WO2017086053A1 - アイセーフ光源 - Google Patents

アイセーフ光源 Download PDF

Info

Publication number
WO2017086053A1
WO2017086053A1 PCT/JP2016/080018 JP2016080018W WO2017086053A1 WO 2017086053 A1 WO2017086053 A1 WO 2017086053A1 JP 2016080018 W JP2016080018 W JP 2016080018W WO 2017086053 A1 WO2017086053 A1 WO 2017086053A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
light
safe
light source
emitting end
Prior art date
Application number
PCT/JP2016/080018
Other languages
English (en)
French (fr)
Inventor
伊藤 晋
啓介 宮嵜
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680067246.8A priority Critical patent/CN108352676A/zh
Priority to US15/776,047 priority patent/US10658812B2/en
Priority to JP2017551771A priority patent/JPWO2017086053A1/ja
Publication of WO2017086053A1 publication Critical patent/WO2017086053A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/02234Resin-filled housings; the housings being made of resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0232Lead-frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48105Connecting bonding areas at different heights
    • H01L2224/48106Connecting bonding areas at different heights the connector being orthogonal to a side surface of the semiconductor or solid-state body, e.g. parallel layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/0222Gas-filled housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding

Definitions

  • the present invention relates to an eye-safe light source that has been made eye-safe and an electronic device including the same.
  • Patent Document 1 discloses an optical proximity sensor (reflective optical coupling device) mounted on a mobile phone.
  • the power source is a battery, it is strongly desired to reduce the power consumption of the mounted module. Moreover, also in the wireless optical communication equipment using illumination, reduction of power consumption is desired from the viewpoint of energy efficiency. In the wireless optical communication module, the optical sensor module, and the like, since the light source that mainly emits light consumes power, it is desired to reduce the power consumption of the light source.
  • light sources for wireless optical communication and optical sensoring, etc. must ensure safety (eye-safe) for human eyes. Moreover, in order to use it for wireless optical communication, optical sensing, etc., it is necessary to arrange light distribution.
  • Patent Documents 2 to 4 disclose eye-safe light sources in which laser light emitted from a semiconductor laser is made eye-safe.
  • the laser light passes through the light scattering layer, so that the spot diameter of the laser light is widened and the laser light is made eye-safe.
  • Patent Document 5 discloses a lens shape that adjusts light from an eye-safe light source in which such laser light is made eye-safe into a light intensity distribution suitable for wireless optical communication and adjusts light distribution characteristics.
  • the wire connected to the semiconductor laser passes through the light scattering layer that multiplexly scatters the laser light, there is a problem that the shadow of the wire is generated in the virtual light source in which the laser light is made eye-safe and the luminous efficiency is lowered.
  • the shadow of the wire makes the light density of the virtual light source non-uniform and deviates from the ideal light intensity distribution.
  • the semiconductor laser when the semiconductor laser is bonded to the substrate without the submount, the laser light emitted so as to spread from the semiconductor laser hits the substrate, so that the laser light cannot spread and the eye-safe performance is deteriorated. Even if the submount is used, if the semiconductor laser is bonded to the inside of the submount, the shadow of the submount is generated in the virtual light source, and the light emission efficiency is lowered.
  • the conventional eye-safe light source has a problem that the alignment characteristics are lost due to the eye-safe and a problem that the light emission efficiency is low.
  • the present invention has been made in view of the above-described problems, and an object thereof is to improve luminous efficiency while adjusting alignment characteristics in an eye-safe light source.
  • an eye-safe light source includes a substrate, a semiconductor laser that emits laser light from a light emitting end surface, and a wire that is bonded to the semiconductor laser, and the semiconductor laser Is bonded to the substrate so as to emit the laser light in a direction parallel to a reference plane of the substrate, and the substrate includes a reflective surface facing the light emitting end surface and reflecting the laser light.
  • the direction in which the wire extends is perpendicular to the direction in which the laser beam is emitted from the light emitting end face.
  • light emission efficiency can be improved while adjusting the alignment characteristics.
  • FIG. 1A is a top view seen through the resin portion
  • FIG. 1B is a cross-sectional view taken along arrow A1-A1 in FIG. 1A
  • FIG. 1B is a cross-sectional view taken along the line B1-B1 in FIG. 1A
  • FIG. 1D is a bottom view in which the resin portion is not seen through.
  • FIG. 2 corresponds to the right part of FIG. 1B and shows the spread of the laser beam and the optical axis.
  • FIG. 4A is a top view of the resin part seen through without the cover
  • FIG. 4B is a cross-sectional view taken along the line A2-A2 in FIG. 6C is a cross-sectional view taken along the line B2-B2 in FIG. 6A
  • FIG. 4D is a perspective view excluding a cover for showing a three-dimensional shape of the resin portion.
  • FIG. 5 is a cross-sectional view for explaining eye-safety in a modification in which a cover 228 a that scatters laser light is provided in the eye-safe light source shown in FIG. 4.
  • FIG. 5 corresponds to the right part of FIG. 4B and shows the spread of the laser beam and the optical axis. It is a figure which shows schematic structure of the semiconductor laser periphery of the eye safe light source which concerns on Embodiment 3 of this invention.
  • 6A is a top view seen through the resin portion
  • FIG. 6B is a cross-sectional view taken along arrow A3-A3 in FIG. 6A
  • FIG. 6A is a cross-sectional view taken along the line B3-B3 in FIG. 6A
  • 6D is a perspective view illustrating the three-dimensional shape of the resin portion. It is a figure which shows schematic structure of the semiconductor laser periphery of the eye safe light source which concerns on Embodiment 4 of this invention.
  • 7A is a top view seen through the resin portion
  • FIG. 7B is a cross-sectional view taken along the line A4-A4 in FIG. 7A
  • FIG. 7 is a cross-sectional view taken along arrow B4-B4 in FIG.
  • FIG. 9A is a top view of the resin part seen through without the cover
  • FIG. 9B is a cross-sectional view taken along the line A5-A5 in FIG. 9A.
  • c) is a cross-sectional view taken along the line B5-B5 in FIG. It is a figure which shows schematic structure of the optical sensor which concerns on Embodiment 6 of this invention.
  • Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to FIG.
  • FIG. 1 is a diagram showing a schematic configuration around a semiconductor laser 100 of an eye-safe light source 1 according to Embodiment 1 of the present invention.
  • 1A is a top view seen through the resin portion 106
  • FIG. 1B is a cross-sectional view taken along the line A1-A1 in FIG. 1A
  • FIG. 1 is a cross-sectional view taken along the line B1-B1 of FIG. 1A
  • FIG. 1D is a bottom view of the resin portion 106 that is not seen through.
  • the direction in which the eye-safe light source 1 emits light will be described as above. However, the direction of the eye-safe light source 1 at the time of manufacture and use is not limited.
  • the eye-safe light source 1 includes a semiconductor laser 100 that emits laser light 114 from left and right light emitting end surfaces 100l and right light emitting end surfaces 100r, a submount 102 on which the semiconductor laser 100 is mounted, and a metal lead.
  • a package (substrate) 108 having a frame (hereinafter abbreviated as a lead frame) 104 and a resin portion 106 and a wire 110 are provided, and is a surface mount type.
  • a mark 112 is provided so that the direction of the anode and the cathode can be seen.
  • the optical axis 118 indicates the direction in which the eye-safe light is emitted from the eye-safe light source 1, and is perpendicular to the upper surface (reference surface) of the lead frame 104 and the upper surface of the package 108.
  • the package 108 is a member in which the periphery of the lead frame 104 is partially covered (packaged) with the resin portion 106.
  • a recess 120 (internal space) having an opening (opening) 124 is formed in the resin portion 106, and a part of the upper surface (exposed portion 122) of the lead frame 104 is exposed from the recess 120.
  • the opening 124 is open on the upper surface of the package 108.
  • the package 108 houses the semiconductor laser 100 in the recess 120.
  • the lead frame 104 is obtained by punching and plating a thin metal plate such as a copper-based alloy and is excellent in thermal conductivity, heat dissipation, mechanical strength, and electrical conductivity. Since the exposed portion 122 is electrically and thermally connected to the semiconductor laser 100 on the upper surface of the lead frame 104, the exposed portion 122 is not covered with the resin portion 106 as shown in FIGS. Are exposed in the recess 120. Most of the lower surface of the lead frame 104 is exposed downward from the resin portion 106 to dissipate heat, as shown in FIGS. The lead frame 104 is electrically connected to the outside through lead terminals not shown in FIG. Alternatively, the lead frame 104 may be electrically connected to the outside through the lower surface of the lead frame 104 exposed from the resin portion 106.
  • the lead frame 104 includes a cathode portion 104 c connected to the cathode of the semiconductor laser 100 and an anode portion 104 a connected to the anode of the semiconductor laser 100.
  • the cathode portion 104 c and the anode portion 104 a are joined by the resin portion 106 and insulated by the resin portion 106.
  • the submount 102 on which the semiconductor laser 100 is mounted is bonded onto the exposed portion 122 of the cathode portion 104c. It should be noted that the size of the cathode portion 104c and the anode portion 104a and the arrangement with respect to the semiconductor laser 100 may be reversed.
  • the resin forming the resin portion 106 is a white thermoplastic resin including a light scatterer that scatters the laser light 114, and is a resin often used for LED (Light Emitting Diode) light sources.
  • the resin portion 106 may be formed of, for example, polycyclohexylene dimethylene terephthalate (PCT) resin or polyphthalamide (PPA) resin.
  • PCT polycyclohexylene dimethylene terephthalate
  • PPA polyphthalamide
  • white resin was used in order to improve a reflectance, you may use resin of another color, such as red, according to the wavelength of the laser beam 114 and the use of the eye safe light source 1.
  • a thermoplastic resin is used, a resin having another property such as thermosetting or photo-curing property may be used depending on the manufacturing method of the package 108.
  • a control element for controlling the light emission of the semiconductor laser 100 may be bonded to the lead frame 104 and sealed with the resin portion 106. Further, other semiconductor elements may be resin-sealed inside the package 108.
  • the mark 112 is formed as a depression of a right isosceles triangle on the resin portion 106 on the upper surface of the package 108. Thereby, since the mark 112 can be formed simultaneously with the molding of the resin portion 106, it is possible to eliminate an error in attaching the mark 112. Note that the mark 112 is not necessarily provided.
  • the metal lead frame 104 is excellent in thermal conductivity and heat dissipation. Therefore, by joining the submount 102 on which the semiconductor laser 100 is placed to the exposed portion 122 of the lead frame 104, the heat generated by the semiconductor laser 100 can be quickly radiated. Therefore, the eye-safe light source 1 is excellent in heat dissipation.
  • the package 108 including the metal lead frame 104 is superior in mechanical strength as compared with a package not including the metal lead frame. For this reason, even if the package 108 is thinned, the mechanical strength required for the eye-safe light source 1 can be achieved, and the eye-safe light source 1 can be thinned.
  • the recess 120 has a substantially inverted quadrangular frustum shape.
  • the recess 120 has a rectangular upper base (opening 124) that opens on the upper surface of the package 108, a rectangular lower base from which the exposed portion 122 of the lead frame 104 is exposed, and a trapezoidal shape extending between the upper base and the lower base.
  • the upper base area is larger than the lower base area.
  • the recess 120 may have another shape such as a substantially inverted truncated cone.
  • the concave portion 120 when the concave portion 120 is a simple shape such as a substantially inverted truncated pyramid or a substantially inverted truncated cone, the concave portion 120 can be easily formed. For this reason, it is possible to reduce the manufacturing cost of the package 108 including the recess 120, that is, the eye-safe light source 1 including the package 108.
  • the inside of the recess 120 is a cavity, and the opening 124 of the recess 120 is opened without being closed. Accordingly, there is nothing in particular in the vicinity of both light emitting end faces (the left light emitting end face 100l and the right light emitting end face 100r) of the semiconductor laser 100, and the vicinity of both the light emitting end faces is a vacuum or a gas such as air exists.
  • the function of the eye-safe light source 1 is not deteriorated by the modification of the substances in the vicinity of both light emitting end faces (the left light emitting end face 100l and the right light emitting end face 100r). That is, it is possible to prevent the eye-safe property and the light emission efficiency of the eye-safe light source 1 from being lowered due to continuous use and long-time use.
  • the service life of the eye-safe light source 1 is extended. Further, in the eye-safe light source 1, there is no material that is thermally damaged or optically damaged inside the recess 120, so that the material in the vicinity of both light emitting end faces of the semiconductor laser 100 is thermally optical. Will not be damaged.
  • portions other than both light emitting end faces (left light emitting end face 100l and right light emitting end face 100r) of the semiconductor laser 100 may be covered with resin or the like. Further, both light emitting end faces of the semiconductor laser 100 may be covered as long as the material does not generate heat by absorbing the laser light 114, such as a transparent resin not including a light scatterer.
  • the inside of the recess 120 is hollow, and the semiconductor laser 100 inside the recess 120 is exposed without being sealed with resin or gas. Furthermore, since the semiconductor laser 100 is bonded to the lead frame 104 via the submount 102, the semiconductor laser 100 can be expanded and contracted according to temperature changes. Thus, it is preferable from the viewpoint of mechanical load that the semiconductor laser 100 can be expanded and contracted.
  • the semiconductor laser 100 generates heat when it emits light. For this reason, when the semiconductor laser 100 is resin-sealed, stress is generated due to a difference in thermal expansion coefficient between the semiconductor laser 100 and the sealing resin, and a mechanical load is applied to the semiconductor laser 100 and the sealing resin. . Although the result of such a mechanical load has not been clarified, there is a concern that some defect may occur. Therefore, it is preferable not to resin-seal the semiconductor laser 100 so that stress is not generated. Further, even when the semiconductor laser 100 is gas-sealed, the sealing gas expands due to the heat generated by the semiconductor laser 100 and stress is generated on the package 108, and in particular, an addition is added to the resin portion 106. It is preferable not to gas seal the laser 100.
  • the submount 102 is joined to the center of the bottom of the recess 120 of the package 108 and joined to the exposed portion 122 of the cathode portion 104 c of the lead frame 104.
  • the submount 102 is electrically connected to the anode of the semiconductor laser 100, and is electrically connected to the anode portion 104 a of the lead frame 104 via the wire 110.
  • the submount 102 is thermally connected to the semiconductor laser 100 and thermally connected to the cathode portion 104 c of the lead frame 104.
  • the semiconductor laser 100 is an infrared semiconductor laser that emits laser light having a wavelength longer than 700 nm. Further, as shown in FIG. 1B, the semiconductor laser 100 emits laser light 114 symmetrically from the left light emitting end surface 100l and the right light emitting end surface 100r. Therefore, the left and right end faces and the vicinity of the end faces of the resonator formed in the semiconductor laser 100 are optically symmetric. For example, an equivalent optical end face coating may be applied to the left light emitting end face 100l and the right light emitting end face 100r of the semiconductor laser 100, or an equivalent optical window structure may be formed. Alternatively, the left light emitting end surface 100l and the right light emitting end surface 100r of the semiconductor laser 100 may be exposed without the optical end surface coating and the optical window structure.
  • the semiconductor laser 100 is mounted on the submount 102 so that the left light emitting end surface 100l and the right light emitting end surface 100r protrude from the submount 102, respectively. . Since it protrudes, the laser beam 114 is emitted toward the resin portion 106 without being blocked by the submount 102.
  • the semiconductor laser 100 is bonded to the lead frame 104 via the submount 102 so as to emit laser light 114 parallel to the upper surface of the lead frame 104. That is, the semiconductor laser 100 is positioned relative to the lead frame 104 so that the resonator of the semiconductor laser 100 is parallel to the top surface of the lead frame 104 and the active layer of the semiconductor laser 100 is parallel to the top surface of the lead frame 104. It is placed flat.
  • the semiconductor laser 100 is an infrared laser. Has sufficient durability and long-term reliability with respect to the laser beam 114 emitted from the semiconductor laser 106.
  • the semiconductor laser 100 may be a visible light semiconductor laser that emits laser light having a wavelength in the visible light region, or may be an ultraviolet semiconductor laser that emits laser light having a wavelength in the ultraviolet region. Good.
  • EMC EpoxypMolding ⁇ Compound
  • the laser light 114 emitted from the semiconductor laser 100 is emitted toward the resin portion 106 without being blocked by the submount 102. Therefore, since the shadow of the submount 102 does not occur, the light extraction efficiency of the eye-safe light source 1 with respect to the laser light 114 can be improved. Furthermore, the power consumption of the electronic device provided with the eye safe light source 1 and the eye safe light source 1 can be suppressed by improving the light extraction efficiency.
  • the semiconductor laser 100 is bonded to the upper surface of the lead frame 104 via the submount 102, the laser light 114 emitted from the semiconductor laser 100 is not blocked by the submount 102 (the lead frame 104 side) can also go straight while spreading like the upper side (opening 124 side). Since it goes straight in the same way on the upper side and the lower side, it becomes easy to predictably control the light distribution of the laser beam 114 by the reflecting surface 116 made of the resin portion 106.
  • the semiconductor laser 100 is mounted flat on the lead frame 104.
  • the depth of the recessed part 120 distance between the upper base and the lower base of the recessed part 120
  • the package 108 ie, the eye safe light source 1
  • the optical path length until the laser beam 114 reaches the reflecting surface 116 can be increased without changing the depth of the recess 120.
  • the eye-safe light source 1 can be thinned.
  • the wire 110 is a gold wire and is a power line that supplies power for driving the semiconductor laser 100.
  • One wire 110 connects the cathode of the semiconductor laser 100 and the cathode portion 104 c of the lead frame 104.
  • the single wire 110 extends from the semiconductor laser 100 to the front side (the lower side in the drawing in FIG. 1A), and is emitted in parallel to the upper surface of the lead frame 104 when viewed from the direction of the optical axis 118. It is substantially orthogonal to the optical axis of the light 114.
  • Another wire 110 connects the submount 102 connected to the anode of the semiconductor laser 100 and the anode portion 104 a of the lead frame 104.
  • the other wire 110 extends from the submount 102 to the rear side (the upper side in the drawing in FIG. 1A) and is emitted in parallel to the upper surface of the lead frame 104 when viewed from the direction of the optical axis 118.
  • the laser beam 114 is substantially orthogonal to the optical axis.
  • each of the wires 110 is substantially orthogonal to the laser beam 114 when viewed from above. For this reason, the laser beam 114 is not blocked by the wire 110. Therefore, since the shadow of the wire 110 does not occur, the light extraction efficiency of the eye-safe light source 1 with respect to the laser beam 114 can be improved. Furthermore, the power consumption of the electronic device provided with the eye safe light source 1 and the eye safe light source 1 can be suppressed by improving the light extraction efficiency.
  • Reflective surface the reflection surface 116 that reflects the laser beam 114 will be described.
  • the reflection surface 116 is two of the four side surfaces of the recess 120 facing each other, and faces the left light emitting end surface 100l and the right light emitting end surface 100r of the semiconductor laser 100 that emits the laser light 114, respectively.
  • the reflecting surface 116 is perpendicular to the direction in which the semiconductor laser 100 emits the laser beam 114 and passes through the center of the semiconductor laser 100 (the intermediate point between the left light emitting end surface 100l and the right light emitting end surface 100r) (first symmetry surface). On the other hand, they are symmetrical with each other.
  • the reflecting surface 116 is a surface that passes through the light emitting center of the left light emitting end surface 100l and the light emitting center of the right light emitting end surface, which is perpendicular to the upper surface of the lead frame 104 and parallel to the direction in which the semiconductor laser 100 emits the laser light 114. Each plane is symmetrical with respect to the second plane of symmetry).
  • the reflection surface 116 is a plane inclined upward with respect to the upper surface of the lead frame 104. Due to this inclination, the laser beam 114 emitted parallel to the upper surface of the lead frame 104 is reflected in the direction of the optical axis 118. Moreover, since the reflecting surface 116 is the surface of the resin part 106 containing a light-scattering body, it reflects and reflects the laser beam 114. Due to this scattering reflection, the spot diameter of the laser beam 114 is widened, so that the light density of the laser beam 114 is lower after reflection than before reflection.
  • the orientation when emitted is emitted.
  • the laser beam 114 is scattered and reflected upward while maintaining the characteristics to some extent.
  • the laser beam 114 When the laser beam 114 is emitted from the right light emitting end surface 100r of the semiconductor laser 100 substantially parallel to the upper surface of the lead frame 104, the laser beam 114 is emitted so as to spread at a certain angle from the spot diameter in units of micrometers. For this reason, the laser beam 114 is highly coherent, but spreads away from the right light emitting end surface 100r, so that the light density of the laser beam 114 decreases.
  • the spread angle of the laser beam 114 emitted from the semiconductor laser 100 which is an infrared semiconductor laser, is about 20 degrees in the direction perpendicular to the active layer and about 10 degrees in the direction parallel to the active layer.
  • the laser beam 114 emitted from the left light emitting end face 100 l is emitted so as to spread substantially parallel to the upper surface of the lead frame 104.
  • the laser beam 114 travels while spreading, the spot diameter of the laser beam 114 spreads on the reflecting surface 116 away from both the light emitting end surfaces (the left light emitting end surface 100l and the right light emitting end surface 100r). The density has decreased to some extent. Therefore, the laser beam 114 is already made eye-safe to some extent before being scattered and reflected by the reflecting surface 116.
  • the semiconductor laser 100 emits laser light 114 symmetrically from both light emitting end faces of the left light emitting end face 100l and the right light emitting end face 100r. For this reason, the laser light 114 emitted from the semiconductor laser 100 has a light density that is approximately half that of the semiconductor laser that emits light only from one end face with the same total light quantity. Thus, since the light density is low, the laser beam 114 can be easily made eye-safe.
  • the eye-safe laser beam 114 is also symmetric. For this reason, the eye-safe light source 1 is a light source with good symmetry.
  • the laser beam 114 that has already been made eye-safe to some extent is scattered and reflected by the reflecting surface 116, the laser beam 114 is sufficiently made eye-safe. Since the laser light 114 that is sufficiently eye-safe in this way is emitted from the opening 124 that opens on the upper surface of the package 108, the light emitted from the eye-safe light source 1 is sufficiently eye-safe.
  • the luminous efficiency of the eye-safe light source 1 which is the amount of light emitted from the eye-safe light source 1 with respect to the power consumed by the eye-safe light source 1, will be described.
  • the inside of the recess 120 is a cavity, and there is no light scatterer that scatters the laser beam 114. For this reason, the laser beam 114 reaches the reflecting surface 116 without being scattered. Therefore, the scattered light is not absorbed by the submount 102. For this reason, the eye safe light source 1 is excellent in luminous efficiency.
  • the inside of the recess 120 is a cavity, and the semiconductor laser 100 is covered with air. Since the semiconductor laser 100 is an infrared semiconductor laser, as is generally the case, the left light emitting end surface 100l and the right light emitting end surface 100r are optimal so that the efficiency of extracting light with respect to the atmosphere (air) is maximized. Designed. Therefore, since the light can be extracted from the semiconductor laser 100 with maximum efficiency, the eye-safe light source 1 is excellent in luminous efficiency.
  • the eye safe light source 1 is excellent in luminous efficiency.
  • the wire 110 is substantially perpendicular to the direction in which the laser beam 114 is emitted when viewed from above (viewed from a direction perpendicular to the top surface of the lead frame 104). For this reason, the wire 110 does not block the optical path of the laser beam 114, and the shadow of the wire 110 does not occur in the virtual light source in which the laser beam 114 is made eye-safe. For this reason, the eye safe light source 1 is excellent in luminous efficiency. Furthermore, since the wire 110 extends inside the recess 120 where there is no light scatterer, the wire 110 does not absorb the scattered light. For this reason, the eye safe light source 1 is excellent in luminous efficiency.
  • the semiconductor laser 100 is mounted on the submount 102 so that the left light emitting end surface 100l and the right light emitting end surface 100r protrude from the submount 102 in a top view. Therefore, the laser light 114 emitted so as to spread from the left light emitting end surface 100l and the right light emitting end surface 100r reaches the reflecting surface 116 without being blocked by the submount 102. Further, the semiconductor laser 100 is lifted from the upper surface of the lead frame 104 by sandwiching a submount between the semiconductor laser 100 and the lead frame 104. For this reason, the laser beam 114 can reach the reflecting surface 116 directly without being reflected by the upper surface of the lead frame 104 and without being blocked by the lead frame 104. Therefore, since the shadow of the submount 102 does not occur in the virtual light source in which the laser beam 114 is made eye-safe, and no stray light is generated by reflection on the lead frame 104, the eye-safe light source 1 is excellent in luminous efficiency.
  • the resin portion 106 having the reflective surface 116 is a white resin including a light scatterer often used for LED light sources. For this reason, the light reflectivity of the reflective surface 116 is high and the light absorption rate is low. Therefore, the eye-safe light source 1 is excellent in luminous efficiency.
  • the laser beam 114 is scattered and reflected by the reflecting surface 116, but is not scattered before reaching the reflecting surface 116. For this reason, the intensity distribution of the light density of the laser light 114 scattered and reflected by the reflecting surface 116 is generally averaged by scattering, and generally maintains the light distribution characteristics when emitted from the left and right light emitting end faces 100l and 100r. ing. For this reason, the reflection surface 116 lowers the strong intensity peak on the optical axis (center of the spot) of the laser beam 114, and averages the intensity of the light density between the periphery and the center of the spot, while distributing the light distribution characteristics. Can be arranged.
  • the laser beam 114 is sufficiently eye-safe without passing through a light scattering layer including a light scatterer that scatters the laser beam. For this reason, in the eye-safe light source 1, the light distribution characteristics of the laser light 114 can be adjusted while making the laser light 114 eye-safe, and the polarization characteristics of the laser light 114 can be maintained at least partially.
  • the laser light is made eye-safe by passing through a light scattering layer including a light scatterer that scatters the laser light. For this reason, the laser light loses its light distribution characteristics and polarization characteristics due to multiple scattering while passing through the light scattering layer.
  • the polarization characteristics of the laser light 114 emitted from the eye-safe light source 1 may be adjusted so that the laser light 114 passes through the light scattering layer.
  • the opening 124 may be covered with a cover, and the type or concentration of the light scatterer included in the cover or the thickness of the cover may be adjusted. In this way, the polarization ratio of the laser beam 114 transmitted through the cover and emitted from the eye-safe light source 1 can be adjusted in the range of about 2 to 100.
  • the light distribution characteristics can be adjusted depending on the shape of the reflecting surface 116, so that it is not necessary to provide a lens for adjusting the light distribution characteristics. For this reason, the eye safe light source 1 is suitable for thickness reduction.
  • the lens may be an external lens or may be integrated with a cover that covers the opening 124.
  • the eye-safe laser beam 114 at least partially maintains the polarization characteristics when emitted from the semiconductor laser 100.
  • the eye-safe light source 1 is suitable for applications that utilize polarization characteristics.
  • the eye-safe light source 1 may be provided in an electronic device for biometric authentication.
  • Modification 1 of Embodiment 1 in which a cover 128a is provided in the opening 124 in the eye-safe light source 1 according to Embodiment 1 will be described with reference to FIG.
  • FIG. 2 is a cross-sectional view for explaining eye-safety in a modification in which the cover 128a that scatters the laser beam 114 is provided in the eye-safe light source 1 shown in FIG. FIG. 2 corresponds to the right side of FIG. 1B and shows the spread of the laser beam 114 and the optical axis 134.
  • the range of the spread of the laser beam 114 shown in FIG. 2 is a range until the intensity of the light density reaches 1 / e of the peak value (e is the base of natural logarithm).
  • the cover 128 a is a cover provided so that foreign matter does not enter the recess 120, and is formed of a resin including a light scatterer that scatters the laser light 114. Although not shown here, since the breathing hole is provided in the cover 128a, the gas inside the recess 120 can enter and exit through the breathing hole. Since the cover 128a is formed of a resin containing a light scatterer, in the modification in which the cover 128a is provided, the spot diameter of the laser beam 114 is increased as shown in FIG.
  • the optical axis 134 is the optical axis of the laser beam 114.
  • the spot diameter R 0 is the spot diameter of the laser beam 114 on the right light emitting end face 100r.
  • the spot diameter R 1 is the spot diameter of the laser beam 114 viewed from the direction of the optical axis 118 when the laser beam 114 hits the reflecting surface 116.
  • the spot diameter R 2 is, when the laser beam 114 is incident to the cover 128a, a spot diameter of the laser beam 114.
  • the spot diameter R 3 is after the laser beam 114 is passed through the cover 128a, a spot diameter of the laser beam 114.
  • the optical path length l 1 is the optical path length of the laser light 114 from the right light emitting end surface 100r to the reflecting surface 116 along the optical axis 134 of the laser light 114
  • the optical path length l 2 is the optical axis of the laser light 114
  • 134 is the optical path length of the laser beam 114 from the reflecting surface 116 to the cover 128 a along the line 134.
  • the laser beam 114 is emitted from the right emission end face 100r of the semiconductor laser 100 so as to spread at a certain angle from the spot diameter R0 in units of micrometers. For this reason, the spot diameter of the laser beam 114 increases while proceeding parallel to the upper surface of the lead frame 104. Then, the laser beam 114 advances the optical path length l 1, when the laser beam 114 reaches the reflecting surface 116, the laser beam 114 is spread to the spot diameter R 1. Therefore, as in the case where the cover 128a is not provided, the laser beam 114 becomes more eye-safe due to the spread of the spot diameter as the distance (optical path length l 1 ) between the right light emitting end surface 100r of the semiconductor laser 100 and the reflecting surface 116 increases. Is done.
  • the laser beam 114 that has reached the reflecting surface 116 is scattered and reflected by the reflecting surface 116. Due to the scattering reflection, the light density inside the spot of the laser beam 114 is averaged, and the laser beam 114 is further made eye-safe.
  • the scattered and reflected laser beam 114 travels straight from the reflecting surface 116 to the cover 128a. Then, the optical path length l 2 proceeds laser beam 114, when the laser beam 114 reaches the cover 128a, the laser beam 114 is spread to the spot diameter R 2. Therefore, as the distance (optical path length l 2 ) between the reflecting surface 116 and the cover 128a increases, the laser beam 114 is further made eye-safe due to the spread of the spot diameter.
  • the laser beam 114 incident on the cover 128a is refracted by the difference in refractive index between the resin forming the cover 128a and the gas (air) filling the recess 120.
  • the resin forming the cover 128 a includes a light scatterer that scatters the laser beam 114.
  • refraction and scattering and the spot diameter of the laser beam 114, while passing through the cover 128a extends from the spot diameter R 2 of the time of incidence to the spot diameter R 3 at exit.
  • the light density inside the spot of the laser beam 114 is further averaged by scattering.
  • the polarization characteristics of the laser beam 114 when emitted from the semiconductor laser 100 are partially maintained by adjusting the type and concentration of the light scatterer contained in the resin, the thickness of the cover 128a, and the like. can do.
  • the polarization characteristic of the eye-safe light emitted from the eye-safe light source 2 can be adjusted.
  • the polarization ratio can be adjusted in the range of 2 to 100.
  • the spot diameter of the virtual light source is a spot diameter R 1 on the reflecting surface 116.
  • the cover 128a is provided, a virtual light source for eye-safe the laser beam 114 becomes the cover 128a, the spot diameter of the virtual light source is a spot diameter R 3 of the cover 128a. Therefore, in the present modification, the spot diameter of the laser beam 114 is increased by the optical path length l 2 as compared with the case where the cover 128a is not provided, the spot diameter of the laser beam 114 is increased by scattering in the cover 128a, and the laser beam by scattering. The averaging of the light density within the spot of the light 114 proceeds in parallel.
  • the light emitted from the eye-safe light source 1 is further sufficiently eye-safe.
  • FIG. 3 is a diagram showing a modification example in which a cover 128b having a lens 132 for collimating the laser beam 114 is provided in the eye-safe light source shown in FIG.
  • the cover 128b is a cover provided so that foreign matter does not enter the recess 120, and is formed of a resin that does not include a light scatterer. Further, since a breathing hole (not shown) is provided in the cover 128b, the gas inside the recess 120 can enter and exit through the breathing hole. Thus, when the gas enters and exits through the breathing hole, the pressure difference between the inside and outside of the recess 120 (the pressure difference between the inside of the recess 120 and the outside of the package 108 and the cover 128b) caused by a sudden temperature change is generated. It can be suppressed. It is possible to prevent the cover from falling off by suppressing the occurrence of the internal / external pressure difference.
  • the cover 128b is integrally formed to include a lens 132 for the laser light 114 emitted from the left light emitting end surface 100l and a lens 132 for the laser light 114 emitted from the right light emitting end surface 100r.
  • One of the lenses 132 is formed so that the laser beam 114 emitted from the left light emitting end surface 100l is converted into parallel light.
  • the other of the lenses 132 is formed so that the laser beam 114 emitted from the right light emitting end surface 100r is collimated.
  • the lens 132 may be an aspheric lens or a spherical lens.
  • the light emitted from the eye-safe light source 1 has a better light distribution characteristic than when the cover 128b is not provided.
  • the eye-safe light source 1 according to the second modification of the first embodiment is suitable for an application that is optically coupled to an optical fiber.
  • the lens 132 may be an external lens that is not integral with the cover 128b. When the lens 132 is an external lens, it is easy to adjust the light distribution characteristics of the light emitted from the eye-safe light source 1.
  • FIG. 4 is a diagram showing a schematic configuration around the semiconductor laser 100 of the eye-safe light source 2 according to Embodiment 2 of the present invention.
  • 4A is a top view of the resin portion 206 seen through without the cover 228, and
  • FIG. 4B is a cross-sectional view taken along the line A2-A2 of FIG. 4 (c) is a cross-sectional view taken along the line B2-B2 of FIG. 4 (a), and
  • FIG. 4 (d) is a perspective view excluding the cover 228 for showing the three-dimensional shape of the resin portion 206.
  • the eye-safe light source 2 includes a semiconductor laser 100 that emits laser light 214, a submount 102 on which the semiconductor laser 100 is placed, a package 208 having a lead frame 104 and a resin portion 206, wires 110, and And a cover 228 having a breathing hole 230.
  • a mark 112 is provided so that the direction of the anode and the cathode can be seen.
  • the opening 124 is open, whereas in the eye-safe light source 2 according to the second embodiment, the opening 224 is covered by a cover 228 having a breathing hole 230. That is.
  • the shape of the recess 120 included in the resin portion 106 is a three-dimensional shape such as a substantially inverted truncated pyramid. That is, the shape of the recess 220 included in the resin portion 206 is a three-dimensional shape in which a substantially inverted square frustum and a substantially semi-cylindrical body are overlapped.
  • the eye-safe light source 2 according to the second embodiment differs from the eye-safe light source 1 according to the first embodiment in that the cover 228 having the breathing hole 230 is provided and in the shape of the concave portion 220 of the resin portion 206.
  • the shape of the recess 220 is a three-dimensional shape in which the substantially inverted quadrangular pyramid and the substantially semi-cylinder are overlapped so that the upper base of the approximately inverted quadrangular pyramid and the cut surface from the substantially semi-cylindrical cylinder are in the same plane.
  • the reflection surface 216 that scatters and reflects the laser beam 214 is a substantially semi-cylindrical curved surface portion, and the exposed portion 122 on the upper surface of the lead frame 104 is exposed from the lower bottom portion of the substantially inverted square frustum. Therefore, as can be seen from FIG. 1B and FIG. 4B, the reflective surface 116 according to the first embodiment is a side surface (plane) facing each other of a substantially inverted quadrangular pyramid, whereas the reflection surface 116 according to the second embodiment.
  • the reflection surface 216 is a curved surface.
  • the reflecting surface 216 is a part of a curved surface that is drawn by a locus of movement of the parabola when the parabola moves in a direction perpendicular to the surface including the parabola.
  • the plane including the parabola is parallel to the optical axis 118 and the direction in which the semiconductor laser 100 emits the laser beam 214, and the symmetry axis of the parabola is parallel to the optical axis 118.
  • the symmetry axis of the parabola may be inclined with respect to the optical axis 118.
  • the reflecting surface 216 facing the right light emitting end surface 100r is a part of a curved surface obtained by translating a parabola whose focal point is the light emission center of the right light emitting end surface 100r.
  • the reflecting surface 216 facing the left light emitting end surface 100l is a part of a curved surface obtained by translating a parabola whose focal point is the light emission center of the left light emitting end surface 100l.
  • the position of the focal point of the parabola that forms the reflecting surface 216 in FIG. 4B coincides with the position of the light emission center of the light emitting end surface (left light emitting end surface 100l or right light emitting end surface 100r) facing the reflecting surface 216.
  • Both of the reflection surfaces 216 facing the end surface 100r may be part of a curved surface in which a parabola whose focal point is an intermediate point between the light emission centers of the right light emission end surface 100r and the left light emission end surface 100l is translated. In this case as well, it is important that the distance from the left and right light emitting end faces 100l, 100r to the reflecting surface 216 is not too close, and that an appropriate distance is taken between them.
  • the intensity per unit area of the laser beam 214 is rapidly increased. Therefore, even if the laser beam 214 is infrared, the laser beam 214 is made of resin. This is because the surface 216 may be thermally damaged. In order to avoid thermal damage, an appropriate distance is required between the left and right light emitting end faces 100l and 100r and the reflecting surface 216.
  • the above simple handling is possible.
  • the left and right light emitting end faces 100l and 100r need to be sufficiently separated from the reflecting surface 216 in order to avoid thermal damage.
  • the position of the light emission center of the left and right light emitting end faces 100l and 100r and the position of the focal point of the parabola that forms the reflecting surface 216 are greatly shifted. Due to the deviation, the reflected laser beam 214 is largely inclined from the optical axis 118.
  • the semiconductor laser 100 is a semiconductor laser having a long cavity length
  • the left and right light emitting end faces 100l and 100r are respectively emitted from the light emission centers in order to bring the reflected left and right laser beams 114 parallel to the optical axis 118.
  • the reflecting surface 216 may be a part of a curved surface made up of other substantially parabolas.
  • the reflecting surface 216 may be a part of a cylindrical surface that can be approximated to a surface in which a parabola is translated.
  • the reflecting surface 216 is a part of a curved surface made of a parabola, the laser beam 214 emitted so as to spread from the left light emitting end surface 100l and the right light emitting end surface 100r can be collimated. For this reason, the eye-safe laser beam 214 emitted from the opening 224 has excellent directivity.
  • the parabola that forms the reflecting surface 216 is focused on the right light emitting end surface 100r and the left side. You may shift from the light emission end surface 100l.
  • the heights of the right light emitting end surface 100r and the left light emitting end surface 100l with respect to the reflective surface 216 are as follows (in other words, the heights of the light emission centers of the left and right light emitting end surfaces 100l and 100r with respect to the parabolic focus forming the reflective surface 216). It can be easily adjusted by adjusting the height of the submount 102.
  • the distance in the direction parallel to the top surface of the lead frame 104 from the reflective surface 216 to the right light emitting end surface 100r and the left light emitting end surface 100l is (in other words, the left and right light emitting end surfaces 100l,
  • the distance of the 100r emission center in the direction parallel to the lead frame 104 can be easily changed by changing the cavity length of the semiconductor laser 100).
  • the height of the submount 102 and the resonator length of the semiconductor laser 100 can be changed only from the focal point of the parabola that forms the reflecting surface 216.
  • the distance up to 100r can be changed.
  • the light distribution characteristic can be easily adjusted. That is, it is possible to easily prepare eye-safe light sources with various light distributions such as a narrow beam or a high light distribution beam according to the purpose.
  • the cover 228 is a cover provided so that foreign matter does not enter the recess 220, and is formed of a resin that does not include a light scatterer.
  • the breathing hole 230 is provided in the cover 228, the gas inside the recess 220 can enter and exit through the breathing hole 230. Therefore, when the gas inside the recess 220 is thermally expanded due to the heat generated by the semiconductor laser 100, the gas inside the recess 220 escapes outside the cover 228. Similarly, when the semiconductor laser 100 does not generate heat and the gas inside the recess 220 is thermally contracted, the gas is replenished into the recess 220 from the outside of the cover 228.
  • Such a breathing hole can contribute to suppression of occurrence of a pressure difference between the inside and outside of the recess 220 in a rapid temperature change that occurs in a temperature profile in a reflow soldering process, for example.
  • the breathing hole 230 is provided in the cover 228, even when the cover 228 is bonded to the package 208, stress due to gas expansion and contraction does not concentrate on the bonding site. For this reason, it is possible to prevent the cover 228 from peeling off the package 208.
  • the breathing hole 230 is installed in the cover 228, but the same effect can be obtained by providing the breathing hole 230 in the package 208.
  • the opening 224 may be covered with a cover without a breathing hole, and the semiconductor laser 100 may be gas-sealed inside the recess 220.
  • gas sealing with an inert gas is necessary to prevent end face destruction.
  • gas sealing is necessary.
  • gas sealing is necessary.
  • a highly airtight structure or material is adopted for the package 208, particularly the resin portion 206 itself, or the outside of the package 208 is surrounded by a highly airtight container. Need to keep.
  • the semiconductor laser 100 is gas-sealed with an inert gas, the vicinity of both end faces of the semiconductor laser 100 that emits the laser light 214 may be thermally and optically damaged as in the first embodiment. There are no materials that generate heat due to light absorption. For this reason, the function of the eye-safe light source 2 is prevented from being deteriorated due to the modification of the substance in the vicinity of both end faces of the semiconductor laser 100. Further, since the semiconductor laser 100 is not sealed with resin and is bonded to the lead frame 104 via the submount 102, the semiconductor laser 100 can be expanded and contracted in accordance with a temperature change.
  • the cover 228 may be formed of a resin containing a light scatterer.
  • a cover 228b formed of a resin including a light scatterer that scatters laser light 214 is provided instead of the cover 228 formed of a resin that does not include a light scatterer. Modification 3 of the second embodiment will be described with reference to FIG.
  • FIG. 5 is a cross-sectional view for explaining eye-safeization in a modification in which the cover 228a for scattering the laser beam 214 is provided in the eye-safe light source 2 shown in FIG.
  • FIG. 5 corresponds to the right part of FIG. 4B and shows the spread of the laser beam 214 and the optical axis 234.
  • the range of the spread of the laser beam 214 shown in FIG. 5 is a range until the intensity of the light density reaches 1 / e of the peak value (e is the base of natural logarithm).
  • the cover 128a is the same as the cover 228 except that the cover 128a is formed of a resin including a light scatterer that scatters the laser light 214.
  • the optical axis 234 is the optical axis of the laser light 214.
  • the spot diameter R 0 is the spot diameter of the laser beam 214 on the right light emitting end face 100r.
  • the spot diameter R 1 is the spot diameter of the laser beam 214 viewed from the direction of the optical axis 118 when the laser beam 214 hits the reflecting surface 216.
  • the spot diameter R 2 is, when the laser beam 214 is incident to the cover 228a, a spot diameter of the laser beam 214.
  • the spot diameter R 3 is after the laser beam 214 passed through the cover 228a, a spot diameter of the laser beam 214.
  • the optical path length l 1 is the optical path length of the laser light 214 from the right light emitting end surface 100r to the reflecting surface 216 along the optical axis 234 of the laser light 214
  • the optical path length l 2 is the optical axis of the laser light 214
  • 234 is the optical path length of the laser beam 214 from the reflecting surface 216 to the cover 228 a along the line 234.
  • the cover 228a formed of a resin including a light scatterer when the cover 228a formed of a resin including a light scatterer is provided, the laser beam 214 is scattered while passing through the cover 228a, and the spot diameter is increased. Eye safe.
  • the polarization characteristics of the laser beam 214 emitted from the semiconductor laser 100 are partially maintained. be able to. Thereby, the polarization characteristic of the eye-safe light emitted from the eye-safe light source 2 can be adjusted. For example, the polarization ratio can be adjusted in the range of 2 to 100.
  • FIG. 6 is a diagram showing a schematic configuration around the semiconductor laser 100 of the eye-safe light source 3 according to Embodiment 3 of the present invention.
  • 6A is a top view seen through the resin portion 306
  • FIG. 6B is a cross-sectional view taken along arrow A3-A3 in FIG. 6A
  • FIG. 6B is a cross-sectional view taken along the line B3-B3 in FIG. 6A
  • FIG. 6D is a perspective view illustrating the three-dimensional shape of the resin portion 306.
  • the eye-safe light source 3 includes a semiconductor laser 100 that emits laser light 314, a submount 102 on which the semiconductor laser 100 is placed, a package 308 having a lead frame 104 and a resin portion 306, and a wire 110. Is provided. A mark 112 is provided so that the direction of the anode and the cathode can be seen.
  • the eye-safe light source 1 according to the first embodiment is different from the eye-safe light source 3 according to the third embodiment in the following one point. That is, in the eye-safe light source 1 according to the first embodiment, the shape of the recess 120 included in the resin portion 106 is a three-dimensional shape such as a substantially inverted quadrangular pyramid.
  • the shape of the concave portion 320 included in 306 is a three-dimensional shape in which a substantially inverted quadrangular frustum and a substantially rotating paraboloid are superimposed.
  • the shape of the recess 320 is a three-dimensional shape in which the substantially inverted quadrangular pyramid and the substantially rotating paraboloid are overlapped so that the upper base of the approximately inverted quadrangular pyramid and the bottom surface of the substantially rotating paraboloid are in the same plane.
  • the reflection surface 316 that scatters and reflects the laser light 314 is a part of the curved surface of the substantially rotating paraboloid, and the exposed portion 122 of the upper surface of the lead frame 104 is exposed from the lower bottom portion of the substantially inverted square frustum. Therefore, as can be seen from FIG. 1B and FIG. 6B, the reflective surface 116 according to the first embodiment is a side surface (plane) of substantially square pyramids facing each other, whereas the reflective surface 116 according to the third embodiment.
  • the surface 316 is a curved surface.
  • the reflecting surface 316 is a part of the rotating paraboloid drawn by the locus of rotation of the parabola when the parabola rotates about the axis of symmetry.
  • the surface including the parabola is shown in FIG. 6B, which is a cross-sectional view taken along the line A3-A3 in FIG. 6A, and the cross-sectional shape of the reflecting surface 316 shown in FIG. Is part of.
  • the plane including the parabola in FIG. 6B is parallel to the optical axis 118 and the direction in which the semiconductor laser 100 emits the laser beam 314, and the symmetry axis of the parabola is parallel to the optical axis 118.
  • the symmetry axis of the parabola may be inclined with respect to the optical axis 118.
  • the reflecting surface 316 facing the right light emitting end surface 100r is a part of a curved surface rotated by a parabola with the light emitting center of the right light emitting end surface 100r as a focus.
  • the reflecting surface 316 facing the left light emitting end surface 100l is a part of a curved surface rotated by a parabola with the light emitting center of the left light emitting end surface 100l as a focus.
  • Both of the reflecting surfaces 316 facing 100r may be part of a curved surface having a parabola rotated about the midpoint of the light emission center between the right light emitting end surface 100r and the left light emitting end surface 100l.
  • the reflecting surface 216 may be a part of a curved surface made of other substantially parabolas.
  • the reflecting surface 216 may be a part of an elliptic paraboloid or a part of a spherical surface.
  • the semiconductor laser 100 is sufficiently small, for example, even if the length of the resonator is longer than 0.5 mm, and more than 1 mm, the above simple handling is possible.
  • the left and right light emitting end faces 100l and 100r need to be sufficiently separated from the reflecting surface 316 in order to avoid thermal damage.
  • the positions of the light emission centers of the left and right light emitting end faces 100l and 100r and the position of the focal point of the parabola that forms the reflecting surface 316 are greatly shifted. Due to the deviation, the reflected laser beam 314 is largely inclined from the optical axis 118.
  • the semiconductor laser 100 is a semiconductor laser having a long cavity length
  • the left and right light emitting end faces 100l and 100r are respectively emitted from the light emission centers in order to bring the reflected left and right laser beams 114 parallel to the optical axis 118. It is desirable to provide a part of the reflecting surface 316 having a parabolic curved surface whose focal points are independently matched.
  • the reflecting surface 316 may be a part of a curved surface made up of other substantially parabolas.
  • the reflecting surface 316 may be a part of an elliptic paraboloid or a part of a spherical surface. Further, it may be a spheroid. Further, the reflecting surface 316 is not limited to a paraboloid of revolution, and may be a spherical surface that can approximate the paraboloid of revolution.
  • the reflecting surface 316 is a paraboloid, the laser beam 314 emitted so as to spread can be converted into parallel light. For this reason, the eye-safe laser beam 314 emitted from the opening 324 has excellent directivity.
  • the light emitted from the eye-safe light source 1 is excellent in directivity and also has an eye-safe property. This is because the area of the light-emitting region until it reaches 1 / e (the base of natural logarithm) with respect to the peak intensity of light observed from 10 cm ahead in the aperture 324 as a virtual light source (appropriate light source). This is because the opening 324 is sufficiently wide. That is, since the intensity of light per unit area is reduced, the eye-safe property can be improved as a result.
  • the focal point of the parabola that forms the reflecting surface 316 is set to the right light emitting end surface 100r and the left side. You may shift from the light emission end surface 100l.
  • the easiest method for shifting the focal point from the left and right light emitting end faces 100l, 100r is to change the height of the submount 102 (the length in the direction of the optical axis 118) and the resonator length of the semiconductor laser 100. There is a way.
  • the axis of symmetry of the parabola is adopted as a rotation axis for rotating the parabola, and the partial shape of the rotation parabola is used as the shape of the reflection surface 316.
  • the shape of the reflective surface 316 is not limited to this partial shape.
  • An axis inclined with respect to the symmetry axis of the parabola may be adopted as the rotation axis, and the partial shape of the surface of the rotating body drawn by the locus of rotation of the parabola at this time may be used as the shape of the reflecting surface 316.
  • the light source is focused on the rotation paraboloid where the symmetry axis and the rotation axis coincide.
  • the spot diameter can be narrowed or widened depending on the shape of the reflecting surface.
  • the shapes of the reflecting surface 316 is a partial shape of a rotating paraboloid in which the axis of symmetry coincides with the rotation axis, the positions of the light emission centers of the left and right light emitting end faces 100l and 100r are shifted from the focus as described above.
  • a similar effect can be expected.
  • the position of the light emitting point is restricted in the height direction (the thickness direction of the package) due to the thickness of the light emitting point package.
  • it is shifted in a direction perpendicular to the symmetry axis it is subject to restrictions due to the resonator length of the semiconductor laser 100.
  • the ratio of narrowing or expanding the spot diameter is limited.
  • the spot is selected by selecting an appropriate axis of rotation. Since the ratio of squeezing or expanding the diameter can be determined, there are fewer restrictions due to the thickness of the package and the resonator length.
  • FIG. 7 is a diagram showing a schematic configuration around the semiconductor laser 400 of the eye-safe light source 4 according to Embodiment 4 of the present invention.
  • 7A is a top view seen through the resin portion 406
  • FIG. 7B is a cross-sectional view taken along arrow A4-A4 in FIG. 7A, and FIG. It is B4-B4 arrow sectional drawing of (a) of FIG.
  • the eye-safe light source 4 includes a semiconductor laser 400 that emits laser light 414, a submount 102 on which the semiconductor laser 400 is placed, a package 408 having a lead frame 104 and a resin portion 406, and a wire 110. Is provided. A mark 112 is provided so that the direction of the anode and the cathode can be seen.
  • the eye-safe light source 1 according to the first embodiment is different from the eye-safe light source 4 according to the fourth embodiment in the following two points.
  • the semiconductor laser 100 emits the laser beam 114 from the light emitting end faces (left light emitting end face 100l and right light emitting end face 100r) on both the left and right sides.
  • the semiconductor laser 100 emits the laser beam 414 only from the light emission end face (right light emission end face 400 r) on the right side.
  • the shape of the recess 120 included in the resin portion 106 is a shape like a substantially square pyramid
  • the resin portion That is, the shape of the concave portion 420 included in 406 is a three-dimensional shape such as a substantially oblique pyramid. That is, the recess 120 according to the first embodiment is plane-symmetric with respect to a plane passing through the center of the semiconductor laser 100 that is perpendicular to the upper surface of the lead frame 104 and the direction in which the laser beam 114 is emitted from the semiconductor laser 100.
  • the recess 420 according to the fourth embodiment is not plane-symmetric with respect to a plane passing through the center of the semiconductor laser 400 that is perpendicular to the upper surface of the lead frame 104 and the direction in which the laser beam 414 is emitted from the semiconductor laser 400.
  • the eye-safe light source 4 according to the fourth embodiment differs from the eye-safe light source 1 according to the first embodiment in that the semiconductor laser 400 that emits the laser beam 414 only on one side is used, and the shape of the concave portion 420 corresponding to this is different. Is different.
  • the recess 420 has a rectangular upper base (opening 424) that opens on the upper surface of the package 408, a rectangular lower base from which the exposed portion 122 of the lead frame 104 is exposed, and a trapezoidal shape extending between the upper base and the lower base.
  • the upper base area is larger than the lower base area.
  • the recess 420 may have other shapes such as a substantially rectangular truncated pyramid, a substantially right truncated cone, and a substantially oblique truncated cone.
  • the reflective surface 416 is one of the four side surfaces of the recess 420 and faces the right light emitting end surface 400r of the semiconductor laser 400 that emits the laser light 414.
  • the reflection surface 416 is plane-symmetric with respect to a plane passing through the center of the semiconductor laser 100, which is perpendicular to the upper surface of the lead frame 104 and parallel to the direction in which the semiconductor laser 100 emits the laser beam 114.
  • the reflective surface 416 is a plane inclined upward with respect to the upper surface of the lead frame 104.
  • the reflecting surface 416 according to the fourth embodiment scatters and reflects the laser light 414 in the direction of the optical axis 118, similarly to the reflecting surface 116 according to the first embodiment.
  • the direction perpendicular to the upper surface of the lead frame 104 is adopted as the optical axis 118.
  • the optical axis 118 shown here is changed.
  • the wire 110 may not cast the shadow of the wire 110 on the virtual light source. For this reason, the wire 110 may be disposed so as to extend in a direction parallel to and opposite to the direction in which the laser beam 414 is emitted from the semiconductor laser 100.
  • the opening 124 may be covered with a cover with a lens as shown in FIG. 8, or the light distribution characteristic may be adjusted with an external lens.
  • the eye-safe light source according to the first to third embodiments of the present invention may be provided with a lens when the eye-safe light source 1 is optically coupled to an optical fiber.
  • FIG. 8 is a diagram showing a modification in which the cover 428b having the lens 432 for collimating the laser beam 414 is provided in the eye-safe light source 4 shown in FIG.
  • the cover 428b is a cover provided so that foreign matter does not enter the concave portion 420, and is formed of a resin that does not include a light scatterer. Further, since a breathing hole (not shown) is provided in the cover 128b, the gas inside the recess 420 can enter and exit through the breathing hole.
  • the cover 428b is integrally formed so as to include a lens 432 for the laser light 414 emitted from the right light emitting end surface 400r.
  • the lens 432 is formed to collimate the laser beam 414 emitted from the right light emitting end surface 400r.
  • the lens 432 may be an aspherical lens or a spherical lens.
  • FIG. 9 is a diagram showing a schematic configuration around the semiconductor laser 100 of the eye-safe light source 5 according to the fifth embodiment of the present invention.
  • 9A is a top view of the resin portion 506 seen through without the cover 528
  • FIG. 9B is a cross-sectional view taken along line A5-A5 in FIG. 9A
  • 9 (c) is a cross-sectional view taken along the line B5-B5 in FIG. 9 (a).
  • the eye-safe light source 5 includes a semiconductor laser 100 that emits laser light 514, a submount 102 on which the semiconductor laser 100 is mounted, a package 508 having a lead frame 104 and a resin portion 506, a wire 110, a breathing device.
  • a cover 528 (light scattering layer) having holes 230 is provided.
  • a mark 112 is provided so that the direction of the anode and the cathode can be seen.
  • the surface of the resin portion 506 is subjected to metal plating. Due to the metal plating, the reflection surface 516 reflects the laser beam 514 without scattering. Note that the surface of the resin portion 506 other than the reflective surface 516 may or may not be subjected to metal plating.
  • the reflective surface 216 remains the surface of the resin portion 206, whereas in the eye-safe light source 5 according to the fifth embodiment, the reflective surface 516 is coated with metal plating. It is that. That is, unlike the second embodiment, the reflecting surface 516 according to the fifth embodiment reflects the laser light 514 without scattering.
  • the cover 228 is formed of a resin that does not include a light scatterer, whereas in the eye-safe light source 5 according to the fifth embodiment, the cover 528 is a light scatterer. It is formed with resin containing. That is, unlike the second embodiment, the cover 528 scatters the transmitted laser beam 514.
  • the laser beam 514 parallel to the upper surface of the lead frame 104 is reflected in a direction parallel to the optical axis 118 without being scattered. Further, the inside of the recess 520 is hollow and air is present, but there is no light scatterer that scatters the laser light 514. Thus, the laser light 514 travels without being scattered until it reaches the cover 528 from both light emitting end faces (the left light emitting end face 100l and the right light emitting end face 100r). Since it is not scattered, the laser beam 514 incident on the cover 528 generally maintains the light distribution characteristics and the polarization characteristics when emitted from the semiconductor laser 100.
  • the reflecting surface 516 is separated from both light emitting end faces (left light emitting end face 100l and right light emitting end face 100r) of the semiconductor laser 100, and the laser light 514 is emitted from both light emitting end faces (left light emitting end face 100l and right light emitting end face 100r) of the semiconductor laser 100. ) To spread out. For this reason, the spot diameter of the laser beam 514 is widened on the reflection surface 516, and the light density of the laser beam 514 is reduced. Therefore, the laser beam 514 reflected by the reflecting surface 516 is not scattered but is made eye-safe to some extent.
  • the metal used for the reflecting surface 516 is preferably gold or an alloy containing gold as a component.
  • gold is a very stable substance in a normal environment and is not subject to corrosion, oxidation, or the like.
  • silver and the like have high initial light reflectivity, but are easily affected by corrosion and oxidation.
  • silver and the like are known to be blackened by sulfurization with respect to sulfur, and a special surface coat is required. For this reason, as a metal used for the surface of the reflective surface 516, gold or an alloy containing gold as a component is desirable.
  • a resin plate 506 is prepared in advance by covering the surface of a reflective structure made by punching from a metal plate with a metal mold.
  • the reflective surface 516 may be formed by covering the surface.
  • electrolytic plating of a metal structure has less problems such as peeling of the reflecting surface, and it is easy to ensure long-term reliability.
  • the reflective surface 516 made of such a metal plate may be integrally formed when the resin portion 506 is formed, or may be attached after the resin portion 506 is formed.
  • a reflective surface 516 may be formed by alumite-treating the surface of a reflective structure formed of aluminum or an aluminum alloy.
  • the reflectivity and corrosion resistance of the alumite-treated plate after the surface mirror treatment is equivalent to that of gold, which is suitable for ensuring long-term reliability.
  • the cover 528 Since the cover 528 is made of a resin containing a light scatterer, the cover 528 scatters the transmitted laser beam 514. Due to the scattering, the spot diameter of the laser beam 514 is widened and the optical density of the laser beam 514 is lowered, so that the laser beam 514 transmitted through the cover 528 is sufficiently made eye-safe.
  • the light distribution characteristics and polarization characteristics of the laser light 514 are disturbed by scattering, but the laser light 514 transmitted through the cover 528 maintains a certain degree of light distribution characteristics and polarization characteristics. This is because the laser beam 514 is already made eye-safe to some extent when it enters the cover 528, and therefore the laser beam 514 can be made sufficiently eye-safe by scattering within a range that does not lose the light distribution characteristics and polarization characteristics. .
  • the concentration of the light scatterer included in the resin forming the cover 528 and the thickness of the cover 528 sufficient eye-safety of the laser light 514 and sufficient light distribution characteristics or polarization characteristics of the laser light 514 are obtained. Both maintenance and maintenance.
  • the use of a submount is indispensable in a structure in which a light emitting point (light emitting end face) is set away from a lead frame and a laser beam is efficiently irradiated to an opposing reflecting surface.
  • infrared semiconductor lasers that use gallium arsenide (GaAs) -based substrates have low thermal conductivity.
  • the lead frame 104 corresponding to the semiconductor laser mounting portion may be formed in a protruding shape.
  • a metal having a small expansion coefficient such as iron or an alloy containing iron as a main raw material so that the expansion and contraction of the metal frame does not adversely affect the reliability of the semiconductor laser.
  • FIG. 10 is a diagram showing a schematic configuration of the optical sensor 6 according to Embodiment 6 of the present invention.
  • the optical sensor (electronic device) 6 controls the eye-safe light source 1 according to the first embodiment, the light receiving unit 632 that receives reflected light from the living body, and the control that controls the eye safe light source 1 and the light receiving unit 632. Part 634.
  • the light receiving unit 632 may be provided in the package 108 similarly to the eye-safe light source 1. In addition, the light receiving unit 632 may be provided separately from the eye-safe light source 1.
  • the control unit 634 may be a semiconductor element provided inside the package 108, that is, a semiconductor element bonded to the lead frame 104 and sealed with the resin part 106. Further, the control unit 634 may be provided separately from the eye-safe light source 1.
  • the eye-safe light emitted from the eye-safe light source 1 is reflected by the living body, and the light receiving unit 632 receives the reflected light reflected by the living body. And the control part 634 calculates the information of the biological body which reflected the eye safe light by comparing the eye safe light radiated
  • FIG. 1 The eye-safe light emitted from the eye-safe light source 1 is reflected by the living body, and the light receiving unit 632 receives the reflected light reflected by the living body.
  • the control part 634 calculates the information of the biological body which reflected the eye safe light by comparing the eye safe light radiated
  • the eye-safe light source 1 is a surface mount type light source suitable for thinning, the optical sensor 6 is thin.
  • the types of biological information that can be collected using the eye-safe light source 1 as a light source are diverse, such as irises, veins such as fingers and palms, fingerprints, and palm prints.
  • the eye-safe light source 1 is effectively used.
  • the present invention is not limited to these portable electronic devices, and can be used as a light source for ordinary stationary electronic devices such as a cash dispenser (ATM), an electronic lock-type safe, an electronic key for a car or a house.
  • the use of the eye-safe light source 1 is not limited to biometric authentication. May be used for a projector, a projector, a light source for a night vision camera, a light source for a motion sensor, a small electronic device, a portable electronic device, and the like. Even a communication device, for example, an electronic device that requires optical coupling with an optical fiber, can effectively use a small, surface-mount type eye-safe light source.
  • the eye-safe light sources (1 to 5) emit a substrate (packages 108, 208, 308, 408, and 508) and laser beams (114, 214, 314, 414, and 514) as light emitting end faces (left light emitting).
  • a semiconductor laser (100, 400) that emits from an end face 100l, a right light emitting end face 100r, and a right light emitting end face 400r), and a wire (110) bonded to the semiconductor laser, wherein the semiconductor laser emits the laser light
  • the substrate is bonded to the substrate so as to be emitted in a direction parallel to the reference surface of the substrate (the upper surface of the lead frame 104) (left and right in FIGS. 1, 3, 4, 6 to 9A).
  • the laser beam is emitted from the light emitting end face in the direction in which the wire extends (the vertical direction in FIGS. 1, 3, 4, 6 to 9 (a)). It is characterized by being perpendicular to the direction.
  • the laser light is emitted in a direction parallel to the reference surface and reflected by the reflecting surface.
  • the optical path length from the light emitting end surface to the reflecting surface can be increased without increasing the thickness of the eye-safe light source.
  • the spot diameter of the laser beam on the reflecting surface can be increased.
  • the light density of the laser light can be lowered, and the laser light can be made eye-safe.
  • the direction in which the wire extends is perpendicular to the direction in which the laser light is emitted as viewed from the direction perpendicular to the reference plane. For this reason, the wire does not block the optical path of the laser light, and the shadow of the wire does not occur in the virtual light source obtained by making the laser light eye-safe. Thereby, the luminous efficiency of an eye safe light source can be improved. In addition, since the shadow of the wire does not occur, the light density and orientation characteristics of the virtual light source can be easily approximated.
  • the laser beam can be made eye-safe without passing through the light scattering region including the light scatterer or through the light scattering region within a range in which the polarization characteristics can be maintained.
  • the light emitted from the eye-safe light source maintains (at least partially) the polarization characteristics of the laser light.
  • this eye safe light source is suitable for the use which utilizes a polarization characteristic, for example, is suitable for the optical sensor for biometrics authentication.
  • the laser beam can be made eye-safe without passing through the light scattering layer including the light scatterer or through the light scattering layer within a range in which the polarization characteristics can be maintained.
  • the light distribution characteristic of the laser light can be adjusted by the reflection surface, and the light emitted from the eye-safe light source maintains (at least partially) the light distribution characteristic adjusted by the reflection surface.
  • emitted from an eye safe light source can be adjusted with the improvement of luminous efficiency.
  • the eye-safe light sources (1 to 3, 5) according to aspect 2 of the present invention are the eye-safe light sources according to aspect 1, and the light emitting end surfaces (the left light emitting end surface 100l and the right light emitting end surface 100r) are the semiconductor laser (100).
  • the reflective surfaces (116, 216, 316, 516) are opposed to the light emitting end surfaces, respectively (on the left and right sides in FIG. 1, 3, 4, 6, 9 (b)). It is preferable that the semiconductor laser is provided on both sides of the semiconductor laser.
  • the amount of laser light emitted from each light emitting end face is smaller than the amount of laser light emitted from the entire semiconductor laser. For this reason, the light density of each laser beam is low and it is easy to make it eye-safe.
  • the eye-safe light sources (1 to 3, 5) according to aspect 3 of the present invention are the eye-safe light sources according to aspect 2, and the light emitting end surfaces (the left light emitting end surface 100l and the right light emitting end surface 100r) are optically symmetrical to each other.
  • the reflecting surfaces (116, 216, 316, 516) are first symmetrical planes (B1-B1 arrow cross section of FIG. 1, B2-B2 arrow cross section of FIG. 4, B3-B3 arrow cross section of FIG. 9 is a plane symmetry, and the first symmetry plane is a plane passing through the center of the semiconductor laser perpendicular to the direction in which the laser beam is emitted from the light emitting end face. It is preferable.
  • the laser beam can be emitted to both sides. Furthermore, since the reflecting surface that reflects the symmetric laser beam is also symmetric, the reflected laser beam is also symmetric. Therefore, the symmetry of the eye-safe light source can be improved.
  • the eye-safe light source (4) according to aspect 4 of the present invention is the eye-safe light source according to aspect 1, and the light emitting end surface (right light emitting end surface 400r) is on one side of the semiconductor laser (400) ((b) in FIG. 7). It is preferable that the reflection surface (416) is provided on the one side of the semiconductor laser so as to face the light emitting end surface.
  • the eye-safe light sources (1 to 5) according to the fifth aspect of the present invention are eye-safe light sources according to any one of the first to fourth aspects, and the reflective surfaces (116, 216, 316, 416, 516) 2 symmetry planes (A1-A1 arrow cross section in FIG. 1, A2-A2 arrow cross section in FIG. 4, A3-A3 arrow cross section in FIG. 6, A4-A4 arrow cross section in FIG. 7, A5-A5 in FIG.
  • the second symmetric plane is symmetrical with respect to the light emitting end face (left light emitting end face 100l, right light emitting end face 100r, right light emitting end face 400r), and the laser light (114, 214, 314, 414).
  • 514) is preferably a plane that passes through the light emission center of the light emitting end face and is parallel to the emission direction and perpendicular to the reference plane (the upper surface of the lead frame 104).
  • the reflection surface that reflects the laser beam is symmetric when viewed from the laser beam. For this reason, the symmetry of the eye-safe light source can be improved.
  • the eye-safe light sources (1 to 5) according to aspect 6 of the present invention are eye-safe light sources according to any one of the aspects 1 to 5, and the substrate (114, 214, 314, 414, 514) is made of metal.
  • the substrate includes a metal lead frame. Since the metal lead frame is excellent in mechanical strength, the substrate is reinforced by the metal lead frame. Thereby, the substrate can be thinned while maintaining the required strength.
  • the semiconductor laser is bonded to the metal lead frame. Since the metal lead frame is excellent in thermal conductivity and heat dissipation, heat generated by light emission of the semiconductor laser is easily radiated. Therefore, this light emitting device is excellent in heat dissipation.
  • the metal lead frame is exposed as much as possible from the resin that packages the metal lead frame for heat dissipation.
  • a reflective surface and a semiconductor laser may be provided on one side of a metal lead frame, and the other side may be exposed to the outside.
  • the eye-safe light source (1 to 5) according to aspect 7 of the present invention is the eye-safe light source according to any one of aspects 1 to 6, and the semiconductor laser (100, 400) is provided via the submount, It is preferable to be bonded to the substrate.
  • the semiconductor laser is bonded to the substrate via the submount. For this reason, even if the semiconductor laser has a high output, heat is efficiently dissipated by the submount, and the stress generated by the difference in thermal expansion coefficient is relieved. Further, by adjusting the height of the submount (distance from the substrate to the semiconductor laser), the position of the light emitting end surface with respect to the reflecting surface can be adjusted.
  • the light emitting end surfaces protrude from the submount (102).
  • the semiconductor laser (100, 400) is more preferably bonded to the substrate through the submount.
  • the light emitting end face of the semiconductor substrate protrudes from the submount.
  • the submount does not block the optical path of the laser light emitted so as to spread from the light emitting end face. Since it is not blocked, the shadow of the submount does not occur in the virtual light source in which the laser light is made eye-safe. Thereby, the luminous efficiency of an eye safe light source can be improved.
  • the shadow of the submount does not occur, the light density and orientation characteristics of the virtual light source can be easily made ideal.
  • the eye-safe light sources (1 to 5) according to Aspect 8 of the present invention are the eye-safe light sources according to any one of Aspects 1 to 7, and the light emitting end surfaces (left light emitting end surface 100l, right light emitting end surface 100r, right light emitting end surface). 400r) and the reflection surface (116, 216, 316, 416, 516) facing the light emitting end surface, the light scatterer that scatters the laser light (114, 214, 314, 414, 514) is Preferably it is not present.
  • the laser beam is not scattered until it is emitted from the semiconductor laser and reflected by the reflecting surface. Therefore, the reflecting surface reflects the laser light that retains the alignment characteristics when emitted. For this reason, the alignment characteristics of the laser beam can be adjusted by the reflecting surface.
  • laser light can be adjusted to parallel light.
  • a light beam having such a light intensity distribution that the light intensity is substantially constant within a predetermined range and the light intensity is substantially 0 outside the predetermined range so that the laser light is suitable for wireless optical communication, optical sensing, and the like. Can be arranged.
  • the light distribution characteristic can be adjusted by the reflecting surface, it is not necessary to provide a lens on the optical path in order to adjust the alignment characteristic of the laser beam that has been made eye-safe.
  • the laser light is not multiple scattered between the light emitting end face and the reflecting face. For this reason, light absorption due to multiple scattering does not occur between the light emitting end surface and the reflecting surface. Thereby, the efficiency (light emission efficiency) of taking out light with respect to the power consumption of an eye safe light source can be improved.
  • the eye-safe light sources (1 to 4) according to Aspect 9 of the present invention are the eye-safe light sources according to any one of the Aspects 1 to 8, and the reflecting surfaces (116, 216, 316, 416) are the laser beams. It is preferably formed of a resin (resin portion 106, 206, 306, 406) containing a light scatterer that scatters (114, 214, 314, 414).
  • the reflecting surface is a resin surface including a light scatterer. For this reason, since the laser light is scattered and reflected by the reflecting surface, the laser light is further made eye-safe.
  • the reflecting surface is a resin surface. For this reason, surface processing such as metal plating is unnecessary. Thereby, the manufacturing process number of an eye safe light source can be reduced and manufacturing cost can be suppressed.
  • the eye-safe light source according to the above aspect 6 by using a resin containing a light scatterer that scatters laser light as the resin that covers the metal lead frame, it is possible to form the reflective surface together with the formation of the substrate. it can. Thereby, the number of manufacturing processes and raw materials of the eye-safe light source can be reduced, and the manufacturing cost of the eye-safe light source can be suppressed.
  • the eye-safe light source (5) according to aspect 10 of the present invention is the eye-safe light source according to any one of the aspects 1 to 8, and the reflective surface is preferably formed of metal.
  • the reflecting surface is a metal surface, for example, a surface obtained by metal plating a resin. For this reason, since the reflecting surface reflects the laser light without scattering, the reflecting surface can efficiently adjust the light distribution characteristics of the laser light.
  • the eye-safe light source (5) according to the aspect 11 of the present invention is the eye-safe light source according to any one of the aspects 1 to 10, and the laser light (514) reflected by the reflective surface (516) It is preferable to pass through a light scattering layer (cover 528) including a light scatterer that scatters laser light.
  • the laser light is transmitted while being scattered through the light scattering layer including the light scatterer. For this reason, the laser beam is further made eye-safe.
  • the eye-safe light source (2-3, 5) according to aspect 12 of the present invention is the eye-safe light source according to any one of aspects 1 to 11, and the reflecting surface (216, 316, 516) is made of a parabola. It is preferable to include a part of a curved surface (a surface on which a parabola is translated, a rotating paraboloid, etc.).
  • the reflecting surface includes a part of a curved surface made of a parabola. For this reason, the light distribution characteristic of the laser beam emitted so as to spread from the light emitting end face can be adjusted, and the spread angle can be controlled. For example, the laser beam can be collimated.
  • the eye-safe light source (2-3, 5) according to aspect 13 of the present invention is the eye-safe light source according to aspect 12, wherein the curved surface has the axis of symmetry of the parabola as a rotation axis or the axis of symmetry of the parabola. It is preferable that the surface of the rotating body is drawn by a locus of rotation of the parabola when the parabola rotates with the axis inclined as a rotation axis.
  • the symmetric axis or an arbitrary axis inclined with respect to the symmetric axis can be appropriately selected as the rotation axis.
  • the light distribution characteristic of the laser beam can be adjusted, and the spread angle can be controlled.
  • the spot diameter of the laser beam can be made constant, narrowed, or widened by selecting the rotation axis.
  • the eye-safe light source (2-3, 5) according to Aspect 14 of the present invention is the eye-safe light source according to Aspect 12 or 13, and the parabola in the direction perpendicular to the reference plane (the upper surface of the lead frame 104). It is preferable that the position of the focal point coincides with the position of the light emitting end face (left light emitting end face 100l and right light emitting end face 100r).
  • the light emitting end face of the semiconductor laser coincides with the focal position of the reflecting surface in the direction perpendicular to the reference plane. For this reason, when the symmetry axis and the rotation axis coincide with each other, the reflected laser light can be converted into parallel light, and the half-value angle of the orientation characteristic of the reflected laser light can be narrowed. Thereby, the light emitted from the eye-safe light source maintains a narrow spot and can reach far.
  • the spot diameter of the laser beam can be reduced or expanded without changing the thickness of the eye-safe light source and the resonator length of the semiconductor laser.
  • the eye-safe light source according to aspect 15 of the present invention is the eye-safe light source according to aspect 12 described above, and the position of the focal point of the parabola in the direction perpendicular to the reference surface (the upper surface of the lead frame 104) is the light emitting end surface. It is preferable that the position is different.
  • the light emitting end face of the semiconductor laser is displaced from the focal position of the reflecting surface in the direction perpendicular to the reference plane. For this reason, the half-value angle of the orientation characteristic of the reflected laser beam can be expanded to a predetermined angle. Thereby, since the diameter of the virtual light source in which the laser light is made eye-safe is widened, the eye-safe light source is further made eye-safe.
  • the eye-safe light source (1 to 5) according to aspect 16 of the present invention is the eye-safe light source according to any one of the aspects 1 to 15, and the semiconductor laser (100, 400) is not resin-sealed. Is preferred.
  • the light emitting end faces are preferably in contact with gas (air) or vacuum.
  • the semiconductor laser is not sealed with resin. For this reason, even if the semiconductor laser generates heat due to light emission, no stress is generated due to the difference in thermal expansion coefficient between the semiconductor laser and the sealing resin. Therefore, it is possible to avoid the occurrence of defects due to the stress applied to the semiconductor laser or other portions.
  • the eye-safe light sources (1 to 5) according to Aspect 17 of the present invention are the eye-safe light sources according to Aspect 16, and further include covers (228, 528) that cover the substrate (114, 214, 314, 414, 514).
  • the light emitting end faces (the left light emitting end face 100l, the right light emitting end face 100r, and the right light emitting end face 400r) are in contact with gas (air), and the cover (228, 528) or the substrate (114, 214, 314, 414, 514) preferably includes a breathing hole (230) through which the gas can enter and exit the internal space and the external space.
  • the cover (228, 528) is configured to house the semiconductor laser (100, 400) in the internal space (recesses 120, 220, 320, 420, 520) between the substrate and the cover. It is more preferable to cover (114, 214, 314, 414, 514).
  • the gas covering the semiconductor laser can enter and exit the inside and outside of the eye-safe light source. That is, the semiconductor laser is not gas-sealed. For this reason, even if the gas covering the semiconductor laser expands due to the heat generated by the semiconductor laser or due to a rapid temperature change caused by an external factor such as a reflow soldering process, neither expansion nor contraction occurs. Therefore, it is possible to avoid the occurrence of defects caused by the expansion pressure and the contraction pressure applied to the semiconductor laser or other portions.
  • the eye-safe light sources (1 to 5) according to aspect 18 of the present invention are eye-safe light sources according to aspect 16, and the semiconductor laser is preferably gas-sealed with an inert gas.
  • the semiconductor laser is sealed with an inert gas. For this reason, since the semiconductor laser is protected from the active gas, deterioration such as destruction of the light emitting end face is less likely to occur. Therefore, a semiconductor laser that requires gas sealing with an inert gas, such as a blue semiconductor laser, can be used.
  • the semiconductor laser is gas-sealed.
  • the eye-safe light source 1 can be used under adverse conditions such as an environment where condensation occurs and an environment where there is a lot of dust. Further, the eye-safe light source 1 can be used for applications that require high reliability such as in-vehicle applications.
  • the eye-safe light sources (1 to 5) according to Aspect 19 of the present invention are the eye-safe light sources according to any one of the Aspects 1 to 18, and the laser light (114, 214, 314, 414, 514) is 700 nm. Longer wavelength is preferable.
  • the wavelength of the laser light is longer than 700 nm and is in the infrared region.
  • the longer the wavelength the deeper the penetration depth. Therefore, an eye-safe light source suitable for biometric authentication can be realized.
  • absorption in the veins clearly occurs in the wavelength region longer than 700 nm or in the infrared region. Thanks to this, when observing while irradiating light in this region, a clear contrast image can be obtained between the vein and other portions.
  • the eye-safe light source (1 to 5) according to aspect 20 of the present invention is the eye-safe light source according to any one of the aspects 1 to 19, and is preferably a surface-mount type eye-safe light source.
  • the eye-safe light source since the light distribution characteristic of the laser light is adjusted by the reflecting surface, the eye-safe light source does not require a lens for adjusting the light distribution characteristic. For this reason, an eye safe light source can be reduced in thickness and is suitable for a surface mount type.
  • the eye-safe light sources (1 to 5) according to the aspect 21 of the present invention are the eye-safe light sources according to any one of the aspects 1 to 20, and are optically parallel to the reference surface (the upper surface of the lead frame 104). It is preferable that an opening (124, 224, 324, 424, or a cover 228, 528 covering the opening 224) is provided, and the laser light (114, 214, 314, 414, 514) is emitted from the opening. .
  • An electronic apparatus includes the eye-safe light source according to any one of aspects 1 to 21 described above.
  • an electronic device provided with the eye safe light source which concerns on this invention is realizable.
  • the electronic device (optical sensor 6) according to aspect 23 of the present invention is the electronic device according to aspect 22 described above, and is preferably an electronic device for biometric authentication.
  • an electronic device for biometric authentication provided with the eye-safe light source according to the present invention can be realized.
  • the electronic apparatus (optical sensor 6) according to aspect 24 of the present invention is the electronic apparatus according to aspect 22 described above, and is preferably a small projector.
  • the electronic apparatus (optical sensor 6) according to aspect 25 of the present invention is the electronic apparatus according to aspect 22 described above, and is preferably a small projector.
  • a small projector including the eye-safe light source according to the present invention can be realized.
  • the electronic device (optical sensor 6) according to aspect 26 of the present invention is the electronic device according to aspect 22 described above, and is preferably coupled to an optical fiber.
  • each of Embodiments 1 to 3 and 5 discloses a structure that is symmetric in the left-right direction.
  • the intention to use asymmetrical left-right symmetry is excluded. It is not a thing.
  • the optical axis after the laser light is reflected by the reflecting surface is not necessarily in the direction perpendicular to the lead frame. It is possible to easily tilt the optical axis in a desired direction by changing the tilt angle between the left and right reflecting surfaces, or by tilting the axis of symmetry of the paraboloid with respect to the perpendicular to the lead frame. It is naturally included in the technical scope of the invention.
  • the present invention can be used for a small projector, a light source for a night vision camera, a light source for a motion sensor, a small projector, and an electronic device for biometric authentication, in particular, an electronic device for biometric authentication that utilizes polarization characteristics. it can. Further, it can be used as a light source for communication equipment, for example, electronic equipment that requires optical coupling with an optical fiber.
  • the present invention is also suitable for surface mounting.
  • Optical sensor (electronic equipment) 100, 400 Semiconductor laser 100l Left emission end face (light emission end face) 100r, 400r Right light emitting end face (light emitting end face) 102 Submount 104 Lead frame (metal lead frame) 104a Anode part 104c Cathode part 106, 206, 306, 406, 506 Resin part (resin) 108, 208, 308, 408, 508 Package (substrate) 110 Wire 114, 214, 224, 314, 414, 514 Laser beam 116, 216, 316, 416, 516 Reflecting surface 118 Optical axis 120, 220, 320, 420, 520 Recessed portion 122 Exposed portion 124, 224, 324, 424 Opening 128a, 128b, 228, 228a, 428b, 528 cover (light scattering layer) 132, 432 Lens 134, 234 Optical axis 230 Breviations, 106, 400, 400 Semi

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Lasers (AREA)

Abstract

アイセーフ光源において、配向性を整えながら発光効率を高める。アイセーフ光源(1)は、パッケージ(108)と、レーザ光(114)を左発光端面(100l)と右発光端面(100r)とから出射する半導体レーザ(100)と、半導体レーザ(100)に接合されるワイヤ(110)とを備える。半導体レーザ(100)は、レーザ光(114)をパッケージ(108)のリードフレーム(104)の上面に対して平行に出射するように、パッケージ(108)に接合される。パッケージ(108)は、左発光端面(100l)と右発光端面(100r)とに対向し、レーザ光(114)を反射する反射面(116)を備える。上面視において、ワイヤ(110)が伸びる方向は、レーザ光(114)が出射される方向に対して垂直である。

Description

アイセーフ光源
 本発明は、アイセーフ化されたアイセーフ光源、およびそれを備える電子機器に関する。
 近年、IrDA(Infrared Data Association)等に代表される無線光通信モジュール、および光学センサモジュール等が、携帯電話やノートパソコン等の電子機器に広く実装されている。例えば、特許文献1は、携帯電話に実装される光学近接センサ(反射型光結合装置)について開示している。
 このような携帯型の電子機器において、電力源が電池であるため、実装されているモジュールの消費電力を低減することが強く望まれている。また、照明を利用した無線光通信設備においても、エネルギー効率の観点から、消費電力の低減が望まれている。そして、無線光通信モジュール、および光学センサモジュール等においては、主に発光する光源が電力を消費するため、光源の消費電力の低減が望まれている。
 一方、無線光通信用および光学センサシング用等の光源は、人間の眼に対する安全(アイセーフ、eye-safe)性が確保されなければならない。また、無線光通信および光学センシング等に用いるためには、配光性を整えられている必要がある。
 例えば、特許文献2~4は、半導体レーザが出射したレーザ光をアイセーフ化したアイセーフ光源を開示している。特許文献2~4に開示のアイセーフ光源においては、レーザ光が光散乱層を透過することにより、レーザ光のスポット径が広がって、レーザ光がアイセーフ化されている。また、そのようなレーザ光がアイセーフ化したアイセーフ光源からの光を無線光通信に適した光強度分布に整え、配光特性を整えるレンズの形状が、特許文献5に開示されている。
日本国公開特許公報「特開第2011-96724号公報(2011年05月12日公開)」 日本国特許公報「特許第4014425号公報(2007年11月28日発行)」 日本国特許公報「特許第5046538号公報(2012年10月10日発行)」 日本国公開特許公報「特開第2007-266484号公報(2007年10月11日公開)」 日本国公開特許公報「特開第2005-142447号公報(2005年06月02日公開)」
 しかしながら、特許文献2~4のような従来技術においては、光散乱層を透過する間に、多重光散乱が起きる。多重光散乱により、光吸収が生じるため、消費電力に対して光を取り出す効率(発光効率)が低下するという問題がある。また、多重散乱によりレーザ光の配向特性および偏光特性が失われる。
 さらに、レーザ光を多重散乱する光散乱層を、半導体レーザに接続されるワイヤが通るため、レーザ光をアイセーフ化した仮想光源にワイヤの影が生じ、発光効率が低下するという問題がある。また、ワイヤの影により、仮想光源の光密度が不均一になり、理想的な光強度分布から外れる。
 また、半導体レーザをサブマウントなしで基板に接合すると、半導体レーザから広がるように出射されるレーザ光が基板に当たるため、レーザ光が広がることができず、アイセーフ化性能が低下する。また、サブマウントを用いても、半導体レーザをサブマウントの内側に接合していると、仮想光源にサブマウントの影が生じ、発光効率が低下する。
 上述のように、従来技術のアイセーフ光源においては、アイセーフ化により配向特性が失われるという問題と、発光効率が低いという問題とがある。
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、アイセーフ光源において、配向特性を整えながら、発光効率を向上させることにある。
 上記の課題を解決するために、本発明の一態様に係るアイセーフ光源は、基板と、レーザ光を発光端面から出射する半導体レーザと、前記半導体レーザに接合されるワイヤとを備え、前記半導体レーザは、前記レーザ光を前記基板の基準面に対して平行な方向に出射するように、前記基板に接合され、前記基板は、前記発光端面に対向し、前記レーザ光を反射する反射面を備え、前記の基準面に垂直な方向から見て、前記ワイヤが伸びる方向は、前記発光端面から前記レーザ光が出射される方向に対して垂直であることを特徴とする。
 本発明の一態様によれば、アイセーフ光源において、配向特性を整えながら、発光効率を向上させることができる。
本発明の実施形態1に係るアイセーフ光源の半導体レーザ周辺の概略構成を示す図である。図1の(a)は、樹脂部を透視した上面図であり、図1の(b)は、図1の(a)のA1-A1矢視断面図であり、図1の(c)は図1の(a)のB1-B1矢視断面図であり、図1の(d)は樹脂部を透視していない下面図である。 図1に示したアイセーフ光源において、レーザ光を散乱するカバーを設けた変形例におけるアイセーフ化を説明するための断面図である。図2は、図1の(b)の右側部分に対応し、レーザ光の広がりと光軸とを示している。 図1に示したアイセーフ光源において、レーザ光を平行光化するレンズを有するカバーを設けた変形例を示す図である。 本発明の実施形態2に係るアイセーフ光源の半導体レーザ周辺の概略構成を示す図である。図4の(a)は、カバーを除いて樹脂部を透視した上面図であり、図4の(b)は、図4の(a)のA2-A2矢視断面図であり、図4の(c)は図6の(a)のB2-B2矢視断面図であり、図4の(d)は樹脂部の立体形状を示すためのカバーを除いた斜視図である。 図4に示したアイセーフ光源において、レーザ光を散乱するカバー228aを設けた変形例におけるアイセーフ化を説明するための断面図である。図5は、図4の(b)の右側部分に対応し、レーザ光の広がりと光軸とを示している。 本発明の実施形態3に係るアイセーフ光源の半導体レーザ周辺の概略構成を示す図である。図6の(a)は、樹脂部を透視した上面図であり、図6の(b)は、図6(a)のA3-A3矢視断面図であり、図6の(c)は図6の(a)のB3-B3矢視断面図であり、図6の(d)は樹脂部の立体形状を示すための斜視図である。 本発明の実施形態4に係るアイセーフ光源の半導体レーザ周辺の概略構成を示す図である。図7の(a)は、樹脂部を透視した上面図であり、図7の(b)は、図7(a)のA4-A4矢視断面図であり、図7の(c)は図7の(a)のB4-B4矢視断面図である。 は、図7に示したアイセーフ光源4において、レーザ光を平行光化するレンズを有するカバーを設けた変形例を示す図である。 本発明の実施形態5に係るアイセーフ光源の半導体レーザ周辺の概略構成を示す図である。図9の(a)は、カバーを除いて樹脂部を透視した上面図であり、図9の(b)は、図9(a)のA5-A5矢視断面図であり、図9の(c)は図9の(a)のB5-B5矢視断面図である。 本発明の実施形態6に係る光学センサの概略構成を示す図である。
 〔実施形態1〕
 以下、本発明の実施形態1について、図1に基づき、詳細に説明する。
 図1は、本発明の実施形態1に係るアイセーフ光源1の半導体レーザ100周辺の概略構成を示す図である。図1の(a)は、樹脂部106を透視した上面図であり、図1の(b)は、図1の(a)のA1-A1矢視断面図であり、図1の(c)は図1の(a)のB1-B1矢視断面図であり、図1の(d)は樹脂部106を透視していない下面図である。以下、アイセーフ光源1が発光する向きを上として説明するが、アイセーフ光源1の製造時および使用時などの向きを限定するものではない。
 図1に示すように、アイセーフ光源1は、レーザ光114を左右両側の左発光端面100lと右発光端面100rとから出射する半導体レーザ100、半導体レーザ100を載置するサブマウント102、金属製リードフレーム(以下、省略してリードフレームと称する)104と樹脂部106とを有するパッケージ(基板)108、およびワイヤ110を備え、表面実装型である。また、アノードおよびカソードの方向が分かるように、印112が設けられている。
 また、光軸118は、アイセーフ光源1から、アイセーフ化された光が出射される方向を示し、リードフレーム104の上面(基準面)およびパッケージ108の上面に垂直である。
 (パッケージ)
 パッケージ108は、リードフレーム104の周囲を部分的に樹脂部106により覆った(パッケージした)部材である。樹脂部106には、開口(開口部)124を有する凹部120(内部空間)が形成されており、凹部120からリードフレーム104の上面の一部(露出部122)が露出されている。また、開口124は、パッケージ108の上面に開いている。また、パッケージ108は、凹部120内部に半導体レーザ100を収納する。
 リードフレーム104は、銅系合金などの金属の薄板を打ち抜き、メッキを施したものであり、熱伝導性、放熱性、機械的強度、および電気伝導性に優れている。リードフレーム104の上面において、露出部122は、半導体レーザ100と電気的および熱的に接続されるために、図1の(a)~(c)に示すように、樹脂部106に覆われずに凹部120内へ露出されている。リードフレーム104の下面の大部分は、放熱するために、図1の(b)~(d)に示すように、樹脂部106から下側へ露出されている。また、リードフレーム104は、図1に示されていないリード端子を経て、外部に電気的に接続されている。あるいは、リードフレーム104は、樹脂部106から露出しているリードフレーム104の下面を経て、外部に電気的に接続されてもよい。
 リードフレーム104は、半導体レーザ100のカソードに接続されるカソード部104cと、半導体レーザ100のアノードに接続されるアノード部104aと、を含む。カソード部104cとアノード部104aとは、樹脂部106により接合されており、かつ、樹脂部106により絶縁されている。また、カソード部104cの露出部122上に半導体レーザ100が載置されたサブマウント102が接合されている。なお、カソード部104cとアノード部104aとの大小および半導体レーザ100に対する配置は逆であってもよい。
 樹脂部106を形成する樹脂は、レーザ光114を散乱する光散乱体を含む白色の熱可塑性樹脂であり、LED(Light Emitting diode)光源によく用いられる樹脂である。樹脂部106は、例えば、ポリシクロヘキシレンジメチレンテレフタラート(PCT)樹脂または、ポリフタルアミド(PPA)樹脂により形成されてもよい。なお、反射率を向上させるために白色の樹脂を用いたが、レーザ光114の波長およびアイセーフ光源1の用途に応じて、赤色などの別色の樹脂を用いてもよい。また、熱可塑性樹脂を用いたが、パッケージ108の製造方法に応じて、熱硬化性や光硬化性などの別の性質の樹脂を用いてもよい。
 図1には示されていないが、半導体レーザ100の発光を制御するための制御素子が、リードフレーム104に接合され、樹脂部106により樹脂封止されてよい。また、その他の半導体素子も、パッケージ108内部に樹脂封止されていてよい。
 印112は、パッケージ108の上面において、樹脂部106に直角二等辺三角形の窪みとして形成されている。これにより、印112を樹脂部106の成形と同時に形成できるため、印112の付け間違いをなくすことができる。なお、印112は設けなくてもよい。
 金属製のリードフレーム104は、熱伝導性および放熱性に優れている。このため、リードフレーム104の露出部122に、半導体レーザ100を載置するサブマウント102を接合することにより、半導体レーザ100の発熱を速やかに放熱することができる。したがって、アイセーフ光源1は放熱性に優れている。
 金属製のリードフレーム104が樹脂部106を補強するため、金属製のリードフレームを含まないパッケージに比べて、金属製のリードフレーム104を含むパッケージ108は機械的強度に優れている。このため、パッケージ108を薄くしても、アイセーフ光源1に要求される機械的強度を達成でき、アイセーフ光源1を薄型化できる。
 (凹部)
 凹部120は、略逆四角錐台の形状である。凹部120は、パッケージ108の上面に開く長方形状の上底(開口124)と、リードフレーム104の露出部122が露出する長方形状の下底と、上底と下底との間に伸びる台形状の4つの側面と、により形作られており、上底の面積が下底の面積より大きい。なお、凹部120は、略逆円錐台などの他の形状であってもよい。
 このように、凹部120が略逆四角錐台や略逆円錐台等の単純な形状である場合、凹部120を簡単に形成することができる。このため、凹部120を備えるパッケージ108、すなわちパッケージ108を含むアイセーフ光源1の製造費用を低減することができる。
 凹部120の内部は空洞であり、凹部120の開口124は閉塞されずに開放されている。したがって、半導体レーザ100の両発光端面(左発光端面100lと右発光端面100r)の近傍には、特に何もなく、両発光端面の近傍は真空であるか、空気などの気体が存在する。
 このため、半導体レーザ100の両発光端面(左発光端面100lと右発光端面100r)の近傍には、レーザ光114を吸収して発熱する光散乱体のような物質は存在しない。このように発熱が生じないため、半導体レーザ100の両発光端面の近傍の物質が熱的に損傷を受けることがない。したがって、両発光端面(左発光端面100lと右発光端面100r)の近傍の物質が変性することにより、アイセーフ光源1の機能の低下することがない。すなわち、連続使用および長時間使用による、アイセーフ光源1のアイセーフ性および発光効率の低下を防止することができる。これにより、アイセーフ光源1の耐用寿命が延びる。また、アイセーフ光源1においては、凹部120内部に熱的に損傷するような物質も、光学的に損傷するような物質も存在しないため、半導体レーザ100の両発光端面の近傍の物質が熱的光学的に損傷を受けることはない。
 なお、半導体レーザ100の両発光端面(左発光端面100lと右発光端面100r)以外の部分は、樹脂等で覆われてもよい。また、半導体レーザ100の両発光端面も、光散乱体を含まない透明樹脂のような、レーザ光114を吸収して発熱することがない物質であれば、覆われてもよい。
 これに対し、半導体レーザを、光散乱体を含む封止樹脂で封止する従来技術においては、封止樹脂に含まれる光散乱体がレーザ光を吸収して、発熱する。このため、特に光密度の高くなってしまう発光端面近傍においては、光散乱体および封止樹脂が変性するという問題がある。樹脂でなく、光散乱体を含む液体で封止する従来技術においても同様である。
 また、凹部120の内部は空洞であって、凹部120の内部にある半導体レーザ100は、樹脂封止も気体封止もされずに露出されている。さらに、半導体レーザ100はサブマウント102を介してリードフレーム104に接合されているため、半導体レーザ100は温度変化に応じた伸縮が可能である。このように、半導体レーザ100が伸縮可能であることは、機械的負荷の観点から、好ましい。
 半導体レーザ100は、発光すると発熱する。このため、半導体レーザ100が樹脂封止されている場合、半導体レーザ100と封止樹脂との熱膨張係数の差により、応力が発生して半導体レーザ100および封止樹脂等に機械的負荷がかかる。このような機械的負荷がもたらす結果は明確にされていないが、何らかの不良が発生することが懸念される。したがって、応力が発生しないように、半導体レーザ100を樹脂封止しないことは好ましい。また、半導体レーザ100が気体封止されている場合も、半導体レーザ100の発熱により封止気体が膨張して、パッケージ108に対して応力が発生し、特に樹脂部106に付加が加わるため、半導体レーザ100を気体封止しないことは好ましい。
 (サブマウントと半導体レーザ)
 サブマウント102は、図1の(a)に示すように、パッケージ108の凹部120の下底の中心に接合されており、リードフレーム104のカソード部104cの露出部122に接合されている。サブマウント102は、半導体レーザ100のアノードと電気的に接続され、ワイヤ110を経てリードフレーム104のアノード部104aに電気的に接続されている。また、サブマウント102は、半導体レーザ100と熱的に接続され、リードフレーム104のカソード部104cに熱的に接続されている。
 半導体レーザ100は、700nmよりも長波長のレーザ光を出射する赤外線半導体レーザである。また、半導体レーザ100は、図1の(b)に示すように左発光端面100lと右発光端面100rとから、レーザ光114を対称に出射する。したがって、半導体レーザ100に形成されている共振器の左右両端面および端面近傍は、光学的に対称である。例えば、半導体レーザ100の左発光端面100lと右発光端面100rとに、同等の光学端面コートが施されていてもよく、同等の光学窓構造が形成されていてもよい。あるいは、光学的端面コートも光学窓構造もなく、半導体レーザ100の左発光端面100lと右発光端面100rとは露出されていてもよい。
 半導体レーザ100は、図1の(a)~(b)に示すように、左発光端面100lと右発光端面100rとがサブマウント102からそれぞれ突出するように、サブマウント102に載置されている。突出しているため、レーザ光114はサブマウント102に遮られることなく、樹脂部106に向かって出射される。
 半導体レーザ100は、リードフレーム104の上面に平行にレーザ光114を出射するように、サブマウント102を介してリードフレーム104に接合されている。すなわち、半導体レーザ100の共振器がリードフレーム104の上面に平行になるように、半導体レーザ100の活性層がリードフレーム104の上面に平行になるように、半導体レーザ100はリードフレーム104に対して平らに載置されている。
 赤外線と可視光と紫外線とのうち、赤外線は光子あたりのエネルギーが最も低い。このため、樹脂部106が青色LEDおよび白色LEDを樹脂パッケージするために通常用いられる樹脂(PCT樹脂またはPPA樹脂など)により形成されている場合、半導体レーザ100が赤外線レーザであるので、樹脂部106は半導体レーザ106から出射されるレーザ光114に対し十分な耐久性と長期にわたる信頼性とを備える。なお、これに限らず、半導体レーザ100に、可視光領域の波長のレーザ光を出射する可視光半導体レーザを用いてもよく、紫外線領域の波長のレーザ光を出射する紫外線半導体レーザを用いてもよい。また、可視光領域のレーザ光に対しては、耐光性に優れた白色熱硬化性エポキシ樹脂であるEMC(Epoxy Molding Compound)を樹脂部106の樹脂として用いることが好ましい。
 左発光端面100lと右発光端面100rとがサブマウント102から突出しているため、半導体レーザ100から出射されたレーザ光114がサブマウント102に遮られることなく、樹脂部106に向かって出射される。故に、サブマウント102の影が生じないため、レーザ光114に対する、アイセーフ光源1の光の取り出し効率を向上させることができる。さらに、光の取り出し効率を向上させることにより、アイセーフ光源1およびアイセーフ光源1を備える電子機器の電力消費を抑制することができる。
 また、半導体レーザ100はサブマウント102を介してリードフレーム104の上面に接合されているため、半導体レーザ100から出射されたレーザ光114は、サブマウント102に遮られることなく、下側(リードフレーム104側)にも、上側(開口124側)と同様に広がりながら直進することができる。上側と下側とに同様に直進するため、樹脂部106からなる反射面116でレーザ光114の配光を予測可能に制御することが容易となる。
 半導体レーザ100はリードフレーム104に対して平らに載置されている。このため、凹部120の深さを(凹部120の上底と下底との間の距離)浅くすることができ、パッケージ108すなわちアイセーフ光源1を薄型化することができる。また、凹部120の深さを変えることなく、レーザ光114が反射面116に達するまでの光路長を長くすることができる。このように、パッケージ108の厚み方向(光軸118に平行な方向,リードフレーム104の上面に垂直な方向)でなく、パッケージ108の面方向(光軸118に垂直な方向,リードフレーム104の上面に平行な方向)に、光路長を確保できるため、アイセーフ光源1を薄型化できる。
 (ワイヤ)
 ワイヤ110は、金線であり、半導体レーザ100を駆動する電力を供給する電力線である。
 1本のワイヤ110は、半導体レーザ100のカソードと、リードフレーム104のカソード部104cと、を接続している。この一本のワイヤ110は、半導体レーザ100から前側(図1(a)において図面下側)へ伸びており、光軸118の方向から見て、リードフレーム104の上面に平行に出射されたレーザ光114の光軸に対して略直交している。
 別の一本のワイヤ110は、半導体レーザ100のアノードと接続しているサブマウント102と、リードフレーム104のアノード部104aとを接続している。この別の一本のワイヤ110は、サブマウント102から後側(図1(a)において図面上側)へ伸びており、光軸118の方向から見て、リードフレーム104の上面に平行に出射されたレーザ光114の光軸に対して略直交している。
 すなわち、ワイヤ110はそれぞれ、上面視において、レーザ光114に略直交している。このため、レーザ光114をワイヤ110が遮ることがない。故に、ワイヤ110の影が生じないため、レーザ光114に対する、アイセーフ光源1の光の取り出し効率を向上させることができる。さらに、光の取り出し効率を向上させることにより、アイセーフ光源1およびアイセーフ光源1を備える電子機器の電力消費を抑制することができる。
 これに対し、上面視においてワイヤがレーザ光と略平行である従来技術においては、ワイヤの影が生じるという問題があった。
 (反射面)
 以下に、レーザ光114を反射する反射面116について説明する。
 反射面116は、凹部120の4つの側面のうちの互いに対向する2つの側面であり、レーザ光114を出射する半導体レーザ100の左発光端面100lと右発光端面100rとにそれぞれ対向する。反射面116は、半導体レーザ100がレーザ光114を出射する方向に垂直な、半導体レーザ100の中心(左発光端面100lと右発光端面100rとの中間点)を通る面(第1対称面)に対して、互いに面対称である。また、反射面116は、リードフレーム104の上面と垂直な、半導体レーザ100がレーザ光114を出射する方向に平行な、左発光端面100lの発光中心と右発光端面の発光中心とを通る面(第2対称面)に対して、それぞれ面対称である。
 反射面116は、リードフレーム104の上面に対して上向きに傾いた平面である。この傾きにより、リードフレーム104の上面と平行に出射されたレーザ光114を、光軸118の方向に反射する。また、反射面116は、光散乱体を含む樹脂部106の表面であるため、レーザ光114を散乱反射する。この散乱反射により、レーザ光114のスポット径が広がるため、レーザ光114の光密度は、反射前より反射後で低くなる。
 また、半導体レーザ100の両発光端面(左発光端面100lと右発光端面100r)と反射面116との間の領域(凹部120)には、光散乱体が存在しないため、出射されたときの配向特性をある程度維持したまま、レーザ光114は上向きに散乱反射される。
 (レーザ光とアイセーフ化)
 以下に、レーザ光114とレーザ光114のアイセーフ化とについて説明する。
 レーザ光114は、半導体レーザ100の右発光端面100rから、リードフレーム104の上面に略平行に出射されるとき、マイクロメートル単位のスポット径から一定角度で広がるように出射される。このため、レーザ光114は高コヒーレント光であるが、右発光端面100rから離れるに従って広がるので、レーザ光114の光密度は下がる。例えば、赤外線半導体レーザである半導体レーザ100から出射されるレーザ光114の広がり角は、活性層に垂直な方向において約20度であり、活性層に平行な方向において約10°である。また、左発光端面100lから出射されるレーザ光114も同様に、リードフレーム104の上面に略平行に、広がるように出射される。
 このように、レーザ光114は広がりながら進むため、両発光端面(左発光端面100lと右発光端面100r)から離れている反射面116において、レーザ光114のスポット径は広がり、レーザ光114の光密度はある程度低下している。したがって、レーザ光114は、反射面116により散乱反射される前に、既にある程度アイセーフ化されている。
 半導体レーザ100は、左発光端面100lと右発光端面100rとの両発光端面からレーザ光114を対称に出射する。このため、全体の光量が同じで一端面のみから出射する半導体レーザと比較して、半導体レーザ100から出射されるレーザ光114は、光密度が約半分である。このように光密度が低いため、レーザ光114は、容易にアイセーフ化できる。
 また、左発光端面100lと右発光端面100rとにそれぞれ対向する反射面116も互いに対称であるため、アイセーフ化されたレーザ光114も対称である。このため、アイセーフ光源1は対称性の良好な光源である。
 また、既にある程度アイセーフ化されているレーザ光114が、反射面116により散乱反射されることにより、レーザ光114は、十分にアイセーフ化される。このように十分にアイセーフ化されたレーザ光114が、パッケージ108の上面に開く開口124から放射されるので、アイセーフ光源1から放射される光は十分にアイセーフ化されている。
 (発光効率)
 以下に、アイセーフ光源1が消費する電力に対する、アイセーフ光源1から放射される光の量である、アイセーフ光源1の発光効率について説明する。
 凹部120内部は、空洞であり、レーザ光114を散乱する光散乱体は存在しない。このため、レーザ光114は散乱されずに反射面116に到達する。したがって、散乱された光がサブマウント102に吸収されることがない。このため、アイセーフ光源1は発光効率に優れている。
 凹部120内部は、空洞であり、半導体レーザ100は空気により覆われている。半導体レーザ100は赤外線半導体レーザであるため、一般的にそうであるように、左発光端面100lと右発光端面100rとは、大気(空気)に対して光を取り出す効率が最大になるように最適化設計されている。したがって、半導体レーザ100から最大効率で光を取り出すことができるため、アイセーフ光源1は発光効率に優れている。
 また、凹部120内部に光散乱体は存在せず、レーザ光114は、光散乱体を含む光散乱層を透過しない。このため、光散乱体による光吸収が起きないので、アイセーフ光源1は発光効率に優れている。
 また、ワイヤ110は上面視において(リードフレーム104の上面に垂直な方向から見て)、レーザ光114が出射する方向に略垂直である。このため、ワイヤ110はレーザ光114の光路を遮らず、レーザ光114をアイセーフ化した仮想光源には、ワイヤ110の影が生じない。このため、アイセーフ光源1は発光効率に優れている。さらに、ワイヤ110は、光散乱体が存在しない凹部120内部を伸びているため、散乱された光をワイヤ110が吸収することもない。このため、アイセーフ光源1は発光効率に優れている。
 また、半導体レーザ100は、上面視においてサブマウント102から左発光端面100lと右発光端面100rとが突出するように、サブマウント102に載置されている。このため、左発光端面100lと右発光端面100rとから広がるように出射されたレーザ光114は、サブマウント102に遮られることなく、反射面116に到達する。さらに、半導体レーザ100とリードフレーム104との間にサブマウントを挟み込むことにより、半導体レーザ100がリードフレーム104の上面から持ち上げられている。このため、レーザ光114は、リードフレーム104の上面で反射されることなく、リードフレーム104により遮られることなく、反射面116に直接到達することができる。したがって、レーザ光114をアイセーフ化した仮想光源には、サブマウント102の影が生じず、リードフレーム104での反射で迷光が発生することが無いため、アイセーフ光源1は発光効率に優れている。
 また、反射面116を有する樹脂部106は、LED光源によく用いられる光散乱体を含む白色の樹脂である。このため、反射面116の光反射率は高く、光吸収率は低い。したがって、アイセーフ光源1は発光効率に優れている。
 (配光特性と偏光特性)
 以下に、アイセーフ光源1における偏光特性と配光特性とについて説明する。
 レーザ光114は、反射面116において散乱反射されるが、反射面116に到達する前には散乱されていない。このため、反射面116により散乱反射されたレーザ光114の光密度の強度分布は、適度に散乱により平均化されつつ、左右発光端面100l,100rから出射されたときの配光特性をおおむね維持している。このため、反射面116により、レーザ光114の光軸(スポットの中央)にある強い強度のピークを下げて、スポットの周辺と中央との光密度の強度の平均化を図りつつ、配光特性を整えることができる。また、レーザ光114は、レーザ光を散乱する光散乱体を含む光散乱層を透過することなく、十分にアイセーフ化される。このため、アイセーフ光源1においては、レーザ光114をアイセーフ化しつつ、レーザ光114の配光特性を整えることができ、レーザ光114の偏光特性を少なくとも部分的に維持することができる。
 これに対し、特許文献2~4のような従来技術においては、レーザ光は、レーザ光を散乱する光散乱体を含む光散乱層を透過することによって、アイセーフ化される。このため、光散乱層を透過する間に多重散乱により、レーザ光は配光特性および偏光特性を失う。
 なお、レーザ光114が光散乱層を透過するようにして、アイセーフ光源1から放射されるレーザ光114の偏光特性を調整してもよい。例えば、開口124をカバーで覆い、カバーに含まれる光散乱体の種類または濃度、あるいはカバーの厚みを調整してもよい。そのようにして、カバーを透過してアイセーフ光源1から放射されるレーザ光114の偏光比を2~100程度の範囲で調整することができる。
 また、アイセーフ光源1においては、反射面116の形状によっても配光特性を整えることができるため、配光特性を整えるためのレンズを設ける必要がない。このため、アイセーフ光源1を薄型化に適している。なお、必要に応じて適宜レンズを設けてもよい。例えば、当該アイセーフ光源1を光ファイバと光学的に結合して使用するには、レンズを設置することが望ましい。なお、レンズは外付けレンズであっても、開口124を覆うカバーと一体であってもよい。
 また、アイセーフ化されたレーザ光114は、半導体レーザ100から出射されたときの偏光特性を少なくとも部分的に維持する。このため、偏光特性を利用する用途にアイセーフ光源1は適している。例えば、アイセーフ光源1は、生体認証用の電子機器に備えられてもよい。
 (変形例1)
 以下に、実施形態1に係るアイセーフ光源1において、開口124にカバー128aを設けた実施形態1の変形例1について、図2に基づき、説明する。
 図2は、図1に示したアイセーフ光源1において、レーザ光114を散乱するカバー128aを設けた変形例におけるアイセーフ化を説明するための断面図である。図2は、図1の(b)の右側部分に対応し、レーザ光114の広がりと光軸134とを示している。なお、図2で示すレーザ光114の広がりの範囲は、光密度の強度が、ピーク値の1/e(eは、自然対数の底)になるまでの範囲である。
 カバー128aは、凹部120内部に異物が侵入しないように設けられたカバーであり、レーザ光114を散乱する光散乱体を含む樹脂により形成されている。また、ここには図示は省略するが呼吸孔がカバー128aに設けられているため、凹部120内部の気体は、呼吸孔を通じて出入りできる。カバー128aは、光散乱体を含む樹脂により形成されているため、カバー128aが設けられた変形例においては、図2に示すように、レーザ光114のスポット径が拡大する。
 図2に示すように、光軸134は、レーザ光114の光軸である。また、スポット径Rは、右発光端面100rにおけるレーザ光114のスポット径ある。また、スポット径Rは、レーザ光114が反射面116に当たったときの、光軸118方向から見たレーザ光114のスポット径である。また、スポット径Rは、レーザ光114がカバー128aに入射するときの、レーザ光114のスポット径である。また、スポット径Rは、レーザ光114がカバー128aを通り抜けた後の、レーザ光114のスポット径である。
 また、光路長lは、レーザ光114の光軸134に沿った、右発光端面100rから反射面116までのレーザ光114の光路長であり、光路長lは、レーザ光114の光軸134に沿った、反射面116からカバー128aまでのレーザ光114の光路長である。
 レーザ光114は、半導体レーザ100の右発光端面100rから、マイクロメートル単位のスポット径Rから一定角度で広がるように出射される。このため、リードフレーム104の上面に平行に進む間に、レーザ光114のスポット径は広がる。そして、レーザ光114が光路長l進み、レーザ光114が反射面116に到達したとき、レーザ光114は、スポット径Rまで広がっている。したがって、カバー128aがない場合と同様に、半導体レーザ100の右発光端面100rと反射面116との間の距離(光路長l)が大きいほど、スポット径の広がりにより、レーザ光114はアイセーフ化される。
 反射面116に到達したレーザ光114は、反射面116により、散乱反射される。散乱反射により、レーザ光114のスポット内部での光密度が平均化され、レーザ光114がさらにアイセーフ化される。
 散乱反射されたレーザ光114は、反射面116からカバー128aまで広がりながら直進する。そして、レーザ光114が光路長l進み、レーザ光114がカバー128aに到達したとき、レーザ光114は、スポット径Rまで広がっている。したがって、反射面116とカバー128aとの間の距離(光路長l)が大きいほど、スポット径の広がりにより、レーザ光114はさらにアイセーフ化される。
 カバー128aに入射したレーザ光114は、カバー128aを形成する樹脂と凹部120内部を満たす気体(空気)との屈折率の差により、屈折する。さらに、カバー128aを形成する樹脂は、レーザ光114を散乱する光散乱体を含む。したがって、屈折と散乱とにより、レーザ光114のスポット径は、カバー128aを通り抜ける間に、入射時のスポット径Rから出射時のスポット径Rまで広がる。また、散乱により、レーザ光114のスポット内部での光密度がさらに平均化される。この場合、樹脂に含まれる光散乱体の種類と濃度および、カバー128aの厚み等を調整することにより、半導体レーザ100から出射されたときのレーザ光114の偏光特性を部分的に維持するようにすることができる。これにより、アイセーフ光源2が発光するアイセーフ光の偏光特性を調整することができ、例えば、偏光比を2から100までの範囲で調整できる。
 カバー128aが設けられていない場合、レーザ光114をアイセーフ化する仮想光源は、反射面116になり、仮想光源のスポット径は、反射面116におけるスポット径Rである。これに対し、カバー128aが設けられている本変形例においては、レーザ光114をアイセーフ化する仮想光源はカバー128aになり、仮想光源のスポット径は、カバー128aにおけるスポット径Rである。したがって、本変形例は、カバー128aを設けない場合と比べて、光路長lによりレーザ光114のスポット径が拡大され、カバー128aにおいて散乱によるレーザ光114のスポット径の拡大と、散乱によるレーザ光114のスポット内の光密度の平均化とが同時並行に進行する。
 このように、実施形態1に係るアイセーフ光源1に対して、レーザ光114を散乱するカバー128aを設けた変形例においては、アイセーフ光源1から放射される光は、さらに十分にアイセーフ化されている。
 (変形例2)
 以下に、実施形態1に係るアイセーフ光源1において、開口124にカバー128bを設けた実施形態1の変形例2について、図3に基づき、説明する。
 図3は、図1に示したアイセーフ光源において、レーザ光114を平行光化するレンズ132を有するカバー128bを設けた変形例を示す図である。
 カバー128bは、凹部120内部に異物が侵入しないように設けられたカバーであり、光散乱体を含まない樹脂により形成されている。また、図示しない呼吸孔がカバー128bに設けられているため、凹部120内部の気体は、呼吸孔を通じて出入りできる。このように気体が呼吸孔を通じて出入りすることによって、急激な温度変化で生じる凹部120の内外気圧差(凹部120内部と、パッケージ108とカバー128bとの外部と、の間の気圧差)の発生を抑制可能である。内外圧差の発生抑制により、カバーの脱落を防止することが可能である。急激な温度変化としては、例えばリフローはんだ付け工程における温度プロファイルが想定される。カバー128bは、左発光端面100lから出射されるレーザ光114に対するレンズ132と、右発光端面100rから出射されるレーザ光114に対するレンズ132とを備えるように、一体に形成されている。
 レンズ132の一方は、左発光端面100lから出射されるレーザ光114を平行光化するように形成されている。また、レンズ132の他方は、右発光端面100rから出射されるレーザ光114を平行光化するように形成されている。レンズ132は、非球面レンズであっても、球面レンズであってもよい。
 レンズ132を有するカバー128bを設けた実施形態1の変形例2においては、設けない場合よりも、アイセーフ光源1から放射される光は、配光特性がさらに整っている。このため、実施形態1の変形例2に係るアイセーフ光源1は、光ファイバと光学的に結合するような用途に適している。
 なお、レンズ132は、カバー128bと一体でない外付けレンズであってもよい。レンズ132が外付けレンズの場合、アイセーフ光源1から放射される光の配光特性を調整しやすい。
 〔実施形態2〕
 本発明の他の実施形態について、図4に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図4は、本発明の実施形態2に係るアイセーフ光源2の半導体レーザ100周辺の概略構成を示す図である。図4の(a)は、カバー228を除いて樹脂部206を透視した上面図であり、図4の(b)は、図4の(a)のA2-A2矢視断面図であり、図4の(c)は図4の(a)のB2-B2矢視断面図であり、図4の(d)は樹脂部206の立体形状を示すためのカバー228を除いた斜視図である。
 図4に示すように、アイセーフ光源2は、レーザ光214を出射する半導体レーザ100、半導体レーザ100を載置するサブマウント102、リードフレーム104と樹脂部206とを有するパッケージ208、ワイヤ110、および、呼吸孔230を有するカバー228を備える。また、アノードおよびカソードの方向が分かるように、印112が設けられている。
 実施形態1に係るアイセーフ光源1と、実施形態2に係るアイセーフ光源2とを比較すると、相違点は次の2点である。
 1点は、実施形態1に係るアイセーフ光源1において、開口124が開放されているのに対し、実施形態2に係るアイセーフ光源2において、呼吸孔230を有するカバー228により開口224が覆われていることである。
 もう一点は、実施形態1に係るアイセーフ光源1において、樹脂部106の備える凹部120の形状が略逆四角錐台のような立体形状であるのに対し、実施形態2に係るアイセーフ光源2において、樹脂部206が備える凹部220の形状が略逆四角錐台と略半円柱とを重ね合わせたような立体形状であることである。
 すなわち、実施形態2に係るアイセーフ光源2は、呼吸孔230を有するカバー228を備える点においてと、樹脂部206の凹部220の形状においてと、により、実施形態1に係るアイセーフ光源1から異なる。
 (凹部)
 以下に、樹脂部206が備える凹部220について説明する。
 凹部220の形状は、略逆四角錐台の上底と略半円柱の円柱からの切断面とが同一平面になるように、略逆四角錐台と略半円柱とが重ね合わせられた立体形状であり、レーザ光214を散乱反射する反射面216は略半円柱の曲面部分であり、リードフレーム104の上面の露出部122は略逆四角錐台の下底部分から露出している。したがって、図1(b)と図4(b)とから分かるように、実施形態1に係る反射面116は略逆四角錐の互いに向かい合う側面(平面)であるのに対し、実施形態2に係る反射面216は曲面である。
 反射面216は、より詳細に言うと、放物線を含む面に対して垂直な方向に放物線が平行移動したときに該放物線の移動の軌跡が描く曲面の一部である。本実施形態において、該放物線を含む面は、光軸118および半導体レーザ100がレーザ光214を出射する方向に平行であり、該放物線の対称軸は、光軸118に平行であるが、これに限らず、該放物線の対称軸は、光軸118に対して傾いていてもよい。例えば、右発光端面100rに対向する反射面216は、右発光端面100rの発光中心を焦点とする放物線が平行移動した曲面の一部である。同様に、左発光端面100lに対向する反射面216は、左発光端面100lの発光中心を焦点とする放物線が平行移動した曲面の一部である。
 言い換えると、図4の(b)において反射面216を形作る放物線の焦点の位置は、反射面216が対向する発光端面(左発光端面100lまたは右発光端面100r)の発光中心の位置に一致する。
 なお、半導体レーザ100が、非常に小さい場合で、例えば、半導体レーザ100の共振器長が300μmを切るような場合には、半導体レーザ100の大きさを無視して、左発光端面100lと右発光端面100rとに対向する反射面216が共に、右発光端面100rと左発光端面100lとの発光中心の中間点を焦点とする放物線が平行移動した曲面の一部であってもよい。この場合にも、左右発光端面100l,100rから反射面216までの距離が近づきすぎないよう注意し、その間に適当な距離を取ることが重要である。左右発光端面100l,100rに反射面216が接近しすぎるとレーザ光214の単位面積当たりの強度が急速に高まるため、たとえ、レーザ光214が赤外線であっても、レーザ光214が樹脂からなる反射面216に熱的損傷を与えかねないためである。熱的損傷を避けるためにも、左右発光端面100l,100rと反射面216との間には、適当な距離が必要である。
 半導体レーザ100が十分に小さい場合と同様に、例えば、0.5mm、更には、1mmを超えるような長共振器長である場合であっても、前記のような簡易的な扱いも可能である。この場合にも、熱的損傷を避けるために、反射面216から左右発光端面100l,100rを充分に遠ざける必要があることは言うまでもない。しかしながら、このような簡易的な構造では、左右発光端面100l,100rの発光中心の位置と、反射面216を形作る放物線の焦点の位置と、が大きくずれてしまう。ずれにより、反射後のレーザ光214が光軸118から大きく傾斜してしまう。このため、半導体レーザ100が長共振器長の半導体レーザである場合、反射後の左右のレーザ光114を光軸118に平行に近づけるために、左右発光端面100l,100rの発光中心それぞれに対して、独立に焦点が一致する放物曲面の一部である反射面216を設けることが望ましい。
 また、反射面216は、その他の略放物線からなる曲面の一部であってもよい。例えば反射面216は、放物線が平行移動した面に近似可能な、円筒面の一部であってもよい。
 このように、反射面216は放物線からなる曲面の一部であるため、左発光端面100lと右発光端面100rとから広がるように出射されたレーザ光214を平行光化することができる。このため、開口224から出射されるアイセーフ化されたレーザ光214は指向性に優れている。
 なお、逆に、開口224から出射されるアイセーフ化されたレーザ光214の配向特性の半値角を所定の角度に広げるために、反射面216を形成する放物線の焦点を、右発光端面100rおよび左発光端面100lからずらしてもよい。
 このような反射面216に対する右発光端面100rおよび左発光端面100lの高さは、(言い換えると、反射面216を形作る放物線の焦点に対する、左右発光端面100l,100rの発光中心の高さは、)サブマウント102の高さを調整することにより、容易に調整できる。
 また、反射面216から右発光端面100rおよび左発光端面100lまでの、リードフレーム104の上面に平行な方向の距離は、(言い換えると、反射面216を形作る放物線の焦点に対する、左右発光端面100l,100rの発光中心の、リードフレーム104に平行な方向の距離は、)半導体レーザ100の共振器長を変えることで容易に変更可能である。
 このように、凹部220では形状の設計をわざわざ変更しなくても、サブマウント102の高さや半導体レーザ100の共振器長を変えるだけで、反射面216を形作る放物線の焦点から左右発光端面100l,100rまでの距離を変更可能である。このため、容易に配光特性を調整することが出来る。すなわち、目的に応じて、狭ビームであったり、高配光ビームであったり、様々な配光のアイセーフ光源を容易に準備することが出来る。
 (カバー)
 以下に、カバー228について説明する。
 カバー228は、凹部220内部に異物が侵入しないように設けられたカバーであり、光散乱体を含まない樹脂により形成されている。また、ここでは図示は省略するが、呼吸孔230がカバー228に設けられているため、凹部220内部の気体は、呼吸孔230を通じて出入りできる。したがって、半導体レーザ100の発熱により、凹部220内部の気体が熱膨張した場合、凹部220内部の気体はカバー228の外側に逃げる。同様に、半導体レーザ100が発熱しなくなり、凹部220内部の気体が熱収縮した場合、カバー228の外側から気体が凹部220内部に補充される。このような呼吸孔は、例えば、リフローはんだ付け工程における温度プロファイルで生じる急激な温度変化において、凹部220の内外圧差の発生の抑制に寄与することができる。
 このように、凹部220には膨圧および縮圧が発生せず、カバー228には凹部220内部の気体の膨張収縮による応力が加えられない。このため、応力に耐えられる強度が不要であるため、カバー228を薄くすることができる。また、応力に耐えられる強度が不要であるため、カバー228の形状設計の自由度が高くなる。
 また、呼吸孔230がカバー228に設けられていれば、カバー228をパッケージ208に接着した場合であっても、気体の膨張収縮による応力が接着部位に集中することが無い。このため、カバー228がパッケージ208から剥落することを防止できる。実施形態2においては、呼吸孔230をカバー228に設置することを想定したが、パッケージ208に設けても同様の効果が得られる。
 なお、半導体レーザ100の劣化を防止するために、呼吸孔のないカバーで開口224を覆って、半導体レーザ100を凹部220内部に気体封止してもよい。例えば、青色半導体レーザの場合、端面破壊を防止するために、不活性気体による気体封止が必要である。また、例えば、車載用の光源のように高い信頼性が必要な場合、気体封止が必要である。また、例えば、結露が生じるような環境から半導体レーザを保護する必要がある環境で用いられる場合、気体封止が必要である。気体封止する場合、パッケージ208、とりわけ、樹脂部206自体に気密性の高い構造や材料を採用したり、あるいは、パッケージ208の外部を気密性の高い容器で囲うなどしたりして、気密性を保つ必要がある。
 半導体レーザ100が不活性気体により気体封止されている場合も、実施形態1と同様に、レーザ光214を出射する半導体レーザ100の両端面の近傍には、熱的および光学的に損傷するような物質も、光吸収により発熱する物質もない。このため、半導体レーザ100の両端面の近傍の物質が変性することによるアイセーフ光源2の機能の低下が防止される。また、半導体レーザ100は樹脂封止されておらず、サブマウント102を介してリードフレーム104に接合されているため、半導体レーザ100は温度変化に応じて伸縮可能である。
 (変形例3)
 また、カバー228は、光散乱体を含む樹脂により形成されてもよい。以下に、実施形態2に係るアイセーフ光源2において、光散乱体を含まない樹脂により形成されたカバー228の代わりに、レーザ光214を散乱する光散乱体を含む樹脂により形成されたカバー228bを設けた実施形態2の変形例3について、図5に基づき、説明する。
 図5は、図4に示したアイセーフ光源2において、レーザ光214を散乱するカバー228aを設けた変形例におけるアイセーフ化を説明するための断面図である。図5は、図4の(b)の右側部分に対応し、レーザ光214の広がりと光軸234とを示している。なお、図5で示すレーザ光214の広がりの範囲は、光密度の強度が、ピーク値の1/e(eは、自然対数の底)になるまでの範囲である。
 カバー128aは、レーザ光214を散乱する光散乱体を含む樹脂により形成されていることを除き、カバー228と同等である。
 図5に示すように、光軸234は、レーザ光214の光軸である。また、スポット径Rは、右発光端面100rにおけるレーザ光214のスポット径ある。また、スポット径Rは、レーザ光214が反射面216に当たったときの、光軸118方向から見たレーザ光214のスポット径である。また、スポット径Rは、レーザ光214がカバー228aに入射するときの、レーザ光214のスポット径である。また、スポット径Rは、レーザ光214がカバー228aを通り抜けた後の、レーザ光214のスポット径である。
 また、光路長lは、レーザ光214の光軸234に沿った、右発光端面100rから反射面216までのレーザ光214の光路長であり、光路長lは、レーザ光214の光軸234に沿った、反射面216からカバー228aまでのレーザ光214の光路長である。
 実施形態1の変形例1と同様に、光散乱体を含む樹脂により形成されたカバー228aを設けた場合、レーザ光214は、カバー228aを透過する間に散乱され、スポット径が広がるため、さらにアイセーフ化される。この場合、樹脂に含まれる散乱体の種類と濃度および、カバー228aの厚み等を調整することにより、半導体レーザ100から出射されたときのレーザ光214の偏光特性を部分的に維持するようにすることができる。これにより、アイセーフ光源2が発光するアイセーフ光の偏光特性を調整することができ、例えば、偏光比を2から100までの範囲で調整できる。
 〔実施形態3〕
 本発明の他の実施形態について、図6に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図6は、本発明の実施形態3に係るアイセーフ光源3の半導体レーザ100周辺の概略構成を示す図である。図6の(a)は、樹脂部306を透視した上面図であり、図6の(b)は、図6(a)のA3-A3矢視断面図であり、図6の(c)は図6の(a)のB3-B3矢視断面図であり、図6の(d)は樹脂部306の立体形状を示すための斜視図である。
 図6に示すように、アイセーフ光源3は、レーザ光314を出射する半導体レーザ100、半導体レーザ100を載置するサブマウント102、リードフレーム104と樹脂部306とを有するパッケージ308、および、ワイヤ110を備える。また、アノードおよびカソードの方向が分かるように、印112が設けられている。
 実施形態1に係るアイセーフ光源1と、実施形態3に係るアイセーフ光源3とは、次の1点において相違する。すなわち、実施形態1に係るアイセーフ光源1において、樹脂部106の備える凹部120の形状は略逆四角錐台のような立体形状であるのに対し、実施形態3に係るアイセーフ光源3において、樹脂部306が備える凹部320の形状は略逆四角錐台と略回転放物体とを重ね合わせたような立体形状である。
 (凹部)
 以下に、樹脂部306が備える凹部320について説明する。
 凹部320の形状は、略逆四角錐台の上底と略回転放物体の底面とが同一平面になるように、略逆四角錐台と略回転放物体とが重ね合わせられた立体形状であり、レーザ光314を散乱反射する反射面316は略回転放物体の曲面の一部であり、リードフレーム104の上面の露出部122は略逆四角錐台の下底部分から露出している。したがって、図1(b)と図6(b)とから分かるように、実施形態1に係る反射面116は略四角錐の互いに向かい合う側面(平面)であるのに対し、実施形態3に係る反射面316は曲面である。
 反射面316は、より詳細に言うと、対称軸を回転軸として放物線が回転したときに該放物線の回転の軌跡が描く回転放物面の一部である。該放物線を含む面は、図6(a)のA3-A3矢視断面図である、図6(b)に見られ、図6(b)に示される反射面316の断面形状は、該放物線の一部である。図6(b)の該放物線を含む面は、光軸118および半導体レーザ100がレーザ光314を出射する方向に平行であり、該放物線の対称軸は、光軸118に平行であるが、これに限らず、該放物線の対称軸は、光軸118に対して傾いていてもよい。例えば、右発光端面100rに対向する反射面316は、右発光端面100rの発光中心を焦点とする放物線が回転した曲面の一部である。同様に、左発光端面100lに対向する反射面316は、左発光端面100lの発光中心を焦点とする放物線が回転した曲面の一部である。
 なお、半導体レーザ100は、非常に小さい場合、例えば、半導体レーザ100の共振器長が300μmを切るような場合には、半導体レーザ100の大きさを無視して、左発光端面100lと右発光端面100rとに対向する反射面316が共に、右発光端面100rと左発光端面100lとの発光中心の中間点を焦点とする放物線が回転した曲面の一部であってもよい。また、反射面216は、その他の略放物線からなる曲面の一部であってもよい。例えば反射面216は、楕円放物面の一部であってもよく、球面の一部であってもよい。
 半導体レーザ100が十分に小さい場合と同様に、例えば、0.5mm、更には、1mmを超えるような長共振器長である場合であっても、前記のような簡易的な扱いも可能である。この場合にも、熱的損傷を避けるために、反射面316から左右発光端面100l,100rを充分に遠ざける必要があることは言うまでもない。しかしながら、このような簡易的な構造では、左右発光端面100l,100rの発光中心の位置と、反射面316を形作る放物線の焦点の位置と、が大きくずれてしまう。ずれにより、反射後のレーザ光314が光軸118から大きく傾斜してしまう。このため、半導体レーザ100が長共振器長の半導体レーザである場合、反射後の左右のレーザ光114を光軸118に平行に近づけるために、左右発光端面100l,100rの発光中心それぞれに対して、独立に焦点が一致する放物曲面の一部の反射面316を設けることが望ましい。
 また、反射面316は、その他の略放物線からなる曲面の一部であってもよい。例えば反射面316は、楕円放物面の一部であってもよく、球面の一部であってもよい。更には回転楕円体であってもよい。また、反射面316は、回転放物面に限らず、回転放物面に近似可能な球面であってもよい。
 このように、反射面316は回転放物面であるため、広がるように出射されたレーザ光314を平行光にすることができる。このため、開口324から出射されるアイセーフ化されたレーザ光314は指向性に優れている。
 このとき、アイセーフ光源1から放射される光は、指向性に優れ、さらに、アイセーフ性も優れている。これは、開口324においてで仮想光源(アパーレント光源)として認められる領域、すなわち、10cm先から観測した光のピーク強度に対して1/e(自然対数の底)になるまでの発光領域の面積が、開口324で十分に広いためである。すなわち、単位面積当たりの光の強度が低くなるために、結果として、アイセーフ性を高めることができる。
 なお、逆に、開口324から出射されるアイセーフ化されたレーザ光314の配向特性の半値角を所定の角度に広げるために、反射面316を形成する放物線の焦点を、右発光端面100rおよび左発光端面100lからずらしてもよい。焦点を左右発光端面100l、100rからずらすための最も容易な手法としては、サブマウント102の高さ(光軸118方向の長さ)を変更する方法、および半導体レーザ100の共振器長を変更する方法がある。
 本実施形態3においては、放物線を回転させる回転軸として該放物線の対称軸を採用し、この回転放物面の部分形状を反射面316の形状として用いている。しかしながら、反射面316の形状は、この部分形状に限定されるものではない。放物線の対称軸に対し傾斜した軸を回転軸として採用し、このときに該放物線の回転の軌跡が描く回転体の表面の部分形状を反射面316の形状として用いてもよい。このように対称軸に対して回転軸が傾いている回転体の表面の部分形状を反射面に用いた場合には、対称軸と回転軸とが一致している回転放物面の焦点に光源の発光点を配置した場合に得られる平行光とは異なり、スポット径を絞ったり、広げたりすることが反射面の形状により選択可能である。
 反射面316の形状が対称軸と回転軸とが一致している回転放物面の部分形状である場合でも、上述のように、左右発光端面100l,100rの発光中心の位置を焦点からずらすことにより同様な効果が期待できる。この場合、対称軸に平行な方向にずらすならば、発光点パッケージの厚みにより発光点のおける位置は高さ方向(パッケージの厚み方向)の制約を受ける。また、対称軸に直交する方向にずらすならば、半導体レーザ100の共振器長による制約を受ける。これらのため、スポット径を絞ったり、広げたりする割合は制約を受けてしまう。これに対して、放物線の対称軸に対し傾斜した軸を回転軸とする回転体の表面の一部を反射面316の形状として用いた場合には、適切な回転軸を選択することによって、スポット径を絞ったり、広げたりする割合を決定することが可能なため、パッケージの厚みおよび共振器長による制約が少なくて済む。
 〔実施形態4〕
 本発明の他の実施形態について、図7に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図7は、本発明の実施形態4に係るアイセーフ光源4の半導体レーザ400周辺の概略構成を示す図である。図7の(a)は、樹脂部406を透視した上面図であり、図7の(b)は、図7(a)のA4-A4矢視断面図であり、図7の(c)は図7の(a)のB4-B4矢視断面図である。
 図7に示すように、アイセーフ光源4は、レーザ光414を出射する半導体レーザ400、半導体レーザ400を載置するサブマウント102、リードフレーム104と樹脂部406とを有するパッケージ408、および、ワイヤ110を備える。また、アノードおよびカソードの方向が分かるように、印112が設けられている。
 実施形態1に係るアイセーフ光源1と、実施形態4に係るアイセーフ光源4とは、次の2点において相違する。
 1点は、実施形態1に係るアイセーフ光源1において、半導体レーザ100が左右両側の発光端面(左発光端面100lと右発光端面100r)からレーザ光114を出射するのに対し、実施形態4に係るアイセーフ光源4において、半導体レーザ100が右片側の発光端面(右発光端面400r)からのみレーザ光414を出射することである。
 もう一点は、実施形態1に係るアイセーフ光源1において、樹脂部106の備える凹部120の形状が略直四角錐のような形状であるのに対し、実施形態4に係るアイセーフ光源4において、樹脂部406が備える凹部420の形状が略斜四角錐台のような立体形状であることである。すなわち、実施形態1に係る凹部120は、リードフレーム104の上面と半導体レーザ100からレーザ光114が出射される方向とに垂直な、半導体レーザ100の中心を通る平面について面対称である。これに対し、実施形態4に係る凹部420は、リードフレーム104の上面と半導体レーザ400からレーザ光414が出射される方向とに垂直な、半導体レーザ400の中心を通る平面について面対称でない。
 すなわち、実施形態4に係るアイセーフ光源4は、一方側にのみレーザ光414を出射する半導体レーザ400を用いる点において、実施形態1に係るアイセーフ光源1から異なり、これに対応して凹部420の形状が異なる。
 (凹部)
 以下に、樹脂部406が備える凹部420について説明する。
 凹部420は、パッケージ408の上面に開く長方形状の上底(開口424)と、リードフレーム104の露出部122が露出する長方形状の下底と、上底と下底との間に伸びる台形状の4つの側面と、により形作られており、上底の面積が下底の面積より大きい。なお、凹部420は、略直四角錐台、略直円錐台、および略斜円錐台などの他の形状であってもよい。
 反射面416は、凹部420の4つの側面のうちの1つの側面であり、レーザ光414を出射する半導体レーザ400の右発光端面400rに対向する。反射面416は、リードフレーム104の上面と垂直な、半導体レーザ100がレーザ光114を出射する方向に平行な、半導体レーザ100の中心を通る面に対して面対称である。また、反射面416は、リードフレーム104の上面に対して上向きに傾いた平面である。
 このため、実施形態4に係る反射面416は、実施形態1に係る反射面116と同様に、レーザ光414を、光軸118の方向に散乱反射する。なお、実施形態4においては、リードフレーム104の上面に対して垂直な方向を光軸118として採用しているが、反射面416の傾斜を変更することで、ここで示した光軸118に対して、傾斜した方向に新たにアイセーフ光源の別の光軸を採用することも可能である。
 (ワイヤ)
 なお、ワイヤ110は、仮想光源にワイヤ110の影を投げかけなければよい。このため、半導体レーザ100からレーザ光414が出射される方向に平行かつ反対向きに伸びるように、ワイヤ110は配置されてもよい。
 (応用例1)
 図1から図6に示された、実施形態1~3のアイセーフ光源1~3において、半導体レーザ100の代わりに、左右発光端面で発光が非対称な半導体レーザを用いてもよい。このような半導体レーザは、例えば、端面コートの反射率を左右で違えることで容易に得ることが可能である。このようにして左右での発光を、たとえば、40対60、30対70、20対80、10対90と言う具合に変更することが出来る。
 図4に示した、発光点が1つのアイセーフ光源を実現するために、例えば、左右で5対95の非対称な発光比率をもつ半導体レーザを使用することが考えられる。
 (応用例2)
 例えば、当該アイセーフ光源1を光ファイバと光学的に結合して使用するには、レンズを設置することが望ましい。このような用途では、配光特性を更に整える目的で、図8のように、開口124をレンズ付きカバーで覆ってもよく、あるいは、外付けレンズで配光特性を調整してもよい。なお、本発明の実施形態1~3に係るアイセーフ光源についても、当該アイセーフ光源1を光ファイバと光学的に結合して使用する際には、レンズを設置してもよい。
 図8は、図7に示したアイセーフ光源4において、レーザ光414を平行光化するレンズ432を有するカバー428bを設けた変形例を示す図である。
 カバー428bは、凹部420内部に異物が侵入しないように設けられたカバーであり、光散乱体を含まない樹脂により形成されている。また、図示しない呼吸孔がカバー128bに設けられているため、凹部420内部の気体は、呼吸孔を通じて出入りできる。カバー428bは、右発光端面400rから出射されるレーザ光414に対するレンズ432を備えるように、一体に形成されている。
 レンズ432は、右発光端面400rから出射されるレーザ光414を平行光化するように形成されている。レンズ432は、非球面レンズであっても、球面レンズであってもよい。
 〔実施形態5〕
 本発明の他の実施形態について、図9に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図9は、本発明の実施形態5に係るアイセーフ光源5の半導体レーザ100周辺の概略構成を示す図である。図9の(a)は、カバー528を除いて樹脂部506を透視した上面図であり、図9の(b)は、図9の(a)のA5-A5矢視断面図であり、図9の(c)は図9の(a)のB5-B5矢視断面図である。
 図9に示すように、アイセーフ光源5は、レーザ光514を出射する半導体レーザ100、半導体レーザ100を載置するサブマウント102、リードフレーム104と樹脂部506とを有するパッケージ508、ワイヤ110、呼吸孔230を有するカバー528(光散乱層)を備える。また、アノードおよびカソードの方向が分かるように、印112が設けられている。
 また、樹脂部506の凹部520の反射面516においては、樹脂部506の表面に金属メッキが施されている。金属メッキにより、反射面516はレーザ光514を散乱せずに反射する。なお、反射面516以外の樹脂部506の表面については、金属メッキを施してもよいし、施さなくてもよい。
 実施形態2に係るアイセーフ光源2と、実施形態5に係るアイセーフ光源5とを比較すると、相違点は次の2点である。
 1点は、実施形態2に係るアイセーフ光源2において、反射面216は樹脂部206の表面のままであるのに対し、実施形態5に係るアイセーフ光源5において、反射面516は金属メッキにより被覆されていることである。すなわち、実施形態2と異なり、実施形態5に係る反射面516はレーザ光514を散乱せずに反射する。
 もう1点は、実施形態2に係るアイセーフ光源2において、カバー228は光散乱体を含まない樹脂により形成されているのに対し、実施形態5に係るアイセーフ光源5において、カバー528は光散乱体を含む樹脂により形成されていることである。すなわち、実施形態2と異なり、カバー528は透過するレーザ光514を散乱する。
 (反射面)
 以下に、金属メッキにより覆われている反射面516について説明する。
 反射面516は、金属メッキに被覆されているため、リードフレーム104の上面に平行なレーザ光514を、光軸118に平行な方向に、散乱せずに反射する。また、凹部520内部は空洞であり、空気が存在するが、レーザ光514を散乱する光散乱体は存在しない。これらにより、レーザ光514は両発光端面(左発光端面100lと右発光端面100r)からカバー528に到るまで、散乱されずに進む。散乱されないので、カバー528に入射するレーザ光514は、半導体レーザ100から出射されたときの配光特性および偏光特性をおおむね維持している。
 反射面516は、半導体レーザ100の両発光端面(左発光端面100lと右発光端面100r)から離れており、レーザ光514は、半導体レーザ100の両発光端面(左発光端面100lと右発光端面100r)から広がるように出射される。このため、反射面516において、レーザ光514のスポット径は広がっており、レーザ光514の光密度は低下している。したがって、反射面516で反射されたレーザ光514は、散乱されていないが、ある程度アイセーフ化されている。
 なお、半導体レーザ100が赤外線の半導体レーザである場合、反射面516に用いる金属としては、金もしくは金を成分として含む合金が望ましい。理由としては、700nmを超える波長領域あるいは赤外線の領域で高反射率であることに加え、金は、通常の環境では非常に安定な物質で腐食、酸化等を受けないことが挙げられる。これに対し、銀などは初期の光反射率は高いものの、腐食、酸化の影響を受けやすい。特に、銀などは、硫黄に対しては、硫化作用により黒化することが知られており、特別な表面コートが必要となってしまう。このため、反射面516の表面に用いる金属としては、金もしくは金を成分として含む合金が望ましい。
 樹脂部506を直接、無電解メッキで被覆することも可能ではあるが、金属板から金型による打ち抜き等で作った反射構造体の表面を電解メッキで覆ったものをあらかじめ準備し、樹脂部506に覆いかぶせ反射面516を形成してもよい。樹脂部506の無電解メッキよりも、金属の構造体の電解メッキの方が、反射面の剥離等の問題が少なく長期信頼性を確保し易い。このような金属板から作った反射面516は、樹脂部506の成型時に一体成型してもよいし、樹脂部506形成後に取付けてもよい。金属表面を金で被覆する以外には、アルミニウムあるいはアルミニウム合金から形成した反射構造体の表面をアルマイト処理した物を反射面516として使用してもよい。表面鏡面処理したうえでアルマイト処理した板の反射率と耐腐食性は、金と同等であることから、長期信頼性を確保するのに好適である。
 (カバー)
 以下に、光散乱体を含む樹脂により形成されているカバー528について説明する。
 カバー528は、光散乱体を含む樹脂により形成されているため、透過するレーザ光514を散乱する。散乱により、レーザ光514のスポット径が広がり、レーザ光514の光密度が低下するため、カバー528を透過したレーザ光514は十分にアイセーフ化される。
 一方、散乱により、レーザ光514の配光特性および偏光特性は乱されるが、カバー528を透過したレーザ光514はある程度の配光特性および偏光特性を維持している。なぜならば、カバー528に入射するときにすでに、レーザ光514はある程度アイセーフ化されているため、配光特性および偏光特性を失わない範囲の散乱により、レーザ光514を十分にアイセーフ化できるからである。
 例えば、カバー528を形成する樹脂が含む光散乱体の濃度および、カバー528の厚みを調整することにより、レーザ光514の十分なアイセーフ化と、レーザ光514の配光特性または偏光特性との十分な維持と、を両立することができる。
 (サブマウントに関する補足)
 実施形態1~5において、サブマウント102を介してリードフレーム104に半導体レーザ100、400を搭載する場合を開示してきた。これは、サブマウントを介さず、直接背の高い半導体レーザチップを用いた場合、放熱性が悪くなり、また、金属のリードフレーム104の膨張収縮に起因する応力が直接、半導体レーザチップの活性層に伝わり、半導体レーザチップの光出力低下や頓死などが発生するからである。サブマウント102を介することにより、このような光出力低下及び頓死の発生を防ぐことができる。本発明の様に、発光点(発光端面)をリードフレームから離して設置し、レーザ光を対向する反射面に効率的に照射する構造では、サブマウントの使用が不可欠である。
 特に、サファイヤ半導体レーザおよび窒化ガリウム(GaN)系の熱伝導率の高い基板を使う窒化ガリウム系の半導体レーザとは異なり、ガリウムヒ素(GaAs)系の基板を用いる赤外線半導体レーザは熱伝導率が低く、特に、放熱に注意する必要がある。このため、リードフレームに直接、搭載する可能性があるものは、低出力の赤外線半導体レーザであったり、放熱性の高いGaN系の半導体レーザなどに限定されたりする。
 また、サブマウントの代わりに、半導体レーザ搭載部分に対応するリードフレーム104の部分を突状に形成してもよい。このように形状を形成するには、リードフレーム形成時にプレス加工やエッチングを用いることが考えられる。この場合、金属フレームの膨張収縮が半導体レーザの信頼性に対して悪影響を与えないように、膨張係数の小さな金属たとえば鉄や鉄を主要な原材料として含む合金などを用いるようにすることが望ましく、更には、インジウムはんだの様に膨張収縮の影響を緩和する材料で半導体レーザチップをリードフレーム104に接合することが重要である。リードフレームの部分を突状に加工する場合にも、この形状が、レーザ光の光路を遮らないようにする必要がある。一般に、このような形状をリードフレーム上に形成することは、手間がかかる上に精度が出しにくい。このことからも、サブマウント102を使用することが望ましい。
 〔実施形態6〕
 本発明の他の実施形態について、図10に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図10は、本発明の実施形態6に係る光学センサ6の概略構成を示す図である。
 図10に示すように、光学センサ(電子機器)6は、実施形態1に係るアイセーフ光源1、生体からの反射光を受光する受光部632、およびアイセーフ光源1と受光部632とを制御する制御部634とを備える。
 受光部632は、アイセーフ光源1と同様に、パッケージ108に設けられてもよい。また、受光部632は、アイセーフ光源1と別に設けられてもよい。
 制御部634は、パッケージ108内部に設けられた半導体素子であってもよい、すなわちリードフレーム104に接合され、樹脂部106により樹脂封止された半導体素子であってもよい。また、制御部634は、アイセーフ光源1と別に設けられてもよい。
 アイセーフ光源1から放射されたアイセーフ光を生体が反射し、生体に反射された反射光を受光部632が受光する。そして、制御部634は、アイセーフ光源1から放射されたアイセーフ光と、受光部632で受光した反射光とを比較することにより、アイセーフ光を反射した生体の情報を算出する。
 アイセーフ光源1は、薄型化に適した表面実装型の光源であるため、光学センサ6は薄型である。アイセーフ光源1を光源として利用し収集できる生体情報の種類は、虹彩、指や手のひらなどの静脈、指紋、掌紋など多岐にわたる。これらの生体情報を用いた生体認証を携帯電子機器で実現するために、アイセーフ光源1は効果的に利用される。これら携帯電子機器に限らず、通常の据置型の電子機器、たとえば、現金預け払い機(ATM)、電子ロック式金庫、車や家の電子キーなどの光源としても利用可能である。
 なお、薄型化は、電子機器に広く要求されているため、アイセーフ光源1の用途は、生体認証に限定されるものではない。は、投光器、プロジェクター、暗視カメラ用光源、モーションセンサ用光源、小型の電子機器、および携帯用の電子機器などに用いられてもよい。通信機器、たとえば、光ファイバとの光学的結合を必要とする電子機器でも、小型で表面実装型のアイセーフ光源を有効に活用できる。
 〔まとめ〕
 本発明の態様1に係るアイセーフ光源(1~5)は、基板(パッケージ108,208,308,408,508)と、レーザ光(114,214,314,414,514)を発光端面(左発光端面100lと右発光端面100r、右発光端面400r)から出射する半導体レーザ(100,400)と、前記半導体レーザに接合されるワイヤ(110)とを備え、前記半導体レーザは、前記レーザ光を前記基板の基準面(リードフレーム104の上面)に対して平行な方向(図1,3,4,6~9の(a)において左右方向)に出射するように、前記基板に接合され、前記基板は、前記発光端面に対向し、前記レーザ光を反射する反射面(116,216,316,416,516)を備え、前記基準面に垂直な方向(図1,3,4,6~9の(a)において奥行方向)から見て、前記ワイヤが伸びる方向(図1,3,4,6~9の(a)において上下方向)は、前記発光端面から前記レーザ光が出射される方向に対して垂直であることを特徴とする。
 上記の構成によれば、レーザ光は、基準面に対して平行な方向に出射され、反射面により反射される。このため、アイセーフ光源の厚みを増すことなく、発光端面から反射面までの光路長を長くすることができる。発光端面から反射面までの光路長を長くすることにより、反射面におけるレーザ光のスポット径を広げることができる。スポット径を広げることにより、レーザ光の光密度を下げることができ、レーザ光をアイセーフ化することができる。
 上記の構成によれば、ワイヤの伸びる方向は、基準面に垂直な方向から見て、レーザ光が出射される方向に対して垂直である。このため、ワイヤはレーザ光の光路を遮らず、レーザ光をアイセーフ化した仮想光源にワイヤの影が生じない。これにより、アイセーフ光源の発光効率を向上させることができる。また、ワイヤの影が生じないため、仮想光源の光密度および配向特性を理想に近づけやすくなる。
 上記の構成によれば、レーザ光は、光散乱体をふくむ光散乱領域を透過しないで、あるいは、偏光特性を維持できる範囲内で光散乱領域を透過して、アイセーフ化されることができる。これにより、アイセーフ光源から放射される光は、レーザ光の偏光特性を(少なくとも部分的に)維持している。このため、本アイセーフ光源は、偏光特性を利用する用途に適しており、例えば、生体認証用の光学センサに適している。
 上記の構成によれば、レーザ光は、光散乱体をふくむ光散乱層を透過しないで、あるいは、偏光特性を維持できる範囲内で光散乱層を透過して、アイセーフ化されることができる。これにより、レーザ光の配光特性を反射面により整えることができ、アイセーフ光源から発光される光は、反射面により整えられた配光特性を(少なくとも部分的に)維持している。このため、アイセーフ光源において、発光効率の向上と共に、アイセーフ光源から放射される光の配光特性を整えることができる。
 本発明の態様2に係るアイセーフ光源(1~3,5)は、上記態様1に係るアイセーフ光源であり、前記発光端面(左発光端面100lと右発光端面100r)は、前記半導体レーザ(100)の両側(図1,3,4,6,9の(b)において左右両側)に設けられており、前記反射面(116,216,316,516)は、前記発光端面のそれぞれに対向するように、前記半導体レーザの前記両側に設けられていることが好ましい。
 上記の構成によれば、各発光端面から出射されるレーザ光の光量は、半導体レーザ全体から出射されるレーザ光の光量より少ない。このため、各レーザ光の光密度は低く、アイセーフ化されやすい。
 本発明の態様3に係るアイセーフ光源(1~3,5)は、上記態様2に係るアイセーフ光源であり、前記発光端面(左発光端面100lと右発光端面100r)は互いに光学的に対称であり、前記反射面(116,216,316,516)は、第1対称面(図1のB1-B1矢視断面,図4のB2-B2矢視断面,図6のB3-B3矢視断面,図9のB5-B5矢視断面)について、面対称であり、前記第1対称面は、前記発光端面から前記レーザ光が出射される方向に垂直な、前記半導体レーザの中心を通る面であることが好ましい。
 上記の構成によれば、半導体レーザの両側の発光端面は光学的に対称であるため、レーザ光を両側に対象に出射することができる。さらに、対称なレーザ光を反射する反射面も対称であるため、反射されたレーザ光も対称である。したがって、アイセーフ光源の対称性を向上させることができる。
 本発明の態様4に係るアイセーフ光源(4)は、上記態様1に係るアイセーフ光源であり、前記発光端面(右発光端面400r)は、前記半導体レーザ(400)の片側(図7の(b)において右側)に設けられており、前記反射面(416)は、前記発光端面に対向するように、前記半導体レーザの前記片側に設けられていることが好ましい。
 本発明の態様5に係るアイセーフ光源(1~5)は、上記態様1から4の何れか1態様に係るアイセーフ光源であり、前記反射面(116,216,316,416,516)は、第2対称面(図1のA1-A1矢視断面,図4のA2-A2矢視断面,図6のA3-A3矢視断面,図7のA4-A4矢視断面,図9のA5-A5矢視断面)について、面対称であり、前記第2対称面は、前記発光端面(左発光端面100lと右発光端面100r,右発光端面400r)から前記レーザ光(114,214,314,414,514)が出射される方向に平行な、前記基準面(リードフレーム104の上面)に垂直な、前記発光端面の発光中心を通る面であることが好ましい。
 上記の構成によれば、レーザ光を反射する反射面は、レーザ光から見て、対称である。このため、アイセーフ光源の対称性を向上させることができる。
 本発明の態様6に係るアイセーフ光源(1~5)は、上記態様1から5の何れか1態様に係るアイセーフ光源であり、前記基板(114,214,314,414,514)は、金属製リードフレーム(リードフレーム104)と、前記金属製リードフレームを少なくとも部分的に覆う樹脂(樹脂部106,206,306,406,506)と、を含み、前記半導体レーザ(100,400)は、前記金属製リードフレームに接合されていることが好ましい。
 上記の構成によれば、基板は、金属製リードフレームを含む。金属製リードフレームは機械的強度に優れるため、基板は金属製リードフレームにより補強される。これにより、必要な強度を維持しながら、基板を薄型化することができる。
 上記の構成によれば、半導体レーザは金属製リードフレームに接合される。金属製リードフレームは熱伝導性および放熱性に優れるため、半導体レーザの発光に伴う発熱が容易に放熱される。したがって、本発光装置は放熱性に優れる。
 なお、放熱のために、金属製リードフレームをパッケージする樹脂から、金属製リードフレームはなるべく露出していることが好ましい。例えば、金属製リードフレームの一方側に反射面および半導体レーザを設け、他方側は外部に露出していてもよい。
 本発明の態様7に係るアイセーフ光源(1~5)は、上記態様1から6の何れか1態様に係るアイセーフ光源であり、前記半導体レーザ(100,400)は、前記サブマウントを介して、前記基板に接合されていることが好ましい。
 上記の構成によれば、半導体レーザはサブマウントを介して基板に接合されている。このため、半導体レーザが高出力であっても、サブマウントにより効率的に放熱され、熱膨張係数の差により発生する応力が緩和される。また、サブマウントの高さ(基板から半導体レーザまでの距離)を調整することにより、反射面に対する発光端面の位置を調整することができる。
 さらに、前記基準面(リードフレーム104の上面)に垂直な方向から見て、前記発光端面(左発光端面100lと右発光端面100r、右発光端面400r)がサブマウント(102)から突出するように、前記半導体レーザ(100,400)は、前記サブマウントを介して、前記基板に接合されていることがより好ましい。
 上記の構成によれば、半導体基板の発光端面はサブマウントから突出している。このため、発光端面から広がるように出射されたレーザ光の光路をサブマウントは遮らない。遮らないので、レーザ光をアイセーフ化した仮想光源にサブマウントの影が生じない。これにより、アイセーフ光源の発光効率を向上させることができる。また、サブマウントの影が生じないため、仮想光源の光密度および配向特性を理想的にしやすくなる。
 本発明の態様8に係るアイセーフ光源(1~5)は、上記態様1から7の何れか1態様に係るアイセーフ光源であり、前記発光端面(左発光端面100lと右発光端面100r、右発光端面400r)と前記発光端面に対向する前記反射面(116,216,316,416,516)との間には、前記レーザ光(114,214,314,414,514)を散乱する光散乱体は存在しないことが好ましい。
 上記の構成によれば、発光端面と反射面との間には光散乱体がない。このため、レーザ光は、半導体レーザから出射されて、反射面により反射されるまでの間、散乱されない。したがって、反射面は、出射されたときの配向特性を保持しているレーザ光を反射する。このため、反射面によりレーザ光の配向特性を整えることができる。これにより、例えば、レーザ光を平行光に整えることができる。また、例えば、レーザ光を、無線光通信および光センシング等に適するように、所定範囲では光強度が略一定であり、所定範囲外では光強度がほぼ0であるような光強度分布を有する光線に整えることができる。また、反射面により配光特性を整えることができるため、アイセーフ化されたレーザ光の配向特性を整えるために、光路上にレンズを設ける必要がない。
 また、発光端面と反射面との間で、レーザ光が多重散乱されない。このため、多重散乱による光吸収は、発光端面と反射面との間で起きない。これにより、アイセーフ光源の消費電力に対して光を取り出す効率(発光効率)を向上させることができる。
 また、発光端面の近傍に、レーザ光を散乱する光散乱体がないため、光散乱体による光吸収が起きない。このため、発光端面近傍での、光散乱体による光吸収に起因する発熱が起きず、この発熱による発光端面近傍の物質の熱的損傷が発生しない。したがって、発光端面の近傍の物質が変性することにより、本アイセーフ光源の機能の低下すること、を防止することができる。すなわち、連続使用および長時間使用等による、本アイセーフ光源のアイセーフ性および発光効率の低下を防止できる。
 本発明の態様9に係るアイセーフ光源(1~4)は、上記態様1から8の何れか1態様に係るアイセーフ光源であり、前記反射面(116,216,316,416)は、前記レーザ光(114,214,314,414)を散乱する光散乱体を含む樹脂(樹脂部106,206,306,406)により形成されていることが好ましい。
 上記の構成によれば、反射面は、光散乱体を含む樹脂の表面である。このため、レーザ光は反射面で散乱反射されるので、レーザ光がよりいっそうアイセーフ化される。
 上記の構成によれば、反射面は、樹脂の表面である。このため、金属メッキを施すなどの表面加工が不要である。これにより、アイセーフ光源の製造工程数を減らし、製造費用を抑制することができる。
 特に、上記態様6に係るアイセーフ光源である場合、金属製リードフレームを覆う樹脂に、レーザ光を散乱する光散乱体を含む樹脂を用いることにより、基板の形成と共に、反射面を形成することができる。これにより、アイセーフ光源の製造工程数および原材料数を減らすことができ、アイセーフ光源の製造費用を抑制することができる。
 本発明の態様10に係るアイセーフ光源(5)は、上記態様1から8の何れか1態様に係るアイセーフ光源であり、前記反射面は、金属により形成されていることが好ましい。
 上記の構成によれば、反射面は、金属の表面であり、例えば、樹脂を金属メッキした表面であってもよい。このため、反射面はレーザ光を散乱せずに反射するので、反射面はレーザ光の配光特性を効率的に整えることができる。
 本発明の態様11に係るアイセーフ光源(5)は、上記態様1から10の何れか1態様に係るアイセーフ光源であり、前記反射面(516)により反射された前記レーザ光(514)は、前記レーザ光を散乱する光散乱体を含む光散乱層(カバー528)を透過することが好ましい。
 上記の構成によれば、レーザ光は光散乱体を含む光散乱層を散乱されながら透過する。このため、レーザ光がよりいっそうアイセーフ化される。
 本発明の態様12に係るアイセーフ光源(2-3,5)は、上記態様1から11の何れか1態様に係るアイセーフ光源であり、前記反射面(216,316,516)は、放物線からなる曲面(放物線が平行移動した面,回転放物面など)の一部を含むことが好ましい。
 上記の構成によれば、反射面は放物線からなる曲面の一部を含む。このため、発光端面から広がるように出射されるレーザ光の配光特性を整えることができ、広がり角を制御することができる。例えば、レーザ光を平行光化することができる。
 本発明の態様13に係るアイセーフ光源(2-3,5)は、上記態様12に係るアイセーフ光源であり、前記曲面は、前記放物線の対称軸を回転軸として、または前記放物線の対称軸に対して傾斜した軸を回転軸として前記放物線が回転したときに前記放物線の回転の軌跡が描く回転体の表面であることが好ましい。
 上記の構成によれば、対称軸または対称軸に対して傾斜した任意の軸を適宜回転軸として選択することができる。これにより、レーザ光の配光特性を整えたり、広がり角を制御したりすることができる。例えば、回転軸の選択によって、レーザ光のスポット径を一定にしたり、絞ったり、広げたりすることができる。
 本発明の態様14に係るアイセーフ光源(2-3,5)は、上記態様12または13に係るアイセーフ光源であり、前記基準面(リードフレーム104の上面)に対して垂直な方向において、前記放物線の焦点の位置は、前記発光端面(左発光端面100lと右発光端面100r)の位置と一致することが好ましい。
 上記の構成によれば、基準面に対して垂直な方向について、半導体レーザの発光端面は反射面の焦点の位置に一致する。このため、対称軸と回転軸とが一致する場合、反射されたレーザ光を平行光化することができ、反射されたレーザ光の配向特性の半値角を狭くすることができる。これにより、本アイセーフ光源が発光する光は狭いスポットを維持し、遠くまで届くことができる。また、対象軸に対して回転軸を傾斜させることによって、アイセーフ光源の厚さ及び半導体レーザの共振器長を変えることなく、レーザ光のスポット径を絞ったり、広げたりすることができる。
 本発明の態様15に係るアイセーフ光源は、上記態様12に係るアイセーフ光源であり、前記基準面(リードフレーム104の上面)に対して垂直な方向において、前記放物線の焦点の位置は、前記発光端面の位置と異なることが好ましい。
 上記の構成によれば、基準面に対して垂直な方向について、半導体レーザの発光端面は反射面の焦点の位置からずれる。このため、反射されたレーザ光の配向特性の半値角を所定の角度に拡げることができる。これにより、レーザ光がアイセーフ化された仮想光源の直径が広がるため、本アイセーフ光源が発光するはよりいっそうアイセーフ化される。
 本発明の態様16に係るアイセーフ光源(1~5)は、上記態様1から15の何れか1態様に係るアイセーフ光源であり、前記半導体レーザ(100、400)は、樹脂封止されていないことが好ましい。換言すると、前記発光端面(左発光端面100lと右発光端面100r、右発光端面400r)は、気体(空気)または真空に接していることが好ましい。
 上記の構成によれば、半導体レーザは樹脂封止されていない。このため、半導体レーザが発光に伴い発熱しても、半導体レーザと封止樹脂との熱膨張係数の差による応力が発生しない。したがって、応力が半導体レーザあるいはその他の部分に加わることに起因する不良が、発生することを回避できる。
 本発明の態様17に係るアイセーフ光源(1~5)は、上記態様16に係るアイセーフ光源であり、前記基板(114,214,314,414,514)を覆うカバー(228、528)をさらに備え、前記発光端面(左発光端面100lと右発光端面100r、右発光端面400r)は、気体(空気)に接しており、前記カバー(228、528)または前記基板(114,214,314,414,514)は、前記気体が内部空間と外部空間とに出入り可能な呼吸孔(230)を備えることが好ましい。前記カバー(228,528)は、前記基板と該カバーとの間の前記内部空間(凹部120、220、320、420、520)に前記半導体レーザ(100、400)を収納するように、前記基板(114,214,314,414,514)を覆うことがより好ましい。
 上記の構成によれば、呼吸孔を備えることにより、半導体レーザを覆う気体は、アイセーフ光源の外部と内部とに出入り可能である。すなわち、半導体レーザは気体封止されていない。このため、半導体レーザの発熱により、あるいは、リフローはんだ付け工程のような外的要因による急激な温度変化により、半導体レーザを覆う気体が熱膨張しても、膨圧も縮圧も発生しない。したがって、膨圧および縮圧が半導体レーザあるいはその他の部分に加わることに起因する不良が、発生することを回避できる。
 本発明の態様18に係るアイセーフ光源(1~5)は、上記態様16に係るアイセーフ光源であり、前記半導体レーザは不活性気体により気体封止されていることが好ましい。
 上記の構成によれば、半導体レーザは不活性気体により気体封止されている。このため、半導体レーザが活性気体から保護されるので、発光端面の破壊などの劣化が生じにくくなる。したがって、青色半導体レーザのような不活性気体による気体封止が必要な半導体レーザを、用いることができる。
 上記の構成によれば、半導体レーザは気体封止されている。このため、半導体レーザが外部環境から保護されるので、結露が生じる環境および塵が多い環境などの悪条件下において、アイセーフ光源1を用いることができる。また、車載用途などの高い信頼性が要求される用途に、アイセーフ光源1を用いることができる。
 本発明の態様19に係るアイセーフ光源(1~5)は、上記態様1から18の何れか1態様に係るアイセーフ光源であり、前記レーザ光(114,214,314,414,514)は、700nmよりも長波長であることが好ましい。
 上記の構成によれば、レーザ光の波長は、700nmよりも長く、赤外線領域である。波長が長いほど、侵入長が深くなるため、生体認証に適したアイセーフ光源を実現することができる。特に、手のひらや指などにおける静脈を検出する場合、静脈での吸収が明確に起きるのは、700nmよりも長い波長領域、あるいは赤外線領域である。このおかげで、この領域の光を照射しながら観察すると静脈とそれ以外の部分とで明瞭なコントラストの画像が得られる。
 本発明の態様20に係るアイセーフ光源(1~5)は、上記態様1から19の何れか1態様に係るアイセーフ光源であり、表面実装型のアイセーフ光源であることがこのましい。
 上記の構成によれば、反射面によりレーザ光の配光特性が整えられるため、本アイセーフ光源は、配光特性を整えるためのレンズを必要としない。このため、アイセーフ光源を薄型化することができ、表面実装型に適している。
 本発明の態様21に係るアイセーフ光源(1~5)は、上記態様1から20の何れか1態様に係るアイセーフ光源であり、前記基準面(リードフレーム104の上面)に平行な、光学的な開口部(124,224,324,424、あるいは開口224を覆うカバー228,528)を備え、前記開口部から、前記レーザ光(114,214,314,414,514)が放射されることが好ましい。
 本発明の態様22に係る電子機器(光学センサ6)は、上記態様1から21の何れか1態様に係るアイセーフ光源を備えることを特徴とする。
 上記の構成によれば、本発明に係るアイセーフ光源を備える電子機器を実現できる。
 本発明の態様23に係る電子機器(光学センサ6)は、上記態様22に係る電子機器であり、生体認証用の電子機器であることが好ましい。
 上記の構成によれば、本発明に係るアイセーフ光源を備える生体認証用の電子機器を実現できる。
 本発明の態様24に係る電子機器(光学センサ6)は、上記態様22に係る電子機器であり、小型の投光器であることが好ましい。
 上記の構成によれば、本発明に係るアイセーフ光源を備える小型の投光器を実現できる。
 本発明の態様25に係る電子機器(光学センサ6)は、上記態様22に係る電子機器であり、小型のプロジェクターであることが好ましい。
 上記の構成によれば、本発明に係るアイセーフ光源を備える小型のプロジェクターを実現できる。
 本発明の態様26に係る電子機器(光学センサ6)は、上記態様22に係る電子機器であり、光ファイバと結合することが好ましい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 例えば、実施形態1~3,5の各々においては、左右対称になる構造を基本に開示しているが、利用目的に応じて、左右対称性を意図的に非対称にして用いることを何ら排除するものではない。また、レーザ光が反射面で反射した後の光軸は、必ずしも、リードフレームに対して垂直方向になるとは限らない。左右反射面で傾斜角度を互いに違えたり、リードフレームに対する垂線に対し、放物曲面の対称軸を傾けることでも容易に所望の方向に光軸を傾斜させたりすることが可能であり、これらも本発明の技術的範囲に当然含まれる。
 本発明は、小型の投光器、暗視カメラ用光源、モーションセンサ用光源、小型のプロジェクター、および生体認証用の電子機器、特に、偏光特性を利用する生体認証用の電子機器等に利用することができる。更には、通信機器、たとえば、光ファイバとの光学的結合を必要とする電子機器の光源としても利用することが出来る。また、本発明は、表面実装に適する。
1、2、3、4、5 アイセーフ光源
6 光学センサ(電子機器)
100、400 半導体レーザ
100l 左発光端面(発光端面)
100r、400r 右発光端面(発光端面)
102 サブマウント
104 リードフレーム(金属製リードフレーム)
104a アノード部
104c カソード部
106、206、306、406、506 樹脂部(樹脂)
108、208、308、408、508 パッケージ(基板)
110 ワイヤ
114、214、224、314、414、514 レーザ光
116、216、316、416、516 反射面
118 光軸
120、220、320、420、520 凹部
122 露出部
124、224、324、424 開口
128a、128b、228、228a、428b、528 カバー(光散乱層)
132、432 レンズ
134、234 光軸
230 呼吸孔
632 受光部
634 制御部

Claims (21)

  1.  基板と、レーザ光を発光端面から出射する半導体レーザと、前記半導体レーザに接合されるワイヤとを備え、
     前記半導体レーザは、前記レーザ光を前記基板の基準面に対して平行な方向に出射するように、前記基板に接合され、
     前記基板は、前記発光端面に対向し、前記レーザ光を反射する反射面を備え、
     前記基準面に垂直な方向から見て、前記ワイヤが伸びる方向は、前記発光端面から前記レーザ光が出射される方向に対して垂直である
    ことを特徴とするアイセーフ光源。
  2.  前記発光端面は、前記半導体レーザの両側に設けられており、
     前記反射面は、前記発光端面のそれぞれに対向するように、前記半導体レーザの前記両側に設けられている
    ことを特徴とする請求項1に記載のアイセーフ光源。
  3.  前記発光端面は互いに光学的に対称であり、
     前記反射面は、第1対称面について、面対称であり、
     前記第1対称面は、前記発光端面から前記レーザ光が出射される方向に垂直な、前記半導体レーザの中心を通る面である
    ことを特徴とする請求項2に記載のアイセーフ光源。
  4.  前記発光端面は、前記半導体レーザの片側に設けられており、
     前記反射面は、前記発光端面に対向するように、前記半導体レーザの前記片側に設けられている
    ことを特徴とする請求項1に記載のアイセーフ光源。
  5.  前記反射面は、第2対称面について、面対称であり、
     前記第2対称面は、前記発光端面から前記レーザ光が出射される方向に平行な、前記基準面に垂直な、前記発光端面の発光中心を通る面である
    ことを特徴とする請求項1から4の何れか1項に記載のアイセーフ光源。
  6.  前記基板は、金属製リードフレームと、前記金属製リードフレームを少なくとも部分的に覆う樹脂と、を含み、
     前記半導体レーザは、前記金属製リードフレームに接合されている
    ことを特徴とする請求項1から5の何れか1項に記載のアイセーフ光源。
  7.  前記基準面に垂直な方向から見て、前記発光端面がサブマウントから突出するように、前記半導体レーザは、前記サブマウントを介して、前記基板に接合されている
    ことを特徴とする請求項1から6の何れか1項に記載のアイセーフ光源。
  8.  前記発光端面と前記発光端面に対向する前記反射面との間には、前記レーザ光を散乱する光散乱体は存在しない
    ことを特徴とする請求項1から7の何れか1項に記載のアイセーフ光源。
  9.  前記反射面は、前記レーザ光を散乱する光散乱体を含む樹脂により形成されている
    ことを特徴とする請求項1から8の何れか1項に記載のアイセーフ光源。
  10.  前記反射面は、金属により形成されている
    ことを特徴とする請求項1から8の何れか1項に記載のアイセーフ光源。
  11.  前記反射面により反射された前記レーザ光は、前記レーザ光を散乱する光散乱体を含む光散乱層を透過する
    ことを特徴とする請求項1から10の何れか1項に記載のアイセーフ光源。
  12.  前記反射面は、放物線からなる曲面の一部を含む
    ことを特徴とする請求項1から11の何れか1項に記載のアイセーフ光源。
  13.  前記曲面は、前記放物線の対称軸を回転軸として、または前記放物線の対称軸に対して傾斜した軸を回転軸として前記放物線が回転したときに前記放物線の回転の軌跡が描く回転体の表面である
    ことを特徴とする請求項12に記載のアイセーフ光源。
  14.  前記基準面に対して垂直な方向において、前記放物線の焦点の位置は、前記発光端面の位置と一致する
    ことを特徴とする請求項12または13に記載のアイセーフ光源。
  15.  前記基準面に対して垂直な方向において、前記放物線の焦点の位置は、前記発光端面の位置と異なる
    ことを特徴とする請求項12または13に記載のアイセーフ光源。
  16.  前記発光端面は、気体または真空に接している
    ことを特徴とする請求項1から15の何れか1項に記載のアイセーフ光源。
  17.  前記基板を、前記基板とカバーとの間の内部空間に前記半導体レーザを収納するように、覆う前記カバーを更に備え、
     前記発光端面は、気体に接しており、
     前記カバーまたは前記基板は、前記気体が内部と外部とに出入り可能な呼吸孔を備える
    ことを特徴とする請求項16に記載のアイセーフ光源。
  18.  前記半導体レーザは不活性気体により気体封止されている
    ことを特徴とする請求項16に記載のアイセーフ光源。
  19.  前記レーザ光は、700nmよりも長波長である
    ことを特徴とする請求項1から18の何れか1項に記載のアイセーフ光源。
  20.  表面実装型のアイセーフ光源である
    ことを特徴とする請求項1から19の何れか1項に記載のアイセーフ光源。
  21.  前記基準面に平行な、光学的な開口部を備え、
     前記開口部から、前記レーザ光が放射される
    ことを特徴とする請求項1から20の何れか1項に記載のアイセーフ光源。
PCT/JP2016/080018 2015-11-20 2016-10-07 アイセーフ光源 WO2017086053A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680067246.8A CN108352676A (zh) 2015-11-20 2016-10-07 人眼安全光源
US15/776,047 US10658812B2 (en) 2015-11-20 2016-10-07 Eye-safe light source
JP2017551771A JPWO2017086053A1 (ja) 2015-11-20 2016-10-07 アイセーフ光源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-228111 2015-11-20
JP2015228111 2015-11-20

Publications (1)

Publication Number Publication Date
WO2017086053A1 true WO2017086053A1 (ja) 2017-05-26

Family

ID=58718739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080018 WO2017086053A1 (ja) 2015-11-20 2016-10-07 アイセーフ光源

Country Status (4)

Country Link
US (1) US10658812B2 (ja)
JP (1) JPWO2017086053A1 (ja)
CN (1) CN108352676A (ja)
WO (1) WO2017086053A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019036638A (ja) * 2017-08-16 2019-03-07 日亜化学工業株式会社 発光装置
JP2020031146A (ja) * 2018-08-23 2020-02-27 ローム株式会社 半導体レーザ装置
JPWO2020174982A1 (ja) * 2019-02-27 2020-09-03

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074123A (ja) * 2016-11-04 2018-05-10 株式会社ディスコ ウエーハの加工方法
US11309680B2 (en) * 2017-09-28 2022-04-19 Nichia Corporation Light source device including lead terminals that cross space defined by base and cap
CN113196597B (zh) * 2018-12-17 2024-08-27 ams国际有限公司 包括增强的眼睛安全性特征的发光模块
CN111463652A (zh) * 2019-01-22 2020-07-28 隆达电子股份有限公司 发光装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493371U (ja) * 1977-12-14 1979-07-02
JP2002100827A (ja) * 2001-09-19 2002-04-05 Sharp Corp 半導体レーザ装置
JP2002124728A (ja) * 2000-10-13 2002-04-26 Matsushita Electric Ind Co Ltd 集積型光半導体装置
JP2006147751A (ja) * 2004-11-18 2006-06-08 Matsushita Electric Ind Co Ltd 光半導体装置
JP2007027716A (ja) * 2005-07-11 2007-02-01 Osram Opto Semiconductors Gmbh レーザダイオード素子のためのパッケージ、レーザダイオード素子ならびにレーザダイオード素子を製作する方法
JP2010251686A (ja) * 2009-03-26 2010-11-04 Harison Toshiba Lighting Corp 発光装置及びその製造方法
JP2013143428A (ja) * 2012-01-10 2013-07-22 Sumitomo Electric Ind Ltd 半導体レーザ装置
JP2014183269A (ja) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd 波長変換装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126286A (en) * 1977-04-11 1978-11-04 Hitachi Ltd Semiconductor laser package
JP4014425B2 (ja) 2002-03-06 2007-11-28 シャープ株式会社 光源装置およびそれを用いた光通信システム
WO2003077389A1 (fr) * 2002-03-08 2003-09-18 Sharp Kabushiki Kaisha Appareil a source lumineuse et module de communication optique le comprenant
JP2004128273A (ja) * 2002-10-03 2004-04-22 Sharp Corp 発光素子
JP2005142447A (ja) 2003-11-07 2005-06-02 Sharp Corp 発光装置,受光装置,電子機器およびレンズの製造方法
JP2006352105A (ja) 2005-05-19 2006-12-28 Sharp Corp 光送信デバイスおよびそれを用いた光源装置
JP5046538B2 (ja) 2006-03-15 2012-10-10 シャープ株式会社 アイセーフレーザ光源、およびこれを用いた電子機器
JP2007266484A (ja) 2006-03-29 2007-10-11 Sharp Corp アイセーフレーザ光源装置およびそれを用いた通信機器ならびに照明機器
US9634203B2 (en) * 2008-05-30 2017-04-25 Sharp Kabushiki Kaisha Light emitting device, surface light source, liquid crystal display device, and method for manufacturing light emitting device
JP2011096724A (ja) 2009-10-27 2011-05-12 Sharp Corp 反射型光結合装置および電子機器
US9036675B2 (en) * 2011-02-25 2015-05-19 Rohm Co. Ltd. Communication module and portable electronic device
JPWO2012131792A1 (ja) * 2011-03-31 2014-07-24 パナソニック株式会社 半導体発光装置
US9008139B2 (en) 2013-06-28 2015-04-14 Jds Uniphase Corporation Structure and method for edge-emitting diode package having deflectors and diffusers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493371U (ja) * 1977-12-14 1979-07-02
JP2002124728A (ja) * 2000-10-13 2002-04-26 Matsushita Electric Ind Co Ltd 集積型光半導体装置
JP2002100827A (ja) * 2001-09-19 2002-04-05 Sharp Corp 半導体レーザ装置
JP2006147751A (ja) * 2004-11-18 2006-06-08 Matsushita Electric Ind Co Ltd 光半導体装置
JP2007027716A (ja) * 2005-07-11 2007-02-01 Osram Opto Semiconductors Gmbh レーザダイオード素子のためのパッケージ、レーザダイオード素子ならびにレーザダイオード素子を製作する方法
JP2010251686A (ja) * 2009-03-26 2010-11-04 Harison Toshiba Lighting Corp 発光装置及びその製造方法
JP2013143428A (ja) * 2012-01-10 2013-07-22 Sumitomo Electric Ind Ltd 半導体レーザ装置
JP2014183269A (ja) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd 波長変換装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019036638A (ja) * 2017-08-16 2019-03-07 日亜化学工業株式会社 発光装置
JP2020031146A (ja) * 2018-08-23 2020-02-27 ローム株式会社 半導体レーザ装置
JP7141277B2 (ja) 2018-08-23 2022-09-22 ローム株式会社 半導体レーザ装置
JPWO2020174982A1 (ja) * 2019-02-27 2020-09-03
WO2020174982A1 (ja) * 2019-02-27 2020-09-03 パナソニックセミコンダクターソリューションズ株式会社 半導体レーザモジュール
JP7372308B2 (ja) 2019-02-27 2023-10-31 ヌヴォトンテクノロジージャパン株式会社 半導体レーザモジュール

Also Published As

Publication number Publication date
US10658812B2 (en) 2020-05-19
JPWO2017086053A1 (ja) 2018-07-26
CN108352676A (zh) 2018-07-31
US20180331492A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2017086053A1 (ja) アイセーフ光源
JP4182783B2 (ja) Ledパッケージ
US10465873B2 (en) Light emitting device, vehicle headlamp, illumination device, and laser element
US7161187B2 (en) Light emitting diode and manufacturing method thereof
US7281860B2 (en) Optical transmitter
KR101332262B1 (ko) 발광 장치
US8461616B2 (en) Semiconductor arrangement
US20050263784A1 (en) Collimating light from an LED device
JP2007165803A (ja) 発光装置
TW201836434A (zh) 包括整合在密封劑中的光學結構之vcsel照明器封裝
JP2008518431A (ja) 電磁放射を放出する半導体構成素子および構成素子ケーシング
CN107450228B (zh) 发光装置
TWI671924B (zh) 發光裝置及其製造方法
KR20160056087A (ko) 발광 장치
US20090121248A1 (en) Semiconductor light emitting device and planar light source
US11067250B2 (en) Light emitting device and integrated light emitting device
WO2018021414A1 (ja) アイセーフ光源および電子機器
US20100314641A1 (en) Lighting Device
JP2007080870A (ja) 発光装置
KR101867284B1 (ko) 카메라 플래시 모듈
JP6650511B2 (ja) アイセーフ光源、およびその製造方法
CN103165798A (zh) 发光二极管封装结构及其透镜
JP4820133B2 (ja) 発光装置
TWI688128B (zh) 發光二極體晶片級封裝結構及直下式背光模組
JP2005142447A (ja) 発光装置,受光装置,電子機器およびレンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551771

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15776047

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866055

Country of ref document: EP

Kind code of ref document: A1