WO2019100810A1 - 辐射图像校正方法和校正装置及校正系统 - Google Patents

辐射图像校正方法和校正装置及校正系统 Download PDF

Info

Publication number
WO2019100810A1
WO2019100810A1 PCT/CN2018/104173 CN2018104173W WO2019100810A1 WO 2019100810 A1 WO2019100810 A1 WO 2019100810A1 CN 2018104173 W CN2018104173 W CN 2018104173W WO 2019100810 A1 WO2019100810 A1 WO 2019100810A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspected
radiation
radiation image
image
correction
Prior art date
Application number
PCT/CN2018/104173
Other languages
English (en)
French (fr)
Inventor
涂俊杰
刘必成
徐强
李荐民
王永明
李玉兰
宗春光
李元景
马媛
陈志强
于昊
张丽
喻卫丰
许艳伟
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to PL435081A priority Critical patent/PL435081A1/pl
Publication of WO2019100810A1 publication Critical patent/WO2019100810A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4023Scaling of whole images or parts thereof, e.g. expanding or contracting based on decimating pixels or lines of pixels; based on inserting pixels or lines of pixels

Definitions

  • the present disclosure relates to the field of radiation imaging, and in particular, to a radiation image correction method and a calibration apparatus and a calibration system.
  • the related art of radiation image correction learned by the inventor includes: installing multiple sets of light curtains or photoelectric sensors in the detection channel, using the adjacent two sets of sensors to perform interval measurement on the object to be inspected, and then using the interval speed measurement result to be inspected The radiation image of the object is corrected.
  • the inventors have found that the aforementioned related art speed measurement accuracy is low, resulting in poor real-time correction of the radiation image. For example, if the motion speed of the object to be detected changes in the current interval, the radiation image corrected according to the speed measurement result of the previous interval will still have a large distortion.
  • One technical problem to be solved by the embodiments of the present disclosure is to improve the monitoring accuracy of the motion state of the object to be inspected and improve the real-time performance of the radiation image correction.
  • a radiation image correction method includes: acquiring scan data of a laser scanner; determining motion state information of the object to be inspected according to scan data of the laser scanner, and motion state of the object to be inspected The information includes at least one of a moving speed and a traveling state of the object to be inspected; and correcting the radiation image of the object to be inspected according to at least one of a moving speed and a traveling state of the object to be inspected.
  • the radiation image of the detected object in a case where the moving speed of the detected object is greater than a set undistorted speed threshold, the radiation image of the detected object is subjected to interpolation processing; and the moving speed of the detected object is less than the setting In the case of the distortion-free speed threshold, the radiation image of the object to be inspected is subjected to extraction processing.
  • the detected object in a case where the moving speed of the detected object is greater than the set undistorted speed threshold, the detected object is detected whenever the moving distance of the detected object satisfies the set image correction step size.
  • the radiation image of the object is subjected to one interpolation process; in the case where the motion speed of the object to be detected is less than the set distortion-free speed threshold, whenever the motion distance of the object satisfies the set image correction step size, The radiation image of the object to be inspected is subjected to one extraction process.
  • the motion speed of the object to be detected has not been updated, and the correction is performed according to the motion speed of the object to be inspected the previous time.
  • a correction process is performed on the radiation image of the object to be inspected, the correction process including an interpolation process or an extraction process.
  • the scanning frequency of the control radiation device is increased to correct the radiation image of the object to be inspected; In the case where the moving speed of the object to be inspected is smaller than the set distortion-free speed threshold, the scanning frequency of the control radiation device is reduced to correct the radiation image of the object to be inspected.
  • the control radiation device stops scanning; in the case where the traveling state of the object to be inspected is advanced, and in the case where the moving speed of the object to be inspected is greater than the set distortion-free speed threshold Interpolating the radiation image of the object to be inspected or controlling the scanning frequency of the radiation device to increase; in the case where the traveling state of the object to be inspected is advancing, and the moving speed of the object to be inspected is less than the set In the case of the distortion-free speed threshold, the radiation image of the object to be inspected is subjected to the drawing process or the scanning frequency of the control radiation device is decreased.
  • motion state information of each portion of the object to be inspected is determined based on scan data of the laser scanner, and motion state information of each portion of the object to be examined includes motion of each portion of the object under test At least one of a speed and a traveling state; respectively, correcting a radiation image of each portion of the object to be inspected according to at least one of a moving speed and a traveling state of each portion of the object to be inspected.
  • a radiation image correcting apparatus comprising: a data collecting module for collecting scan data of a laser scanner; and a motion state determining module for determining a check according to scan data of the laser scanner
  • Motion state information of the object the motion state information of the object to be inspected includes at least one of a motion speed and a traveling state of the object to be inspected
  • an image correction module for using the motion speed and the traveling state of the object to be inspected At least one of the corrections of the radiation image of the object to be inspected.
  • the image correction module includes at least one of a first image correction unit, a second image correction unit, a third image correction unit, and a fourth image correction unit;
  • the first image correcting unit is configured to perform interpolation processing on the radiation image of the object to be inspected when the motion speed of the object to be detected is greater than the set distortion-free speed threshold; When the moving speed is less than the set undistorted speed threshold, the radiation image of the object to be inspected is subjected to the drawing process;
  • the second image correcting unit is configured to: when the moving speed of the detected object is greater than the set undistorted speed threshold, increase the scanning frequency of the radiation device; and the moving speed of the object to be inspected is less than the set In the case of a distortion-free speed threshold, the scanning frequency of the control radiation device is reduced;
  • the third image correcting unit is configured to perform a drawing process on the radiation image of the object to be inspected or to reduce a scanning frequency of the radiation device when the traveling state of the object to be inspected is backward; When the traveling state of the object to be inspected is stopped, the control radiation device stops scanning;
  • the fourth image correcting unit is configured to: when the traveling state of the object to be inspected is forward, and in a case where the moving speed of the object to be detected is greater than a set undistorted speed threshold, The radiation image of the inspection object is subjected to interpolation processing or the scanning frequency of the control radiation device is increased; or, in the case where the traveling state of the object to be inspected is advanced, and the moving speed of the object to be inspected is smaller than the set distortion-free speed In the case of the threshold value, the radiation image of the object to be inspected is subjected to the drawing process or the scanning frequency of the control radiation device is decreased.
  • the first image correcting unit is configured to: when the moving speed of the detected object is greater than a set undistorted speed threshold, each time the moving distance of the detected object satisfies the set image
  • the step size is corrected, the radiation image of the object to be inspected is subjected to one interpolation process; and when the motion speed of the object to be detected is less than the set distortion-free speed threshold, the motion distance of the object to be inspected is satisfied.
  • the set image correction step size is performed, the radiation image of the object to be inspected is subjected to one extraction process.
  • the first image correcting unit is configured to: if the moving distance of the detected object satisfies the set image correcting step, the moving speed of the detected object has not been updated, according to the previous time
  • the degree of correction corresponding to the moving speed of the object to be inspected is subjected to a correction process for the radiation image of the object to be inspected, and the correction process includes an interpolation process or an extraction process.
  • the second image correcting unit is configured to determine, according to a relationship between a scanning frequency of the radiation device and an image length of the one-shot scan and a moving speed of the object to be inspected,
  • the target scanning frequency is controlled to change the scanning frequency of the radiation device to the target scanning frequency.
  • the motion state determining module is configured to determine motion state information of each part of the object to be inspected according to scan data of the laser scanner, and the motion state information of each part of the object to be inspected includes At least one of a moving speed and a traveling state of each portion of the object to be inspected; the image correcting module configured to: according to at least one of a moving speed and a traveling state of each portion of the object to be inspected, The radiation images of each portion of the object to be inspected are corrected separately.
  • a radiation image correction apparatus comprising: a memory; and a processor coupled to the memory, the processor being configured to perform the foregoing based on an instruction stored in the memory Radiation image correction method.
  • a radiation image correction system comprising: a laser scanner, a radiation device, an imaging device, and the aforementioned radiation image correction device; wherein the laser scanner is configured to emit a laser pair to be inspected The object is scanned, and the scan data is transmitted to the radiation image correcting device; the radiation device is configured to emit a radiation beam to the object to be inspected, and transmit the detected radiation beam signal transmitted through the object to be detected to the An imaging device configured to perform imaging based on a radiation ray signal detected by the radiation device; the radiation image correction device configured to transmit correction data of a change scan frequency type determined based on the scan data to the a radiation device that causes the radiation device to change a scanning frequency of the object to be inspected, or is configured to interpolate a radiation image formed by the imaging device in a case where a motion state determined based on the scan data conforms to a preset condition Or the calibration process of the extraction.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the aforementioned radiation image correction method.
  • the present disclosure utilizes a laser scanner as an image correcting sensing device, and the monitoring accuracy of the motion state of the object to be inspected is relatively high, and the real-time performance of the radiation image correction can be improved.
  • FIG. 1 is a schematic structural view of some embodiments of a radiation image correction system of the present disclosure.
  • FIG. 2 is a schematic diagram of a laser beam in accordance with some embodiments of the present disclosure.
  • FIG 3 is a schematic diagram of a monitoring area of a laser scanner, in accordance with some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of a method of locating a subject according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic flow chart of some embodiments of a radiation image correction method according to the present disclosure.
  • FIG. 6 is a schematic flow chart of still another embodiment of a radiation image correction method according to the present disclosure.
  • FIG. 7 is a schematic flow chart of still another embodiment of a radiation image correction method according to the present disclosure.
  • FIG. 8 is a schematic structural diagram of some embodiments of a radiation image correcting apparatus according to the present disclosure.
  • FIG. 9 is a schematic structural view of another embodiment of the radiation image correcting device of the present disclosure.
  • the radiation image correcting system 10 of this embodiment includes a laser scanner 110, a radiation device 120, an imaging device 130, and a radiation image correcting device (referred to as a correcting device) 140.
  • the laser scanner 110 is configured to emit a laser to scan the object to be inspected, and transmit the scan data to the radiation image correcting device 140.
  • the laser scanner 110 can emit a plurality of laser beams of different angles to at least one object to be inspected at a predetermined scanning frequency, and return a reflection point and a laser beam emission position when a laser beam is reflected by the object to be inspected. The distance between the laser beam and the angle of the laser beam is scanned.
  • 2 is a schematic view of a laser beam of the present disclosure. As shown in FIG. 2, the laser scanner 110 can detect and return the distance d between the laser beam emission position of each angle to the laser beam reflection position (such as point A on the front edge of the vehicle head in FIG. 2) in real time and its corresponding emission angle ⁇ . .
  • FIG. 3 is a schematic illustration of the monitoring area of the laser scanner of the present disclosure.
  • the laser scanner 110 has two installation modes: the first installation method is as shown in the laser scanner 111', and may be disposed, for example, on the top of the detection channel, and the scanning section is perpendicular to the ground of the detection channel;
  • the two mounting methods, as shown by the laser scanner 111 can be disposed, for example, above the side of the detection channel, with an acute or obtuse angle between the scanning section and the ground of the detection channel.
  • the laser scanner 111 or 111' monitors at least one object to be detected at a preset scanning frequency, for example, 100 Hz (ie, 100 scans per second), and simultaneously emits multiple laser beams of different angles at the same time, multiple lasers.
  • the starting point A of the range covered by the scanning section of the bundle is the monitoring area of the laser scanner 111 or 111'.
  • Laser scanners have a wide range of monitoring and are typically continuously monitored over a range of 80 meters or more.
  • the object to be inspected when the object to be inspected is monitored using the laser scanner 110, since the monitoring range is large, in order to avoid unnecessary monitoring data storage, it is usually before the object to be inspected does not pass the laser scanner and The monitoring data is processed after reaching a preset position (relative to the position of the laser scanner), that is, it is considered to enter its monitoring area from the preset position.
  • the preset position can be set 25 meters before the laser scanner installation position, but the disclosure is not limited thereto.
  • a laser scanner as a monitoring device for the motion state of the object to be inspected (such as positioning, speed measurement, traveling state, etc.) is easy to install and low in cost, and in practice, it is not necessary to emphasize the strict inclination angle of the sensor in the installation procedure, and the different installation inclination angles. Does not have any effect on the required precision and algorithm.
  • the speed of movement of the object to be inspected at a low speed (for example, 5 km/h) can be accurately measured when the speed is measured using a laser scanner.
  • the radiation device 120 is configured to emit a radiation ray beam (for example, X-rays) to the object to be inspected, and transmit the detected radiation ray signal transmitted through the object to be inspected to the imaging device 130.
  • the radiation device 120 includes a radiation source for emitting a radiation beam; and a detector for detecting radiation rays transmitted through the object to be inspected.
  • the imaging device 130 is configured to perform imaging based on the radiation ray signal detected by the radiation device 120.
  • the radiation image correcting device 140 is configured to acquire scan data of the laser scanner 110, and determine motion state information of the object to be inspected according to scan data of the laser scanner 110, including at least one of a motion speed and a traveling state of the object to be inspected.
  • the radiation image of the object to be inspected is corrected according to at least one of the moving speed and the traveling state of the object to be inspected.
  • the laser scanner 110 can collect the scan data of the detected object at each position in real time, and the radiation image correcting device 140 can determine the motion state and the traveling state of the detected object at various positions in real time according to the real-time scan data.
  • the information has a relatively high monitoring accuracy of the motion state of the object to be inspected, and the radiation image of the object to be inspected is corrected based on the real-time motion state information of the object to be inspected, thereby improving the real-time performance of the radiation image correction.
  • the radiation image correction device 140 is electrically coupled to the radiation device 120 and configured to transmit correction data of a change scan frequency type determined based on the scan data to the radiation device 120, causing the radiation device 120 to change the pair The scanning frequency of the object is detected, and the imaging device 130 is imaged based on the radiation ray signal detected by the radiation device 120.
  • the radiation image correcting device 140 is electrically connected to the imaging device 130 and configured to perform the radiation image formed by the imaging device 130 in a case where the motion state determined based on the scan data conforms to a preset condition. Correction processing for interpolation or extraction.
  • the following describes the radiation image correcting means 140 collecting the scan data of the laser scanner 110, and determining the motion state information such as the position, the moving speed, the traveling state, and the like of the object to be inspected.
  • the radiation image correcting device 140 determines at least one fixed point on the object to be inspected for each object to be inspected in the monitoring area, and receives at least one fixed point of the object to be detected detected by the laser scanner 110 at different times. Scanning data such as the distance of the emission position of the laser beam (i.e., the mounting position of the laser scanner 110) and the corresponding emission angle of the laser beam.
  • the laser scanner 110 can be selected to return a point of data change, such as a significant sudden change point of the object to be inspected (for example, a certain point on the leading edge or the tail of the object to be inspected) or the same height of the object to be inspected.
  • a point of data change such as a significant sudden change point of the object to be inspected (for example, a certain point on the leading edge or the tail of the object to be inspected) or the same height of the object to be inspected.
  • the point is not limited to this disclosure.
  • the radiation image correcting device 140 can determine, according to the detected object, the distance between the at least one fixed point of the object to be detected detected by the laser scanner 110 and the laser beam emitting position and the corresponding laser beam emission angle. (Optional output) the relative position of the object to be scanned from the laser scanner at different times.
  • FIG. 4 is a schematic diagram of a method for positioning an object to be inspected according to the present disclosure.
  • a certain fixed point A on the leading edge of the object 100 to be inspected is selected as a point at which the return data of the laser scanner 110 changes in FIG. 4 as an example.
  • the measurement range is empty, that is, when no object enters the monitoring area
  • the corresponding angle ⁇ from the closest point of the laser scanner 110 point B in FIG. 4
  • the object 100 to be inspected is in the position No. 1, the distance S1 between the current laser beam emission position and the laser beam is changed according to the point at which the return data detected by the laser scanner 110 changes (ie, the fixed point A in FIG. 4).
  • the angle ⁇ is used to determine the relative position L1 of the position 1 from the laser scanner 110:
  • the current distance from the laser beam emission position according to the point at which the return data detected again by the laser scanner 110 changes ie, the fixed point A in FIG. 4
  • the distance S2 and the angle ⁇ of the laser beam are used to determine the relative position L2 of the position 2 from the laser scanner 110:
  • the relative position L2 between the position 2 and the laser scanner 110 can also be calculated by calculating the displacement S3 between the position 1 and the position 2 of the object to be inspected.
  • the angle ⁇ between S1 and S2 can be calculated from the angles ⁇ and ⁇ of the two laser beams, and then S3 is calculated according to the cosine theorem:
  • L2 L1 - S3.
  • the monitoring range may be further divided, thereby For different areas, different displacement intervals or time intervals are used to measure and output the position information of the object to be inspected. That is, the radiation image correcting device 140 first determines which region of the partition the position of the object to be inspected with respect to the laser scanner is located, thereby determining to determine and output the position information of the object to be inspected at the corresponding displacement interval or time interval. Wherein the time interval or displacement interval is smaller as the object to be inspected moves toward the laser scanner and the closer it is to the relative position of the laser scanner. For example, as shown in FIG.
  • the monitoring area may be divided into four areas, in which the object to be inspected is correspondingly determined and output when the object to be inspected moves to the area No. 3 closest to the laser scanner.
  • the position of the object is the fastest, that is, the minimum displacement of the object to be inspected or a minimum time interval, and the position of the object to be inspected is determined and output.
  • the specific area division and the setting of the output frequency can be determined according to the actual application, and the disclosure is not limited thereto.
  • the radiation image correcting device 140 determines, according to the detected object, the distance between the at least one fixed point of the object to be detected detected by the laser scanner 110 and the laser beam emitting position and the corresponding laser beam emission angle. The speed of movement of the object to be inspected is output.
  • T1 and T2 are the times when the object 100 to be inspected moves to the position 1 and the position 2, respectively. This time can be obtained, for example, by the time calculation formula of the radiation image correcting device 140 itself, for example, marking T1 when the first distance S1 is received, marking T2 when receiving the second distance S2, or passing the laser The time taken in the packet returned by the scanner 110 is obtained.
  • a plurality of fixed points may also be selected, such as multiple return data change points (such as points of different heights on the detected object or multiple obvious mutation points on the detected object, etc.), based on each fixed point.
  • a plurality of displacement values are fitted, for example, an average calculation is performed, and the speed of the object to be inspected is calculated based on the finally obtained average displacement.
  • the speed measurement can be further improved by measuring the speed based on a plurality of fixed points.
  • the above-described output manner based on different regions that is, the relative position of the object to be inspected and the laser scanner 110 may be combined to determine and output the object to be inspected at different displacement intervals or time intervals. speed.
  • the radiation image correcting device 140 detects the current traveling state of each object to be inspected. For example, the traveling state of the current time of the object to be inspected is determined according to the different relative positions of the object to be detected from the laser scanner 110 at the current time and the previous time. First, it is known from the angle information in the data returned by the laser scanner 110 whether the object to be inspected is currently moving toward the laser scanner 110 or moving away from the laser scanner 110.
  • the object to be inspected moves toward the laser scanner 110, if the distance of the object to be inspected from the laser scanner 110 is less than the distance from the laser scanner 110 at the current time, the object to be inspected is considered to be forward; If it is greater than, the object to be inspected is considered to be backward; and if it is equal to, the object to be inspected is considered to stop moving.
  • the object to be inspected moves away from the laser scanner 110, if the distance of the object to be inspected from the laser scanner 110 is greater than the distance from the laser scanner 110 at the previous time, the object to be inspected is considered to be forward; If it is less than, the object to be inspected is considered to be backward.
  • the radiation image correcting device 140 may determine the traveling direction directly based on the change in the angle of the laser beam returned twice by the object to be inspected. For example, when moving toward the laser scanner 110, the angle of the returned laser beam should be smaller and smaller; and when moving away from the laser scanner 110, the angle of the returned laser beam should be larger and larger.
  • Some embodiments of the present disclosure are capable of measuring the motion state of a subject in real time and continuously using a laser scanner, and the monitoring accuracy is relatively high. Correcting the radiation image of the object to be inspected based on the measured motion state can improve the real-time performance of the radiation image correction.
  • the radiation image correcting device 140 described below corrects the radiation image of the object to be inspected based on at least one of the moving speed and the traveling state of the object to be inspected.
  • the image is interpolated or extracted according to the moving speed of the object to be inspected.
  • the radiation image of the object to be inspected is interpolated; in the case where the moving speed of the detected object is less than the set undistorted speed threshold, The radiation image of the object to be inspected is subjected to extraction processing.
  • the undistorted speed threshold can be obtained by testing, which can be a value or a range.
  • the interpolation process is a correction method of inserting pixel points in a radiation image, for example, generating pixel information of an inserted pixel point based on pixel information of a plurality of adjacent pixel points in the radiation image.
  • the extraction process is a correction method of extracting pixel points in a radiation image, for example, pixels of a plurality of columns in the radiation image are extracted, and the remaining pixel points are used as corrected radiation images.
  • the moving speed of the object to be inspected can be measured with higher precision, the radiation image of the object to be inspected can be better corrected in real time according to the moving speed of the object to be inspected.
  • the correction processing can be performed in combination with the image correction step size to further improve the real-time of the correction.
  • the image correction step size can be set according to the requirements of the service for real-time correction. The higher the real-time requirement of the service, the shorter the image correction step size is set.
  • the radiation image of the object to be inspected is subjected to one interpolation process each time the moving distance of the object to be inspected satisfies the set image correction step size. If the motion distance of the object to be inspected satisfies the set image correction step size, the motion speed of the object to be inspected has not been updated (ie, during the interval between scans of the laser scanner, the next scan time has not yet been reached) The radiation image of the object to be inspected is subjected to interpolation processing once based on the degree of correction corresponding to the moving speed of the object to be inspected. Therefore, in the case where the object to be inspected has a very fast moving speed, the radiation image of the object to be inspected can still be corrected, and the degree of distortion of the radiation image can be effectively improved.
  • the radiation image of the object to be inspected is subjected to one drawing process each time the moving distance of the object to be inspected satisfies the set image correction step size. If the motion distance of the object to be inspected satisfies the set image correction step size, the motion speed of the object to be inspected has not been updated, and the radiation image of the object to be inspected is once extracted according to the degree of correction corresponding to the motion speed of the previous object to be inspected. Column processing. Therefore, in the case where the moving speed of the object to be inspected is very slow, the radiation image of the object to be inspected can still be corrected, and the degree of distortion of the radiation image can be effectively improved.
  • the motion speed of the object to be inspected has not been updated every time the preset correction interval time is reached, and the correction is performed according to the motion speed of the previous object to be inspected.
  • the radiation image of the object to be inspected is subjected to one extraction process.
  • the correction interval may be set to be less than the interval between two scans of the laser scanner, and typically the correction interval is set to be greater than the radiation period of the radiation device 120. Therefore, in the case where the moving speed of the object to be inspected is very slow, the radiation image of the object to be inspected can still be corrected, and the degree of distortion of the radiation image can be effectively improved.
  • the correction is performed in such a manner that the scanning frequency of the radiation device is changed in accordance with the moving speed of the object to be inspected.
  • the scanning frequency of the control radiation device is increased to correct the radiation image of the object to be inspected; the moving speed of the object to be inspected is less than the set In the case of the distortion speed threshold, the scanning frequency of the control radiation device is reduced to correct the radiation image of the subject.
  • the moving speed of the object to be inspected can be measured with higher precision, the radiation image of the object to be inspected can be better corrected in real time according to the moving speed of the object to be inspected.
  • changing the scanning frequency of the radiation device can be gradually changed to a desired scanning frequency by setting the adjustment amplitude of the scanning frequency. Further, it is also possible to quickly change to a desired scanning frequency by the following method proposed in the embodiment.
  • the scan frequency is changed to the target scan frequency.
  • C is a constant determined based on the scanning capability of the radiation device.
  • Correction is performed according to the traveling state of the object to be inspected.
  • the traveling state of the object to be inspected is backward, the radiation image of the object to be inspected is subjected to extraction processing.
  • the scanning frequency of the control radiation device is decreased.
  • the radiation control device is stopped to stop scanning.
  • the traveling state of the object to be inspected can be measured with higher precision, the radiation image of the object to be inspected can be better corrected in real time according to the traveling state of the object to be inspected.
  • the correction is made according to the moving speed and the traveling state of the object to be inspected.
  • the radiation image of the object to be inspected is subjected to interpolation processing or scanning of the control radiation device.
  • the frequency increases.
  • the radiation image of the object to be inspected is subjected to the drawing process or the scanning frequency of the radiation device is controlled. Reduced.
  • the traveling state of the object to be inspected is backward
  • the radiation image of the object to be inspected is subjected to a corresponding degree of drawing processing in accordance with the backward speed.
  • the faster the retreat speed the more pixels are extracted from the radiation image of the object to be inspected.
  • the radiation device is controlled to decrease its scanning frequency according to the backward speed according to the backward speed.
  • the faster the retreat speed the more the scanning frequency of the radiation device is reduced.
  • the moving speed and the traveling state of the object to be inspected can be measured with high precision, the radiation image of the object to be inspected can be better corrected in real time according to the moving speed and the traveling state of the object to be inspected.
  • the radiation image of the object to be inspected may not be subjected to the correction processing.
  • the radiation image correcting device 140 scans data according to the distances of the plurality of points of the object to be detected detected by the laser scanner 110 at different times and the emission positions of the plurality of laser beams and the corresponding emission angle of the laser beam.
  • the outline of the object to be inspected can be determined. According to the outline of the object to be inspected, if the object to be inspected includes at least two parts, the motion state information determining method such as the position, the moving speed, the traveling state, and the like of each portion are respectively determined using the aforementioned motion state information determining method. Then, the radiation image of each portion of the object to be inspected is corrected separately according to at least one of the moving speed and the traveling state of each portion of the object to be inspected.
  • the radiation images of the respective portions of the object to be inspected are respectively interpolated or extracted, or different degrees of interpolation are performed, or correction processes such as different degrees of extraction are performed.
  • the correction method of each part of the object to be inspected is the same as the method of correction of the object to be inspected as a whole, and will not be described again here.
  • the object to be inspected is considered to be divided into two parts by the gap.
  • a vehicle with a drag device as shown in FIG. 2, has a gap between the front and the drag device, the vehicle is divided by the gap and the split is connected, then the vehicle is divided into two parts: the front and the drag device by the gap. .
  • the movement state of the front and the dragging device may not be exactly the same.
  • the vehicle brakes the head speed is quickly reduced, and the dragging device maintains the speed before braking for a period of time due to inertia, and then decelerates.
  • image distortion due to inconsistency in the motion state of each part of the object to be inspected can be improved.
  • FIG. 5 is a schematic flow chart of some embodiments of a radiation image correction method according to the present disclosure. As shown in FIG. 5, the radiation image correction method 50 of this embodiment can be performed, for example, by the radiation image correction device 140, including the following steps:
  • Step 510 collecting scan data of the laser scanner
  • Step 520 Determine motion state information of the object to be inspected according to scan data of the laser scanner, where the motion state information of the object to be detected includes at least one of a motion speed and a traveling state of the object to be inspected;
  • Step 530 correcting the radiation image of the object to be inspected according to at least one of the motion speed and the traveling state of the object to be inspected.
  • the motion state of the object to be inspected is measured by the laser scanner, the measurement accuracy is relatively high, and the radiation image of the object to be inspected is corrected according to the measured motion state, so that the real-time performance of the radiation image correction can be improved.
  • FIG. 6 is a schematic flow chart of still another embodiment of a radiation image correction method according to the present disclosure. As shown in FIG. 6, the radiation image correction method 60 of this embodiment includes the following steps:
  • Step 610 the radiation image correcting device 140 collects scan data of the laser scanner
  • Step 620 the radiation image correcting device 140 determines the motion state information of the object to be inspected according to the scan data of the laser scanner, and the motion state information of the object to be inspected includes at least one of a motion speed and a traveling state of the object to be inspected;
  • Step 630 the radiation image correcting device 140 determines to change the scanning frequency of the radiation device 120 according to at least one of the moving speed and the traveling state of the object to be inspected, and changes the scanning frequency type correction data (for example, increasing or decreasing scanning)
  • the frequency, the amplitude of the scanning frequency change, and the like are transmitted to the radiation device 120 to correct the radiation image of the object to be inspected.
  • the radiation device 120 changes the scanning frequency of the object to be inspected according to the instruction of the radiation image correcting device 140, and transmits the detected radiation ray signal transmitted through the object to be inspected to the imaging device 130.
  • step 650 the imaging device 130 performs imaging based on the radiation ray signal detected by the radiation device 120.
  • the laser scanner is used to measure the motion state of the object to be inspected, and the measurement accuracy is relatively high.
  • the radiation image of the object to be inspected is corrected by changing the scanning frequency of the radiation device 120, and the real-time correction of the radiation image can be improved. Sex.
  • FIG. 7 is a schematic flow chart of still another embodiment of a radiation image correction method according to the present disclosure. As shown in FIG. 7, the radiation image correction method 70 of this embodiment includes the following steps:
  • Step 710 the radiation image correcting device 140 collects scan data of the laser scanner
  • Step 720 the radiation image correcting device 140 determines the motion state information of the object to be inspected according to the scan data of the laser scanner, and the motion state information of the object to be inspected includes at least one of a motion speed and a traveling state of the object to be inspected;
  • the radiation device 120 emits a radiation beam (for example, X-rays) to the object to be inspected, and transmits the detected radiation beam signal transmitted through the object to be inspected to the imaging device 130.
  • a radiation beam for example, X-rays
  • the imaging device 130 performs imaging based on the radiation ray signal detected by the radiation device 120.
  • steps 710-720 and steps 730-740 is in no particular order.
  • Step 750 the radiation image correcting device 140 performs interpolation processing on the interpolation or extraction of the radiation image formed by the imaging device 130 according to at least one of the moving speed and the traveling state of the object to be inspected, in accordance with the preset condition. .
  • the motion state of the object to be inspected is measured by the laser scanner, and the measurement accuracy is relatively high.
  • the radiation image formed by the imaging device 130 is interpolated or extracted to correct the radiation of the object to be inspected.
  • the image can improve the real-time performance of the radiation image correction.
  • FIG. 8 is a schematic structural diagram of some embodiments of a radiation image correcting apparatus according to the present disclosure. As shown in FIG. 8, the radiation image correcting device 140 of this embodiment includes:
  • a data acquisition module 1401, configured to collect scan data of the laser scanner
  • a motion state determining module 1402 configured to determine motion state information of the object to be inspected according to scan data of the laser scanner, where the motion state information of the object to be detected includes at least one of a motion speed and a traveling state of the object to be detected;
  • the image correction module 1403 is configured to correct the radiation image of the object to be inspected according to at least one of a moving speed and a traveling state of the object to be inspected.
  • the image correction module 1403 includes at least one of a first image correction unit, a second image correction unit, a third image correction unit, and a fourth image correction unit;
  • a first image correcting unit configured to perform interpolation processing on the radiation image of the object to be inspected when the motion speed of the object to be detected is greater than the set distortion-free speed threshold; and the motion speed of the object to be detected is less than the set distortion-free speed
  • the radiation image of the object to be inspected is subjected to extraction processing
  • a second image correcting unit configured to control an increase in a scanning frequency of the radiation device when the moving speed of the detected object is greater than a set undistorted speed threshold; and the case where the moving speed of the detected object is less than the set undistorted speed threshold Lowering, the scanning frequency of the control radiation device is reduced;
  • a third image correcting unit configured to perform a drawing process on the radiation image of the object to be inspected or to reduce a scanning frequency of the radiation device when the traveling state of the object to be inspected is backward; and the traveling state of the object to be inspected is In case of stopping, the control radiation device stops scanning;
  • a fourth image correcting unit configured to perform interpolation processing on the radiation image of the object to be inspected in a case where the traveling state of the object to be inspected is advanced, and in a case where the moving speed of the object to be detected is greater than the set distortion-free speed threshold Or, the scanning frequency of the control radiation device is increased, and in the case where the moving speed of the object to be inspected is smaller than the set distortion-free speed threshold value, the radiation image of the object to be inspected is subjected to the drawing process or the scanning frequency of the control radiation device is decreased.
  • the first image correcting unit is configured to: when the moving speed of the detected object is greater than the set undistorted speed threshold, each time the moving distance of the detected object satisfies the set image correcting step, The radiation image of the object to be inspected is subjected to one interpolation process; when the motion speed of the object to be inspected is less than the set distortion-free speed threshold, the object to be inspected is detected whenever the motion distance of the object to be inspected satisfies the set image correction step size The radiation image is subjected to an extraction process.
  • the first image correcting unit is configured to: if the moving distance of the detected object satisfies the set image correcting step, the moving speed of the detected object has not been updated, according to the moving speed of the previous detected object
  • the degree of correction is performed by performing a correction process on the radiation image of the object to be inspected, and the correction process includes an interpolation process or an extraction process.
  • the second image correcting unit is configured to determine a target scanning frequency corresponding to the moving speed of the detected object according to the relationship between the scanning frequency of the radiation device and the image length of the one-shot scan and the moving speed of the detected object.
  • the scanning frequency of the control radiation device is changed to the target scanning frequency.
  • the motion state determining module 1402 is configured to determine motion state information of each part of the object to be inspected according to the scan data of the laser scanner, and the motion state information of each part of the object to be inspected includes the object to be inspected. At least one of a moving speed and a traveling state of each part; an image correcting module 1403, for each of the objects to be inspected according to at least one of a moving speed and a traveling state of each portion of the object to be inspected Part of the radiation image is corrected separately.
  • FIG. 9 is a schematic structural view of another embodiment of the radiation image correcting device of the present disclosure.
  • the radiation image correction device 140 of this embodiment includes a memory 910 and a processor 920 coupled to the memory 910, the processor 920 being configured to perform any of the foregoing based on instructions stored in the memory 910.
  • the radiation image correction method in the embodiment is not limited to a processor 920 coupled to the memory 910, the processor 920 being configured to perform any of the foregoing based on instructions stored in the memory 910.
  • the memory 910 may include, for example, a system memory, a fixed non-volatile storage medium, or the like.
  • the system memory stores, for example, an operating system, an application, a boot loader, and other programs.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code. .
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

一种辐射图像校正方法和校正装置及校正系统,涉及辐射成像领域。所述校正方法包括:采集激光扫描仪(110)的扫描数据;根据激光扫描仪(110)的扫描数据,确定被检对象的运动状态信息,所述被检对象的运动状态信息包括被检对象的运动速度和行进状态中的至少一项;根据所述被检对象的运动速度和行进状态中的至少一项,对所述被检对象的辐射图像进行校正。所述方法利用激光扫描仪(110)作为图像校正的传感设备,监测精度比较高,能够提高辐射图像校正的实时性。

Description

辐射图像校正方法和校正装置及校正系统
相关申请的交叉引用
本申请是以CN申请号为201711173570.0,申请日为2017年11月22日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及辐射成像领域,特别涉及一种辐射图像校正方法和校正装置及校正系统。
背景技术
发明人了解到的辐射图像校正的相关技术包括:在检测通道内安装多组光幕或光电传感器,利用相邻的两组传感器对被检对象进行区间测速,然后利用该区间测速结果对被检对象的辐射图像进行校正。
发明内容
发明人发现,前述提及的相关技术速度测量精度低,造成辐射图像校正的实时性较差。例如,如果被检对象的运动速度在当前区间发生改变,依据前一区间的测速结果校正后的辐射图像仍然会有较大的畸变。
本公开实施例要解决的一个技术问题是:提高被检对象运动状态的监测精度,改善辐射图像校正的实时性。
根据本公开的一个方面,提出一种辐射图像校正方法,包括:采集激光扫描仪的扫描数据;根据激光扫描仪的扫描数据,确定被检对象的运动状态信息,所述被检对象的运动状态信息包括被检对象的运动速度和行进状态中的至少一项;根据所述被检对象的运动速度和行进状态中的至少一项,对所述被检对象的辐射图像进行校正。
在一些实施例中,在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行插值处理;在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行抽列处理。
在一些实施例中,在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,每当所述被检对象的运动距离满足设置的图像校正步长时,对所述被检对象的辐 射图像进行一次插值处理;在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,每当所述被检对象的运动距离满足设置的图像校正步长时,对所述被检对象的辐射图像进行一次抽列处理。
在一些实施例中,若所述被检对象的运动距离满足设置的图像校正步长时,所述被检对象的运动速度还未更新,根据前一次所述被检对象的运动速度对应的校正程度,对所述被检对象的辐射图像进行一次校正处理,所述校正处理包括插值处理或抽列处理。
在一些实施例中,在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率增加,以便对所述被检对象的辐射图像进行校正;在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率减小,以便对所述被检对象的辐射图像进行校正。
在一些实施例中,根据辐射装置的扫描频率和一次脉冲扫描的图像长度及被检对象运动速度之间的关系,确定所述被检对象的运动速度对应的目标扫描频率,控制辐射装置的扫描频率改变到目标扫描频率。
在一些实施例中,在所述被检对象的行进状态是后退的情况下,对所述被检对象的辐射图像进行抽列处理或控制辐射装置的扫描频率减小;在所述被检对象的行进状态是停止的情况下,控制辐射装置停止扫描;在所述被检对象的行进状态是前进的情况下,且在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行插值处理或控制辐射装置的扫描频率增加;在所述被检对象的行进状态是前进的情况下,且在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行抽列处理或控制辐射装置的扫描频率减小。
在一些实施例中,根据激光扫描仪的扫描数据,确定被检对象的每个部分的运动状态信息,所述被检对象的每个部分的运动状态信息包括被检对象的每个部分的运动速度和行进状态中的至少一项;根据所述被检对象的每个部分的运动速度和行进状态中的至少一项,对所述被检对象的每个部分的辐射图像分别进行校正。
根据本公开的另一方面,提出一种辐射图像校正装置,包括:数据采集模块,用于采集激光扫描仪的扫描数据;运动状态确定模块,用于根据激光扫描仪的扫描数据,确定被检对象的运动状态信息,所述被检对象的运动状态信息包括被检对象的运动速度和行进状态中的至少一项;图像校正模块,用于根据所述被检对象的运动速度和行 进状态中的至少一项,对所述被检对象的辐射图像进行校正。
在一些实施例中,所述图像校正模块包括第一图像校正单元、第二图像校正单元、第三图像校正单元、第四图像校正单元中的至少一个单元;
所述第一图像校正单元,用于在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行插值处理;在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行抽列处理;
所述第二图像校正单元,用于在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率增加;在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率减小;
所述第三图像校正单元,用于在所述被检对象的行进状态是后退情况下,对所述被检对象的辐射图像进行抽列处理或控制辐射装置的扫描频率减小;在所述被检对象的行进状态是停止的情况下,控制辐射装置停止扫描;
所述第四图像校正单元,用于在所述被检对象的行进状态是前进的情况下,且在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行插值处理或控制辐射装置的扫描频率增加;或者,在所述被检对象的行进状态是前进的情况下,且在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行抽列处理或控制辐射装置的扫描频率减小。
在一些实施例中,所述第一图像校正单元,用于在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,每当所述被检对象的运动距离满足设置的图像校正步长时,对所述被检对象的辐射图像进行一次插值处理;在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,每当所述被检对象的运动距离满足设置的图像校正步长时,对所述被检对象的辐射图像进行一次抽列处理。
在一些实施例中,所述第一图像校正单元,用于若所述被检对象的运动距离满足设置的图像校正步长时,所述被检对象的运动速度还未更新,根据前一次所述被检对象的运动速度对应的校正程度,对所述被检对象的辐射图像进行一次校正处理,所述校正处理包括插值处理或抽列处理。
在一些实施例中,所述第二图像校正单元,用于根据辐射装置的扫描频率和一次脉冲扫描的图像长度及被检对象运动速度之间的关系,确定所述被检对象的运动速度对应的目标扫描频率,控制辐射装置的扫描频率改变到目标扫描频率。
在一些实施例中,所述运动状态确定模块,用于根据激光扫描仪的扫描数据,确 定被检对象的每个部分的运动状态信息,所述被检对象的每个部分的运动状态信息包括被检对象的每个部分的运动速度和行进状态中的至少一项;所述图像校正模块,用于根据所述被检对象的每个部分的运动速度和行进状态中的至少一项,对所述被检对象的每个部分的辐射图像分别进行校正。
根据本公开的再一方面,提出一种辐射图像校正装置,包括:存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行前述的辐射图像校正方法。
根据本公开的又一方面,提出一种辐射图像校正系统,包括:激光扫描仪、辐射装置、成像装置以及前述的辐射图像校正装置;其中,所述激光扫描仪被配置为发射激光对被检对象进行扫描,将扫描数据传输给所述辐射图像校正装置;所述辐射装置被配置为向被检对象发射辐射射线束,并将检测到的透过被检对象的辐射射线信号传输给所述成像装置;所述成像装置被配置为根据所述辐射装置检测到的辐射射线信号进行成像;所述辐射图像校正装置被配置为将基于扫描数据确定的改变扫描频率类型的校正数据传输给所述辐射装置,使所述辐射装置改变对被检对象的扫描频率,或者,被配置为在基于扫描数据确定的运动状态符合预设条件的情况下,对所述成像装置所形成的辐射图像进行插值或抽列的校正处理。
根据本公开的又一方面,提出一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现前述的辐射图像校正方法的步骤。
本公开利用激光扫描仪作为图像校正的传感设备,被检对象运动状态的监测精度比较高,能够提高辐射图像校正的实时性。
附图说明
下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍。根据下面参照附图的详细描述,可以更加清楚地理解本公开,
显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开辐射图像校正系统一些实施例的结构示意图。
图2为根据本公开一些实施例的激光束示意图。
图3为根据本公开一些实施例的激光扫描仪的监测区域的示意图。
图4为根据本公开一些实施例的被检对象定位方法的示意图。
图5为本公开辐射图像校正方法一些实施例的流程示意图。
图6为本公开辐射图像校正方法再一些实施例的流程示意图。
图7为本公开辐射图像校正方法另一些实施例的流程示意图。
图8为本公开辐射图像校正装置一些实施例的结构示意图。
图9为本公开辐射图像校正装置另一些实施例的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。
图1为本公开辐射图像校正系统一些实施例的结构示意图。如图1所示,该实施例的辐射图像校正系统10包括:激光扫描仪110、辐射装置120、成像装置130以及辐射图像校正装置(简称校正装置)140。
其中,激光扫描仪110被配置为发射激光对被检对象进行扫描,并将扫描数据传输给辐射图像校正装置140。通常,激光扫描仪110能够以一预设扫描频率向至少一个被检对象发射多条不同角度的激光束,当某条激光束遇到被检对象反射时,返回该反射点与激光束发射位置之间的距离,及该条激光束的角度等扫描数据。图2为本公开的激光束示意图。如图2所示,激光扫描仪110可实时检测并返回各角度激光束发射位置至激光束反射位置(如图2中车头前沿上的A点)之间的距离d及其对应的发射角度θ。
图3为本公开激光扫描仪的监测区域的示意图。如图3所示,激光扫描仪110有两种安装方式:第一种安装方式如激光扫描仪111’所示,例如可以设置于检测通道的顶部,其扫描截面与检测通道的地面垂直;第二种安装方式如激光扫描仪111所示,例如可以设置于检测通道的侧上方,其扫描截面与检测通道的地面之间的夹角呈一锐角或钝角。激光扫描仪111或111’以一预设扫描频率,例如100Hz(即每秒扫描100次),对至少一个被检对象进行监测,其一次可同时发射多条不同角度的激光束,多条激光束构成的扫描截面所覆盖范围的起点A即为激光扫描仪111或111’的监测区域。激光扫描仪的监测范围很大,通常可对其前后80米甚至更长的范围进行连续监测。
在一些实施例中,在使用激光扫描仪110对被检对象进行监测时,因其监测范围很大,为避免不必要的监测数据存储,因此通常会当被检对象未通过激光扫描仪之前且达到一预设位置(相对于激光扫描仪的位置)才开始对其监测数据进行处理,也即认为从该预设位置开始进入其监测区域。在实践中,例如可以将该预设位置设置在激光扫描仪安装位置之 前的25米处,但本公开不以此为限。
使用激光扫描仪作为被检对象运动状态(如定位、测速、行进状态等)的监测装置,易于安装且成本低,在实际应用中无需强调安装规程中传感器的严格倾斜角度,不同的安装倾斜角度对所需的精度和算法不产生任何影响。此外,在使用激光扫描仪测速时可以精确测量低速(例如5公里每小时)的被检对象的运动速度。
辐射装置120被配置为向被检对象发射辐射射线束(例如X射线),并将检测到的透过被检对象的辐射射线信号传输给成像装置130。辐射装置120包括射线源,用于发射辐射射线束;及,探测器,用于检测透过被检对象的辐射射线。
成像装置130被配置为根据辐射装置120检测到的辐射射线信号进行成像。
辐射图像校正装置140被配置为采集激光扫描仪110的扫描数据,根据激光扫描仪110的扫描数据,确定被检对象的运动状态信息,包括被检对象的运动速度和行进状态中的至少一项,根据被检对象的运动速度和行进状态中的至少一项,对被检对象的辐射图像进行校正。
通过激光扫描仪110可以实时采集被检对象在各个位置点的扫描数据,辐射图像校正装置140根据实时的扫描数据,可以实时地确定被检对象在各个位置点的运动速度和行进状态等运动状态信息,被检对象运动状态的监测精度比较高,此外,根据被检对象的实时的运动状态信息对被检对象的辐射图像进行校正,能够提高辐射图像校正的实时性。
本公开的一些实施例提出了两种类型的校正方法。第一种类型的校正方法,辐射图像校正装置140与辐射装置120电连接,并被配置为将基于扫描数据确定的改变扫描频率类型的校正数据传输给辐射装置120,使辐射装置120改变对被检对象的扫描频率,并使成像装置130根据辐射装置120检测到的辐射射线信号进行成像。第二种类型的校正方法,辐射图像校正装置140与成像装置130电连接,并被配置为在基于扫描数据确定的运动状态符合预设条件的情况下,对成像装置130所形成的辐射图像进行插值或抽列的校正处理。
下面描述辐射图像校正装置140采集激光扫描仪110的扫描数据,及确定被检对象的例如位置、运动速度、行进状态等运动状态信息。
辐射图像校正装置140针对监测区域内的每个被检对象,确定该被检对象上的至少一个固定点,接收激光扫描仪110在不同时刻检测到的该被检对象的至少一个固定点与多条激光束的发射位置(即激光扫描仪110的安装位置)的距离及其对应的激光束的发射角度等扫描数据。
首先,在选取上述固定点时,可以选取激光扫描仪110返回数据变化的一点,如被检 对象的明显突变点(例如被检对象前沿或尾部等上的某一点)或被检对象同一高度上的点等,本公开不以此为限。
辐射图像校正装置140针对上述被检对象,根据接收到的激光扫描仪110检测到的该被检对象的至少一个固定点与激光束发射位置的距离及其对应的激光束的发射角度,能够确定(可选择地输出)该被检对象在不同时刻距离激光扫描仪的相对位置。
图4为本公开被检对象定位方法的示意图。不失一般性地,图4中以选择被检对象100前沿上的某一固定点A作为激光扫描仪110返回数据发生变化的点为例说明。如图4所示,当测量范围为空,即没有对象进入监测区域时,查找并保存距离激光扫描仪110最近点(如图4中B点)的对应角度γ。当被检对象100位于1号位置时,根据激光扫描仪110检测到的返回数据发生变化的一点(即图4中的固定点A)当前距离激光束发射位置之间的距离S1与该激光束的角度α,来确定1号位置距离激光扫描仪110的相对位置L1为:
L1=S1*cos α   (1)
或者,L1=S1*sin(γ-α)  (2)
当被检对象100沿箭头所示的移动方向移动到2号位置时,根据激光扫描仪110再次检测到的返回数据发生变化的一点(即图4中的固定点A)当前距离激光束发射位置之间的距离S2与该激光束的角度β,来确定2号位置距离激光扫描仪110的相对位置L2为:
L2=S2*cos β  (3)
或者,还可以通过计算被检对象在1号位置和2号位置之间的位移S3来计算2号位置与激光扫描仪110之间的相对位置L2。
首先,可以根据两条激光束的角度α和β计算S1与S2之间角度θ,再根据余弦定理计算S3为:
Figure PCTCN2018104173-appb-000001
之后,再根据公式(1)求得的L1计算L2为:L2=L1-S3。
进一步地,在一些实施例中,为了减少辐射图像校正装置140处理的数据量并提高其处理效率,同时对重要监测范围进行重点监测,以提供测量精度,还可以对监测范围进行区域划分,从而针对不同的区域,采用不同位移间隔或时间间隔测量并输出被检对象的位置信息。也即辐射图像校正装置140先判断被检对象相对于激光扫描仪的位置位于分区中的哪个区域,从而确定以相应的位移间隔或者时间间隔来确定并输出被检对象的位置信息。其中当被检对象朝向激光扫描仪移动,且其距离激光扫描仪的相对位置越近时,上述时间间隔或位移间隔越小。例如,可以如图3所示,将监测区域分为4个区域,在这4个 区域中,当被检对象移动到距离激光扫描仪最近的3号区域时,对应的确定并输出被检对象的位置的速度最快,也即被检对象每移动一最小位移或每间隔一最小时间,则确定并输出一次被检对象的位置。具体的区域划分及输出频率的设定可依实际应用而确定,本公开不以此为限。
辐射图像校正装置140针对上述被检对象,根据接收到的激光扫描仪110检测到的该被检对象的至少一个固定点与激光束发射位置的距离及其对应的激光束的发射角度,确定并输出该被检对象的运动速度。
例如,继续参考图4,如上述,在确定了被检对象100的1号和2号位置与激光扫描仪之间的相对距离L1和L2或确定其之间的位移S3之后,可以根据下述公式计算被检对象100的速度v:
Figure PCTCN2018104173-appb-000002
其中T1和T2分别为被检对象100移动到1号位置和2号位置的时间。该时间例如可以通过辐射图像校正装置140自身的时间计算公式来获得,例如在收到第一个距离S1时做标记T1,在收到第二个距离S2时做标记T2;或者也可以通过激光扫描仪110返回的数据包中自带的时间获得。
在一些实施例中,还可以选取多个固定点,比如多个返回数据变化点(如被检对象上的不同高度的点或被检对象上的多个明显突变点等),基于各固定点分别计算上述位移之后,对多个位移值进行拟合,例如进行平均计算,根据最终得到的平均位移计算被检对象的速度。根据多个固定点进行测速,可以进一步提高其精度值。
此外,在确定并输出被检对象的速度时,也可以结合上述基于不同区域,即被检对象与激光扫描仪110相对位置的输出方式,以不同的位移间隔或时间间隔确定并输出被检对象的速度。
辐射图像校正装置140检测每个被检对象当前的行进状态。例如根据被检对象在当前时刻及上一时刻距离激光扫描仪110的不同相对位置来确定被检对象当前时刻的行进状态。首先,根据激光扫描仪110返回数据中的角度信息获知被检对象当前是朝向激光扫描仪110移动,还是远离激光扫描仪110移动。当被检对象朝向激光扫描仪110移动时,如果当前时刻被检对象距离激光扫描仪110的距离小于上一时刻被检对象距离激光扫描仪110的距离,则认为被检对象为前进;如果为大于,则认为被检对象为后退;而如果为等于,则认为被检对象停止移动。而当被检对象远离激光扫描仪110移动时,如果当前时刻 被检对象距离激光扫描仪110的距离大于上一时刻被检对象距离激光扫描仪110的距离,则认为被检对象为前进;如果为小于,则认为被检对象为后退。
此外,辐射图像校正装置140也可以直接根据被检对象两次返回激光束角度的变化来判断其行进方向。例如在朝向激光扫描仪110移动时,返回的激光束角度应越来越小;而当远离激光扫描仪110移动时,则返回的激光束角度则应为越来越大。
本公开的一些实施例利用激光扫描仪能够实时地、连续地测量被检对象的运动状态,监测精度比较高。根据测量的运动状态校正被检对象的辐射图像,能够提高辐射图像校正的实时性。
下面描述辐射图像校正装置140根据被检对象的运动速度和行进状态中的至少一项,对被检对象的辐射图像进行校正。
示例性校正方法一
根据被检对象的运动速度采用图像插值或抽列方式进行校正。
例如,在被检对象的运动速度大于设置的无畸变速度阈值的情况下,对被检对象的辐射图像进行插值处理;在被检对象的运动速度小于设置的无畸变速度阈值的情况下,对被检对象的辐射图像进行抽列处理。
其中,无畸变速度阈值可以通过测试得到,其可以是一个值或一个范围。插值处理是在辐射图像中插入像素点的校正方法,例如,根据辐射图像中相邻的若干像素点的像素信息生成插入的像素点的像素信息。抽列处理是在辐射图像中抽取像素点的校正方法,例如,将辐射图像中的若干列的像素抽取出去,剩余的像素点作为校正后的辐射图像。
由于被检对象的运动速度能够被较高精度地测量,因此,依据被检对象的运动速度能够实时性更好地校正被检对象的辐射图像。
此外,还可以结合图像校正步长进行校正处理,以进一步提高校正的实时性。图像校正步长可以根据业务对校正实时性的要求进行设置,业务对校正实时性要求越高,图像校正步长设置的越短。
在被检对象的运动速度大于设置的无畸变速度阈值的情况下,每当被检对象的运动距离满足设置的图像校正步长时,对被检对象的辐射图像进行一次插值处理。若被检对象的运动距离满足设置的图像校正步长时,被检对象的运动速度还未更新(即,处于激光扫描仪的两次扫描之间的间隔时期,还没有到下一次的扫描时间),根据前一次被检对象的运动速度对应的校正程度,对被检对象的辐射图像进行一次插值处理。从而在被检对象运动速度非常快的情况下,仍然能够对被检对象的辐射图像进行校正,有效改善辐射图像失真的程度。
在被检对象的运动速度小于设置的无畸变速度阈值的情况下,每当被检对象的运动距离满足设置的图像校正步长时,对被检对象的辐射图像进行一次抽列处理。若被检对象的运动距离满足设置的图像校正步长时,被检对象的运动速度还未更新,根据前一次被检对象的运动速度对应的校正程度,对被检对象的辐射图像进行一次抽列处理。从而在被检对象运动速度非常慢的情况下,仍然能够对被检对象的辐射图像进行校正,有效改善辐射图像失真的程度。
在被检对象的运动速度小于设置的无畸变速度阈值的情况下,每达到预设的校正间隔时间时,被检对象的运动速度还未更新,根据前一次被检对象的运动速度对应的校正程度,对被检对象的辐射图像进行一次抽列处理。在一些实施例中,校正间隔时间可以被设置为小于激光扫描仪的两次扫描之间的间隔时间,通常情况下,校正间隔时间被设置为大于辐射装置120的辐射周期。从而在被检对象运动速度非常慢的情况下,仍然能够对被检对象的辐射图像进行校正,有效改善辐射图像失真的程度。
示例性校正方法二
根据被检对象的运动速度采用改变辐射装置的扫描频率的方式进行校正。
例如,在被检对象的运动速度大于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率增加,以便对被检对象的辐射图像进行校正;在被检对象的运动速度小于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率减小,以便对被检对象的辐射图像进行校正。
由于被检对象的运动速度能够被较高精度地测量,因此,依据被检对象的运动速度能够实时性更好地校正被检对象的辐射图像。
其中,改变辐射装置的扫描频率可以通过设置扫描频率的调整幅度逐渐改变到期望的扫描频率。此外,还可以采用本实施例提出的如下方法快速地改变到期望的扫描频率。
即,根据辐射装置的扫描频率f和一次脉冲扫描的图像长度C及被检对象运动速度V之间的关系V/C=f,确定被检对象的运动速度对应的目标扫描频率,控制辐射装置的扫描频率改变到目标扫描频率。其中,C是依据辐射装置的扫描能力确定的常量。
示例性校正方法三
根据被检对象的行进状态进行校正。
例如,在被检对象的行进状态是后退的情况下,对被检对象的辐射图像进行抽列处理。
又例如,在被检对象的行进状态是后退的情况下,控制辐射装置的扫描频率减小。
再例如,在被检对象的行进状态是停止的情况下,控制辐射装置停止扫描。
由于被检对象的行进状态能够被较高精度地测量,因此,依据被检对象的行进状态能 够实时性更好地校正被检对象的辐射图像。
示例性校正方法四
根据被检对象的运动速度和行进状态进行校正。
例如,在被检对象的行进状态是前进的情况下,且在被检对象的运动速度大于设置的无畸变速度阈值的情况下,对被检对象的辐射图像进行插值处理或控制辐射装置的扫描频率增加。在被检对象的行进状态是前进的情况下,且在被检对象的运动速度小于设置的无畸变速度阈值的情况下,对被检对象的辐射图像进行抽列处理或控制辐射装置的扫描频率减小。
又例如,在被检对象的行进状态是后退的情况下,根据后退速度,对被检对象的辐射图像进行相应程度的抽列处理。后退速度越快,从被检对象的辐射图像中抽取出去的像素点越多。
再例如,在被检对象的行进状态是后退的情况下,根据后退速度,控制辐射装置按照相应程度减小其扫描频率。后退速度越快,辐射装置的扫描频率减小得越多。
由于被检对象的运动速度和行进状态能够被较高精度地测量,因此,依据被检对象的运动速度和行进状态能够实时性更好地校正被检对象的辐射图像。
此外,在被检对象的运动速度等于设置的无畸变速度阈值的情况下,可以对被检对象的辐射图像不进行校正处理。
此外,辐射图像校正装置140根据激光扫描仪110在不同时刻检测到的该被检对象的多个点分别与多条激光束的发射位置的距离及其对应的激光束的发射角度等扫描数据,可以确定出被检对象的轮廓。根据被检对象的轮廓,如果被检对象包括至少两个部分,采用前述的运动状态信息确定方法,分别确定每个部分的例如位置、运动速度、行进状态等运动状态信息。然后,根据被检对象的每个部分的运动速度和行进状态中的至少一项,对被检对象的每个部分的辐射图像分别进行校正。例如,对被检对象的各部分的辐射图像,分别进行插值或抽列,或者,分别进行不同程度的插值,或者,分别进行不同程度的抽列等校正处理。其中,被检对象的每个部分的校正方法与作为一个整体对待的被检对象的校正方法相同,这里不再赘述。
作为一种示例,如果被检对象中存在间隙,被间隙分割且分割处有连接,那么认为被检对象被间隙分割为两部分。例如,带拖动装置的车辆,如图2所示,车头与拖动装置之间存在间隙,车辆被间隙分割且分割处有连接,那么该车辆被间隙分割为车头和拖动装置两个部分。在车辆行进过程中,车头和拖动装置的运动状态可能并不完全一致,例如车辆刹车时,车头速度很快减小,而拖动装置由于惯性会维持刹车前的 速度一段时间,然后再减速。采用本公开提供的针对被检对象的每个部分分别校正的方法,可以很好地改善由于被检对象各部分的运动状态不一致导致的图像畸变。
图5为本公开辐射图像校正方法一些实施例的流程示意图。如图5所示,该实施例的辐射图像校正方法50例如可以由辐射图像校正装置140执行,包括以下步骤:
步骤510,采集激光扫描仪的扫描数据;
步骤520,根据激光扫描仪的扫描数据,确定被检对象的运动状态信息,被检对象的运动状态信息包括被检对象的运动速度和行进状态中的至少一项;
步骤530,根据被检对象的运动速度和行进状态中的至少一项,对被检对象的辐射图像进行校正。
从而,利用激光扫描仪测量被检对象的运动状态,测量精度比较高,根据测量的运动状态校正被检对象的辐射图像,能够提高辐射图像校正的实时性。
图6为本公开辐射图像校正方法再一些实施例的流程示意图。如图6所示,该实施例的辐射图像校正方法60包括以下步骤:
步骤610,辐射图像校正装置140采集激光扫描仪的扫描数据;
步骤620,辐射图像校正装置140根据激光扫描仪的扫描数据,确定被检对象的运动状态信息,被检对象的运动状态信息包括被检对象的运动速度和行进状态中的至少一项;
步骤630,辐射图像校正装置140根据被检对象的运动速度和行进状态中的至少一项,确定改变辐射装置120的扫描频率,并将改变扫描频率类型的校正数据(例如,增加或减小扫描频率、扫描频率改变幅度等)传输给辐射装置120,以便对被检对象的辐射图像进行校正。
步骤640,辐射装置120按照辐射图像校正装置140的指示改变对被检对象的扫描频率,并将检测到的透过被检对象的辐射射线信号传输给成像装置130。
步骤650,成像装置130根据辐射装置120检测到的辐射射线信号进行成像。
从而,利用激光扫描仪测量被检对象的运动状态,测量精度比较高,根据测量的运动状态,采用改变辐射装置120扫描频率的方式,校正被检对象的辐射图像,能够提高辐射图像校正的实时性。
图7为本公开辐射图像校正方法另一些实施例的流程示意图。如图7所示,该实施例的辐射图像校正方法70包括以下步骤:
步骤710,辐射图像校正装置140采集激光扫描仪的扫描数据;
步骤720,辐射图像校正装置140根据激光扫描仪的扫描数据,确定被检对象的运动状态信息,被检对象的运动状态信息包括被检对象的运动速度和行进状态中的至少一项;
步骤730,辐射装置120向被检对象发射辐射射线束(例如X射线),并将检测到的透过被检对象的辐射射线信号传输给成像装置130。
步骤740,成像装置130根据辐射装置120检测到的辐射射线信号进行成像。
其中,步骤710~720与步骤730~740的执行顺序不分先后。
步骤750,辐射图像校正装置140根据被检对象的运动速度和行进状态中的至少一项,在符合预设条件的情况下,对成像装置130所形成的辐射图像进行插值或抽列的校正处理。
从而,利用激光扫描仪测量被检对象的运动状态,测量精度比较高,根据测量的运动状态,采用对成像装置130所形成的辐射图像进行插值或抽列的处理方式,校正被检对象的辐射图像,能够提高辐射图像校正的实时性。
图8为本公开辐射图像校正装置一些实施例的结构示意图。如图8所示,该实施例的辐射图像校正装置140包括:
数据采集模块1401,用于采集激光扫描仪的扫描数据;
运动状态确定模块1402,用于根据激光扫描仪的扫描数据,确定被检对象的运动状态信息,被检对象的运动状态信息包括被检对象的运动速度和行进状态中的至少一项;
图像校正模块1403,用于根据被检对象的运动速度和行进状态中的至少一项,对被检对象的辐射图像进行校正。
在一些实施例中,图像校正模块1403包括第一图像校正单元、第二图像校正单元、第三图像校正单元、第四图像校正单元中的至少一个单元;
第一图像校正单元,用于在被检对象的运动速度大于设置的无畸变速度阈值的情况下,对被检对象的辐射图像进行插值处理;在被检对象的运动速度小于设置的无畸变速度阈值的情况下,对被检对象的辐射图像进行抽列处理;
第二图像校正单元,用于在被检对象的运动速度大于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率增加;在被检对象的运动速度小于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率减小;
第三图像校正单元,用于在被检对象的行进状态是后退的情况下,对被检对象的辐射图像进行抽列处理或控制辐射装置的扫描频率减小;在被检对象的行进状态是停止的情况下,控制辐射装置停止扫描;
第四图像校正单元,用于在被检对象的行进状态是前进的情况下,且在被检对象的运动速度大于设置的无畸变速度阈值的情况下,对被检对象的辐射图像进行插值处理或控制辐射装置的扫描频率增加,且在被检对象的运动速度小于设置的无畸变速度阈值的情况下,对被检对象的辐射图像进行抽列处理或控制辐射装置的扫描频率减小。
在一些实施例中,第一图像校正单元,用于在被检对象的运动速度大于设置的无畸变速度阈值的情况下,每当被检对象的运动距离满足设置的图像校正步长时,对被检对象的辐射图像进行一次插值处理;在被检对象的运动速度小于设置的无畸变速度阈值的情况下,每当被检对象的运动距离满足设置的图像校正步长时,对被检对象的辐射图像进行一次抽列处理。
在一些实施例中,第一图像校正单元,用于若被检对象的运动距离满足设置的图像校正步长时,被检对象的运动速度还未更新,根据前一次被检对象的运动速度对应的校正程度,对被检对象的辐射图像进行一次校正处理,校正处理包括插值处理或抽列处理。
在一些实施例中,第二图像校正单元,用于根据辐射装置的扫描频率和一次脉冲扫描的图像长度及被检对象运动速度之间的关系,确定被检对象的运动速度对应的目标扫描频率,控制辐射装置的扫描频率改变到目标扫描频率。
在一些实施例中,运动状态确定模块1402,用于根据激光扫描仪的扫描数据,确定被检对象的每个部分的运动状态信息,被检对象的每个部分的运动状态信息包括被检对象的每个部分的运动速度和行进状态中的至少一项;图像校正模块1403,用于根据被检对象的每个部分的运动速度和行进状态中的至少一项,对被检对象的每个部分的辐射图像分别进行校正。
图9为本公开辐射图像校正装置另一些实施例的结构示意图。如图9所示,该实施例的辐射图像校正装置140包括:存储器910以及耦接至该存储器910的处理器920,处理器920被配置为基于存储在存储器910中的指令,执行前述任意一些实施例中的辐射图像校正方法。
其中,存储器910例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。
本领域内的技术人员应当明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解为可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数 据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (17)

  1. 一种辐射图像校正方法,包括:
    采集激光扫描仪的扫描数据;
    根据激光扫描仪的扫描数据,确定被检对象的运动状态信息,所述被检对象的运动状态信息包括被检对象的运动速度和行进状态中的至少一项;
    根据所述被检对象的运动速度和行进状态中的至少一项,对所述被检对象的辐射图像进行校正。
  2. 如权利要求1所述的方法,其中,
    在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行插值处理;
    在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行抽列处理。
  3. 如权利要求2所述的方法,其中,
    在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,每当所述被检对象的运动距离满足设置的图像校正步长时,对所述被检对象的辐射图像进行一次插值处理;
    在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,每当所述被检对象的运动距离满足设置的图像校正步长时或者每达到预设的校正间隔时间时,对所述被检对象的辐射图像进行一次抽列处理,其中,校正间隔时间被设置为小于激光扫描仪的两次扫描之间的间隔时间。
  4. 如权利要求3所述的方法,其中,
    若所述被检对象的运动距离满足设置的图像校正步长时,所述被检对象的运动速度还未更新,根据前一次所述被检对象的运动速度对应的校正程度,对所述被检对象的辐射图像进行一次校正处理,所述校正处理包括插值处理或抽列处理。
  5. 如权利要求1所述的方法,其中,
    在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率增加,以便对所述被检对象的辐射图像进行校正;
    在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率减小,以便对所述被检对象的辐射图像进行校正。
  6. 如权利要求5所述的方法,其中,
    根据辐射装置的扫描频率和一次脉冲扫描的图像长度及被检对象运动速度之间的关系,确定所述被检对象的运动速度对应的目标扫描频率,控制辐射装置的扫描频率改变到目标扫描频率。
  7. 如权利要求1所述的方法,其中,
    在所述被检对象的行进状态是后退的情况下,对所述被检对象的辐射图像进行抽列处理或控制辐射装置的扫描频率减小;
    在所述被检对象的行进状态是停止的情况下,控制辐射装置停止扫描;
    在所述被检对象的行进状态是前进的情况下,且在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行插值处理或控制辐射装置的扫描频率增加;
    在所述被检对象的行进状态是前进的情况下,且在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行抽列处理或控制辐射装置的扫描频率减小。
  8. 如权利要求1所述的方法,其中,
    根据激光扫描仪的扫描数据,确定被检对象的每个部分的运动状态信息,所述被检对象的每个部分的运动状态信息包括被检对象的每个部分的运动速度和行进状态中的至少一项;
    根据所述被检对象的每个部分的运动速度和行进状态中的至少一项,对所述被检对象的每个部分的辐射图像分别进行校正。
  9. 一种辐射图像校正装置,包括:
    数据采集模块,用于采集激光扫描仪的扫描数据;
    运动状态确定模块,用于根据激光扫描仪的扫描数据,确定被检对象的运动状态信息,所述被检对象的运动状态信息包括被检对象的运动速度和行进状态中的至少一项;
    图像校正模块,用于根据所述被检对象的运动速度和行进状态中的至少一项,对所述被检对象的辐射图像进行校正。
  10. 如权利要求9所述的装置,其中,所述图像校正模块包括第一图像校正单元、第二图像校正单元、第三图像校正单元、第四图像校正单元中的至少一个单元;
    所述第一图像校正单元,用于在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行插值处理;在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行抽列处理;
    所述第二图像校正单元,用于在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率增加;在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,控制辐射装置的扫描频率减小;
    所述第三图像校正单元,用于在所述被检对象的行进状态是后退的情况下,对所述被检对象的辐射图像进行抽列处理或控制辐射装置的扫描频率减小;在所述被检对象的行进状态是停止的情况下,控制辐射装置停止扫描;
    所述第四图像校正单元,用于在所述被检对象的行进状态是前进的情况下,且在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行插值处理或控制辐射装置的扫描频率增加;或者,在所述被检对象的行进状态是前进的情况下,且在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,对所述被检对象的辐射图像进行抽列处理或控制辐射装置的扫描频率减小。
  11. 如权利要求10所述的装置,其中,
    所述第一图像校正单元,用于在所述被检对象的运动速度大于设置的无畸变速度阈值的情况下,每当所述被检对象的运动距离满足设置的图像校正步长时,对所述被检对象的辐射图像进行一次插值处理;在所述被检对象的运动速度小于设置的无畸变速度阈值的情况下,每当所述被检对象的运动距离满足设置的图像校正步长时或者每达到预设的校正间隔时间时,对所述被检对象的辐射图像进行一次抽列处理,其中,校正间隔时间被设置为小于激光扫描仪的两次扫描之间的间隔时间。
  12. 如权利要求11所述的装置,其中,
    所述第一图像校正单元,用于若所述被检对象的运动距离满足设置的图像校正步长时,所述被检对象的运动速度还未更新,根据前一次所述被检对象的运动速度对应的校正程度,对所述被检对象的辐射图像进行一次校正处理,所述校正处理包括插值处理或抽列处理。
  13. 如权利要求10所述的装置,其中,
    所述第二图像校正单元,用于根据辐射装置的扫描频率和一次脉冲扫描的图像长度及被检对象运动速度之间的关系,确定所述被检对象的运动速度对应的目标扫描频率,控制辐射装置的扫描频率改变到目标扫描频率。
  14. 如权利要求9所述的装置,其中,
    所述运动状态确定模块,用于根据激光扫描仪的扫描数据,确定被检对象的每个部分的运动状态信息,所述被检对象的每个部分的运动状态信息包括被检对象的每个部分的运动速度和行进状态中的至少一项;
    所述图像校正模块,用于根据所述被检对象的每个部分的运动速度和行进状态中的至少一项,对所述被检对象的每个部分的辐射图像分别进行校正。
  15. 一种辐射图像校正装置,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行权利要求1-8中任一项所述的辐射图像校正方法。
  16. 一种辐射图像校正系统,包括:激光扫描仪、辐射装置、成像装置以及权利要求9-15中任一项所述的辐射图像校正装置;其中,所述激光扫描仪被配置为发射激光对被检对象进行扫描,将扫描数据传输给所述辐射图像校正装置;所述辐射装置被配置为向被检对象发射辐射射线束,并将检测到的透过被检对象的辐射射线信号传输给所述成像装置;所述成像装置被配置为根据所述辐射装置检测到的辐射射线信号进行成像;所述辐射图像校正装置被配置为将基于扫描数据确定的改变扫描频率类型的校正数据传输给所述辐射装置,使所述辐射装置改变对被检对象的扫描频率,或者, 被配置为在基于扫描数据确定的运动状态符合预设条件的情况下,对所述成像装置所形成的辐射图像进行插值或抽列的校正处理。
  17. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-8中任一项所述的辐射图像校正方法的步骤。
PCT/CN2018/104173 2017-11-22 2018-09-05 辐射图像校正方法和校正装置及校正系统 WO2019100810A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL435081A PL435081A1 (pl) 2017-11-22 2018-09-05 Sposób korekcji obrazu promieniowania, urządzenie do korekcji oraz układ do korekcji

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711173570.0A CN107680065A (zh) 2017-11-22 2017-11-22 辐射图像校正方法和校正装置及校正系统
CN201711173570.0 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019100810A1 true WO2019100810A1 (zh) 2019-05-31

Family

ID=61149704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104173 WO2019100810A1 (zh) 2017-11-22 2018-09-05 辐射图像校正方法和校正装置及校正系统

Country Status (3)

Country Link
CN (1) CN107680065A (zh)
PL (1) PL435081A1 (zh)
WO (1) WO2019100810A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112911300A (zh) * 2021-01-22 2021-06-04 杭州睿影科技有限公司 安检图像的生成方法、安检系统及存储介质
CN115830146A (zh) * 2023-02-10 2023-03-21 武汉玄景科技有限公司 一种航天光学遥感相机的在轨相对辐射定标与校正方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107680065A (zh) * 2017-11-22 2018-02-09 同方威视技术股份有限公司 辐射图像校正方法和校正装置及校正系统
GB2577686B (en) * 2018-10-01 2022-08-10 Smiths Heimann Sas Correction of images
CN109343136B (zh) * 2018-11-28 2021-06-11 北京航星机器制造有限公司 一种安检机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445745A (zh) * 2015-12-04 2016-03-30 同方威视技术股份有限公司 移动目标状态监测方法、装置及其车辆快速检查系统
CN106383132A (zh) * 2016-10-17 2017-02-08 北京君和信达科技有限公司 辐射检查系统和方法
CN106443806A (zh) * 2016-09-18 2017-02-22 北京君和信达科技有限公司 辐射成像系统和图像处理方法
CN107680065A (zh) * 2017-11-22 2018-02-09 同方威视技术股份有限公司 辐射图像校正方法和校正装置及校正系统
CN207601853U (zh) * 2017-11-22 2018-07-10 同方威视技术股份有限公司 辐射图像校正系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202471992U (zh) * 2011-12-30 2012-10-03 洛阳圣瑞机电技术有限公司 基于激光测距传感器的线阵扫描图像校正装置
CN103345761B (zh) * 2013-07-30 2016-03-30 中国地质大学(武汉) 用于线阵高塔倾斜扫描成像数据校正及拼接的方法和系统
CN105445808B (zh) * 2014-08-19 2018-10-02 清华大学 对移动目标进行检查的设备及方法
CN104374785B (zh) * 2014-11-14 2017-12-05 北京君和信达科技有限公司 一种连续通过式辐射扫描系统和方法
CN205427190U (zh) * 2015-12-04 2016-08-03 同方威视技术股份有限公司 移动目标状态监测装置及其车辆快速检查系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445745A (zh) * 2015-12-04 2016-03-30 同方威视技术股份有限公司 移动目标状态监测方法、装置及其车辆快速检查系统
CN106443806A (zh) * 2016-09-18 2017-02-22 北京君和信达科技有限公司 辐射成像系统和图像处理方法
CN106383132A (zh) * 2016-10-17 2017-02-08 北京君和信达科技有限公司 辐射检查系统和方法
CN107680065A (zh) * 2017-11-22 2018-02-09 同方威视技术股份有限公司 辐射图像校正方法和校正装置及校正系统
CN207601853U (zh) * 2017-11-22 2018-07-10 同方威视技术股份有限公司 辐射图像校正系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112911300A (zh) * 2021-01-22 2021-06-04 杭州睿影科技有限公司 安检图像的生成方法、安检系统及存储介质
CN112911300B (zh) * 2021-01-22 2024-03-01 杭州睿影科技有限公司 安检图像的生成方法、安检系统及存储介质
CN115830146A (zh) * 2023-02-10 2023-03-21 武汉玄景科技有限公司 一种航天光学遥感相机的在轨相对辐射定标与校正方法

Also Published As

Publication number Publication date
CN107680065A (zh) 2018-02-09
PL435081A1 (pl) 2021-09-20

Similar Documents

Publication Publication Date Title
WO2019100810A1 (zh) 辐射图像校正方法和校正装置及校正系统
US10495661B2 (en) Method and device for monitoring state of moving object and system for fast inspecting vehicle
US10091491B2 (en) Depth image generating method and apparatus and depth image processing method and apparatus
JP2020042009A (ja) 点群における非地面点のフィルタリング方法、装置及び記憶媒体
CN110208771B (zh) 一种移动二维激光雷达的点云强度改正方法
CN102713509A (zh) 立体摄影装置、校正方法和程序
EP3629288B1 (en) Method for detecting flying spot on edge of depth image, electronic device, and computer readable storage medium
US11287530B2 (en) Data processing system and method for fusion of multiple heterogeneous sensors
JP6131355B2 (ja) X線走査方法及び走査システム
JP2019095228A (ja) 車輪形状測定方法
JP5481862B2 (ja) パンタグラフ高さ測定装置及びそのキャリブレーション方法
US11247705B2 (en) Train wheel measurement process, and associated system
KR101238748B1 (ko) 주사구동 적외선센서장치를 이용한 표적거리 측정시스템
CN101900529A (zh) 基于光束三角的倾斜自适应位移测量方法
US20220316866A1 (en) Floor surface condition detection device, distance measuring device equipped with same, floor surface condition detection method, and floor surface condition detection program
EP2942643A1 (en) Information processing apparatus, measuring method and program
CN207601853U (zh) 辐射图像校正系统
JP5612905B2 (ja) 車輪形状計測装置、車輪形状計測方法、および車輪形状計測プログラム
JP7300331B2 (ja) 機械学習用情報処理装置、機械学習用情報処理方法、および機械学習用情報処理プログラム
CN114779211A (zh) 一种激光脉冲雷达设备及点云密度提升方法及设备
JP7179571B2 (ja) 車両点検装置および方法
JP2021060944A (ja) 路側端検出方法、及び、路側端検出装置
US20220319025A1 (en) Output control device, distance measuring device comprising the same, output control method, and output control program
WO2023140189A1 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
US20230384436A1 (en) Distance measurement correction device, distance measurement correction method, and distance measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881749

Country of ref document: EP

Kind code of ref document: A1