WO2017090514A1 - 回転電機および回転電機システム - Google Patents

回転電機および回転電機システム Download PDF

Info

Publication number
WO2017090514A1
WO2017090514A1 PCT/JP2016/084191 JP2016084191W WO2017090514A1 WO 2017090514 A1 WO2017090514 A1 WO 2017090514A1 JP 2016084191 W JP2016084191 W JP 2016084191W WO 2017090514 A1 WO2017090514 A1 WO 2017090514A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
phase
phase winding
teeth
windings
Prior art date
Application number
PCT/JP2016/084191
Other languages
English (en)
French (fr)
Inventor
金澤 宏至
中山 賢治
秀幸 原
Original Assignee
日立オートモティブシステムズエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズエンジニアリング株式会社 filed Critical 日立オートモティブシステムズエンジニアリング株式会社
Priority to CN201680063194.7A priority Critical patent/CN108352750B/zh
Priority to JP2017552383A priority patent/JP6564057B2/ja
Priority to US15/779,043 priority patent/US10447184B2/en
Publication of WO2017090514A1 publication Critical patent/WO2017090514A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a rotating electrical machine and a rotating electrical machine system.
  • Patent Document 1 As a rotating electrical machine having two windings, a rotating electrical machine as described in Patent Document 1 is known.
  • a drive current is supplied to two Y connections provided in the rotating electrical machine independently from two inverters, thereby providing redundancy.
  • the rotating electrical machine includes a stator core having 6N teeth with respect to an integer N where N ⁇ 2, and concentrated windings disposed on each of the 6N teeth.
  • the stator winding includes independent first three-phase windings and second three-phase windings each including 3N windings.
  • the 3N windings constituting the first three-phase winding are arranged in three tooth groups including N teeth adjacent to each other and provided at a mechanical angle of 120 degrees, and the second 3 The 3N windings constituting the phase winding are arranged in teeth that are not included in the three teeth group among the 6N teeth.
  • FIG. 1 is a diagram showing a first embodiment of a rotating electrical machine according to the present invention.
  • FIG. 2 is a cross-sectional view of the motor 100.
  • FIG. 3 is a block diagram illustrating an embodiment of a rotating electrical machine system including the motor 100.
  • FIG. 4 shows a case where the first winding unit 51 and the second winding unit 52 are ⁇ -connected.
  • FIG. 5 is a diagram illustrating a rotating electrical machine system according to the second embodiment.
  • FIG. 6 is a diagram showing a concentrated winding combination in which two-system winding is possible.
  • FIG. 7 is a diagram showing an arrangement of stator windings of the motor 100 configured with 8 poles and 12 slots.
  • FIG. 8 is a diagram showing a comparative example in the case of 8 poles and 12 slots.
  • FIG. 9 is a diagram showing the configuration of the first and second winding units and the ⁇ connection in the case of the 8-pole 12-slot configuration.
  • FIG. 10 is a diagram showing a winding arrangement in the case of a 10 pole 12 slot configuration.
  • FIG. 11 is a diagram showing the configuration of the first and second winding units and the ⁇ connection in the case of the 10-pole 12-slot configuration.
  • FIG. 12 is a diagram showing a winding arrangement in a 12-pole 18-slot configuration.
  • FIG. 13 is a diagram showing the configuration of the first and second winding units and the ⁇ connection in the case of a 12 pole 18 slot configuration.
  • FIG. 14 is a diagram showing a winding arrangement in the case of a 14 pole 18 slot configuration.
  • FIG. 15 is a diagram showing the configuration of the first and second winding units and the ⁇ connection in the case of a 14-pole 18-slot configuration.
  • FIG. 16 is a diagram showing a winding arrangement in the case of a 16-pole 18-slot configuration.
  • FIG. 17 is a diagram showing a configuration of the first and second winding units and a ⁇ connection in the case of a 16-pole 18-slot configuration.
  • FIG. 1 is a diagram showing an embodiment of a rotating electrical machine according to the present invention.
  • FIG. 1 shows a motor portion (hereinafter referred to as a motor 100) of an electric power steering (hereinafter abbreviated as EPS) motor unit.
  • FIG. 2 is a cross-sectional view of the motor 100.
  • the motor 100 shown in FIG. 1 and a control unit are integrally configured.
  • the motor 100 has motor components housed inside the housing 2.
  • the driving force of the motor 100 is transmitted to a driving unit of an electric power steering system (not shown) via a pulley 1 attached to a shaft 6 that is a rotating shaft of the motor 100.
  • the shaft 6 is provided with a front rotor core 12 and a rear rotor core 13 that constitute a rotor.
  • a front magnet 12m is attached to the front rotor core 12, and a rear magnet 13m is attached to the rear rotor core 13.
  • the outer periphery of the magnets 12m and 13m is covered with a magnet cover.
  • the shaft 6 is rotatably supported by a front bearing 7 provided in the housing 2 and a rear bearing 8 provided in a bearing case 9 at the right end of the housing 2.
  • the bearing case 9 is fixed to the housing 2 by a bevel type retaining ring 10.
  • a stator coil 5 is wound around the stator core 4 provided on the inner periphery of the housing 2.
  • the stator coil 5 is composed of two systems of three-phase windings as will be described later.
  • the output end of each three-phase winding is electrically connected to a terminal (not shown) of a bus bar mold 14 fixed to the bearing case 9, and two sets of three-phase terminals (20u1, 20v1, 20w1) are connected to the terminals. ), (20u2, 20v2, 20w2).
  • One three-phase winding is connected to three-phase terminals 20u1, 20v1, and 20w1, and the other three-phase winding is connected to three-phase terminals 20u2, 20v2, and 20w2.
  • a magnetic pole sensor 3 for detecting the magnetic pole position of the motor 100 is provided on the shaft rear side.
  • a detection circuit is provided on the side of the control unit that drives and controls the motor 100.
  • FIG. 3 is a block diagram showing an embodiment of a rotating electrical machine system including the motor 100.
  • the rotating electrical machine system includes a motor 100 and a drive unit 200 that drives the motor 100.
  • the stator coil 5 of the motor 100 includes two systems of three-phase windings. In the following, one three-phase winding is referred to as a first winding unit 51 and the other three-phase winding is referred to as the first three-phase winding. It will be called a second winding unit 52.
  • the magnetic pole sensor 3 detects the magnetic pole position of the rotor 101.
  • the rotor 101 includes the front rotor core 12, the rear rotor core 13, the front magnet 12m, and the rear magnet 13m shown in FIG.
  • the first winding unit 51 is supplied with current from the inverter 31, and the second winding unit 52 is supplied with current from the inverter 32.
  • the inverters 31 and 32 are supplied with power from a common DC power source 30, but independent DC power sources may be provided for the inverters 31 and 32, respectively.
  • the inverters 31 and 32 supply current to the winding units 51 and 52 based on a drive command from the control unit 33 provided in the drive unit 200.
  • the control unit 33 calculates the target torque of the motor 100 based on the detection information input from the magnetic pole sensor 3, the detection value of the torque sensor attached to the steering shaft, and the like. Then, the control unit 33 controls the inverters 31 and 32 so that the current value of the motor 100 becomes a current value corresponding to the target torque.
  • the three-phase windings of the first winding unit 51 and the second winding unit 52 are connected by Y connection, and the neutral points of each are electrically insulated.
  • the first winding unit 51 and the second winding unit 52 are electrically disconnected and driven in parallel by the independent inverters 31 and 32, respectively.
  • the U-phase winding U1 of the first winding unit 51 and the U-phase winding U2 of the second winding unit 52 have no electrical phase difference
  • the U-phase current of the inverter 31 and the inverter 32 The U-phase current is in phase.
  • each inverter current needs to be energized in accordance with the phase of the induced voltage of the winding units 51 and 52.
  • FIG. 4 shows the first winding unit 51 and the second winding unit 52 in the form described in FIG. In this case as well, as in the case of the Y connection described above, the current supplied to the first winding unit 51 and the second winding unit 52 needs to be a current corresponding to the phase of the induced voltage.
  • the current phase determines the phase of the inverter current based on the signal from the magnetic pole sensor 3.
  • the first winding unit 51 and the second winding unit 52 are configured by concentrated winding.
  • Concentrated winding is a coil in which a coil is wound around one tooth, and the phase arrangement is changed by a combination of the number of poles and the number of slots (equal to the number of teeth).
  • Fig. 6 shows a concentrated winding combination capable of two-system winding.
  • the number of poles that can be used as the EPS motor 100 is determined from the PWM frequency of the inverters 31 and 32 and the maximum rotational speed of the motor 100. Generally, the maximum number of poles is considered to be about 16 poles.
  • the number of teeth (number of slots) can be selected up to 18.
  • the number of teeth that can be used for two-system winding is determined by an integer multiple of six.
  • the present embodiment provides a winding connection structure that can suppress the torque ripple even when driven by only one of two winding units, and examples thereof are shown in FIGS. A configuration in which torque ripple tends to be relatively large is shown in FIG. 8 as a comparative example.
  • FIG. 7 shows the arrangement of the stator windings of the motor 100 composed of 8 poles and 12 slots in the combination shown in FIG.
  • the number of teeth is 12 which is the same as the number of slots. Since the 8-pole 12-slot configuration is a 2-to-3 series winding, the phase difference for each tooth is 120 degrees in electrical angle. For this reason, the U-phase, V-phase, and W-phase are repeated four times for the three-phase winding, and there are four in-phase windings. Will constitute a phase.
  • the concentrated phase windings wound around the teeth are U1, V1, W1, U2, V2, W2, U3, V3, W3 counterclockwise. Phase, U4 phase, V4 phase, W4 phase are arranged in this order.
  • FIG. 8 is a diagram showing a comparative example in the case of 8 poles and 12 slots, and shows a case where two windings (first winding unit 51 and second winding unit 52) are arranged separately on the left and right sides of the motor 100. Show. FIG. 8A shows the ⁇ connection (left side) and the winding arrangement (right side) in the case of the first winding unit 51. FIG. 8B shows a similar diagram regarding the second winding unit 52.
  • the present embodiment is characterized in that the three-phase winding of one of the first winding units 51 has symmetry with respect to the other second winding unit 52 as described below. is there.
  • the three-phase winding of the first winding unit 51 is configured with a phase difference of 120 degrees in mechanical angle.
  • the three-phase windings constituting the second winding unit 52 have a mechanical angle of 60 degrees with respect to the first winding unit 51. As a result, symmetry between the respective winding units is maintained.
  • phase windings will be described.
  • FIG. 9 is a diagram showing the winding arrangement of the first winding unit 51 and the second winding unit 52 and the ⁇ connection in the case of an 8-pole 12-slot configuration. Although explanation is omitted, the same winding arrangement as in the case shown in FIG. 9 is used in the case of a 4-pole / three-line 16-pole 12-slot configuration, and therefore the same as in the 8-pole 12-slot configuration in FIG. An effect is obtained.
  • the first winding unit 51 includes six phase windings, that is, a U2-phase winding, a U3-phase winding, a V3-phase winding, a V4-phase winding, a W1-phase winding, and a W4-phase winding.
  • the six teeth around which these phase windings are wound are divided into three tooth groups TG1, TG2, and TG3 including T2, T7, T8, T11, T3, and T12.
  • the teeth groups TG1, TG2, and TG3 are provided at a mechanical angle of 120 degrees.
  • the U2 phase winding and the W1 phase winding are arranged side by side at the apex, and the W4 phase winding and the V4 phase winding are arranged side by side on the right side.
  • a U3-phase winding and a V3-phase winding are arranged side by side.
  • Each in-phase winding is connected in series and bundled in three phases to form a ⁇ connection.
  • the U1-phase winding, U4-phase winding, V1-phase winding, V2-phase winding, W2-phase winding, W3-phase winding constituting the second winding unit 52 are the remaining teeth T1, T10, T2. , T5, T6, T9. These teeth also form another tooth group TG4, TG5, TG6 composed of two adjacent teeth. These teeth groups TG4, TG5 and TG6 are also provided at a mechanical angle of 120 degrees. That is, the phase winding of the second winding unit 52 is arranged with a phase of a mechanical angle of 60 degrees with respect to the phase winding of the first winding unit 51.
  • the winding arrangement shown in FIG. 9 has a periodic winding layout in both the first winding unit 51 and the second winding unit 52. As described above, since the winding layout having periodicity can be achieved in either winding unit, even if the driving state is such that only one winding unit is energized, the generation of torque ripple can be reduced.
  • FIG. 10 is a diagram showing a winding arrangement in the case of a 10 pole 12 slot configuration.
  • the winding arrangement on the stator side is the same as in the case of the 10-pole 12-slot configuration.
  • the number of teeth is 12 which is the same as the number of slots. From teeth T1 to teeth T12, counterclockwise U1 phase winding, u2 phase winding, v1 phase winding, V2 phase winding, W1 phase winding, w2 phase winding, u3 phase winding, U4 phase winding , V3 phase winding, v4 phase winding, w3 phase winding, W4 phase winding are arranged in this order.
  • the phase windings u2, v1, w2, u3, v4, and w3 are concentrated windings that are reverse to the U1, V2, W1, U4, V3, and W4 phase windings.
  • FIG. 11 is a diagram showing a configuration of the first winding unit 51 and the second winding unit 52 in the case of a 10-pole 12-slot configuration, and a ⁇ connection.
  • the v1 phase winding and the V2 phase winding are wound around the teeth T3 and T4 of the teeth group TG1
  • the u3 phase is wound around the teeth T7 and T8 of the teeth group TG2.
  • a winding and a U4 phase winding are wound
  • a w3 phase winding and a W4 phase winding are wound around the teeth T11 and T12 of the tooth group TG3.
  • in-phase windings are connected in series like v1-V2, u3-U4, u3-U4, and these are bundled in three phases to form a ⁇ connection.
  • the V3 phase winding and the v4 phase winding are wound around the teeth T9 and T10 of the teeth group TG4, and the teeth T1 and T2 of the teeth group TG5 are wound.
  • a U1-phase winding and a u2-phase winding are wound, and a W1-phase winding and a w2-phase winding are wound around the teeth T5 and T6 of the tooth group TG6.
  • in-phase windings are connected in series like U1-u2, V3-v4, W1-w2, and these are bundled in three phases to form a ⁇ connection.
  • FIG. 12 is a diagram showing a winding arrangement in the case of a 12 pole 18 slot configuration.
  • the winding arrangement on the stator side is the same as in the case of the 12-pole 18-slot configuration.
  • the number of teeth is 18, which is the same as the number of slots.
  • U1 phase winding, V1 phase winding, W1 phase winding, U2 phase winding, V2 phase winding, W2 phase winding, U3 phase winding, V3 phase winding counterclockwise W3 phase winding, U4 phase winding, V4 phase winding, W4 phase winding, U5 phase winding, V5 phase winding, W5 phase winding, U6 phase winding, V6 phase winding, W6 phase winding Are arranged in the order.
  • FIG. 13 is a diagram showing the configuration of the first winding unit 51 and the second winding unit 52 in the case of a 12-pole 18-slot configuration, and a ⁇ connection.
  • a U2-phase winding, a V2-phase winding, and a W2-phase winding are wound around the teeth T4, T5, and T6 of the teeth group TG1, and the teeth group TG2 Teeth T10, T11, T12 are wound with U4-phase winding, V4-phase winding, W4-phase winding, and teeth T16, T17, T18 of teeth group TG3 are U6-phase winding, V6-phase winding, W6-phase winding.
  • a wire is wound.
  • in-phase windings are connected in series like V2-V6-V4, W2-W6-W4, and U2-U6-U4, and they are combined into three phases to form a ⁇ connection.
  • a U5 phase winding, a V5 phase winding, and a W5 phase winding are wound around the teeth T13, T14, T15 of the teeth group TG4, and the teeth group U1 phase winding, V1 phase winding and W1 phase winding are wound around teeth T1, T2 and T3 of TG5, U3 phase winding, V3 phase winding and W3 are disposed on teeth T7, T8 and T9 of teeth group TG6.
  • a phase winding is wound.
  • in-phase windings are connected in series like U1-U5-U3, V1-V5-V3, and W1-W5-W3, and they are combined into three phases to form a ⁇ connection.
  • one tooth group includes three teeth, and three windings are connected in series as in-phase windings in the ⁇ connection.
  • FIG. 14 is a diagram showing a winding arrangement in the case of a 14 pole 18 slot configuration.
  • the number of teeth is 18, which is the same as the number of slots. From teeth T1 to teeth T18, U1 phase winding, V1 phase winding, W1 phase winding, w2 phase winding, u2 phase winding, v2 phase winding, V3 phase winding, W3 phase winding counterclockwise , U3 phase winding, u4 phase winding, v4 phase winding, w4 phase winding, W5 phase winding, U5 phase winding, V5 phase winding, v6 phase winding, w6 phase winding, u6 phase winding Are arranged in the order.
  • FIG. 15 is a diagram showing the configuration of the first winding unit 51 and the second winding unit 52 in the case of a 14-pole 18-slot configuration and ⁇ connection.
  • first winding unit 51 shown in FIG. 15 (a) w2-phase winding, u2-phase winding, and v2-phase winding are wound around the teeth T4, T5, T6 of the teeth group TG1, and the teeth group TG2
  • the teeth T10, T11, T12 are wound with a u4 phase winding, a v4 phase winding, and a w4 phase winding, and the teeth T16, T17, T18 of the tooth group TG3 are v6 phase winding, w6 phase winding, u6 phase winding
  • a wire is wound.
  • in-phase windings are connected in series like v2-v6-v4, w2-w6-w4, and u2-u6-u4, and they are combined into three phases to form a ⁇ connection.
  • W5 phase winding, U5 phase winding, and V5 phase winding are wound around the teeth T13, T14, T15 of the teeth group TG4, and the teeth group A U1-phase winding, a V1-phase winding, and a W1-phase winding are wound around the teeth T1, T2, T3 of TG5, and a V3-phase winding, a W3-phase winding, U3 are wound on the teeth T7, T8, and T9 of the tooth group TG6.
  • a phase winding is wound.
  • in-phase windings are connected in series like U1-U5-U3, V1-V5-V3, and W1-W5-W3, and they are combined into three phases to form a ⁇ connection.
  • FIG. 16 is a diagram showing a winding arrangement in the case of a 16 pole 18 slot configuration.
  • the number of teeth is 18, which is the same as the number of slots. From teeth T1 to teeth T18, counterclockwise u1 phase winding, U2 phase winding, u3 phase winding, v1 phase winding, V2 phase winding, v3 phase winding, w1 phase winding, W2 phase winding , W3 phase winding, u4 phase winding, U5 phase winding, u6 phase winding, v4 phase winding, V5 phase winding, v6 phase winding, w4 phase winding, W5 phase winding, w6 phase winding Are arranged in the order.
  • FIG. 17 is a diagram showing a configuration of the first winding unit 51 and the second winding unit 52 in the case of a 16-pole 18-slot configuration, and a ⁇ connection.
  • the v1 phase winding, the V2 phase winding, and the v3 phase winding are wound around the teeth T4, T5, and T6 of the teeth group TG1, and the teeth group TG2 Teeth T10, T11, T12 are wound with u4 phase winding, U5 phase winding, u6 phase winding, and teeth T16, T17, T18 of teeth group TG3 are w4 phase winding, W5 phase winding, w6 phase winding.
  • a wire is wound.
  • in-phase windings are connected in series like u4-U5-u6, v1-V2-v3, and w4-W5-w6, and they are connected in three phases to form a ⁇ connection.
  • a v4 phase winding, a V5 phase winding, and a v6 phase winding are wound around the teeth T13, T14, T15 of the teeth group TG4, and the teeth group
  • the u1-phase winding, U2-phase winding, and u3-phase winding are wound around the teeth T1, T2, T3 of TG5, and the w1-phase winding, W2-phase winding, w3 are wound on the teeth T7, T8, T9 of the tooth group TG6.
  • a phase winding is wound.
  • in-phase windings are connected in series like u1-U2-u3, v4-V5-v6, and w1-W2-w3, and they are combined into three phases to form a ⁇ connection.
  • the stator coil 5 Has an independent first winding unit 51 and second winding unit 52 each composed of 3N windings, and the 3N windings constituting the first winding unit 51 are adjacent to each other.
  • 3N windings that are arranged in three tooth groups TG1, TG2, TG3 including N teeth and provided at a mechanical angle of 120 degrees pitch, and that constitute the second winding unit 52 are 6N teeth,
  • the teeth are not included in the three teeth groups TG1, TG2, and TG3. That is, the 3N windings constituting the second winding unit 52 are arranged in three teeth groups TG4, TG5, and TG6 provided at a mechanical angle of 120 degrees.
  • the two winding units 51 and 52 of the motor 100 are arranged in a magnetically balanced manner. Therefore, in the configuration in which the winding units 51 and 52 are independently driven by the inverters 31 and 32 as shown in FIG. 4, even when one of the inverters 31 and 32 breaks down and one side is energized, the torque ripple is reduced. can do. In addition, since the short circuit between units can be prevented by providing space in the part which two winding units 51 and 52 contact
  • the motor 100 with higher reliability can be configured by arranging the insulating tape or the insulating tube in the winding crossing over the other phase winding.
  • FIGS. 9 to 17 described above all are described with the ⁇ connection, but the torque ripple reduction effect is the same even with the Y connection.
  • FIG. 5 is a diagram showing another embodiment of the rotating electrical machine system shown in FIG.
  • a switch 34 that can cut off the electrical connection between the inverter 31 and the first winding unit 51
  • a switch 35 that can cut off the electrical connection between the inverter 32 and the second winding unit 52.
  • a switch 36 that can electrically connect the first winding unit 51 and the second winding unit 52 is provided. Open / close control of these switches 34 to 36 is performed by the control unit 33.
  • the switches 34 and 35 are closed (connected state), and the switch 36 is opened (blocked state). That is, as in FIG. 4, the first winding unit 51 is driven by the inverter 31 and the second winding unit 52 is driven by the inverter 32, so that the two winding units 51 and 52 are electrically independent. Driven. In this case, since the first winding unit 51 and the second winding unit 52 have the same number of windings and the number of windings in series and parallel so that they have exactly the same characteristics, when driven by the same current The generated torque is the same in the first winding unit 51 and the second winding unit 52.
  • the inverter 31 when one of the inverters, for example, the inverter 31 fails, the inverter 31 is turned off and the switch 36 is switched to the closed state (connected state), so that the first winding unit 51 and the second winding unit 52 Are connected in parallel.
  • the motor 100 when the first winding unit 51 and the second winding unit 52 are driven by one inverter 32 and the same electric power is output from the inverter 32 as in a normal case, the motor 100 is in a normal operation. It will be driven with half the torque of the case. Of course, if the electric power required for the required torque is within the allowable output range of the inverter 32, the electric power is output so as to satisfy the required torque.
  • the rotating electrical machine system as shown in FIG. 5 is applied even when the winding units 51 and 52 in which the windings are arranged in a magnetically balanced manner as described in the first embodiment are adopted. Can do. In that case, when the inverter on one side breaks down, only the winding unit on one side is energized in the configuration of FIG. 4 and heat is biased to one side, but in the configuration of FIG. Since half of the current flows through the winding units 51 and 52 in a well-balanced manner, the heat generation amount is 1 ⁇ 2 and the heat balance and efficiency are improved.
  • the in-phase winding is configured not to have an electrical phase difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

片側通電時におけるトルクリプルの低減を図ることができる回転電機の提供。 モータ100は、N≧2である整数Nに関して、6N個の前記ティースのそれぞれに配置された集中巻の巻線で構成されるステータコイル5を備える。そして、ステータコイル5は、それぞれ3N個の巻線で構成される独立した第1および第2巻線ユニット51,52を有し、第1巻線ユニット51を構成する3N個の巻線は、それぞれ隣接するN個のティースを含み機械角120度ピッチで設けられる3つのティース群TG1~TG3に配置され、第2巻線ユニット52を構成する3N個の巻線は、6N個のティースの内、前記3つのティース群TG1~TG3に含まれないティースに配置される。すなわち、第2巻線ユニット52を構成する3N個の巻線は、機械角120度ピッチで設けられる3つのティース群TG4~TG6に配置されることになる。

Description

回転電機および回転電機システム
 本発明は、回転電機および回転電機システムに関する。
 2系統の巻線を有する回転電機として、特許文献1に記載のような回転電機が知られている。特許文献1に記載の回転電機では、回転電機に設けられた2つのY結線に2つのインバータから独立して駆動電流を供給する構成とし、冗長性を持たせている。
特開2010-11688号公報
 ところで、3相2Y巻線を集中巻の巻線で構成する場合、一方のインバータを停止して他方のインバータで駆動される3相巻線のみでモータ駆動を行う状況、例えば一方のインバータが故障した場合においては、巻線の磁気的なアンバランスが生じてトルクリップルが大きくなるおそれがあった。
 本発明による第1の形態によれば、回転電機は、N≧2である整数Nに関して6N個のティースを有する固定子鉄心と、6N個の前記ティースのそれぞれに配置された集中巻の巻線で構成される固定子巻線とを備え、前記固定子巻線は、それぞれ3N個の前記巻線で構成される独立した第1の3相巻線および第2の3相巻線を有し、前記第1の3相巻線を構成する3N個の前記巻線は、それぞれ隣接するN個のティースを含み機械角120度ピッチで設けられる3つのティース群に配置され、前記第2の3相巻線を構成する3N個の前記巻線は、前記6N個のティースの内、前記3つのティース群に含まれないティースに配置される。
 本発明によれば、片側通電時におけるトルクリプルの低減を図ることができる。
図1は、本発明による回転電機の第1の実施の形態を示す図である。 図2は、モータ100の断面図である。 図3は、モータ100を備える回転電機システムの一形態を示すブロック図である。 図4は、第1巻線ユニット51および第2巻線ユニット52を△結線とした場合を示す。 図5は、第2の実施の形態における回転電機システムを示す図である。 図6は、2系統巻線が可能な集中巻のコンビネーションを示す図である。 図7は、8極12スロットで構成されるモータ100のステータ巻線の配置を示す図である。 図8は、8極12スロットの場合の比較例を示す図である。 図9は、8極12スロット構成の場合の第1および第2巻線ユニットの構成と、Δ結線を示す図である。 図10は、10極12スロット構成の場合の巻線配置を示す図である。 図11は、10極12スロット構成の場合の第1および第2巻線ユニットの構成と、Δ結線を示す図である。 図12は、12極18スロット構成の場合の巻線配置を示す図である。 図13は、12極18スロット構成の場合の第1および第2巻線ユニットの構成と、Δ結線を示す図である。 図14は、14極18スロット構成の場合の巻線配置を示す図である。 図15は、14極18スロット構成の場合の第1および第2巻線ユニットの構成と、Δ結線を示す図である。 図16は、16極18スロット構成の場合の巻線配置を示す図である。 図17は、16極18スロット構成の場合の第1および第2巻線ユニットの構成と、Δ結線を示す図である。
 以下、図を参照して本発明を実施するための形態について説明する。
-第1の実施の形態-
 図1は、本発明による回転電機の一実施の形態を示す図である。図1は、電動パワーステアリング(以下EPSと略す)モータユニットのモータ部(以下では、モータ100と記す)を示したものである。図2は、モータ100の断面図である。EPSモータユニットは、図1に示すモータ100と不図示のコントロールユニットとが機電一体で構成されている。
 モータ100は、ハウジング2の内部にモータ構成部品が納められている。モータ100の駆動力は、モータ100の回転軸であるシャフト6に取り付けられたプーリ1を介して、不図示の電動パワーステアリングシステムの駆動部に伝達される。シャフト6には、回転子構成するフロントロータコア12とリアロータコア13とが設けられている。フロントロータコア12にはフロント磁石12mが取り付けられ、リアロータコア13にはリア磁石13mが取り付けられている。磁石12m、13mの外周部は磁石カバーにより覆われている。
 シャフト6は、ハウジング2に設けられたフロントベアリング7と、ハウジング2の右端のベアリングケース9に設けられたリアベアリング8とによって、回転自在に支持されている。ベアリングケース9は、ベベル型止め輪10によってハウジング2に固定されている。ハウジング2の内周部に設けられたステータコア4には、ステータコイル5が巻装されている。
 ステータコイル5は、後述するように2系統の3相巻線で構成されている。各3相巻線の出力端は、ベアリングケース9に固定されたバスバーモールド14の端子(不図示)に電気的に接続され、その端子を介して2組の3相ターミナル(20u1,20v1,20w1),(20u2,20v2,20w2)に電気的に接続されている。一方の3相巻線は3相ターミナル20u1,20v1,20w1に接続され、他方の3相巻線は3相ターミナル20u2,20v2,20w2に接続されている。シャフトリア側には、モータ100の磁極位置を検出する磁極センサ3が設けられている。この磁極センサ3に対応して、モータ100を駆動制御するコントロールユニット側には検出回路が設けられている。
 図3は、モータ100を備える回転電機システムの一形態を示すブロック図である。図3に示す例では、回転電機システムは、モータ100と、モータ100を駆動する駆動部200とを備える。モータ100のステータコイル5は、上述したように2系統の3相巻線を備えており、以下では、一方の3相巻線を第1巻線ユニット51と呼び、他方の3相巻線を第2巻線ユニット52と呼ぶことにする。磁極センサ3は、回転子101の磁極位置を検出する。回転子101は、図2に示したフロントロータコア12,リアロータコア13,フロント磁石12m,リア磁石13mで構成される。
 第1巻線ユニット51にはインバータ31から電流が供給され、第2巻線ユニット52にはインバータ32から電流が供給される。図3に示す例では、インバータ31,32は共通のDC電源30から給電されているが、インバータ31,32のそれぞれに独立したDC電源を設けるようにしてもかまわない。インバータ31,32は、駆動部200に設けられたコントロールユニット33からの駆動指令に基づいて、巻線ユニット51,52に電流を供給する。
 コントロールユニット33は、磁極センサ3から入力された検出情報や、ステアリングシャフトに取り付けられたトルクセンサの検出値などに基づいて、モータ100の目標トルクを算出する。そして、コントロールユニット33は、モータ100の電流値が目標トルクに相当する電流値となるようにインバータ31,32を制御する。
 図3に示す例では、第1巻線ユニット51および第2巻線ユニット52の3相巻線はY結線で接続されており、それぞれの中性点は電気的に絶縁されている。上述したように、第1巻線ユニット51と第2巻線ユニット52とは電気的に切り離されるとともに、それぞれ独立したインバータ31,32により並列駆動される。例えば、第1巻線ユニット51のU相巻線U1と第2巻線ユニット52のU相巻線U2が電気的に位相差を持たない場合には、インバータ31のU相電流とインバータ32のU相電流は同相となる。しかし、スロットコンビネーションによっては電気的な位相差を持つ場合があるので、その場合には、各インバータ電流は巻線ユニット51,52の誘起電圧の位相に合わせた通電を行う必要がある。
 図4は図3で述べた内容において、第1巻線ユニット51および第2巻線ユニット52を△結線としたものを示している。この場合も上述したY結線の場合と同様に、第1巻線ユニット51と第2巻線ユニット52とに通電する電流は誘起電圧の位相に応じた電流とする必要がある。その電流位相は磁極センサ3の信号を基にインバータ電流の位相を決定する。
 本実施の形態では、第1巻線ユニット51および第2巻線ユニット52は集中巻で構成される。集中巻は1つのティースに対してコイルを環状に巻きつけたものであり、極数とスロット数(ティースの数に等しい)のコンビネーションで相の配置が換わってくる。
 図6は、2系統巻線が可能な集中巻のコンビネーションを示したものである。EPS用のモータ100として使える極数は、インバータ31,32のPWMの周波数やモータ100の最高回転数から決定されるが、一般的には最大極数は16極程度と考えられる。それにより、ティースの数(スロット数)としては18個までが選択可能となる。また、図6では、2系統巻線が可能なものは、ティースの数が6の整数倍で決定される。本実施の形態は、2系統ある巻線ユニットの内の片側だけで駆動した場合でも、トルクリプルを小さく抑えられる巻線接続構造を提供するものであり、その例を、図9~17に示す。なお、トルクリプルが比較的大きくなりやすい構成を、比較例として図8に示す。
 図7は、図6に示すコンビネーションにおいて、8極12スロットで構成されるモータ100のステータ巻線の配置を示したものである。ティースの数は、スロット数と同数の12である。8極12スロット構成は2対3系列の巻線のため、ティース毎の位相差が電気角で120度となる。そのため、3相巻線としてはU相、V相、W相の4回繰り返しとなり、同相巻線が4個となるので、2系統巻線を構成する場合には、2つの巻線で1つの相を構成することになる。各ティースに巻装された集中の相巻線は、図7に示すように、反時計回りにU1相、V1相、W1相、U2相、V2相、W2相、U3相、V3相、W3相、U4相、V4相、W4相の順に配置されている。
 図8は、8極12スロットの場合の比較例を示す図であり、2系統巻線(第1巻線ユニット51と第2巻線ユニット52)をモータ100の左右に分けて配置した場合を示す。図8(a)は、第1巻線ユニット51の場合のΔ結線(左側)と巻線の配置(右側)を示したものである。図8(b)は、第2巻線ユニット52に関して、同様の図を示す。
 2系統の巻線ユニット51,52に2つのインバータ31,32で同一電流を流して運転している場合には、2系統巻線がどのように接続されていても流れている電流値は同じになり、モータ特性に変化はない。
 しかし、片側のインバータだけで片側の巻線ユニットのみ駆動する場合、図8で示した構成の場合には、モータ100の磁気回路が片側に偏って磁束密度が変動するため、第1巻線ユニット51と第2巻線ユニット52との境界部で磁場の変動が中心部分と異なることになる。そのため、図8のように、2つの巻線ユニット51,52を左右に分離して配置した場合には、磁気的なアンバランスが生じその結果トルクリプルが悪化することになる。
 本実施の形態では、以下に説明するように、片方の第1巻線ユニット51の3相巻線が、他方の第2巻線ユニット52に対して対称性を有している点が特徴である。そのような巻線配置とすることで、片側通電でもトルクリプルが小さくなる。そのため、第1巻線ユニット51の3相巻線は、機械角で120度の位相差で構成する。また、第2巻線ユニット52を構成する3相巻線は、第1巻線ユニット51に対して機械角で60度の位相差とする。その結果、それぞれの巻線ユニット間での対称性が保たれることになる。以下、具体的な相巻線の配置について説明する。
 図9は、8極12スロット構成の場合の第1巻線ユニット51および第2巻線ユニット52の巻線配置と、Δ結線を示す図である。なお、説明は省略するが、コンビネーションが4対3系列の16極12スロット構成の場合も図9に示す場合と同じ巻線配置となるので、図9の8極12スロット構成の場合と同様の効果が得られる。
 第1巻線ユニット51は、6個の相巻線、すなわちU2相巻線、U3相巻線、V3相巻線、V4相巻線、W1相巻線、W4相巻線で構成される。これらの相巻線が巻装される6つのティースはT4,T7,T8,T11,T3,T12は、隣接する2つのティースを含む3つのティース群TG1,TG2,TG3に分かれている。図9(a)からも分かるように、ティース群TG1,TG2,TG3は機械角120度ピッチで設けられている。第1巻線ユニット51のΔ結線では、U2相巻線とW1相巻線とが頂点に並んで配置され、右側にはW4相巻線とV4相巻線とが並んで配置されている。また、左側にはU3相巻線とV3相巻線が並んで配置されている。それぞれ同相巻線を直列に接続し、3相に束ねることで△結線とされる。
 また、第2巻線ユニット52を構成するU1相巻線、U4相巻線、V1相巻線、V2相巻線、W2相巻線、W3相巻線は、残りのティースT1,T10,T2,T5,T6,T9に巻装されている。これらのティースも、隣接する2つのティースから成る別のティース群TG4,TG5,TG6を形成している。これらのティース群TG4,TG5,TG6も機械角120度ピッチで設けられている。すなわち、第2巻線ユニット52の相巻線は、第1巻線ユニット51の相巻線に対して機械角60度の位相で配置されている。
 図9に示す巻線配置では、第1巻線ユニット51および第2巻線ユニット52のどちらにおいても、周期性のある巻線レイアウトとなっている。このように、どちらの巻線ユニットにおいても周期性のある巻線レイアウトにできるため、仮に片側の巻線ユニットだけに通電する駆動状態となった場合でも、トルクリプルの発生を小さくすることができる。
 図10は、10極12スロット構成の場合の巻線配置を示す図である。なお、14極12スロット構成の場合も、ステータ側の巻線配置は10極12スロット構成の場合と同様となる。ティースの数は、スロット数と同数の12である。ティースT1からティースT12まで、反時計回りにU1相巻線、u2相巻線、v1相巻線、V2相巻線、W1相巻線、w2相巻線、u3相巻線、U4相巻線、V3相巻線、v4相巻線、w3相巻線、W4相巻線の順に配置されている。なお、u2,v1,w2,u3,v4,w3の相巻線には、U1,V2,W1,U4,V3,W4の相巻線とは逆巻の集中巻線が用いられる。
 図11は、10極12スロット構成の場合の第1巻線ユニット51および第2巻線ユニット52の構成と、Δ結線を示す図である。図11(a)に示す第1巻線ユニット51においては、ティース群TG1のティースT3,T4にv1相巻線、V2相巻線が巻装され、ティース群TG2のティースT7,T8にu3相巻線、U4相巻線が巻装され、ティース群TG3のティースT11,T12にw3相巻線、W4相巻線が巻装される。Δ結線では、v1-V2、u3-U4、u3-U4のように同相巻線が直列に接続され、それらを3相に束ねることで△結線とされる。
 一方、図11(b)に示す第2巻線ユニット52においては、ティース群TG4のティースT9,T10にV3相巻線、v4相巻線が巻装され、ティース群TG5のティースT1,T2にU1相巻線、u2相巻線が巻装され、ティース群TG6のティースT5,T6にW1相巻線、w2相巻線が巻装される。Δ結線では、U1-u2、V3-v4、W1-w2のように同相巻線が直列に接続され、それらを3相に束ねることで△結線とされる。
 図12は、12極18スロット構成の場合の巻線配置を示す図である。なお、24極18スロット構成の場合も、ステータ側の巻線配置は12極18スロット構成の場合と同様となる。ティースの数は、スロット数と同数の18である。ティースT1からティースT18まで、反時計回りにU1相巻線、V1相巻線、W1相巻線、U2相巻線、V2相巻線、W2相巻線、U3相巻線、V3相巻線、W3相巻線、U4相巻線、V4相巻線、W4相巻線、U5相巻線、V5相巻線、W5相巻線、U6相巻線、V6相巻線、W6相巻線の順に配置されている。
 図13は、12極18スロット構成の場合の第1巻線ユニット51および第2巻線ユニット52の構成と、Δ結線を示す図である。図13(a)に示す第1巻線ユニット51においては、ティース群TG1のティースT4,T5,T6にU2相巻線、V2相巻線、W2相巻線が巻装され、ティース群TG2のティースT10,T11,T12にU4相巻線、V4相巻線、W4相巻線が巻装され、ティース群TG3のティースT16,T17,T18にU6相巻線、V6相巻線、W6相巻線が巻装される。Δ結線では、V2-V6-V4、W2-W6-W4、およびU2-U6-U4のように同相巻線が直列に接続され、それらを3相に束ねることで△結線とされる。
 一方、図13(b)に示す第2巻線ユニット52においては、ティース群TG4のティースT13,T14,T15にU5相巻線、V5相巻線、W5相巻線が巻装され、ティース群TG5のティースT1,T2,T3にU1相巻線、V1相巻線、W1相巻線が巻装され、ティース群TG6のティースT7,T8,T9にU3相巻線、V3相巻線、W3相巻線が巻装される。Δ結線では、U1-U5-U3、V1-V5-V3、およびW1-W5-W3のように同相巻線が直列に接続され、それらを3相に束ねることで△結線とされる。このように、ティースの数が18の場合には、一つのティース群には3つのティースが含まれ、Δ結線においては3つの巻線が同相巻線として直列に接続されることになる。
 図14は、14極18スロット構成の場合の巻線配置を示す図である。ティースの数は、スロット数と同数の18である。ティースT1からティースT18まで、反時計回りにU1相巻線、V1相巻線、W1相巻線、w2相巻線、u2相巻線、v2相巻線、V3相巻線、W3相巻線、U3相巻線、u4相巻線、v4相巻線、w4相巻線、W5相巻線、U5相巻線、V5相巻線、v6相巻線、w6相巻線、u6相巻線の順に配置されている。
 図15は、14極18スロット構成の場合の第1巻線ユニット51および第2巻線ユニット52の構成と、Δ結線を示す図である。図15(a)に示す第1巻線ユニット51においては、ティース群TG1のティースT4,T5,T6にw2相巻線、u2相巻線、v2相巻線が巻装され、ティース群TG2のティースT10,T11,T12にu4相巻線、v4相巻線、w4相巻線が巻装され、ティース群TG3のティースT16,T17,T18にv6相巻線、w6相巻線、u6相巻線が巻装される。Δ結線では、v2-v6-v4、w2-w6-w4、およびu2-u6-u4のように同相巻線が直列に接続され、それらを3相に束ねることで△結線とされる。
 一方、図15(b)に示す第2巻線ユニット52においては、ティース群TG4のティースT13,T14,T15にW5相巻線、U5相巻線、V5相巻線が巻装され、ティース群TG5のティースT1,T2,T3にU1相巻線、V1相巻線、W1相巻線が巻装され、ティース群TG6のティースT7,T8,T9にV3相巻線、W3相巻線、U3相巻線が巻装される。Δ結線では、U1-U5-U3、V1-V5-V3、およびW1-W5-W3のように同相巻線が直列に接続され、それらを3相に束ねることで△結線とされる。
 図16は、16極18スロット構成の場合の巻線配置を示す図である。ティースの数は、スロット数と同数の18である。ティースT1からティースT18まで、反時計回りにu1相巻線、U2相巻線、u3相巻線、v1相巻線、V2相巻線、v3相巻線、w1相巻線、W2相巻線、w3相巻線、u4相巻線、U5相巻線、u6相巻線、v4相巻線、V5相巻線、v6相巻線、w4相巻線、W5相巻線、w6相巻線の順に配置されている。
 図17は、16極18スロット構成の場合の第1巻線ユニット51および第2巻線ユニット52の構成と、Δ結線を示す図である。図17(a)に示す第1巻線ユニット51においては、ティース群TG1のティースT4,T5,T6にv1相巻線、V2相巻線、v3相巻線が巻装され、ティース群TG2のティースT10,T11,T12にu4相巻線、U5相巻線、u6相巻線が巻装され、ティース群TG3のティースT16,T17,T18にw4相巻線、W5相巻線、w6相巻線が巻装される。Δ結線では、u4-U5-u6、v1-V2-v3、およびw4-W5-w6のように同相巻線が直列に接続され、それらを3相に束ねることで△結線とされる。
 一方、図17(b)に示す第2巻線ユニット52においては、ティース群TG4のティースT13,T14,T15にv4相巻線、V5相巻線、v6相巻線が巻装され、ティース群TG5のティースT1,T2,T3にu1相巻線、U2相巻線、u3相巻線が巻装され、ティース群TG6のティースT7,T8,T9にw1相巻線、W2相巻線、w3相巻線が巻装される。Δ結線では、u1-U2-u3、v4-V5-v6、およびw1-W2-w3のように同相巻線が直列に接続され、それらを3相に束ねることで△結線とされる。
 以上のように、N≧2である整数Nに関して、6N個の前記ティースのそれぞれに配置された集中巻の巻線で構成されるステータコイル5を備える回転電機であるモータ100において、ステータコイル5は、それぞれ3N個の巻線で構成される独立した第1巻線ユニット51および第2巻線ユニット52を有し、第1巻線ユニット51を構成する3N個の巻線は、それぞれ隣接するN個のティースを含み機械角120度ピッチで設けられる3つのティース群TG1,TG2,TG3に配置され、第2巻線ユニット52を構成する3N個の巻線は、6N個のティースの内、前記3つのティース群TG1,TG2,TG3に含まれないティースに配置される。すなわち、第2巻線ユニット52を構成する3N個の巻線は、機械角120度ピッチで設けられる3つのティース群TG4,TG5,TG6に配置されることになる。
 このように、本実施の形態ではモータ100の2つの巻線ユニット51,52が磁気的にバランス良く配置される。そのため、図4に示すように巻線ユニット51,52のそれぞれをインバータ31,32で独立に駆動する構成において、インバータ31,32の一方が故障して片側通電となった場合でも、トルクリプルを小さくすることができる。なお、2つの巻線ユニット51,52が接する部分には空間を設けるか、または絶縁物を配置することでユニット間での短絡を防止できるため、モータ100の故障率を低減できる。また、同相巻線の渡り線に関しても、他の相巻線の上部を渡る巻線には、絶縁テープ゜や絶縁チューブを配置することで、より高い信頼性のモータ100構成することができる。なお、上述した、図9~17では、全て△結線で説明したが、Y結線でもトルクリプルの低減効果は全く同じである。
-第2の実施の形態-
 図5は、図4に示した回転電機システムの他の実施形態を示す図である。図5に示す回転電機システムでは、インバータ31と第1巻線ユニット51との電気的接続を遮断できるスイッチ34と、インバータ32と第2巻線ユニット52との電気的接続を遮断できるスイッチ35と、第1巻線ユニット51と第2巻線ユニット52とを電気的に接続可能なスイッチ36とを設けた。これらのスイッチ34~36の開閉制御はコントロールユニット33によって行われる。
 通常制御時には、スイッチ34,35は閉じた状態(接続状態)とされ、スイッチ36は開いた状態(遮断状態)とされる。すなわち、図4の場合と同様に、第1巻線ユニット51はインバータ31によって駆動されると共に第2巻線ユニット52はインバータ32によって駆動され、2つの巻線ユニット51,52は電気的に独立して駆動される。この場合、第1巻線ユニット51と第2巻線ユニット52とは全く同じ特性となるように、直並列される巻線の数および巻数が統一されているので、同じ電流で駆動した場合に発生するトルクは第1巻線ユニット51と第2巻線ユニット52とは同じである。
 ただし、第1巻線ユニット51の誘起電圧と第2巻線ユニット52の誘起電圧との間に位相差が有る場合にはトルクリプルの位相差が出るため、位相差によってはトルクリプルを小さくできる場合もある。通常、3相モータのトルクリプルは電気角で60度の位相となるため、誘起電圧が電気的に30度近辺の位相差の場合には2つの巻線ユニットで発生するトルクリプルを打ち消すことができる。
 一方、片方のインバータ、例えばインバータ31が故障した場合には、インバータ31をオフすると共に、スイッチ36を閉状態(接続状態)に切り換えて、第1巻線ユニット51と第2巻線ユニット52とを並列接続状態とする。その結果、一つのインバータ32により第1巻線ユニット51と第2巻線ユニット52とが駆動され、通常の場合と同様の電力がインバータ32から出力される場合には、モータ100は通常運転の場合の半分のトルクで駆動されることになる。もちろん、要求トルクに必要とされる電力がインバータ32の出力許容範囲内であれば、要求トルクを満足するように電力が出力される。
 第1の実施の形態で説明した図4に示すような構成の場合、インバータ31が故障した場合にはモータ100を片側の第2巻線ユニット52だけで駆動しなければならず、例えば巻線ユニット51,52のコイル配置が図8に示すような構成の場合には、トルクリプルが大きくなるという問題がある。しかしながら、本実施の形態のように、スイッチ36を接続状態にしてインバータ32から第1巻線ユニット51および第2巻線ユニット52の両方へ電流供給を行うことで、均一な電流を全巻線に流すことが出来る。その結果、図8のようなコイル配置であった場合でも、トルクリプルが大きくなるのを防止することができる。
 もちろん、第1の実施の形態で記載したように巻線が磁気的にバランス良く配置される巻線ユニット51,52を採用した場合にも、図5に示すような回転電機システムを適用することができる。その場合、片側のインバータが故障した場合には、図4の構成の場合には片側の巻線ユニットのみ通電されて片側に偏って熱が発生するが、図5の構成の場合には両方の巻線ユニット51,52に半分の電流がバランス良く流れるので、発熱量が1/2で熱バランスも効率も良くなる。
 なお、インバータ32から2つの巻線ユニット51,52に電流供給を行う場合には、第1巻線ユニット51と第2巻線ユニット52とにおいて、同相巻線に電気的な位相差が生じないように各相巻線を構成することが好ましい。上述した、図9~図17に示した巻線ユニット51,52においては、同相巻線に電気的な位相差を持たせないような構成とされている。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 3…磁極センサ、4…ステータコア、5…ステータコイル、31,32…インバータ、33…コントロールユニット、34,45,46…スイッチ、51…第1巻線ユニット、52…第2巻線ユニット、T1~T18…ティース、100…モータ、101…回転子、200…駆動部、TG1~TG6…ティース群

Claims (5)

  1.  N≧2である整数Nに関して6N個のティースを有する固定子鉄心と、
     6N個の前記ティースのそれぞれに配置された集中巻の巻線で構成される固定子巻線と、を備え、
     前記固定子巻線は、それぞれ3N個の前記巻線で構成される独立した第1の3相巻線および第2の3相巻線を有し、
     前記第1の3相巻線を構成する3N個の前記巻線は、それぞれ隣接するN個のティースを含み機械角120度ピッチで設けられる3つのティース群に配置され、
     前記第2の3相巻線を構成する3N個の前記巻線は、前記6N個のティースの内、前記3つのティース群に含まれないティースに配置される、回転電機。
  2.  請求項1に記載の回転電機において、
     回転電機の構成が、8極12スロット構成、16極12スロット構成、10極12スロット構成、14極12スロット構成、12極18スロット構成、14極18スロット構成および16極18スロット構成のいずれかである、回転電機。
  3.  請求項1または2に記載の回転電機と、
     前記第1の3相巻線に接続される第1のインバータと、
     前記第2の3相巻線に接続される第2のインバータと、を備える回転電機システム。
  4.  請求項3に記載の回転電機システムにおいて、
     前記第1の3相巻線と前記第1のインバータとの接続および遮断を行う第1の開閉スイッチと、
     前記第2の3相巻線と前記第2のインバータとの接続および遮断を行う第2の開閉スイッチと、
     前記第1の開閉スイッチと前記第1の3相巻線とを接続する第1の接続ラインおよび前記第2の開閉スイッチと前記第2の3相巻線とを接続する第2の接続ラインの間に設けられ、前記第1の接続ラインと前記第2の接続ラインとの接続および遮断を行う第3の開閉スイッチと、
     前記第1および第2のインバータが正常の場合には、前記第1および第2の開閉スイッチを接続動作させると共に前記第3の開閉スイッチを遮断動作させ、前記第1および第2のインバータのいずれか一方が異常の場合には、異常なインバータに接続されている開閉スイッチを遮断動作させると共に前記第3の開閉スイッチを接続動作させる制御部と、を備える回転電機システム。
  5.  請求項4に記載の回転電機システムにおいて、
     前記第1の3相巻線および前記第2の3相巻線は、同相巻線においては電気的な位相差が生じない、回転電機システム。
PCT/JP2016/084191 2015-11-27 2016-11-18 回転電機および回転電機システム WO2017090514A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680063194.7A CN108352750B (zh) 2015-11-27 2016-11-18 旋转电机以及旋转电机系统
JP2017552383A JP6564057B2 (ja) 2015-11-27 2016-11-18 回転電機および回転電機システム
US15/779,043 US10447184B2 (en) 2015-11-27 2016-11-18 Rotating electrical machine and rotating electrical machine system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015231917 2015-11-27
JP2015-231917 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017090514A1 true WO2017090514A1 (ja) 2017-06-01

Family

ID=58764310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084191 WO2017090514A1 (ja) 2015-11-27 2016-11-18 回転電機および回転電機システム

Country Status (4)

Country Link
US (1) US10447184B2 (ja)
JP (1) JP6564057B2 (ja)
CN (1) CN108352750B (ja)
WO (1) WO2017090514A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069918A1 (ja) * 2017-10-06 2019-04-11 日本電産株式会社 モータおよび電動パワーステアリング装置
WO2019116829A1 (ja) * 2017-12-14 2019-06-20 日立オートモティブシステムズ株式会社 モータ
WO2020085322A1 (ja) * 2018-10-23 2020-04-30 株式会社マキタ 電動作業機
WO2022153362A1 (ja) * 2021-01-12 2022-07-21 三菱電機株式会社 ステータ、モータ、圧縮機および冷凍サイクル装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9800193B2 (en) * 2013-03-15 2017-10-24 Hengchun Mao Dynamically reconfigurable motors and generators and systems
CN108367774B (zh) * 2015-12-28 2021-07-02 三菱电机株式会社 线控转向方式的电动助力转向装置及其控制方法
US10998841B2 (en) * 2017-03-24 2021-05-04 Nidec Corporation Power conversion device, motor drive unit, and electric power steering device
WO2018173424A1 (ja) * 2017-03-24 2018-09-27 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
US10707741B2 (en) * 2017-07-18 2020-07-07 Polaris Industries Inc. Voltage generator and a method of making a voltage generator
CN111224490A (zh) * 2018-11-26 2020-06-02 陈丰田 马达装置
CN110350743A (zh) * 2019-08-08 2019-10-18 深圳南方德尔汽车电子有限公司 一种双定子电机的汇流盘及其双定子电机
EP3859954A1 (de) * 2020-01-30 2021-08-04 Maxon International AG Funktionssicherer bürstenloser dc-elektromotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275699A (ja) * 1996-04-04 1997-10-21 Hitachi Ltd 可変速電源装置
JP2003153579A (ja) * 2001-11-15 2003-05-23 Toyota Central Res & Dev Lab Inc モータ駆動制御装置およびその方法
JP2005073398A (ja) * 2003-08-25 2005-03-17 Favess Co Ltd 回転機及び操舵システム
JP2011114941A (ja) * 2009-11-26 2011-06-09 Asmo Co Ltd モータ
WO2015141796A1 (ja) * 2014-03-20 2015-09-24 日本精工株式会社 電動機、電動パワーステアリング装置および車両

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141117B2 (ja) * 2001-07-19 2008-08-27 三菱電機株式会社 永久磁石形モータの組込着磁方法
JP2008125233A (ja) * 2006-11-10 2008-05-29 Motor Jidosha Kk 電動機駆動装置及び駆動方法
JP2010011688A (ja) 2008-06-30 2010-01-14 Hitachi Ltd 回転電機駆動制御装置
DE102010046906B4 (de) 2009-10-02 2019-12-24 Denso Corporation Motor
JP2015039256A (ja) * 2013-03-15 2015-02-26 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置及び車両
EP3109972B1 (en) * 2014-02-17 2018-12-05 Mitsubishi Electric Corporation Permanent magnet motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275699A (ja) * 1996-04-04 1997-10-21 Hitachi Ltd 可変速電源装置
JP2003153579A (ja) * 2001-11-15 2003-05-23 Toyota Central Res & Dev Lab Inc モータ駆動制御装置およびその方法
JP2005073398A (ja) * 2003-08-25 2005-03-17 Favess Co Ltd 回転機及び操舵システム
JP2011114941A (ja) * 2009-11-26 2011-06-09 Asmo Co Ltd モータ
WO2015141796A1 (ja) * 2014-03-20 2015-09-24 日本精工株式会社 電動機、電動パワーステアリング装置および車両

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069918A1 (ja) * 2017-10-06 2019-04-11 日本電産株式会社 モータおよび電動パワーステアリング装置
JPWO2019069918A1 (ja) * 2017-10-06 2020-12-03 日本電産株式会社 モータおよび電動パワーステアリング装置
WO2019116829A1 (ja) * 2017-12-14 2019-06-20 日立オートモティブシステムズ株式会社 モータ
WO2020085322A1 (ja) * 2018-10-23 2020-04-30 株式会社マキタ 電動作業機
WO2022153362A1 (ja) * 2021-01-12 2022-07-21 三菱電機株式会社 ステータ、モータ、圧縮機および冷凍サイクル装置
JP7486613B2 (ja) 2021-01-12 2024-05-17 三菱電機株式会社 ステータ、モータ、圧縮機および冷凍サイクル装置

Also Published As

Publication number Publication date
CN108352750A (zh) 2018-07-31
US20180351482A1 (en) 2018-12-06
JPWO2017090514A1 (ja) 2018-08-30
CN108352750B (zh) 2020-01-10
JP6564057B2 (ja) 2019-08-21
US10447184B2 (en) 2019-10-15

Similar Documents

Publication Publication Date Title
JP6564057B2 (ja) 回転電機および回転電機システム
CN107251410B (zh) 永磁体型双三相电动机及电动助力转向装置
JP4691897B2 (ja) 電動機駆動システム
EP1562276A2 (en) Winding topologies for stators in brushless motors
US10951151B2 (en) Drive device
WO2018135375A1 (ja) 電動モータ
JP2014096915A (ja) 自動車用電動アクチュエータ
US10193428B2 (en) Electric rotating machine
WO2008066061A1 (fr) Moteur sans balai
WO2017168574A1 (ja) 電動機
JP2021036735A (ja) モータ
JP5457869B2 (ja) 回転電機の固定子及び回転電機
KR20180090430A (ko) 모터 및 모터 구동 장치
JP2010028957A (ja) 誘導機及び誘導機極数切換システム
JP2008160920A (ja) 結線パターン切換装置
US20210075273A1 (en) Rotating electric machine and electric power steering device having rotating electric machine
JP5301905B2 (ja) 複数相回転電機駆動装置、複数相発電機用コンバータ、複数相回転電機、及び回転電機駆動システム
JP2017028972A (ja) 交流励磁同期回転電機
JP2008125233A (ja) 電動機駆動装置及び駆動方法
JP2009142130A (ja) 回転電機及び回転電機駆動装置
JP5261871B2 (ja) 同期電動機
JP5021247B2 (ja) 多重巻線交流モータ
JP2007189818A (ja) 同期電動機の電流制御方法
KR101439377B1 (ko) 3결선 구조의 스테이터를 이용한 bldc 모터
JP2005178613A (ja) ステアバイワイヤシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552383

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868462

Country of ref document: EP

Kind code of ref document: A1