WO2017082266A1 - 熱電変換素子用起電膜及び熱電変換素子 - Google Patents

熱電変換素子用起電膜及び熱電変換素子 Download PDF

Info

Publication number
WO2017082266A1
WO2017082266A1 PCT/JP2016/083157 JP2016083157W WO2017082266A1 WO 2017082266 A1 WO2017082266 A1 WO 2017082266A1 JP 2016083157 W JP2016083157 W JP 2016083157W WO 2017082266 A1 WO2017082266 A1 WO 2017082266A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
film
electromotive
conversion element
spin
Prior art date
Application number
PCT/JP2016/083157
Other languages
English (en)
French (fr)
Inventor
明宏 桐原
石田 真彦
和紀 井原
悠真 岩崎
染谷 浩子
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/774,177 priority Critical patent/US20180331273A1/en
Priority to JP2017550341A priority patent/JPWO2017082266A1/ja
Publication of WO2017082266A1 publication Critical patent/WO2017082266A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/20Thermomagnetic devices using thermal change of the magnetic permeability, e.g. working above and below the Curie point
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to an electromotive film for a thermoelectric conversion element and a thermoelectric conversion element, and more particularly to an electromotive film for a thermoelectric conversion element and a thermoelectric conversion element based on the spin Seebeck effect and the abnormal Nernst effect.
  • thermoelectric conversion elements As one of the heat management technologies for a sustainable society, expectations for thermoelectric conversion elements are increasing. Heat is the most common energy source that can be recovered from various scenes such as body temperature, solar heat, engine, and industrial waste heat. Therefore, thermoelectric conversion is expected to become more and more important in various applications such as high efficiency of energy use, power supply to ubiquitous terminals and sensors, and visualization of heat flow by heat flow sensing.
  • thermoelectric conversion elements based on the “Spin Seebeck Effect” which generates a spin angular momentum flow (spin current) by applying a temperature gradient (temperature difference) to a magnetic material. It has been proposed (Patent Document 1, Non-Patent Documents 1 and 2).
  • the spin Seebeck effect is a phenomenon in which a spin current is generated by giving a temperature difference to a magnetic material.
  • a thermoelectric conversion element based on the spin Seebeck effect is constituted by a two-layer structure of a magnetic insulator layer having magnetization in one direction and a conductive electromotive film.
  • thermoelectric conversion When a temperature gradient in the direction perpendicular to the surface is applied to this element, a spin angular momentum flow called a spin current is induced in the magnetic insulator by the spin Seebeck effect, which is injected into the electromotive film. Then, it is converted into an in-plane direction current by “Inverse spin Hall effect” in the electromotive film.
  • the reverse spin Hall effect is a phenomenon in which an electromotive force is generated in a direction perpendicular to the spin current. This enables “thermoelectric conversion” that generates electricity from a temperature gradient. Since a magnetic insulator having a relatively low thermal conductivity is used, it is possible to maintain a temperature difference, which is a necessary condition for performing effective thermoelectric conversion.
  • thermoelectric conversion element is formed using a single crystal yttrium iron garnet (YIG) (a kind of garnet ferrite) as a magnetic insulator and a platinum (Pt) wire as an electromotive film. Conversion is in progress.
  • YIG yttrium iron garnet
  • thermoelectric effect is a phenomenon in which a voltage is generated in a direction (outer product direction) orthogonal to the direction of magnetization and the direction of heat flow when a heat flow is passed through a magnetized magnetic body.
  • a thermoelectric conversion element based on the anomalous Nernst effect is composed of a magnetic metal layer such as Ni or Fe having magnetization in one direction, and when a temperature gradient in the perpendicular direction is applied thereto, current is driven in the in-plane direction.
  • the conductive film 30 is typically a metal film.
  • the material of the metal film 30 is a metal having a large“ spin-orbit interaction ”. Contains material.
  • Au, Pt, Pd, Ir, other metal materials having f orbitals having a relatively large spin-orbit interaction, or alloy materials containing them are used.
  • a similar effect can be obtained by simply doping a common metal film material such as Cu with a material such as Au, Pt, Pd, or Ir by 0.5 to 10%.
  • Ken-ichi Uchida Tatsumi Nonaka, Takeru Ota and Eiji Saitoh, "Longitudinal spin-Seebeck effect in sintered polycrystalline (Mn, Zn) Fe2O4"
  • Appl. Phys. Lett. 97, 262504 (2010) Akihiro Kirihara, Ken-ichi Uchida, Yosuke Kajiwara, Masahiko Ishida, Yasunobu Nakamura, Takashi Manako, Eiji Saitoh & Shinichi Yorozu, “Spin-current-driven thermoelectric coating” Nature Materials2012,11 686 B. F. Miao, S. Y. Huang, D. Qu, and C. L. Chien, "Inverse Spin Hall Effect in a Ferromagnetic Metal", Phys. Rev. Lett. 111, 066602 (2013)
  • thermoelectric conversion element when a thermoelectric conversion element is configured using Pt, there is a problem that the material cost increases. In addition, higher conversion efficiency is also required for thermoelectric conversion efficiency. The abnormal Nernst effect was also difficult to maintain a temperature difference because it was based on a metal material with high thermal conductivity, and high performance could not be expected.
  • Non-Patent Document 3 discloses only a limited material such as Permalloy Py which is an alloy of Ni and Fe as the magnetic metal material. Therefore, knowledge and guidelines regarding materials that enable highly efficient conversion when designing a hybrid element that uses both effects together have not been sufficiently obtained.
  • the conductive film doped with a material such as Au, Pt, Pd, ⁇ ⁇ ⁇ Ir using Cu as a base material described in Patent Document 2 has a problem that it is difficult for a spin current to enter from the inside of a magnetic material, and a large electromotive force is generated. Has not been reported so far.
  • An object of the present invention is to provide a thermoelectric conversion element capable of high-efficiency thermoelectric conversion using a relatively inexpensive material and an electromotive film used therefor.
  • the present invention is a magnetomotive film for a thermoelectric conversion element, which is a magnetic alloy containing Ni, wherein Ni is a base material and a 5d transition metal element is added.
  • the present invention also provides a magnetic layer, a magnetic alloy formed on the magnetic layer and containing Ni, an electromotive film that generates an electromotive force by adding a 5d transition metal element using Ni as a base, A thermoelectric conversion element comprising two terminal portions formed so as to be in contact with the electromotive film at two locations where potentials due to electromotive forces are different.
  • thermoelectric conversion element that can obtain a high thermoelectric conversion efficiency with an inexpensive material compared to a noble metal material system such as Pt or Ir, and an electromotive film used therefor.
  • thermoelectric performance of Ni 97 W 3 / Bi: YIG element deposited on the SGGG substrate of Example 1 of the present invention (temperature difference ⁇ T dependence of thermoelectromotive force V) is expressed as Ni 90 W 10 / Bi: YIG, Ni FIG. 6 is a diagram comparing the performance of / Bi: YIG and Pt / Bi: YIG elements.
  • Ni 97 W 3 / Bi YIG element thermoelectric performance (depending on the temperature difference ⁇ T of the thermoelectromotive force V) deposited on the SGGG substrate of Example 1 of the present invention was directly deposited on the substrate.
  • FIG. 6 is a diagram comparing the thermoelectric performance of the Nernst thermoelectric element (Ni 97 W 3 , Ni).
  • Ni 100-x W x / Bi is a diagram showing a W amount x dependence of the thermoelectric conversion performance V / [Delta] T of the YIG element. It is a diagram illustrating a W amount x dependency of Ni 100-x W x thermoelectric conversion performance V / [Delta] T of the element.
  • thermoelectric performance of Ni 97 Pt 3 / Bi: YIG element (temperature difference ⁇ T dependency of thermoelectromotive force V) formed on the SGGG substrate of Example 1 of the present invention is expressed as the thermoelectric performance of Pt / Bi: YIG element. It is the figure compared.
  • Ni 100-x Pt x / Bi is a diagram showing the Pt amount x dependence of the thermoelectric conversion performance V / [Delta] T of the YIG element. Is a diagram illustrating a Pt amount x dependency of Ni 100-x Pt x thermoelectric conversion performance V / [Delta] T of the element.
  • Ni 100-x Au x / Bi is a diagram showing an Au in an amount x dependence of the thermoelectric conversion performance V / [Delta] T of the YIG element. Is a diagram illustrating an Au in an amount x dependency of Ni 100-x Au x thermoelectric conversion performance V / [Delta] T of the element. It is a perspective view which shows the multilayer type thermoelectric conversion element of the 3rd Embodiment of this invention. It is a perspective view which shows the multilayer element of the Example of this invention.
  • FIG. 1 is a perspective view showing an electromotive film 2 according to an embodiment of the present invention.
  • the electromotive film 2 is a magnetic alloy containing Ni. Ni is used as a base material and a 5d transition metal element is added thereto. An electromotive force V is developed under a temperature gradient.
  • the 5d transition metal elements are Hf, Ta, W, Re, Os, Ir, Pt, and Au.
  • thermoelectric conversion efficiency of a hybrid device that uses both the Spin Seebeck effect and the abnormal Nernst effect.
  • a thermoelectric conversion element that combines a Ni-based alloy with a 5d transition metal added to a Ni host and a magnetic insulator to simultaneously exhibit a spin Seebeck effect and an anomalous Nernst effect is higher than a general spin Seebeck thermoelectric element. It has been found that it exhibits a thermoelectric conversion effect.
  • the thermoelectric conversion element using a Ni-based alloy in which a 5d transition metal is added to the Ni host is more than the thermoelectric conversion element using permalloy (Py) which is an alloy of Ni and Fe shown in Non-Patent Document 3.
  • thermoelectric conversion element having a laminated structure of a Ni-based alloy and a magnetic layer (magnetic insulator or magnetic semiconductor layer) will be described.
  • the Ni-based alloy plays two roles.
  • One is a spin current-current that is generated by the spin Seebeck effect from the temperature gradient in the adjacent magnetic layer, and the spin current injected into the Ni-based alloy is converted to a current by the inverse spin Hall effect to generate an electromotive force. It is a role as a conversion material.
  • the second role is that of an electromotive material in which an electromotive force is directly generated from the temperature gradient by the abnormal Nernst effect in the Ni-based alloy under the temperature gradient.
  • Ni-based alloy material a material having a composition in which a 5% transition metal material is added to a Ni host is used.
  • Non-Patent Document 3 contains Fe in addition to Ni, but Fe is also a relatively light element. As a result, Ni-Fe alloys such as permalloy are It does not produce a very large spin current-current conversion effect.
  • FIG. 2 is a perspective view of the thermoelectric conversion element 1 according to the second embodiment of the present invention.
  • the thermoelectric conversion element 1 is formed by forming the magnetic layer 3 on the substrate 4 and further forming the conductive electromotive film 2 on the magnetic layer 3.
  • pads 5a and 5b are provided in contact with both ends of the electromotive film 2, and terminals 6a and 6b are provided in contact with the pads 5a and 5b, respectively.
  • the magnetic layer 3 is a magnetic material that exhibits the spin Seebeck effect, has a magnetization M 3 in one direction (front to back), and has a temperature gradient in the direction perpendicular to the plane by the spin Seebeck effect.
  • a spin current Js is generated (driven) from T (temperature difference ⁇ T).
  • the direction of the spin current Js is parallel or antiparallel to the direction of the temperature gradient ⁇ T.
  • a temperature gradient ⁇ T in the ⁇ z direction is applied, and a spin current Js along the + z direction or the ⁇ z direction is generated.
  • the substrate 4 side is at a high temperature and the electromotive film 2 side is at a low temperature.
  • the arrow is directed in the direction from the low temperature to the high temperature.
  • the spin current is a vector flow called spin. “Rightward spins flow in the ⁇ Z direction” and “leftward spins flow in the + Z direction” have the same meaning. Therefore, even the “ ⁇ Z direction spin current” sometimes reaches the electromotive film.
  • Examples of the material for the magnetic layer 3 include yttrium iron garnet (YIG, composition is Y 3 Fe 5 O 12 ), bismuth (Bi) -added YIG (Bi: YIG, composition is BiY 2 Fe 5 O 12 ), or Ni -Zn ferrite (composition (Ni, Zn) x Fe 3 -x O 4)) , and the like. From the viewpoint of thermoelectric conversion efficiency, it is desirable that the magnetic layer 3 has a low thermal conductivity. Therefore, it is desirable to use a magnetic insulator in which current does not easily flow (electrons do not easily carry heat).
  • a ferromagnetic Ni-based alloy material is used as the electromotive film 2 and has a magnetization M 2 in the same direction as M 3 .
  • This electromotive film 2 plays the following two roles simultaneously. One is the role of spin current-current conversion that converts the spin current that flows in by the spin Seebeck effect of the magnetic layer 3 into an electromotive force (electric field E SSE ) by the reverse spin Hall effect. The other is the role of generating an electromotive force (electric field E ANE ) directly from the temperature gradient by the abnormal Nernst effect in the electromotive film 2.
  • the direction of the electric field E SSE generated by the spin Seebeck effect is defined by the outer product of the direction of the magnetization M 3 of the magnetic layer 3 and the direction of the temperature gradient ⁇ T (E SSE ⁇ M 3 ⁇ ⁇ T ).
  • the direction of the electric field generated by the abnormal Nernst effect is defined by the outer product of the direction of the magnetization M 2 of the electromotive film 2 and the direction of the temperature gradient ⁇ T (E ANE ⁇ M 2 ⁇ ⁇ T).
  • the direction of magnetization M 2 of the magnetization M 3 and the electromotive film 2 of the magnetic layer 3 is the + y direction, the direction of the temperature gradient ⁇ T the -z direction
  • the direction of the electromotive force is configured to be the + x direction. Note that the direction of the electromotive force shown in FIG. 2 is opposite to that expected from a normal outer product. Since the actual code becomes + x or -x depending on the material of the electromotive film, it is in the direction from the terminal 6a to the terminal 6b in FIG.
  • the electromotive film 2 is made of Ni as a base material (Ni is in an atomic ratio of 90 at%) and a material added with a small amount of a 5d transition metal element having a large spin orbit interaction. .
  • a 5d transition metal material As such a 5d transition metal material, W and Pt have high conversion efficiency. Therefore, it is desirable to use W or Pt, but other 5d transition metal materials Hf, Ta, Re, Os, Ir, and Au may be used.
  • a 5d transition metal material having such a large spin current-current conversion effect is added into Ni, an effective spin current-current is obtained when the electron spin flow is scattered in such 5d transition metal atoms. Conversion occurs, and as a result, highly efficient thermoelectric conversion becomes possible.
  • the addition amount of the 5d transition metal is desirably in the range of 1 to 30 at% in terms of atomic ratio.
  • the film thickness of the electromotive film 2 is about the spin diffusion length (5 to 20 nm) of the Ni-based alloy material to be used, and is preferably 30 nm or less.
  • the pads 5a and 5b are provided in contact with both ends of the electromotive film 2 in order to effectively extract the electromotive force from the thin electromotive film 2.
  • a metal material having a low resistivity is desirable.
  • Au, Pt, Ta, Cu, or the like can be used.
  • the film thickness is desirably thicker than the electromotive film 2, and is preferably 30 nm or more.
  • the electromotive force is finally taken out between the two terminals 6a and 6b in contact with the pads 5a and 5b.
  • the open-circuit voltage between the two terminals 6a and 6b is measured with the voltmeter 10 as shown in FIG. 2, the magnitude of the electromotive force generated by the element can be evaluated.
  • thermoelectric conversion element the manufacturing method of the thermoelectric conversion element 1 which concerns on this embodiment is demonstrated.
  • the magnetic layer 3 is formed by sputtering, metalorganic decomposition (MOD (Metal Organic Deposition)), pulsed laser deposition (PLD (Pulsed Laser Deposition)), sol-gel method, aerosol deposition method. (AD (Aerosol Deposition) method), a ferrite plating method, a liquid phase epitaxy method (LPE (Liquid Phase Epitaxy) method), etc., and the method of forming into a film is mentioned.
  • MOD Metal Organic Deposition
  • PLD Pulsed Laser Deposition
  • sol-gel method aerosol deposition method.
  • AD Arosol Deposition
  • a ferrite plating method a ferrite plating method
  • LPE Liquid Phase Epitaxy
  • the electromotive film 2 As a method for forming the electromotive film 2, it is formed by a reactive sputtering method in an oxygen atmosphere, a MOD method, or the like.
  • the pads 5a and 5b are formed by sputtering, vacuum evaporation, electron beam evaporation, plating, or the like.
  • a thermoelectric conversion element was produced and the effect was verified.
  • a nickel-tungsten alloy Ni 97 W 3 is used as the electromotive film 2 as shown in FIG.
  • thermoelectric conversion element A 0.5 mm thick (GdCa) 3 (GaMgZr) 5 O 12 (hereinafter abbreviated as SGGG (Substituted Gadolinium Gallium Garnet)) substrate 120 nm thick BiY 2 Fe 5 O 12 (Bi: YIG) magnetic film Formed. Furthermore, a thermoelectric conversion element was produced by forming a Ni-based alloy film Ni 97 W 3 with a thickness of 10 nm to be an electromotive film thereon.
  • an organometallic decomposition method which is a coating-based film formation method is used for the formation of the YIG magnetic film.
  • MOD method organometallic decomposition method which is a coating-based film formation method is used for the formation of the YIG magnetic film.
  • MOD method organometallic decomposition method
  • a YIG was formed by applying a solution (MOD solution) in which an organic metal containing Y and Fe was dissolved by spin coating (rotation speed: 1000 rpm
  • Ni 97 W 3 is now using Ni 97 W 3 alloy target produced sintered was formed by magnetron sputtering.
  • thermoelectric conversion element an element using platinum (Pt) and Ni, which are currently generally used as an electromotive film for a spin Seebeck element, was also prepared.
  • Pt platinum
  • Ni which are currently generally used as an electromotive film for a spin Seebeck element.
  • a Bi: YIG magnetic film having a film thickness of 120 nm is formed on the SGGG substrate by the same method as described above, and then a Pt film having a film thickness of 10 nm is formed thereon by sputtering. did.
  • thermoelectric properties of the fabricated hybrid spin thermoelectric element (Ni 97 W 3 / Bi: YIG / SGGG substrate) will be described.
  • a sample obtained by cutting the wafer manufactured by the above method into 8 ⁇ 2 mm is used.
  • the Bi: YIG magnetic film is magnetized in the short direction of the Ni 97 W 3 film
  • a temperature difference ⁇ T is applied between the upper and lower ends in the direction perpendicular to the surface, and the spin Seebeck effect (SSE) and anomalous Nernst effect
  • SSE spin Seebeck effect
  • Fig. 4 shows the thermoelectric characteristics of a hybrid spin thermoelectric element (Ni 97 W 3 / Bi: YIG) that uses both SSE and ANE.
  • this Ni 97 W 3 / Bi: YIG element has a heat that is about four times larger than that of a hybrid spin thermoelectric element (Py / Bi: YIG) using Py having the same configuration as that of Non-Patent Document 3. The electromotive force performance is shown.
  • Fig. 4 also shows the evaluation results of Ni / Bi: YIG elements using Ni as the metal film. Compared with this, the electromotive force performance of Ni 97 W 3 / Bi: YIG elements is more than doubled. high. It is inferred that the W added in the Ni host effectively scatters the spin current, resulting in an increase in spin current-electromotive force conversion. However, the performance of Ni 90 W 10 / Bi: YIG elements with a further increased amount of W added was conversely reduced (FIG. 4), and it was confirmed that there was an appropriate range for the amount of W added.
  • the electromotive force evaluation result of the same Ni 97 W 3 / Bi: YIG element is shown as the thermoelectric power of the element in which Ni 97 W 3 and Ni are directly formed on the substrate without using the magnetic insulating film (Bi: YIG). Shown in comparison with performance.
  • Ni 97 W 3 / Bi YIG element, in which SNE signal is added to ANE and both contribute to the output voltage compared to Ni 97 W 3 element, Ni element where only ANE contributes to the signal, a larger electromotive force is obtained It has been shown that [Example 2] Thermoelectric conversion using Ni 100-x W x formed by gradually changing the W addition ratio x (at%) as the electromotive film in order to investigate the optimum addition amount of W in accordance with the result of Example 1 A device was fabricated and the composition dependence of thermoelectric conversion performance was examined.
  • the hybrid spin thermoelectric element of this example uses an SGGG substrate as in Example 1, and after forming a Bi: YIG film having a thickness of 120 nm on the substrate by the MOD method, the film thickness is 10 nm by the sputtering method. Ni 100-x W x film was formed.
  • FIG. 6 shows the dependence of the thermoelectric conversion performance V / ⁇ T on the W addition amount x.
  • the thermoelectric performance depends on x, and the performance is improved by the addition of W. However, when x exceeds a certain amount, the performance is decreased. From this experiment, the optimum value of x is 3 (at%), and the addition ratio x that brings about a significant performance improvement effect by adding W is preferably 1 (at%) or more and 5 (at%) or less.
  • thermoelectric conversion element was produced and the effect was verified.
  • a nickel-platinum alloy Ni 97 Pt 3 was used as the electromotive film 2.
  • a 120 nm thick BiY 2 Fe 5 O 12 (Bi: YIG) magnetic film is formed on the substrate, and a 10 nm thick Ni-based alloy film Ni is further formed thereon. It was produced by forming 97 Pt 3 .
  • Ni 97 Pt 3 was formed by magnetron sputtering using a sintered Ni 97 Pt 3 alloy target.
  • thermoelectric conversion element an element using platinum (Pt), which is generally employed as an electromotive film for a spin Seebeck element, was also prepared at the same time.
  • Pt platinum
  • a Bi: YIG magnetic film having a film thickness of 120 nm is formed on the SGGG substrate by the same method as described above, and then a Pt film having a film thickness of 10 nm is formed thereon by sputtering. did.
  • the wafer produced by the reactive sputtering method was cut into a 2 ⁇ 8 mm sample, and its thermoelectric characteristics were evaluated while applying a temperature gradient from the electromotive film to the magnetic film as shown in FIG. In this way, when the temperature difference ⁇ T is applied in the thickness (perpendicular) direction of the element including the substrate, the electromotive force V is generated in the in-plane direction orthogonal to the temperature gradient and the direction of the magnetization M of the magnetic film. .
  • FIG. 8 shows the temperature difference ⁇ T dependence of the thermoelectromotive force V of Ni 97 Pt 3 / Bi: YIG / SGGG in comparison with the Pt / Bi: YIG / SGGG element.
  • the absolute value of the thermoelectric coefficient of the element of Example 3 using Ni 97 Pt 3 was 2.2 ⁇ V / K, which was about 2.2 times that of Pt.
  • thermoelectric conversion output voltage larger than the precious metal Pt can be obtained by the combination.
  • Example 4 Thermoelectric conversion using Ni 100-x Pt x formed by varying the Pt addition ratio x (at%) stepwise in order to investigate the optimum addition amount of Pt based on the result of Example 3 A device was fabricated and the composition dependence of thermoelectric conversion performance was examined.
  • the hybrid spin thermoelectric element of this example uses an SGGG substrate as in Example 1, and after forming a Bi: YIG film having a thickness of 120 nm on the substrate by the MOD method, the film thickness is 10 nm by the sputtering method.
  • a Ni 100-x Pt x film was formed.
  • FIG. 9 shows the dependence of the thermoelectric conversion performance V / ⁇ T on the Pt addition amount x.
  • the thermoelectric performance depends on x, and the performance is improved by the addition of Pt. However, when x exceeds a certain amount, the performance decreases conversely. From this experiment, the optimum value of x is 13 (at%), and the addition ratio x that provides a significant performance improvement effect by adding Pt is preferably 3 (at%) or more and 30 (at%) or less.
  • Example 5 In Example 5, as shown in FIG. 3, a device using a nickel-platinum alloy as the electromotive film 2 was also prototyped and evaluated. In order to investigate the optimal addition amount of Au, a thermoelectric conversion element using Ni 100-x Au x formed by stepping the addition ratio x (at%) of Au as an electromotive film was produced, and the thermoelectric conversion performance The composition dependence of was investigated.
  • the hybrid spin thermoelectric element of this example uses an SGGG substrate as in Example 1, and after forming a Bi: YIG film having a thickness of 120 nm on the substrate by the MOD method, the film thickness is 10 nm by the sputtering method. Ni 100-x Au x film was formed.
  • FIG. 11 shows the dependence of the thermoelectric conversion performance V / ⁇ T on the Au addition amount x.
  • the thermoelectric performance depends on x, and the performance is improved by the addition of Au. However, when x exceeds a certain amount, the performance deteriorates conversely. From this experiment, the optimum value of x is 15 (at%), and the addition ratio x that provides a significant performance improvement effect by adding Au is preferably 3 (at%) or more and 25 (at%) or less.
  • FIG. 13 shows a perspective view of the multilayer thermoelectric conversion element.
  • thermoelectric conversion element 1 a plurality of magnetic layers 3 and electromotive films 2 are alternately laminated on a substrate 4.
  • FIG. 13 a total of four magnetic layers and electromotive films are alternately laminated.
  • pads 5a and 5b are formed in contact with all the plurality of electromotive films 2, and terminals 6a and 6b in contact with the pads 5a and 5b are formed, respectively.
  • a ferromagnetic Ni-based alloy material is used for the electromotive film 2 as in the first embodiment.
  • Each electromotive film 2 and each magnetic layer 3 have magnetizations M 2 and M 3 in the same direction, that is, in the plane and from the front to the back of the paper.
  • the plurality of magnetic layers 3 are each a magnetic material that exhibits a spin Seebeck effect as in the case of the second embodiment. Under the temperature gradient ⁇ T (temperature difference ⁇ T) in the perpendicular direction, A spin current Js is generated (driven) in the body layer 3.
  • the material for the magnetic layer 3 include yttrium iron garnet (YIG, composition is Y 3 Fe 5 O 12 ), bismuth (Bi) -added YIG (Bi: YIG, composition is BiY 2 Fe 5 O 12 ), or Ni -Zn ferrite (composition (Ni, Zn) x Fe 3 -x O 4)) , and the like.
  • the magnetic layer 3 has a low thermal conductivity. Therefore, it is desirable to use a magnetic insulator in which current does not easily flow (electrons do not easily carry heat).
  • the spin current generated in each magnetic layer 3 flows to the electromotive film 2 that is in contact with the upper and lower sides, where it is converted into an electromotive force (electric field E SSE ) by the inverse spin Hall effect.
  • E SSE electromotive force
  • the electromotive film 2 sandwiched between the magnetic layers 3 receives the contribution of the spin current from the upper and lower magnetic layers 3, the amount of spin current and the electromotive force that flow in the electromotive film 2 are as a result. It is about twice as large as in the first embodiment.
  • the Nernst electromotive force (electric field E ANE ) is directly generated from the temperature gradient by the abnormal Nernst effect in the electromotive film 2. Similar to the second embodiment, in this embodiment, the two effects strengthen each other and a large electromotive force is obtained.
  • thermoelectromotive force may be obtained as compared with the element of the second embodiment.
  • the plurality of Ni-based alloy films 2 are electrically connected in parallel, the internal resistance of the element can be reduced, and a larger power can be taken out.
  • thermoelectric conversion element of the present invention Although only one type of 5d transition metal is added in the first and second embodiments, a plurality of types such as W and Pt can be added. [Example of this embodiment] Next, specific examples of the thermoelectric conversion element of the present invention will be described with reference to FIG.
  • a polyimide substrate having a thickness of 25 ⁇ m is used as the substrate 4
  • (Ni, Zn) Fe 2 O 4 having a thickness of 1 ⁇ m is used as the magnetic layer 3
  • Ni 97 W 3 having a thickness of 10 nm is used as the electromotive film 2.
  • (Ni, Zn) Fe 2 O 4 having a film thickness of 3 ⁇ m was produced on a polyimide substrate by using a ferrite plating method.
  • metal hydroxide ions were adsorbed by bringing an aqueous solution containing Ni 2+ , Zn 2+ , Fe 2+ ions, etc. into contact with the polyimide surface. Thereafter, (ii) these are oxidized by an oxidizing agent (Fe 2+ ⁇ Fe 3+ ), and (iii) is further subjected to ferrite crystallization reaction with metal hydroxide ions in an aqueous solution, thereby forming a ferrite film on the substrate surface. did.
  • a ferrite film (Ni, Zn) Fe 2 O 4 having a thickness of 1 ⁇ m was formed. Further, Ni 97 W 3 having a thickness of 10 nm was formed as a Ni-based alloy film 3 on the upper surface by a sputtering method.
  • the multilayer element shown in FIG. 14 was manufactured by repeating the ferrite film formation by the ferrite plating method and the Ni 97 W 3 film formation by the sputtering method four times.

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

本発明の目的は、比較的安価な素材を用いて高効率の熱電変換を可能とする熱電変換素子を提供することである。そのために本発明は、磁性体層と、前記磁性体層上に形成され、Niが含まれる磁性合金であり、Niを母体とし5d遷移金属元素が添加され起電力を発生する起電膜と、前記起電力によるポテンシャルが異なる2箇所で前記起電膜にそれぞれ接触するように形成された2個の端子部と、を備える。

Description

熱電変換素子用起電膜及び熱電変換素子
 本発明は、熱電変換素子用起電膜及び熱電変換素子に関し、特にスピンゼーベック効果および異常ネルンスト効果に基づく熱電変換素子用起電膜及び熱電変換素子に関する。
 持続可能な社会に向けた熱マネジメント技術の一つとして、熱電変換素子への期待が高まっている。熱は体温、太陽熱、エンジン、工業排熱など様々な場面から回収することができる最も一般的なエネルギー源である。そのため、エネルギー利用の高効率化や、ユビキタス端末・センサ等への給電、あるいは熱流センシングによる熱の流れの可視化といった様々な用途において、熱電変換は今後ますます重要となることが予想される。
 このような中、磁性材料に温度勾配(温度差)を印加することでスピン角運動量の流れ(スピン流)を生成する「スピンゼーベック効果(SSE:Spin Seebeck Effect)」に基づく熱電変換素子が近年提案されている(特許文献1、非特許文献1~2)。スピンゼーベック効果とは、磁性体に温度差を与えることによってスピン流が生成される現象である。スピンゼーベック効果に基づく熱電変換素子は、一方向に磁化を有する磁性絶縁体層と、導電性を持つ起電膜の2層構造によって構成される。この素子に面直方向の温度勾配を印加すると、スピンゼーベック効果によって磁性絶縁体中にスピン流というスピン角運動量の流れが誘起され、これが起電膜に注入される。すると起電膜中の「逆スピンホール効果(Inverse spin Hall effect)」によって面内方向の電流に変換される。逆スピンホール効果とは、スピン流と垂直な方向に起電力が発生する現象である。これにより、温度勾配から電気を生成する「熱電変換」が可能となる。熱伝導率が比較的小さい磁性絶縁体を用いて構成されることから、効果的な熱電変換を行うための必要条件である温度差の保持が可能となる。
 これまで一般的にスピン流-電流変換を行う材料として、スピンホール効果の大きな白金(Pt)が主に採用されていた。例えば特許文献1では、磁性絶縁体として単結晶のイットリウム鉄ガーネット(YIG:Yttrium Iron Garnet)(ガーネットフェライトの一種)、起電膜として白金(Pt)ワイヤを用いて熱電変換素子を形成し、熱電変換を行っている。
 一方、スピンゼーベック効果とは別に、導電性のある磁性金属における異常ネルンスト効果(ANE(Anomalous Nernst Effect))と呼ばれる別種の熱電効果も古くから知られている。異常ネルンスト効果とは、磁化した磁性体に熱流を流した際、磁化の向きと熱流の向きのそれぞれと直交する方向(外積方向)に電圧が生じる現象である。異常ネルンスト効果に基づく熱電変換素子は、一方向に磁化を有するNiやFeなどの磁性金属層からなり、これに面直方向の温度勾配を印加すると、面内方向に電流が駆動される。
 このように、スピンゼーベック効果と異常ネルンスト効果はいずれも面直方向の温度勾配によって面内方向の起電力を誘起するという同様の対称性をもつ効果である。そのためこれら2つの効果を併用するハイブリッド型スピン熱電素子の開発も報告されている(非特許文献3)。
 また特許文献2の(0024)段落には、導電膜の説明として「導電膜30は、典型的には、金属膜である。その金属膜30の材料は、「スピン軌道相互作用」の大きな金属材料を含有する。例えば、スピン軌道相互作用の比較的大きなAuやPt、Pd、Ir、その他f軌道を有する金属材料、またはそれらを含有する合金材料を用いる。また、Cuなどの一般的な金属膜材料に、Au,Pt,Pd,Irなどの材料を0.5~10%ドープするだけでも、同様の効果を得ることはできる。」とある。
国際公開第2009/151000号 国際公開第2012/046948号
Ken-ichi Uchida, Tatsumi Nonaka, Takeru Ota and Eiji Saitoh, "Longitudinal spin-Seebeck effect in sintered polycrystalline (Mn, Zn)Fe2O4", Appl. Phys. Lett. 97, 262504 (2010) Akihiro Kirihara, Ken-ichi Uchida, Yosuke Kajiwara, Masahiko Ishida, Yasunobu Nakamura, Takashi Manako, Eiji Saitoh & Shinichi Yorozu,"Spin-current-driven thermoelectric coating" Nature Materials 11, 686(2012) B. F. Miao, S. Y. Huang, D. Qu, and C. L. Chien, "Inverse Spin Hall Effect in a Ferromagnetic Metal", Phys. Rev. Lett. 111, 066602(2013)
 しかし、Ptを用いて熱電変換素子を構成した場合、材料コストが高くなるという課題がある。加えて、熱電変換効率についても更なる高変換効率化が求められる。異常ネルンスト効果も、熱伝導率の高い金属材料をベースとするために温度差の保持が困難で、やはり高い性能は期待できなかった。
 一方、非特許文献3に示されているようなスピンゼーベック効果と異常ネルンスト効果を併用するデバイスであれば、熱伝導率が比較的低い磁性絶縁体を用いて素子における温度差を保持しつつ、両方の効果を加算することで高変換効率化が可能となる。ただ、非特許文献3においては、磁性金属材料としてはNiとFeの合金であるパーマロイPyといった限られた材料のみしか開示されていない。そのため、両効果を併用するハイブリッド素子を設計する際の高効率な変換を可能にする材料等に関する知見や指針はこれまで十分に得られていなかった。
 また特許文献2に記載されている、Cuを母材としてAu, Pt, Pd, Irなどの材料をドープした導電膜では、磁性体から内部にスピン流が入りにくいという問題があり、大きな起電力はこれまで報告されていない。
 本発明は、比較的安価な素材を用いて高効率の熱電変換を可能とする熱電変換素子とそれに用いる起電膜を提供することを目的とする。
 本発明は、Niが含まれる磁性合金であり、Niを母体とし5d遷移金属元素を添加したことを特徴とする熱電変換素子用起電膜である。
 また本発明は、磁性体層と、前記磁性体層上に形成され、Niが含まれる磁性合金であり、Niを母体とし5d遷移金属元素が添加され起電力を発生する起電膜と、前記起電力によるポテンシャルが異なる2箇所で前記起電膜にそれぞれ接触するように形成された2個の端子部と、を備えたことを特徴とする熱電変換素子である。
 本発明によると、PtやIrなどの貴金属材料系と比べて安価な材料で高い熱電変換効率が得られる熱電変換素子及びそれに用いる起電膜が得られる。
本発明の第1の実施形態の起電膜を示す斜視図である。 本発明の第2の実施形態の熱電変換素子を示す斜視図である。 本発明の実施例1の熱電変換素子を示す斜視図である。 本発明の実施例1のSGGG基板上に成膜したNi97W3/Bi:YIG素子の熱電性能(熱起電力Vの温度差ΔT依存性)を、Ni90W10/Bi:YIG, Ni/Bi:YIG、及びPt/Bi:YIG素子の性能と比較した図である。 本発明の実施例1のSGGG基板上に成膜したNi97W3/Bi:YIG素子の熱電性能(熱起電力Vの温度差ΔT依存性)を、基板に直接Ni系磁性膜を成膜したネルンスト熱電素子(Ni97W3,Ni)の熱電性能と比較した図である。 Ni100-xWx/Bi:YIG素子の熱電変換性能V/ΔTのW添加量x依存性を示す図である。 Ni100-xWx素子の熱電変換性能V/ΔTのW添加量x依存性を示す図である。 本発明の実施例1のSGGG基板上に成膜したNi97Pt3/Bi:YIG素子の熱電性能(熱起電力Vの温度差ΔT依存性)を、Pt/Bi:YIG素子の熱電性能と比較した図である。 Ni100-xPtx/Bi:YIG素子の熱電変換性能V/ΔTのPt添加量x依存性を示す図である。 Ni100-xPtx素子の熱電変換性能V/ΔTのPt添加量x依存性を示す図である。 Ni100-xAux/Bi:YIG素子の熱電変換性能V/ΔTのAu添加量x依存性を示す図である。 Ni100-xAux素子の熱電変換性能V/ΔTのAu添加量x依存性を示す図である。 本発明の第3の実施形態の多層型熱電変換素子を示す斜視図である。 本発明の実施例の多層素子を示す斜視図である。
 本発明の実施の形態について図面を参照して以下、詳細に説明する。
(第1の実施形態)
 図1は本発明の実施形態の起電膜2を示す斜視図である。分かり易いように起電膜2の下にある磁性体層3とその下にある基板4も破線で示している。起電膜2はNiが含まれる磁性合金であり、Niを母体としそれに5d遷移金属元素を添加する。温度勾配下で起電力Vを発現する。5d遷移金属元素はHf、Ta、W、Re、Os、Ir、Pt、Auである。
 本発明者らは、スピンゼーベック効果と異常ネルンスト効果を併用するハイブリッド素子の熱電変換効率を高める研究開発を行ってきた。その中で、Niホストに5d遷移金属を添加したNi系合金と磁性絶縁体を組み合わせてスピンゼーベック効果と異常ネルンスト効果を同時に発現させる熱電変換素子が、一般的なスピンゼーベック熱電素子に比べて高い熱電変換効果を示すことを見出した。また、このNiホストに5d遷移金属を添加したNi系合金を用いた熱電変換素子は、非特許文献3で示されているNiとFeの合金であるパーマロイ(Py)を用いた熱電変換素子よりも、数倍熱起電力が大きいことが実験から明らかになった。本実施形態の起電膜を熱電変換素子に用いれば、PtやIrなどの貴金属材料系と比べて安価な材料で、しかも高い熱電変換効率が得られる。
(第2の実施形態)
 まず、本発明の第2の実施形態として、Ni系合金と磁性体層(磁性絶縁体もしくは磁性半導体層)との積層構造による熱電変換素子について説明する。本実施形態の熱電変換において、Ni系合金は2つの役割を果たす。一つは近接する磁性体層において温度勾配からスピンゼーベック効果によって生じ、Ni系合金へと注入されるスピン流を、逆スピンホール効果によって電流に変換し、起電力を生成するというスピン流-電流変換材料としての役割である。そして二つ目の役割として、温度勾配下におけるNi系合金内の異常ネルンスト効果によって、温度勾配から直接起電力が生成する起電材料としての役割である。
 なお、ここではNi系合金材料として、Niホストに5d遷移金属材料を数%添加した組成の材料を用いる。
 一般的に効率的なスピン流-電流変換を行うには、スピン軌道相互作用の大きな材料を用いることが望ましいが、比較的軽い元素であるNiでは、スピン軌道相互作用はさほど大きくない。また、非特許文献3で磁性金属材料として採用されているパーマロイでは、Niに加えFeが含まれているが、Feも比較的軽い元素であり、結果的にパーマロイのようなNi-Fe合金はさほど大きなスピン流-電流変換効果を発現しない。
 一方、このNiにスピン軌道相互作用の大きな5d遷移金属材料を少量添加すると、電子スピンの流れがNiホスト内の5d遷移金属原子によって散乱される過程でスピン流-電流変換が効果的に進行する。そのためこのような合金材料を用いることで高性能な熱電変換を達成することが可能になる。またNiはPtやIrなどの貴金属材料系と比べて安価な材料であるので、安価でしかも熱電変換効率の高い素子を得ることができる。
 効率的に散乱させるためには5d遷移金属を1at%以上添加することが望ましい。一方5d遷移金属材料を添加しすぎた場合、Ni系合金の磁化の低下によって異常ネルンスト効果が小さくなり、熱電変換性能も逆に下がる。従って5d遷移金属は30at%以下が望ましい。
[素子構造の説明]
 図2は本発明の第2の実施形態である熱電変換素子1の斜視図である。基板4上に磁性体層3を形成し、さらに磁性体層3上に導電性の起電膜2を形成して熱電変換素子1を形成する。起電力を取り出すために、起電膜2の両端部に接する形でパッド5a、5bを、そしてさらにパッド5a、5bにそれぞれ接する端子6a、6bを備えている。
 磁性体層3は、スピンゼーベック効果を発現する磁性体材料であり、面内で一方向(紙面手前から奥の方向)の磁化M3を有し、スピンゼーベック効果によって面直方向の温度勾配∇T(温度差ΔT)からスピン流Jsを生成(駆動)する。スピン流Jsの方向は、温度勾配∇Tの方向と平行あるいは反平行である。図2で示される例では、-z方向の温度勾配∇Tが印加され、+z方向あるいは-z方向に沿ったスピン流Jsが生成される。本実施形態では基板4側が高温で起電膜2側が低温であり、図2では低温から高温に向かう方向に矢印を向けてある。また、スピン流というのはスピンというベクトルの流れである。「右向きのスピンが-Z方向に流れる」ことと「左向きのスピンが+Z方向に流れる」ことは同じ意味である。従って「-Z方向のスピン流」であっても起電膜に到達する場合がある。
 磁性体層3の材料としては、イットリウム鉄ガーネット(YIG,組成はYFe12)、ビスマス(Bi)を添加したYIG(Bi:YIG, 組成はBiYFe12)、もしくはNi-Znフェライト(組成は(Ni,Zn)xFe3-xO4))などが挙げられる。尚、熱電変換効率の観点からは磁性体層3は熱伝導率が小さいことが望ましいため、電流の流れにくい(電子が熱を運びにくい)磁性絶縁体を用いることが望ましい。
 また本実施形態では起電膜2として強磁性のNi系合金材料を用い、M3と同方向の磁化M2を有する。この起電膜2は、以下の二つの役割を同時に果たす。一つは、磁性体層3のスピンゼーベック効果によって流入するスピン流を、逆スピンホール効果によって起電力(電場ESSE)に変換するスピン流-電流変換の役割である。もう一つは、起電膜2における異常ネルンスト効果によって温度勾配から直接起電力(電場EANE)を生成する役割である。
 ここで、スピンゼーベック効果によって生成される電場ESSEの向きは、磁性体層3の磁化M3の方向と温度勾配∇Tの方向との外積で規定される(ESSE∝M3×∇T)。また同様に、異常ネルンスト効果によって生成される電場の向きは、起電膜2の磁化M2の方向と温度勾配∇Tの方向との外積で規定される(EANE∝M2×∇T)。このほか実際の電場の符号は材料にも依存するが、本実施形態の起電膜2を用いた素子構成の場合、磁化M3の方向と磁化M2の方向が同一方向であれば、ある温度勾配∇Tに対してESSEとEANEはいずれも同一方向に生成される。(電場ESSEとEANEが同一方向でない場合は、両者をベクトル合成した方向に起電力が発生する。)従ってこのような条件の下では、2つの効果がお互いを強め合い、生成される電場の絶対値は|EHybrid|=|ESSE|+|EANE|となる。すなわち、2つの効果による起電力が加算される。なお、本実施形態では、図2に示されるように、磁性体層3の磁化M3および起電膜2の磁化M2の方向は+y方向であり、温度勾配∇Tの方向は-z方向であり、起電力の方向は+x方向となるように構成されている。なお図2で示している起電力の方向が通常の外積から想像されるのとは逆の方向になっている。実際の符号は起電膜の材料によって+xになったり-xになったりするので、図2では端子6aから端子6bに向かう方向にしている。
 この起電膜2として本実施形態では、Niを母材として(Niが原子割合にして90at%となるようにして)、それにスピン軌道相互作用の大きな5d遷移金属元素を少量添加した材料を用いる。このような5d遷移金属材料としては、WとPtが変換効率が大きい。従ってWまたはPtを用いることが望ましいが、他の5d遷移金属材料Hf、Ta、Re、Os、Ir、Auでも構わない。このように大きなスピン流-電流変換効果を有する5d遷移金属材料をNi内に添加すれば、電子スピンの流れがこのような5d遷移金属原子において散乱される際に、効果的なスピン流-電流変換が生じ、結果的に高効率な熱電変換が可能となる。
 PtやWのような非磁性の5d遷移金属を添加して効率的に散乱させるためには1at%以上添加することが望ましい。一方添加しすぎた場合、Ni系合金の磁化の低下によって異常ネルンスト効果が小さくなり、本実施形態のような2つの効果を併用する熱電変換素子の性能は逆に低下してしまうので30at%以下が望ましい。従って、5d遷移金属を添加量は原子割合にして1~30at%の範囲が望ましい。なお、起電膜2の膜厚は用いるNi系合金材料のスピン拡散長程度(5~20nm)で、30nm以下が望ましい。
 パッド5a,5bは、薄い起電膜2から起電力を効果的に取り出すために、起電膜2の両端部に接する形で備えられている。パッド5a,5bの材料としては、抵抗率の低い金属材料が望ましく、例えばAu、Pt、Ta、Cuなどを用いることができる。膜厚は起電膜2より厚いことが望ましく、30nm以上が望ましい。パッド5a,5bを形成すると起電膜と端子6a、6bの間の接触抵抗を下げることができる。また、薄い起電膜2上にピンポイントで端子を付けるよりも、ある程度の膜厚のあるパッドを挟んだ方が、等価回路的にも端子間の抵抗が小さくなる。
 起電力はこのパッド5a,5bに接する2つの端子6aと端子6bの間で最終的に取り出される。例えば図2のように2つの端子6a、6bの間の開放電圧を電圧計10で測定すれば、素子で生成される起電力の大きさを評価することができる。
 なお、熱電変換機能を具備するにあたって、パッド5a,5bは必須ではなく、端子6a、6bを起電膜2上に直接形成しても良い。
[熱電変換素子の製造方法]
 次に、本実施形態に係る熱電変換素子1の製造方法を説明する。
 まず、磁性体層3の形成方法としては、スパッタ法、有機金属分解法(MOD(Metal Organic Deposition)法)、パルスレーザー堆積法(PLD(Pulsed Laser Deposition)法)、ゾルゲル法、エアロゾルデポジション法(AD(Aerosol Deposition)法)、フェライトめっき法、液相エピタキシー法(LPE(Liquid Phase Epitaxy)法)などのいずれかの方法を用いて成膜する方法が挙げられる。この場合、磁性体層3は何らかの基板上に成膜される。
 起電膜2の形成方法としては、酸素雰囲気中での反応性スパッタ法や、MOD法などで形成する。
 パッド5a、5bはスパッタ法や真空蒸着法、電子ビーム蒸着法、めっき法などで形成する。
[実施例1]
 本発明の効果を検証するために、熱電変換素子を作製し、効果の検証を行った。本実施形態では図3に示すように、起電膜2としてニッケル-タングステン合金Ni97W3を用いた。
 厚さ0.5mmの(GdCa)3(GaMgZr)5O12(以後SGGG(Substituted Gadolinium Gallium Garnetの略称)と表記する)基板上に膜厚120nmのBiY2Fe5O12(Bi:YIG)磁性膜を形成した。さらに、その上に起電膜となる膜厚10nmのNi系合金膜Ni97W3を形成することで、熱電変換素子を作製した。ここで、YIG磁性膜の形成には塗布ベースの成膜法である有機金属分解法(MOD法)を用いている。この方法では、Y,Feが含まれた有機金属を溶かした溶液(MOD溶液)をスピンコート(回転数1000rpm)で塗布し、700℃でアニールすることでYIGを形成した。
 Ni97W3は、ここでは焼結作製したNi97W3合金ターゲットを用い、マグネトロンスパッタ法によって形成した。
 また、この熱電変換素子の性能を比較するため、現在スピンゼーベック素子用の起電膜として一般的に採用されている白金(Pt)、及びNiを用いた素子も同時に用意した。これらの素子も、上記と同じ方法でSGGG基板上に膜厚120nm のBi:YIG磁性膜を成膜した後、その上に膜厚10nmのPtをスパッタ法で形成することで比較用素子を作製した。
 次に、作製したハイブリッド型スピン熱電素子(Ni97W3/Bi:YIG/SGGG基板)の熱電特性評価について述べる。ここでは、上記の方法で作製したウェハを8×2 mmに切り出した試料を用いている。Ni97W3膜の短手方向にBi:YIG磁性膜を磁化させた状態で、上端と下端の間に面直方向に温度差ΔTを印加し、スピンゼーベック効果(SSE)と異常ネルンスト効果の加算によってNi97W3膜の長手方向に生じる起電力(出力電圧)を測定した。
 図4に、SSEとANEを併用するハイブリッド型スピン熱電素子(Ni97W3/Bi:YIG)の熱電特性を、膜厚等の条件を揃えたSSEのみの標準的なスピン熱電素子(Pt/Bi:YIG)や、パーマロイPy(Ni80Fe20)を用いたハイブリッド型スピン熱電素子(Py/Bi:YIG)等と比較して示した。ハイブリッド型素子の熱電変換性能はV/ΔT=2.9μV/Kで、通常のスピン熱電素子Pt/Bi:YIGの約3倍程度の起電力性能を示した。4端子測定で評価したNi97W3の抵抗率はρ=77nΩmで、Pt(ρ=64nΩm)と比べると若干高い。また、このNi97W3/Bi:YIG素子は、非特許文献3と同様の構成であるPyを用いたハイブリッド型スピン熱電素子(Py/Bi:YIG)と比較しても4倍程度大きな熱起電力性能を示している。
 図4にはNiを金属膜として用いたNi/Bi:YIG素子の評価結果も同時に示しているが、これと比較してもNi97W3/Bi:YIG素子の起電力性能は2倍以上高い。Niホスト中に添加されたWがスピン流を効果的に散乱することで、スピン流-起電力変換の増大が生じているものと推察される。ただ、W添加量をさらに増やしたNi90W10/Bi:YIG素子では性能は逆に低下しており(図4)、W添加量には適切な範囲があることが確認された。
 また図5では、同じNi97W3/Bi:YIG素子の起電力評価結果を、磁性絶縁膜(Bi:YIG)を用いずにNi97W3及びNiを直接基板に成膜した素子の熱電性能と比較して示している。ANEのみが信号に寄与するNi97W3素子、Ni素子に比べ、SSE信号がANEに加算され共に出力電圧に寄与するNi97W3/Bi:YIG素子では、より大きな起電力が得られていることが示されている。
[実施例2]
 実施例1の結果を受け、Wの最適添加量を調べるために、Wの添加割合x(at%)を段階的に振って形成したNi100-xWxを起電膜として用いた熱電変換素子を作製し、熱電変換性能の組成依存性を調べた。
 本実施例のハイブリッド型スピン熱電素子は、実施例1と同様にSGGG基板を用いており、基板上にやはりMOD法によって膜厚120nmのBi:YIG膜を形成した後、スパッタ法によって膜厚10nmのNi100-xWx膜を成膜した。図6に熱電変換性能V/ΔTのW添加量x依存性を示す。熱電性能はxに依存しており、Wの添加により性能の向上が見られるが、xがある一定量を超えると性能は逆に低下する。この実験から、xの最適値は3(at%)であり、W添加による有意な性能向上効果をもたらす添加割合xとして1(at%)以上かつ5(at%)以下が望ましい。
 また、SGGG上に直接Ni100-xWx膜を形成した素子も作製・評価している。この素子ではスピンゼーベック効果が発現せず、異常ネルンスト効果のみが熱電信号に寄与する。図7にこの異常ネルンスト素子の熱電変換性能V/ΔTのW添加量x依存性を示す。ハイブリッド型スピン熱電素子と比較すると信号は小さいが、やはりx=3(at%)で信号が最大となっている。
[実施例3]
 本発明の効果を検証するために、熱電変換素子を作製し、効果の検証を行った。本実施例では図3に示すように、この起電膜2としてニッケル-白金合金Ni97Pt3を用いた。
 ここでも実施例1と同様の製造プロセスを用いて、基板上に膜厚120nmのBiY2Fe5O12(Bi:YIG)磁性膜を、そしてさらにその上に膜厚10nmのNi系合金膜Ni97Pt3を形成することで作製した。Ni97Pt3は、焼結作製したNi97Pt3合金ターゲットを用いて、マグネトロンスパッタ法によって形成した。
 また、この熱電変換素子の性能を比較するため、現在スピンゼーベック素子用の起電膜として一般的に採用されている白金(Pt)を用いた素子も同時に用意した。これらの素子も、上記と同じ方法でSGGG基板上に膜厚120nmのBi:YIG磁性膜を成膜した後、その上に膜厚10nmのPtをスパッタ法で形成することで比較用素子を作製した。
 上記の反応性スパッタ法で作製したウェハを2×8mmの試料にカットし、図3のように起電膜から磁性膜に向けて温度勾配を印加しながらその熱電特性を評価した。このように基板を含む素子の厚さ(面直)方向に温度差ΔTを印加された場合、温度勾配と磁性膜の磁化Mの向きにそれぞれ直交する面内方向に起電力Vが生成される。
 図8にNi97Pt3/Bi:YIG/SGGGの熱起電力Vの温度差ΔT依存性を、Pt/Bi:YIG/SGGG素子と比較して示した。Ni97Pt3を用いた本実施例3の素子の熱電係数の絶対値は2.2μV/Kで、Ptの場合の約2.2倍の値を示した。
 以上述べたように、Ni97W3起電膜(実施例1)の場合に比べると出力は小さいものの、Ni97Pt3を起電膜として用いた場合でも、異常ネルンスト効果とスピンゼーベック効果の組み合わせによって、貴金属であるPtよりも大きな熱電変換出力電圧が得られることが実証された。
[実施例4]
 実施例3の結果を受け、Ptの最適添加量を調べるために、Ptの添加割合x(at%)を段階的に振って形成したNi100-xPtxを起電膜として用いた熱電変換素子を作製し、熱電変換性能の組成依存性を調べた。
 本実施例のハイブリッド型スピン熱電素子は、実施例1と同様にSGGG基板を用いており、基板上にやはりMOD法によって膜厚120nmのBi:YIG膜を形成した後、スパッタ法によって膜厚10nmのNi100-xPtx膜を成膜した。図9に熱電変換性能V/ΔTのPt添加量x依存性を示す。熱電性能はxに依存しており、Ptの添加により性能の向上が見られるが、xがある一定量を超えると性能は逆に低下する。この実験から、xの最適値は13(at%)であり、Pt添加による有意な性能向上効果をもたらす添加割合xとして3(at%)以上かつ30(at%)以下が望ましい。
 また、SGGG上に直接Ni100-xPtx膜を形成した素子も作製・評価している。この素子ではスピンゼーベック効果が発現せず、異常ネルンスト効果のみが熱電信号に寄与する。図10にこの異常ネルンスト素子の熱電変換性能V/ΔTのPt添加量x依存性を示す。ハイブリッド型スピン熱電素子と比較すると信号は小さいが、やはりx=13(at%)で信号が最大となっている。
[実施例5]
 本実施例5では図3に示すように、起電膜2としてニッケル-白金合金を用いた素子も試作・評価した。Auの最適添加量を調べるために、Auの添加割合x(at%)を段階的に振って形成したNi100-xAuxを起電膜として用いた熱電変換素子を作製し、熱電変換性能の組成依存性を調べた。
 本実施例のハイブリッド型スピン熱電素子は、実施例1と同様にSGGG基板を用いており、基板上にやはりMOD法によって膜厚120nmのBi:YIG膜を形成した後、スパッタ法によって膜厚10nmのNi100-xAux膜を成膜した。図11に熱電変換性能V/ΔTのAu添加量x依存性を示す。熱電性能はxに依存しており、Auの添加により性能の向上が見られるが、xがある一定量を超えると性能は逆に低下する。この実験から、xの最適値は15(at%)であり、Au添加による有意な性能向上効果をもたらす添加割合xとして3(at%)以上かつ25(at%)以下が望ましい。
 また、SGGG上に直接Ni100-xAux膜を形成した素子も作製・評価している。この素子ではスピンゼーベック効果が発現せず、異常ネルンスト効果のみが熱電信号に寄与する。図12にこの異常ネルンスト素子の熱電変換性能V/ΔTのAu添加量x依存性を示す。ハイブリッド型スピン熱電素子と比較すると信号は小さいが、やはりx=15(at%)付近で信号が最大となっている。
(第3の実施形態)
 次に、本発明の第3の実施形態として、起電膜2と磁性体層3を交互積層による多層型熱電変換素子について説明する。図13に多層型熱電変換素子の斜視図を示した。
 熱電変換素子1では、基板4上に、磁性体層3及び起電膜2を交互に複数層積層している。図13では磁性層と起電膜を交互に計四層積層している。起電力を取り出すために、複数の起電膜2全てに接する形でパッド5a、5bを形成し、さらに、パッド5a、5bに接する端子6a、6bがそれぞれ形成されている。
 本実施形態においても、第1の実施形態と同様に、起電膜2には強磁性のNi系合金材料を用いる。また、各起電膜2および各磁性体層3は、それぞれ同方向つまり面内でしかも紙面の手前から奥への方向の磁化M2およびM3を有する。
 複数の磁性体層3は、第2の実施形態の場合と同様それぞれスピンゼーベック効果を発現する磁性体材料であり、面直方向の温度勾配∇T(温度差ΔT)の下では、それぞれの磁性体層3においてスピン流Jsが生成(駆動)される。磁性体層3の材料としては、イットリウム鉄ガーネット(YIG,組成はYFe12)、ビスマス(Bi)を添加したYIG(Bi:YIG, 組成はBiYFe12)、もしくはNi-Znフェライト(組成は(Ni,Zn)xFe3-xO4))などが挙げられる。尚、熱電変換効率の観点からは磁性体層3は熱伝導率が小さいことが望ましいため、電流の流れにくい(電子が熱を運びにくい)磁性絶縁体を用いることが望ましい。
各磁性体層3において生成されたスピン流はその上下に接する起電膜2へと流れ、ここで逆スピンホール効果によって起電力(電場ESSE)へと変換される。なお、この構成では、磁性体層3で挟まれた起電膜2では上下の磁性体層3からスピン流の寄与を受けるため、結果として起電膜2において流れるスピン流の量および起電力は第1の実施形態の場合に比べ倍程度に大きくなる。
 さらに本実施形態においても、起電膜2における異常ネルンスト効果によって温度勾配からネルンスト起電力(電場EANE)も直接生成される。第2の実施形態と同様、本実施形態においても2つの効果がお互いを強め合い、大きな起電力が得られる。
 本実施形態の効果としては、第2の実施形態の素子に比べて大きな熱起電力が得られることがある。それに加え、複数のNi系合金膜2が電気的に並列接続されていることから、素子の内部抵抗を小さくすることができ、より大きな電力を取り出すことが可能となる点が挙げられる。
 なお第1,第2の実施形態では5d遷移金属を一種類だけ添加したが、WとPt等複数種類を添加することもできる。
[本実施形態の実施例]
 次に、本発明の熱電変換素子の具体的な実施例について、図14に基づいて説明する。
 本実施例では、基板4として厚さ25μmのポリイミド基板、磁性体層3として厚さ1μmの(Ni,Zn)Fe、起電膜2として膜厚10nmのNi97W3をそれぞれ採用した。
 本実施例では、ポリイミド基板上にフェライトめっき法を用いて膜厚3μmの(Ni,Zn)Feを作製した。フェライトめっき法では(i)ポリイミド表面に、Ni2+、Zn2+、Fe2+イオンなどを含む水溶液を接触させることで水酸化金属イオンを吸着した。その後、(ii)これらを酸化剤により酸化させ(Fe2+→Fe3+)、(iii)これをさらに水溶液中の水酸化金属イオンとフェライト結晶化反応させることにより、基板表面上にフェライト膜を形成した。この(i)~(iii)のステップを順次繰り返すことで、膜厚1μmのフェライト膜(Ni,Zn)Feを形成した。さらにこの上面に、Ni系合金膜3として膜厚10nmのNi97W3をスパッタ法により成膜した。
 このフェライトめっき法によるフェライト成膜とスパッタ法によるNi97W3成膜とを4回繰り返すことで、図14に示される多層素子を作製した。
 作製した素子の熱電特性を評価した結果、第2の実施形態の実施例1で示した素子と比較して約1.6倍にあたるV/ΔT=4.6μV/Kの起電力性能が得られた。また、内部抵抗(端子間の抵抗)は第1の実施形態の素子の約4分の1程度だった。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2015年11月13日に出願された日本出願特願2015-223201、及び、2016年8月19日に出願された日本出願特願2016-161325を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  熱電変換素子
 2  起電膜
 3  磁性体層
 4  基板
 5a、5b  パッド
 6a、6b  端子
 10  電圧計

Claims (10)

  1.  Niが含まれる磁性合金であり、Niを母体とし5d遷移金属元素を添加したことを特徴とする、温度勾配下で起電力を発現する熱電変換素子用起電膜。
  2.  前記5d遷移金属元素の添加量が原子割合にして1~30at%であることを特徴とする、請求項1に記載の熱電変換素子用起電膜。
  3.  前記5d遷移金属元素がW、PtまたはAuであることを特徴とする請求項1または2に記載の熱電変換素子用起電膜。
  4.  磁性体層と、前記磁性体層上に形成され、Niが含まれる磁性合金であり、Niを母体とし5d遷移金属元素が添加され起電力を発生する起電膜と、前記起電力によるポテンシャルが異なる2箇所で前記起電膜にそれぞれ接触するように形成された2個の端子部と、を備えたことを特徴とする熱電変換素子。
  5.  前記起電膜は逆スピンホール効果と異常ネルンスト効果によって面内方向の起電力を発生する請求項4に記載の熱電変換素子。
  6.  前記起電膜と前記磁性体層が交互に複数層積層されたことを特徴とする請求項4または5に記載の熱電変換素子。
  7.  前記磁性体層と前記起電膜とが同一方向の磁化を有することを特徴とする、請求項4から6のいずれか一項に記載の熱電変換素子。
  8.  前記起電膜と前記端子部の両方に電気的に接する金属パッドを備えていることを特徴とする、請求項4から7のいずれか一項に記載の熱電変換素子。
  9.  前記起電膜の膜厚が30nm以下であることを特徴とする、請求項4から請求項8のいずれかに記載の熱電変換素子。
  10.  前記磁性体層が磁性絶縁体であることを特徴とする請求項4から9のいずれか一項に記載の熱電変換素子。
PCT/JP2016/083157 2015-11-13 2016-11-09 熱電変換素子用起電膜及び熱電変換素子 WO2017082266A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/774,177 US20180331273A1 (en) 2015-11-13 2016-11-09 Electromotive film for thermoelectric conversion element, and thermoelectric conversion element
JP2017550341A JPWO2017082266A1 (ja) 2015-11-13 2016-11-09 熱電変換素子用起電膜及び熱電変換素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-223201 2015-11-13
JP2015223201 2015-11-13
JP2016161325 2016-08-19
JP2016-161325 2016-08-19

Publications (1)

Publication Number Publication Date
WO2017082266A1 true WO2017082266A1 (ja) 2017-05-18

Family

ID=58695644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083157 WO2017082266A1 (ja) 2015-11-13 2016-11-09 熱電変換素子用起電膜及び熱電変換素子

Country Status (3)

Country Link
US (1) US20180331273A1 (ja)
JP (1) JPWO2017082266A1 (ja)
WO (1) WO2017082266A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064972A1 (ja) * 2017-09-28 2019-04-04 日本電気株式会社 熱電変換素子
WO2020129835A1 (ja) * 2018-12-20 2020-06-25 日本電気株式会社 熱電変換素子
JP2021039996A (ja) * 2019-09-02 2021-03-11 日本電気株式会社 磁性合金材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155722A (ja) * 2007-12-05 2009-07-16 Hitachi Metals Ltd Ni−W系焼結ターゲット材
JP2015170836A (ja) * 2014-03-11 2015-09-28 株式会社東芝 熱電変換素子
JP2015179773A (ja) * 2014-03-19 2015-10-08 株式会社東芝 熱電変換素子
JP2015192013A (ja) * 2014-03-28 2015-11-02 日本電気株式会社 スピン流熱電変換素子とその製造方法および熱電変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155722A (ja) * 2007-12-05 2009-07-16 Hitachi Metals Ltd Ni−W系焼結ターゲット材
JP2015170836A (ja) * 2014-03-11 2015-09-28 株式会社東芝 熱電変換素子
JP2015179773A (ja) * 2014-03-19 2015-10-08 株式会社東芝 熱電変換素子
JP2015192013A (ja) * 2014-03-28 2015-11-02 日本電気株式会社 スピン流熱電変換素子とその製造方法および熱電変換装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIKKAWA, T. ET AL.: "Separation of longitudinal spin Seebeck from anomalous Nernst effect: Determination of origin of transverse thermoelectric voltage in metal/insulator junctions", PHYSICAL REVIEW B, vol. 88, pages 214403, XP055384119 *
MENDES, J.B.S. ET AL.: "Large inverse spin Hall effect in the antiferromagnetic metal Ir20Mn80", PHYSICAL REVIEW B, vol. 89, 17 April 2014 (2014-04-17), pages 140406, XP055384125 *
MIAO, B.F. ET AL.: "Inverse Spin Hall Effect in a Ferromagnetic Metal", PHYSICAL REVIEW LETTERS, 5 August 2013 (2013-08-05), pages 1 - 5, XP055384127 *
MYALIKGULYYEV, G. ET AL.: "THE HALL AND NERNST- ETTINGSHAUSEN EFFECTS IN NICKEL-PALLADIUM ALLOYS", THE PHYSICS OF METALS AND METALLOGRAPHY, vol. 59, no. 4, November 1986 (1986-11-01), pages 114 - 118 *
SEKI, TAKESHI ET AL.: "Observation on inverse spin Hall effect in ferromagnetic FePt alloys using spin Seebeck effect", APPLIED PHYSICS LETTERS, vol. 107, no. 9, 31 August 2015 (2015-08-31), pages 1 - 5, XP012200062 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064972A1 (ja) * 2017-09-28 2019-04-04 日本電気株式会社 熱電変換素子
JPWO2019064972A1 (ja) * 2017-09-28 2020-11-05 日本電気株式会社 熱電変換素子
JP7006696B2 (ja) 2017-09-28 2022-01-24 日本電気株式会社 熱電変換素子
WO2020129835A1 (ja) * 2018-12-20 2020-06-25 日本電気株式会社 熱電変換素子
JPWO2020129835A1 (ja) * 2018-12-20 2021-10-14 日本電気株式会社 熱電変換素子
JP7314958B2 (ja) 2018-12-20 2023-07-26 日本電気株式会社 熱電変換素子
US11917917B2 (en) 2018-12-20 2024-02-27 Nec Corporation Thermoelectric conversion element
JP2021039996A (ja) * 2019-09-02 2021-03-11 日本電気株式会社 磁性合金材料

Also Published As

Publication number Publication date
JPWO2017082266A1 (ja) 2018-09-13
US20180331273A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP7495463B2 (ja) スピン流磁化反転素子、磁気抵抗効果素子、磁気メモリ及び磁化反転方法
Uchida et al. Longitudinal spin Seebeck effect: from fundamentals to applications
JP5424273B2 (ja) 熱電変換素子
US10516098B2 (en) Apparatus for spin injection enhancement and method of making the same
WO2019167197A1 (ja) スピン素子の安定化方法及びスピン素子の製造方法
US10326069B2 (en) Thermoelectric conversion element and method for making the same
WO2019167198A1 (ja) スピン素子の安定化方法及びスピン素子の製造方法
WO2017082266A1 (ja) 熱電変換素子用起電膜及び熱電変換素子
CN108701721B (zh) 自旋流磁化反转元件及其制造方法、磁阻效应元件、磁存储器
JP6066091B2 (ja) 熱電変換素子及びその製造方法
JP6565689B2 (ja) 熱電変換素子、熱電変換素子モジュールおよび熱電変換素子の製造方法
JP6791116B2 (ja) スピン流−電流変換構造、それを用いた熱電変換素子、およびその製造方法
JP5598975B2 (ja) スピン注入源およびその製造方法
WO2018146713A1 (ja) 熱電変換素子およびその製造方法
JP2014072250A (ja) 熱電変換素子及びその製造方法
JP7505310B2 (ja) 熱電変換材料
JP6740551B2 (ja) 強磁性トンネル接合体の製造方法、強磁性トンネル接合体及び磁気抵抗効果素子
WO2023054583A1 (ja) 熱電体、熱電発電素子、多層熱電体、多層熱電発電素子、熱電発電機、及び熱流センサ
JP6299237B2 (ja) 熱電変換素子およびその製造方法
Cui et al. Enhanced spin accumulation in nano-pillar-based lateral spin valve using spin reservoir effect
Daqiq Thermopower of double-barrier magnetic tunnel junctions with a middle La0. 7Sr0. 3MnO3 layer
Piyasin et al. Enhanced Transverse Thermoelectric Voltage in the Au/Ni Foil Bilayer System via the Combination of Spin Seebeck Effect and Anomalous Nernst Effect
JP2016162881A (ja) 熱電変換素子とその製造方法
Gao et al. Optimization of thermo-spin voltage in vertical nanostructures by geometrical means
JP2023120825A (ja) 熱電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017550341

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15774177

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864227

Country of ref document: EP

Kind code of ref document: A1