WO2017086164A1 - 充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法 - Google Patents

充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法 Download PDF

Info

Publication number
WO2017086164A1
WO2017086164A1 PCT/JP2016/082596 JP2016082596W WO2017086164A1 WO 2017086164 A1 WO2017086164 A1 WO 2017086164A1 JP 2016082596 W JP2016082596 W JP 2016082596W WO 2017086164 A1 WO2017086164 A1 WO 2017086164A1
Authority
WO
WIPO (PCT)
Prior art keywords
remaining capacity
charge
battery
station
target
Prior art date
Application number
PCT/JP2016/082596
Other languages
English (en)
French (fr)
Inventor
皓正 高塚
和田 純一
一希 笠井
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP16866166.8A priority Critical patent/EP3379681B1/en
Priority to MYPI2018700905A priority patent/MY188695A/en
Priority to US15/758,236 priority patent/US10919410B2/en
Publication of WO2017086164A1 publication Critical patent/WO2017086164A1/ja
Priority to PH12018500493A priority patent/PH12018500493A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/10Arrangements of batteries for propulsion
    • B62J43/13Arrangements of batteries for propulsion on rider-propelled cycles with additional electric propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/10Arrangements of batteries for propulsion
    • B62J43/16Arrangements of batteries for propulsion on motorcycles or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a charge / discharge control device, a charge / discharge control system, and a battery remaining capacity adjustment method for controlling charge / discharge of a battery.
  • Patent Document 1 a vehicle including a plurality of batteries that can be connected in parallel has been proposed (see, for example, Patent Document 1).
  • the vehicle shown in Patent Document 1 is configured such that a plurality of batteries can be arranged at intervals in the width direction of the vehicle. Then, the battery is removed or added by the user according to the travel distance.
  • Patent Document 1 it is not assumed that a plurality of batteries that can be connected in parallel as shown in Patent Document 1 are exchanged at the above-described stations, and the following problems are considered to occur. That is, in the mobility including a plurality of batteries that can be connected in parallel, the capacity is usually reduced evenly. For this reason, it is necessary to exchange all the batteries in the station, and it may be time-consuming.
  • An object of the present invention is to provide a charge / discharge control device, a charge / discharge control system, and a remaining battery capacity adjustment method that can reduce the labor required for battery replacement.
  • a charge / discharge control device is a charge / discharge control device that controls charge / discharge of a plurality of batteries that can be attached to and detached from a mobile body and that can be connected in parallel, and includes a remaining capacity acquisition unit and a required power amount calculation unit And a target remaining amount generation unit and a charge / discharge control unit.
  • the remaining capacity acquisition unit acquires the remaining capacity of each battery.
  • the required power amount calculation unit calculates the position information of the station where the battery is exchanged and the amount of power necessary to reach the station from the current location of the mobile object.
  • the target remaining amount generation unit calculates the amount of each battery when it arrives at the station from the total amount of necessary power calculated by the required power amount calculation unit and the remaining capacity of each battery acquired by the remaining capacity acquisition unit. Calculate the target remaining capacity.
  • the charge / discharge control unit performs charge / discharge between the batteries such that the target remaining capacity calculated by the target remaining amount generating unit is obtained.
  • the mobile body includes, for example, mobility such as an electric motorcycle, an electric bicycle, an electric unicycle, an electric vehicle (EV), and a PHV (Plug-in Hybrid Vehicle).
  • the charge / discharge control apparatus is the charge / discharge control apparatus according to the first invention, wherein the target remaining amount generating unit is biased in the remaining capacities of the plurality of batteries when arriving at the station. Thus, the target remaining capacity of each battery is calculated.
  • the remaining capacity of the plurality of batteries is not equalized and the remaining capacity of the plurality of batteries can be biased, and a battery with a small remaining capacity is generated. For this reason, the total remaining capacity of the battery can be efficiently increased with a small number of battery replacements by exchanging a battery with a small remaining capacity with a charged battery arranged in the station.
  • a charge / discharge control apparatus is the charge / discharge control apparatus according to the first invention, wherein when the target remaining capacity setting unit arrives at the station, the remaining capacity of each battery is transferred to the battery.
  • the target remaining capacity of each battery is calculated so as to be between the set lower limit value and upper limit value. Thereby, the remaining capacity of a plurality of batteries can be adjusted between the lower limit value and the upper limit value of the battery.
  • a charge / discharge control apparatus is the charge / discharge control apparatus according to the second aspect of the present invention, further comprising a lower limit value acquisition unit.
  • the lower limit value acquisition unit acquires the lower limit value of the remaining capacity in the plurality of batteries.
  • the target remaining capacity setting unit sets the target remaining capacity to be a lower limit value set in the battery for at least one of the plurality of batteries.
  • a charge / discharge control device is the charge / discharge control device according to the fourth invention, wherein the target remaining amount generation unit has one of a plurality of batteries that cannot be set to a lower limit value.
  • the target remaining capacity of each battery is set so that the remaining capacity of one battery is as small as possible when it arrives at the station.
  • the remaining capacity of one of the batteries that does not reach the lower limit when the station arrives can be reduced as much as possible. For this reason, the total remaining capacity of the battery possessed by the mobile body can be efficiently increased by replacing the battery having the remaining capacity with the lower limit value and the battery having the smallest remaining capacity with a charged battery.
  • a charge / discharge control apparatus is the charge / discharge control apparatus according to the second aspect of the present invention, further comprising an upper limit value acquisition unit.
  • the upper limit value acquisition unit acquires the upper limit value of the remaining capacity in the plurality of batteries.
  • the target remaining amount generation unit sets the target remaining capacity to an upper limit value set for the battery for at least one of the plurality of batteries.
  • a charge / discharge control device is the charge / discharge control device according to the sixth invention, wherein the target remaining amount generation unit has any of a plurality of batteries that cannot be set to an upper limit value.
  • the target remaining capacity of each battery is set so that the remaining capacity of one battery becomes as large as possible when it arrives at the station. As a result, when the station arrives, the remaining capacity of one of the batteries whose remaining capacity has reached the upper limit can be increased as much as possible. For this reason, the maximum number of batteries with as little remaining capacity as possible is generated. By exchanging the battery with a small remaining capacity, the total remaining capacity of the battery held by the mobile body can be increased efficiently.
  • a charge / discharge control device is the charge / discharge control device according to the second or third aspect of the invention, wherein the target remaining capacity setting unit is a replacement target at the station when it arrives at the station.
  • the target remaining capacity of each battery is calculated so that the difference between the total remaining capacity in the group of one or more batteries and the total remaining capacity in the group of one or more batteries other than the replacement target becomes the largest.
  • the station when the station arrives, the difference between the total remaining capacity of the battery of the group to be exchanged at the station and the total remaining capacity of the battery of the non-exchange target group becomes the maximum. For this reason, it is possible to efficiently increase the total remaining capacity of the battery held by the mobile body by replacing the battery of the group to be replaced with a charged battery in the station.
  • a charge / discharge control device is the charge / discharge control device according to the fourth aspect, wherein the lower limit value acquisition unit sets a lower limit value.
  • the lower limit acquisition unit can acquire the lower limit by setting the lower limit
  • the lower limit can be freely set.
  • a charge / discharge control apparatus is the charge / discharge control apparatus according to the sixth aspect of the present invention, wherein the upper limit value acquisition unit sets an upper limit value.
  • the upper limit value acquisition unit can acquire the upper limit value by setting the upper limit value, the upper limit value can be freely set.
  • a charge / discharge control device is the charge / discharge control device according to the third or fourth aspect of the invention, wherein the lower limit value is zero or a discharge lower limit value. This allows the remaining capacity of one or more batteries to be reduced to zero or the discharge lower limit when arriving at the station. For example, the discharge lower limit value is set to 20% of the full charge capacity of the battery.
  • a charge / discharge control apparatus is the charge / discharge control apparatus according to the third or sixth aspect of the present invention, wherein the upper limit value is a full charge capacity value or a charge upper limit value. This allows the remaining capacity of one or more batteries to be increased to the full charge capacity value or the charge upper limit value when arriving at the station.
  • the charge upper limit value is set to 80% of the full charge capacity of the battery.
  • a charge / discharge control device is the charge / discharge control device according to the first invention, and the moving body is an electric motorcycle or an electric bicycle.
  • mobility including an electric motorcycle and an electric bicycle is used as the moving body.
  • a charge / discharge control system includes a remaining capacity estimation unit, a required power amount calculation unit, a target remaining amount generation unit, and a charge / discharge control unit.
  • the remaining capacity estimation unit estimates the remaining capacity of the battery that can be attached to and detached from the mobile body and that can be connected in parallel.
  • the required power amount calculation unit calculates the position information of the station where the battery is exchanged and the amount of power necessary to reach the station from the current location of the mobile object.
  • the target remaining amount generation unit calculates the target remaining capacity of each battery when it arrives at the station from the total remaining capacity of each battery estimated by the remaining capacity estimation unit.
  • the charge / discharge control unit performs charge / discharge between the batteries such that the target remaining capacity calculated by the target remaining amount generating unit is obtained.
  • the charge / discharge control system controls the plurality of batteries based on the remaining capacity of each battery estimated by the remaining capacity estimation unit. Thereby, the moving body can acquire the remaining capacity of each of the plurality of batteries and control the remaining capacity. For this reason, when the station arrives, the total remaining capacity of the battery pack held by the mobile body can be efficiently increased with a small number of battery pack replacements.
  • a battery remaining capacity adjusting method is a battery remaining capacity adjusting method for adjusting the remaining capacity of a plurality of batteries that can be attached to and detached from a mobile body and that can be connected in parallel.
  • a process, a target remaining capacity generation process, and a charge / discharge control process In the remaining capacity acquisition step, the remaining capacity of each battery is acquired.
  • the electric energy calculation step the position information of the station where the battery is exchanged and the electric energy necessary to reach the station from the current location of the moving object are calculated.
  • the target remaining capacity generation step is based on the required power amount calculated in the power amount calculation step and the total remaining capacity of each battery acquired in the remaining capacity acquisition step. Calculate the target remaining capacity.
  • charge / discharge control process charge / discharge is performed between the battery packs so as to achieve the target remaining capacity calculated in the target remaining capacity generating process.
  • the remaining capacity between the battery packs when the station arrives can be adjusted.
  • a battery pack and a remaining capacity with a small remaining capacity can be obtained by biasing the remaining capacity so that the remaining capacity of any one of the plurality of battery packs is not equalized in a plurality of battery packs.
  • a battery pack having a large amount can be formed.
  • the total remaining capacity of the battery pack held by the mobile body can be efficiently increased with a small number of battery pack replacements. Can do. (The invention's effect)
  • According to the charging / discharging control device, the charging / discharging control system, and the remaining battery capacity adjustment method of the present invention it is possible to reduce time and labor when replacing the battery pack.
  • exchanges the battery system and battery pack in embodiment concerning this invention The block diagram which shows the structure of the battery system of FIG. The flowchart which shows operation
  • the battery system 1 of the present embodiment is a system that supplies power to the mobility 20 and includes a battery pack 10 and a mobility 20 as shown in FIG.
  • the station 100 has an insertion portion 100a into which a plurality of battery packs 10 are inserted.
  • the battery pack 10 is disposed in these insertion portions 100a.
  • the station 100 is arrange
  • Each of the four battery packs 10 includes a power storage unit 11 and a remaining capacity estimation unit 12 as shown in FIG.
  • the four power storage units 11 and the remaining capacity estimation unit 12 will also be described with the reference numerals of the power storage units 11A, 11B, 11C, and 11D and the remaining capacity estimation units 12A, 12B, 12C, and 12D. That is, battery pack 10A includes power storage unit 11A and remaining capacity estimation unit 12A, battery pack 10B includes power storage unit 11B and remaining capacity estimation unit 12B, and battery pack 10C includes power storage unit 11C and remaining capacity estimation unit 12B.
  • the battery pack 10D includes a power storage unit 11D and a remaining capacity estimation unit 12D.
  • the power storage units 11A, 11B, 11C, and 11D store or discharge power.
  • the four power storage units 11A, 11B, 11C, and 11D are electrically connected to the mobility 20 in parallel. Therefore, even when only one of the four battery packs 10 is attached to the mobility 20, it is possible to supply electric power to the motor 21, and the mobility 20 it can.
  • the remaining capacity estimation unit 12 estimates the remaining capacity of the power storage unit 11 by measuring current or voltage. That is, the remaining capacity estimation unit 12A estimates the remaining capacity of the power storage unit 11A, the remaining capacity estimation unit 12B estimates the remaining capacity of the power storage unit 11B, the remaining capacity estimation unit 12C estimates the remaining capacity of the power storage unit 11C, The remaining capacity estimation unit 12D estimates the remaining capacity of the power storage unit 11D. The remaining capacity estimation units 12A, 12B, 12C, and 12D transmit the estimated remaining capacities of the power storage units 11A, 11B, 11C, and 11D to the mobility 20.
  • the mobility 20 is an electric motorcycle that travels by being supplied with electric power from the four battery packs 10 mounted under the seat 20a.
  • the motor 20 and a rear wheel (drive wheel) are provided. 22, a front wheel 23 (see FIG. 1), and a charge / discharge control device 30.
  • the motor 21 receives power supply from the battery pack 10 and transmits a rotational driving force to the axle of the rear wheel 22 serving as a driving wheel.
  • the front wheels 23 are steering wheels provided between the front part of the mobility 20 and the road surface, and the direction of travel can be switched by changing the direction in conjunction with the direction of the handle 20b.
  • the rear wheel 22 is a drive wheel provided between the rear portion of the mobility 20 on which the battery pack 10 is mounted and the road surface, and is driven to rotate by the motor 21.
  • the charge / discharge control device 30 controls charge / discharge of the four power storage units 11.
  • the charge / discharge control device 30 includes a current position acquisition unit 31, a station position acquisition unit 32, a required power amount calculation unit 33, a reception unit 34, a target remaining amount generation unit 35, a charge / discharge control unit 36, and a lower limit.
  • a value setting unit 37 and an upper limit setting unit 38 are included.
  • the current position acquisition unit 31 acquires the current position of the mobility 20.
  • the current position acquisition unit 31 acquires the current position using, for example, GPS (Global Positioning System).
  • the station position acquisition unit 32 acquires the position information of the station 100.
  • the station position acquisition unit 32 stores in advance position information of a plurality of stations 100 and extracts position information of the station 100 selected by the user.
  • the station position acquisition unit 32 may automatically select the station 100 without being limited to the selection by the user. For example, the station position acquisition unit 32 may automatically extract the station 100 closest to the current position using the current position information acquired by the current position acquisition unit 31.
  • the required power amount calculation unit 33 uses the current position information acquired by the current position acquisition unit 31 and the position information of the station 100 to be reached acquired from the station position acquisition unit 32 until the station 100 arrives at the station 100 from the current location. Calculate the amount of power required for.
  • the receiving unit 34 receives and acquires information on the remaining capacity of the battery packs 10A, 10B, 10C, and 10D. Specifically, the receiving unit 34 acquires the remaining capacities of the respective power storage units 11A, 11B, 11C, and 11D from the remaining capacity estimating units 12A, 12B, 12C, and 12D of the battery packs 10A, 10B, 10C, and 10D. To do.
  • the communication between the remaining capacity estimating units 12A, 12B, 12C, 12D and the receiving unit 34 may be wired or wireless.
  • Lower limit setting unit 37 sets the lower limit of power storage units 11A, 11B, 11C, and 11D to a predetermined value. As will be described later, in the present embodiment, lower limit value setting unit 37 sets the lower limit value of power storage units 11A, 11B, 11C, and 11D to the discharge lower limit value. Upper limit setting unit 38 sets the upper limit value of power storage units 11A, 11B, 11C, and 11D to a predetermined value. As will be described later, in the present embodiment, upper limit value setting unit 38 sets the upper limit values of power storage units 11A, 11B, 11C, and 11D as charging upper limit values.
  • the target remaining amount generation unit 35 stores the power storage units 11A, 11B, The target remaining capacity is generated for each of the power storage units 11A, 11B, 11C, and 11D so that the remaining capacity of 11C and 11D is biased. The point of generating the target remaining capacity so that the remaining capacity is biased will be described in detail later. Further, when the target remaining capacity generating unit 35 sets the target remaining capacity, the target remaining capacity is determined by the lower limit set by the lower limit setting unit 37 and the upper limit set by the upper limit setting unit 38. Set to be between.
  • the charge / discharge control unit 36 controls the charge / discharge of the power storage units 11A, 11B, 11C, and 11D so that the target remaining capacity generated by the target remaining amount generation unit 35 when the station arrives.
  • the receiving unit 34 acquires the remaining capacities of the respective power storage units 11A, 11B, 11C, and 11D from the respective remaining capacity estimation units 12A, 12B, 12C, and 12D (Ste S11).
  • the reception unit 34 is connected to the power storage units 11A, 11B, and 11C at the current location, for example, as illustrated in FIG. , 11D receives information that the remaining capacity is 0.6 kWh.
  • Step S11 corresponds to an example of a remaining capacity acquisition process.
  • the required power amount calculation unit 33 calculates the amount of power necessary to reach the station from the current location (step S12). Specifically, from the current position information acquired by the current position acquisition unit 31 and the position information of the station 100 scheduled to be acquired acquired from the station position acquisition unit 32, the power required to arrive at the station 100 from the current location A quantity is calculated. In the example shown in FIG. 4A, the required power amount is 0.6 kwh.
  • Step S12 corresponds to an example of an electric energy calculation process.
  • the remaining capacity is controlled between the charge upper limit value set by the upper limit value setting unit 38 and the discharge lower limit value set by the lower limit value setting unit 37.
  • the charging upper limit value is set to, for example, 80% of the full charge capacity.
  • the charge upper limit value is 0.8 kwh.
  • the discharge lower limit value is set to, for example, 20% of the full charge capacity, and is 0.2 kwh.
  • the discharge lower limit value is a value at which the power storage unit 11 is likely to be deteriorated when discharged from this value
  • the charge upper limit value is a value at which the power storage unit 11 is likely to be deteriorated when charged from this value. is there.
  • the target remaining amount generating unit 35 calculates a target remaining capacity value for each of the power storage units 11A, 11B, 11C, and 11D (step S13).
  • the target remaining capacity generating unit 35 reaches the station 100, the target remaining capacity of each power storage unit 11 is generated so as to generate as many power storage units 11 having a remaining capacity as the discharge lower limit (0.2 kwh). Set.
  • the total remaining capacity of the mobility 20 can be efficiently increased with a small number of battery packs 10 exchanged.
  • the target remaining amount generating unit 35 generates the target remaining capacity of each of the power storage units 11A, 11B, 11C, and 11D as shown in FIG. 4B, for example.
  • the target remaining capacity of the power storage units 11A and 11B is set to the discharge lower limit (0.2 kwh), and the target remaining capacity of the power storage units 11C and 11D is set to 0.7 kwh.
  • each power storage unit 11 Since the discharge lower limit value of each power storage unit 11 is 0.2 kwh, the remaining capacity is distributed to all the power storage units 11 by 0.2 kwh. The remaining 1.0 kwh (1.8 kwh ⁇ 0.2 kwh ⁇ 4) is allocated to some power storage units 11. Since the difference between the charge upper limit value and the discharge lower limit value of one power storage unit 11 is 0.6 kwh, the total value of the differences between the two power storage units 11 is 1.2 kwh, which is larger than 1.0 kwh. Therefore, the remaining capacity of 1.0 kwh can be distributed to the two power storage units 11, the remaining capacity of the two allocated power storage units 11 is set to 0.7 kwh, and the remaining capacity of the remaining two power storage units 11 is set to 0. It can be seen that it can be 2 kwh.
  • the target remaining amount generating unit 35 sets the target remaining capacity of the power storage units 11A and 11B to 0.2 kwh, divides the remaining capacity 1.0 kwh into two equal parts, and adds the discharge lower limit value (0.2 kwh).
  • the target remaining capacity of the sections 11C and 11D can be set to 0.7 kwh.
  • Step S13 corresponds to an example of a target remaining capacity calculation step.
  • the charge / discharge control unit 36 controls the charge / discharge of the power storage units 11A, 11B, 11C, and 11D so as to be the target remaining capacity generated by the target remaining amount generation unit 35 (step S14).
  • the charge / discharge control may be performed so that the remaining capacity of each power storage unit 11 becomes the target remaining capacity.
  • the charge / discharge control unit 36 is in the state shown in the upper part of FIG. 4C from the current location to the station 100 (state shown in FIG. 4A). And the remaining capacity (0.4 kwh) up to the discharge lower limit (0.2 kwh) of the power storage unit 11A and a part of the remaining capacity (0.2 kwh) up to the discharge lower limit (0.2 kwh) of the power storage unit 11B. Is supplied to the motor 21 and the remaining capacity (0.2 kwh) up to the lower limit value of the power storage unit 11B is moved to the power storage units 11C and 11D. As a result, as shown in the lower part of FIG.
  • Step S14 corresponds to an example of a charge / discharge control process.
  • the remaining capacity of each power storage unit 11 is adjusted and the mobility 20 arrives at the station 100, the user determines that the charged battery pack 10 disposed in the station 100 and the remaining capacity are the discharge lower limit value (0). .2 kwh) battery packs 10A and 10B are replaced.
  • the remaining capacities of the battery packs 10A and 10B are each 0.8 kwh, and the total remaining capacity of the battery pack 10 mounted on the mobility 20 is 3.0 kwh.
  • the charging / discharging control device 30 controls charging / discharging of the plurality of power storage units 11A, 11B, 11C, and 11D that can be attached to and detached from the mobility 20 and can be connected in parallel as shown in FIG.
  • the charging / discharging control device includes a receiving unit 34, a required power amount calculating unit 33, a target remaining amount generating unit 35, and a charging / discharging control unit 36.
  • the receiving unit 34 acquires the remaining capacity of each power storage unit 11.
  • the required power amount calculation unit 33 calculates the position information of the station 100 where the battery pack 10 including the power storage unit 11 is exchanged and the amount of power necessary to reach the station 100 from the current location of the mobility 20.
  • the target remaining amount generating unit 35 sends the power amount calculated by the required power amount calculating unit 33 and the remaining capacity of each of the power storage units 11A, 11B, 11C, and 11D acquired by the receiving unit 34 to the station 100.
  • the target remaining capacity of each power storage unit 11A, 11B, 11C, 11D when it arrives is calculated.
  • the charge / discharge control unit 36 performs charge / discharge between the power storage units 11A, 11B, 11C, and 11D so as to achieve the target remaining capacity calculated by the target remaining amount generating unit 35.
  • power storage units 11A and 11B having a remaining capacity of a discharge lower limit (0.2 kwh) and power storage units 11C and 11D having a remaining capacity of 0.7 kwh can be formed.
  • the battery pack 10A of the power storage unit 11A having a remaining capacity of a discharge lower limit (0.2 kwh) and the battery pack 10B of the power storage unit 11B having a remaining capacity of a discharge lower limit (0.2 kwh) are arranged in the station 100. By exchanging with the charged battery pack 10, the total remaining capacity of the four battery packs 10 possessed by the mobility 20 can be efficiently increased with a small number of battery packs 10 to be replaced.
  • the target remaining amount generation unit 35 causes the target capacity of each power storage unit 11 to be biased so that the remaining capacity of the plurality of power storage units 11 is biased when it arrives at the station 100. Calculate the remaining capacity. Thereby, when the station 100 arrives, the remaining capacities of the plurality of power storage units 11 can be biased, and the remaining capacity is equal to the discharge lower limit (0.2 kwh) as shown in FIG. Power storage units 11A and 11B are generated.
  • the battery pack 10 of the power storage unit 11A and the battery pack 10B of the power storage unit 11B whose remaining capacity is the discharge lower limit (0.2 kwh) With the charged battery pack 10 disposed in the station 100
  • the total remaining capacity of the four battery packs 10 possessed by the mobility 20 can be efficiently increased with a small number of battery packs 10 exchanged.
  • the charge / discharge control device 30 of the present embodiment further includes a lower limit setting unit 37.
  • Lower limit setting unit 37 sets a lower limit value of the remaining capacity in power storage units 11A, 11B, 11C, and 11D.
  • the target remaining amount generation unit 35 sets the target remaining capacity to the lower limit value set in the power storage unit 11A for at least one power storage unit 11A among the plurality of power storage units 11A, 11B, 11C, and 11D. .
  • the power storage unit 11 having a remaining capacity of the discharge lower limit (0.2 kwh) can be generated as much as possible. Therefore, the battery of the power storage unit 11 having a remaining capacity of the discharge lower limit (0.2 kwh).
  • the pack 10 battery packs 10A and 10B in the example of FIG. 4
  • the total remaining capacity of the power storage unit 11 possessed by the mobility 20 can be efficiently increased. In the example of FIG. 4, the total remaining capacity can be increased from 1.8 kwh to 3.0 kwh.
  • the charge / discharge control system 40 includes a remaining capacity estimation unit 12, a required power amount calculation unit 33, a target remaining amount generation unit 35, and a charge / discharge control unit 36.
  • the remaining capacity estimation unit 12 estimates the remaining capacity of the power storage unit 11 that can be attached to and detached from the mobility 20 and can be connected in parallel.
  • the required power amount calculation unit 33 calculates the position information of the station 100 where the battery pack 10 is exchanged and the amount of power necessary to reach the station 100 from the current location of the mobility 20.
  • the target remaining amount generation unit 35 calculates the target remaining capacity of each power storage unit 11 when it arrives at the station 100 from the total remaining capacity of each power storage unit 11 estimated by the remaining capacity estimation unit 12.
  • the charge / discharge control unit 36 performs charge / discharge between the power storage units 11 such that the target remaining capacity calculated by the target remaining amount generating unit 35 is obtained.
  • the charge / discharge control system 40 can acquire the remaining capacity of each of the plurality of power storage units 11 and control the remaining capacity. For this reason, when the station 100 arrives, the total remaining capacity of the battery pack 10 possessed by the mobility 20 can be efficiently increased with a small number of battery pack 10 replacements.
  • the battery remaining capacity adjusting method is a battery remaining capacity adjusting method for adjusting the remaining capacity of a plurality of power storage units 11 that can be attached to and detached from the mobility 20 and can be connected in parallel, and includes step S11, step S12, Step S13 and Step S14 are provided.
  • Step S11 acquires the remaining capacity of each power storage unit 11.
  • step S12 the position information of the station 100 where the power storage unit 11 is exchanged and the amount of electric power necessary to reach the station 100 from the current location of the mobility 20 are calculated.
  • step S13 the target remaining capacity of each power storage unit 11 when it arrives at the station 100 from the total amount of necessary power calculated in step S12 and the remaining capacity of each power storage unit 11 acquired in step S11. Is calculated.
  • step S14 charging / discharging is performed between the power storage units 11 so that the target remaining capacity calculated in step S13 is obtained. Thereby, the remaining capacity between the electrical storage units 11 when it arrives at the station 100 can be adjusted.
  • the target remaining capacity is set to the discharge lower limit (0.2 kwh) for the power storage units 11A and 11B that can set the remaining capacity when arriving at the station 100 to the discharge lower limit (0.2 kwh).
  • the target remaining capacity is set so that the remaining capacity of 1.0 kwh is evenly allocated, but the present invention is not limited thereto. .
  • the remaining capacity of one of the power storage units 11 becomes as small as possible when the station 100 arrives.
  • the target remaining capacity of each power storage unit 11 may be set.
  • the remaining capacity of one of the power storage units 11C and 11D becomes the upper limit charge value (0.8 kwh), and the remaining capacity of the other becomes 0.6 kwh.
  • FIGS. 5 (a) to 5 (c) Another example is shown in FIGS. 5 (a) to 5 (c).
  • FIG. 5 (a) there are power storage units 11A, 11B, 11C, and 11D with a full charge capacity of 1 kwh, and the remaining capacities of the power storage units 11A, 11B, 11C, and 11D are 0.6 kwh at the current location.
  • the amount of power required up to the station 100 is 0.2 kwh
  • the total remaining capacity when it arrives at the station 100 is calculated as 2.2 kwh.
  • Subtracting the discharge lower limit (0.2 kwh) of the four power storage units 11 from this total remaining capacity yields 1.4 kwh.
  • this remaining capacity of 1.4 kwh is less than the total (1.8 kwh) of the difference between the upper limit of charging (0.8 kwh) and the lower limit of discharge (0.6 kwh), one is the lower limit of discharge ( 0.2 kwh).
  • the remaining capacity of 1.4 kwh is allocated to the other three power storage units 11B, 11C, and 11D.
  • the remaining capacity of one power storage unit 11B among the three power storage units 11B, 11C, and 11D is made as small as possible, the target of the two power storage units 11C and 11D is obtained as shown in FIG.
  • the remaining capacity is set to the charging upper limit (0.8 kwh), and the target remaining capacity of the remaining one power storage unit 11B is set to 0.4 kwh.
  • the remaining capacities of the power storage units 11A, 11B, 11C, and 11D are the remaining capacities shown in the target remaining capacity of FIG. Therefore, the total remaining capacity mounted in the mobility 20 can be efficiently increased by replacing the battery pack 10A of the power storage unit 11A and the battery pack 10B of the power storage unit 11B with the charged battery pack 10. That is, the capacity can be increased from 2.2 kwh to 3.2 kwh as shown in FIG. In addition, about the electrical storage part 11B with a remaining capacity of 0.4 kwh, it is not necessary to replace
  • the target remaining capacity is set to the discharge lower limit (0.2 kwh) for the power storage units 11A and 11B that can set the remaining capacity when arriving at the station 100 to the discharge lower limit (0.2 kwh).
  • Control is performed so as to generate as many power storage units 11 with the remaining capacity as the discharge lower limit (0.2 kwh) as much as possible, but as many power storage units 11 with the charge upper limit (0.8 kwh) as possible.
  • Control may be performed to generate.
  • the target remaining amount generating unit 35 sets an upper limit value (0.8 kwh) at which the target remaining capacity is set in the power storage unit 11A for at least one power storage unit 11A among the plurality of power storage units 11A, 11B, 11C, and 11D. ).
  • each of the remaining power storage units 11 is set to a value as large as possible when it arrives at the station 100.
  • the target remaining capacity of the power storage unit 11 may be set. Such control will be described with reference to FIGS. 6A, 6B, and 6C.
  • FIG. 6 (a) there are power storage units 11A, 11B, 11C, and 11D with a full charge capacity of 1 kwh, and the remaining capacities of the power storage units 11A, 11B, 11C, and 11D are 0.6 kwh at the current location.
  • the total remaining capacity when the station 100 arrives is calculated as 2.1 kwh.
  • 0.2 kwh is allocated to each of the four power storage units 11 so that the four power storage units 11 have a remaining capacity corresponding to the discharge lower limit (0.2 kwh).
  • the remaining 1.3 kwh is not less than two (1.2 kwh) of the difference (0.6 kwh) between the upper limit of charge and the lower limit of discharge of the power storage unit 11, and not more than three (1.8 kwh). Therefore, it is possible to set the two power storage units 11 to the charging upper limit (0.8 kwh).
  • the remaining capacity of the power storage unit 11A is 0.2 kwh
  • the remaining capacity of the power storage unit 11B is 0.3 kwh. Therefore, by replacing the battery pack 10A of the power storage unit 11A and the battery pack 10B of the power storage unit 11B with a charged battery pack 10, the total capacity of the four battery packs 10 is efficiently mounted on the mobility 20. The capacity can be increased. As shown in FIG. 6C showing the state after replacement, the total capacity of the four battery packs 10 can be increased from 2.1 kwh to 3.2 kwh. In this control, when the amount of power required up to the station 100 is 0.2 kwh, the target remaining capacity is set in the same manner as in FIG. Further, in this control, when the amount of power required to reach the station 100 is 0.1 kwh, the target remaining capacity of the power storage unit 11B is set to 0.5 kwh.
  • the control is performed so as to generate as many power storage units 11 having a remaining capacity as the discharge lower limit value, but the present invention is not limited to this.
  • the target remaining amount generation unit 35 may calculate the target remaining capacity of each power storage unit 11.
  • the difference between the total remaining capacity of the power storage units 11A and 11B and the total remaining capacity of the power storage units 11C and 11D is maximized. Therefore, by replacing the battery pack 10A of the power storage unit 11A and the battery pack 10B of the power storage unit 11B of the group with a small remaining capacity with the charged battery pack 10, the total charge amount of the battery held by the mobility 20 can be efficiently obtained. Can be increased.
  • the number of battery packs 10 that can be replaced at the station 100 that is scheduled to arrive is determined in advance, and the number may be used as the battery pack 10 to be replaced.
  • the number of replaceable battery packs 10 in this station 100 may be transmitted to the charge / discharge control device 30 by communication.
  • the user may determine in advance the number of battery packs 10 to be replaced.
  • FIG. 7A there are power storage units 11A, 11B, 11C, and 11D having a full charge capacity of 1 kwh, and the remaining capacities of the power storage units 11A, 11B, 11C, and 11D are 0.7 kwh at the current location.
  • the amount of power required to reach the station 100 is 0.5 kwh, and the number of battery packs 10 to be replaced is two.
  • the target remaining capacity of the power storage units 11A, 11B, 11C, and 11D is set so that the maximum is reached when the vehicle arrives at the station 100.
  • the target remaining capacity is set so that the total remaining capacity of the exchange target group is 0.7 kwh and the total remaining capacity of the non-exchange target group is 1.6 kwh. Then, the capacity can be increased from 2.3 kwh to 3.2 kwh as shown in FIG. Note that the total remaining capacity 0.7 kwh in the replacement target group may be divided equally among the power storage units 11A and 11B, or may be biased.
  • the lower limit value is set to the discharge lower limit value by the lower limit value setting unit 37 and the upper limit value is set to the charge upper limit value by the upper limit value setting unit 38, but the lower limit value is 0 (zero) and the upper limit value is set.
  • the value may be set to the full capacity (100%).
  • FIGS. 8 (a) there are power storage units 11A, 11B, 11C, and 11D having a full charge capacity of 1 kwh, and the remaining capacities of the power storage units 11A, 11B, 11C, and 11D are 0.6 kwh at the current location.
  • the total remaining capacity when the station 100 arrives is calculated as 1.8 kwh.
  • This total remaining capacity 1.8 kwh is distributed to several power storage units 11 so that as many power storage units 11 having zero remaining capacity as possible are created. For example, since the full charge capacity of one power storage unit 11 is 1 kwh, the sum of the full charge capacities of the two power storage units 11 is 2 kwh, which is larger than the total remaining capacity 1.8 kwh when the station 100 is reached. Become. For this reason, it can be seen that the total remaining capacity of 1.8 kwh can be distributed to the two power storage units 11, and the remaining capacity of the remaining two power storage units 11 can be made zero.
  • the target remaining amount generating unit 35 sets the target remaining capacity of the power storage units 11A and 11B to zero and divides the total remaining capacity 1.8 kwh into two equal parts as shown in FIG.
  • the target remaining capacity of 11D can be set to 0.9 kwh.
  • An example of charge / discharge control will be described with reference to FIG. 8C.
  • the charge / discharge control unit 36 is in the state shown in the upper part of FIG. 8C from the current location to the station 100 (state shown in FIG. 8A).
  • the power is supplied from the power storage unit 11A to the motor 21 and the remaining capacity of the power storage unit 11B is moved to the power storage units 11C and 11D.
  • the remaining capacity of the power storage unit 11B is moved to the power storage units 11C and 11D.
  • the remaining capacity of the power storage unit 11A becomes zero
  • the remaining capacity of the power storage unit 11B becomes zero
  • the remaining capacity of the power storage unit 11C becomes 0. .9 kwh
  • the remaining capacity of the power storage unit 11D is 0.9 kwh.
  • the remaining capacity of each of the battery packs 10A and 10B becomes 1 kwh as shown in FIG.
  • the total remaining capacity of the battery pack 10 is 3.8 kwh.
  • the remaining capacity estimation unit 12 is provided in the battery pack 10, and the charge / discharge control device 30 acquires the remaining capacity of the power storage unit 11 via the receiving unit 34 as an example of the remaining capacity acquisition unit. However, the remaining capacity estimation unit 12 may be provided in the charge / discharge control device 30 instead of the battery pack 10.
  • the remaining capacity estimation unit 12 provided in the charge / discharge control device 30 detects the remaining capacity of each of the power storage units 11 of the plurality of battery packs 10.
  • the remaining capacity estimation part 12 respond
  • the lower limit value setting unit 37 and the upper limit value setting unit 38 set and acquire the lower limit value and the upper limit value, but only acquire without setting the lower limit value and the upper limit value. Also good.
  • the lower limit value and the upper limit value may be stored in advance in a memory or the like, and the target remaining amount generation unit 35 may generate the remaining capacity of each battery pack 10 based on the stored upper limit value and lower limit value.
  • the target remaining amount generation unit 35 is provided in the charge / discharge control device 30, but may be provided in the mobility 20 and outside the charge / discharge control device 30.
  • an electric motorcycle has been described as the moving body.
  • a mobility such as an electric bicycle, an electric unicycle, an electric vehicle (EV), and a PHV (Plug-in Hybrid Vehicle) may be used. Good.
  • the charge / discharge control device, the charge / discharge control system, and the remaining battery capacity adjustment method of the present invention have the effect of reducing labor during battery replacement and can be widely applied to mobility driven by replaceable batteries. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

充放電制御装置(30)は、モビリティ(20)に着脱可能且つ並列接続可能な複数の蓄電部(11)の充放電を制御する。受信部(34)は、各々の蓄電部(11)の残容量を取得する。必要電力量算出部(33)は、蓄電部(11)を含むバッテリパック(10)の交換が行われるステーション(100)の位置情報とモビリティ(20)の現在地からステーション(100)に到達するために必要な電力量を算出する。目標残量生成部(35)は、必要電力量算出部(33)によって算出された電力量と、受信部(34)によって取得された各々の蓄電部(11)の残容量の合計から、ステーション(100)に到着したときの各々の蓄電部の目標残容量を算出する。充放電制御部(36)は、目標残量生成部(35)によって算出された目標残容量になるように蓄電部(11)間で充放電を行う。

Description

充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法
 本発明は、バッテリの充放電の制御を行う充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法に関する。
 従来、並列接続可能な複数のバッテリを備えた車両が提案されている(例えば、特許文献1参照。)。
 特許文献1に示す車両は、車両の幅方向に間隔を隔てて複数のバッテリが配置可能に構成されている。そして、走行距離に応じて使用者によってバッテリの取り外し又は追加が行われる。
 一方、近年、電動自動二輪車や電動自転車等のモビリティに搭載されたバッテリを、充電済みのバッテリを保有するステーションにおいて交換しながら利用するシステムが構築されている。
特開2010-4666号公報
 しかしながら、特許文献1に示すような並列接続可能な複数のバッテリを、上述したステーションで交換することは想定されておらず、以下に示すような問題点が発生すると考えられる。
 すなわち、並列接続可能な複数のバッテリを備えたモビリティでは、通常は均等に容量が減少する。このため、ステーションにおいて全てのバッテリを交換する必要があり、手間がかかることが考えられる。
 本発明の課題は、バッテリ交換の際の手間を軽減可能な充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法を提供することにある。
 第1の発明に係る充放電制御装置は、移動体に着脱可能且つ並列接続可能な複数のバッテリの充放電を制御する充放電制御装置であって、残容量取得部と、必要電力量算出部と、目標残量生成部と、充放電制御部と、を備える。残容量取得部は、各々のバッテリの残容量を取得する。必要電力量算出部は、バッテリの交換が行われるステーションの位置情報と移動体の現在地からステーションに到達するために必要な電力量を算出する。目標残量生成部は、必要電力量算出部によって算出された必要な電力量と、残容量取得部によって取得された各々のバッテリの残容量の合計から、ステーションに到着したときの各々のバッテリの目標残容量を算出する。充放電制御部は、目標残量生成部によって算出された目標残容量になるようにバッテリ間で充放電を行う。
 これにより、ステーションに到着したときの、バッテリ間の残容量を調整することができる。例えば、複数のバッテリにおいてバッテリの残容量を均等にせず、残容量が少ないバッテリと残容量が多いバッテリを形成できる。そして、残容量が少ないバッテリを、ステーションに配置されている充電済みのバッテリと交換することにより、少ないバッテリの交換数で効率よく移動体の保有するバッテリの総残容量を増やすことができる。
 なお、移動体としては、例えば、電動自動二輪車、電動自転車、電動一輪車、電気自動車(EV)、PHV(Plug-in Hybrid Vehicle)等のモビリティ等が含まれる。
 第2の発明に係る充放電制御装置は、第1の発明に係る充放電制御装置であって、目標残量生成部は、ステーションに到着したときに、複数のバッテリの残容量に偏りが生じるように、各々のバッテリの目標残容量を算出する。
 これにより、ステーションに到着したときに、複数のバッテリにおいてバッテリの残容量を均等にせず、複数のバッテリの残容量に偏りを持たせることが出来、残容量が少ないバッテリが生成される。このため、残容量が少ないバッテリを、ステーションに配置されている充電済みのバッテリと交換することにより、少ないバッテリの交換数で効率よくバッテリの総残容量を増やすことができる。
 第3の発明に係る充放電制御装置は、第1の発明に係る充放電制御装置であって、目標残容量設定部は、ステーションに到着したときに、各々のバッテリの残容量が、バッテリに設定されている下限値と上限値の間になるように、各々のバッテリの目標残容量を算出する。
 これにより、バッテリの下限値と上限値の間で複数のバッテリの残容量を調整することができる。
 第4の発明に係る充放電制御装置は、第2の発明に係る充放電制御装置であって、下限値取得部を更に備える。下限値取得部は、複数のバッテリにおける残容量の下限値を取得する。目標残容量設定部は、複数のバッテリのうち少なくとも1つのバッテリについて、目標残容量がバッテリに設定されている下限値になるように設定する。
 これによって、ステーション到着時に、残容量が下限値のバッテリを出来るだけ多く生成できるため、残容量が下限値のバッテリを交換することによって、効率よく移動体の保有するバッテリの総残容量を増やすことが出来る。
 第5の発明に係る充放電制御装置は、第4の発明に係る充放電制御装置であって、目標残量生成部は、下限値に設定できないバッテリが複数ある場合には、そのうちのいずれか1つのバッテリの残容量がステーションに到着したときに出来るだけ小さな値になるように各々のバッテリの目標残容量を設定する。
 これによって、ステーション到着時に、下限値に達しないバッテリのうちの1本の残容量を出来るだけ少なくできる。このため、残容量が下限値のバッテリおよび残容量が出来るだけ少ないバッテリを、充電済みのバッテリと交換することによって、効率よく移動体の保有するバッテリの総残容量を増やすことが出来る。
 第6の発明に係る充放電制御装置は、第2の発明に係る充放電制御装置であって、上限値取得部を更に備える。上限値取得部は、複数のバッテリにおける残容量の上限値を取得する。目標残量生成部は、複数のバッテリのうち少なくとも1つバッテリについて、目標残容量がバッテリに設定されている上限値となるように設定する。
 これによって、ステーション到着時に、残容量が上限値のバッテリを出来るだけ多く生成できる。これによって逆に、出来るだけ残容量の少ないバッテリも最大数生成される。この残容量の少ないバッテリを交換することによって、効率よく移動体の保有するバッテリの総残容量を増やすことが出来る。
 第7の発明に係る充放電制御装置は、第6の発明に係る充放電制御装置であって、目標残量生成部は、上限値に設定できないバッテリが複数ある場合には、そのうちのいずれか1つのバッテリの残容量がステーションに到着したときに出来るだけ大きな値になるように各々のバッテリの目標残容量を設定する。
 これによって、ステーション到着時に、残容量が上限値に達したバッテリのうちの一本の残容量を出来るだけ多くできる。このため、逆に出来るだけ残容量の少ないバッテリも最大数生成される。この残容量の少ないバッテリを交換することによって、効率よく移動体の保有するバッテリの総残容量を増やすことが出来る。
 第8の発明に係る充放電制御装置は、第2または第3の発明に係る充放電制御装置であって、目標残容量設定部は、ステーションに到着したときに、ステーションにおいて交換対象となる1つまたは複数のバッテリのグループにおける総残容量と、交換対象以外の1つまたは複数のバッテリのグループにおける総残容量の差が最も大きくなるように、各々のバッテリの目標残容量を算出する。
 このように、ステーション到着時に、ステーションにおいて交換対象となるグループのバッテリの総残容量と、非交換対象のグループのバッテリの総残容量の差が最大となる。このため、交換対象のグループのバッテリをステーションにおいて充電済みのバッテリに交換することによって、効率よく移動体の保有するバッテリの総残容量を増やすことができる。
 第9の発明に係る充放電制御装置は、第4の発明に係る充放電制御装置であって、下限値取得部は、下限値を設定する。
 このように、下限値取得部は下限値を設定することにより下限値を取得できるため、下限値を自由に設定することができる。
 第10の発明に係る充放電制御装置は、第6の発明に係る充放電制御装置であって、上限値取得部は、上限値を設定する。
 このように、上限値取得部は上限値を設定により上限値を取得できるため、上限値を自由に設定することができる。
 第11の発明に係る充放電制御装置は、第3または第4の発明に係る充放電制御装置であって、下限値は、ゼロまたは放電下限値である。
 これによって、ステーションに到着したときに、1つまたは複数のバッテリの残容量をゼロまたは放電下限値まで少なくすることができる。例えば、放電下限値はバッテリの満充電容量の20%と設定される。
 第12の発明に係る充放電制御装置は、第3または第6の発明に係る充放電制御装置であって、上限値は、満充電容量の値または充電上限値である。
 これによって、ステーションに到着したときに、1つまたは複数のバッテリの残容量を満充電容量値または充電上限値まで多くすることができる。例えば、充電上限値はバッテリの満充電容量の80%と設定される。
 第13の発明に係る充放電制御装置は、第1の発明に係る充放電制御装置であって、移動体は、電動自動二輪車、あるいは電動自転車である。
 ここでは、移動体として、電動自動二輪車、電動自転車を含むモビリティを用いている。
 これにより、ステーションにおいて、残容量が少ないバッテリを充電済みのバッテリと効率よく交換できる。
 第14の発明に係る充放電制御システムは、残容量推定部と、必要電力量算出部と、目標残量生成部と、充放電制御部と、を備える。残容量推定部は、移動体に着脱可能且つ並列接続可能なバッテリの残容量を推定する。必要電力量算出部は、バッテリの交換が行われるステーションの位置情報と移動体の現在地からステーションに到達するために必要な電力量を算出する。目標残量生成部は、残容量推定部によって推定された各々のバッテリの残容量の合計から、ステーションに到着したときの各々のバッテリの目標残容量を算出する。充放電制御部は、目標残量生成部によって算出された目標残容量になるようにバッテリ間で充放電を行う。
 充放電制御システムは、残容量推定部によって推定された各々のバッテリの残容量に基づいて、複数のバッテリを制御する。
 これにより、移動体は、複数のバッテリの各々の残容量を取得し、残容量の制御を行うことができる。
 このため、ステーション到着時において、少ないバッテリパックの交換数で効率よく移動体の保有するバッテリパックの総残容量を増やすことができる。
 第15の発明に係るバッテリ残容量調整方法は、移動体に着脱可能且つ並列接続可能な複数のバッテリの残容量を調整するバッテリ残容量調整方法であって、残容量取得工程と、電力量算出工程と、目標残容量生成工程と、充放電制御工程と、を備える。残容量取得工程は、各々のバッテリの残容量を取得する。電力量算出工程は、バッテリの交換が行われるステーションの位置情報と移動体の現在地からステーションに到達するために必要な電力量を算出する。目標残容量生成工程は、電力量算出工程によって算出された必要な電力量と、残容量取得工程によって取得された各々のバッテリの残容量の合計から、ステーションに到着したときの各々のバッテリパックの目標残容量を算出する。充放電制御工程は、目標残容量生成工程によって算出された目標残容量になるようにバッテリパック間で充放電を行う。
 これにより、ステーションに到着したときの、バッテリパック間の残容量を調整することができる。例えば、複数のバッテリパックにおいてバッテリパックの残容量を均等にせず、複数のうちいずれかのバッテリパックの残容量が少なくなるように残容量を偏らせることにより、残容量が少ないバッテリパックと残容量が多いバッテリパックを形成できる。そして、残容量が少ないバッテリパックを、ステーションに配置されている充電済みのバッテリパックと交換することにより、少ないバッテリパックの交換数で効率よく移動体の保有するバッテリパックの総残容量を増やすことができる。
(発明の効果)
 本発明の充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法によれば、バッテリパック交換の際の手間を軽減できる。
本発明にかかる実施の形態におけるバッテリシステムおよびバッテリパックの交換を行うステーションを示す図。 図1のバッテリシステムの構成を示すブロック図。 図1の充放電制御部の動作を示すフロー図。 (a)現在地における4つの蓄電部の各々の残容量の一例を示す図、(b)4本の蓄電部の各々の目標残容量の一例を示す図、(c)ステーションまでの移動における4本の蓄電部の電力移行の一例を示す図、(d)ステーションにおいてバッテリパックを交換した後の4つの蓄電部の各々の残容量の一例を示す図。 (a)本発明にかかる実施の形態の変形例における現在地での4つの蓄電部の各々の残容量を示す図、(b)本発明にかかる実施の形態の変形例における4つの蓄電部の各々の目標残容量を示す図、(c)本発明にかかる実施の形態の変形例においてバッテリパックの交換が行われた後の4つの蓄電部の各々の残容量を示す図。 (a)本発明にかかる実施の形態の変形例における現在地での4つの蓄電部の各々の残容量を示す図、(b)本発明にかかる実施の形態の変形例における4つの蓄電部の各々の目標残容量を示す図、(c)本発明にかかる実施の形態の変形例においてバッテリパックの交換が行われた後の4つの蓄電部の各々の残容量を示す図。 (a)本発明にかかる実施の形態の変形例における現在地での4つの蓄電部の各々の残容量を示す図、(b)本発明にかかる実施の形態の変形例における4つの蓄電部の各々の目標残容量を示す図、(c)本発明にかかる実施の形態の変形例においてバッテリパックの交換が行われた後の4つの蓄電部の各々の残容量を示す図。 (a)本発明にかかる実施の形態の変形例における現在地での4つの蓄電部の各々の残容量の一例を示す図、(b)本発明にかかる実施の形態の変形例における4本の蓄電部の各々の目標残容量の一例を示す図、(c)本発明にかかる実施の形態の変形例におけるステーションまでの移動での4本の蓄電部の電力移行の一例を示す図、(d)本発明にかかる実施の形態の変形例においてステーションにおいてバッテリパックを交換した後の4つの蓄電部の各々の残容量の一例を示す図。
 以下に、本発明の実施の形態に係るバッテリシステム、充放電制御装置およびバッテリ残容量調整方法について、図面を参照しながら説明する。
 <1.構成>
 (1-1.バッテリシステム1)
 本実施形態のバッテリシステム1は、モビリティ20に対して電力供給を行うシステムであって、図1に示すように、バッテリパック10と、モビリティ20と、を備えている。
 バッテリパック10は、図1に示すように、電動自動二輪車等のモビリティ20に4本搭載されている。
 モビリティ20は、シート20aの下の空間に搭載された4本のバッテリパック10から電力を供給されて、後輪(駆動輪)22が回転駆動されることで、走行可能となる。
 また、モビリティ20は、走行や自然放電等によって残容量(残存容量ともいえる)が少なくなったバッテリパック10を、所定のステーション100において、充電済みのバッテリパック10と交換しながら使用される、いわゆるバッテリスワップを利用可能である。ステーション100は、図1に示すように複数のバッテリパック10が挿入される挿入部100aを有している。これらの挿入部100aにバッテリパック10が配置されている。なお、ステーション100は、ガソリンスタンドにように複数個所に配置されている。
 (1-2.バッテリパック10)
 本実施形態のバッテリパック10は、モビリティ20に対して電力を供給するために、モビリティ20に対して交換可能な状態で4本搭載されている。ここで、4本のバッテリパック10を区別する際には、バッテリパック10A、10B、10C、10Dと符号を付して説明する。
 4本のバッテリパック10は、図2に示すように、それぞれ蓄電部11と残容量推定部12とを有する。4つの蓄電部11と残容量推定部12についても、区別する際には、蓄電部11A、11B、11C、11D、残容量推定部12A、12B、12C、12Dと符号を付して説明する。すなわち、バッテリパック10Aは、蓄電部11Aと残容量推定部12Aとを有し、バッテリパック10Bは、蓄電部11Bと残容量推定部12Bとを有し、バッテリパック10Cは、蓄電部11Cと残容量推定部12Cとを有し、バッテリパック10Dは、蓄電部11Dと残容量推定部12Dとを有する。
 蓄電部11A、11B、11C、11Dは、電力を蓄電または放電する。4本のバッテリパック10A、10B、10C、10Dをモビリティ20に装着することによって、4つの蓄電部11A、11B、11C、11Dは電気的にモビリティ20に対して並列接続される。このため、4本のバッテリパック10のうちいずれか1本のバッテリパック10のみがモビリティ20に装着されている場合であってもモータ21に電力を供給することが可能であり、モビリティ20は走行できる。
 残容量推定部12は、電流または電圧を計測することにより蓄電部11の残容量を推定する。すなわち、残容量推定部12Aは蓄電部11Aの残容量を推定し、残容量推定部12Bは蓄電部11Bの残容量を推定し、残容量推定部12Cは蓄電部11Cの残容量を推定し、残容量推定部12Dは蓄電部11Dの残容量を推定する。
 残容量推定部12A、12B、12C、12Dは、推定した蓄電部11A、11B、11C、11Dの残容量をモビリティ20へと送信する。
 (1-3.モビリティ20)
 モビリティ20は、シート20aの下に搭載された4本のバッテリパック10から電力を供給されて走行する電動自動二輪車であって、図2に示すように、モータ21と、後輪(駆動輪)22と、前輪23(図1参照)と、充放電制御装置30と、を有している。
 モータ21は、バッテリパック10から電力供給を受けて、駆動輪となる後輪22の車軸に対して回転駆動力を伝達する。
 前輪23は、モビリティ20の前部と路面との間に設けられた操舵輪であって、ハンドル20bの向きに連動して向きを変えることで、走行方向を切り替えることができる。
 後輪22は、バッテリパック10が搭載されたモビリティ20の後部と路面との間に設けられた駆動輪であって、モータ21によって回転駆動される。
 (1-4.充放電制御装置30)
 充放電制御装置30は、4つの蓄電部11の充放電の制御を行う。充放電制御装置30は、現在位置取得部31と、ステーション位置取得部32と、必要電力量算出部33と、受信部34と、目標残量生成部35と、充放電制御部36と、下限値設定部37と、上限値設定部38とを有する。
 現在位置取得部31は、モビリティ20の現在位置を取得する。現在位置取得部31は、例えばGPS(Global Positioning System)を用いて現在位置を取得する。
 ステーション位置取得部32は、ステーション100の位置情報を取得する。ステーション位置取得部32は、複数存在するステーション100の位置情報を予め記憶しており、ユーザが選択したステーション100の位置情報を抽出する。また、ユーザによる選択に限らず、ステーション位置取得部32は、ステーション100を自動で選択しても良い。例えば、ステーション位置取得部32は、現在位置取得部31が取得した現在位置情報を用いて、現在位置から最も近いステーション100を自動で抽出しても良い。
 必要電力量算出部33は、現在位置取得部31によって取得された現在位置情報と、ステーション位置取得部32から取得された到達予定のステーション100の位置情報とから、現在地からステーション100に到着するまでに必要な電力量を算出する。
 受信部34は、バッテリパック10A、10B、10C、10Dの残容量の情報を受信して取得する。詳細には、受信部34は、バッテリパック10A、10B、10C、10Dのそれぞれの残容量推定部12A、12B、12C、12Dから、それぞれの蓄電部11A、11B、11C、11Dの残容量を取得する。残容量推定部12A、12B、12C、12Dと受信部34の通信は、有線であっても無線であってもよい。
 下限値設定部37は、蓄電部11A、11B、11C、11Dの下限値を所定の値に設定する。後述するが、本実施の形態では、下限値設定部37は、蓄電部11A、11B、11C、11Dの下限値を放電下限値に設定する。
 上限値設定部38は、蓄電部11A、11B、11C、11Dの上限値を所定の値に設定する。後述するが、本実施の形態では、上限値設定部38は、蓄電部11A、11B、11C、11Dの上限値を充電上限値に設定する。
 目標残量生成部35は、現在位置における4つの蓄電部11の総残容量と、ステーション100に到着するために必要な電力量に基づいて、ステーション100に到着した時における蓄電部11A、11B、11C、11Dの残容量に偏りが生じるように、蓄電部11A、11B、11C、11Dごとに目標とする残容量を生成する。なお、残容量に偏りが生じるように目標残容量を生成する点については、後段にて詳述する。また、目標残量生成部35は、目標とする残容量を設定する際、目標残容量が、下限値設定部37によって設定された下限値と、上限値設定部38によって設定された上限値の間になるように設定する。
 充放電制御部36は、ステーション到着時に目標残量生成部35によって生成された目標残容量になるように蓄電部11A、11B、11C、11Dの充放電の制御を行う。
 なお、本実施の形態の充放電制御装置30および残容量推定部12A、12B、12C、12Dが、充放電制御システムの一例に対応し、図2では、充放電制御システム40として示される。
 <2.動作>
 次に、本実施の形態のバッテリシステム1の動作を説明するとともに、本発明のバッテリ残容量調整方法の一例についても同時に述べる。
 はじめに、受信部34が、バッテリパック10A、10B、10C、10Dにおいて、それぞれの残容量推定部12A、12B、12C、12Dからそれぞれの蓄電部11A、11B、11C、11Dの残容量を取得する(ステップS11)。例えば、蓄電部11A、11B、11C、11Dの満充電容量が1kwhの場合を例に挙げると、受信部34は、現在地において、例えば図4(a)に示すように蓄電部11A、11B、11C、11Dの各々の残容量が0.6kWhであるという情報を受信する。ステップS11は、残容量取得工程の一例に対応する。
 次に、必要電力量算出部33が、現在地からステーションに到達するまでに必要な電力量を算出する(ステップS12)。詳細には、現在位置取得部31によって取得された現在位置情報と、ステーション位置取得部32から取得された到達予定のステーション100の位置情報とから、現在地からステーション100に到着するまでに必要な電力量が算出される。図4(a)に示す例では、必要電力量を0.6kwhとする。ステップS12は、電力量算出工程の一例に対応する。本実施の形態では、上限値設定部38によって設定された充電上限値と、下限値設定部37によって設定された放電下限値の間で残容量の制御が行われる。ここで、充電上限値は満充電容量の例えば80%に設定されており、満充電容量が1kwhとすると、0.8kwhとなる。一方、放電下限値は、満充電容量の例えば20%に設定されており、0.2kwhとなる。また、放電下限値とは、この値よりも放電すると蓄電部11の劣化が生じ易くなる値であり、充電上限値とは、この値よりも充電すると蓄電部11の劣化が生じ易くなる値である。
 次に、目標残量生成部35が、各々の蓄電部11A、11B、11C、11Dの目標とする残容量の値を算出する(ステップS13)。ここで、目標残量生成部35は、ステーション100に到達したときに、残容量が放電下限値(0.2kwh)の蓄電部11を出来るだけ多く生成するように各蓄電部11の目標残容量を設定する。これによって、少ないバッテリパック10の交換数で効率よくモビリティ20の保有する総残容量を増やすことができる。
 目標残量生成部35は、例えば、図4(b)に示すような各々の蓄電部11A、11B、11C、11Dの目標残容量を生成する。図4(b)では、蓄電部11A、11Bの目標残容量は、放電下限値(0.2kwh)に設定され、蓄電部11C、11Dの目標残容量は0.7kwhに設定されている。詳細には、現在位置における4本の蓄電部11A、11B、11C、11Dの総残容量(バッテリパック10A、10B、10C、10Dの総残容量ともいえる)が2.4kwh(=0.6kwh×4)であり、ステーション100に到達するまでの必要電力量が0.6kwhであるため、ステーション100に到着した時の総残容量は1.8kwhと算出される。この総残容量1.8kwhが、残容量が下限値の蓄電部11が出来るだけ多く作成されるようにいくつかの蓄電部11に振り分けられる。それぞれの蓄電部11の放電下限値が0.2kwhであるため、全ての蓄電部11に0.2kwhずつ残容量が振り分けられる。そして、残りの1.0kwh(1.8kwh―0.2kwh×4)がいくつかの蓄電部11に割り振られる。1つの蓄電部11の充電上限値と放電下限値の差は0.6kwhであるため、2つの蓄電部11の差を合わせた値は1.2kwhとなり、上記1.0kwhよりも多くなる。このため、残容量1.0kwhは2つの蓄電部11に振り分けることが出来、割り振られた2つの蓄電部11の残容量を0.7kwhに設定し、残り2つの蓄電部11の残容量を0.2kwhに出来ることがわかる。
 これによって、目標残量生成部35は、蓄電部11A、11Bの目標残容量を0.2kwhとし、残容量1.0kwhを2等分し、放電下限値(0.2kwh)を足すことで蓄電部11C、11Dの目標残容量を0.7kwhに設定できる。ステップS13は、目標残容量算出工程の一例に対応する。
 充放電制御部36は、目標残量生成部35で生成された目標残容量になるように、蓄電部11A、11B、11C、11Dの充放電を制御する(ステップS14)。充放電制御については、各々の蓄電部11の残容量が目標残容量になるように行われればよい。図4(c)を参照して充放電制御の一例を説明すると、充放電制御部36は、現在地からステーション100までは図4(c)の上段に示す状態(図4(a)に示す状態と同様)の蓄電部11Aの放電下限値(0.2kwh)までの残容量(0.4kwh)と蓄電部11Bの放電下限値(0.2kwh)までの残容量の一部(0.2kwh)からモータ21に電力を供給し、蓄電部11Bの下限値までの残容量の残り(0.2kwh)を蓄電部11C、11Dに移動させるように制御を行う。これによって、図4(c)の下段に示すように、ステーション100に到着した時に、蓄電部11Aの残容量は放電下限値である0.2kwhとなり、蓄電部11Bの残容量は放電下限値である0.2kwhとなり、蓄電部11Cの残容量は0.7kwhとなり、蓄電部11Dの残容量は0.7kwhとなる。ステップS14は、充放電制御工程の一例に対応する。
 以上のように各蓄電部11の残容量の調整が行われてモビリティ20がステーション100に到着すると、ユーザはステーション100に配置されている充電済みのバッテリパック10と残容量が放電下限値(0.2kwh)のバッテリパック10A、10Bを交換する。これによって、図4(d)に示すように、バッテリパック10A、10Bの残容量がそれぞれ0.8kwhとなり、モビリティ20に搭載されているバッテリパック10の総残容量は3.0kwhとなる。
 <3.特徴等>
 (3-1)
 以上のように、本実施の形態の充放電制御装置30は、図2に示すように、モビリティ20に着脱可能且つ並列接続可能な複数の蓄電部11A、11B、11C、11Dの充放電を制御する充放電制御装置であって、受信部34と、必要電力量算出部33と、目標残量生成部35と、充放電制御部36と、を備える。受信部34は、各々の蓄電部11の残容量を取得する。必要電力量算出部33は、蓄電部11を含むバッテリパック10の交換が行われるステーション100の位置情報とモビリティ20の現在地からステーション100に到達するために必要な電力量を算出する。目標残量生成部35は、必要電力量算出部33によって算出された電力量と、受信部34によって取得された各々の蓄電部11A、11B、11C、11Dの残容量の合計から、ステーション100に到着したときの各々の蓄電部11A、11B、11C、11Dの目標残容量を算出する。充放電制御部36は、目標残量生成部35によって算出された目標残容量になるように蓄電部11A、11B、11C、11D間で充放電を行う。
 これにより、ステーション100に到着したときの、蓄電部11A、11B、11C、11D間の残容量を調整することができる。例えば、図4(c)に示すように残容量が放電下限値(0.2kwh)の蓄電部11A、11Bと残容量が0.7kwhの蓄電部11C、11Dを形成できる。そして、残容量が放電下限値(0.2kwh)の蓄電部11Aのバッテリパック10Aと残容量が放電下限値(0.2kwh)の蓄電部11Bのバッテリパック10Bを、ステーション100に配置されている充電済みのバッテリパック10と交換することにより、少ないバッテリパック10の交換数で効率よくモビリティ20の保有する4本のバッテリパック10の総残容量を増やすことができる。
 (3-2)
 本実施の形態の充放電制御装置30では、目標残量生成部35は、ステーション100に到着したときに、複数の蓄電部11の残容量に偏りが生じるように、各々の蓄電部11の目標残容量を算出する。
 これにより、ステーション100に到着したときに、複数の蓄電部11の残容量に偏りを持たせることが出来、図4(c)に示すように、残容量が放電下限値(0.2kwh)の蓄電部11A、11Bが生成される。このため、残容量が放電下限値(0.2kwh)の蓄電部11Aのバッテリパック10と蓄電部11Bのバッテリパック10Bを、ステーション100に配置されている充電済みのバッテリパック10と交換することにより、少ないバッテリパック10の交換数で効率よくモビリティ20の保有する4本のバッテリパック10の総残容量を増やすことができる。
 (3-3)
 本実施の形態の充放電制御装置30は、下限値設定部37を更に備える。下限値設定部37は、複数の蓄電部11A、11B、11C、11Dにおける残容量の下限値を設定する。目標残量生成部35は、複数の蓄電部11A、11B、11C、11Dのうち少なくとも1つの蓄電部11Aについて、目標残容量が該蓄電部11Aに設定されている下限値となるように設定する。
 これによって、ステーション100に到着した時に、残容量が放電下限値(0.2kwh)の蓄電部11を出来るだけ多く生成できるため、残容量が放電下限値(0.2kwh)の蓄電部11のバッテリパック10(図4の例ではバッテリパック10A、10B)を交換することによって、効率よくモビリティ20の保有する蓄電部11の総残容量を増やすことが出来る。図4の例では、総残容量を、1.8kwhから3.0kwhに増やすことができる。
 (3-4)
 本実施の形態の充放電制御システム40は、残容量推定部12と、必要電力量算出部33と、目標残量生成部35と、充放電制御部36と、を備える。残容量推定部12は、モビリティ20に着脱可能且つ並列接続可能な蓄電部11の残容量を推定する。必要電力量算出部33は、バッテリパック10の交換が行われるステーション100の位置情報とモビリティ20の現在地からステーション100に到達するために必要な電力量を算出する。目標残量生成部35は、残容量推定部12によって推定された各々の蓄電部11の残容量の合計から、ステーション100に到着したときの各々の蓄電部11の目標残容量を算出する。充放電制御部36は、目標残量生成部35によって算出された目標残容量になるように蓄電部11間で充放電を行う。
 これにより、充放電制御システム40は、複数の蓄電部11の各々の残容量を取得し、残容量の制御を行うことができる。
 このため、ステーション100に到着した時において、少ないバッテリパック10の交換数で効率よくモビリティ20の保有するバッテリパック10の総残容量を増やすことができる。
 (3-5)
 本実施の形態のバッテリ残容量調整方法は、モビリティ20に着脱可能且つ並列接続可能な複数の蓄電部11の残容量を調整するバッテリ残容量調整方法であって、ステップS11と、ステップS12と、ステップS13と、ステップS14と、を備える。ステップS11は、各々の蓄電部11の残容量を取得する。ステップS12は、蓄電部11の交換が行われるステーション100の位置情報とモビリティ20の現在地からステーション100に到達するために必要な電力量を算出する。ステップS13は、ステップS12によって算出された必要な電力量と、ステップS11によって取得された各々の蓄電部11の残容量の合計から、ステーション100に到着したときの各々の蓄電部11の目標残容量を算出する。ステップS14は、ステップS13によって算出された目標残容量になるように蓄電部11間で充放電を行う。
 これにより、ステーション100に到着したときの、蓄電部11間の残容量を調整することができる。
 <4.他の実施形態>
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)
 上記実施の形態では、ステーション100に到着したときの残容量を放電下限値(0.2kwh)にすることが可能な蓄電部11A、11Bについては目標残容量を放電下限値(0.2kwh)に設定し、残容量を放電下限値(0.2kwh)にできない蓄電部11C、11Dについては、残容量1.0kwhを均等に割り振るように目標残容量を設定しているが、これに限られない。例えば、放電下限値(0.2kwh)に設定できない残りの蓄電部11が複数ある場合には、そのうちの1つの蓄電部11の残容量がステーション100に到着したときに出来るだけ小さな値になるように各々の蓄電部11の目標残容量を設定してもよい。このように制御した場合、蓄電部11C、11Dのいずれか一方の残容量が上限充電値(0.8kwh)となり、他方の残容量が0.6kwhとなる。
 また、他の例を図5(a)~(c)に示す。図5(a)に示すように、満充電容量が1kwhの蓄電部11A、11B、11C、11Dが存在し、現在地において蓄電部11A、11B、11C、11Dの各々の残容量が0.6kwhとなっているとする。そして、ステーション100までに必要な電力量が0.2kwhとすると、ステーション100に到着したときの総残容量は2.2kwhと算出される。この総残容量から4つの蓄電部11の放電下限値(0.2kwh)分を差し引くと、1.4kwhとなる。この残容量1.4kwhは、3本分の充電上限値(0.8kwh)と放電下限値の差(0.6kwh)の合計(1.8kwh)よりも少ないため、1本が放電下限値(0.2kwh)に設定できる。他の3つの蓄電部11B、11C、11Dに残容量1.4kwhが割り振られる。ここで、3つの蓄電部11B、11C、11Dのうち1つの蓄電部11Bの残容量を出来るだけ小さくするようにすると、図5(b)に示すように、2つの蓄電部11C、11Dの目標残容量が充電上限値(0.8kwh)に設定され、残り1つの蓄電部11Bの目標残容量が0.4kwhに設定される。
 これにより、ステーション100に到着したときには、各蓄電部11A、11B、11C、11Dの残容量は図5(b)の目標残容量に示す残容量になっている。そこで、蓄電部11Aのバッテリパック10Aと蓄電部11Bのバッテリパック10Bを充電済みのバッテリパック10と交換することにより、効率よくモビリティ20に搭載されている総残容量を増やすことができる。すなわち、交換後の状態を示す図5(c)のように、2.2kwhから3.2kwhに容量を増やすことができる。
 なお、残容量が0.4kwhの蓄電部11Bについては、ユーザの判断によって交換しなくてもよい。
 (B)
 上記実施の形態では、ステーション100に到着したときの残容量を放電下限値(0.2kwh)にすることが可能な蓄電部11A、11Bについては目標残容量を放電下限値(0.2kwh)に設定し、残容量が放電下限値(0.2kwh)の蓄電部11を出来るだけ多く生成するように制御が行われているが、充電上限値(0.8kwh)の蓄電部11を出来るだけ多く生成するように制御が行われてもよい。この場合、目標残量生成部35は、複数の蓄電部11A、11B、11C、11Dのうち少なくとも1つの蓄電部11Aについて、目標残容量が蓄電部11Aに設定されている上限値(0.8kwh)になるように設定する。
 さらに、充電上限値(0.8kwh)にならない蓄電部11が複数存在する場合には、そのうちの1つの蓄電部11の残容量がステーション100に到着したときに出来るだけ大きな値になるように各々の蓄電部11の目標残容量を設定してもよい。
 このような制御について、図6(a)、(b)、(c)を用いて説明する。図6(a)に示すように、満充電容量が1kwhの蓄電部11A、11B、11C、11Dが存在し、現在地において蓄電部11A、11B、11C、11Dの各々の残容量が0.6kwhとなっているとする。そして、ステーション100までに必要な電力量が0.3kwhとすると、ステーション100に到着したときの総残容量は2.1kwhと算出される。まず、4つの蓄電部11が放電下限値(0.2kwh)の分の残容量を有するように、4つの蓄電部11に0.2kwhずつ振り分けられる。そして、残りの1.3kwhは、蓄電部11の充電上限値と放電下限値の差(0.6kwh)の2つ分(1.2kwh)以上であり、3つ分(1.8kwh)以下であるため、2つの蓄電部11を充電上限値(0.8kwh)にすることが可能である。これにより、蓄電部11C、11Dの目標残容量が充電上限値(0.8kwh)に設定される。そして、蓄電部11C、11D以外の蓄電部11A、11Bのうちの1つの蓄電部11Bの残容量を出来るだけ大きくするように、残りの0.1kwh(=1.3kwh-1.2kwh)が蓄電部11Bに割り振られる。これにより、蓄電部11Aの目標残容量は、0.2kwhに設定され、蓄電部11Bの目標残容量は、0.3kwhに設定される。
 以上より、ステーション100に到達したときに、蓄電部11Aの残容量が0.2kwhとなり、蓄電部11Bの残容量が0.3kwhとなる。そこで、蓄電部11Aのバッテリパック10Aと蓄電部11Bのバッテリパック10Bを充電済みのバッテリパック10と交換することにより、4つのバッテリパック10の総容量を効率よくモビリティ20に搭載されている総残容量を増やすことができる。交換後の状態を示す図6(c)のように、4つのバッテリパック10の総容量を2.1kwhから3.2kwhへと増加することができる。なお、この制御において、ステーション100までに必要な電力量が0.2kwhの場合は、図5(b)と同様の目標残容量の設定となる。さらに、この制御において、ステーション100までに必要な電力量が0.1kwhの場合は、蓄電部11Bの目標残容量は0.5kwhに設定される。
 (C)
 上記実施の形態では、残容量が放電下限値の蓄電部11を出来るだけ多く生成するように制御が行われているが、これに限られない。例えば、ステーション100に到着したときに、ステーション100において交換対象となる蓄電部11A、11Bのグループにおける総残容量と、交換対象以外の蓄電部11C、11Dのグループにおける総残容量の差が最も大きくなるように、目標残量生成部35が、各々の蓄電部11の目標残容量を算出してもよい。
 これにより、ステーション100に到着した時に、蓄電部11A、11Bの総残容量と、蓄電部11C、11Dの総残容量の差が最大となる。このため、残容量が少ないグループの蓄電部11Aのバッテリパック10Aおよび蓄電部11Bのバッテリパック10Bを充電済みのバッテリパック10に交換することによって、効率よくモビリティ20の保有するバッテリの総充電量を増やすことができる。
 なお、交換対象の蓄電部11としては、到着予定のステーション100において交換可能なバッテリパック10の本数が予め決められており、その本数を交換対象のバッテリパック10としてもよい。このステーション100における交換可能なバッテリパック10の本数は、通信によって充放電制御装置30に送信されてもよい。また、ユーザが交換対象のバッテリパック10の本数を予め決定していてもよい。
 このような制御について、図7(a)、(b)、(c)を用いて説明する。図7(a)に示すように、満充電容量が1kwhの蓄電部11A、11B、11C、11Dが存在し、現在地において蓄電部11A、11B、11C、11Dの各々の残容量が0.7kwhとなっているとする。そして、ステーション100までに必要な電力量を0.5kwhとし、交換予定のバッテリパック10の数が2つとする。
 この場合、交換対象である蓄電部11A、11Bのグループと、非交換対象である蓄電部11C、11Dのグループに分けられ、交換対象グループの総残容量と非交換対象グループの総残容量の差がステーション100への到着時に最大になるように、蓄電部11A、11B、11C、11Dの目標残容量が設定される。図7(a)の場合、交換対象グループの総残容量が0.7kwh、非交換対象グループの総残容量が1.6kwhとなるように目標残容量が設定される。そして、交換後の状態を示す図7(c)のように、2.3kwhから3.2kwhに容量を増やすことができる。なお、交換対象グループ内における総残容量0.7kwhは、蓄電部11A、11Bのそれぞれに均等に分けてもよいし、偏りがあってもよい。
 (D)
 上記実施の形態では、下限値設定部37によって下限値が放電下限値に設定され、上限値設定部38によって上限値が充電上限値に設定されているが、下限値が0(ゼロ)、上限値が満充容量(100%)に設定されていてもよい。
 図8(a)~(d)に一例を示す。図8(a)に示すように、満充電容量が1kwhの蓄電部11A、11B、11C、11Dが存在し、現在地において蓄電部11A、11B、11C、11Dの各々の残容量が0.6kwhとなっているとする。そして、ステーション100までに必要な電力量が0.6kwhとすると、ステーション100に到着したときの総残容量は1.8kwhと算出される。この総残容量1.8kwhが、残容量がゼロの蓄電部11が出来るだけ多く作成されるようにいくつかの蓄電部11に振り分けられる。例えば、1つの蓄電部11の満充電容量が1kwhであるため、2つの蓄電部11の満充電容量を合わせた値は2kwhとなり、ステーション100に到達したときの総残容量1.8kwhよりも多くなる。このため、総残容量1.8kwhは2つの蓄電部11に振り分けることが出来、残り2つの蓄電部11の残容量をゼロに出来ることがわかる。
 これによって、目標残量生成部35は、図8(b)に示すように蓄電部11A、11Bの目標残容量をゼロとし、総残容量1.8kwhを2等分することで蓄電部11C、11Dの目標残容量を0.9kwhに設定できる。図8(c)を参照して充放電制御の一例を説明すると、充放電制御部36は、現在地からステーション100までは図8(c)の上段に示す状態(図8(a)に示す状態と同様)の蓄電部11Aからモータ21に電力を供給し、蓄電部11Bの残容量を蓄電部11C、11Dに移動させるように制御を行う。これによって、図8(c)の下段に示すように、ステーション100に到着した時に、蓄電部11Aの残容量はゼロとなり、蓄電部11Bの残容量はゼロとなり、蓄電部11Cの残容量は0.9kwhとなり、蓄電部11Dの残容量は0.9kwhとなる。
 そして、バッテリパック10Aおよびバッテリパック10Bを充電済みのバッテリパック10に交換することによって、図8(d)に示すように、バッテリパック10A、10Bの残容量がそれぞれ1kwhとなり、モビリティ20に搭載されているバッテリパック10の総残容量は3.8kwhとなる。
 (E)
 上記実施の形態では、4つのバッテリパック10が設けられているが、4つに限られず、4未満であっても4つより多くても良い。
 (F)
 上記実施の形態では、1つの蓄電部11の満充電容量は1.0kwhであるが、これに限られるものではない。
 (G)
 上記実施の形態では、バッテリパック10内に残容量推定部12が設けられ、充放電制御装置30は、残容量取得部の一例としての受信部34を介して蓄電部11の残容量を取得しているが、残容量推定部12がバッテリパック10ではなく充放電制御装置30に設けられていてもよい。この場合、充放電制御装置30に設けられた残容量推定部12は、複数のバッテリパック10の蓄電部11のそれぞれの残容量を検出する。このように残容量推定部12が充放電制御装置30に設けられている場合、残容量推定部12が、残容量取得部の一例に対応する。
 (H)
 上記実施の形態では、下限値設定部37および上限値設定部38は、下限値および上限値が設定して取得しているが、下限値および上限値を設定せずに取得するだけであってもよい。下限値および上限値が予めメモリなどに記憶されており、記憶されている上限値および下限値に基づいて目標残量生成部35が各バッテリパック10の残容量を生成してもよい。
 (I)
 上記実施の形態では、目標残量生成部35は、充放電制御装置30に設けられているが、モビリティ20内であって充放電制御装置30外に設けられていてもよい。
 (J)
 上記実施の形態では、移動体として、例えば、電動自動二輪車を用いて説明したが、電動自転車、電動一輪車、電気自動車(EV)、PHV(Plug-in Hybrid Vehicle)等のモビリティ等であってもよい。
 本発明の充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法は、バッテリ交換の際の手間を軽減可能な効果を有し、交換可能なバッテリによって駆動されるモビリティに対して広く適用可能である。
1    バッテリシステム
10、10A、10B、10C、10D   バッテリパック
11、11A、11B、11C、11D   蓄電部(バッテリの一例)
12、12A、12B、12C、12D   残容量推定部
20   モビリティ(移動体の一例)
20a  シート
20b  ハンドル
21   モータ
22   後輪
23   前輪
30   充放電制御装置
31   現在位置取得部
32   ステーション位置取得部
33   必要電力量算出部
34   受信部(残容量取得部の一例)
35   目標残量生成部
36   充放電制御部
37   下限値設定部(下限値取得部の一例)
38   上限値設定部(上限値取得部の一例)
40   充放電制御システム
100  ステーション
100a 挿入部

Claims (15)

  1.  移動体に着脱可能且つ並列接続可能な複数のバッテリの充放電を制御する充放電制御装置であって、
     各々の前記バッテリの残容量を取得する残容量取得部と、
     前記バッテリの交換が行われるステーションの位置情報と前記移動体の現在地から前記ステーションに到達するために必要な電力量を算出する必要電力量算出部と、
     前記必要電力量算出部によって算出された前記必要な電力量と、前記残容量取得部によって取得された各々の前記バッテリの残容量の合計から、前記ステーションに到着したときの各々の前記バッテリの目標残容量を算出する目標残量生成部と、
     前記目標残量生成部によって算出された目標残容量になるように前記バッテリ間で充放電を行う充放電制御部と、
    を備えた、充放電制御装置。
  2.  前記目標残量生成部は、前記ステーションに到着したときに、前記複数のバッテリの残容量に偏りが生じるように、各々の前記バッテリの目標残容量を算出する、
    請求項1に記載の充放電制御装置。
  3.  前記目標残量生成部は、前記ステーションに到着したときに、各々の前記バッテリの残容量が、前記バッテリに設定されている下限値と上限値の間になるように、各々の前記バッテリの目標残容量を算出する、
    請求項2に記載の充放電制御装置。
  4.  前記複数のバッテリにおける残容量の下限値を取得する下限値取得部を更に備え、
     前記目標残量生成部は、前記複数のバッテリのうち少なくとも1つの前記バッテリについて、前記目標残容量が該バッテリに設定されている前記下限値となるように設定する、
    請求項2に記載の充放電制御装置。
  5.  前記目標残量生成部は、前記下限値に設定できない前記バッテリが複数ある場合には、そのうちのいずれか1つの前記バッテリの前記残容量が前記ステーションに到着したときに出来るだけ小さな値になるように各々の前記バッテリの目標残容量を設定する、
    請求項4に記載の充放電制御装置。
  6.  前記複数のバッテリにおける残容量の上限値を取得する上限値取得部を更に備え、
     前記目標残量生成部は、前記複数のバッテリのうち少なくとも1つの前記バッテリについて、前記目標残容量が該バッテリに設定されている前記上限値となるように設定する、
    請求項2に記載の充放電制御装置。
  7.  前記目標残量生成部は、前記上限値に設定できない前記バッテリが複数ある場合には、そのうちのいずれか1つの前記バッテリの前記残容量が前記ステーションに到着したときに出来るだけ大きな値になるように各々の前記バッテリの目標残容量を設定する、
    請求項6に記載の充放電制御装置。
  8.  前記目標残量生成部は、前記ステーションに到着したときに、前記ステーションにおいて交換対象となる1つまたは複数の前記バッテリのグループにおける総残容量と、前記交換対象以外の1つまたは複数の前記バッテリのグループにおける総残容量の差が最も大きくなるように、各々の前記バッテリの目標残容量を算出する、
    請求項2または3に記載の充放電制御装置。
  9.  前記下限値取得部は、前記下限値を設定する、
    請求項4に記載の充放電制御装置。
  10.  前記上限値取得部は、前記上限値を設定する、
    請求項6に記載の充放電制御装置。
  11.  前記下限値は、ゼロまたは放電下限値である、
    請求項3または4に記載の充放電制御装置。
  12.  前記上限値は、満充電容量の値または充電上限値である、
    請求項3または6に記載の充放電制御装置。
  13.  前記移動体は、電動自動二輪車、あるいは電動自転車である、
    請求項1に記載の充放電制御装置。
  14.  移動体に着脱可能且つ並列接続可能な複数のバッテリの残容量を推定する残容量推定部と、
     前記バッテリの交換が行われるステーションの位置情報と前記移動体の現在地から前記ステーションに到達するために必要な電力量を算出する必要電力量算出部と、
     前記必要電力量算出部によって算出された前記必要な電力量と、前記残容量推定部によって推定された各々の前記バッテリの残容量の合計から、前記ステーションに到着したときの各々の前記バッテリの目標残容量を算出する目標残量生成部と、
     前記目標残量生成部によって算出された目標残容量になるように前記バッテリ間で充放電を行う充放電制御部と、
    を備えた充放電制御システム。
  15.  移動体に着脱可能且つ並列接続可能な複数のバッテリの残容量を調整するバッテリ残容量調整方法であって、
     各々の前記バッテリの残容量を取得する残容量取得工程と、
     前記バッテリの交換が行われるステーションの位置情報と前記移動体の現在地から前記ステーションに到達するために必要な電力量を算出する電力量算出工程と、
     前記電力量算出工程によって算出された前記必要な電力量と、前記残容量取得工程によって取得された各々の前記バッテリの残容量の合計から、前記ステーションに到着したときの各々の前記バッテリの目標残容量を算出する目標残容量生成工程と、
     前記目標残容量生成工程によって算出された目標残容量になるように前記バッテリ間で充放電を行う充放電制御工程と、
    を備えた、バッテリ残容量調整方法。
PCT/JP2016/082596 2015-11-17 2016-11-02 充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法 WO2017086164A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16866166.8A EP3379681B1 (en) 2015-11-17 2016-11-02 Charge/discharge control device, charge/discharge control system, and remaining-battery-capacity adjustment method
MYPI2018700905A MY188695A (en) 2015-11-17 2016-11-02 Charge/discharge control device, charge/discharge control system, and remaining battery capacity adjustment method
US15/758,236 US10919410B2 (en) 2015-11-17 2016-11-02 Charge/discharge control device, charge/discharge control system, and remaining battery capacity adjustment method
PH12018500493A PH12018500493A1 (en) 2015-11-17 2018-03-06 Charge/discharge control device, charge/discharge control system, and remaining battery capacity adjustment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015224439A JP6565625B2 (ja) 2015-11-17 2015-11-17 充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法
JP2015-224439 2015-11-17

Publications (1)

Publication Number Publication Date
WO2017086164A1 true WO2017086164A1 (ja) 2017-05-26

Family

ID=58718091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082596 WO2017086164A1 (ja) 2015-11-17 2016-11-02 充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法

Country Status (7)

Country Link
US (1) US10919410B2 (ja)
EP (1) EP3379681B1 (ja)
JP (1) JP6565625B2 (ja)
MY (1) MY188695A (ja)
PH (1) PH12018500493A1 (ja)
TW (1) TWI626815B (ja)
WO (1) WO2017086164A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124145A (zh) * 2019-06-24 2020-12-25 联合汽车电子有限公司 网联电动汽车按需充电时间的计算方法及充电的控制系统
US10946750B2 (en) 2015-11-17 2021-03-16 Omron Corporation Charge/discharge control device, charge/discharge control system, and charge/discharge control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240123839A1 (en) * 2021-02-22 2024-04-18 Vanmoof B.V. Secondary Bicycle Drive Battery and Method
CN113471995B (zh) * 2021-06-09 2023-12-12 国网江苏省电力有限公司淮安供电分公司 一种提升新能源高占比区域频率稳定性的储能配置方法
CN117984791B (zh) * 2024-04-07 2024-06-18 北京阿帕科蓝科技有限公司 电单车换电阈值的确定方法、装置及计算机设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163506A (ja) * 1995-11-30 1997-06-20 Aqueous Res:Kk ハイブリッド車両
JP2010178514A (ja) * 2009-01-29 2010-08-12 Equos Research Co Ltd 電池ハイブリッドシステム及びその使用方法
JP2010183785A (ja) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd バッテリ充電制御装置及びバッテリ充電制御方法
JP2012113856A (ja) * 2010-11-22 2012-06-14 Toyota Motor Corp 電源スタック交換方法、制御装置及び制御プログラム
JP2014166846A (ja) * 2009-03-17 2014-09-11 An-Tao Anthony Yang プラグインハイブリッドおよび電気車両の電気管理方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2609854B2 (ja) 1986-11-25 1997-05-14 京セラ株式会社 太陽光発電システムの蓄電池充放電制御方式
JP3890168B2 (ja) * 1999-08-03 2007-03-07 株式会社東京アールアンドデー 電動装置及びその電池ユニットの充放電方法
JP3886733B2 (ja) 2001-04-03 2007-02-28 矢崎総業株式会社 車両用電源装置
DE60237441D1 (de) 2001-04-20 2010-10-07 Gs Yuasa Corp Ür, anode zur benutzung in einer sekundärbatterie mit wasserfreiem elektrolyt und sekundärbatterie mit wasserfreiem elektrolyt
JP2005237064A (ja) 2004-02-18 2005-09-02 Autech Japan Inc 車両コントローラ
JP4577413B2 (ja) 2008-06-20 2010-11-10 トヨタ自動車株式会社 車両
JP5120172B2 (ja) 2008-09-17 2013-01-16 アイシン・エィ・ダブリュ株式会社 バッテリ情報提供装置、方法およびプログラム
CN101841070B (zh) * 2009-03-17 2014-07-02 杨安陶 电能管理方法
JP5722875B2 (ja) 2009-04-10 2015-05-27 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 大規模バッテリシステムのための動的に再構成可能な構造
CN102823103B (zh) 2010-03-31 2015-03-11 松下电器产业株式会社 车辆用电源装置
CN102694212A (zh) * 2011-03-24 2012-09-26 纬创资通股份有限公司 电池组及其电子装置与电池管理方法
EP2738908A1 (en) 2011-07-28 2014-06-04 Sanyo Electric Co., Ltd Battery system, battery control device, electric vehicle, mobile body, and power source device
WO2013108246A2 (en) 2012-01-17 2013-07-25 Better Place GmbH Approximation of remaining travelable distance of a vehicle powered by a battery
JP5921915B2 (ja) 2012-03-02 2016-05-24 シャープ株式会社 蓄電システム、蓄電制御装置、および、蓄電制御方法
JP5924524B2 (ja) 2012-03-13 2016-05-25 オムロン株式会社 蓄電池制御装置、蓄電池制御方法、プログラム、蓄電システム、および電源システム
TWM435385U (en) * 2012-04-09 2012-08-11 Isuda Recreation & Sports Co Ltd Electric car having batteries with two charging methods
JP5970070B2 (ja) 2012-09-03 2016-08-17 株式会社日立製作所 電気自動車の充電支援システムおよび充電支援方法
JP5975863B2 (ja) 2012-12-17 2016-08-23 大阪瓦斯株式会社 バッテリアダプタ
JP2014141209A (ja) 2013-01-25 2014-08-07 Toyota Motor Corp ハイブリッド車両
JP6629213B2 (ja) * 2014-01-23 2020-01-15 ゴゴロ インク バッテリなどの電力貯蔵装置アレイを利用するシステム及び方法
JP6859592B2 (ja) 2015-11-17 2021-04-14 オムロン株式会社 充放電制御装置、充放電制御システムおよび充放電制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09163506A (ja) * 1995-11-30 1997-06-20 Aqueous Res:Kk ハイブリッド車両
JP2010178514A (ja) * 2009-01-29 2010-08-12 Equos Research Co Ltd 電池ハイブリッドシステム及びその使用方法
JP2010183785A (ja) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd バッテリ充電制御装置及びバッテリ充電制御方法
JP2014166846A (ja) * 2009-03-17 2014-09-11 An-Tao Anthony Yang プラグインハイブリッドおよび電気車両の電気管理方法
JP2012113856A (ja) * 2010-11-22 2012-06-14 Toyota Motor Corp 電源スタック交換方法、制御装置及び制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3379681A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10946750B2 (en) 2015-11-17 2021-03-16 Omron Corporation Charge/discharge control device, charge/discharge control system, and charge/discharge control method
CN112124145A (zh) * 2019-06-24 2020-12-25 联合汽车电子有限公司 网联电动汽车按需充电时间的计算方法及充电的控制系统

Also Published As

Publication number Publication date
TW201720013A (zh) 2017-06-01
EP3379681B1 (en) 2020-03-18
EP3379681A4 (en) 2018-12-26
TWI626815B (zh) 2018-06-11
PH12018500493A1 (en) 2018-09-10
JP2017093257A (ja) 2017-05-25
US10919410B2 (en) 2021-02-16
JP6565625B2 (ja) 2019-08-28
US20180254647A1 (en) 2018-09-06
EP3379681A1 (en) 2018-09-26
MY188695A (en) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2017086164A1 (ja) 充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法
EP3386061B1 (en) Battery charging device, battery charging system and battery charging method
JP6859592B2 (ja) 充放電制御装置、充放電制御システムおよび充放電制御方法
JP6657828B2 (ja) 誘導装置、誘導システムおよび誘導方法
CN105235538B (zh) 能量储存系统和用于运行能量储存系统的方法
EP2686195B1 (en) Systems and methods for controlling multiple storage devices
CN109070761B (zh) 用于车辆的可切换的储存器系统
CN106887086B (zh) 移动充电设备、移动充电系统及移动充电方法
WO2017086168A1 (ja) バッテリ残量表示装置、バッテリシステムおよびバッテリ残量表示方法
KR20140094362A (ko) 전기차 에너지 관리 장치 및 방법
WO2015064004A1 (ja) 電池状態推定装置
JP2017093253A (ja) バッテリパックおよびこれを備えたバッテリシステム
WO2013084663A1 (ja) 電池充電量制御装置および方法
KR20160025166A (ko) 운행중인 차량에 v2g기술 적용 방법
JP6431829B2 (ja) 蓄電制御装置及び輸送機器、並びに、蓄電制御方法
US20190225108A1 (en) Method and system of smart management of electrochemical batteries for an electric vehicle
WO2019093048A1 (ja) 複合蓄電システム
JP2014000887A (ja) 駆動制御装置、及び車両
JP2018157734A (ja) 二次電池の管理装置及び電動車両
JP2016217951A (ja) 蓄電器管理装置及び蓄電器管理方法
JP2014000886A (ja) 駆動制御装置、及び車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866166

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12018500493

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 15758236

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE