WO2017092405A1 - 移动目标状态监测方法、装置及其车辆快速检查系统 - Google Patents

移动目标状态监测方法、装置及其车辆快速检查系统 Download PDF

Info

Publication number
WO2017092405A1
WO2017092405A1 PCT/CN2016/095680 CN2016095680W WO2017092405A1 WO 2017092405 A1 WO2017092405 A1 WO 2017092405A1 CN 2016095680 W CN2016095680 W CN 2016095680W WO 2017092405 A1 WO2017092405 A1 WO 2017092405A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving target
moving
laser scanner
distance
laser
Prior art date
Application number
PCT/CN2016/095680
Other languages
English (en)
French (fr)
Inventor
涂俊杰
许艳伟
喻卫丰
王永明
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to EA201792272A priority Critical patent/EA037197B1/ru
Publication of WO2017092405A1 publication Critical patent/WO2017092405A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/68Devices characterised by the determination of the time taken to traverse a fixed distance using optical means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01V5/22
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission

Definitions

  • the invention relates to a mobile target state monitoring technology, in particular to a laser scanner based moving target state monitoring method and device, and a vehicle quick inspection system therewith.
  • a speed sensor such as a speed measuring radar is usually used.
  • the speed measuring radar measures the moving target at a low speed (for example, less than 5 km/h)
  • the measurement accuracy cannot be guaranteed, and there are limitations in application.
  • the speed of the speed measuring radar equipment is high, the installation and commissioning and calibration costs are high, and it is not economical and maintainable.
  • a plurality of sets of photoelectric switches or light curtains, a sense coil, and the like are usually installed in the detection passage to detect the traveling state of the vehicle to be inspected.
  • the photoelectric switch or the light curtain is used for judgment, the position and speed of the vehicle to be inspected cannot be accurately measured, and the misjudgment often occurs when the timing of the radiation beam is emitted, which causes the safety of the driver. Great hidden dangers.
  • the present invention provides a moving target state monitoring method and apparatus based on a laser scanner and a vehicle rapid inspection system including the same.
  • An aspect of the present invention provides a moving target state monitoring apparatus, including: a laser scanner for monitoring at least one moving target entering a monitoring area, and transmitting a plurality of moving targets to the at least one moving target at a preset scanning frequency a laser beam of different angles; and a processing unit for determining, for each of the moving targets: at least one fixed point on the moving target; receiving the said moving target detected by the laser scanner at different times a first distance between the at least one fixed point and the emission position of the plurality of laser beams and an emission angle of the laser beam corresponding thereto; and determining and outputting according to the first distance and the emission angle of the laser beam corresponding thereto
  • the moving target is at a relative position from the laser scanner at the different times.
  • the processing unit is further configured to, for each of the moving targets, different time intervals or different moving targets according to the determined relative position of the moving target distance to the laser scanner
  • the displacement interval outputs the current relative position of the moving target to the laser scanner.
  • time interval or the displacement interval is smaller as the moving target moves toward the laser scanner and its closer to the relative position of the laser scanner.
  • the processing unit is further configured to determine, for each of the moving targets, a moving speed of the moving target according to the first distance and a launch angle of a laser beam corresponding thereto.
  • the at least one fixed point comprises a plurality
  • determining the moving speed of the moving target according to the first distance and the emission angle of the laser beam corresponding thereto comprises: according to the moving target And obtaining, by the plurality of fixed points, different first distances between the transmitting positions of the plurality of laser beams at the same time, obtaining a second distance of the moving target at the time; according to the moving target at the different time The second distance determines the moving speed of the moving target.
  • processing unit obtains the second distance by averaging the different first distances.
  • the processing unit is further configured to determine, for each of the moving targets, a moving direction of the current moment of the moving target.
  • the processing unit determines a moving direction of the current moment of the moving target according to different relative positions of the moving target from the laser scanner at a current time and a previous time.
  • Another aspect of the present invention provides a laser scanner-based moving target state monitoring method, including: monitoring at least one moving target entering a monitoring area, so that the laser scanner is to the predetermined scanning frequency At least one moving target emits a plurality of laser beams of different angles; and for each of the moving targets: determining at least one fixed point on the moving target; receiving the moving target detected by the laser scanner at different times Determining, by the first distance between the at least one fixed point and the emission position of the plurality of laser beams, and the emission angle of the laser beam corresponding thereto; and determining the sum according to the first distance and the emission angle of the laser beam corresponding thereto A relative position of the moving target at the different time points from the laser scanner is output.
  • the monitoring method further includes: for each of the moving targets, according to the determined relative position of the moving target to the laser scanner, at different time intervals or with different displacement intervals of the moving target Determining and outputting the current relative position of the moving target from the laser scanner.
  • the monitoring method further includes: determining, for each of the moving targets, determining, according to the first distance and a launch angle of a laser beam corresponding thereto, a moving speed of the moving target.
  • the at least one fixed point comprises a plurality
  • determining the moving speed of the moving target according to the first distance and the emission angle of the laser beam corresponding thereto comprises: according to the moving target And obtaining, by the plurality of fixed points, different first distances between the transmitting positions of the plurality of laser beams at the same time, obtaining a second distance of the moving target at the time; according to the moving target at the different time The second distance determines the moving speed of the moving target.
  • the method further includes: determining, for each of the moving targets, a moving direction of the current moment of the moving target.
  • a vehicle rapid inspection system includes: a radiation imaging apparatus including: a radiation source, a radiation beam for detecting a vehicle to be inspected; a detector for detecting radiation rays transmitted through the vehicle to be inspected and/or a radiation beam that is scattered; and an image processing device for detecting according to the detector a radiation beam signal to be imaged; any of the above-described moving object monitoring devices; and control means for controlling the radiation imaging device to emit the radiation rays to the vehicle to be inspected according to an output of the moving object monitoring device bundle.
  • the moving target state monitoring device and method provided by the invention can locate and measure a moving target by using a laser scanner, and can significantly improve the measurement accuracy of a low-speed moving target compared to a speed measuring sensor such as a speed measuring radar, and the laser scanner is easy to install and low cost.
  • a speed measuring sensor such as a speed measuring radar
  • the laser scanner is easy to install and low cost.
  • the vehicle rapid inspection system of the present invention can improve the accuracy of the timing of the exit timing by using the moving target monitoring device, thereby effectively avoiding the safety for the driver due to misjudgment of the front portion of the vehicle to be inspected. Hidden dangers.
  • FIG. 1 is a schematic structural diagram of a laser scanner-based moving target monitoring apparatus according to an exemplary embodiment.
  • FIG. 2 is a schematic diagram of a monitoring area of a laser scanner, according to an example.
  • FIG. 3 is a schematic diagram of a laser beam according to an example.
  • FIG. 4 is a schematic diagram of a moving target positioning method according to an example.
  • FIG. 5 is a flowchart of a laser scanner-based moving target state monitoring method according to an exemplary embodiment.
  • FIG. 6 is a flowchart of a laser scanner-based moving target state monitoring method according to another example embodiment.
  • FIG. 7 is a schematic structural diagram of a vehicle quick inspection system according to an exemplary embodiment.
  • FIG. 1 is a schematic structural diagram of a laser scanner-based moving target monitoring apparatus according to an exemplary embodiment.
  • the mobile target monitoring device 10 includes a laser scanner 110 and a processing unit 120.
  • the laser scanner 110 is configured to monitor at least one moving target entering a monitoring area, and emit a plurality of laser beams of different angles to the at least one moving target at a predetermined scanning frequency.
  • the laser scanner 110 has two mounting modes: the first one is as shown by the laser scanner 111, and may be disposed, for example, on the top of the detecting channel, and the scanning cross section is perpendicular to the ground of the detecting channel; As shown by the laser scanner 111', for example, it may be disposed above the side of the detection channel, and the angle between the scanning section and the ground of the detection channel is an acute or obtuse angle.
  • the laser scanner 111 or 111' monitors at least one moving target at a preset scanning frequency, for example, 100 Hz (ie, 100 scans per second), which can simultaneously emit multiple laser beams of different angles at the same time, multiple lasers
  • a preset scanning frequency for example, 100 Hz (ie, 100 scans per second)
  • the starting point A of the range covered by the scanning section of the bundle is the monitoring area of the laser scanner 111 or 111'.
  • Laser scanners have a wide range of monitoring and are typically continuously monitored over a range of 80 meters or more.
  • the mobile target when the mobile target is monitored using the laser scanner 110, because of its large monitoring range, in order to avoid unnecessary monitoring data storage, it is usually achieved before the moving target fails to pass the laser scanner.
  • the preset position (relative to the position of the laser scanner) begins to process its monitoring data, that is, it is considered to enter its monitoring area from the preset position.
  • the preset position can be set at 25 meters before the laser scanner installation position, but the invention is not limited thereto. The minimum distance requirements between two adjacent moving targets in the above two installation modes are respectively described below.
  • the installation height of the laser scanner 111 is, for example, 5.2 meters; the heights of the plurality of moving targets are uniform, for example, 4.8 meters.
  • the minimum distance between adjacent moving targets in the monitoring area can be estimated as 2 meters.
  • the installation height of the laser scanner 111' is, for example, 5.2 meters; the heights of the plurality of moving targets are uniform, for example, 4.8 meters; and further, the center line of the laser scanning section is assumed to be from the laser scanner 111'.
  • the installation position is 3 meters (this parameter is used to reflect the different angle between the laser scanning section and the ground).
  • a laser scanner as a moving target state (such as positioning, speed measurement, etc.) monitoring device is easy to install and low in cost, and in practice, it is not necessary to emphasize the strict tilt angle of the sensor in the installation procedure, and the different mounting tilt angles are required for the accuracy and algorithm. Does not have any effect.
  • the speed of movement of a moving target at a low speed (for example, 5 km/h) can be accurately measured when using a laser scanner for speed measurement.
  • the processing unit 120 is configured to determine, for each moving target in the monitoring area, at least one fixed point on the moving target, and receive at least one fixed point and the multiple laser beams of the moving target detected by the laser scanner 110 at different times.
  • the distance of the emission position ie, the mounting position of the laser scanner 110
  • the corresponding emission angle of the laser beam is the distance of the emission position (ie, the mounting position of the laser scanner 110) and the corresponding emission angle of the laser beam.
  • the laser scanner 110 can be selected to return a point of data change, such as a sudden change point of the moving target (for example, a certain point on the leading edge or the tail of the moving target) or a point on the same height of the moving target.
  • a point of data change such as a sudden change point of the moving target (for example, a certain point on the leading edge or the tail of the moving target) or a point on the same height of the moving target.
  • the invention is not limited thereto.
  • FIG. 3 is a schematic diagram of a laser beam according to an example. As shown in FIG. 3, the laser scanner 110 can detect and return the distance d between the laser beam emission position of each angle to the laser beam reflection position (such as point A on the front edge of the vehicle head in FIG. 3) and its corresponding emission angle ⁇ in real time. .
  • the processing unit 120 is further configured to determine and output according to the received distance of the at least one fixed point of the moving target and the laser beam emitting position detected by the laser scanner 110 and the corresponding laser beam emission angle. The relative position of the moving target at different times from the laser scanner.
  • FIG. 4 is a schematic diagram of a moving target positioning method according to an example.
  • a certain fixed point A on the leading edge of the moving target 100 is selected as a point at which the return data of the laser scanner 110 changes in FIG. 4 as an example.
  • the measurement range is empty, that is, when no target enters the monitoring area
  • the corresponding angle ⁇ from the closest point of the laser scanner 110 point B in FIG. 4
  • the distance S1 between the current laser beam emission position and the laser beam is determined according to the point at which the return data detected by the laser scanner 110 changes (ie, the fixed point A in FIG. 4).
  • the angle ⁇ is used to determine the relative position L1 of the position 1 from the laser scanner 110:
  • the point at which the return data detected again by the laser scanner 110 changes is the current distance from the laser beam emitting position.
  • the distance S2 between the distance S2 and the angle ⁇ of the laser beam determines that the relative position L2 of the position 2 from the laser scanner 110 is:
  • the relative position L2 between the position 2 and the laser scanner 110 can also be calculated by calculating the displacement S3 of the moving target between the position 1 and the position 2.
  • the angle ⁇ between S1 and S2 can be calculated from the angles ⁇ and ⁇ of the two laser beams, and then S3 is calculated according to the cosine theorem:
  • L2 L1 - S3.
  • the monitoring range may be divided into regions, thereby The area is measured by different displacement intervals or time intervals and outputs the position information of the moving target. That is, the processing unit 110 first determines which region of the partition the moving target is located with respect to the position of the laser scanner, thereby determining to determine and output the position information of the moving target at the corresponding displacement interval or time interval. Wherein the time interval or displacement interval is smaller as the moving target moves toward the laser scanner and the closer it is to the relative position of the laser scanner. For example, as shown in FIG. 2, the monitoring area is divided into four areas, in which the moving target is moved.
  • the corresponding speed for determining and outputting the position of the moving target is the fastest, that is, the moving target is determined to output a moving target every time a minimum displacement is moved or a minimum time is every interval. s position.
  • the specific area division and the setting of the output frequency can be determined according to the actual application, and the present invention is not limited thereto.
  • processing unit 120 is further configured to determine, according to the moving target, the distance of the at least one fixed point of the moving target detected by the received laser scanner 110 and the laser beam emission position and the corresponding laser beam emission angle. And output the moving speed of the moving target.
  • T1 and T2 are the times when the moving target 100 moves to the position 1 and the position 2, respectively.
  • This time can be obtained, for example, by the time calculation formula of the processing unit 120 itself, for example, the mark T1 is received when the first distance S1 is received, and the mark T2 is made when the second distance S2 is received; or the laser scanner can also be used.
  • the time returned in the packet returned by 110 is obtained.
  • a plurality of fixed points may also be selected, such as multiple return data change points (such as points of different heights on the moving target or multiple obvious mutation points on the moving target, etc.), and are respectively calculated based on the fixed points.
  • a plurality of displacement values are fitted, for example, an average calculation is performed, and the speed of the moving target is calculated based on the finally obtained average displacement.
  • the speed measurement can be further improved by measuring the speed based on a plurality of fixed points.
  • the speed of the moving target may be determined and outputted at different displacement intervals or time intervals in combination with the above-described output manner based on the different regions, that is, the relative positions of the moving target and the laser scanner 110.
  • the processing unit 120 can also be used to detect the current moving direction of each moving target. For example, the processing unit 120 may determine the moving direction of the current moment of the moving target according to the different relative positions of the moving target from the laser scanner 110 at the current time and the previous time. First, the processing unit 120 can, for example, know from the angle information in the data returned by the laser scanner 110 whether the moving target is currently moving toward the laser scanner 110 or moving away from the laser scanner 110. When the moving target moves toward the laser scanner 110, if the distance of the moving target from the laser scanner 110 is less than the distance of the moving target distance from the laser scanner 110 at the current time, the moving target is considered to be advancing; if it is greater than, then The moving target is back; if it is equal, the moving target is considered to stop moving.
  • the moving target moves away from the laser scanner 110, if the distance of the moving target from the laser scanner 110 is greater than the distance of the moving target from the laser scanner 110 at the current time, the moving target is considered to be forward; if it is less than, Think that the moving target is back.
  • the processing unit 120 can also directly determine the traveling direction of the laser beam angle according to the change of the return target twice. For example, when moving toward the laser scanner 110, the angle of the returned laser beam should be smaller and smaller; When the optical scanner 110 moves, the angle of the returned laser beam should be larger and larger.
  • the judgment of the moving speed of the moving target it is easy to find out whether the measured moving target is abnormal, such as reversing, stopping, etc. in the detecting channel, thereby quickly performing corresponding disposal.
  • the moving target state monitoring device can locate and measure a moving target by using a laser scanner, and can significantly improve the measurement accuracy of a low-speed moving target compared to a speed measuring sensor such as a speed measuring radar, and the laser scanner is easy to install and low in cost. . In addition, it is easy to find the abnormal state of the moving target (such as reversing, stopping, etc. in the detection channel) by the laser scanner, so that it can be processed quickly.
  • FIG. 5 is a flowchart of a laser scanner-based moving target state monitoring method according to an exemplary embodiment. As shown in FIG. 5, the method 20 includes:
  • Step S210 monitoring at least one moving target entering a monitoring area, so that the laser scanner emits a plurality of laser beams of different angles to the at least one moving target at a predetermined scanning frequency.
  • the laser scanner has two installation modes: the first one is as shown by the laser scanner 111, for example, it can be disposed at the top of the detection channel, and the scanning section is perpendicular to the ground of the detection channel; As shown by the laser scanner 111', for example, it may be disposed above the side of the detection channel with an acute or obtuse angle between the scanning section and the ground of the detection channel.
  • the laser scanner 111 or 111' monitors at least one moving target at a preset scanning frequency, for example, 100 Hz (ie, 100 scans per second), which can simultaneously emit multiple laser beams of different angles at the same time, multiple lasers
  • a preset scanning frequency for example, 100 Hz (ie, 100 scans per second)
  • the starting point A of the range covered by the scanning section of the bundle is the monitoring area of the laser scanner 111 or 111'.
  • Laser scanners have a wide range of monitoring and are typically continuously monitored over a range of 80 meters or more.
  • the position (relative to the position of the laser scanner) begins to process its monitoring data, that is, it is considered to enter its monitoring area from the preset position.
  • the preset position can be set at 25 meters before the laser scanner installation position, but the invention is not limited thereto. The minimum distance requirements between two adjacent moving targets in the above two installation modes are respectively described below.
  • the installation height of the laser scanner 111 is, for example, 5.2 meters; the heights of the plurality of moving targets are uniform, for example, 4.8 meters.
  • the minimum distance between adjacent moving targets in the monitoring area can be estimated as 2 meters.
  • the installation height of the laser scanner 111' is, for example, 5.2 meters; the heights of the plurality of moving targets are uniform, for example, 4.8 meters; and further, the center line of the laser scanning section is assumed to be from the laser scanner 111'.
  • the installation position is 3 meters (this parameter is used to reflect the different angle between the laser scanning section and the ground).
  • a laser scanner as a moving target state (eg, positioning, speed measurement, etc.) monitoring device is easy to install and low in cost. In practice, there is no need to emphasize the strict tilt angle of the sensor in the installation procedure. Different installation tilt angles have no effect on the required accuracy and algorithm. In addition, the speed of movement of a moving target at a low speed (for example, 5 km/h) can be accurately measured when using a laser scanner for speed measurement.
  • Step S220 determining, for each moving target in the monitoring area, at least one fixed point on the moving target, receiving at least one fixed point of the moving target and a transmitting position of the multiple laser beams detected by the laser scanner at different times. (ie the mounting position of the laser scanner) and the corresponding angle of emission of the laser beam.
  • the laser scanner can be selected to return a point of change of the data, such as a sudden change point of the moving target (for example, a point on the leading edge or the tail of the moving target) or a point on the same height of the moving target.
  • a point of change of the data such as a sudden change point of the moving target (for example, a point on the leading edge or the tail of the moving target) or a point on the same height of the moving target.
  • the invention is not limited thereto.
  • FIG. 3 is a schematic diagram of a laser beam according to an example. As shown in FIG. 3, the laser scanner can detect and return the distance d between the laser beam emission position of each angle to the laser beam reflection position (such as point A on the front edge of the vehicle head in FIG. 3) and its corresponding emission angle ⁇ in real time.
  • Step S230 determining, according to the moving target, the moving target according to the distance of the at least one fixed point of the moving target and the laser beam emitting position detected by the received laser scanner and the corresponding laser beam emission angle. The relative position of the laser scanner at different times.
  • FIG. 4 is a schematic diagram of a moving target positioning method according to an example.
  • a certain fixed point A on the leading edge of the moving target 100 is selected as a point at which the return data of the laser scanner 110 changes in FIG. 4 as an example.
  • the measurement range is empty, that is, when no target enters the monitoring area
  • the corresponding angle ⁇ from the closest point of the laser scanner 110 point B in FIG. 4
  • the moving target 100 is located at the No. 1 position
  • the distance S1 between the current distance from the laser beam emission position and the angle of the laser beam according to the point at which the detected return data of the laser sensor changes (ie, the fixed point A in FIG. 4) ⁇ , to determine the relative position L1 of the position sensor 1 from the laser sensor is:
  • the point at which the return data detected again by the laser scanner 110 changes is the current distance from the laser beam emitting position.
  • the distance S2 between the distance S2 and the angle ⁇ of the laser beam is determined to be the relative position L2 of the position sensor 2 from the laser sensor:
  • the position L2 of the second position can also be calculated by calculating the displacement S3 of the moving target between the position 1 and the position 2.
  • the angle ⁇ between S1 and S2 can be calculated from the angles ⁇ and ⁇ of the two laser beams, and then S3 is calculated according to the cosine theorem:
  • L2 L1 - S3.
  • the important monitoring range is mainly monitored to provide measurement accuracy, and the monitoring range may be divided into regions, so that different displacement intervals or times are adopted for different regions.
  • Interval measures and outputs the position information of the moving target. That is, it is determined which region of the partition the position of the moving target relative to the laser scanner is located, thereby determining the position information of the moving target to be determined and outputted at the corresponding displacement interval or time interval.
  • the time interval or displacement interval is smaller as the moving target moves toward the laser scanner and the closer it is to the relative position of the laser scanner. For example, as shown in FIG.
  • the monitoring area can be divided into four areas, in which the position of the moving target is determined and output when the moving object moves to the area No. 3 closest to the laser scanner.
  • the fastest speed that is, the minimum displacement of the moving target per movement or the minimum time interval, determines and outputs the position of the moving target once.
  • the specific area division and the setting of the output frequency can be determined according to the actual application, and the present invention is not limited thereto.
  • the moving direction of the current moment of the moving target can be determined according to the different relative positions of the moving target at the current time and the previous time from the laser scanner.
  • the moving target moves away from the laser scanner, if the distance of the moving target from the laser scanner is greater than the distance of the moving target from the laser scanner at the current time, the moving target is considered to be forward; if it is smaller, the moving target is considered to be moving. For the back.
  • the traveling direction of the laser beam angle based on the change of the returning angle of the moving target twice. For example, when moving toward the laser scanner, the angle of the returned laser beam should be smaller and smaller; and when moving away from the laser scanner, the angle of the returned laser beam should be larger and larger.
  • the judgment of the moving speed of the moving target it is easy to find out whether the measured moving target is abnormal, such as reversing, stopping, etc. in the detecting channel, thereby quickly performing corresponding disposal.
  • Step S240 determining, according to the moving target, the distance of the at least one fixed point of the moving target detected by the received laser scanner and the emission angle of the laser beam and the corresponding emission angle of the laser beam, and determining and outputting the moving target Moving speed.
  • T1 and T2 are the times when the moving target 100 moves to the position 1 and the position 2, respectively. This time can for example be obtained by means of a laser scanner.
  • a plurality of fixed points may also be selected, such as multiple points where the returned data changes (such as points of different heights on the moving target, or multiple distinct sudden changes on the moving target, etc.), based on the fixed points.
  • a plurality of displacement values are fitted, for example, an average calculation is performed, and the speed of the moving target is calculated based on the finally obtained average displacement.
  • the speed measurement can be further improved by measuring the speed based on a plurality of fixed points.
  • FIG. 6 is a flowchart of a laser scanner-based moving target state monitoring method according to another example embodiment. As shown in FIG. 6, the method 30 includes:
  • step S310 the monitoring area of the laser scanner is monitored.
  • the monitoring area may be, for example, the maximum range covered by the scanning section of the laser scanner described above, or may be the preset optimized monitoring area to avoid unnecessary monitoring data storage.
  • the laser scanner itself may be used for monitoring, or may be monitored by using a device such as a ground coil or a light curtain, and the invention is not limited thereto.
  • step S320 it is determined whether there is a moving target entering the monitoring area, and if so, step S330 is performed; otherwise, returning to step S310.
  • Step S330 monitoring the moving target according to the output of the laser scanner.
  • step S340 it is determined whether the moving state of the moving target is abnormal. If there is no abnormality, step S360 is performed, otherwise step S350 is performed.
  • the abnormality of the moving state of the moving target includes, for example, reversing, stopping, and the like of the moving target in the detecting channel.
  • the specific detecting method is as described above, and details are not described herein again.
  • Step S350 outputting an error message to send a target abnormality prompt.
  • step S360 the position and speed of the moving target are periodically determined and output.
  • the method for determining the position and speed of the moving target is as described above, and will not be described herein.
  • the period may be a fixed period, or may be a different displacement interval or time interval according to the corresponding setting of different regions.
  • step S370 it is determined whether the moving target leaves the monitoring area, and if so, the monitoring of the moving target is ended; otherwise, the process returns to step S330.
  • whether the moving target leaves the monitoring area can be determined by the return data of the tail of the moving target of the laser scanner; or the device can be detected by the device that installs the ground coil and the light curtain, and the invention is not limited thereto. .
  • the mobile target state monitoring method provided by the present invention can locate and measure a moving target by using a laser scanner, and can significantly improve the measurement accuracy of a low-speed moving target compared to a speed measuring sensor such as a speed measuring radar, and the laser scanner is easy to install and low in cost. . In addition, it is easy to find the abnormal state of the moving target (such as reversing, stopping, etc. in the detection channel) by the laser scanner, so that it can be processed quickly.
  • FIG. 7 is a schematic structural diagram of a vehicle quick inspection system according to an exemplary embodiment.
  • the vehicle rapid inspection system 40 includes a radiation imaging device 410, a moving target monitoring device 10, and a control device 420.
  • the radiation imaging device 410 includes: a radiation source 4110 for emitting a radiation beam detecting the vehicle to be inspected;
  • the detector 4120 is configured to detect radiation rays transmitted through the vehicle to be inspected and/or to generate scattered radiation rays, and an image processing device 4130 for performing imaging according to the radiation radiation signals detected by the detector 4120.
  • the moving target monitoring device 10 is used in the vehicle quick check system 30 to monitor the moving state of the inspected vehicle as described above. For example, detecting whether the vehicle to be inspected is abnormal (such as reversing, stopping, etc. in the detection passage), detecting the position of the inspected vehicle, determining the traveling speed of the inspected vehicle, and the like.
  • the specific description of the moving target monitoring device 10 is as above, and will not be described herein.
  • the control device 420 is configured to control the radiation imaging device to emit a beam of radiation rays to the vehicle under test according to the output of the moving target monitoring device 10. For example, the control device 420 positions the cab portion of the vehicle to be inspected by the moving target monitoring device 10 to determine whether it has left the beam exit position of the source, and when it is determined that the cab has left the beam exit position, starts to launch to the vehicle to be inspected. Radiation rays. Alternatively, the control device 420 may jointly determine the delivery timing based on the position information and the speed information output by the moving target monitoring device 10 in association with the length information of the vehicle to be inspected and the vehicle type information thereof.
  • the vehicle rapid inspection system of the present invention can improve the accuracy of the determination of the timing of the delivery, thereby effectively avoiding the safety hazard to the driver due to misjudgment of the front portion of the vehicle to be inspected.

Abstract

一种移动目标状态监测方法、装置(10)及其车辆快速检查系统。该装置(10)包括:激光扫描仪(110,111,111 '),用于对进入一监测区域的至少一个移动目标进行监测,以一预设扫描频率向所述至少一个移动目标发射多条不同角度的激光束;以及处理单元(120),用于针对每个所述移动目标,确定并输出该移动目标在所述不同时刻距离所述激光扫描仪的相对位置。相比于测速雷达等测速传感器,该装置可显著提高低速移动目标的测量精度,且激光扫描仪(110,111,111 ')易于安装、成本低。

Description

移动目标状态监测方法、装置及其车辆快速检查系统
本申请基于申请号为201510886306.6、申请日为2015/12/04的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及移动目标状态监测技术,尤其涉及一种基于激光扫描仪的移动目标状态监测方法、装置及包含其的车辆快速检查系统。
背景技术
目前在对如车辆等移动目标进行状态监测(如测速)时,通常采用诸如测速雷达等测速传感器来进行。但测速雷达在测量低速(例如小于5公里每小时)移动目标时,无法保证测量精度,在应用上存在局限性。此外,测速雷达设备造价高、安装调试和标定的费用都较高,不具备经济性和可维护性。
此外,在基于辐射扫描的车辆快速检查领域,在对被检车辆的状态进行监测时,通常在检测通道内安装多组光电开关或光幕及地感线圈等来检测被检车辆的行进状态。但采用光电开关或光幕等进行判断时,无法精确地测量被检车辆的位置、速度等,从而在进行辐射射线出束时机判断时,常发生误判的情况,给驾驶员的安全造成了极大的隐患。
发明内容
有鉴于此,本发明提供了一种基于激光扫描仪的移动目标状态监测方法、装置及包含其的车辆快速检查系统。
本发明的额外方面和优点将部分地在下面的描述中阐述,并且部分地将从描述中变得显然,或者可以通过本发明的实践而习得。
本发明一方面提供了一种移动目标状态监测装置,包括:激光扫描仪,用于对进入一监测区域的至少一个移动目标进行监测,以一预设扫描频率向所述至少一个移动目标发射多条不同角度的激光束;以及处理单元,用于针对每个所述移动目标:确定该移动目标上的至少一个固定点;接收所述激光扫描仪在不同时刻检测到的该移动目标的所述至少一个固定点与所述多条激光束的发射位置之间的第一距离及与其对应的激光束的发射角度;及根据所述第一距离及与其对应的激光束的发射角度,确定并输出该移动目标在所述不同时刻距离所述激光扫描仪的相对位置。
于一实施例中,其中所述处理单元还用于针对每个所述移动目标,根据确定的该移动目标距离所述激光扫描仪的相对位置,以不同的时间间隔或者以该移动目标不同的位移间隔,输出该移动目标距离所述激光扫描仪当前的相对位置。
于另一实施例中,其中当该移动目标朝向所述激光扫描仪移动,且其距离所述激光扫描仪的相对位置越近时,所述时间间隔或所述位移间隔越小。
于再一实施例中,其中所述处理单元还用于针对每个所述移动目标,根据所述第一距离及与其对应的激光束的发射角度,确定并输出该移动目标的移动速度。
于再一实施例中,其中所述至少一个固定点包括多个,根据所述第一距离及与其对应的激光束的发射角度,确定该移动目标的移动速度包括:根据该移动目标的所述多个固定点在同一时刻距离所述多条激光束的发送位置之间的不同的第一距离,获得该移动目标在该时刻的第二距离;根据该移动目标在所述不同时刻的所述第二距离,确定该移动目标的移动速度。
于再一实施例中,其中所述处理单元通过对所述不同的第一距离进行平均,以获得所述第二距离。
于再一实施例中,其中所述处理单元还用于针对每个所述移动目标,确定该移动目标当前时刻的移动方向。
于再一实施例中,其中所述处理单元根据该移动目标在当前时刻及之前时刻距离所述激光扫描仪的不同相对位置确定该移动目标当前时刻的移动方向。
本发明另一方面提供了一种基于激光扫描仪的移动目标状态监测方法,包括:对进入一监测区域的至少一个移动目标进行监测,使所述激光扫描仪以一预设扫描频率向所述至少一个移动目标发射多条不同角度的激光束;以及针对每个所述移动目标:确定该移动目标上的至少一个固定点;接收所述激光扫描仪在不同时刻检测到的该移动目标的所述至少一个固定点与所述多条激光束的发射位置之间的第一距离及与其对应的激光束的发射角度;及根据所述第一距离及与其对应的激光束的发射角度,确定并输出该移动目标在所述不同时刻距离所述激光扫描仪的相对位置。
于一实施例中,上述监测方法还包括:针对每个所述移动目标,根据确定的该移动目标距离所述激光扫描仪的相对位置,以不同的时间间隔或者以该移动目标不同的位移间隔,确定并输出该移动目标距离所述激光扫描仪当前的相对位置。
于另一实施例中,上述监测方法还包括:针对每个所述移动目标,根据所述第一距离及与其对应的激光束的发射角度,确定并输出该移动目标的移动速度。
于再一实施例中,其中所述至少一个固定点包括多个,根据所述第一距离及与其对应的激光束的发射角度,确定该移动目标的移动速度包括:根据该移动目标的所述多个固定点在同一时刻距离所述多条激光束的发送位置之间的不同的第一距离,获得该移动目标在该时刻的第二距离;根据该移动目标在所述不同时刻的所述第二距离,确定该移动目标的移动速度。
于再一实施例中,上述方法还包括:针对每个所述移动目标,确定该移动目标当前时刻的移动方向。
本发明再一方面提供了一种车辆快速检查系统,包括:辐射成像装置,包括:射线源, 用于发射检测被检车辆的辐射射线束;探测器,用于检测透过所述被检车辆的辐射射线和/或发生散射的辐射射线;及图像处理装置,用于根据所述探测器检测到的辐射射线信号进行成像;上述任一种移动目标监测装置;以及控制装置,用于根据所述移动目标监测装置的输出,控制所述辐射成像装置向所述被检车辆发射所述辐射射线束。
本发明提供的移动目标状态监测装置及方法通过使用激光扫描仪对移动目标进行定位、测速,相比于测速雷达等测速传感器,可显著提高低速移动目标的测量精度,且激光扫描仪易于安装且成本低。此外,通过激光扫描仪还可易于发现移动目标的异常状态(如在检测通道内倒车、停车等),从而快速对其进行处理。此外,本发明的车辆快速检查系统通过使用该移动目标监测装置,可提高对出束时机判断的精确度,从而有效避免了因对被检车辆车头部分的误判而为驾驶员带来的安全隐患。
附图说明
通过参照附图详细描述其示例实施方式,本发明的上述和其它特征及优点将变得更加明显。
图1为根据一示例实施例示出的基于激光扫描仪的移动目标监测装置的结构示意图。
图2为根据一示例示出的激光扫描仪的监测区域的示意图。
图3为根据一示例示出的激光束示意图。
图4为根据一示例示出的移动目标定位方法的示意图。
图5为根据一示例实施例示出的基于激光扫描仪的移动目标状态监测方法的流程图。
图6为根据另一示例实施例示出的基于激光扫描仪的移动目标状态监测方法的流程图。
图7为根据一示例实施例示出的车辆快速检查系统的结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本发明的实施方式的充分理解。然而,本领域技术人员应意识到,没有所述特定细节中的一个或更多,或者采用其它的方法、组元、材料等,也可以实践本发明的技术方案。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本发明。
图1为根据一示例实施例示出的基于激光扫描仪的移动目标监测装置的结构示意图。如图1所示,移动目标监测装置10包括:激光扫描仪110及处理单元120。
其中激光扫描仪110用于对进入一监测区域的至少一个移动目标进行监测,以一预设扫描频率向至少一个移动目标发射多条不同角度的激光束。
图2为根据一示例示出的激光扫描仪的监测区域的示意图。如图2所示,激光扫描仪110有两种安装方式:第一种如激光扫描仪111所示,例如可以设置于检测通道的顶部,其扫描截面与检测通道的地面垂直;第二种方式如激光扫描仪111’所示,例如可以设置于检测通道的侧上方,其扫描截面与检测通道的地面之间的夹角呈一锐角或钝角。激光扫描仪111或111’以一预设的扫描频率,例如100Hz(即每秒扫描100次),对至少一个移动目标进行监测,其一次可同时发射多条不同角度的激光束,多条激光束构成的扫描截面所覆盖范围的起点A即为激光扫描仪111或111’的监测区域。激光扫描仪的监测范围很大,通常可对其前后80米甚至更长的范围进行连续监测。
在一些实施例中,在使用激光扫描仪110对移动目标进行监测时,因其监测范围很大,为避免不必要的监测数据存储,因此通常会当移动目标未通过激光扫描仪之前且达到一预设位置(相对于激光扫描仪的位置)才开始对其监测数据进行处理,也即认为从该预设位置开始进入其监测区域。在实践中,例如可以将该预设位置设置在激光扫描仪安装位置之前的25米处,但本发明不以此为限。下面分别介绍上述两种安装方式下,相邻两个移动目标之间的最小距离要求。
对于第一种安装方式,首先假设激光扫描仪111的安装高度例如为5.2米;多个移动目标的高度一致,均例如为4.8米。当有新的移动目标距离激光扫描仪25米,即开始进入监测区,为了能同时对监测区域内的多个移动目标进行监测,可推算出监测区域内相邻移动目标之间的最小距离为2米。
对于第二种安装方式,同样假设激光扫描仪111’的安装高度例如为5.2米;多个移动目标的高度一致,均例如为4.8米;此外假设激光扫描截面的中心线距激光扫描仪111’的安装位置3米(该参数用于体现激光扫描截面与地面的不同夹角)。当有新的移动目标距离激光扫描仪25米,即开始进入监测区,为了能同时对监测区域内的多个移动目标进行监测,可推算出监测区域内相邻移动目标之间的最小距离为2.5米。
使用激光扫描仪作为移动目标状态(如定位、测速等)监测装置易于安装且成本低,在实际应用中无需强调安装规程中传感器的严格倾斜角度,不同的安装倾斜角度对所需的精度和算法不产生任何影响。此外,在使用激光扫描仪测速时可以精确测量低速(例如5公里每小时)的移动目标的运动速度。
处理单元120用于针对监测区域内的每个移动目标,确定该移动目标上的至少一个固定点,接收激光扫描仪110在不同时刻检测到的该移动目标的至少一个固定点与多条激光束的发射位置(即激光扫描仪110的安装位置)的距离及其对应的激光束的发射角度。
首先,在选取上述固定点时,可以选取激光扫描仪110返回数据变化的一点,如移动目标的明显突变点(例如移动目标前沿或尾部等上的某一点)或移动目标同一高度上的点等,本发明不以此为限。
通常,在使用激光扫描仪110对移动目标进行扫描时,激光扫描仪110在同一时刻发出不同角度的多条激光束。当某条激光束遇到物体反射时,返回该反射点与激光束发射位置之间的距离,及该条激光束的角度。图3为根据一示例示出的激光束示意图。如图3所示,激光扫描仪110可实时检测并返回各角度激光束发射位置至激光束反射位置(如图3中车头前沿上的A点)之间的距离d及其对应的发射角度θ。
针对上述移动目标,处理单元120还用于根据接收到的激光扫描仪110检测到的该移动目标的至少一个固定点与激光束发射位置的距离及其对应的激光束的发射角度,确定并输出该移动目标在不同时刻距离激光扫描仪的相对位置。
图4为根据一示例示出的移动目标定位方法的示意图。不失一般性地,图4中以选择移动目标100前沿上的某一固定点A作为激光扫描仪110返回数据发生变化的点为例说明。如图4所示,当测量范围为空,即没有目标进入监测区域时,查找并保存距离激光扫描仪110最近点(如图4中B点)的对应角度γ。当移动目标100位于1号位置时,根据激光扫描仪110检测到的返回数据发生变化的一点(即图4中的固定点A)当前距离激光束发射位置之间的距离S1与该激光束的角度α,来确定1号位置距离激光扫描仪110的相对位置L1为:
L1=S1*cosα    (1)
或者,L1=S1*sin(γ-α)    (2)
当移动目标100沿箭头所示的移动方向移动到2号位置时,根据激光扫描仪110再次检测到的返回数据发生变化的一点(即图4中的固定点A)当前距离激光束发射位置之间的距离S2与该激光束的角度β,来确定2号位置距离激光扫描仪110的相对位置L2为:
L2=S2*cosβ    (3)
或者,还可以通过计算移动目标在1号位置和2号位置之间的位移S3来计算2号位置与激光扫描仪110之间的相对位置L2。
首先,可以根据两条激光束的角度α和β计算S1与S2之间角度θ,再根据余弦定理计算S3为:
Figure PCTCN2016095680-appb-000001
之后,再根据公式(1)求得的L1计算L2为:L2=L1-S3。
进一步地,在一些实施例中,为了减少处理单元110处理的数据量并提高其处理效率,同时对重要监测范围进行重点监测,以提供测量精度,还可以对监测范围进行区域划分,从而针对不同的区域,采用不同位移间隔或时间间隔测量并输出移动目标的位置信息。也即处理单元110先判断移动目标相对于激光扫描仪的位置位于分区中的哪个区域,从而确定以相应的位移间隔或者时间间隔来确定并输出移动目标的位置信息。其中当移动目标朝向激光扫描仪移动,且其距离激光扫描仪的相对位置越近时,上述时间间隔或位移间隔越小。例如,可以如图2所示,将监测区域分为4个区域,在这4个区域中,当移动目标移 动到距离激光扫描仪最近的3号区域时,对应的确定并输出移动目标的位置的速度最快,也即移动目标每移动一最小位移或每间隔一最小时间,则确定并输出一次移动目标的位置。具体的区域划分及输出频率的设定可依实际应用而确定,本发明不以此为限。
此外,处理单元120还用于针对上述移动目标,根据接收到的激光扫描仪110检测到的该移动目标的至少一个固定点与激光束发射位置的距离及其对应的激光束的发射角度,确定并输出该移动目标的移动速度。
例如,继续参考图4,如上述,在确定了移动目标100的1号和2号位置与激光扫描仪之间的相对距离L1和L2或确定其之间的位移S3之后,可以根据下述公式计算移动目标100的速度v:
Figure PCTCN2016095680-appb-000002
其中T1和T2分别为移动目标100移动到1号位置和2号位置的时间。该时间例如可以通过处理单元120自身的时间计算公式来获得,例如在收到第一个距离S1时做标记T1,在收到第二个距离S2时做标记T2;或者也可以通过激光扫描仪110返回的数据包中自带的时间获得。
在一些实施例中,还可以选取多个固定点,比如多个返回数据变化点(如移动目标上的不同高度的点或移动目标上的多个明显突变点等),基于各固定点分别计算上述位移之后,对多个位移值进行拟合,例如进行平均计算,根据最终得到的平均位移计算移动目标的速度。根据多个固定点进行测速,可以进一步提高其精度值。
此外,在确定并输出移动目标的速度时,也可以结合上述基于不同区域,即移动目标与激光扫描仪110相对位置的输出方式,以不同的位移间隔或时间间隔确定并输出移动目标的速度。
处理单元120还可用于检测每个移动目标当前的移动方向。例如处理单元120可以根据移动目标在当前时刻及上一时刻距离激光扫描仪110的不同相对位置来确定移动目标当前时刻的移动方向。首先,处理单元120例如可以根据激光扫描仪110返回数据中的角度信息获知移动目标当前是朝向激光扫描仪110移动,还是远离激光扫描仪110移动。当移动目标朝向激光扫描仪110移动时,如果当前时刻移动目标距离激光扫描仪110的距离小于上一时刻移动目标距离激光扫描仪110的距离,则认为移动目标为前进;如果为大于,则认为移动目标为后退;而如果为等于,则认为移动目标停止移动。而当移动目标远离激光扫描仪110移动时,如果当前时刻移动目标距离激光扫描仪110的距离大于上一时刻移动目标距离激光扫描仪110的距离,则认为移动目标为前进;如果为小于,则认为移动目标为后退。
此外,处理单元120也可以直接根据移动目标两次返回激光束角度的变化来判断其行进方向。例如在朝向激光扫描仪110移动时,返回的激光束角度应越来越小;而当远离激 光扫描仪110移动时,则返回的激光束角度则应为越来越大。
根据对移动目标移动速度的判断,可易于发现被测的移动目标是否状态为异常,如在检测通道内倒车、停止等,从而快速进行相应处置。
本发明提供的移动目标状态监测装置通过使用激光扫描仪对移动目标进行定位、测速,相比于测速雷达等测速传感器,可显著提高低速移动目标的测量精度,且激光扫描仪易于安装且成本低。此外,通过激光扫描仪还可易于发现移动目标的异常状态(如在检测通道内倒车、停车等),从而快速对其进行处理。
图5为根据一示例实施例示出的基于激光扫描仪的移动目标状态监测方法的流程图。如图5所示,该方法20包括:
步骤S210,对进入一监测区域的至少一个移动目标进行监测,使激光扫描仪以一预设扫描频率向至少一个移动目标发射多条不同角度的激光束。
图2为根据一示例示出的激光扫描仪的监测区域的示意图。如图2所示,激光扫描仪有两种安装方式:第一种如激光扫描仪111所示,例如可以设置于检测通道的顶部,其扫描截面与检测通道的地面垂直;第二种方式如激光扫描仪111’所示,例如可以设置于检测通道的侧上方,其扫描截面与检测通道的地面之间的夹角呈一锐角或钝角。激光扫描仪111或111’以一预设的扫描频率,例如100Hz(即每秒扫描100次),对至少一个移动目标进行监测,其一次可同时发射多条不同角度的激光束,多条激光束构成的扫描截面所覆盖范围的起点A即为激光扫描仪111或111’的监测区域。激光扫描仪的监测范围很大,通常可对其前后80米甚至更长的范围进行连续监测。
在一些实施例中,在使用激光扫描仪对移动目标进行监测时,因其监测范围很大,为避免不必要的监测数据存储,因此通常会当移动目标未通过激光扫描仪之前且达到一预设位置(相对于激光扫描仪的位置)才开始对其监测数据进行处理,也即认为从该预设位置开始进入其监测区域。在实践中,例如可以将该预设位置设置在激光扫描仪安装位置之前的25米处,但本发明不以此为限。下面分别介绍上述两种安装方式下,相邻两个移动目标之间的最小距离要求。
对于第一种安装方式,首先假设激光扫描仪111的安装高度例如为5.2米;多个移动目标的高度一致,均例如为4.8米。当有新的移动目标距离激光扫描仪25米,即开始进入监测区,为了能同时对监测区域内的多个移动目标进行监测,可推算出监测区域内相邻移动目标之间的最小距离为2米。
对于第二种安装方式,同样假设激光扫描仪111’的安装高度例如为5.2米;多个移动目标的高度一致,均例如为4.8米;此外假设激光扫描截面的中心线距激光扫描仪111’的安装位置3米(该参数用于体现激光扫描截面与地面的不同夹角)。当有新的移动目标距离激光扫描仪25米,即开始进入监测区,为了能同时对监测区域内的多个移动目标进行监测,可推算出监测区域内相邻移动目标之间的最小距离为2.5米。
使用激光扫描仪作为移动目标状态(如定位、测速等)监测装置易于安装且成本低, 在实际应用中无需强调安装规程中传感器的严格倾斜角度,不同的安装倾斜角度对所需的精度和算法不产生任何影响。此外,在使用激光扫描仪测速时可以精确测量低速(例如5公里每小时)的移动目标的运动速度。
步骤S220,针对监测区域内的每个移动目标,确定该移动目标上的至少一个固定点,接收激光扫描仪在不同时刻检测到的该移动目标的至少一个固定点与多条激光束的发射位置(即激光扫描仪的安装位置)的距离及其对应的激光束的发射角度。
首先,在选取上述固定点时,可以选取激光扫描仪返回数据变化的一点,如移动目标的明显突变点(例如移动目标前沿或尾部等上的某一点)或移动目标同一高度上的点等,本发明不以此为限。
通常,在使用激光扫描仪对移动目标进行扫描时,激光扫描仪在同一时刻发出不同角度的多条激光束。当某条激光束遇到物体反射时,返回该反射点与激光束发射位置之间的距离,及该条激光束的角度。图3为根据一示例示出的激光束示意图。如图3所示,激光扫描仪可实时检测并返回各角度激光束发射位置至激光束反射位置(如图3中车头前沿上的A点)之间的距离d及其对应的发射角度θ。
步骤S230,针对上述移动目标,根据接收到的激光扫描仪检测到的该移动目标的至少一个固定点与激光束发射位置的距离及其对应的激光束的发射角度,确定并输出该移动目标在不同时刻距离激光扫描仪的相对位置。
图4为根据一示例示出的移动目标定位方法的示意图。不失一般性地,图4中以选择移动目标100前沿上的某一固定点A作为激光扫描仪110返回数据发生变化的点为例说明。如图4所示,当测量范围为空,即没有目标进入监测区域时,查找并保存距离激光扫描仪110最近点(如图4中B点)的对应角度γ。当移动目标100位于1号位置时,根据激光传感器的检测到的返回数据发生变化的一点(即图4中的固定点A)当前距离激光束发射位置之间的距离S1与该激光束的角度α,来确定1号位置距离激光传感器的相对位置L1为:
L1=S1*cosα    (1)
或者,L1=S1*sin(γ-α)    (2)
当移动目标100沿箭头所示的移动方向移动到2号位置时,根据激光扫描仪110再次检测到的返回数据发生变化的一点(即图4中的固定点A)当前距离激光束发射位置之间的距离S2与该激光束的角度β,来确定2号位置距离激光传感器的相对位置L2为:
L2=S2*cosβ    (3)
或者,还可以通过计算移动目标在1号位置和2号位置之间的位移S3来计算2号位置L2。
首先,可以根据两条激光束的角度α和β计算S1与S2之间角度θ,再根据余弦定理计算S3为:
Figure PCTCN2016095680-appb-000003
之后,再根据公式(1)求得的L1计算L2为:L2=L1-S3。
在一些实施例中,为了减少处理数据量提高处理效率,同时对重要监测范围进行重点监测,以提供测量精度,还可以对监测范围进行区域划分,从而针对不同的区域,采用不同位移间隔或时间间隔测量并输出移动目标的位置信息。也即判断移动目标相对于激光扫描仪的位置位于分区中的哪个区域,从而确定以相应的位移间隔或者时间间隔来确定并输出移动目标的位置信息。其中当移动目标朝向激光扫描仪移动,且其距离激光扫描仪的相对位置越近时,上述时间间隔或位移间隔越小。例如,可以如图2所示,将监测区域分为4个区域,在这4个区域中,当移动目标移动到距离激光扫描仪最近的3号区域时,对应的确定并输出移动目标的位置的速度最快,也即移动目标每移动一最小位移或每间隔一最小时间,则确定并输出一次移动目标的位置。具体的区域划分及输出频率的设定可依实际应用而确定,本发明不以此为限。
进一步地,在为移动目标定位的同时,还可以时刻检测每个移动目标当前的移动方向。例如可以根据移动目标在当前时刻及上一时刻距离激光扫描仪的不同相对位置来确定移动目标当前时刻的移动方向。首先,例如可以根据激光扫描仪返回数据中的角度信息获知移动目标当前是朝向激光扫描仪移动,还是远离激光扫描仪移动。当移动目标朝向激光扫描仪移动时,如果当前时刻移动目标距离激光扫描仪的距离小于上一时刻移动目标距离激光扫描仪的距离,则认为移动目标为前进;如果为大于,则认为移动目标为后退;而如果为等于,则认为移动目标停止移动。而当移动目标远离激光扫描仪移动时,如果当前时刻移动目标距离激光扫描仪的距离大于上一时刻移动目标距离激光扫描仪的距离,则认为移动目标为前进;如果为小于,则认为移动目标为后退。
此外,也可以直接根据移动目标两次返回激光束角度的变化来判断其行进方向。例如在朝向激光扫描仪移动时,返回的激光束角度应越来越小;而当远离激光扫描仪移动时,则返回的激光束角度则应为越来越大。
根据对移动目标移动速度的判断,可易于发现被测的移动目标是否状态为异常,如在检测通道内倒车、停止等,从而快速进行相应处置。
步骤S240,针对上述移动目标,根据接收到的激光扫描仪检测到的该移动目标的至少一个固定点与激光束发射位置的距离及其对应的激光束的发射角度,确定并输出该移动目标的移动速度。
例如,继续参考图4,如上述,在确定了移动目标100的1号和2号位置与激光扫描仪之间的相对距离L1和L2或确定其之间的位移S3之后,可以根据下述公式计算移动目标100的速度v:
Figure PCTCN2016095680-appb-000004
其中T1和T2分别为移动目标100移动到1号位置和2号位置的时间。该时间例如可以通过激光扫描仪获得。
在一些实施例中,还可以选取多个固定点,比如多个返回数据发生变化的点(如移动目标上不同高度的点、或移动目标上的多个明显突变点等),基于各固定点分别计算上述位移之后,对多个位移值进行拟合,例如进行平均计算,根据最终得到的平均位移计算移动目标的速度。根据多个固定点进行测速,可以进一步提高其精度值。
图6为根据另一示例实施例示出的基于激光扫描仪的移动目标状态监测方法的流程图。如图6所示,该方法30包括:
步骤S310,对激光扫描仪的监测区域进行监测。
该监测区域例如可以为上述激光扫描仪的扫描截面覆盖的最大范围,也可以为上述为避免不必要的监测数据存储,而预设的优化监测区域。
此外,可以采用激光扫描仪本身进行监测,也可以采用如地感线圈、光幕等设备进行监测,本发明不以此为限。
步骤S320,判断是否有移动目标进入上述监测区域,如果有,则执行步骤S330;否则,返回步骤S310。
步骤S330,根据激光扫描仪的输出,对该移动目标进行监测。
步骤S340,判断该移动目标的移动状态是否异常,如果无异常,则执行步骤S360,否则执行步骤S350。
移动目标的移动状态异常例如包括该移动目标在检测通道内倒车、停车等,具体检测方法如前所述,在此不再赘述。
步骤S350,输出错误信息,以发送目标异常提示。
步骤S360,周期地确定并输出该移动目标的位置、速度。
移动目标位置、速度的确定方法如上所述,在此不再赘述。该周期可以为一固定的周期,或者也可以为上述根据不同区域所对应设置的不同的位移间隔或时间间隔。
步骤S370,判断该移动目标是否离开监测区域,如果是,则结束对该移动目标的监测;否则返回步骤S330。
例如,可以通过激光扫描仪的对该移动目标尾部的返回数据来判断该移动目标是否离开监测区域;或者,也可以通过安装地感线圈、光幕的设备进行检测,本发明不以此为限。
本发明提供的移动目标状态监测方法通过使用激光扫描仪对移动目标进行定位、测速,相比于测速雷达等测速传感器,可显著提高低速移动目标的测量精度,且激光扫描仪易于安装且成本低。此外,通过激光扫描仪还可易于发现移动目标的异常状态(如在检测通道内倒车、停车等),从而快速对其进行处理。
图7为根据一示例实施例示出的车辆快速检查系统的结构示意图。如图7所示,车辆快速检查系统40包括:辐射成像装置410,移动目标监测装置10及控制装置420。
其中辐射成像装置410包括:射线源4110,用于发射检测被检车辆的辐射射线束;探 测器4120,用于检测透过被检车辆的辐射射线和/或发生散射的辐射射线;及图像处理装置4130,用于根据探测器4120检测到的辐射射线信号进行成像。
移动目标监测装置10如上所述,在车辆快速检查系统30中用于监测被检车辆的移动状态。例如,检测被检车辆是否异常(如在检测通道内倒车、停车等),检测被检车辆的位置,确定被检车辆的行进速度等。移动目标监测装置10的具体说明如上,在此不再赘述。
控制装置420用于根据移动目标监测装置10的输出,控制辐射成像装置向被检车辆发射辐射射线束。例如,控制装置420通过移动目标监测装置10对被检车辆驾驶室部分进行定位,确定其是否已离开射线源的出束位置,当确定驾驶室已离开出束位置后,开始向被检车辆发射辐射射线。或者,控制装置420也可以根据移动目标监测装置10输出的位置信息、速度信息联合被检车辆的长度信息及其车型信息等联合对出束时机进行判决。
通过使用移动目标监测装置,本发明的车辆快速检查系统可提高对出束时机判断的精确度,从而有效避免了因对被检车辆车头部分的误判而为驾驶员带来的安全隐患。
以上具体地示出和描述了本发明的示例性实施方式。应该理解,本发明不限于所公开的实施方式,相反,本发明意图涵盖包含在所附权利要求范围内的各种修改和等效置换。

Claims (14)

  1. 一种移动目标状态监测装置,其特征在于,包括:
    激光扫描仪,用于对进入一监测区域的至少一个移动目标进行监测,以一预设扫描频率向所述至少一个移动目标发射多条不同角度的激光束;以及
    处理单元,用于针对每个所述移动目标:确定该移动目标上的至少一个固定点;接收所述激光扫描仪在不同时刻检测到的该移动目标的所述至少一个固定点与所述多条激光束的发射位置之间的第一距离及与其对应的激光束的发射角度;及根据所述第一距离及与其对应的激光束的发射角度,确定并输出该移动目标在所述不同时刻距离所述激光扫描仪的相对位置。
  2. 根据权利要求1所述的移动目标监测装置,其中所述处理单元还用于针对每个所述移动目标,根据确定的该移动目标距离所述激光扫描仪的相对位置,以不同的时间间隔或者以该移动目标不同的位移间隔,输出该移动目标距离所述激光扫描仪当前的相对位置。
  3. 根据权利要求2所述的移动目标监测装置,其中当该移动目标朝向所述激光扫描仪移动,且其距离所述激光扫描仪的相对位置越近时,所述时间间隔或所述位移间隔越小。
  4. 根据权利要求1或2所述的移动目标监测装置,其中所述处理单元还用于针对每个所述移动目标,根据所述第一距离及与其对应的激光束的发射角度,确定并输出该移动目标的移动速度。
  5. 根据权利要求4所述的移动目标监测装置,其中所述至少一个固定点包括多个,根据所述第一距离及与其对应的激光束的发射角度,确定该移动目标的移动速度包括:根据该移动目标的所述多个固定点在同一时刻距离所述多条激光束的发送位置之间的不同的第一距离,获得该移动目标在该时刻的第二距离;根据该移动目标在所述不同时刻的所述第二距离,确定该移动目标的移动速度。
  6. 根据权利要求5所述的移动目标监测装置,其中所述处理单元通过对所述不同的第一距离进行平均,以获得所述第二距离。
  7. 根据权利要求1或2所述的移动目标监测装置,其中所述处理单元还用于针对每个所述移动目标,确定该移动目标当前时刻的移动方向。
  8. 根据权利要求7所述的移动目标监测装置,其中所述处理单元根据该移动目标在当前时刻及之前时刻距离所述激光扫描仪的不同相对位置确定该移动目标当前时刻的移动方向。
  9. 一种基于激光扫描仪的移动目标状态监测方法,其特征在于,包括:
    对进入一监测区域的至少一个移动目标进行监测,使所述激光扫描仪以一预设扫描频率向所述至少一个移动目标发射多条不同角度的激光束;以及
    针对每个所述移动目标:
    确定该移动目标上的至少一个固定点;
    接收所述激光扫描仪在不同时刻检测到的该移动目标的所述至少一个固定点与所述多条激光束的发射位置之间的第一距离及与其对应的激光束的发射角度;及
    根据所述第一距离及与其对应的激光束的发射角度,确定并输出该移动目标在所述不同时刻距离所述激光扫描仪的相对位置。
  10. 根据权利要求9所述的基于激光扫描仪的移动目标状态监测方法,还包括:针对每个所述移动目标,根据确定的该移动目标距离所述激光扫描仪的相对位置,以不同的时间间隔或者以该移动目标不同的位移间隔,确定并输出该移动目标距离所述激光扫描仪当前的相对位置。
  11. 根据权利要求9或10所述的基于激光扫描仪的移动目标状态监测方法,还包括:针对每个所述移动目标,根据所述第一距离及与其对应的激光束的发射角度,确定并输出该移动目标的移动速度。
  12. 根据权利要求11所述的基于激光扫描仪的移动目标状态监测方法,其中所述至少一个固定点包括多个,根据所述第一距离及与其对应的激光束的发射角度,确定该移动目标的移动速度包括:根据该移动目标的所述多个固定点在同一时刻距离所述多条激光束的发送位置之间的不同的第一距离,获得该移动目标在该时刻的第二距离;根据该移动目标在所述不同时刻的所述第二距离,确定该移动目标的移动速度。
  13. 根据权利要求9或10所述的基于激光扫描仪的移动目标状态监测方法,还包括:针对每个所述移动目标,确定该移动目标当前时刻的移动方向。
  14. 一种车辆快速检查系统,其特征在于,包括:
    辐射成像装置,包括:射线源,用于发射检测被检车辆的辐射射线束;探测器,用于检测透过所述被检车辆的辐射射线和/或发生散射的辐射射线;及图像处理装置,用于根据所述探测器检测到的辐射射线信号进行成像;
    根据权利要求1-8任一项所述的移动目标监测装置;以及
    控制装置,用于根据所述移动目标监测装置的输出,控制所述辐射成像装置向所述被检车辆发射所述辐射射线束。
PCT/CN2016/095680 2015-12-04 2016-08-17 移动目标状态监测方法、装置及其车辆快速检查系统 WO2017092405A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EA201792272A EA037197B1 (ru) 2015-12-04 2016-08-17 Способ и устройство для контроля состояния движущегося объекта и система быстрой проверки транспортного средства

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510886306.6 2015-12-04
CN201510886306.6A CN105445745A (zh) 2015-12-04 2015-12-04 移动目标状态监测方法、装置及其车辆快速检查系统

Publications (1)

Publication Number Publication Date
WO2017092405A1 true WO2017092405A1 (zh) 2017-06-08

Family

ID=55556161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095680 WO2017092405A1 (zh) 2015-12-04 2016-08-17 移动目标状态监测方法、装置及其车辆快速检查系统

Country Status (10)

Country Link
US (1) US10495661B2 (zh)
EP (1) EP3176605A1 (zh)
CN (1) CN105445745A (zh)
BR (1) BR102016022142B1 (zh)
EA (1) EA037197B1 (zh)
MX (1) MX361993B (zh)
MY (1) MY192645A (zh)
RU (1) RU2655694C2 (zh)
SG (1) SG10201608191TA (zh)
WO (1) WO2017092405A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445745A (zh) * 2015-12-04 2016-03-30 同方威视技术股份有限公司 移动目标状态监测方法、装置及其车辆快速检查系统
CN106114681B (zh) * 2016-08-30 2021-01-29 北京华力兴科技发展有限责任公司 车辆泊车预警系统和载车
CN108089024B (zh) * 2016-11-22 2020-07-14 武汉万集信息技术有限公司 一种车辆速度检测系统及方法
CN106443816B (zh) * 2016-11-25 2019-02-01 同方威视技术股份有限公司 用于检查通道的扫描检测系统
CN106483578B (zh) * 2016-11-25 2019-03-29 同方威视技术股份有限公司 移动式扫描检测系统
CN106645224A (zh) * 2016-12-26 2017-05-10 同方威视技术股份有限公司 安检设备及方法
CN108254720B (zh) * 2016-12-29 2022-11-25 航天信息股份有限公司 一种物品位置信息检测设备和方法
CN107807252A (zh) * 2017-10-25 2018-03-16 同方威视技术股份有限公司 车辆速度测量方法及装置
CN107680065A (zh) * 2017-11-22 2018-02-09 同方威视技术股份有限公司 辐射图像校正方法和校正装置及校正系统
US11417111B2 (en) 2017-12-22 2022-08-16 Terra Scientia, Llc Method, system and material for detecting objects of high interest with laser scanning systems
CN108362340A (zh) * 2018-04-25 2018-08-03 福建(泉州)哈工大工程技术研究院 一种高速移动轨道式小车的定位测速系统及方法
CN110726994B (zh) * 2018-07-17 2023-05-02 北京君和信达科技有限公司 背散射检查车相对位移测量系统
CN111638560B (zh) * 2019-03-01 2022-03-15 中国农业大学 日光温室卷帘定位方法与同步监测方法
CN110427887B (zh) * 2019-08-02 2023-03-10 腾讯科技(深圳)有限公司 一种基于智能的会员身份识别方法及装置
GB2588650A (en) * 2019-10-30 2021-05-05 Triple Lidar Tech Ltd Crane device provided with data
CN113043327A (zh) * 2019-12-27 2021-06-29 沈阳新松机器人自动化股份有限公司 机器人二维直线运动速度的测试装置
CN111986494A (zh) * 2020-07-09 2020-11-24 宁波傲视智绘光电科技有限公司 一种运动目标速度测量方法、系统、装置及存储介质
CN112485462B (zh) * 2020-11-19 2022-08-16 易思维(杭州)科技有限公司 一种列车车速的测量系统
CN112528950A (zh) * 2020-12-24 2021-03-19 济宁科力光电产业有限责任公司 一种用于仓储通道的移动目标识别系统及方法
CN112881748A (zh) * 2021-01-21 2021-06-01 杭州隆硕科技有限公司 一种具有角度补偿功能的激光测速系统及计算方法
CN113091609B (zh) * 2021-03-31 2022-11-15 中冶南方工程技术有限公司 一种转炉钢包车的位置检测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636900A2 (de) * 1993-07-30 1995-02-01 Siemens Aktiengesellschaft Verfahren zur Geschwindigkeitsmessung und Klassifizierung von Fahrzeugen mittels eines Verkehrsradargerätes
CN103370600A (zh) * 2011-02-24 2013-10-23 罗伯特·博世有限公司 用于进行车辆测量的装置
CN203288083U (zh) * 2013-03-19 2013-11-13 北京万集科技股份有限公司 一种激光三维扫描车辆装置
CN103884288A (zh) * 2014-04-02 2014-06-25 广西我的科技有限公司 一种实时测量车辆长度、宽度或高度的系统以及方法
CN105445745A (zh) * 2015-12-04 2016-03-30 同方威视技术股份有限公司 移动目标状态监测方法、装置及其车辆快速检查系统
CN205427190U (zh) * 2015-12-04 2016-08-03 同方威视技术股份有限公司 移动目标状态监测装置及其车辆快速检查系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124932A (en) * 1996-04-10 2000-09-26 Tax; Hans Method for target-path correction of a load carrier and target-detection device and directional beam-emitting unit for performance of said method
KR100556612B1 (ko) * 2002-06-29 2006-03-06 삼성전자주식회사 레이저를 이용한 위치 측정 장치 및 방법
DE10353348A1 (de) 2003-11-14 2005-06-02 Ibeo Automobile Sensor Gmbh Verfahren zur Verfolgung von Objekten
US7323987B2 (en) * 2004-06-28 2008-01-29 Sigma Space Corporation Compact single lens laser system for object/vehicle presence and speed determination
US8599368B1 (en) * 2008-01-29 2013-12-03 Enforcement Video, Llc Laser-based speed determination device for use in a moving vehicle
PT2204788E (pt) 2008-12-31 2013-04-04 Vitronic Dr Ing Stein Bildverarbeitungssysteme Gmbh Método e dispositivo para a determinação do movimento de veículos
DE102009007055A1 (de) 2009-02-02 2010-08-05 Robot Visual Systems Gmbh Verfahren zur Messung der Geschwindigkeit eines Fahrzeuges und sichtbaren Zuordnung in einer Dokumentation
GB2502732B (en) 2011-01-31 2017-02-22 Rapiscan Systems Inc Dual mode X-ray vehicle scanning system
CN102445183B (zh) * 2011-10-09 2013-12-18 福建汇川数码技术科技有限公司 基于激光与摄像机平行实现的远程测距系统测距激光点的定位方法
US9576484B2 (en) 2012-03-02 2017-02-21 Laser Technology, Inc. System and method for monitoring vehicular traffic with a laser rangefinding and speed measurement device utilizing a shaped divergent laser beam pattern
DK2767964T3 (en) 2013-02-14 2015-02-16 Kapsch Trafficcom Ag DEVICE FOR MEASURING A VEHICLE on a roadway
CN104751643B (zh) * 2015-03-16 2017-05-03 深圳市砝石激光雷达有限公司 一种激光大光斑的精确测速方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636900A2 (de) * 1993-07-30 1995-02-01 Siemens Aktiengesellschaft Verfahren zur Geschwindigkeitsmessung und Klassifizierung von Fahrzeugen mittels eines Verkehrsradargerätes
CN103370600A (zh) * 2011-02-24 2013-10-23 罗伯特·博世有限公司 用于进行车辆测量的装置
CN203288083U (zh) * 2013-03-19 2013-11-13 北京万集科技股份有限公司 一种激光三维扫描车辆装置
CN103884288A (zh) * 2014-04-02 2014-06-25 广西我的科技有限公司 一种实时测量车辆长度、宽度或高度的系统以及方法
CN105445745A (zh) * 2015-12-04 2016-03-30 同方威视技术股份有限公司 移动目标状态监测方法、装置及其车辆快速检查系统
CN205427190U (zh) * 2015-12-04 2016-08-03 同方威视技术股份有限公司 移动目标状态监测装置及其车辆快速检查系统

Also Published As

Publication number Publication date
RU2655694C2 (ru) 2018-05-29
MY192645A (en) 2022-08-29
RU2016138535A (ru) 2018-04-04
EA201792272A1 (ru) 2018-04-30
US20170160304A1 (en) 2017-06-08
CN105445745A (zh) 2016-03-30
SG10201608191TA (en) 2017-07-28
BR102016022142A2 (pt) 2017-06-13
EA037197B1 (ru) 2021-02-18
MX361993B (es) 2018-12-19
MX2016010256A (es) 2017-06-05
US10495661B2 (en) 2019-12-03
EP3176605A1 (en) 2017-06-07
BR102016022142B1 (pt) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2017092405A1 (zh) 移动目标状态监测方法、装置及其车辆快速检查系统
WO2017092406A1 (zh) 车辆快速检查方法及系统
JP4621652B2 (ja) 移動目標の高速イメージング検査設備及び方法
CN205427190U (zh) 移动目标状态监测装置及其车辆快速检查系统
CN101162209B (zh) 对移动目标进行快速成像检查的设备及方法
WO2019100810A1 (zh) 辐射图像校正方法和校正装置及校正系统
JP5540217B2 (ja) レーザースキャンセンサ
US10012722B2 (en) Monitoring apparatus and non-transitory computer-readable medium
KR20140019571A (ko) 후측방 경보 시스템 및 방법
US10816663B2 (en) Distance measuring device and distance measuring method
JP6299182B2 (ja) 死活監視システム
WO2019080946A1 (zh) 车辆速度测量方法及装置
EP2531862B1 (en) Device for measuring the speed of products in movement, in particular metal rolled products in a rolling line, and related method
KR101339456B1 (ko) 스캐너를 이용한 터널 내 유고 검지 시스템
WO2018072670A1 (zh) 背散射辐射成像系统
WO2020134127A1 (zh) 安检设备和安检方法
CN109828310B (zh) 安检设备和安检方法
CN214375317U (zh) 安检设备
CN218497151U (zh) 车辆检查系统
US20210190951A1 (en) Method for operating a lidar system
KR101280872B1 (ko) 대기행렬 검지시스템
JP2014191595A (ja) 物標検出装置
CN115616603A (zh) 车辆检查系统和车辆检查方法
JP2003156558A (ja) 車載式速度測定装置
KR20170119348A (ko) 운전지원장치 및 운전지원방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201792272

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869716

Country of ref document: EP

Kind code of ref document: A1