WO2017082257A1 - チタン材、セパレータおよび固体高分子形燃料電池 - Google Patents

チタン材、セパレータおよび固体高分子形燃料電池 Download PDF

Info

Publication number
WO2017082257A1
WO2017082257A1 PCT/JP2016/083134 JP2016083134W WO2017082257A1 WO 2017082257 A1 WO2017082257 A1 WO 2017082257A1 JP 2016083134 W JP2016083134 W JP 2016083134W WO 2017082257 A1 WO2017082257 A1 WO 2017082257A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
base material
titanium material
separator
fuel cell
Prior art date
Application number
PCT/JP2016/083134
Other languages
English (en)
French (fr)
Inventor
淳子 今村
真木 純
能勢 幸一
上仲 秀哉
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/772,627 priority Critical patent/US20180323447A1/en
Priority to CN201680065915.8A priority patent/CN108352543A/zh
Priority to JP2017518276A priority patent/JP6206622B1/ja
Publication of WO2017082257A1 publication Critical patent/WO2017082257A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a titanium material, a separator, and a polymer electrolyte fuel cell.
  • Fuel cells are expected to be introduced and popularized in terms of both energy saving and environmental measures because they use the energy generated during the binding reaction between hydrogen and oxygen.
  • fuel cells such as solid electrolyte type, molten carbonate type, phosphoric acid type, and solid polymer type.
  • the polymer electrolyte fuel cell has a high output density and can be miniaturized, operates at a lower temperature than other types of fuel cells, and is easy to start and stop. Due to such advantages, the polymer electrolyte fuel cell is expected to be used for automobiles, small cogeneration for home use, and the like, and has attracted particular attention in recent years.
  • FIG. 1A is a perspective view of a polymer electrolyte fuel cell (hereinafter also simply referred to as “fuel cell”), and FIG. 1B is an exploded perspective view of a single cell used in the fuel cell.
  • fuel cell a polymer electrolyte fuel cell
  • the fuel cell 1 is an assembly (stack) of single cells.
  • an anode-side gas diffusion electrode membrane also referred to as “fuel electrode membrane”; hereinafter referred to as “anode”
  • anode anode-side gas diffusion electrode membrane
  • Cathode side gas diffusion electrode films also referred to as “oxidant electrode films”; hereinafter referred to as “cathodes”
  • separators (bipolar plates) 5a and 5b are provided on both sides of the laminate. It is piled up.
  • Some fuel cells are provided with a separator having a cooling water flow path between two adjacent single cells or every several single cells.
  • the present invention is also directed to such a water-cooled fuel cell separator and a titanium material used for the separator.
  • electrolyte membrane As the solid polymer electrolyte membrane (hereinafter simply referred to as “electrolyte membrane”) 2, a fluorine-based proton conductive membrane having a hydrogen ion (proton) exchange group is mainly used.
  • Each of the anode 3 and the cathode 4 is mainly composed of a carbon sheet (or carbon paper thinner than the carbon sheet, or thinner carbon cloth) made of conductive carbon fibers in the form of a sheet.
  • the anode 3 and the cathode 4 may be provided with a catalyst layer made of a particulate platinum catalyst, graphite powder, and, if necessary, a fluorine resin having a hydrogen ion (proton) exchange group.
  • a groove-like flow path 6a is formed on the surface on the anode 3 side.
  • a fuel gas (hydrogen or hydrogen-containing gas) A flows through the flow path 6a, and hydrogen is supplied to the anode 3.
  • the separator 5b has a groove-like channel 6b formed on the surface on the cathode 4 side.
  • An oxidizing gas B such as air flows through the flow path 6 b and oxygen is supplied to the cathode 4. By supplying these gases, an electrochemical reaction occurs and DC power is generated.
  • the catalyst layer is provided on the anode 3 and the cathode 4, the fuel gas or oxidizing gas and the catalyst layer come into contact with each other to promote the reaction.
  • the main functions required for a separator of a polymer electrolyte fuel cell are as follows. (1) Function as a “flow path” for uniformly supplying fuel gas or oxidizing gas into the battery surface (2) Water generated on the cathode side together with a carrier gas such as air and oxygen after reaction, Function as a “flow path” for efficiently discharging from the fuel cell to the outside of the system (3) Contact with the electrode membrane (anode 3, cathode 4) to form an electrical path, and further, electricity between two adjacent single cells (4) Function as “partition” between the anode chamber of one cell and the cathode chamber of the adjacent cell between adjacent cells (5) In a water-cooled fuel cell, Function as a “partition” between adjacent cells
  • the base material of a separator (hereinafter simply referred to as “separator”) used in a polymer electrolyte fuel cell needs to be able to perform such a function.
  • Substrate materials are roughly classified into metal materials and carbon materials.
  • a separator made of a carbon-based material is a method in which a graphite substrate is impregnated with a thermosetting resin such as phenolic or furan and cured and fired, carbon powder is kneaded with phenolic resin, furan resin, or tar pitch, It is manufactured by a method such as press molding or injection molding into a plate shape and firing to form glassy carbon. Since the carbon material has a small specific gravity, the use of the carbon material has an advantage that a lightweight separator can be obtained. However, such a separator has a problem of having gas permeability and a problem of low mechanical strength.
  • Titanium, stainless steel, carbon steel, etc. are used as metal materials. Separators made of these metal-based materials are manufactured by pressing or the like. Metallic materials have the advantages of excellent workability and reduced thickness of the separator as a unique property of the metal, and the weight of the separator can be reduced. However, the electrical conductivity decreases due to oxidation of the metal surface. obtain. For this reason, there is a problem that the contact resistance between the separator made of a metal-based material and the electrode film may increase. The following measures have been proposed for this problem.
  • Patent Document 1 proposes that after removing a passive film from a surface to be in contact with an electrode in a titanium separator substrate, the surface is plated with a noble metal such as gold.
  • Patent Document 2 proposes a titanium alloy in which an increase in contact resistance is suppressed by pickling a titanium alloy containing one or more platinum group elements and concentrating the platinum group elements on the surface. ing. Furthermore, in Patent Document 3, after enriching the surface of the platinum group element by pickling, titanium is subjected to heat treatment in a low oxygen concentration atmosphere for the purpose of improving the adhesion between the platinum group element concentrated on the surface and the matrix. A separator made of the material has been proposed.
  • Patent Document 4 proposes a method of forming a conductive contact layer made of carbon on a surface of a metal separator having a surface made of titanium by vapor deposition.
  • membrane which consists of a titanium compound particle and a titanium oxide on the surface is proposed.
  • the titanium compound is a compound of at least one of carbon and nitrogen and titanium.
  • Patent Document 6 proposes a titanium material for a polymer electrolyte fuel cell separator having good conductivity by exposing and concentrating the platinum group element on the surface to increase the concentration.
  • Solid polymer fuel cells are expected to be widely used as mobile fuel cells and stationary fuel cells. Therefore, as in the technique described in Patent Document 1, the use of a large amount of noble metal is problematic from the viewpoints of economy and resource amount.
  • the separators described in Patent Documents 2 and 3 also contain a platinum group element and have a problem that a large increase in cost cannot be avoided because of a large number of man-hours during manufacture.
  • Patent Document 4 an attempt is made to solve the problem of increased contact resistance without using noble metals.
  • a titanium oxide film having no conductivity is usually formed on the surface of titanium. Therefore, even if a conductive contact layer is formed on the film, the contact resistance does not decrease.
  • the film described in Patent Document 5 has a structure in which a titanium compound is dispersed in a titanium oxide film, and is intended to ensure conductivity by the titanium compound.
  • this separator it is difficult to ensure sufficient conductivity due to the small energization area, and there remains room for improvement.
  • Patent Document 6 it is possible to maintain a low contact resistance by concentrating a platinum group element on the surface of a titanium material.
  • the coating formed on the surface of the titanium material requires a large amount of dissolution of the base titanium matrix due to the surface concentration of the platinum group element with a low content, leaving room for improvement in reducing contact resistance. Has been.
  • the contact resistance between the separator and the electrode film is increased by the formation of fluoride on the separator surface.
  • fluorine ions are generated from the electrolyte membrane 2, while water is generated by the reaction of the fuel cell. Thereby, hydrogen fluoride water is generated, and in this state, a voltage is applied between the electrolyte membrane 2 and the separators 5a and 5b, whereby fluoride is formed on the separator surface.
  • the present invention solves the above-mentioned problems of the prior art, has a low initial contact resistance, has a good corrosion resistance in a polymer electrolyte fuel cell environment, and therefore maintains a low contact resistance.
  • An object of the present invention is to provide a separator and a polymer electrolyte fuel cell.
  • the present invention has been made to solve the above-mentioned problems, and the gist of the present invention is the following titanium material, separator, and solid polymer fuel cell.
  • the chemical composition of the base material is mass%, Platinum group elements: 0.005 to 0.15%, Containing Titanium material as described in said (1).
  • the chemical composition of the base material is mass%, Rare earth elements: 0.005 to 0.1%, Containing Titanium material as described in said (1) or (2).
  • the average crystal grain size on the surface of the base material is 20 to 300 ⁇ m.
  • the outermost layer has a metal layer mainly composed of one or more selected from Au, Pt, Ag, Pd, Ru and Rh and having a thickness of 2 to 50 nm. Titanium material in any one of said (1) to (4).
  • the outermost layer has a conductive carbon layer mainly composed of conductive carbon and having a thickness of 2 to 50 nm. Titanium material in any one of said (1) to (4).
  • the separator containing the titanium material according to the present invention can maintain a low contact resistance when used as a polymer electrolyte fuel cell.
  • FIG. 1A is a perspective view schematically showing the structure of a solid polymer fuel cell.
  • FIG. 1B is an exploded perspective view showing the structure of a single cell constituting the polymer electrolyte fuel cell.
  • FIG. 2 is a schematic cross-sectional view of a titanium material according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a contact resistance measurement method.
  • FIG. 2 is a schematic cross-sectional view of a titanium material according to an embodiment of the present invention.
  • a complex oxide film 12 is formed on the surface of the base material 11. Further, a metal layer or a conductive carbon layer 13 is formed on the composite oxide film 12.
  • a metal layer or a conductive carbon layer 13 is formed on the composite oxide film 12.
  • the base material has a chemical composition containing a platinum group element and a rare earth element as necessary, with the balance being Ti and impurities.
  • the reasons for limiting each element are as follows. In the following description, “%” for the content means “% by mass”.
  • Platinum group elements 0 to 0.15%
  • the platinum group element is an element having an electric resistivity lower than that of titanium, and does not oxidize and corrode in the operating environment of the polymer electrolyte fuel cell and does not increase the electric resistance. Further, when the base material contains a platinum group element, the corrosion resistance of the base material itself is improved, and a titanium oxide film is hardly formed on the surface layer portion of the base material. Therefore, you may contain a platinum group element as needed.
  • the platinum group element content is set to 0.15% or less. Considering the balance between economy and corrosion resistance, the platinum group element content is preferably 0.1% or less. In order to sufficiently obtain the effect of increasing the corrosion resistance of the base material and the effect of suppressing the formation of the titanium oxide film, the platinum group element content is preferably 0.005% or more, and 0.02% or more. More preferably.
  • platinum group element refers to ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt).
  • the base material may contain substantially only one type of platinum group element, or may contain a plurality of types of platinum group elements.
  • the content of the platinum group element means the total content of these elements.
  • Rare earth elements 0 to 0.1%
  • the base material contains a rare earth element, even if the platinum group element content of the base material is lowered, the same corrosion resistance and surface conductivity as a titanium material containing a higher amount of the platinum group element can be obtained. Therefore, you may contain rare earth elements as needed.
  • the rare earth element content is 0.1% or less.
  • the rare earth element content is preferably 0.08% or less. In order to obtain the above effect, the rare earth element content is preferably 0.005% or more, and more preferably 0.01% or more.
  • rare earth elements refer to a total of 17 elements of scandium (Sc), yttrium (Y) and lanthanoid.
  • the base material may contain substantially only one kind of rare earth element or may contain a plurality of kinds of rare earth elements.
  • the content of the rare earth element means the total content of these elements.
  • the rare earth element may be added to the Ti raw material as a misch metal.
  • Misch metal is an alloy containing a plurality of kinds of rare earth elements, and often contains mainly La and Ce. Since the separation cost for producing a single kind of rare earth element does not apply to misch metal, the use of misch metal makes it possible to contain the rare earth element at low cost.
  • a titanium base material contains Fe as an impurity. Fe has the effect of deteriorating the corrosion resistance of the titanium material. Although there is no particular limitation on the Fe content, in order to increase the corrosion resistance of the titanium material, it is preferable to lower the Fe content of the base material, specifically 0.1% or less. .
  • the complex oxide film contains a complex oxide of Ti and at least one selected from La, Ce, Nd, Sr and Ca. The presence of the complex oxide can be confirmed by X-ray diffraction measurement.
  • the total content of at least one selected from La, Ce, Nd, Sr and Ca, Ti and O (oxygen) is preferably 90% or more, and 95% or more. Is more preferable.
  • the surface resistance of the titanium material can be kept low.
  • the composite oxide include those having a perovskite crystal structure such as LaTiO 3 and CeTiO 3 .
  • the composite oxide may have a stoichiometric composition or a non-stoichiometric composition.
  • the titanium material of the present invention preferably does not contain titanium oxide as a surface oxide film.
  • the composite oxide film can be formed, for example, as follows. First, after cold rolling the base material, a dispersed aqueous solution containing one or more oxide sols selected from La, Ce, Nd, Sr and Ca is applied to the surface of the base material with a roll coater or the like. The base material in this state is annealed after being dried. Thereby, the oxide and Ti oxide formed on the surface of the base material react to include a complex oxide of Ti and at least one selected from La, Ce, Nd, Sr and Ca. A film, that is, a complex oxide film is formed on the surface of the base material.
  • the oxide of Sr reacts with water, it is preferable to use a hydroxide sol or a carbonate compound sol for Sr. Also in the case of using Sr hydroxide sol or Sr carbonate compound sol, this hydroxide or carbonate compound is decomposed in the annealing process to produce water or carbonic acid to be Sr oxide. Thereby, a composite oxide is formed as in the case of using an oxide sol.
  • the annealing temperature is preferably less than 900 ° C.
  • the thickness of the complex oxide film is 1 to 20 nm.
  • the thickness of the composite oxide film is preferably 3 nm or more, and more preferably 4 nm or more. Further, the thickness of the composite oxide film is preferably 15 nm or less, and more preferably 10 nm or less.
  • (C) Average crystal grain size No particular limitation is imposed on the average crystal grain size of the base material. However, to increase the thickness of the composite oxide film, it is necessary to increase the annealing temperature or the annealing time, resulting in an increase in the crystal grain size. In particular, when the average crystal grain size in the entire base material including the base material surface exceeds 300 ⁇ m, the ductility of the titanium material is lowered, and there is a possibility that the titanium material is easily cracked when it is press-molded.
  • the average crystal grain size on the surface of the base material is less than 20 ⁇ m, the conductivity of the surface layer of the titanium material may be lowered. This is presumably because titanium oxide is easily formed along the grain boundary of the base material. That is, it is understood that when the average crystal grain size is reduced, the grain interface area per unit volume is increased, and the oxide is increased in the conductive path, so that the conductivity is lowered. Therefore, the average crystal grain size on the surface of the base material is preferably 20 to 300 ⁇ m.
  • the average crystal grain size on the surface of the base material can be obtained by measuring near the interface with the composite oxide film on the cut surface of the titanium material. Specifically, the length in the direction parallel to the surface of the base material of the crystal grains in contact with the composite oxide film in the base material part is measured at a plurality of locations, and the average value of the lengths is defined as the average crystal grain size.
  • the average crystal grain size on the surface of the titanium material can be adjusted by controlling the rolling reduction during cold rolling and the temperature and time of annealing performed after cold rolling.
  • the average crystal grain size on the surface of the titanium material is particularly affected by cold rolling conditions. In addition to lowering the rolling reduction, increasing the roll diameter used for cold rolling increases the strain near the surface. And the average crystal grain size on the surface of the base material can be increased.
  • the outermost layer of the titanium material may be provided with a metal layer or a conductive carbon layer as necessary.
  • the composite oxide film is excellent in conductivity and corrosion resistance. However, when a metal layer or a conductive carbon layer is provided on the outermost layer of the titanium material, the conductivity and corrosion resistance of the surface layer of the titanium material are further improved. Can do. On the contrary, in the absence of this composite oxide film, the resistance does not easily decrease even if a metal layer or a conductive carbon layer is provided as an upper layer due to the influence of the oxide film formed on the surface of the titanium material.
  • the metal layer is mainly composed of at least one selected from Au, Pt, Ag, Pd, Ru and Rh.
  • “mainly one or more selected from Au, Pt, Ag, Pd, Ru, and Rh” is 1 selected from Au, Pt, Ag, Pd, Ru, and Rh in the metal layer. It shall be said that the ratio of seeds or more is 90% or more.
  • the metal layer can be formed by supplying a predetermined metal on the composite oxide film by, for example, plating or vapor deposition.
  • the conductive carbon layer is mainly composed of conductive carbon.
  • “mainly composed of conductive carbon” means that the proportion of conductive carbon in the coating layer containing conductive carbon is 90% or more, and the layer has conductivity.
  • the conductive carbon can be, for example, conductive DLC (diamond-like carbon) or graphite. There are crystalline and amorphous DLC. Normal DLC is an electrical insulator, but there is also DLC having conductivity.
  • DLC is used for the conductive carbon layer, a conductive carbon layer is used. Since graphite has a layered crystal structure, it can be exfoliated between layers when subjected to stress. On the other hand, since DLC has isotropic mechanical properties, it is unlikely to delaminate within the particle unless a particularly strong force is applied.
  • the conductive carbon layer can be formed by supplying carbon on the composite oxide film by, for example, vapor deposition.
  • Both the metal layer and the conductive carbon layer preferably have a thickness of 2 to 50 nm.
  • the thickness is less than 2 nm, it is difficult to obtain the effect of improving the conductivity and corrosion resistance of the titanium material surface.
  • the thickness of the metal layer or the conductive carbon layer is preferably 2 nm or more.
  • the thickness of the metal layer or the conductive carbon layer is preferably 40 nm or less.
  • the composite oxide film In the composite oxide film, a corrosion product is hardly formed in a portion covered with the metal layer or the conductive carbon layer. For this reason, the electrical connection through this portion is easily maintained in the environment inside the fuel cell. Thereby, the contact resistance with respect to the electrode film as the whole titanium material is easily maintained low.
  • the coverage of the metal layer or conductive carbon layer (ratio of the area of the portion covered with the metal layer or conductive carbon layer to the surface area of the titanium material; hereinafter simply referred to as “coverage”) is most preferable. Is 100%. However, when the thickness of the metal layer or the conductive carbon layer is small, it is difficult to cover the entire surface of the composite oxide film. Even if the coverage is about 30%, the above-described effect of maintaining the contact resistance low can be obtained. If the coverage is 50% or more, this effect can be obtained stably.
  • the surface of the titanium material may be flat or appropriately roughened.
  • the moderate roughness means, for example, that the surface roughness is an arithmetic average roughness Ra defined by JIS B 0601 (2001), which is about 1 to 2 ⁇ m.
  • Ra arithmetic average roughness
  • the surface of the titanium material is rough, when the surface is brought into contact with the anode 3 or the cathode 4 (see FIG. 1B), the surface pressure in the vicinity of the convex portion on the surface increases, and electrical conduction is likely to occur at that portion.
  • Such a rough surface can be obtained, for example, by treating the base material with an acid treatment solution containing hydrofluoric acid. In this case, the complex oxide film is formed after the treatment with the acid treatment liquid.
  • the surface roughness of the titanium material is preferably 1.1 to 1.5 ⁇ m in Ra.
  • the separator of the present invention is used for a polymer electrolyte fuel cell.
  • This separator contains the titanium material of the present invention. Therefore, this separator exhibits excellent corrosion resistance and can maintain a low contact resistance in a polymer electrolyte fuel cell.
  • the separator of the present invention can be manufactured by forming a complex oxide film on the surface of a flat base material by the above-described method and then forming a groove-like flow path by pressing.
  • the composite oxide film may be formed after pressing the flat base material.
  • the treatment with the acid treatment liquid is performed after the press working and before the composite oxide film is formed.
  • the separator containing the titanium material in which the metal layer or the conductive carbon layer is provided on the outermost layer after forming the complex oxide film and press molding, the metal layer or the conductive layer is formed by the above-described method. A carbon layer is formed.
  • the metal layer or the conductive carbon layer may peel from the composite oxide film or may float locally. In this case, the corrosion resistance of the titanium material is lowered and the contact resistance is increased in the environment in the fuel cell where fluoride ions are present.
  • the base material contains a platinum group element
  • the metal layer or the conductive carbon layer adheres firmly to the composite oxide film, and the metal layer or the conductive layer is incorporated when the separator is incorporated into the fuel cell. Exfoliation or local lifting of the carbonaceous layer can be suppressed. Thereby, the corrosion resistance of the titanium material can be maintained high, and the contact resistance can be maintained low.
  • Example 1 In order to confirm the effect of the present invention, a titanium material sample was prepared and evaluated by the following method. 1. Production of Titanium Material A titanium ingot obtained by melting and solidifying raw materials at a laboratory level was prepared as a material for producing a titanium material. Table 1 shows the chemical composition of the material (ingot).
  • dispersed aqueous solutions of sols of La 2 O 3 , CeO 2 , Nd 2 O 3 , Sr (OH) and CaO were applied to both surfaces of the titanium plate by a roll coater method.
  • a titanium plate coated with an aqueous solution of Al 2 O 3 sol was also prepared.
  • the coating amount of the sol-dispersed aqueous solution was 0.1 g / m 2 per one titanium plate surface as the mass of the compound (oxide or hydroxide).
  • these titanium plates were annealed to obtain titanium material samples.
  • the annealing temperature was 700 to 930 ° C.
  • the annealing atmosphere was a mixed gas of 95% by volume of nitrogen and 5% by volume of hydrogen.
  • the obtained titanium material is pressed to form a groove-like gas flow channel having a width of 2 mm and a depth of 1 mm on both surfaces of the titanium material (corresponding to the anode side and the cathode side of the separators 5a and 5b). It was made into the form which can be used as a separator.
  • Titanium Material (1) Measurement of Average Crystal Grain Size of Base Material
  • the thickness of the base material part in contact with the composite oxide film is cut in a region of 200 ⁇ m by cutting and polishing the plate thickness section.
  • the average crystal grain size was calculated by measuring the length of the grains and averaging the lengths.
  • the resistance value was determined.
  • the resistance value was measured with a load of 5 kgf / cm 2 (4.9 ⁇ 10 5 Pa).
  • the obtained resistance value is a sum of the contact resistances on both surfaces of the titanium separator 21, and is divided by 2 to obtain a contact resistance value (initial contact resistance) per one surface of the titanium separator 21.
  • a single cell polymer electrolyte fuel cell was prepared, and the contact resistance after operation of this fuel cell was measured. That is, a fuel cell operated by incorporating a separator has not been a multi-cell fuel cell in which single cells are stacked. The reason is that in the state where the single cells are stacked, the difference in the stacked state is reflected in the evaluation result, and the reproducibility of the measured value is lowered.
  • MEA membrane electrode assembly
  • FC50-MEA which is a standard MEA for PFEC manufactured by Toyo Corporation, uses Nafion (registered trademark) -1135 as an ion exchange membrane. Was used.
  • hydrogen gas having a purity of 99.9999% was flowed as the anode side fuel gas, and air was flowed as the cathode side gas.
  • the gas pressure for introducing hydrogen gas and air into the fuel cell was 0.04 to 0.20 bar (4000 to 20000 Pa).
  • the temperature of the fuel cell main body was kept at 70 ⁇ 2 ° C., and the humidity control inside the fuel cell was adjusted by setting the inlet dew point to 70 ° C.
  • the pressure inside the battery was about 1 atmosphere (about 1.01 ⁇ 10 5 Pa).
  • This fuel cell was operated at a constant current density of 0.5 A / cm 2 .
  • the output voltage was highest in 20 to 50 hours from the start of operation. After reaching this highest voltage, the operation was continued for 500 hours, and then the fuel cell was stopped. Then, the cell was disassembled, the separator was taken out, and the contact resistance was measured by the method described above to obtain the contact resistance after the power generation operation.
  • a digital multimeter (KEITHLEY 2001 manufactured by Toyo Corporation) was used for contact resistance measurement and current and voltage measurement during fuel cell operation.
  • Table 2 shows production conditions and evaluation results of the titanium material.
  • the meanings of the symbols shown in the column of “Comprehensive evaluation” in Table 2 are as follows.
  • excellent in press formability means that no cracks occurred during the press working for forming the groove-like gas flow path.
  • the titanium materials 2 and 4 were two types of oxides or hydroxides, and the other titanium materials were one type of oxide.
  • Test No. In 2 and 4 the mixing ratio of the two types of oxides or hydroxides was 5: 1 in terms of mass ratio between the first and the later described in the same column.
  • Test No. 2 formed on the titanium material of No. 2
  • Test No. 1 to 9 are examples of the present invention.
  • Films (composite oxide films) formed on the surface of these titanium materials are mainly composed of complex oxides of La, Ce, Nd, Sr and Ca and Ti, and have a thickness of 1 to 1 It was 20 nm. These titanium materials could be satisfactorily processed into a shape having the above-mentioned grooves by press working. In addition, the contact resistance of these titanium materials was sufficiently low to be used as a separator for a polymer electrolyte fuel cell both in the initial stage and after operation.
  • test no Reference numerals 10 to 13 are comparative examples that do not satisfy any of the requirements defined in the present invention.
  • Test No. 10 and 11 since the thickness of the composite oxide film exceeded 20 nm, the initial contact resistance was high. In addition, Test No. Since the titanium material 10 was cracked during press molding, the initial contact resistance was measured for the titanium material before press working, and the contact resistance after battery operation was not measured. The reason for cracking by press molding was that the average crystal grain size of the base material surface exceeded 300 ⁇ m as the film thickness was increased, the average crystal grain size of the entire base material was also increased, and the ductility of the titanium material was reduced. it is conceivable that.
  • test No. 12 the contact resistance after battery operation increased significantly compared to the initial contact resistance. This is considered to be related to the fact that the thickness of the film was less than 2 nm. Furthermore, test no. In No. 13, the contact resistance was high both initially and after battery operation. Test No. In the titanium material of No. 13, Al 2 O 3 was formed on the surface of the base material, and a composite oxide of Ti and one or more selected from La, Ce, Nd, Sr and Ca was not formed . Due to the poor conductivity of Al 2 O 3 , test no. It is considered that the contact resistance at 13 was high.
  • Example 2 A dispersed aqueous solution of La 2 O 3 sol was applied to a titanium plate obtained by cold rolling the ingot of material E in Table 1 with a reduction rate of 80%.
  • the coating amount of the sol-dispersed aqueous solution was 0.1 g / m 2 per one side of the titanium plate as the mass of La 2 O 3 .
  • the titanium plate was annealed at 750 ° C. in a mixed gas atmosphere containing 95% by volume of nitrogen and 5% by volume of hydrogen.
  • LaTiO 3 was detected.
  • the thickness of the surface film was measured by the above method using FE-TEM, and found to be 4 nm. Moreover, it was 33 micrometers when the average crystal grain diameter of the base material surface was measured by the above-mentioned method using EBSP.
  • the following metal layer or conductive carbon material (film) was coated on the titanium plate (titanium material).
  • the metal layer was mainly composed of one or two of Au, Pt, Ag, Pd, Ru, and Rh, and was formed by plating. Specifically, the following plating solutions manufactured by Nippon Electroplating Engineers Co., Ltd. were used for plating each metal.
  • Au Temperex BHG100
  • Pt Platanex 3LS Ag: Precious Fab Ag4730
  • Pd Paradex ADP720 Ru: Precious Fab Ru1000 Rh: Rhodex
  • the plating temperature was 40-60 ° C.
  • the plating thickness was adjusted by the amount of current and was 1 to 70 nm.
  • the conductive carbon layer was formed by the following methods a to c.
  • Method a A conductive carbon layer was formed by applying a dispersion of conductive carbon powder in a binder to the surface of a titanium material and drying at 80 ° C.
  • a PTFE dispersion solution (PTFE dispersion D1 manufactured by Daikin Corporation) diluted to 1/15 with pure water was used.
  • Method b Using a vacuum deposition apparatus AAH-C1080SB manufactured by Shinko Seiki Co., Ltd., carbon was vacuum deposited on the surface of the titanium material for 20 minutes. Thereby, the conductive carbon layer was formed.
  • Method c A conductive carbon layer mainly composed of conductive DLC (LR-DLC) was formed on the surface of the titanium material by low energy plasma treatment using Plasma Ion Assist Co., Ltd.
  • Test No. Nos. 14 to 22 were each provided with a metal layer or a conductive carbon layer as the outermost layer.
  • the evaluation results were all good, and compared with the results of the examples of the present invention shown in Table 2, as a whole, the value of contact resistance was reduced both at the initial stage and after battery operation. That is, it has been clarified that the contact resistance can be reduced by providing a metal layer or a conductive carbon layer as the outermost layer as compared with the case where these layers are not formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

このチタン材は、母材と、母材の表面に形成された複合酸化物皮膜とを備える。母材は、質量%で、白金族元素:0~0.15%、希土類元素:0~0.1%、残部:Tiおよび不純物、である化学組成を有する。複合酸化物皮膜は、La、Ce、Nd、SrおよびCaから選択される1種以上とTiとの複合酸化物を含み、厚さが1~20nmである。母材表面の平均結晶粒径は、20~300μmであることが好ましい。

Description

チタン材、セパレータおよび固体高分子形燃料電池
 本発明は、チタン材、セパレータおよび固体高分子形燃料電池に関する。
 燃料電池は、水素と酸素との結合反応の際に発生するエネルギーを利用するため、省エネルギーと環境対策との両面から、その導入および普及が期待されている。燃料電池には、固体電解質形、溶融炭酸塩形、リン酸形、および固体高分子形などの種類がある。
 これらのうち、固体高分子形燃料電池は、出力密度が高く小型化が可能であり、また、他のタイプの燃料電池より低温で作動し、起動および停止が容易である。このような利点から、固体高分子形燃料電池は、自動車、家庭用の小型コジェネレーション等への利用が期待されており、近年、特に注目を集めている。
 図1Aは、固体高分子形燃料電池(以下、単に「燃料電池」ともいう。)の斜視図であり、図1Bは、燃料電池に用いられる単セルの分解斜視図である。
 図1Aに示すように、燃料電池1は、単セルの集合体(スタック)である。単セルでは、図1Bに示すように、固体高分子電解質膜2の一面に、アノード側ガス拡散電極膜(「燃料電極膜」とも呼ばれる;以下、「アノード」という。)3が、他面に、カソード側ガス拡散電極膜(「酸化剤電極膜」とも呼ばれる;以下、「カソード」という。)4が、それぞれ積層されており、その積層体の両面に、セパレータ(バイポーラプレート)5a、5bが重ねられている。
 燃料電池には、隣接する2つの単セルの間、または数個の単セルごとに、冷却水の流通路を持つセパレータを配したものがある。本発明は、そのような水冷型燃料電池のセパレータ、およびそのセパレータに用いるチタン材も対象とする。
 固体高分子電解質膜(以下、単に「電解質膜」という。)2としては、水素イオン(プロトン)交換基を有するふっ素系プロトン伝導膜が主として使われている。
 アノード3、およびカソード4は、いずれも、導電性を有する炭素繊維をシート状にしたカーボンシート(または、カーボンシートより薄いカーボンペーパー、もしくはさらに薄いカーボンクロス)を主体とする。アノード3およびカソード4には、粒子状の白金触媒、黒鉛粉、および必要に応じて水素イオン(プロトン)交換基を有するふっ素樹脂からなる触媒層が設けられている場合もある。
 セパレータ5aには、アノード3側の面に、溝状の流路6aが形成されている。流路6aには、燃料ガス(水素または水素含有ガス)Aが流されて、アノード3に水素が供給される。また、セパレータ5bには、カソード4側の面に、溝状の流路6bが形成されている。流路6bには、空気等の酸化性ガスBが流され、カソード4に酸素が供給される。これらガスの供給により、電気化学反応が生じて直流電力が発生する。アノード3およびカソード4に触媒層が設けられている場合には、燃料ガスまたは酸化性ガスとこの触媒層とが接触して反応が促進される。
 固体高分子形燃料電池のセパレータに求められる主な機能は、次の通りである。
(1)燃料ガス、または酸化性ガスを、電池面内に均一に供給する「流路」としての機能
(2)カソード側で生成した水を、反応後の空気、酸素等のキャリアガスとともに、燃料電池から効率的に系外に排出する「流路」としての機能
(3)電極膜(アノード3、カソード4)と接触して電気の通り道となり、さらに、隣接する2つの単セル間の電気的「コネクタ」となる機能
(4)隣り合うセル間で、一方のセルのアノード室と隣接するセルのカソード室との「隔壁」としての機能
(5)水冷型燃料電池では、冷却水流路と隣接するセルとの「隔壁」としての機能
 固体高分子形燃料電池に用いられるセパレータ(以下、単に「セパレータ」という。)の基材材料は、このような機能を果たすことができるものである必要がある。基材材料には、大きく分けて、金属系材料と炭素系材料とがある。
 炭素系材料からなるセパレータは、黒鉛基板にフェノール系、フラン系などの熱硬化性樹脂を含浸し硬化して焼成する方法、炭素粉末をフェノール樹脂、フラン樹脂、またはタールピッチなどと混練して、板状に、プレス成形、または射出成型して焼成し、ガラス状カーボンにする方法などにより製造される。炭素系材料は比重が小さいので、炭素系材料を用いると、軽量なセパレータが得られる利点がある。しかし、このようなセパレータには、ガス透過性を有するという問題、および機械的強度が低いという問題がある。
 金属系材料としては、チタン、ステンレス、炭素鋼などが用いられる。これらの金属系材料からなるセパレータは、プレス加工等により製造される。金属系材料は、金属特有の性質として、加工性に優れ、セパレータの厚さを薄くすることができ、セパレータの軽量化が図れるという利点を有するが、金属表面の酸化により電気伝導性が低下し得る。このため、金属系材料からなるセパレータと電極膜との接触抵抗が上昇する可能性があることが問題となっている。この問題に対して、以下の方策が提案されている。
 特許文献1では、チタン製セパレータの基材において、電極と接するべき表面から不動態皮膜を除去した後に、その表面に金などの貴金属のめっきを施すことが提案されている。また、特許文献2では、白金族元素を1種または2種以上含有するチタン合金を酸洗し、表面に白金族元素を濃化させることにより接触抵抗の上昇が抑制されたチタン合金が提案されている。さらに、特許文献3では、酸洗により白金族元素を表面濃化させた後に、表面に濃化した白金族元素とマトリックスとの密着性向上を目的として、低酸素濃度雰囲気で熱処理を施したチタン製セパレータが提案されている。
 特許文献4では、表面がチタン製の金属セパレータに対して、当該表面に、蒸着により、炭素からなる導電性接点層を形成する方法が提案されている。特許文献5では、表面に、チタン化合物粒子と酸化チタンとからなる皮膜を有する、セパレータ用チタン材が提案されている。チタン化合物は、炭素および窒素の少なくとも一方とチタンとの化合物である。そして、特許文献6では、表面に白金族元素が露出・濃化して高濃度となることにより、良好な導電性を有する固体高分子型燃料電池セパレータ用チタン材が提案されている。
特開2003-105523号公報 特開2006-190643号公報 特開2007-59375号公報 特開2004-158437号公報 国際公開第2011/016465号 特開2013-109891号公報
 固体高分子形燃料電池は、移動体用燃料電池、および定置用燃料電池として広く用いられることが期待されている。そのため、特許文献1に記載される技術のように、貴金属を多量に使用することは、経済性、および資源量の観点から問題がある。また、特許文献2および3に記載のセパレータも、白金族元素を含み、また、製造時の工数が多いため、大幅なコスト上昇を避けることができないという問題がある。
 特許文献4では、貴金属を用いることなく接触抵抗が上昇する問題を解決するための試みがなされている。しかし、通常、チタンの表面には、導電性を有しないチタン酸化皮膜が形成されている。そのため、当該皮膜上に導電性接点層を形成しても、接触抵抗は低下しない。接触抵抗を低下させるためには、このチタン酸化皮膜を除去した直後に導電性接点層を形成する必要がある。このような処理を行うためには、処理を行う際の雰囲気制御等が必要になるため、大幅なコストアップを避けることができない。
 また、特許文献5に記載の皮膜は、チタン酸化皮膜中に、チタン化合物を分散させた構造を有し、チタン化合物によって導電性を確保することが意図されている。しかし、このセパレータでは、通電面積が小さいことに起因して十分な導電性を確保することが難しく、改善の余地が残されている。
 特許文献6では、チタン材表面に白金族元素を濃化させることによって、低い接触抵抗を維持することが可能になる。しかし、チタン材表面に形成される被膜は、含有量の少ない白金族元素の表面濃化のため、素地チタン母材の多量の溶解を必要とし、接触抵抗を低減する上で改善の余地が残されている。
 一般に、セパレータと電極膜との接触抵抗は、セパレータ表面にふっ化物が形成されることによっても増大する。燃料電池において、電解質膜2からふっ素イオンが生じ、一方、燃料電池の反応により水が生じる。これにより、ふっ化水素水が生じ、この状態で、電解質膜2とセパレータ5a,5bとの間に電圧が印加されることにより、セパレータ表面にふっ化物が形成される。
 本発明は、従来技術の上述の問題を解消し、初期の接触抵抗が低く、固体高分子形燃料電池内環境において良好な耐食性を有し、それゆえに、低い接触抵抗が維持される、チタン材、セパレータおよび固体高分子形燃料電池を提供することを目的とする。
 本発明は、上記課題を解決するためになされたものであり、下記のチタン材、セパレータおよび固体高分子形燃料電池を要旨とする。
 (1)質量%で、
 白金族元素:0~0.15%、
 希土類元素:0~0.1%、
 残部:Tiおよび不純物、
 である化学組成を有する母材と、
 前記母材の表面に形成され、La、Ce、Nd、SrおよびCaから選択される1種以上とTiとの複合酸化物を含み、厚さが1~20nmである複合酸化物皮膜と、を備える、
 チタン材。
 (2)前記母材の化学組成が、質量%で、
 白金族元素:0.005~0.15%、
 を含有する、
 上記(1)に記載のチタン材。
 (3)前記母材の化学組成が、質量%で、
 希土類元素:0.005~0.1%、
 を含有する、
 上記(1)または(2)に記載のチタン材。
 (4)前記母材の表面における平均結晶粒径が20~300μmである、
 上記(1)から(3)までのいずれかに記載のチタン材。
 (5)最表層に、Au、Pt、Ag、Pd、RuおよびRhから選択される1種以上を主体とし、厚さが2~50nmである金属層を有する、
 上記(1)から(4)までのいずれかに記載のチタン材。
 (6)最表層に、導電性炭素を主体とし、厚さが2~50nmである導電性炭素層を有する、
 上記(1)から(4)までのいずれかに記載のチタン材。
 (7)上記(1)から(6)までのいずれかに記載のチタン材を含む、
 固体高分子形燃料電池のセパレータ。
 (8)上記(7)に記載のセパレータを含む、
 固体高分子形燃料電池。
 本発明によれば、初期の接触抵抗が低く、固体高分子形燃料電池内環境において良好な耐食性を有するチタン材を得ることができる。そのため、本発明に係るチタン材を含むセパレータは、固体高分子形燃料電池として使用される際に、低い接触抵抗を維持することが可能となる。
図1Aは、固体高分子形燃料電池の構造を模式的に示す斜視図である。 図1Bは、固体高分子形燃料電池を構成する単セルの構造を示す分解斜視図である。 図2は、本発明の一実施形態に係るチタン材の模式的な断面図である。 図3は、接触抵抗の測定方法を説明するための図である。
 1.チタン材
 図2は、本発明の一実施形態に係るチタン材の模式的な断面図である。母材11の表面には、複合酸化物皮膜12が形成されている。さらに、複合酸化物皮膜12の上には、金属層または導電性炭素層13が形成されている。以下、各構成要件について、詳細に説明する。
 (A)母材の化学組成
 母材は、必要に応じて、白金族元素および希土類元素を含み、残部がTiおよび不純物である化学組成を有する。各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
 白金族元素:0~0.15%
 白金族元素は、チタンより低い電気抵抗率を有し、固体高分子形燃料電池の動作環境において、酸化および腐食せず、電気抵抗が上昇しない元素である。また、母材が白金族元素を含有することにより、母材自体の耐食性が向上するとともに、母材の表層部にチタン酸化皮膜が生成し難くなる。そのため、白金族元素を必要に応じて含有させてもよい。
 しかし、白金族元素の含有量が0.15%を超えると、上記の効果が飽和することに加えて、原料コストが高くなる。そのため、白金族元素の含有量は0.15%以下とする。経済性と耐食性とのバランスを考慮すると、白金族元素の含有量は0.1%以下とすることが好ましい。母材の耐食性を高くする効果、およびチタン酸化皮膜の生成を抑制する効果が十分に得るためには、白金族元素の含有量は0.005%以上とすることが好ましく、0.02%以上とすることがより好ましい。
 ここで、「白金族元素」とは、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、および白金(Pt)をいう。母材は、実質的に1種のみの白金族元素を含有してもよく、複数種の白金族元素を含有してもよい。前記白金族元素の含有量はこれらの元素の合計含有量を意味する。
 希土類元素:0~0.1%
 母材が希土類元素を含有することにより、母材の白金族元素含有量を低くしても、より高い量の白金族元素を含有するチタン材と同等の耐食性および表面導電性が得られる。そのため、希土類元素を必要に応じて含有させてもよい。
 しかし、希土類元素の含有量が0.1%を超えると、希土類元素としてミッシュメタルを用いたとしても、原料コストが高くなる。そのため、希土類元素の含有量は0.1%以下とする。希土類元素の含有量は0.08%以下であるのが好ましい。上記の効果を得るためには、希土類元素の含有量は0.005%以上とすることが好ましく、0.01%以上とすることがより好ましい。
 ここで、希土類元素はスカンジウム(Sc)、イットリウム(Y)およびランタノイドの合計17元素をいう。母材は、実質的に1種のみの希土類元素を含有してもよく、複数種の希土類元素を含有してもよい。前記希土類元素の含有量はこれらの元素の合計含有量を意味する。
 母材の製造工程で、希土類元素は、ミッシュメタルとして、Ti原料に添加してもよい。ミッシュメタルとは、複数種の希土類元素を含有する合金で、主として、La、およびCeを含有することが多い。単一種の希土類元素を製造する場合にかかる分離費用が、ミッシュメタルではかからないため、ミッシュメタルを用いることにより、安価に希土類元素を含有させることができる。
 Fe:0.1%以下
 一般に、チタン母材は、不純物として、Feを含有する。Feは、チタン材の耐食性を劣化させる作用を有する。Fe含有量について特に制限は設けないが、チタン材の耐食性を高くするためには、母材のFe含有量を低くすることが好ましく、具体的には、0.1%以下とすることが好ましい。
 (B)複合酸化物皮膜
 複合酸化物皮膜は、La、Ce、Nd、SrおよびCaから選択される1種以上とTiとの複合酸化物を含む。複合酸化物が存在することは、X線回折測定により確認できる。複合酸化物皮膜において、La、Ce、Nd、SrおよびCaから選択される1種以上、TiおよびO(酸素)の合計含有量は、90%以上であることが好ましく、95%以上であることが、より好ましい。
 このような複合酸化物は、導電性に優れるため、チタン材の表面抵抗を低く保つことができる。複合酸化物の例として、例えば、LaTiO、CeTiO等、ペロブスカイト型の結晶構造を有するものを挙げることができる。複合酸化物は、化学量論組成を有していてもよく、非化学量論組成を有していてもよい。
 チタン材の表面には、通常、自然に酸化皮膜が形成される。しかし、チタンの酸化物は導電性が低いため、本発明のチタン材は、表面酸化皮膜としてのチタン酸化物を含まないことが好ましい。
 複合酸化物皮膜は、例えば、以下のようにして形成することができる。まず、母材を冷間圧延した後、母材の表面に、La、Ce、Nd、SrおよびCaから選択される1種以上の酸化物ゾルを含有する分散水溶液をロールコーター等で塗布する。この状態の母材を乾燥後、焼鈍する。これにより、前記酸化物と、母材の表面に形成されたTi酸化物とが反応して、La、Ce、Nd、SrおよびCaから選択される1種以上とTiとの複合酸化物を含む皮膜、すなわち、複合酸化物皮膜が、母材の表面に形成される。
 ただし、Srの酸化物は水と反応するため、Srについては水酸化物ゾル、または炭酸化合物ゾルを用いることが好ましい。Sr水酸化物ゾル、またはSr炭酸化合物ゾルを用いた場合も、焼鈍過程で、この水酸化物または炭酸化合物が分解して、水または炭酸を生じ、Sr酸化物となる。これにより、酸化物ゾルを用いた場合と同様に、複合酸化物が形成される。
 焼鈍するに際しては、焼鈍温度が高すぎると皮膜の結晶性が上がり、導電性が低下するおそれがある。そのため、焼鈍温度は900℃未満とすることが好ましい。
 また、複合酸化物皮膜の厚さが1nm未満の場合は、十分な耐食性が得られない。一方、複合酸化物皮膜の厚さが20nmを超える場合は、チタン材の表面抵抗が高くなる。そのため、複合酸化物皮膜の厚さは、1~20nmとする。複合酸化物皮膜の厚さは、3nm以上であるのが好ましく、4nm以上であるのがより好ましい。また、複合酸化物皮膜の厚さは、15nm以下であるのが好ましく、10nm以下であるのがより好ましい。
 (C)平均結晶粒径
 母材の平均結晶粒径については特に制限は設けない。ただし、複合酸化物皮膜の厚さを大きくしようとすると、焼鈍温度を高くするかまたは焼鈍時間を長くする必要があり、結果的に結晶粒径が大きくなる。特に、母材表面を含め母材全体における平均結晶粒径が300μmを超えると、チタン材の延性が低下して、チタン材をプレス成形する際に割れ易くなるおそれがある。
 一方、母材表面における平均結晶粒径が20μm未満であると、チタン材の表層部の導電性が低下する場合がある。これは、母材の粒界に沿ってチタンの酸化物が形成されやすいためであると考えられる。すなわち、平均結晶粒径が小さくなると単位体積あたりの粒界面積が大きくなり、導電経路に酸化物が多くなるので、導電性が低くなると解される。したがって、母材表面における平均結晶粒径は、20~300μmとすることが好ましい。
 母材表面の平均結晶粒径は、チタン材の切断面において、複合酸化物皮膜との界面近傍で測定することで得られる。具体的には、母材部において複合酸化物皮膜と接する結晶粒の母材表面と平行な方向の長さを複数個所で測定し、その長さの平均値を平均結晶粒径とする。
 チタン材表面の平均結晶粒径は、冷間圧延時の圧下率、ならびに、冷間圧延後に実施する焼鈍の温度および時間を制御することにより、調整することができる。圧下率を低くするほど、焼鈍温度が高いほど、または焼鈍時間が長いほど、平均結晶粒径は大きくなる。チタン材表面の平均結晶粒径に特に影響するのは、冷間圧延の条件であり、圧下率を低くすることに加えて、冷間圧延に用いるロール径を大きくすることで、表面近傍の歪みを抑制し、母材表面の平均結晶粒径を大きくすることができる。
 (D)金属層および導電性炭素層
 チタン材の最表層には、必要に応じて、金属層または導電性炭素層が設けられていてもよい。複合酸化物皮膜は、導電性および耐食性に優れるが、チタン材の最表層に、金属層または導電性炭素層が設けられていると、チタン材表層部の導電性および耐食性を、さらに向上させることができる。逆に、この複合酸化皮膜がない場合、チタン材表面に生成する酸化皮膜の影響で、上層に金属層または導電性炭素層を設けても抵抗が下がり難い。
 金属層は、Au、Pt、Ag、Pd、RuおよびRhから選択される1種以上を主体とする。ここで、「Au、Pt、Ag、Pd、RuおよびRhから選択される1種以上を主体とする」とは、金属層に占めるAu、Pt、Ag、Pd、RuおよびRhから選択される1種以上の割合が90%以上であることをいうものとする。金属層は、例えば、めっき法、または蒸着法により、複合酸化物皮膜の上に所定の金属を供給して形成することができる。
 導電性炭素層は、導電性炭素を主体とする。ここで、「導電性炭素を主体とする」とは、導電性炭素を含有する皮膜層に占める導電性炭素の割合が90%以上であり、その層が導電性を有することをいうものとする。導電性炭素は、例えば、導電性を有するDLC(ダイヤモンドライクカーボン)、またはグラファイトとすることができる。DLCには、結晶質のものと、非晶質のものとがある。通常のDLCは、電気的絶縁体であるが、導電性を有するDLCも存在する。導電性炭素層にDLCを用いる場合は、導電性を有するものを用いる。グラファイトは層状の結晶構造を有することにより、応力を受けると層間で剥離し得る。これに対して、DLCは、機械特性が等方的であるため、特に強い力がかからない限り、粒子内での剥離は生じにくい。導電性炭素層は、例えば、蒸着法により、複合酸化物皮膜の上に炭素を供給して形成することができる。
 金属層および導電性炭素層は、いずれも、厚さが2~50nmとするのが好ましい。厚さが2nm未満であると、チタン材表面の導電性、および耐食性を向上させる効果が得られにくい。この効果を十分に得るためには、金属層、または導電性炭素層の厚さは、2nm以上であることが好ましい。また、厚さが、50nmを超えると、製造コストが著しく増大する。製造コストを抑制するために、金属層、または導電性炭素層の厚さは、40nm以下とすることが好ましい。
 複合酸化物皮膜において、金属層または導電性炭素層に覆われている部分は、腐食生成物が形成され難い。このため、燃料電池内環境で、この部分を介した電気的接続は維持されやすい。これにより、チタン材全体としての電極膜に対する接触抵抗は、低く維持されやすい。
 金属層または導電性炭素層の被覆率(チタン材の表面積に対する、金属層または導電性炭素層に覆われている部分の面積の割合;以下、単に、「被覆率」という。)は、最も好ましくは、100%である。しかし、金属層または導電性炭素層の膜厚が小さいときには、複合酸化物皮膜の全面を覆うことは困難である。被覆率が30%程度でも、接触抵抗を低く維持する上述の効果が得られる。被覆率が50%以上であれば、この効果は安定して得られる。
 チタン材の表面は、平坦であってもよく、適度に粗くされていてもよい。なお、適度な粗さとは、例えば、表面粗さが、JIS B 0601(2001)に規定される算術平均粗さRaで、1~2μm程度であることを意味する。チタン材の表面が粗い場合、この表面にアノード3またはカソード4(図1B参照)に接触すると、表面の凸状部近傍の面圧が高くなり、その部位で導通しやすくなる。このように粗い表面は、例えば、ふっ酸を含有する酸処理液で母材を処理することで得られる。この場合、複合酸化物皮膜は、酸処理液による処理を実施した後に形成する。チタン材の表面粗さは、好ましくは、Raで1.1~1.5μmである。
 2.セパレータ
 本発明のセパレータは、固体高分子形燃料電池に用いられる。このセパレータは、本発明のチタン材を含む。このため、このセパレータは、固体高分子形燃料電池において、優れた耐食性を示し、低い接触抵抗を維持することができる。
 本発明のセパレータは、平板状の母材の表面に、上述の方法で複合酸化物皮膜を形成した後、プレス加工により溝状の流路を形成することによって、製造することができる。平板状の母材をプレス加工した後に、複合酸化物皮膜を形成してもよい。チタン材の表面粗さを粗くする場合は、プレス加工の後、複合酸化物皮膜を形成する前に、上述の酸処理液による処理を行う。また、最表層に、金属層または導電性炭素層が設けられたチタン材を含むセパレータを製造する場合は、複合酸化物皮膜形成およびプレス成形をした後、上述の方法により、金属層または導電性炭素層を形成する。
 母材が白金族元素を実質的に含有しない場合は、セパレータを燃料電池へ組み込む際、金属層または導電性炭素層が、複合酸化物皮膜から、剥離するか、局部的に浮き上がることがある。この場合、ふっ化物イオンが存在する燃料電池内環境において、チタン材の耐食性が低下し、接触抵抗が増大する。
 これに対して、母材が白金族元素を含有する場合は、複合酸化物皮膜に対して金属層または導電性炭素層が強固に密着し、セパレータを燃料電池に組み込む際に、金属層または導電性炭素層の剥離または局部的な浮き上がりを抑制することができる。これにより、チタン材の耐食性を高く維持し、接触抵抗を低く維持することができる。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 (実施例1)
 本発明の効果を確認するため、以下の方法によりチタン材の試料を作製し、評価した。
 1.チタン材の作製
 チタン材を製造するための素材として、実験室レベルで原料を融解および凝固して得たチタンインゴットを用意した。表1に、素材(インゴット)の化学組成を示す。
Figure JPOXMLDOC01-appb-T000001
 これらのインゴットに対して、熱間圧延、および冷間圧延を順次施し、母材として、厚さが0.1mmのチタン板を得た。冷間圧延には、直径が800mmのワークロールを用いた。冷間圧延の圧下率は、50~80%とした。
 次に、このチタン板の両面に、La、CeO、Nd、Sr(OH)およびCaOのそれぞれのゾルの分散水溶液を、ロールコーター法で塗布した。比較として、Alゾル分散水溶液を塗布したチタン板も用意した。ゾル分散水溶液の塗布量は、いずれも、化合物(酸化物または水酸化物)の質量として、チタン板片面あたり0.1g/mとした。その後、これらのチタン板を焼鈍して、チタン材の試料を得た。焼鈍温度は、700~930℃とし、焼鈍雰囲気は、窒素が95体積%で、水素が5体積%の混合ガスとした。
 得られたチタン材を、プレス加工して、チタン材の両面(セパレータ5a、5bのアノード側、およびカソード側に対応)に、幅2mm、深さ1mmの溝状のガス流路を形成し、セパレータとして用いることができる形態にした。
 2.チタン材の評価
 (1)母材の平均結晶粒径の測定
 焼鈍後の母材について、切断して板厚断面を研磨し、200μmに亘る領域において、複合酸化物皮膜と接する母材部の結晶粒の長さを測定し、当該長さを平均することで平均結晶粒径を算出した。
 (2)表面に形成された物質の同定、およびその物質が形成された皮膜の厚さの測定
 焼鈍後のチタン材に対して、薄膜X線回折法によりX線回折パターンを得て、チタン材の表面皮膜に形成された物質を同定した。X線の照射角度は5°とした。特に膜厚が薄いものはIn-Plane法を用いて感度を上げて測定した。また、チタン材から、その表面に垂直な断面を含む小片を切り出し、この小片をFIB加工により薄膜にした。この薄膜のFE-TEM像を撮影して、表面皮膜の厚さを測定した。1つのチタン材につき、3視野で表面皮膜の厚さを測定し、その平均値を、そのチタン材に形成された表面皮膜の厚さとした。
 (3)接触抵抗の測定方法
 図3に模式的に示す装置を用いて、接触抵抗を測定した。具体的には、まず、作製したチタン材(以下、「チタンセパレータ」という。)21を、ガス拡散層(図1Bのアノード3、およびカソード4)に使用される1対のカーボンペーパー22(東レ株式会社製 TGP-H-90)で狭持し、これを1対の金めっきした電極23で挟んだ。カーボンペーパー22の面積は、1cmとした。
 次に、1対の電極23の間に荷重を加え、この状態で、電極23間に一定の電流を流して、このとき生じるカーボンペーパー22とチタンセパレータ21との間の電圧降下を測定し、この結果に基づいて抵抗値を求めた。抵抗値は、荷重を5kgf/cm(4.9×10Pa)として測定した。得られた抵抗値は、チタンセパレータ21の両面の接触抵抗を合算した値となるため、これを2で除して、チタンセパレータ21の片面あたりの接触抵抗値(初期接触抵抗)とした。
 次に、初期接触抵抗を測定済みのチタンセパレータを用いて、単セルの固体高分子形燃料電池を作製し、この燃料電池の運転後の接触抵抗を測定した。すなわち、セパレータを組み込んで運転する燃料電池は、単セルを積層した多セルの燃料電池とはしなかった。その理由は、単セルを積層した状態では、積層状態の差異が評価結果に反映され、測定値の再現性が低くなるためである。セルには、固体高分子電解質膜を含む膜電極接合体(MEA)として、株式会社東陽テクニカ製PFEC用スタンダードMEAであるFC50-MEA(イオン交換膜として、ナフィオン(登録商標)-1135を使用)を用いた。
 この燃料電池に、アノード側燃料用ガスとして、純度が99.9999%の水素ガスを流し、カソード側ガスとして、空気を流した。水素ガス、および空気の燃料電池への導入ガス圧は0.04~0.20bar(4000~20000Pa)とした。燃料電池本体は、全体を70±2℃に保温するとともに、燃料電池内部の湿度制御は、入り側露点を70℃とすることで調整した。電池内部の圧力は、約1気圧(約1.01×10Pa)であった。
 この燃料電池を、0.5A/cmの定電流密度で運転した。出力電圧は、運転開始から20~50時間で最も高くなった。この最も高い電圧に達した後に、500時間運転を続け、その後、燃料電池の運転を停止した。そして、セルを解体してセパレータを取り出し、上述した方法により接触抵抗を測定し、発電運転後の接触抵抗とした。
 接触抵抗の測定、ならびに燃料電池の運転時における電流および電圧の測定には、デジタルマルチメータ(株式会社東陽テクニカ製 KEITHLEY 2001)を使用した。
 表2に、チタン材の製造条件、および評価結果を示す。表2の「総合評価」の欄に示す符号の意味は、以下の通りである。
  ○:初期の接触抵抗が10mΩ・cm以下および電池運転後の接触抵抗が20mΩ・cm以下であり、かつプレス成形性に優れる。
  ×:初期の接触抵抗が10mΩ・cmを超えるか電池運転後の接触抵抗が20mΩ・cmを超えるか、またはプレス成形性が劣る。
 ここで、「プレス成形性に優れる」とは、溝状のガス流路を形成するプレス加工時に、割れが生じなかったことを意味する。
Figure JPOXMLDOC01-appb-T000002
 チタン板にゾルの分散水溶液を塗布する際、ゾルに含まれる化合物(表2の「塗布した化合物」の欄に示す。)として、試験No.2および4のチタン材については、2種類の酸化物または水酸化物とし、他のチタン材については、1種類の酸化物とした。試験No.2および4では、2種類の酸化物または水酸化物の混合比は、同欄の最初に記したものと後に記したものとが、質量比で、5:1とした。試験No.2のチタン材に形成されたCeTiO、および試験No.4のチタン材に形成されたSrTiOには、Laがドープされていることが予想された。
 試験No.1~9は、本発明例である。これらのチタン材の表面に形成された皮膜(複合酸化物皮膜)は、La、Ce、Nd、SrおよびCaのいずれかとTiとの複合酸化物を主体とするものであり、厚さが1~20nmであった。これらのチタン材は、プレス加工により、上述の溝を有する形状に良好に加工できた。また、これらのチタン材の接触抵抗は、初期、および運転後ともに、固体高分子形燃料電池のセパレータとして用いるのに十分に低かった。
 一方、試験No.10~13は、本発明で規定される要件のいずれかを満たさない比較例である。
 試験No.10および11では、複合酸化物皮膜の厚さが20nmを超えたため、初期の接触抵抗が高くなった。また、試験No.10のチタン材については、プレス成形時に割れたため、初期の接触抵抗は、プレス加工前のチタン材について測定し、電池運転後の接触抵抗は測定しなかった。プレス成形により割れたのは、皮膜厚さを大きくするのに伴って母材表面の平均結晶粒径が300μmを超え、母材全体の平均結晶粒径も大きくなり、チタン材の延性が低下したためと考えられる。
 試験No.12では、初期の接触抵抗に比して、電池運転後の接触抵抗が大幅に上昇した。これは、皮膜の厚さが2nm未満であったことと関係しているものと考えられる。さらに、試験No.13では、接触抵抗は、初期および電池運転後ともに高かった。試験No.13のチタン材は、母材の表面にAlが形成されており、La、Ce、Nd、SrおよびCaから選択される1種以上とTiとの複合酸化物は形成されていなかった。Alが導電性に乏しいことにより、試験No.13での接触抵抗が高かったものと考えられる。
 (実施例2)
 表1の素材Eのインゴットを、圧下率を80%として冷間圧延して得たチタン板に、Laゾルの分散水溶液を塗布した。ゾル分散水溶液の塗布量は、Laの質量として、チタン板片面あたり0.1g/mとした。このチタン板を、乾燥後、窒素が95体積%で、水素が5体積%の混合ガス雰囲気中で、750℃で焼鈍した。このチタン板の表面を、薄膜X線回折で測定したところ、LaTiOが検出された。表面皮膜の厚さを、FE-TEMを用いる上述の方法により測定したところ、4nmであった。また、母材表面の平均結晶粒径を、EBSPを用いる上述の方法により測定したところ、33μmであった。このチタン板(チタン材)に対して、以下の金属層または導電性炭素材(皮膜)を被覆した。
 金属層は、Au、Pt、Ag、Pd、RuおよびRhの1種または2種を主体とするものとし、めっきにより形成した。具体的には、各金属のめっきには、日本エレクトロプレイティング・エンジニヤース株式会社製の以下のめっき液を用いた。
Au:テンペレックスBHG100
Pt:プラタネックス3LS
Ag:プレシャスファブAg4730
Pd:パラデックスADP720
Ru:プレシャスファブRu1000
Rh:ローデックス
 めっき温度は、40~60℃とした。めっき厚さは、電流量により調節し、1~70nmとした。
 導電性炭素層は、下記a~cのそれぞれの方法により、形成した。
方法a:結着剤に導電性炭素粉末を分散させたものを、チタン材の表面に塗布し、80℃で乾燥することにより、導電性炭素層を形成した。結着剤として、PTFEディスパージョン溶液(ダイキン株式会社製 PTFEディスパージョン D1)を純水で1/15に希釈したものを用いた。
方法b:神港精機株式会社製の真空蒸着装置AAH-C1080SBを用いて、チタン材の表面に対して、20分間、炭素の真空蒸着を行った。これにより、導電性炭素層を形成した。
方法c:株式会社プラズマイオンアシストによる低エネルギープラズマ処理により、チタン材の表面に、導電性DLC(LR-DLC)を主体とする導電性炭素層を形成した。
 このようにして得られたチタン材について、実施例1と同じ評価項目について同じ評価方法で評価した。表3に、評価結果を示す。
Figure JPOXMLDOC01-appb-T000003
 試験No.14~22は、いずれも、最表層に、金属層、または導電性炭素層を備えたものであった。評価結果は、いずれも良好であり、表2に示す本発明例の結果と比較すると、全体的に、初期および電池運転後ともに、接触抵抗の値は低減した。すなわち、最表層に、金属層、または導電性炭素層を設けることにより、これらの層が形成されていない場合に比して、接触抵抗が低減できることが明らかとなった。
  1:固体高分子形燃料電池
  5a、5b、21:セパレータ
  11:母材
  12:複合酸化物皮膜
  13:金属層または導電性炭素層

Claims (8)

  1.  質量%で、
     白金族元素:0~0.15%、
     希土類元素:0~0.1%、
     残部:Tiおよび不純物、
     である化学組成を有する母材と、
     前記母材の表面に形成され、La、Ce、Nd、SrおよびCaから選択される1種以上とTiとの複合酸化物を含み、厚さが1~20nmである複合酸化物皮膜と、を備える、
     チタン材。
  2.  前記母材の化学組成が、質量%で、
     白金族元素:0.005~0.15%、
     を含有する、
     請求項1に記載のチタン材。
  3.  前記母材の化学組成が、質量%で、
     希土類元素:0.005~0.1%、
     を含有する、
     請求項1または請求項2に記載のチタン材。
  4.  前記母材の表面における平均結晶粒径が20~300μmである、
     請求項1から請求項3までのいずれかに記載のチタン材。
  5.  最表層に、Au、Pt、Ag、Pd、RuおよびRhから選択される1種以上を主体とし、厚さが2~50nmである金属層を有する、
     請求項1から請求項4までのいずれかに記載のチタン材。
  6.  最表層に、導電性炭素を主体とし、厚さが2~50nmである導電性炭素層を有する、
     請求項1から請求項4までのいずれかに記載のチタン材。
  7.  請求項1から請求項6までのいずれかに記載のチタン材を含む、
     固体高分子形燃料電池のセパレータ。
  8.  請求項7に記載のセパレータを含む、
     固体高分子形燃料電池。
PCT/JP2016/083134 2015-11-10 2016-11-08 チタン材、セパレータおよび固体高分子形燃料電池 WO2017082257A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/772,627 US20180323447A1 (en) 2015-11-10 2016-11-08 Titanium product, separator and polymer electrolyte fuel cell
CN201680065915.8A CN108352543A (zh) 2015-11-10 2016-11-08 钛材、分隔件以及固体高分子型燃料电池
JP2017518276A JP6206622B1 (ja) 2015-11-10 2016-11-08 チタン材、セパレータおよび固体高分子形燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015220644 2015-11-10
JP2015-220644 2015-11-10

Publications (1)

Publication Number Publication Date
WO2017082257A1 true WO2017082257A1 (ja) 2017-05-18

Family

ID=58696153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083134 WO2017082257A1 (ja) 2015-11-10 2016-11-08 チタン材、セパレータおよび固体高分子形燃料電池

Country Status (4)

Country Link
US (1) US20180323447A1 (ja)
JP (1) JP6206622B1 (ja)
CN (1) CN108352543A (ja)
WO (1) WO2017082257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186121A (ja) * 2018-04-13 2019-10-24 株式会社豊田中央研究所 バイポーラプレート

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092877A (ja) * 2003-07-24 2010-04-22 Nissan Motor Co Ltd 燃料電池用集電構造及び固体酸化物形燃料電池スタック
JP2012059683A (ja) * 2010-09-13 2012-03-22 Samsung Electro-Mechanics Co Ltd 固体酸化物燃料電池用集電材、その製造方法及びこれを用いた固体酸化物燃料電池
WO2013073076A1 (ja) * 2011-11-18 2013-05-23 新日鐵住金株式会社 固体高分子型燃料電池セパレータ用チタン材並びにその製造方法およびそれを用いた固体高分子型燃料電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475301A (ja) * 1990-07-17 1992-03-10 Kuraray Co Ltd 薄膜バリスタ
JPH04234102A (ja) * 1990-12-28 1992-08-21 Kuraray Co Ltd 薄膜バリスタ
JP2912080B2 (ja) * 1992-04-16 1999-06-28 株式会社村田製作所 薄膜バリスタの製造方法及び薄膜バリスタ
JP3355372B2 (ja) * 2000-09-01 2002-12-09 東京工業大学長 レーザーによる薄膜形成方法
TW200302296A (en) * 2001-11-12 2003-08-01 Toho Titanium Co Ltd Composite titanium oxide film and method for formation thereof and titanium electrolytic capacitor
JP2003331874A (ja) * 2002-05-14 2003-11-21 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池用インターコネクタおよびその形成方法
JP4182016B2 (ja) * 2004-03-11 2008-11-19 日本電気株式会社 伝送線路型素子及びその作製方法
SE528379C2 (sv) * 2004-11-30 2006-10-31 Sandvik Intellectual Property Bränslecellskomponent med en komplex oxid bildande beläggning, anordningar innefattande komponenten och metod att framställa komponenten
EP2357655A4 (en) * 2008-11-25 2016-09-07 Nissan Motor CONDUCTIVE ELEMENT AND SOLIDS POLYMER FUEL CELL THEREFOR
JP2010182593A (ja) * 2009-02-06 2010-08-19 Kobe Steel Ltd 燃料電池セパレータ用耐食皮膜および燃料電池セパレータ
WO2012143118A1 (en) * 2011-04-20 2012-10-26 Topsøe Fuel Cell A/S Process for surface conditioning of a plate or sheet of stainless steel and application of a layer onto the surface, interconnect plate made by the process and use of the interconnect plate in fuel cell stacks
CA2876276C (en) * 2012-07-31 2017-06-06 Nippon Steel & Sumitomo Metal Corporation Titanium or titanium alloy material for fuel cell separator having high contact conductivity with carbon and high durability, fuel cell separator including the same, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092877A (ja) * 2003-07-24 2010-04-22 Nissan Motor Co Ltd 燃料電池用集電構造及び固体酸化物形燃料電池スタック
JP2012059683A (ja) * 2010-09-13 2012-03-22 Samsung Electro-Mechanics Co Ltd 固体酸化物燃料電池用集電材、その製造方法及びこれを用いた固体酸化物燃料電池
WO2013073076A1 (ja) * 2011-11-18 2013-05-23 新日鐵住金株式会社 固体高分子型燃料電池セパレータ用チタン材並びにその製造方法およびそれを用いた固体高分子型燃料電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186121A (ja) * 2018-04-13 2019-10-24 株式会社豊田中央研究所 バイポーラプレート
JP7163609B2 (ja) 2018-04-13 2022-11-01 株式会社豊田中央研究所 バイポーラプレート

Also Published As

Publication number Publication date
JPWO2017082257A1 (ja) 2017-11-09
JP6206622B1 (ja) 2017-10-04
CN108352543A (zh) 2018-07-31
US20180323447A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP4702365B2 (ja) 燃料電池用セパレータ及びその製造方法
JP6607311B2 (ja) チタン合金材、セパレータ、セル、および燃料電池
JP5880798B1 (ja) 固体高分子形燃料電池のセパレータ用チタン材、これを用いたセパレータ、およびこれを備えた固体高分子形燃料電池
JP6108042B2 (ja) チタン材、セパレータ、および固体高分子形燃料電池、ならびにチタン材の製造方法
JP6225716B2 (ja) 固体高分子形燃料電池のセパレータ用チタン材およびその製造方法
WO2018230247A1 (ja) 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法
JP6206622B1 (ja) チタン材、セパレータおよび固体高分子形燃料電池
JP4854992B2 (ja) 固体高分子型燃料電池用セパレータおよびその製造方法
JP5575696B2 (ja) 燃料電池セパレータの製造方法
JP6753165B2 (ja) 固体高分子形燃料電池のセパレータ用チタン材、およびそれを用いたセパレータ
JP2017088955A (ja) 固体高分子形燃料電池のセパレータ用チタン材、およびそれを用いたセパレータ
JP7035665B2 (ja) セパレータ、セル、および燃料電池
JP7035711B2 (ja) 金属板、セパレータ、セル、および燃料電池
JP7136140B2 (ja) 燃料電池用セパレータ
JP7151471B2 (ja) 金属材、セパレータ、燃料電池セル、および燃料電池スタック
JP6308330B2 (ja) チタン合金、チタン材、セパレータ、セル、および固体高分子型燃料電池
EP2712012A2 (en) A method of manufacturing a fuel cell stack having an electrically conductive interconnect.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017518276

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15772627

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864218

Country of ref document: EP

Kind code of ref document: A1