01-29 2011-12-15 삼성코닝정밀소재 주식회사 휨이 감소된 사파이어/질화갈륨 적층체
CN101820041A (zh) * 2010-04-01 2010-09-01 晶能光电(江西)有限公司 降低硅衬底led外延应力的方法以及结构
CN102104060B (zh) * 2010-11-15 2013-03-20 王楚雯 一种半导体结构及其形成方法
JP5995302B2 (ja) * 2011-07-05 2016-09-21 パナソニック株式会社 窒化物半導体発光素子の製造方法
CN103117346B (zh) * 2013-02-01 2015-10-28 华灿光电股份有限公司 一种发光二极管芯片及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964382A (zh) * 2009-07-21 2011-02-02 展晶科技(深圳)有限公司 提高光萃取效率的半导体光电结构及其制造方法
CN102194930A (zh) * 2010-03-09 2011-09-21 Lg伊诺特有限公司 用于制造发光器件的基板和用于制造发光器件的方法
CN103262215A (zh) * 2010-12-16 2013-08-21 应用材料公司 具有物理气相沉积形成氮化铝缓冲层的氮化镓类发光二极管的制造
CN103608897A (zh) * 2011-05-20 2014-02-26 财团法人首尔大学校产学协力团 半导体薄膜结构以及其形成方法
CN102779914A (zh) * 2012-08-01 2012-11-14 厦门市三安光电科技有限公司 具有电流阻挡效应的垂直发光二极管及其制作方法
CN104037290A (zh) * 2014-05-23 2014-09-10 南昌大学 一种AlyInxGa1-x-yN薄膜的外延结构及生长方法
CN105428481A (zh) * 2015-12-14 2016-03-23 厦门市三安光电科技有限公司 氮化物底层及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850508A (zh) * 2020-07-22 2020-10-30 湘能华磊光电股份有限公司 一种降低接触电阻的led外延结构及其生长方法

Also Published As

Publication number Publication date
CN105428481A (zh) 2016-03-23
US20180122635A1 (en) 2018-05-03
CN105428481B (zh) 2018-03-16
US10431713B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
US7244628B2 (en) Method for fabricating semiconductor devices
JP4295669B2 (ja) 半導体素子の製造方法
CN101494267B (zh) 一种基于衬底剥离的氮化镓基发光器件的制作方法
US8030102B2 (en) LED units fabrication method
JP5187610B2 (ja) 窒化物半導体ウエハないし窒化物半導体装置及びその製造方法
TWI647335B (zh) 利用化學腐蝕的方法剝離生長襯底的方法
KR101300069B1 (ko) 질화물 반도체층을 포함하는 구조체, 질화물 반도체층을 포함하는 복합 기판, 및 이것들의 제조 방법
US9000464B2 (en) Semiconductor structure for substrate separation and method for manufacturing the same
US20110124139A1 (en) Method for manufacturing free-standing substrate and free-standing light-emitting device
US20120161151A1 (en) Solid state lighting devices and associated methods of manufacturing
TWI405257B (zh) 分離基板與半導體層的方法
US20080248633A1 (en) Method for Manufacturing Indium Gallium Aluminium Nitride Thin Film on Silicon Substrate
JP5979547B2 (ja) エピタキシャルウェハ及びその製造方法
WO2017101520A1 (zh) 氮化物底层及其制作方法
KR100705225B1 (ko) 수직형 발광소자의 제조방법
KR20080088278A (ko) 수직형 발광 다이오드 제조방법
CN111326611B (zh) 一种iii族氮化物半导体发光器件台面刻蚀方法
KR101245509B1 (ko) 다공성 기판의 제조 및 이에 의한 발광다이오드 제조 방법
KR20050062832A (ko) 발광 소자용 질화물 반도체 템플레이트 제조 방법
KR20120039324A (ko) 질화갈륨계 반도체 발광소자 및 그 제조방법
KR100619441B1 (ko) 기판제거가 용이한 질화갈륨 성장 방법
TWI297959B (zh)
JP2008010581A (ja) 半導体発光素子およびその製造方法
JP2004119964A (ja) 半導体発光素子の製造方法、半導体発光素子、集積型半導体発光装置の製造方法、集積型半導体発光装置、画像表示装置の製造方法、画像表示装置、照明装置の製造方法および照明装置
KR101012638B1 (ko) 수직형 질화물계 발광소자의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874580

Country of ref document: EP

Kind code of ref document: A1