WO2017094555A1 - Ledバックライトの検査方法 - Google Patents

Ledバックライトの検査方法 Download PDF

Info

Publication number
WO2017094555A1
WO2017094555A1 PCT/JP2016/084540 JP2016084540W WO2017094555A1 WO 2017094555 A1 WO2017094555 A1 WO 2017094555A1 JP 2016084540 W JP2016084540 W JP 2016084540W WO 2017094555 A1 WO2017094555 A1 WO 2017094555A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
backlight
inspection
terminal
led backlight
Prior art date
Application number
PCT/JP2016/084540
Other languages
English (en)
French (fr)
Inventor
三好 隆一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/764,610 priority Critical patent/US20190059145A1/en
Publication of WO2017094555A1 publication Critical patent/WO2017094555A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/44Testing lamps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0083Details of electrical connections of light sources to drivers, circuit boards, or the like
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/54Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a series array of LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/23Responsive to malfunctions or to light source life; for protection of two or more light sources connected in series
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines

Definitions

  • the present invention relates to an inspection method for a backlight provided in a display device, and more particularly to an inspection method for an LED backlight including a plurality of LEDs.
  • Non-light-emitting display devices such as liquid crystal display devices are provided with a backlight that irradiates light on the back of the display panel.
  • the backlight is configured using, for example, a plurality of LEDs (Light Emitting Diodes) and a light guide plate.
  • LEDs Light Emitting Diodes
  • a light guide plate an inspection method for an LED backlight including a plurality of LEDs will be examined.
  • the backlight is inspected.
  • the backlight is inspected by writing a video signal for white display on a liquid crystal panel, turning on the backlight with a predetermined luminance, and measuring the luminance of the display screen at that time.
  • Also known is a method of measuring the voltage and current in the backlight driving circuit when the backlight is turned on.
  • Patent Document 1 discloses a luminance level applied to a backlight of a liquid crystal display device in which a display failure has not occurred, and a luminance level applied to a backlight of a liquid crystal display device to be inspected. Describes a method for determining that a display failure has not occurred in the liquid crystal display device to be inspected when the difference between them is small.
  • Patent Document 2 discloses a method of generating an LED short signal by comparing a voltage of a certain node in an LED group and a voltage obtained by dividing a voltage across the LED group with respect to an LED group including a plurality of LEDs connected in series. Is described.
  • FIG. 14 is a diagram showing a lighting state of the LED backlight.
  • a plurality of LEDs (dot pattern portions) 91 are arranged along one side of the light guide plate 92.
  • the arrows shown in FIG. 14 indicate how the emitted light from the LED 91 propagates inside the light guide plate 92.
  • the abnormal backlight In the normal backlight (FIG. 14 (a)), all LEDs 91 are lit, whereas the abnormal backlight (FIG. 14 (b)) includes LEDs 93 (black areas) that are not lit. For this reason, a difference occurs in the brightness of the display screen between the normal backlight and the abnormal backlight.
  • the proportion of the luminance of the display screen occupied by lighting of one LED decreases. For this reason, even if there is an LED that is not lit, the luminance of the display screen may change only within the range of the variation in luminance when all the LEDs are lit. In this case, even if the brightness of the display screen is measured, the presence of an unlit LED cannot be detected.
  • the conventional inspection method for measuring the voltage and current in the backlight drive circuit requires the addition of an inspection terminal, so that there is a problem that it is difficult to implement or increases the cost when it is performed.
  • an object of the present invention is to provide a method for reliably and easily inspecting an LED backlight.
  • a first aspect of the present invention is a method for inspecting an LED backlight having a plurality of LED groups including a plurality of LEDs connected in series and provided in a display device, Each of the LED groups is driven at a constant current; Measuring an operating voltage of each of the LED groups; Determining that the LED backlight is normal if all of the operating voltage differences are less than a reference value, and otherwise determining that the LED backlight is abnormal.
  • the plurality of LEDs included in the LED group are connected in series so that the cathode terminal of the front-stage LED is connected to the anode terminal of the rear-stage LED.
  • the anode terminal of the first stage LED included in the LED group is connected to a first terminal common to all the LED groups,
  • the cathode terminal of the last-stage LED included in the LED group is connected to a second terminal provided for each LED group,
  • an inspection potential is applied to the first terminal, and a potential corresponding to a current flowing through the LED group is applied to the second terminal.
  • the determining step includes determining whether or not all the differences in the operating voltage are less than the reference value by determining whether or not a difference between the maximum value and the minimum value of the operating voltage is less than the reference value.
  • the display device is housed in a thermostatic chamber having a high temperature inside.
  • the method further includes the step of switching the amount of drive current used in the constant current driving step between a normal current and a minute current.
  • the display device includes the LED backlight and a liquid crystal panel.
  • the LED backlight has a configuration in which a plurality of LEDs are arranged along one or more sides of a light guide plate.
  • a ninth aspect of the present invention is an LED backlight inspection apparatus provided in a display device, having a plurality of LED groups including a plurality of LEDs connected in series.
  • a constant current controller for driving each LED group at a constant current;
  • a voltage measuring unit for measuring an operating voltage of each of the LED groups;
  • a determination unit that determines that the LED backlight is normal when all the operating voltage differences are less than a reference value; otherwise, the determination unit determines that the LED backlight is abnormal.
  • the first, second, or ninth aspect of the present invention by measuring the operating voltage of each LED group and determining whether the LED backlight is normal based on the difference in operating voltage of the LED group, Inspection of the LED backlight can be reliably performed. In addition, since the inspection is performed using the existing terminals provided for driving the LED group, it is possible to easily inspect the LED backlight without adding an inspection terminal to the LED group.
  • the LED backlight in which the anode side terminal of the LED group is connected to the same terminal can be reliably and easily inspected.
  • the fourth aspect of the present invention by comparing the difference between the maximum value and the minimum value of the operating voltage with the reference value, it is possible to easily determine whether or not all the operating voltage differences are less than the reference value. .
  • the fifth aspect of the present invention by inspecting the LED backlight in a high temperature state, it is possible to detect a loose contact failure of the wire bond wiring that is difficult to detect at room temperature.
  • the LED group is driven at a constant current using a minute current, thereby detecting an LED leakage failure that cannot be detected even when the LED group is driven at a constant current using a normal current. Can do.
  • the LED backlight provided in the liquid crystal display device can be reliably and easily inspected.
  • an LED backlight configured using a plurality of LEDs and a light guide plate.
  • the inspection method according to each embodiment of the present invention is a method for inspecting an LED backlight provided in a non-luminous display device.
  • the LED backlight has a plurality of LED groups including a plurality of LEDs connected in series.
  • an inspection method for the LED backlight provided in the liquid crystal display device will be described.
  • FIG. 1 is a block diagram showing a configuration of a liquid crystal display device to be inspected.
  • a liquid crystal display device 10 shown in FIG. 1 includes a liquid crystal panel 11, a display control circuit 12, a scanning line driving circuit 13, a data line driving circuit 14, an LED backlight 15, and a backlight driving circuit 16.
  • m, n, p, and q are integers of 2 or more.
  • the liquid crystal panel 11 includes m scanning lines G1 to Gm, n data lines S1 to Sn, and (m ⁇ n) pixel circuits P.
  • the scanning lines G1 to Gm are arranged in parallel to each other.
  • the data lines S1 to Sn are arranged in parallel to each other and orthogonal to the scanning lines G1 to Gm.
  • the scanning lines G1 to Gm and the data lines S1 to Sn intersect at (m ⁇ n) locations.
  • (M ⁇ n) pixel circuits P are arranged corresponding to (m ⁇ n) intersections.
  • the display control circuit 12 outputs a control signal C1 to the scanning line driving circuit 13, and outputs a control signal C2 and a video signal V1 to the data line driving circuit 14.
  • the scanning line driving circuit 13 sequentially selects one scanning line from the scanning lines G1 to Gm on the basis of the control signal C1, and supplies a write voltage (a write control transistor (see FIG. 5) in the pixel circuit P) to the selected scanning line. (Not shown) is applied).
  • n pixel circuits P connected to the selected scanning line are selected.
  • the data line driving circuit 14 applies n voltages corresponding to the video signal V1 to the data lines S1 to Sn based on the control signal C2. As a result, n voltages are respectively written in the selected n pixel circuits P.
  • the LED backlight 15 is disposed on the back side of the liquid crystal panel 11 and irradiates the back surface of the liquid crystal panel 11 with light.
  • the backlight drive circuit 16 drives the LED backlight 15. More specifically, the backlight drive circuit 16 drives the plurality of LEDs included in the LED backlight 15 at a constant current.
  • FIG. 2 is a diagram showing a physical configuration of the LED backlight 15.
  • the LED backlight 15 shown in FIG. 2 includes a plurality of LEDs 17 and a light guide plate 18.
  • the plurality of LEDs 17 are arranged along one side (the lower side in FIG. 2) of the light guide plate 18.
  • the plurality of LEDs 17 may be arranged along two opposing sides (for example, the upper side and the lower side) of the light guide plate 18, and the plurality of LEDs 17 are arranged two-dimensionally. Also good.
  • FIG. 3 is a diagram showing an electrical configuration of the LED backlight 15.
  • the plurality of LEDs 17 included in the LED backlight 15 are classified into a plurality of LED groups 19 each including a plurality of LEDs 17.
  • the plurality of LEDs 17 included in each LED group 19 are connected in series so that the cathode terminal of the preceding LED 17 is connected to the anode terminal of the next LED 17.
  • the LED backlight includes (p ⁇ q) LEDs
  • the (p ⁇ q) LEDs are classified into p LED groups q by q, and the q LEDs included in each LED group are Connected in series.
  • the 15 LEDs 17 are classified into 3 LED groups 19a to 19c, each having 5 LEDs.
  • the five LEDs 17 included in the LED group 19a are connected in series.
  • the LED backlight 15 has four terminals T0 to T4 for connection with the backlight driving circuit 16.
  • the anode terminals of the first-stage LEDs 17 included in the LED groups 19a to 19c are connected to a terminal T0 common to the LED groups 19a to 19c.
  • the cathode terminals of the last-stage LEDs 17 included in the LED groups 19a to 19c are connected to terminals T1 to T3 provided for the LED groups 19a to 19c, respectively.
  • the backlight drive circuit 16 drives the plurality of LEDs 17 included in the LED backlight 15 at a constant current. More specifically, the backlight drive circuit 16 applies a voltage between the terminals T0 and T1 for causing a drive current for light emission to flow through the LED group 19a. Therefore, the backlight driving circuit 16 applies a fixed potential to the terminal T0, and applies a potential corresponding to the current flowing from the terminal T1 (current flowing through the LED group 19a) to the terminal T1.
  • the backlight drive circuit 16 applies a potential corresponding to the current flowing from the terminal T2 (current flowing through the LED group 19b) to the terminal T2 in order to flow the same amount of drive current to the LED group 19b, and the LED group 19c. In order to cause the same amount of drive current to flow through, a potential corresponding to the current flowing from the terminal T3 (current flowing through the LED group 19c) is applied to the terminal T3.
  • FIG. 4 is a diagram for explaining the inspection method according to the first embodiment of the present invention.
  • the liquid crystal display device 10 is inspected using an inspection device 20 including a panel control unit 21, a constant current control unit 22, and a voltage measurement unit 23.
  • the panel control unit 21 is provided for inspecting the liquid crystal panel 11.
  • the panel control unit 21 writes an inspection video signal to the liquid crystal panel 11. The operator can check whether the liquid crystal panel 11 is normal or abnormal by visually confirming the display screen at that time (or by the inspection device 20 automatically acquiring and collating it with the correct screen).
  • FIG. 5 is a diagram for explaining the LED backlight inspection method according to the present embodiment.
  • FIG. 5 shows elements related to the inspection of the LED backlight 15 among the constituent elements of the inspection apparatus 20.
  • the inspection apparatus 20 includes a constant current control unit 22, a voltage measurement unit 23, a backlight inspection control unit 24, a power supply control unit 25, and a display unit 26.
  • the backlight inspection control unit 24 outputs to the power supply control unit 25 a control signal C3 indicating whether to supply a test voltage to the LED backlight 15.
  • the output terminal of the power supply control unit 25 is connected to the terminal T0 of the LED backlight 15.
  • the power supply control unit 25 switches whether or not to apply the inspection potential to the terminal T0 based on the control signal C3.
  • the constant current control unit 22 is connected to the terminals T1 to T3 of the LED backlight 15.
  • the constant current control unit 22 applies a potential corresponding to the current flowing from the terminal T1 to the terminal T1 in order to flow a normal current for inspection through the LED group 19a.
  • the constant current control unit 22 applies a potential corresponding to the current flowing from the terminal T2 to the terminal T2 in order to flow the same amount of normal current to the LED group 19b, and applies the same amount of normal current to the LED group 19c.
  • a potential corresponding to the current flowing from the terminal T3 is applied to the terminal T3.
  • FIG. 6 is a circuit diagram showing a part of the constant current control unit 22.
  • FIG. 6 shows a circuit corresponding to the LED group 19a.
  • the circuit shown in FIG. 6 includes a constant current source 31, an operational amplifier 32, an N-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 33, and resistors 34 and 35.
  • One end of the constant current source 31 and one end of the resistor 34 are connected to the non-inverting input terminal of the operational amplifier 32.
  • the drain terminal of the MOSFET 33 is connected to the terminal T 1 of the LED backlight 15.
  • the source terminal of the MOSFET 33 is connected to the inverting input terminal of the operational amplifier 32 and one end of the resistor 35.
  • the output terminal of the operational amplifier 32 is connected to the gate terminal of the MOSFET 33.
  • the other end of the constant current source 31 and the other ends of the resistors 34 and 35 are grounded.
  • the constant current control unit 22 includes a circuit having the same configuration as the circuit shown in FIG. 6 corresponding to the LED groups 19b and 19c.
  • the gate potential of the MOSFET 33 changes according to the difference between the amount of current flowing from the constant current source 31 and the amount of current flowing through the MOSFET 33 (the amount of current flowing through the LED group 19a).
  • the amount of current flowing through the MOSFET 33 varies according to the gate-source voltage of the MOSFET 33. Therefore, the amount of current flowing through the LED group 19a can be made equal to the amount of current flowing from the constant current source 31 using the circuit shown in FIG.
  • the amount of current flowing through the LED group 19b and the amount of current flowing through the LED group 19c can be made equal to the amount of current flowing from the constant current source 31.
  • the voltage measuring unit 23 is connected to the terminals T0 to T3 of the LED backlight 15, and measures the operating voltages Vf1 to Vf3 of the LED groups 19a to 19c. More specifically, the voltage measurement unit 23 measures the voltage between the terminals T0 and T1 as the operating voltage Vf1 of the LED group 19a, measures the voltage between the terminals T0 and T2 as the operating voltage Vf2 of the LED group 19b, The voltage between the terminals T0 and T3 is measured as the operating voltage Vf3 of the group 19c. The voltage measurement unit 23 outputs measurement data D1 including the measured operating voltages Vf1 to Vf3 to the backlight inspection control unit 24.
  • a reference value Vdlim1 (limit value) of the difference in operating voltage of the LED group 19 is determined in advance. Based on the measurement data D1, the backlight inspection control unit 24 determines that the LED backlight 15 is normal when all the operating voltage differences are less than the reference value Vdlim1, and otherwise (the difference in operating voltage difference). If any of them is greater than or equal to the reference value Vdlim1, the LED backlight 15 is determined to be abnormal. More specifically, the backlight inspection control unit 24 obtains the maximum value and the minimum value of the operating voltage, and when the difference between the maximum value and the minimum value of the operating voltage is less than the reference value Vdlim1, the LED backlight 15 is normal. In other cases (when the difference between the maximum value and the minimum value of the operating voltage is greater than or equal to the reference value Vdlim1), it is determined that the LED backlight 15 is abnormal.
  • the backlight inspection control unit 24 obtains the maximum value Vfmax and the minimum value Vfmin of the operating voltages Vf1 to Vf3, and determines that the LED backlight 15 is normal when Vfmax ⁇ Vfmin ⁇ Vdlim1, and Vfmax ⁇ When Vfmin ⁇ Vdlim1, it is determined that the LED backlight 15 is abnormal. As described above, the backlight inspection control unit 24 determines whether or not the difference between the maximum value Vfmax and the minimum value Vfmin of the operating voltages Vf1 to Vf3 is less than the reference value Vdlim1, so that all the differences of the operating voltages Vf1 to Vf3 are the reference. It is determined whether or not the value is less than Vdlim1. Thereby, it is possible to easily determine whether or not all the operating voltage differences are less than the reference value Vdlim1.
  • the display unit 26 displays a screen showing the determination result by the backlight inspection control unit 24.
  • the display unit 26 may display only whether the LED backlight 15 is normal or abnormal, may indicate which LED group 19 includes the abnormal LED 17, and the type of abnormality that has occurred in the LED 17 (open Whether it is defective or short-circuited) may be displayed. The operator can know the inspection result of the LED backlight 15 by looking at the screen displayed on the display unit 26.
  • FIG. 7 is a flowchart showing the LED backlight inspection method described above.
  • the inspection apparatus 20 drives each LED group 19 with a constant current using a normal current for inspection (step S101).
  • the inspection device 20 measures the operating voltage of each LED group 19 (step S102).
  • the inspection apparatus 20 determines whether or not all the operating voltage differences are less than the reference value (step S103). If Yes, the process proceeds to step S104. If No, the process proceeds to step S105. In the former case, the inspection apparatus 20 determines that the LED backlight 15 is normal (step S104). In the latter case, the inspection apparatus 20 determines that the LED backlight 15 is abnormal (step S105). Next, the inspection apparatus 20 displays the determination result (step S106).
  • the inspection apparatus 20 may indicate the determination result by the backlight inspection control unit 24 by another method.
  • the inspection apparatus 20 may include a green lamp that lights when the LED backlight 15 is normal, and a red lamp that lights when the LED backlight 15 is abnormal.
  • LEDs are classified into a plurality of ranks according to various performances (chromaticity, luminous intensity, forward voltage, etc.).
  • the operating voltage of the LED group decreases by the forward voltage of the LED. For this reason, when a short circuit failure occurs in a certain LED, the operating voltage of the LED group including the LED decreases by 3V.
  • the operating voltage of the LED group is greatly reduced from the maximum value of the variation amount of the operating voltage of the normal LED group. Therefore, it is possible to detect LED short-circuit defects using the LED backlight inspection method according to the present embodiment.
  • FIG. 8 is a diagram showing a difference in operating voltage of the LED group.
  • FIG. 8 shows the operation voltage of the LED group when the LED group includes only normal LEDs, when the LED group includes an LED having a short circuit failure, and when the LED group includes an LED having an open defect. The difference from the operating voltage of the normal LED group is described. As shown in FIG. 8, when the LED group includes only normal LEDs, the difference in operating voltage is close to zero. On the other hand, when the LED group includes an LED having a short circuit failure or an open failure, the difference in operating voltage is sufficiently larger than zero. There is a difference Vd1 shown in FIG. 8 between the difference in operating voltage when the LED group includes only normal LEDs and the difference in operating voltage when the LED group includes an LED having an open failure. Therefore, the LED backlight can be reliably inspected using the difference Vd1.
  • the conventional LED backlight inspection method a plurality of LEDs included in the LED group are individually inspected. For this reason, in the conventional inspection method, it is necessary to provide an inspection terminal connected to each terminal of the LED.
  • a method of drawing a connection wiring from the flexible printed circuit board on which the LED is mounted, or a method of providing a contact probe insertion hole on the side surface of the liquid crystal display device Must be used.
  • both methods have a problem in that a circuit may be short-circuited by a conductive foreign substance (such as a metal burr) attached to the terminal because the terminal is provided on the flexible printed board on which the LED is mounted. As described above, it is not realistic to provide an inspection terminal connected to each terminal of the LED for the inspection of the LED backlight.
  • the LED backlight inspection method the voltage between the existing terminals provided for driving the LED backlight is measured, so there is no need to newly provide an inspection terminal. . Therefore, the LED backlight can be easily inspected.
  • the LED backlight inspection method includes a plurality of LED groups 19 including a plurality of LEDs 17 connected in series, and the LED backlight provided in the display device (liquid crystal display device 10).
  • This is a method for inspecting the light 15.
  • the difference between the step of driving the LED groups 19a to 19c at a constant current, the step of measuring the operating voltages Vf1 to Vf3 of the LED groups 19a to 19c, respectively, and the operating voltages Vf1 to Vf3 is all A step of determining that the LED backlight 15 is normal when it is less than the reference value Vdlim1, and otherwise determining that the LED backlight 15 is abnormal.
  • the LED backlight inspection apparatus 20 includes a constant current control unit 22 that drives the LED groups 19a to 19c at a constant current, and voltages that measure the operating voltages Vf1 to Vf3 of the LED groups 19a to 19c, respectively. If the difference between the measurement unit 23 and the operating voltages Vf1 to Vf3 is all less than the reference value Vdlim1, the LED backlight 15 is determined to be normal, and otherwise, the LED backlight 15 is determined to be abnormal. Determination unit (backlight inspection control unit 24).
  • the plurality of LEDs 17 included in the LED group 19 are connected in series so that the cathode terminal of the LED 17 in the front stage is connected to the anode terminal of the LED 17 in the rear stage.
  • the LED backlight inspection method and inspection apparatus According to the LED backlight inspection method and inspection apparatus according to this embodiment, the operating voltage of the LED group 19 is measured, and the LED backlight 15 is normal or abnormal based on the difference in operating voltage of the LED groups 19a to 19c. Therefore, the LED backlight 15 can be reliably inspected. Further, since the inspection is performed using the existing terminals T0 to T3 provided for driving the LED groups 19a to 19c, the inspection of the LED backlight 15 is performed without adding an inspection terminal to the LED groups 19a to 19c. Can be easily performed.
  • the anode terminal of the first stage LED 17 included in the LED groups 19a to 19c is connected to the first terminal (terminal T0) common to all the LED groups 19a to 19c, and the final stage included in the LED groups 19a to 19c.
  • the cathode terminal of the LED 17 is connected to a second terminal (terminals T1 to T3) provided for each of the LED groups 19a to 19c.
  • an inspection potential is applied to the first terminal, and a potential corresponding to the current flowing through the LED groups 19a to 19c is applied to the second terminal.
  • the determining step it is determined whether or not the difference between the maximum value Vfmax and the minimum value Vfmin of the operating voltages Vf1 to Vf3 is less than the reference value Vdlim1, so that all the differences between the operating voltages Vf1 to Vf3 are less than the reference value Vdlim1. It is determined whether or not.
  • the difference between the maximum value Vfmax and the minimum value Vfmin of the operating voltage with the reference value Vdlim1 it is possible to easily determine whether or not all the operating voltage differences are less than the reference value Vdlim1.
  • the display device includes an LED backlight 15 and a liquid crystal panel 11, and the LED backlight 15 has a configuration in which a plurality of LEDs 17 are arranged along one or more sides of the light guide plate 18. Have. Therefore, the LED backlight 15 configured by using the plurality of LEDs 17 and the light guide plate 18 and provided in the liquid crystal display device 10 can be reliably and easily inspected.
  • FIG. 9 is a diagram for explaining an inspection method according to the second embodiment of the present invention.
  • the inspection method according to the present embodiment is performed in a state where the liquid crystal display device 10 is placed in a constant temperature bath 40.
  • the inside of the thermostatic chamber 40 is kept at a high temperature higher than normal temperature.
  • the inspection device 20 inspects the liquid crystal panel 11 and the LED backlight 15 in the same manner as in the first embodiment with respect to the liquid crystal display device 10 placed in a high temperature state.
  • the display device (the liquid crystal display device 10) is housed in the constant temperature bath 40 having a high temperature inside.
  • the LED backlight 15 By inspecting the LED backlight 15 in a high temperature state, it is possible to easily detect a loose contact defect of the wire bond wiring that is difficult to detect at normal temperature.
  • FIG. 10 is a diagram for explaining an inspection method according to the third embodiment of the present invention.
  • an inspection device 50 is used instead of the inspection device 20 according to the first embodiment.
  • the inspection device 50 is obtained by adding a current switching unit 51 to the inspection device 20 shown in FIG.
  • FIG. 11 is a diagram for explaining an LED backlight inspection method according to this embodiment.
  • the inspection device 50 includes a constant current control unit 22, a voltage measurement unit 23, a power supply control unit 25, a display unit 26, a current switching unit 51, and a backlight inspection control unit 52.
  • the same elements as those of the first embodiment among the components of the present embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the backlight inspection control unit 52 outputs a control signal C3 indicating whether or not to supply the inspection voltage to the LED backlight 15 to the power supply control unit 25, as in the first embodiment.
  • the backlight inspection control unit 52 outputs a control signal C4 indicating whether the current is a normal current or a minute current to the current switching unit 51. More specifically, the backlight inspection control unit 52 first outputs a control signal C4 indicating a minute current to the current switching unit 51, and then outputs a control signal C4 indicating a normal current.
  • the current switching unit 51 switches the amount of current used when the constant current control unit 22 drives the LED group 19 with constant current based on the control signal C4.
  • the constant current control unit 22 performs control so that a minute current flows through each LED group 19 when the control signal C4 indicates a minute current, and a normal current flows through each LED group 19 when the control signal C4 indicates a normal current. To control.
  • FIG. 12 is a circuit diagram showing a part of the constant current control unit 22 and the current switching unit 51.
  • FIG. 12 shows a circuit corresponding to the LED group 19a.
  • the broken line part is included in the current switching part 51, and the other part is included in the constant current control part 22.
  • the source terminal of the MOSFET 33 is connected to the inverting input terminal of the operational amplifier 32 and the first terminal of the switch 37.
  • a second terminal of the switch 37 is connected to one end of the resistor 35, and a third terminal of the switch 37 is connected to one end of the resistor 36.
  • the other end of the constant current source 31 and the other ends of the resistors 34 to 36 are grounded.
  • the resistance value of the resistor 35 is normally determined according to the amount of current, and the resistance value of the resistor 36 is determined according to the amount of minute current.
  • the resistance value of the resistor 36 is determined to be larger than the resistance value of the resistor 35. For example, when the amount of minute current is 1/60 of the normal current, the resistance value of the resistor 36 is determined to be 60 times the resistance value of the resistor 35.
  • the backlight inspection control unit 52 first outputs the control signal C4 indicating the minute current to the current switching unit 51. At this time, the first terminal and the third terminal of the switch 37 become conductive, the current passing through the MOSFET 33 flows through the resistor 36, and the LED backlight 15 is driven with a minute current.
  • the voltage measurement unit 23 measures the operating voltages Vfa to Vfc of the LED groups 19a to 19c driven using a minute current. In the inspection apparatus 50, a reference value Vdlim2 of a difference in operating voltage of the LED group 19 driven using a minute current is determined in advance.
  • the backlight inspection control unit 52 determines that the LED backlight 15 does not include the LED 17 having a leak failure when all the differences between the operating voltages Vfa to Vfc are less than the reference value Vdlim2, and otherwise, It is determined that the LED backlight 15 includes the LED 17 having a leak failure.
  • the backlight inspection control unit 52 outputs a control signal C4 indicating a normal current to the current switching unit 51.
  • the first terminal and the second terminal of the switch 37 become conductive, the current passing through the MOSFET 33 flows through the resistor 35, and the LED groups 19a to 19c are driven using the normal current.
  • the voltage measuring unit 23 measures the operating voltages Vf1 to Vf3 of the LED groups 19a to 19c driven using the normal current.
  • the backlight inspection control unit 52 determines that the LED backlight 15 does not include the LED 17 having the open defect or the short defect when the differences between the operating voltages Vf1 to Vf3 are all less than the reference value Vdlim1, and otherwise It is determined that the LED backlight 15 includes an LED 17 having an open failure or a short failure.
  • the backlight inspection control unit 52 determines that the LED backlight 15 is normal when it is determined that the LED backlight 15 does not include the defective LED 17 in the above two types of determinations, and otherwise.
  • the LED backlight 15 is determined to be abnormal.
  • the fluctuation of the operating voltage of the LED 17 due to the heat generated during the previous inspection is suppressed, and the influence of the previous inspection on the subsequent inspection is suppressed. Can be small.
  • the display unit 26 displays a screen showing the determination result by the backlight inspection control unit 52.
  • the display unit 26 may display only whether the LED backlight 15 is normal or abnormal, may indicate which LED group 19 includes the abnormal LED 17, and the type of abnormality that has occurred in the LED 17 (open Whether it is defective, shorted or leaked) may be displayed.
  • the operating voltage of the LED group decreases by 0.5V or more.
  • FIG. 13 is a diagram showing a difference in operating voltage of the LED group.
  • FIG. 13 is obtained by adding a difference between the operating voltage of the LED group including the LED having a leak failure and the operating voltage of the normal LED group to FIG.
  • the amount of driving current used in constant current driving is switched between a normal current and a minute current. Therefore, by driving the LED groups 19a to 19c at a constant current using a minute current, it is possible to detect a leakage failure of the LED 17 that cannot be detected even when the LED groups 19a to 19c are driven at a constant current using a normal current.
  • the LED backlight inspection method of the present invention the LED backlight can be reliably and easily inspected.
  • the LED backlight inspection method of the present invention has a feature that the LED backlight can be reliably and easily inspected, it can be used when inspecting various LED backlights.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Liquid Crystal (AREA)

Abstract

直列接続された複数のLED(17)を含むLED群(19)を複数有するLEDバックライト(15)を検査する。LED群(19a~19c)をそれぞれ定電流駆動し、LED群(19a~19c)の動作電圧(Vf1~Vf3)をそれぞれ測定する。動作電圧(Vf1~Vf3)の差がすべて基準値未満の場合にはLEDバックライト(15)は正常であると判定し、それ以外の場合にはLEDバックライト(15)は異常であると判定する。これにより、LED(17)のオープン不良とショート不良を検出する。定電流駆動で使用する駆動電流の量を微小電流に切り替えて、LED(17)のリーク不良を検出してもよい。このようにしてLEDバックライトを確実かつ容易に検査する。

Description

LEDバックライトの検査方法
 本発明は、表示装置に設けられるバックライトの検査方法に関し、特に、複数のLEDを含むLEDバックライトの検査方法に関する。
 液晶表示装置など非発光型の表示装置には、表示パネルの背面に光を照射するバックライトが設けられる。バックライトは、例えば、複数のLED(Light Emitting Diode:発光ダイオード)と導光板を用いて構成される。以下、複数のLEDを含むLEDバックライトの検査方法について検討する。
 液晶表示装置の製造工程では、バックライトの検査が行われる。一般に、バックライトの検査は、液晶パネルに白表示用の映像信号を書き込み、バックライトを所定の輝度で点灯させて、そのときの表示画面の輝度を測定することにより行われる。また、バックライトを点灯させたときのバックライト駆動回路内の電圧や電流を測定する方法も知られている。
 本願発明に関連して、特許文献1には、表示障害が発生していない液晶表示装置のバックライトに適用される輝度レベルと、検査対象の液晶表示装置のバックライトに適用される輝度レベルとの差が小さい場合に、検査対象の液晶表示装置に表示障害が発生していないと判定する方法が記載されている。特許文献2には、直列接続された複数のLEDを含むLED群について、LED群内のあるノードの電圧とLED群の両端電圧を分圧した電圧とを比較してLEDショート信号を生成する方法が記載されている。
日本国特開2011-158684号公報 日本国特開2012-160436号公報
 LEDバックライトの検査では、オープン不良またはショート不良のために点灯しないLEDや、リーク不良のためにごく低い輝度でしか点灯しないLEDなどが検出される。しかしながら、表示画面の輝度を測定する従来の検査方法では、このような異常なLEDを検出できず、液晶表示装置の出荷後にLEDが所望の輝度で点灯しないことがある。
 図14は、LEDバックライトの点灯状態を示す図である。図14に示すLEDバックライトでは、複数のLED(点模様部)91が、導光板92の一辺に沿って配置されている。図14に示す矢印は、LED91からの出射光が導光板92の内部を伝搬する様子を示す。正常なバックライト(図14(a))ではすべてのLED91が点灯するのに対して、異常なバックライト(図14(b))には点灯しないLED93(黒塗り部)が含まれる。このため、正常なバックライトと異常なバックライトでは、表示画面の輝度に差が生じる。
 しかしながら、バックライトに含まれるLEDの個数が多くなると、表示画面の輝度のうちで1個のLEDの点灯による輝度が占める割合は小さくなる。このため、点灯しないLEDが存在しても、表示画面の輝度がすべてのLEDが点灯したときの輝度のばらつき量の範囲内でしか変化しないことがある。この場合、表示画面の輝度を測定しても、点灯しないLEDの存在を検出することができない。
 また、バックライト駆動回路内の電圧や電流を測定する従来の検査方法には、検査用端子を追加する必要があるので、実施が困難であるか、実施するとコストが高くなるという問題がある。
 それ故に、本発明は、LEDバックライトを確実かつ容易に検査する方法を提供することを目的とする。
 本発明の第1の局面は、直列接続された複数のLEDを含むLED群を複数有し、表示装置に設けられたLEDバックライトの検査方法であって、
 前記LED群をそれぞれ定電流駆動するステップと、
 前記LED群の動作電圧をそれぞれ測定するステップと、
 前記動作電圧の差がすべて基準値未満の場合には前記LEDバックライトは正常であると判定し、それ以外の場合には前記LEDバックライトは異常であると判定するステップとを備える。
 本発明の第2の局面は、本発明の第1の局面において、
 前記LED群に含まれる複数のLEDは、前段のLEDのカソード端子が後段のLEDのアノード端子に接続されるように直列接続されることを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記LED群に含まれる初段のLEDのアノード端子は、すべての前記LED群に共通する第1端子に接続され、
 前記LED群に含まれる最終段のLEDのカソード端子は、前記LED群ごとに設けられた第2端子に接続され、
 前記定電流駆動するステップは、前記第1端子に検査用電位を印加し、前記第2端子に前記LED群を流れる電流に応じた電位を印加することを特徴とする。
 本発明の第4の局面は、本発明の第3の局面において、
 前記判定するステップは、前記動作電圧の最大値と最小値の差が前記基準値未満か否かを判定することにより、前記動作電圧の差がすべて前記基準値未満か否かを判定することを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 前記表示装置は内部を高温状態にした恒温槽に収納されていることを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 前記定電流駆動するステップで使用される駆動電流の量を通常電流と微小電流の間で切り替えるステップをさらに備える。
 本発明の第7の局面は、本発明の第1の局面において、
 前記表示装置は、前記LEDバックライトと液晶パネルとを有することを特徴とする。
 本発明の第8の局面は、本発明の第7の局面において、
 前記LEDバックライトは、導光板の1以上の辺に沿って複数のLEDを配置した構成を有することを特徴とする。
 本発明の第9の局面は、直列接続された複数のLEDを含むLED群を複数有し、表示装置に設けられたLEDバックライトの検査装置であって、
 前記LED群をそれぞれ定電流駆動する定電流制御部と、
 前記LED群の動作電圧をそれぞれ測定する電圧測定部と、
 前記動作電圧の差がすべて基準値未満の場合には前記LEDバックライトは正常であると判定し、それ以外の場合には前記LEDバックライトは異常であると判定する判定部とを備える。
 本発明の第1、第2または第9の局面によれば、LED群の動作電圧をそれぞれ測定し、LED群の動作電圧の差に基づきLEDバックライトが正常か否かを判定することにより、LEDバックライトの検査を確実に行うことができる。また、LED群を駆動するために設けられた既存の端子を用いて検査を行うので、LED群に検査用端子を追加することなく、LEDバックライトの検査を容易に行うことができる。
 本発明の第3の局面によれば、LED群のアノード側端子を同じ端子に接続したLEDバックライトを確実かつ容易に検査することができる。
 本発明の第4の局面によれば、動作電圧の最大値と最小値の差を基準値と比較することにより、動作電圧の差がすべて基準値未満か否かを容易に判定することができる。
 本発明の第5の局面によれば、LEDバックライトを高温状態で検査することにより、常温では検出しにくいワイヤボンド配線のルーズコンタクト不良を検出することができる。
 本発明の第6の局面によれば、微小電流を用いてLED群を定電流駆動することにより、通常電流を用いてLED群を定電流駆動しても検出できないLEDのリーク不良を検出することができる。
 本発明の第7の局面によれば、液晶表示装置に設けられたLEDバックライトを確実かつ容易に検査することができる。
 本発明の第8の局面によれば、複数のLEDと導光板を用いて構成されたLEDバックライトを確実かつ容易に検査することができる。
検査対象となる液晶表示装置の構成を示すブロック図である。 図1に示す液晶表示装置のLEDバックライトの物理的構成を示す図である。 図1に示す液晶表示装置のLEDバックライトの電気的構成を示す図である。 本発明の第1の実施形態に係る検査方法を説明するための図である。 第1の実施形態に係るLEDバックライトの検査方法を説明するための図である。 図5に示す検査装置の定電流制御部の一部を示す回路図である。 第1の実施形態に係るLEDバックライトの検査方法を示すフローチャートである。 LED群の動作電圧の差を示す図である。 本発明の第2の実施形態に係る検査方法を説明するための図である。 本発明の第3の実施形態に係る検査方法を説明するための図である。 第3の実施形態に係るLEDバックライトの検査方法を説明するための図である。 図11に示す検査装置の定電流制御部と電流切替部の一部を示す回路図である。 LED群の動作電圧の差を示す図である。 LEDバックライトの点灯状態を示す図である。
 以下、図面を参照して、本発明の実施形態に係るLEDバックライトの検査方法を説明する。本発明の各実施形態に係る検査方法は、非発光型の表示装置に設けられるLEDバックライトを検査する方法である。LEDバックライトは、直列接続された複数のLEDを含むLED群を複数有する。以下、液晶表示装置に設けられるLEDバックライトの検査方法について説明する。
 図1は、検査対象となる液晶表示装置の構成を示すブロック図である。図1に示す液晶表示装置10は、液晶パネル11、表示制御回路12、走査線駆動回路13、データ線駆動回路14、LEDバックライト15、および、バックライト駆動回路16を備えている。以下、m、n、pおよびqは2以上の整数であるとする。
 液晶パネル11は、m本の走査線G1~Gm、n本のデータ線S1~Sn、および、(m×n)個の画素回路Pを含んでいる。走査線G1~Gmは、互いに平行に配置される。データ線S1~Snは、互いに平行に、走査線G1~Gmと直交するように配置される。走査線G1~Gmとデータ線S1~Snは、(m×n)箇所で交差する。(m×n)個の画素回路Pは、(m×n)個の交差点に対応して配置される。
 表示制御回路12は、走査線駆動回路13に対して制御信号C1を出力し、データ線駆動回路14に対して制御信号C2と映像信号V1を出力する。走査線駆動回路13は、制御信号C1に基づき、走査線G1~Gmの中から1本の走査線を順に選択し、選択した走査線に書き込み用電圧(画素回路P内の書き込み制御トランジスタ(図示せず)がオン状態になる電圧)を印加する。これにより、選択された走査線に接続されたn個の画素回路Pが選択される。データ線駆動回路14は、制御信号C2に基づき、データ線S1~Snに対して映像信号V1に応じたn個の電圧を印加する。これにより、選択されたn個の画素回路Pにn個の電圧がそれぞれ書き込まれる。
 LEDバックライト15は、液晶パネル11の背面側に配置され、液晶パネル11の背面に光を照射する。バックライト駆動回路16は、LEDバックライト15を駆動する。より詳細には、バックライト駆動回路16は、LEDバックライト15に含まれる複数のLEDを定電流駆動する。
 図2は、LEDバックライト15の物理的構成を示す図である。図2に示すLEDバックライト15は、複数のLED17と導光板18とを含んでいる。複数のLED17は、導光板18の一辺(図2では下辺)に沿って配置される。なお、図2に示す配置に代えて、複数のLED17を導光板18の対向する2辺(例えば、上辺と下辺)に沿って配置してもよく、複数のLED17を2次元状に配置してもよい。
 図3は、LEDバックライト15の電気的構成を示す図である。図3に示すように、LEDバックライト15に含まれる複数のLED17は、それぞれが複数のLED17を含む複数のLED群19に分類される。各LED群19に含まれる複数のLED17は、前段のLED17のカソード端子が次段のLED17のアノード端子に接続されるように直列接続される。一般に、LEDバックライトが(p×q)個のLEDを含むとき、(p×q)個のLEDはq個ずつp個のLED群に分類され、各LED群に含まれるq個のLEDは直列接続される。
 図3には、p=3、q=5の場合のLEDバックライト15が記載されている。図3に示すLEDバックライト15では、15個のLED17は、5個ずつ3個のLED群19a~19cに分類される。LED群19aに含まれる5個のLED17は、直列接続される。LED群19b、19cについても、これと同様である。LEDバックライト15は、バックライト駆動回路16と接続するために4個の端子T0~T4を有する。LED群19a~19cに含まれる初段のLED17のアノード端子は、LED群19a~19cに共通する端子T0に接続される。LED群19a~19cに含まれる最終段のLED17のカソード端子は、LED群19a~19cごとに設けられた端子T1~T3にそれぞれ接続される。
 バックライト駆動回路16は、LEDバックライト15に含まれる複数のLED17を定電流駆動する。より詳細には、バックライト駆動回路16は、LED群19aに発光用の駆動電流を流すための電圧を端子T0、T1間に印加する。このためバックライト駆動回路16は、端子T0に固定電位を印加し、端子T1から流れる電流(LED群19aを流れる電流)に応じた電位を端子T1に印加する。また、バックライト駆動回路16は、LED群19bに同じ量の駆動電流を流すために、端子T2から流れる電流(LED群19bを流れる電流)に応じた電位を端子T2に印加し、LED群19cに同じ量の駆動電流を流すために、端子T3から流れる電流(LED群19cを流れる電流)に応じた電位を端子T3に印加する。
 (第1の実施形態)
 図4は、本発明の第1の実施形態に係る検査方法を説明するための図である。図4に示すように、液晶表示装置10は、パネル制御部21、定電流制御部22、および、電圧測定部23を含む検査装置20を用いて検査される。パネル制御部21は、液晶パネル11の検査のために設けられる。パネル制御部21は、液晶パネル11に検査用の映像信号を書き込む。そのときの表示画面を作業者が目視で確認する(あるいは、検査装置20が自動的に取得して正しい画面と照合する)ことにより、液晶パネル11が正常か異常かを検査することができる。
 以下、定電流制御部22と電圧測定部23を用いて、LEDバックライト15を検査する方法を説明する。図5は、本実施形態に係るLEDバックライトの検査方法を説明するための図である。図5には、検査装置20の構成要素のうち、LEDバックライト15の検査に関する要素が記載されている。図5に示すように、検査装置20は、定電流制御部22、電圧測定部23、バックライト検査制御部24、電源制御部25、および、表示部26を備えている。
 バックライト検査制御部24は、電源制御部25に対して、LEDバックライト15に検査用電圧を供給するか否かを示す制御信号C3を出力する。電源制御部25の出力端子は、LEDバックライト15の端子T0に接続される。電源制御部25は、制御信号C3に基づき、端子T0に検査用電位を印加するか否かを切り替える。
 定電流制御部22は、LEDバックライト15の端子T1~T3に接続される。定電流制御部22は、LED群19aに検査用の通常電流を流すために、端子T1から流れる電流に応じた電位を端子T1に印加する。同様に、定電流制御部22は、LED群19bに同じ量の通常電流を流すために、端子T2から流れる電流に応じた電位を端子T2に印加し、LED群19cに同じ量の通常電流を流すために、端子T3から流れる電流に応じた電位を端子T3に印加する。
 図6は、定電流制御部22の一部を示す回路図である。図6には、LED群19aに対応した回路が記載されている。図6に示す回路は、定電流源31、オペアンプ32、Nチャネル型MOSFET(Metal Oxide Semiconductor Field Effect Transistor :金属酸化物半導体電界効果トランジスタ)33、および、抵抗34、35を含んでいる。定電流源31の一端と抵抗34の一端は、オペアンプ32の非反転入力端子に接続される。MOSFET33のドレイン端子は、LEDバックライト15の端子T1に接続される。MOSFET33のソース端子は、オペアンプ32の反転入力端子と抵抗35の一端に接続される。オペアンプ32の出力端子は、MOSFET33のゲート端子に接続される。定電流源31の他端と抵抗34、35の他端は、接地される。定電流制御部22は、LED群19b、19cに対応して、図6に示す回路と同じ構成の回路を含んでいる。
 図6に示す回路では、MOSFET33のゲート電位は、定電流源31から流れる電流の量とMOSFET33を流れる電流の量(LED群19aを流れる電流の量)との差に応じて変化する。MOSFET33を流れる電流の量は、MOSFET33のゲート-ソース間電圧に応じて変化する。したがって、図6に示す回路を用いて、LED群19aを流れる電流の量を定電流源31から流れる電流の量に等しくすることができる。同様に、LED群19bを流れる電流の量、および、LED群19cを流れる電流の量を定電流源31から流れる電流の量に等しくすることができる。
 電圧測定部23は、LEDバックライト15の端子T0~T3に接続され、LED群19a~19cの動作電圧Vf1~Vf3を測定する。より詳細には、電圧測定部23は、LED群19aの動作電圧Vf1として端子T0、T1間の電圧を測定し、LED群19bの動作電圧Vf2として端子T0、T2間の電圧を測定し、LED群19cの動作電圧Vf3として端子T0、T3間の電圧を測定する。電圧測定部23は、測定した動作電圧Vf1~Vf3を含む測定データD1をバックライト検査制御部24に対して出力する。
 検査装置20では、LED群19の動作電圧の差の基準値Vdlim1(制限値)が予め決定されている。バックライト検査制御部24は、測定データD1に基づき、動作電圧の差がすべて基準値Vdlim1未満の場合にはLEDバックライト15は正常であると判定し、それ以外の場合(動作電圧の差のいずれかが基準値Vdlim1以上の場合)にはLEDバックライト15は異常であると判定する。より詳細には、バックライト検査制御部24は、動作電圧の最大値と最小値を求め、動作電圧の最大値と最小値の差が基準値Vdlim1未満の場合にはLEDバックライト15は正常であると判定し、それ以外の場合(動作電圧の最大値と最小値の差が基準値Vdlim1以上の場合)にはLEDバックライト15は異常であると判定する。
 p=3の場合、バックライト検査制御部24には3個の動作電圧Vf1~Vf3が入力される。この場合、バックライト検査制御部24は、動作電圧Vf1~Vf3の最大値Vfmaxと最小値Vfminを求め、Vfmax-Vfmin<Vdlim1の場合にはLEDバックライト15は正常であると判定し、Vfmax-Vfmin≧Vdlim1の場合にはLEDバックライト15は異常であると判定する。このようにバックライト検査制御部24は、動作電圧Vf1~Vf3の最大値Vfmaxと最小値Vfminの差が基準値Vdlim1未満か否かを判定することにより、動作電圧Vf1~Vf3の差がすべて基準値Vdlim1未満か否かを判定する。これにより、動作電圧の差がすべて基準値Vdlim1未満か否かを容易に判定することができる。
 表示部26は、バックライト検査制御部24による判定結果を示す画面を表示する。表示部26は、LEDバックライト15は正常か異常かだけを表示してもよく、いずれのLED群19が異常なLED17を含むかを表示してもよく、LED17に発生した異常の種類(オープン不良か、ショート不良か)を表示してもよい。作業者は、表示部26に表示された画面を見ることにより、LEDバックライト15の検査結果を知ることができる。
 以上に述べたLEDバックライトの検査方法をフローチャートで示すと、図7に示すようになる。図7に示すように、検査装置20は、検査用の通常電流を用いて、各LED群19を定電流駆動する(ステップS101)。次に、検査装置20は、各LED群19の動作電圧を測定する(ステップS102)。次に、検査装置20は、動作電圧の差がすべて基準値未満か否かを判定し(ステップS103)、Yesの場合にはステップS104へ、Noの場合にはステップS105へ進む。前者の場合、検査装置20は、LEDバックライト15は正常であると判定する(ステップS104)。後者の場合、検査装置20は、LEDバックライト15は異常であると判定する(ステップS105)。次に、検査装置20は、判定結果を表示する(ステップS106)。
 なお、検査装置20は、バックライト検査制御部24による判定結果を他の方法で示してもよい。例えば、検査装置20は、LEDバックライト15が正常のときに点灯する緑色のランプと、LEDバックライト15が異常のときに点灯する赤色のランプとを備えていてもよい。
 以下、本実施形態に係るLEDバックライトの検査方法を用いて、LEDのオープン不良とショート不良を検出できることを説明する。ここでは、各LED群は直列接続された10個のLEDを含み(q=10)、LEDの順方向電圧は3Vであるとする。
 LEDは、各種の性能(色度、光度、順方向電圧など)によって複数のランクに分類される。LED群は、同じランクに分類されたLEDを用いて構成される。順方向電圧の1ランクの幅は0.1~0.2Vであるので、1個のLED群に含まれるLEDの順方向電圧の差は最大で0.2Vである。したがって、正常なLED群の動作電圧の差は、q=10の場合、最大で0.2×10=2Vである。
 LEDでショート不良が発生した場合、LED群の動作電圧はLEDの順方向電圧分だけ低下する。このため、あるLEDでショート不良が発生した場合、そのLEDを含むLED群の動作電圧は3V低下する。一方、上述したように、正常なLED群の動作電圧のばらつき量の最大値は2Vである(q=10の場合)。LEDでショート不良が発生した場合、LED群の動作電圧は正常なLED群の動作電圧のばらつき量の最大値よりも大きく低下する。したがって、本実施形態に係るLEDバックライトの検査方法を用いて、LEDのショート不良を検出することができる。
 LEDには、静電気対策用のツェナーダイオードを内蔵するものと、ツェナーダイオードを内蔵しないものとがある。ツェナーダイオードを内蔵しないLEDでオープン不良が発生した場合、LED群に電流は流れない。このため、LED群の動作電圧は、理論上は無限大、実際には電圧の制限値になる。ツェナーダイオードを内蔵しないLEDでオープン不良が発生した場合、LED群の動作電圧は正常なLED群の動作電圧のばらつき量の最大値よりも大きく上昇する。したがって、本実施形態に係るLEDバックライトの検査方法を用いて、ツェナーダイオードを内蔵しないLEDのオープン不良を検出することができる。
 ツェナーダイオードを内蔵するLEDでオープン不良が発生した場合、ツェナーダイオードには逆電流が流れるので、LED群に電流が流れる。この場合、不良LEDの両端電圧は、ツェナーダイオードの降伏電圧(ここでは6Vとする)に等しくなる。このため、LED群の動作電圧は、ツェナーダイオードの降伏電圧と正常なLEDの順方向電圧との差(3V)だけ高くなる。ツェナーダイオードを内蔵するLEDでオープン不良が発生した場合、LED群の動作電圧は正常なLED群の動作電圧のばらつき量の最大値よりも大きく上昇する。したがって、本実施形態に係るLEDバックライトの検査方法を用いて、ツェナーダイオードを内蔵するLEDのオープン不良を検出することができる。
 図8は、LED群の動作電圧の差を示す図である。図8には、LED群が正常なLEDだけを含む場合、LED群がショート不良を有するLEDを含む場合、および、LED群がオープン不良を有するLEDを含む場合について、当該LED群の動作電圧と正常なLED群の動作電圧との差が記載されている。図8に示すように、LED群が正常なLEDだけを含む場合、動作電圧の差は0に近い。これに対して、LED群がショート不良またはオープン不良を有するLEDを含む場合、動作電圧の差は0よりも十分に大きい。LED群が正常なLEDだけを含む場合の動作電圧の差と、LED群がオープン不良を有するLEDを含む場合の動作電圧の差との間には、図8に示す差Vd1がある。したがって、差Vd1を用いて、LEDバックライトの検査を確実に行うことができる。
 また、従来のLEDバックライトの検査方法では、LED群に含まれる複数のLEDを個別に検査する。このため、従来の検査方法では、LEDの各端子に接続する検査用端子を設ける必要がある。液晶表示装置に組み込んだ後でLEDバックライトを検査するためには、LEDを実装したフレキシブルプリント基板から接続用の配線を引き出す方法や、液晶表示装置の側面にコンタクトプローブ挿入用の穴を設ける方法を用いる必要がある。
 しかしながら、前者の方法には実施が困難であるという問題があり、後者の方法には設けられた穴から異物が侵入するという問題がある。また、どちらの方法にも、LEDを実装したフレキシブルプリント基板に端子を設けるので、端子に付随する導電性の異物(金属バリなど)によって回路が短絡する可能性があるという問題がある。このように、LEDバックライトの検査のために、LEDの各端子に接続する検査用端子を設けることは現実的ではない。
 これに対して、本実施形態に係るLEDバックライトの検査方法では、LEDバックライトを駆動するために設けられた既存の端子間の電圧を測定するので、検査用端子を新たに設ける必要がない。したがって、LEDバックライトを容易に検査することができる。
 以上に示すように、本実施形態に係るLEDバックライトの検査方法は、直列接続された複数のLED17を含むLED群19を複数有し、表示装置(液晶表示装置10)に設けられたLEDバックライト15の検査方法であって、LED群19a~19cをそれぞれ定電流駆動するステップと、LED群19a~19cの動作電圧Vf1~Vf3をそれぞれ測定するステップと、動作電圧Vf1~Vf3の差がすべて基準値Vdlim1未満の場合にはLEDバックライト15は正常であると判定し、それ以外の場合にはLEDバックライト15は異常であると判定するステップとを備えている。
 また、本実施形態に係るLEDバックライトの検査装置20は、LED群19a~19cをそれぞれ定電流駆動する定電流制御部22と、LED群19a~19cの動作電圧Vf1~Vf3をそれぞれ測定する電圧測定部23と、動作電圧Vf1~Vf3の差がすべて基準値Vdlim1未満の場合にはLEDバックライト15は正常であると判定し、それ以外の場合にはLEDバックライト15は異常であると判定する判定部(バックライト検査制御部24)とを備えている。また、LED群19に含まれる複数のLED17は、前段のLED17のカソード端子が後段のLED17のアノード端子に接続されるように直列接続される。
 したがって、本実施形態に係るLEDバックライトの検査方法および検査装置によれば、LED群19の動作電圧を測定し、LED群19a~19cの動作電圧の差に基づきLEDバックライト15が正常か異常かを判定することにより、LEDバックライト15の検査を確実に行うことができる。また、LED群19a~19cを駆動するために設けられた既存の端子T0~T3を用いて検査を行うので、LED群19a~19cに検査用端子を追加することなく、LEDバックライト15の検査を容易に行うことができる。
 また、LED群19a~19cに含まれる初段のLED17のアノード端子は、すべてのLED群19a~19cに共通する第1端子(端子T0)に接続され、LED群19a~19cに含まれる最終段のLED17のカソード端子は、LED群19a~19cごとに設けられた第2端子(端子T1~T3)に接続される。定電流駆動するステップは、第1端子に検査用電位を印加し、第2端子にLED群19a~19cを流れる電流に応じた電位を印加する。これにより、LED群19a~19cのアノード側端子を同じ端子に接続したLEDバックライト15を確実かつ容易に検査することができる。
 また、判定するステップは、動作電圧Vf1~Vf3の最大値Vfmaxと最小値Vfminとの差が基準値Vdlim1未満か否かを判定することにより、動作電圧Vf1~Vf3の差がすべて基準値Vdlim1未満か否かを判定する。このように動作電圧の最大値Vfmaxと最小値Vfminの差を基準値Vdlim1と比較することにより、動作電圧の差がすべて基準値Vdlim1未満か否かを容易に判定することができる。
 また、表示装置(液晶表示装置10)は、LEDバックライト15と液晶パネル11とを有し、LEDバックライト15は、導光板18の1以上の辺に沿って複数のLED17を配置した構成を有する。したがって、複数のLED17と導光板18を用いて構成され、液晶表示装置10に設けられたLEDバックライト15を確実かつ容易に検査することができる。
 (第2の実施形態)
 図9は、本発明の第2の実施形態に係る検査方法を説明するための図である。図9に示すように、本実施形態に係る検査方法は、液晶表示装置10を恒温槽40に入れた状態で行われる。恒温槽40の内部は、常温よりも高い高温状態に保たれる。検査装置20は、高温状態に置かれた液晶表示装置10に対して、第1の実施形態と同様に、液晶パネル11の検査とLEDバックライト15の検査を行う。
 液晶表示装置10を高温状態に置いたとき、液晶表示装置10に含まれる各種の金属部分は膨張する。このときLEDバックライト15内のLED17を構成する樹脂部も膨張し、これに伴いワイヤボンド配線を剥がす方向に応力が発生するので、ワイヤボンド配線のルーズコンタクト不良が発生しやすくなる。したがって、常温では検出しにくいワイヤボンド配線のルーズコンタクト不良を容易に検出することができる。
 以上に示すように、本実施形態に係るLEDバックライトの検査方法では、表示装置(液晶表示装置10)は内部を高温状態にした恒温槽40に収納されている。LEDバックライト15を高温状態で検査することにより、常温では検出しにくいワイヤボンド配線のルーズコンタクト不良を容易に検出することができる。
 (第3の実施形態)
 図10は、本発明の第3の実施形態に係る検査方法を説明するための図である。図10に示すように、本実施形態に係る検査方法では、第1の実施形態に係る検査装置20に代えて、検査装置50が用いられる。検査装置50は、図5に示す検査装置20に電流切替部51を追加したものである。
 図11は、本実施形態に係るLEDバックライトの検査方法を説明するための図である。図11に示すように、検査装置50は、定電流制御部22、電圧測定部23、電源制御部25、表示部26、電流切替部51、および、バックライト検査制御部52を備えている。以下、本実施形態の構成要素のうち第1の実施形態と同じ要素については、同じ参照符号を付して説明を省略する。
 バックライト検査制御部52は、第1の実施形態と同様に、電源制御部25に対して、LEDバックライト15に検査用電圧を供給するか否かを示す制御信号C3を出力する。これに加えて、バックライト検査制御部52は、電流切替部51に対して、通常電流か微小電流かを示す制御信号C4を出力する。より詳細には、バックライト検査制御部52は、電流切替部51に対して、まず微小電流を示す制御信号C4を出力し、次に通常電流を示す制御信号C4を出力する。電流切替部51は、制御信号C4に基づき、定電流制御部22がLED群19を定電流駆動するときに使用する電流の量を切り替える。定電流制御部22は、制御信号C4が微小電流を示すときには、各LED群19に微小電流が流れるように制御し、制御信号C4が通常電流を示すときには、各LED群19に通常電流が流れるように制御する。
 図12は、定電流制御部22と電流切替部51の一部を示す回路図である。図12には、LED群19aに対応した回路が記載されている。図12に示す回路のうち、破線部は電流切替部51に含まれ、それ以外の部分は定電流制御部22に含まれる。図12に示す回路では、MOSFET33のソース端子は、オペアンプ32の反転入力端子とスイッチ37の第1端子に接続される。スイッチ37の第2端子は抵抗35の一端に接続され、スイッチ37の第3端子は抵抗36の一端に接続される。定電流源31の他端と抵抗34~36の他端は、接地される。
 抵抗35の抵抗値は通常電流の量に応じて決定され、抵抗36の抵抗値は微小電流の量に応じて決定される。抵抗36の抵抗値は、抵抗35の抵抗値よりも大きい値に決定される。例えば、微小電流の量が通常電流の1/60である場合、抵抗36の抵抗値は抵抗35の抵抗値の60倍に決定される。
 上述したように、バックライト検査制御部52は、電流切替部51に対して、まず微小電流を示す制御信号C4を出力する。このとき、スイッチ37の第1端子と第3端子が導通し、MOSFET33を通過した電流は抵抗36を流れ、LEDバックライト15は微小電流で駆動される。電圧測定部23は、微小電流を用いて駆動されたLED群19a~19cの動作電圧Vfa~Vfcを測定する。検査装置50では、微小電流を用いて駆動されたLED群19の動作電圧の差の基準値Vdlim2が予め決定されている。バックライト検査制御部52は、動作電圧Vfa~Vfcの差がすべて基準値Vdlim2未満の場合には、LEDバックライト15はリーク不良を有するLED17を含まないと判定し、それ以外の場合には、LEDバックライト15はリーク不良を有するLED17を含むと判定する。
 次に、バックライト検査制御部52は、電流切替部51に対して、通常電流を示す制御信号C4を出力する。このとき、スイッチ37の第1端子と第2端子が導通し、MOSFET33を通過した電流は抵抗35を流れ、LED群19a~19cは通常電流を用いて駆動される。電圧測定部23は、通常電流を用いて駆動されたLED群19a~19cの動作電圧Vf1~Vf3を測定する。バックライト検査制御部52は、動作電圧Vf1~Vf3の差がすべて基準値Vdlim1未満の場合には、LEDバックライト15はオープン不良またはショート不良を有するLED17を含まないと判定し、それ以外の場合には、LEDバックライト15はオープン不良またはショート不良を有するLED17を含むと判定する。
 バックライト検査制御部52は、上記2種類の判定でLEDバックライト15は不良のLED17を含まないと判定した場合には、LEDバックライト15は正常であると判定し、それ以外の場合には、LEDバックライト15は異常であると判定する。このように微小電流を用いた検査の後に通常電流を用いた検査を行うことにより、先の検査時の発熱によるLED17の動作電圧の変動を抑制し、先の検査が後の検査に及ぼす影響を小さくすることができる。
 表示部26は、バックライト検査制御部52による判定結果を示す画面を表示する。表示部26は、LEDバックライト15は正常か異常かだけを表示してもよく、いずれのLED群19が異常なLED17を含むかを表示してもよく、LED17に発生した異常の種類(オープン不良か、ショート不良か、リーク不良か)を表示してもよい。
 以下、本実施形態に係るLEDバックライトの検査方法に含まれる微小電流を用いた検査によって、LEDのリーク不良を検出できることを説明する。ここでは、第1の実施形態と同様に、各LED群は直列接続された10個のLEDを含み(q=10)、LEDの順方向電圧は3Vであるとする。また、微小電流は1mAの電流であり、1mAの電流が流れるときのLEDの順方向電圧は2.5Vであり、この順方向電圧のばらつきの最大値は0.03Vであるとする。さらに、LEDでリーク不良が発生した場合、1mAの電流が流れるときのLEDの順方向電圧は2V以下であるとする。
 LEDでリーク不良が発生した場合、LED群の動作電圧は0.5V以上低下する。一方、1mAの電流が流れるときの正常なLED群の動作電圧の差は、q=10の場合、最大で0.03×10=0.3Vである。LEDでリーク不良が発生した場合、LED群の動作電圧は正常なLED群の動作電圧のばらつき量の最大値よりも大きく低下する。したがって、微小電流を用いた検査によって、LEDのリーク不良を検出することができる。
 図13は、LED群の動作電圧の差を示す図である。図13は、図8に対して、リーク不良を有するLEDを含むLED群の動作電圧と正常なLED群の動作電圧との差を追加したものである。LED群が正常なLEDだけを含む場合の動作電圧の差と、LED群がリーク不良を有するLEDを含む場合の動作電圧の差との間には、図13に示す差Vd2がある。したがって、差Vd2を用いて、LEDバックライトのリーク不良の検査を確実に行うことができる。
 以上に示すように、本実施形態に係るLEDバックライトの検査方法では、定電流駆動で使用する駆動電流の量を通常電流と微小電流の間で切り替える。したがって、微小電流を用いてLED群19a~19cを定電流駆動することにより、通常電流を用いてLED群19a~19cを定電流駆動しても検出できないLED17のリーク不良を検出することができる。
 以上に示すように、本発明のLEDバックライトの検査方法によれば、LEDバックライトを確実かつ容易に検査することができる。
 なお、本願は、2015年11月30日に出願された「LEDバックライトの検査方法」という名称の日本国特願2015-232682号に基づく優先権を主張する出願であり、この出願の内容は引用することによって本願の中に含まれる。
 本発明のLEDバックライトの検査方法は、LEDバックライトを確実かつ容易に検査できるという特徴を有するので、各種のLEDバックライトを検査するときに利用することができる。
 10…液晶表示装置
 11…液晶パネル
 15…LEDバックライト
 17…LED
 19…LED群
 20、50…検査装置
 21…パネル制御部
 22…定電流制御部
 23…電圧測定部
 24、52…バックライト検査制御部
 40…恒温槽
 51…電流切替部

Claims (9)

  1.  直列接続された複数のLEDを含むLED群を複数有し、表示装置に設けられたLEDバックライトの検査方法であって、
     前記LED群をそれぞれ定電流駆動するステップと、
     前記LED群の動作電圧をそれぞれ測定するステップと、
     前記動作電圧の差がすべて基準値未満の場合には前記LEDバックライトは正常であると判定し、それ以外の場合には前記LEDバックライトは異常であると判定するステップとを備えた、検査方法。
  2.  前記LED群に含まれる複数のLEDは、前段のLEDのカソード端子が後段のLEDのアノード端子に接続されるように直列接続されることを特徴とする、請求項1に記載の検査方法。
  3.  前記LED群に含まれる初段のLEDのアノード端子は、すべての前記LED群に共通する第1端子に接続され、
     前記LED群に含まれる最終段のLEDのカソード端子は、前記LED群ごとに設けられた第2端子に接続され、
     前記定電流駆動するステップは、前記第1端子に検査用電位を印加し、前記第2端子に前記LED群を流れる電流に応じた電位を印加することを特徴とする、請求項2に記載の検査方法。
  4.  前記判定するステップは、前記動作電圧の最大値と最小値の差が前記基準値未満か否かを判定することにより、前記動作電圧の差がすべて前記基準値未満か否かを判定することを特徴とする、請求項3に記載の検査方法。
  5.  前記表示装置は内部を高温状態にした恒温槽に収納されていることを特徴とする、請求項1に記載の検査方法。
  6.  前記定電流駆動するステップで使用される駆動電流の量を通常電流と微小電流の間で切り替えるステップをさらに備えた、請求項1に記載の検査方法。
  7.  前記表示装置は、前記LEDバックライトと液晶パネルとを有することを特徴とする、請求項1に記載の検査方法。
  8.  前記LEDバックライトは、導光板の1以上の辺に沿って複数のLEDを配置した構成を有することを特徴とする、請求項7に記載の検査方法。
  9.  直列接続された複数のLEDを含むLED群を複数有し、表示装置に設けられたLEDバックライトの検査装置であって、
     前記LED群をそれぞれ定電流駆動する定電流制御部と、
     前記LED群の動作電圧をそれぞれ測定する電圧測定部と、
     前記動作電圧の差がすべて基準値未満の場合には前記LEDバックライトは正常であると判定し、それ以外の場合には前記LEDバックライトは異常であると判定する判定部とを備えた、検査装置。
PCT/JP2016/084540 2015-11-30 2016-11-22 Ledバックライトの検査方法 WO2017094555A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/764,610 US20190059145A1 (en) 2015-11-30 2016-11-22 Method for testing led backlight

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-232682 2015-11-30
JP2015232682 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094555A1 true WO2017094555A1 (ja) 2017-06-08

Family

ID=58797187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084540 WO2017094555A1 (ja) 2015-11-30 2016-11-22 Ledバックライトの検査方法

Country Status (2)

Country Link
US (1) US20190059145A1 (ja)
WO (1) WO2017094555A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6513298B2 (ja) * 2016-09-16 2019-05-15 三菱電機株式会社 制御試験装置及び制御試験方法
KR20210103043A (ko) * 2020-02-12 2021-08-23 삼성디스플레이 주식회사 전원 전압 생성 장치, 이의 제어 방법 및 이를 포함하는 표시 장치
TWI768667B (zh) * 2021-01-20 2022-06-21 緯創資通股份有限公司 直下式背光發光二極體顯示器與發光控制方法
JP2022123997A (ja) * 2021-02-15 2022-08-25 セイコーエプソン株式会社 電気光学装置用基板、電気光学装置、電子機器、電気光学装置の製造方法、および検査回路
CN112881897A (zh) * 2021-02-23 2021-06-01 深圳酷赛通信科技有限公司 一种电子设备的背光测试方法及其系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011006A1 (ja) * 2003-07-28 2005-02-03 Nichia Corporation 発光装置、led照明、led発光装置及び発光装置の制御方法
JP2007200610A (ja) * 2006-01-24 2007-08-09 Koito Mfg Co Ltd 車両用灯具の点灯制御装置
JP2013021117A (ja) * 2011-07-11 2013-01-31 Rohm Co Ltd Led駆動装置、照明装置、液晶表示装置
JP2014203524A (ja) * 2013-04-01 2014-10-27 シャープ株式会社 発光素子駆動装置
JP2014220200A (ja) * 2013-05-10 2014-11-20 キヤノン株式会社 照明装置及びその制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2466439C2 (ru) * 2008-03-28 2012-11-10 Шарп Кабусики Кайся Модуль фоновой подсветки и жидкокристаллическое устройство отображения
JP2010287601A (ja) * 2009-06-09 2010-12-24 Panasonic Corp 発光素子駆動装置
KR101182584B1 (ko) * 2010-11-16 2012-09-18 삼성전자주식회사 Led 패키지의 제조 장치 및 제조 방법
JP2016009537A (ja) * 2014-06-23 2016-01-18 三菱電機株式会社 光源制御装置および光源制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011006A1 (ja) * 2003-07-28 2005-02-03 Nichia Corporation 発光装置、led照明、led発光装置及び発光装置の制御方法
JP2007200610A (ja) * 2006-01-24 2007-08-09 Koito Mfg Co Ltd 車両用灯具の点灯制御装置
JP2013021117A (ja) * 2011-07-11 2013-01-31 Rohm Co Ltd Led駆動装置、照明装置、液晶表示装置
JP2014203524A (ja) * 2013-04-01 2014-10-27 シャープ株式会社 発光素子駆動装置
JP2014220200A (ja) * 2013-05-10 2014-11-20 キヤノン株式会社 照明装置及びその制御方法

Also Published As

Publication number Publication date
US20190059145A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2017094555A1 (ja) Ledバックライトの検査方法
JP5785322B2 (ja) Esd試験検査装置およびesd試験検査方法
KR19990083648A (ko) 전광 표시 장치의 고장 검출 회로 및 그를 이용한 표시 상태 검출 방법
TW201409044A (zh) 顯示面板的檢測電路
CN103309065A (zh) 显示面板的测试线路及其测试方法
JP5899532B2 (ja) アクティブマトリクス基板
CN111986597A (zh) 显示面板、显示面板的检测方法和显示装置
KR20080113987A (ko) 실시간으로 반도체 소자의 불량 여부를 검사할 수 있는고온 역바이어스 테스트 장비
CN113066410B (zh) 线路检测设备及其线路检测方法
KR100662994B1 (ko) 유기 발광 표시장치 및 모기판과 그 검사방법
KR20090067627A (ko) 액정표시장치용 검사장치 및 그 제어방법
JP2010098209A (ja) 破損発光素子検出システム
KR101102603B1 (ko) 릴레이소자 구동회로의 검사장치
KR20080083960A (ko) 평판 표시장치와 이의 검사방법 및 제조방법
JP2012173598A (ja) 液晶表示装置
KR101065416B1 (ko) 원장 검사 장치 및 그 검사 방법
CN115938255A (zh) 显示检测装置、检测方法及检测系统
US9761162B2 (en) Array substrate for display panel and method for inspecting array substrate for display panel
JPH10246748A (ja) 配線又はパターンの検査装置
KR101007142B1 (ko) Led 모듈의 쇼트 검사 장치
KR20070079181A (ko) 액정 표시 장치의 테스트용 전압 제공 장치 및 액정 표시장치의 테스트 시스템
JP2005003606A (ja) 表示パネルの検査装置
KR100692808B1 (ko) 유기 전계 발광 디스플레이의 전류 편차 검사 방법
KR200425358Y1 (ko) 냉음극 형광램프용 드라이브 모듈의 테스트설비
KR20140051002A (ko) 표시 패널의 검사 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP