WO2017081924A1 - 気化器、成膜装置及び温度制御方法 - Google Patents

気化器、成膜装置及び温度制御方法 Download PDF

Info

Publication number
WO2017081924A1
WO2017081924A1 PCT/JP2016/076453 JP2016076453W WO2017081924A1 WO 2017081924 A1 WO2017081924 A1 WO 2017081924A1 JP 2016076453 W JP2016076453 W JP 2016076453W WO 2017081924 A1 WO2017081924 A1 WO 2017081924A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
raw material
gas
vaporization
nozzle
Prior art date
Application number
PCT/JP2016/076453
Other languages
English (en)
French (fr)
Inventor
崇 藤林
直樹 吉井
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020187012145A priority Critical patent/KR102584113B1/ko
Priority to JP2017550013A priority patent/JP6450469B2/ja
Priority to CN201680020078.7A priority patent/CN107431015B/zh
Publication of WO2017081924A1 publication Critical patent/WO2017081924A1/ja
Priority to US15/971,173 priority patent/US20180251891A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Definitions

  • Various aspects and embodiments of the present invention relate to a vaporizer, a film forming apparatus, and a temperature control method.
  • a chemical vapor deposition (CVD) method is known as a technique for forming a thin film.
  • CVD chemical vapor deposition
  • a solution containing a raw material such as a metal complex hereinafter referred to as “raw material solution”
  • raw material solution a solution containing a raw material such as a metal complex
  • the vaporizer mixes the raw material solution and the carrier gas in the gas-liquid mixing unit, injects the raw material solution mixed with the carrier gas into the vaporizing chamber from the nozzle, and vaporizes the raw material solution by heating the vaporizing chamber.
  • the temperature of the nozzle may rise together with the vaporization chamber as the vaporization chamber is heated.
  • the temperature of the nozzle rises excessively, the raw material solution is heated when the raw material solution is injected from the nozzle into the vaporizing chamber. For this reason, only the solvent of the raw material solution is vaporized before the raw material, and the raw material is fixed in the nozzle, and as a result, the nozzle may be clogged.
  • the disclosed vaporizer includes a gas-liquid mixing unit that mixes a solution containing a raw material and a carrier gas, a nozzle that injects a solution containing the raw material mixed by the gas-liquid mixing unit, A vaporizing chamber for vaporizing the solution containing the raw material injected by the nozzle, a first temperature adjusting mechanism for adjusting the temperature of the vaporizing chamber, and a second temperature adjusting mechanism for adjusting the temperature of the gas-liquid mixing unit; A third temperature adjusting mechanism for adjusting the temperature of the nozzle; and the second temperature adjustment by heating the vaporizing chamber to a first temperature higher than the vaporizing temperature of the raw material by the first temperature adjusting mechanism.
  • the temperature of the gas-liquid mixing unit is adjusted to a second temperature lower than the first temperature by a mechanism, and the temperature between the first temperature and the second temperature is adjusted by the third temperature adjusting mechanism.
  • the solution belongs to the range And a control unit for adjusting the temperature of the nozzle in the third temperature lower than the vaporization temperature of the solvent.
  • FIG. 1 is a diagram for explaining a schematic configuration example of a film forming apparatus according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration example of the vaporizer according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an example of the flow of the temperature control method according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of the solvent of the raw material solution.
  • FIG. 5A is a diagram showing the results of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 5B is a diagram showing the results of Examples 3 and 4 and Comparative Examples 3 and 4.
  • FIG. 5C is a diagram showing the results of Examples 5 and 6 and Comparative Examples 5 and 6.
  • FIG. 5A is a diagram showing the results of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 5B is a diagram showing the results of Examples 3 and 4 and Comparative Examples 3 and 4.
  • FIG. 5C is a diagram showing the results of Examples 5 and 6 and Compar
  • FIG. 6 is a diagram for explaining a graph showing the characteristics of Li (TMHD) and the characteristics of Co (TMHD) 3 .
  • FIG. 7 is a diagram for explaining a schematic configuration example of a film forming apparatus according to another embodiment 1.
  • FIG. 8 is a diagram for explaining a schematic configuration example of a film forming apparatus according to another embodiment 2.
  • FIG. 1 is a diagram for explaining a schematic configuration example of a film forming apparatus according to the first embodiment.
  • a film forming apparatus 10 shown in FIG. 1 forms a metal oxide film on a substrate to be processed, for example, a semiconductor wafer (hereinafter simply referred to as “wafer”) W by a CVD method.
  • the film forming apparatus 10 includes a vaporizer 100 and a film forming chamber 200.
  • the vaporizer 100 and the film forming chamber 200 are connected by a pipe 300.
  • the vaporizer 100 vaporizes a solution containing a raw material (hereinafter referred to as “raw material solution” as appropriate) to generate a raw material gas.
  • the raw material is, for example, Li (TMHD).
  • the source gas generated by the vaporizer 100 is supplied to the film forming chamber 200 via the pipe 300. Details of the vaporizer 100 will be described later.
  • the film forming chamber 200 performs a film forming process on the wafer W using the source gas generated by the vaporizer 100.
  • the film formation chamber 200 has, for example, a substantially cylindrical side wall, and includes a susceptor 222 on which the wafer W is horizontally placed in an internal space surrounded by the side wall, the top wall 210 and the bottom wall 212.
  • the side wall, the top wall 210 and the bottom wall 212 are made of a metal such as aluminum or stainless steel.
  • the susceptor 222 is supported by a plurality of cylindrical support members 224 (only one is shown here).
  • a heater 226 is embedded in the susceptor 222, and the temperature of the wafer W placed on the susceptor 222 can be adjusted by controlling the power supplied from the power source 228 to the heater 226.
  • An exhaust port 230 is formed in the bottom wall 212 of the film forming chamber 200, and an exhaust system 232 is connected to the exhaust port 230. Then, the inside of the film formation chamber 200 can be decompressed to a predetermined degree of vacuum by the exhaust system 232.
  • a shower head 240 is attached to the top wall 210 of the film forming chamber 200.
  • a pipe 300 is connected to the shower head 240, and the raw material gas generated by the vaporizer 100 is introduced into the shower head 240 via the pipe 300.
  • the shower head 240 has a diffusion chamber 242 and a number of gas discharge holes 244 communicating with the diffusion chamber 242.
  • the source gas introduced into the diffusion chamber 242 of the shower head 240 via the pipe 300 is discharged toward the wafer W on the susceptor 222 from the gas discharge hole 244.
  • the source gas from the vaporizer 100 is supplied as follows.
  • a raw material solution from a raw material supply source (not shown) is supplied to the vaporizer 100 and a carrier gas from a carrier gas supply source (not shown) is supplied, the raw material together with the carrier gas is supplied to the vaporization chamber provided in the vaporizer 100.
  • the solution is discharged as droplets, and the raw material solution is vaporized to generate a raw material gas.
  • the source gas generated in the vaporizer 100 is supplied to the film formation chamber 200 via the pipe 300, and a desired film formation process is performed on the wafer W in the film formation chamber 200.
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration example of the vaporizer according to the first embodiment.
  • the vaporizer 100 includes a gas-liquid mixing unit 110, a nozzle 120, a vaporization chamber 130, a heater 141, a heater power supply 142, a heat medium flow path 151, a heat medium flow path 152, a heat medium unit 153, It has a heat medium transport pipe 161, a heat medium unit 162, and a control device 170.
  • the gas-liquid mixing unit 110 mixes the raw material solution and the carrier gas.
  • a raw material solution supply pipe 111 and a carrier gas supply pipe 112 are connected to the gas-liquid mixing section 110.
  • the raw material solution is supplied from a raw material solution supply source (not shown) to the gas-liquid mixing unit 110 via the raw material solution supply pipe 111.
  • the carrier gas is supplied from a carrier gas supply source (not shown) to the gas-liquid mixing unit 110 via the carrier gas supply pipe 112.
  • the raw material solution mixed with the carrier gas by the gas-liquid mixing unit 110 flows into the nozzle 120.
  • the nozzle 120 injects the raw material solution mixed with the carrier gas by the gas-liquid mixing unit 110 into the vaporizing chamber 130.
  • a heat medium flow path 121 is formed inside the nozzle 120.
  • the heat medium flow path 121 is formed, for example, in an annular shape inside the nozzle 120.
  • a heat medium adjusted to a predetermined temperature by the heat medium unit 162 is supplied to the heat medium flow path 121 via the heat medium transport pipe 161.
  • the vaporization chamber 130 vaporizes the raw material solution sprayed by the nozzle 120. Specifically, the vaporization chamber 130 vaporizes the raw material solution using heat transmitted from the heater 141.
  • a piping 300 is connected to the vaporization chamber 130 via an exhaust device 131.
  • a raw material gas obtained by vaporizing the raw material solution in the vaporizing chamber 130 is discharged to the pipe 300 by the exhaust device 131 and supplied to the film forming chamber 200 through the pipe 300.
  • the heater 141 is provided outside the vaporization chamber 130 so as to cover the circumference of the vaporization chamber 130.
  • the heater 141 generates heat upon receiving a current supplied from the heater power supply 142.
  • surroundings of the heater 141 are covered with the heat insulating material 141a.
  • the heater power supply 142 adjusts the temperature of the vaporization chamber 130 according to the control of the control device 170. Specifically, when the heater power supply 142 receives the “first temperature control signal” from the control device 170, a predetermined current is supplied to the heater 141 to cause the heater 141 to generate heat, thereby causing the heater power supply 142 to exceed the vaporization temperature of the raw material. The temperature of the vaporizing chamber 130 is adjusted to a high temperature T1. If the temperature of the vaporizing chamber 130 rises excessively, when the raw material solution is vaporized, the raw material is thermally decomposed and converted into another substance.
  • the temperature T1 is preferably higher than the vaporization temperature of the raw material and lower than the temperature at which the raw material is thermally decomposed.
  • the heater power source 142 is an example of a “first temperature adjustment mechanism”, and the temperature T1 is an example of a “first temperature”.
  • the heat medium flow channel 151 is provided outside the gas-liquid mixing unit 110 so as to cover the periphery of the gas-liquid mixing unit 110.
  • the heat medium flow path 151 is connected to the heat medium flow path 152 and allows the heat medium supplied from the heat medium unit 153 to flow through the heat medium flow path 152. Further, the periphery of the heat medium passage 151 is covered with a heat insulating material 151a.
  • the heat medium flow path 152 is provided outside the carrier gas supply pipe 112 so as to cover the periphery of the carrier gas supply pipe 112 connected to the gas-liquid mixing unit 110.
  • the heat medium flow path 152 is connected to the heat medium unit 153 and allows the heat medium supplied from the heat medium unit 153 to flow therethrough. Further, the periphery of the heat medium flow path 152 is covered with a heat insulating material 152a.
  • the heat medium unit 153 adjusts the temperature of the gas-liquid mixing unit 110 and the temperature of the carrier gas supply pipe 112 according to the control of the control device 170. Specifically, when the heat medium unit 153 receives the “second temperature control signal” from the control device 170, the heat medium unit 153 circulates the heat medium using the heat medium flow path 151 and the heat medium flow path 152. The temperature of the gas-liquid mixing unit 110 and the temperature of the carrier gas supply pipe 112 are adjusted to a temperature T2 lower than the temperature T1. That is, the heat medium adjusted to a predetermined temperature by the heat medium unit 153 flows into the heat medium flow path 152, flows through the heat medium flow path 152, and heats or cools the carrier gas supply pipe 112. 151 flow into.
  • the heat medium that has flowed into the heat medium flow path 151 flows through the heat medium flow path 151 to heat or cool the gas-liquid mixing unit 110, and returns to the heat medium unit 153 via the heat medium flow path 152.
  • the temperature is adjusted to a predetermined temperature by the medium unit 153 and is circulated again through the heat medium flow path 152 and the heat medium flow path 151.
  • the temperature of the gas-liquid mixing part 110 and the temperature of the carrier gas supply pipe 112 are adjusted to a temperature T2 lower than the temperature T1.
  • the heat medium unit 153 is an example of a “second temperature adjustment mechanism”, and the temperature T2 is an example of a “second temperature”.
  • the heat medium transport pipe 161 is connected to the heat medium flow path 121 in the nozzle 120, and transports the heat medium adjusted to a predetermined temperature by the heat medium unit 162 to the heat medium flow path 121.
  • the heat medium unit 162 adjusts the temperature of the nozzle 120 according to the control of the control device 170. Specifically, when receiving the “third temperature control signal” from the control device 170, the heat medium unit 162 circulates the heat medium using the heat medium transport pipe 161 and the heat medium flow path 121 in the nozzle 120. By adjusting the temperature, the temperature of the nozzle 120 is adjusted to the temperature T3.
  • the temperature T3 belongs to a temperature range between the temperature T1 and the temperature T2, and is lower than the vaporization temperature of the solvent of the raw material solution.
  • the heat medium adjusted to a predetermined temperature by the heat medium unit 162 flows into the heat medium flow path 121 in the nozzle 120 via the heat medium transport pipe 161, flows through the heat medium flow path 121, and moves the nozzle 120. Heated or cooled, returned to the heat medium unit 162 through the heat medium transport pipe 161, adjusted to a predetermined temperature by the heat medium unit 162, and circulated again through the heat medium transport pipe 161 and the heat medium flow path 121. To do. Thereby, the temperature of the nozzle 120 is adjusted to the temperature T3.
  • the heat medium unit 162 is an example of a “third temperature adjustment mechanism”
  • the temperature T3 is an example of a “third temperature”.
  • the control device 170 includes, for example, a central processing unit (CPU) and a storage device such as a memory, and controls various operations of the vaporizer 100 by reading and executing a program stored in the storage device. For example, the control device 170 controls each part of the vaporizer 100 so as to perform a temperature control method described later. As a detailed example, the control device 170 adjusts the temperature of the vaporization chamber 130 to a temperature T1 higher than the vaporization temperature of the raw material by the heater power supply 142. And the control apparatus 170 adjusts the temperature of the gas-liquid mixing part 110 to the temperature T2 lower than the temperature T1 by the heat medium unit 153.
  • CPU central processing unit
  • a storage device such as a memory
  • the control apparatus 170 adjusts the temperature of the nozzle 120 to temperature T3 which belongs to the temperature range between the temperature T1 and the temperature T2 by the heat medium unit 162, and is lower than the vaporization temperature of the solvent of a raw material solution.
  • the temperature adjustment by the heater power supply 142, the temperature adjustment by the heat medium unit 153, and the temperature adjustment by the heat medium unit 162 are, for example, the above-mentioned “first temperature adjustment signal”, “second temperature adjustment signal”, And “third temperature adjustment signal”.
  • the temperature T3 corresponds to an intermediate value between the temperature T1 and the temperature T2, for example, and is lower than the vaporization temperature of the solvent of the raw material solution.
  • the raw material is, for example, Li (TMHD).
  • FIG. 3 is a flowchart illustrating an example of the flow of the temperature control method according to the first embodiment.
  • the raw material is Li (TMHD).
  • the controller 170 of the vaporizer 100 adjusts the temperature Th of the vaporization chamber 130 to a temperature T1 higher than the vaporization temperature of the raw material by the heater power supply 142 (step S101).
  • Tsol ° C.
  • the temperature condition to be satisfied by the vaporization chamber 130 is expressed by the following equation (1).
  • the temperature T1 that is, the temperature Th of the vaporization chamber 130 is preferably lower than the temperature at which the raw material is thermally decomposed as described above. That is, since the thermal decomposition temperature of the raw material Li (TMHD) is 280 ° C., the following formula (2) is derived from the above formula (1).
  • control device 170 adjusts the temperature Tm of the gas-liquid mixing unit 110 to a temperature T2 lower than the temperature T1 by the heat medium unit 153 (step S102). At this time, the control device 170 adjusts the temperature of the carrier gas supply pipe 112 together with the temperature of the gas-liquid mixing unit 110 to the temperature T2.
  • the control device 170 adjusts the temperature Tn of the nozzle 120 to a temperature T3 that belongs to a temperature range between the temperature T1 and the temperature T2 and is lower than the vaporization temperature of the solvent of the raw material solution by the heat medium unit 162. (Step S103). In the present embodiment, the control device 170 adjusts the temperature Tn of the nozzle 120 to a temperature T3 corresponding to an intermediate value between the temperature T1 and the temperature T2 and lower than the vaporization temperature of the solvent of the raw material solution.
  • the temperature condition to be satisfied by the nozzle 120 is expressed by the following equation (3).
  • Tn (Th + Tm) / 2 ⁇ Tsov ... (3)
  • the solvent of the raw material solution is selected so that the temperature condition represented by the above formula (2) and the temperature condition represented by the above formula (3) are satisfied.
  • the solvent of the raw material solution is selected so that the following expressions (4) and (5) are satisfied.
  • FIG. 4 is a diagram illustrating an example of the solvent of the raw material solution. That is, as the solvent of the raw material solution, acetonitrile, gamma butyrolactone, diethyl ether, 1,2-dimethoxyethane, dimethyl sulfoxide, 1,3-dioxolane, ethylene carbonate, methyl formate, 2-methyltetrahydrofuran, 3-methyl-2- Examples include oxazolidinone, propylene carbonate, sulfolane, formamide, N, N-dimethylformamide, glyme, diglyme, triglyme, tetraglyme, benzaldehyde, acetophenone, benzophenone, tetrahydrofuran, toluene, cyclohexanone, mesitylene, and diphenyl
  • a solvent having a relative dielectric constant of 7.0 or more and a dipole moment of 1.7 D or more that is, acetonitrile, gamma butyrolactone, dimethyl sulfoxide, Ethylene carbonate, methyl formate, propylene carbonate, sulfolane, formamide, N, N-dimethylformamide, glyme, diglyme, benzaldehyde, acetophenone, benzophenone, tetrahydrofuran and cyclohexanone are preferred.
  • processing procedure shown in FIG. 3 is not limited to the above-described order, and may be appropriately changed within a range that does not contradict the processing contents.
  • the above steps S101 and S102 may be executed in parallel.
  • the temperature of the vaporization chamber 130 is adjusted to the temperature T1 higher than the vaporization temperature of the raw material, and the gas-liquid mixing unit 110 is adjusted to the temperature T2 lower than the temperature T1.
  • the temperature is adjusted, and the temperature of the nozzle 120 is adjusted to a temperature T3 that belongs to a temperature range between the temperature T1 and the temperature T2 and that is lower than the vaporization temperature of the solvent of the raw material solution.
  • the temperature of the nozzle 120 is adjusted independently of the temperature of the vaporization chamber 130 and the temperature of the gas-liquid mixing unit 110, so that the nozzle 120 can be cooled appropriately and the material in the nozzle 120 is prevented from sticking. can do.
  • clogging of the nozzle 120 can be stably suppressed.
  • Example 6 the temperature Th of the vaporization chamber 130 is adjusted to a temperature T1 higher than the vaporization temperature Tsol of Li (TMHD) as a raw material, and the temperature Tm of the gas-liquid mixing unit 110 is set to a temperature T2 lower than the temperature T1.
  • the temperature Tn of the nozzle 120 was adjusted to a temperature T3 corresponding to an intermediate value between the temperature T1 and the temperature T2 and lower than the vaporization temperature Tsov of the solvent Y of the raw material solution.
  • Examples 1 to 6 the following solvent was used as the solvent Y of the raw material solution.
  • Examples 1 and 2 Mesitylene
  • Examples 3 and 4 Toluene
  • Examples 5 and 6 Tetrahydrofuran
  • Comparative Examples 1 and 2 In Comparative Examples 1 and 2, unlike Examples 1 and 2, the temperature Th of the vaporization chamber 130 was adjusted to a temperature lower than the vaporization temperature Tsol of the raw material Li (TMHD). Comparative Examples 1 and 2 are the same as Examples 1 and 2 in other points.
  • Comparative Examples 3 and 4 In Comparative Examples 3 and 4, unlike Examples 3 and 4, the temperature Th of the vaporization chamber 130 was adjusted to a temperature lower than the vaporization temperature Tsol of the raw material Li (TMHD). Comparative Examples 3 and 4 are the same as Examples 3 and 4 in other points.
  • Comparative Example 5 (Comparative Example 5)
  • the temperature Th of the vaporization chamber 130 is adjusted to a temperature lower than the vaporization temperature Tsol of the raw material Li (TMHD), and the intermediate value between the temperature T1 and the temperature T2 is set.
  • the temperature Tn of the nozzle 120 was adjusted to a temperature higher than the vaporization temperature Tsov of the solvent Y of the raw material solution. Comparative Example 5 is the same as Examples 5 and 6 in other points.
  • Comparative Example 6 In Comparative Example 6, unlike Examples 5 and 6, the temperature Th of the vaporization chamber 130 was adjusted to a temperature lower than the vaporization temperature Tsol of the raw material Li (TMHD). Comparative Example 6 is the same as Examples 5 and 6 in other points.
  • FIG. 5A is a diagram showing the results of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 5B is a diagram showing the results of Examples 3 and 4 and Comparative Examples 3 and 4.
  • FIG. 5C is a diagram showing the results of Examples 5 and 6 and Comparative Examples 5 and 6.
  • the temperature Th of the vaporization chamber 130 is adjusted to the temperature T1
  • the gas-liquid mixing unit 110 is adjusted to the temperature T2.
  • the second embodiment is different from the first embodiment in that Li (TMHD) and Co (TMHD) 3 are used as raw materials. Therefore, the description of the same configuration as that of the first embodiment is omitted.
  • the vaporizer 100 vaporizes the raw material solution to generate the raw material gas.
  • the raw material is Li (TMHD) and Co (TMHD) 3
  • the raw material solution is a mixed solution containing Li (TMHD) and Co (TMHD) 3 as the raw material.
  • the source gas generated by the vaporizer 100 is supplied to the film forming chamber 200 via the pipe 300.
  • the solvent of the raw material solution is selected so that the following equations (8) and (9) are satisfied.
  • the vaporization temperature of the raw material is Tsol, Li (° C.), and the temperature of the vaporization chamber 130 is Th, Li. It is represented by the formula (10).
  • the temperatures Th and Li of the vaporization chamber 130 are preferably lower than the temperature at which the raw material is thermally decomposed. That is, since the thermal decomposition temperature of Li (TMHD) is 280 ° C., the following equation (11) is derived from the above equation (10).
  • the vaporization temperature of the solvent of the raw material solution is Tsov, Li
  • the temperature of the nozzle 120 is Tn, Li
  • the temperature of the gas-liquid mixing unit 110 is Tm, Li.
  • the vaporization temperature of the raw material is Tsol, Co (° C.) and the temperature of the vaporization chamber 130 is Th, Co, assuming that the raw material is only Co (TMHD) 3 , the vaporization chamber 130 is satisfied.
  • the power temperature condition is expressed by the following equation (17).
  • temperature Th, Co of the vaporization chamber 130 is lower than the temperature which a raw material thermally decomposes. That is, since the thermal decomposition temperature of Co (TMHD) 3 is 250 ° C., the following equation (18) is derived from the above equation (17).
  • the temperature condition to be satisfied by the nozzle 120 is expressed by the following equation (19).
  • FIG. 6 is a diagram for explaining a graph showing the characteristics of Li (TMHD) and the characteristics of Co (TMHD) 3 .
  • the solid line indicates the characteristic of Li (TMHD)
  • the broken line indicates the characteristic of Co (TMHD) 3 .
  • the solvent of the raw material solution is the above formula (8) and formula (9). Is selected to be satisfied.
  • clogging of the nozzle 120 can be stably suppressed as in the first embodiment.
  • the film forming apparatus 10 has one vaporizer 100 for one film forming chamber 200
  • the disclosed technique is not limited thereto.
  • the film forming apparatus 10 may have two vaporizers for one film forming chamber 200.
  • a film forming apparatus having two vaporizers for one film forming chamber 200 will be described as a film forming apparatus according to another embodiment.
  • FIG. 7 is a diagram for explaining a schematic configuration example of a film forming apparatus according to another embodiment 1.
  • the film forming apparatus 10 according to another embodiment 1 is different from the film forming apparatus 10 described with reference to FIG. 1 in that one film forming chamber 200 has two vaporizers. Therefore, the description of the same configuration as the film forming apparatus 10 described in FIG. 1 is omitted.
  • the 7 has vaporizers 100a and 100b and a film formation chamber 200.
  • the film formation apparatus 10 shown in FIG. The vaporizer 100a and the film formation chamber 200 are connected by a pipe 300a, and the vaporizer 100b and the film formation chamber 200 are connected by a pipe 300b.
  • the vaporizer 100a vaporizes a raw material solution containing Li (TMHD) as a raw material to generate a raw material gas.
  • the source gas generated by the vaporizer 100a is supplied to the film forming chamber 200 through the pipe 300a.
  • the configuration of the vaporizer 100a is the same as that of the vaporizer 100 described in FIG.
  • the solvent of the raw material solution is selected so that the temperature condition regarding Li (TMHD) as the raw material is satisfied, that is, the following equations (24) and (25) are satisfied.
  • Tm temperature of the gas-liquid mixing unit 110 (° C.)
  • the vaporizer 100b vaporizes a raw material solution containing Co (TMHD) 3 as a raw material to generate a raw material gas.
  • the raw material gas generated by the vaporizer 100b is supplied to the film forming chamber 200 through the pipe 300b.
  • the configuration of the vaporizer 100b is the same as that of the vaporizer 100 described in FIG.
  • the solvent of the raw material solution is selected so that the temperature condition regarding Co (TMHD) 3 as the raw material is satisfied, that is, the following equations (26) and (27) are satisfied.
  • a shower head 240 a is attached to the top wall 210 of the film forming chamber 200.
  • a pipe 300a and a pipe 300b are connected to the shower head 240a.
  • the raw material gas generated by the vaporizer 100a that is, the raw material gas obtained by vaporizing the raw material solution containing Li (TMHD) as the raw material
  • TMHD raw material solution containing Li
  • a raw material gas generated in the vaporizer 100b that is, a raw material gas obtained by vaporizing a raw material solution containing Co (TMHD) 3 as a raw material
  • the shower head 240a has a diffusion chamber 242a and a number of gas discharge holes 244a communicating with the diffusion chamber 242a.
  • the raw material gas introduced into the diffusion chamber 242a of the shower head 240a through the pipe 300a and the raw material gas introduced into the diffusion chamber 242a of the shower head 240a through the pipe 300b are mixed in the diffusion chamber 242a and discharged. It is discharged toward the wafer W on the susceptor 222 from the hole 244a.
  • FIG. 8 is a diagram for explaining a schematic configuration example of a film forming apparatus according to another embodiment 2.
  • the film forming apparatus 10 according to another embodiment 2 is different from the film forming apparatus 10 described with reference to FIG. 7 in the structure of the shower head. Therefore, the description of the same configuration as the film forming apparatus 10 described in FIG. 7 is omitted.
  • a shower head 240 b is attached to the top wall 210 of the film forming chamber 200.
  • a pipe 300a and a pipe 300b are connected to the shower head 240b.
  • the raw material gas generated in the vaporizer 100a that is, the raw material gas obtained by vaporizing the raw material solution containing Li (TMHD) as the raw material
  • the raw material gas generated in the vaporizer 100b that is, the raw material gas obtained by vaporizing the raw material solution containing Co (TMHD) 3 as the raw material
  • the shower head 240b is introduced into the shower head 240b via the pipe 300b.
  • the shower head 240b includes a diffusion chamber 242b, a number of gas discharge holes 244b communicating with the diffusion chamber 242b, a diffusion chamber 242c, and a number of gas discharge holes 244c communicating with the diffusion chamber 242c.
  • the source gas introduced into the diffusion chamber 242b of the shower head 240b via the pipe 300a is discharged toward the wafer W on the susceptor 222 from the gas discharge hole 244b. Further, the source gas introduced into the diffusion chamber 242c of the shower head 240b via the pipe 300b is discharged toward the wafer W on the susceptor 222 from the gas discharge hole 244c. Then, the source gas discharged from the gas discharge hole 244b and the source gas discharged from the gas discharge hole 244c are mixed in the film forming chamber 200.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

気化器は、原料を含む溶液とキャリアガスとを混合する気液混合部と、気液混合部によって混合された原料を含む溶液を噴射するノズルと、ノズルによって噴射された原料を含む溶液を気化する気化室と、気化室の温度を調整する第1の温度調整機構と、気液混合部の温度を調整する第2の温度調整機構と、ノズルの温度を調整する第3の温度調整機構と、第1の温度調整機構によって原料の気化温度よりも高い第1の温度に気化室を加熱し、第2の温度調整機構によって第1の温度よりも低い第2の温度に気液混合部の温度を調整し、第3の温度調整機構によって第1の温度と第2の温度との間の温度範囲に属し、かつ、溶液の溶媒の気化温度よりも低い第3の温度にノズルの温度を調整する制御部とを有する。

Description

気化器、成膜装置及び温度制御方法
 本発明の種々の側面及び実施形態は、気化器、成膜装置及び温度制御方法に関するものである。
 従来、薄膜を成膜する手法として、化学気相成長(CVD:Chemical Vapor Deposition)法が知られている。CVD法では、例えば、金属錯体等の原料を含む溶液(以下「原料溶液」と呼ぶ)を気化器によって気化し、得られた原料ガスを用いて成膜室において成膜処理を行う。気化器は、例えば、原料溶液とキャリアガスとを気液混合部において混合し、キャリアガスに混合された原料溶液をノズルから気化室内へ噴射し、気化室を加熱することで原料溶液を気化する。
 ところで、気化器では、気化室の加熱に伴って気化室と共にノズルの温度が上昇することがある。ノズルの温度が過度に上昇すると、原料溶液がノズルから気化室へ噴射される場合に、原料溶液が加熱される。このため、原料溶液の溶媒のみが原料よりも先に気化して原料がノズル内に固着し、結果として、ノズルが目詰まりすることがある。
 これに対して、ノズルに被冷却部材を設け、この被冷却部材を冷却することによってノズルの温度を調整する技術がある。
特開2000-273639号公報
 しかしながら、従来技術では、気化室の加熱に伴って気化室と共に気液混合部の温度が上昇した場合に、気液混合部から被冷却部材への伝熱の影響で、ノズルの温度の調整が妨げられる。このため、従来技術では、ノズルの温度の上昇が抑えられず、ノズル内に原料が固着してしまう。したがって、従来技術では、ノズルの目詰まりを安定的に抑制することが困難である。
 開示する気化器は、1つの実施態様において、原料を含む溶液とキャリアガスとを混合する気液混合部と、前記気液混合部によって混合された前記原料を含む溶液を噴射するノズルと、前記ノズルによって噴射された前記原料を含む溶液を気化する気化室と、前記気化室の温度を調整する第1の温度調整機構と、前記気液混合部の温度を調整する第2の温度調整機構と、前記ノズルの温度を調整する第3の温度調整機構と、前記第1の温度調整機構によって前記原料の気化温度よりも高い第1の温度に前記気化室を加熱し、前記第2の温度調整機構によって前記第1の温度よりも低い第2の温度に前記気液混合部の温度を調整し、前記第3の温度調整機構によって前記第1の温度と前記第2の温度との間の温度範囲に属し、かつ、前記溶液の溶媒の気化温度よりも低い第3の温度に前記ノズルの温度を調整する制御部とを有する。
 開示する気化器の1つの態様によれば、ノズルの目詰まりを安定的に抑制することができるという効果を奏する。
図1は、実施形態1にかかる成膜装置の概略構成例を説明するための図である。 図2は、実施形態1にかかる気化器の構成例を示す模式断面図である。 図3は、実施形態1にかかる温度制御方法の流れの一例を示すフローチャートである。 図4は、原料溶液の溶媒の一例を示す図である。 図5Aは、実施例1,2及び比較例1,2の結果を示す図である。 図5Bは、実施例3,4及び比較例3,4の結果を示す図である。 図5Cは、実施例5,6及び比較例5,6の結果を示す図である。 図6は、Li(TMHD)の特性及びCo(TMHD)の特性を示すグラフを説明するための図である。 図7は、他の実施形態1にかかる成膜装置の概略構成例を説明するための図である。 図8は、他の実施形態2に係る成膜装置の概略構成例を説明するための図である。
 以下、図面を参照して本願の開示する気化器、成膜装置及び温度制御方法の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付すこととする。
 [実施形態1]
 まず、実施形態1にかかる成膜装置について図面を参照しながら説明する。図1は、実施形態1にかかる成膜装置の概略構成例を説明するための図である。図1に示す成膜装置10は、被処理基板例えば半導体ウエハ(以下、単に「ウエハ」という)W上にCVD法により金属酸化物膜を成膜する。成膜装置10は、気化器100と、成膜室200とを有する。気化器100と、成膜室200とは配管300によって接続されている。
 気化器100は、原料を含む溶液(以下適宜「原料溶液」と呼ぶ)を気化して原料ガスを生成する。原料は、例えばLi(TMHD)である。気化器100によって生成された原料ガスは、配管300を介して成膜室200へ供給される。なお、気化器100の詳細は、後述する。
 成膜室200は、気化器100によって生成された原料ガスを用いて、ウエハWに対して成膜処理を行う。成膜室200は、例えば略円筒状の側壁を有し、この側壁と天壁210と底壁212に囲まれた内部空間に、ウエハWが水平に載置されるサセプタ222を備えて構成される。側壁と天壁210と底壁212は、例えばアルミニウム、ステンレスなどの金属で構成される。サセプタ222は、円筒状の複数の支持部材224(ここでは、1本のみ図示)により支持されている。また、サセプタ222にはヒータ226が埋め込まれており、電源228からこのヒータ226に供給される電力を制御することによってサセプタ222上に載置されたウエハWの温度を調整することができる。
 成膜室200の底壁212には、排気ポート230が形成されており、この排気ポート230には排気系232が接続されている。そして排気系232により成膜室200内を所定の真空度まで減圧することができる。
 成膜室200の天壁210には、シャワーヘッド240が取り付けられている。このシャワーヘッド240には配管300が接続されており、この配管300を経由して、気化器100で生成された原料ガスがシャワーヘッド240内に導入される。シャワーヘッド240は、拡散室242と、この拡散室242に連通する多数のガス吐出孔244を有している。配管300を介してシャワーヘッド240の拡散室242に導入された原料ガスは、ガス吐出孔244からサセプタ222上のウエハWに向けて吐出される。
 このような構成の成膜装置10では、気化器100からの原料ガスが次のようにして供給される。気化器100に図示しない原料供給源からの原料溶液が供給されると共に、図示しないキャリアガス供給源からのキャリアガスが供給されると、気化器100内に設けられた気化室にキャリアガスと共に原料溶液が液滴状となって吐出され、その原料溶液が気化して原料ガスが生成される。気化器100で生成された原料ガスは、配管300を介して成膜室200に供給され、成膜室200内のウエハWに対して所望の成膜処理が施される。
 次に、気化器100の構成例について説明する。図2は、実施形態1にかかる気化器の構成例を示す模式断面図である。気化器100は、気液混合部110と、ノズル120と、気化室130と、ヒータ141と、ヒータ電源142と、熱媒流路151と、熱媒流路152と、熱媒ユニット153と、熱媒輸送管161と、熱媒ユニット162と、制御装置170とを有する。
 気液混合部110は、原料溶液とキャリアガスとを混合する。気液混合部110には、原料溶液供給管111と、キャリアガス供給管112とが接続されている。原料溶液は、図示しない原料溶液供給源から原料溶液供給管111を介して気液混合部110へ供給される。キャリアガスは、図示しないキャリアガス供給源からキャリアガス供給管112を介して気液混合部110へ供給される。気液混合部110によってキャリアガスと混合された原料溶液は、ノズル120へ流入する。
 ノズル120は、気液混合部110によってキャリアガスと混合された原料溶液を気化室130内へ噴射する。また、ノズル120の内部には、熱媒流路121が形成されている。熱媒流路121は、ノズル120の内部に例えば環状に形成されている。熱媒流路121には、熱媒ユニット162によって所定温度に調整された熱媒が熱媒輸送管161を介して供給される。
 気化室130は、ノズル120によって噴射された原料溶液を気化する。具体的には、気化室130は、ヒータ141から伝わる熱を用いて、原料溶液を気化する。気化室130には、排気装置131を介して配管300が接続されている。気化室130によって原料溶液が気化されて得られる原料ガスは、排気装置131によって配管300へ排出され、配管300を介して成膜室200へ供給される。
 ヒータ141は、気化室130の周囲を覆うように気化室130の外部に設けられる。ヒータ141は、ヒータ電源142から供給される電流を受けて発熱する。また、ヒータ141の周囲は、断熱材141aによって覆われている。
 ヒータ電源142は、制御装置170の制御に従って、気化室130の温度を調整する。具体的には、ヒータ電源142は、制御装置170からの「第1の温度制御信号」を受け取ると、ヒータ141に所定の電流を流し、ヒータ141を発熱させることによって、原料の気化温度よりも高い温度T1に気化室130の温度を調整する。気化室130の温度が過度に上昇すると、原料溶液が気化される際に、原料が熱分解して他の物質へ変換されてしまう。このため、温度T1は、原料の気化温度よりも高く、かつ、原料が熱分解する温度よりも低いことが好ましい。なお、ヒータ電源142は、「第1の温度調整機構」の一例であり、温度T1は、「第1の温度」の一例である。
 熱媒流路151は、気液混合部110の周囲を覆うように気液混合部110の外部に設けられる。熱媒流路151は、熱媒流路152に接続され、熱媒流路152を介して熱媒ユニット153から供給される熱媒を通流させる。また、熱媒流路151の周囲は、断熱材151aによって覆われている。
 熱媒流路152は、気液混合部110に接続されたキャリアガス供給管112の周囲を覆うようにキャリアガス供給管112の外部に設けられる。熱媒流路152は、熱媒ユニット153に接続され、熱媒ユニット153から供給される熱媒を通流させる。また、熱媒流路152の周囲は、断熱材152aによって覆われている。
 熱媒ユニット153は、制御装置170の制御に従って、気液混合部110の温度及びキャリアガス供給管112の温度を調整する。具体的には、熱媒ユニット153は、制御装置170からの「第2の温度制御信号」を受け取ると、熱媒流路151及び熱媒流路152を用いて熱媒を循環させることによって、温度T1よりも低い温度T2に気液混合部110の温度及びキャリアガス供給管112の温度を調整する。すなわち、熱媒ユニット153によって所定温度に調整された熱媒は、熱媒流路152へ流入し、熱媒流路152を通流してキャリアガス供給管112を加熱又は冷却し、熱媒流路151へ流入する。そして、熱媒流路151へ流入した熱媒は、熱媒流路151を通流して気液混合部110を加熱又は冷却し、熱媒流路152を介して熱媒ユニット153へ戻り、熱媒ユニット153で所定温度に調整されて再び熱媒流路152及び熱媒流路151を通流して循環する。これにより、気液混合部110の温度及びキャリアガス供給管112の温度が、温度T1よりも低い温度T2に調整される。なお、熱媒ユニット153は、「第2の温度調整機構」の一例であり、温度T2は、「第2の温度」の一例である。
 熱媒輸送管161は、ノズル120内の熱媒流路121に接続され、熱媒ユニット162によって所定温度に調整された熱媒を熱媒流路121へ輸送する。
 熱媒ユニット162は、制御装置170の制御に従って、ノズル120の温度を調整する。具体的には、熱媒ユニット162は、制御装置170からの「第3の温度制御信号」を受け取ると、熱媒輸送管161及びノズル120内の熱媒流路121を用いて熱媒を循環させることによって、ノズル120の温度を温度T3に調整する。温度T3は、温度T1と温度T2との間の温度範囲に属し、かつ、原料溶液の溶媒の気化温度よりも低い温度である。すなわち、熱媒ユニット162で所定温度に調整された熱媒は、熱媒輸送管161を介してノズル120内の熱媒流路121へ流入し、熱媒流路121を通流してノズル120を加熱又は冷却し、熱媒輸送管161を介して熱媒ユニット162へ戻り、熱媒ユニット162で所定温度に調整に調整されて再び熱媒輸送管161及び熱媒流路121を通流して循環する。これにより、ノズル120の温度が温度T3に調整される。なお、熱媒ユニット162は、「第3の温度調整機構」の一例であり、温度T3は、「第3の温度」の一例である。
 制御装置170は、例えば、中央処理装置(CPU)、及びメモリといった記憶装置を備え、記憶装置に記憶されたプログラムを読み出して実行することで、気化器100の各種動作を制御する。例えば、制御装置170は、後述する温度制御方法を行うように気化器100の各部を制御する。詳細な一例を挙げると、制御装置170は、ヒータ電源142によって原料の気化温度よりも高い温度T1に気化室130の温度を調整する。そして、制御装置170は、熱媒ユニット153によって温度T1よりも低い温度T2に気液混合部110の温度を調整する。そして、制御装置170は、熱媒ユニット162によって温度T1と温度T2との間の温度範囲に属し、かつ、原料溶液の溶媒の気化温度よりも低い温度T3にノズル120の温度を調整する。ここで、ヒータ電源142による温度調整、熱媒ユニット153による温度調整、及び熱媒ユニット162による温度調整は、例えば、上記の「第1の温度調整信号」、「第2の温度調整信号」、及び「第3の温度調整信号」を用いて、それぞれ実行される。また、温度T3は、例えば、温度T1と温度T2との中間値に対応し、かつ、原料溶液の溶媒の気化温度よりも低い温度である。また、原料は、例えばLi(TMHD)である。
 次に、本実施形態にかかる気化器100による温度制御方法について説明する。図3は、実施形態1にかかる温度制御方法の流れの一例を示すフローチャートである。なお、図3の例では、原料がLi(TMHD)であるものとする。
 図3に示すように、気化器100の制御装置170は、ヒータ電源142によって原料の気化温度よりも高い温度T1に気化室130の温度Thを調整する(ステップS101)。ここで、原料の気化温度をTsol(℃)とすると、気化室130が満たすべき温度条件は、以下の式(1)により表される。
   Th>Tsol   …(1)
 また、温度T1、すなわち、気化室130の温度Thは、上述したように、原料が熱分解する温度よりも低いことが好ましい。すなわち、原料であるLi(TMHD)の熱分解温度は280℃であるので、上記式(1)から以下の式(2)が導き出される。
   Tsol<Th<280   …(2)
 続いて、制御装置170は、熱媒ユニット153によって温度T1よりも低い温度T2に気液混合部110の温度Tmを調整する(ステップS102)。このとき、制御装置170は、気液混合部110の温度と共にキャリアガス供給管112の温度を温度T2に調整する。
 続いて、制御装置170は、熱媒ユニット162によって温度T1と温度T2との間の温度範囲に属し、かつ、原料溶液の溶媒の気化温度よりも低い温度T3にノズル120の温度Tnを調整する(ステップS103)。本実施形態では、制御装置170は、温度T1と温度T2との中間値に対応し、かつ、原料溶液の溶媒の気化温度よりも低い温度T3にノズル120の温度Tnを調整するものとする。
 ここで、原料溶液の溶媒の気化温度をTsov(℃)とすると、ノズル120が満たすべき温度条件は、以下の式(3)により表される。
   Tn=(Th+Tm)/2<Tsov   …(3)
 また、原料溶液の溶媒は、上記式(2)で表される温度条件と上記式(3)で表される温度条件とが満たされるように、選択される。言い換えると、原料溶液の溶媒は、以下の式(4)及び式(5)が満たされるように、選択される。
   Ph<29   …(4)
   Tsov>{11.94ln(Ph)+157.38+Tm}/2   …(5)
   ただし、Ph:気化室の圧力(kPa)
 ここで、上記式(4)の導出過程を説明する。原料であるLi(TMHD)の蒸気圧曲線の近似式から、以下の式(6)が導き出される。
   Tsol=11.94ln(Ph)+157.38   …(6)
 上記式(6)を上記式(2)に代入してTsolを消去すると、上記式(4)が導き出される。
 次いで、上記式(5)の導出過程を説明する。上記式(1)で表される温度条件と上記式(3)で表される温度条件とが同時に満たされる場合、以下の式(7)が導き出される。
   Tsol<Th<2Tsov-Tm   …(7)
 上記式(6)を上記式(7)に代入してTsolを消去すると、上記式(5)が導き出される。
 上記式(4)及び上記式(5)を満たす原料溶液の溶媒としては、例えば図4に示す溶媒が用いられる。図4は、原料溶液の溶媒の一例を示す図である。すなわち、原料溶液の溶媒としては、アセトニトリル、ガンマブチロラクトン、ジエチルエーテル、1,2-ジメトキシエタン、ジメチルスルホキシド、1,3-ジオキソラン、エチレンカーボネイト、ギ酸メチル、2-メチルテトラヒドロフラン、3-メチル-2-オキサゾリジノン、プロピレンカーボネイト、スルホラン、ホルムアミド、N,N-ジメチルホルムアミド、グリム、ジグリム、トリグリム、テトラグリム、ベンズアルデヒド、アセトフェノン、ベンゾフェノン、テトラヒドロフラン、トルエン、シクロヘキサノン、メシチレン、ジフェニルエーテルが挙げられる。特に、原料であるLi(TMHD)に対する溶解性の観点から、比誘電率が7.0以上で、かつ、双極子モーメントが1.7D以上である溶媒、すなわち、アセトニトリル、ガンマブチロラクトン、ジメチルスルホキシド、エチレンカーボネイト、ギ酸メチル、プロピレンカーボネイト、スルホラン、ホルムアミド、N,N-ジメチルホルムアミド、グリム、ジグリム、ベンズアルデヒド、アセトフェノン、ベンゾフェノン、テトラヒドロフラン、シクロヘキサノンが好ましい。
 なお、図3に示した処理手順は、上記の順番に限定されるものではなく、処理内容を矛盾させない範囲で適宜変更されても良い。例えば、上記のステップS101とS102とを並行して実行しても良い。
 以上のように、実施形態1にかかる気化器100によれば、原料の気化温度よりも高い温度T1に気化室130の温度を調整し、温度T1よりも低い温度T2に気液混合部110の温度を調整し、温度T1と温度T2との間の温度範囲に属し、かつ、原料溶液の溶媒の気化温度よりも低い温度T3にノズル120の温度を調整する。これにより、気化室130の温度及び気液混合部110の温度とは独立にノズル120の温度が調整されるので、ノズル120を適度に冷却することができ、ノズル120内の原料の固着を回避することができる。その結果、実施形態1にかかる気化器100によれば、ノズル120の目詰まりを安定的に抑制することができる。
 以下、開示の温度制御方法について、実施例を挙げて詳細に説明する。ただし、開示の温度制御方法は、下記の実施例に限定されるものではない。
(実施例1~6)
 実施例1~6では、原料であるLi(TMHD)の気化温度Tsolよりも高い温度T1に気化室130の温度Thを調整し、温度T1よりも低い温度T2に気液混合部110の温度Tmを調整し、温度T1と温度T2との中間値に対応し、かつ、原料溶液の溶媒Yの気化温度Tsovよりも低い温度T3にノズル120の温度Tnを調整した。
 また、実施例1~6では、原料溶液の溶媒Yとして、以下の溶媒を用いた。
  実施例1,2:メシチレン
  実施例3,4:トルエン
  実施例5,6:テトラヒドロフラン
(比較例1,2)
 比較例1,2では、実施例1,2とは異なり、原料であるLi(TMHD)の気化温度Tsolよりも低い温度に気化室130の温度Thを調整した。比較例1,2では、それ以外の点において、実施例1,2と同様である。
(比較例3,4)
 比較例3,4では、実施例3,4とは異なり、原料であるLi(TMHD)の気化温度Tsolよりも低い温度に気化室130の温度Thを調整した。比較例3,4では、それ以外の点において、実施例3,4と同様である。
(比較例5)
 比較例5では、実施例5,6とは異なり、原料であるLi(TMHD)の気化温度Tsolよりも低い温度に気化室130の温度Thを調整し、温度T1と温度T2との中間値に対応し、かつ、原料溶液の溶媒Yの気化温度Tsovよりも高い温度にノズル120の温度Tnを調整した。比較例5では、それ以外の点において、実施例5,6と同様である。
(比較例6)
 比較例6では、実施例5,6とは異なり、原料であるLi(TMHD)の気化温度Tsolよりも低い温度に気化室130の温度Thを調整した。比較例6では、それ以外の点において、実施例5,6と同様である。
(実施例1~6及び比較例1~6の結果)
 図5Aは、実施例1,2及び比較例1,2の結果を示す図である。図5Bは、実施例3,4及び比較例3,4の結果を示す図である。図5Cは、実施例5,6及び比較例5,6の結果を示す図である。
 図5A~図5Cに示すように、メシチレン、トルエン、テトラヒドロフランのいずれを溶媒Yとして用いた場合であっても、温度T1に気化室130の温度Thを調整し、温度T2に気液混合部110の温度Tmを調整し、温度T3にノズル120の温度Tnを調整することで、ノズル120内の原料の固着を回避することができた。
 [実施形態2]
 実施形態2は、原料として、Li(TMHD)及びCo(TMHD)を用いる点が実施形態1と異なる。したがって、実施形態1と同様の構成については、説明を省略する。
 実施形態2の成膜装置10において、気化器100は、原料溶液を気化して原料ガスを生成する。本実施形態では、原料は、Li(TMHD)及びCo(TMHD)であり、原料溶液は、原料としてLi(TMHD)及びCo(TMHD)を含む混合溶液である。気化器100によって生成された原料ガスは、配管300を介して成膜室200へ供給される。
 原料溶液がLi(TMHD)及びCo(TMHD)を含む混合溶液である場合、原料溶液の溶媒は、以下の式(8)及び式(9)が満たされるように、選択される。
   Ph<29   …(8)
   Tsov>{11.94ln(Ph)+157.38+Tm}/2   …(9)
   ただし、Ph:気化室の圧力(kPa)
 以下では、上記式(8)及び式(9)の導出過程を説明する。
 原料がLi(TMHD)のみであると仮定した場合の原料の気化温度をTsol,Li(℃)とし、気化室130の温度をTh,Liとすると、気化室130が満たすべき温度条件は、以下の式(10)により表される。
   Th,Li>Tsol,Li   …(10)
 また、気化室130の温度Th,Liは、原料が熱分解する温度よりも低いことが好ましい。すなわち、Li(TMHD)の熱分解温度は280℃であるので、上記式(10)から以下の式(11)が導き出される。
   Tsol,Li<Th,Li<280   …(11)
 また、原料がLi(TMHD)のみであると仮定した場合の原料溶液の溶媒の気化温度をTsov,Liとし、ノズル120の温度をTn,Liとし、気液混合部110の温度をTm,Liとすると、ノズル120が満たすべき温度条件は、以下の式(12)により表される。
   Tn,Li=(Th,Li+Tm,Li)/2<Tsov,Li   …(12)
 Li(TMHD)の蒸気圧曲線の近似式から、以下の式(13)が導き出される。
   Tsol,Li=11.94ln(Ph,Li)+157.38   …(13)
   ただし、Ph,Li:原料がLi(TMHD)のみであると仮定した場合の気化室の圧力(kPa)
 上記式(13)を上記式(11)に代入してTsol,Liを消去すると、以下の式(14)が導き出される。
   Ph,Li<29   …(14)
 また、上記式(10)及び式(12)から、以下の式(15)が導き出される。
   Tsol,Li<Th,Li<2Tsov,Li-Tm,Li   …(15)
 上記式(13)を上記式(15)に代入してTsol,Liを消去すると、以下の式(16)が導き出される。
   Tsov,Li>{11.94ln(Ph,Li)+157.38+Tm,Li}/2   …(16)
 これに対して、原料がCo(TMHD)のみであると仮定した場合の原料の気化温度をTsol,Co(℃)とし、気化室130の温度をTh,Coとすると、気化室130が満たすべき温度条件は、以下の式(17)により表される。
   Th,Co>Tsol,Co   …(17)
 また、気化室130の温度Th,Coは、原料が熱分解する温度よりも低いことが好ましい。すなわち、Co(TMHD)の熱分解温度は250℃であるので、上記式(17)から以下の式(18)が導き出される。
   Tsol,Co<Th,Co<250   …(18)
 また、原料がCo(TMHD)のみであると仮定した場合の原料溶液の溶媒の気化温度をTsov,Coとし、ノズル120の温度をTn,Coとし、気液混合部110の温度をTm,Coとすると、ノズル120が満たすべき温度条件は、以下の式(19)により表される。
   Tn,Co=(Th,Co+Tm,Co)/2<Tsov,Co   …(19)
 Co(TMHD)の蒸気圧曲線の近似式から、以下の式(20)が導き出される。
   Tsol,Co=17.744ln(Ph,Co)+45.483   …(20)
   ただし、Ph,Co:原料がCo(TMHD)のみであると仮定した場合の気化室の圧力(kPa)
 上記式(20)を上記式(18)に代入してTsol,Coを消去すると、以下の式(21)が導き出される。
   Ph,Co<101   …(21)
 また、上記式(17)及び式(19)から、以下の式(22)が導き出される。
   Tsol,Co<Th,Co<2Tsov,Co-Tm,Co   …(22)
 上記式(20)を上記式(22)に代入してTsol,Coを消去すると、以下の式(23)が導き出される。
   Tsov,Co>{17.744ln(Ph,Co)+45.483+Tm,Co}/2   …(23)
 したがって、原料溶液がLi(TMHD)及びCo(TMHD)を含む混合溶液である場合、Li(TMHD)の特性として上記式(14)及び式(16)が満たされ、かつ、Co(TMHD)の特性として上記式(21)及び式(23)が満たされる。これらのLi(TMHD)の特性及びCo(TMHD)の特性は、図6に示すグラフに表される。図6は、Li(TMHD)の特性及びCo(TMHD)の特性を示すグラフを説明するための図である。図6において、実線がLi(TMHD)の特性を示し、破線がCo(TMHD)の特性を示している。図6の斜線部分に示されるように、Li(TMHD)の特性として上記式(14)及び式(16)が満たされる場合、Co(TMHD)の特性として上記式(21)及び式(23)もまた同時に満たされることが分かる。すなわち、上記式(14)及び式(16)から上記式(8)及び式(9)が導き出される。したがって、原料溶液がLi(TMHD)及びCo(TMHD)を含む混合溶液である場合、原料溶液の溶媒は、上記式(8)及び式(9)が満たされるように、選択される。
 以上のように、実施形態2にかかる気化器によれば、原料として、Li(TMHD)及びCo(TMHD)を用いる場合に、原料溶液の溶媒が、上記式(8)及び式(9)が満たされるように、選択される。その結果、実施形態2にかかる気化器100によれば、実施形態1と同様に、ノズル120の目詰まりを安定的に抑制することができる。
 [他の実施形態]
 なお、上記実施形態では、成膜装置10が1つの成膜室200に対して1つの気化器100を有する例を説明したが、開示技術はこれに限定されない。例えば、成膜装置10は、1つの成膜室200に対して2つの気化器を有しても良い。以下、他の実施形態にかかる成膜装置として、1つの成膜室200に対して2つの気化器を有する成膜装置について説明する。
 図7は、他の実施形態1にかかる成膜装置の概略構成例を説明するための図である。他の実施形態1にかかる成膜装置10は、1つの成膜室200に対して2つの気化器を有する点が上記図1で説明した成膜装置10と異なる。したがって、図1で説明した成膜装置10と同様の構成については、説明を省略する。
 図7に示す成膜装置10は、気化器100a,100bと、成膜室200とを有する。気化器100aと、成膜室200とは配管300aによって接続され、気化器100bと、成膜室200とは配管300bによって接続されている。
 気化器100aは、原料としてLi(TMHD)を含む原料溶液を気化して原料ガスを生成する。気化器100aによって生成された原料ガスは、配管300aを介して成膜室200へ供給される。なお、気化器100aの構成は、図1で説明した気化器100と同じ構成である。
 気化器100aにおいて、原料溶液の溶媒は、原料としてのLi(TMHD)に関する温度条件が満たされるように、すなわち、以下の式(24)及び式(25)が満たされるように、選択される。
   Ph<29   …(24)
   Tsov>{11.94ln(Ph)+157.38+Tm}/2   …(25)
   ただし、Ph:気化室130の圧力(kPa)
       Tsov:原料溶液の溶媒の気化温度(℃)
       Tm:気液混合部110の温度(℃)
 気化器100bは、原料としてCo(TMHD)を含む原料溶液を気化して原料ガスを生成する。気化器100bによって生成された原料ガスは、配管300bを介して成膜室200へ供給される。なお、気化器100bの構成は、図1で説明した気化器100と同じ構成である。
 気化器100bにおいて、原料溶液の溶媒は、原料としてのCo(TMHD)に関する温度条件が満たされるように、すなわち、以下の式(26)及び(27)が満たされるように、選択される。
   Ph<101   …(26)
   Tsov>{17.744ln(Ph)+45.483+Tm}/2   …(27)
 また、図7に示す成膜装置10において、成膜室200の天壁210には、シャワーヘッド240aが取り付けられている。このシャワーヘッド240aには配管300a及び配管300bが接続されている。配管300aを経由して、気化器100aで生成された原料ガス(つまり、原料としてLi(TMHD)を含む原料溶液が気化されて得られた原料ガス)がシャワーヘッド240内に導入される。また、配管300bを経由して気化器100bで生成された原料ガス(つまり、原料としてCo(TMHD)を含む原料溶液が気化されて得られた原料ガス)がシャワーヘッド240内に導入される。シャワーヘッド240aは、拡散室242aと、この拡散室242aに連通する多数のガス吐出孔244aを有している。配管300aを介してシャワーヘッド240aの拡散室242aに導入された原料ガスと、配管300bを介してシャワーヘッド240aの拡散室242aに導入された原料ガスとは、拡散室242aにおいて混合され、ガス吐出孔244aからサセプタ222上のウエハWに向けて吐出される。
 図8は、他の実施形態2に係る成膜装置の概略構成例を説明するための図である。他の実施形態2にかかる成膜装置10は、シャワーヘッドの構造が上記図7で説明した成膜装置10と異なる。したがって、図7で説明した成膜装置10と同様の構成については、説明を省略する。
 図8に示す成膜装置10において、成膜室200の天壁210には、シャワーヘッド240bが取り付けられている。このシャワーヘッド240bには配管300a及び配管300bが接続されている。配管300aを経由して、気化器100aで生成された原料ガス(つまり、原料としてLi(TMHD)を含む原料溶液が気化されて得られた原料ガス)がシャワーヘッド240b内に導入される。また、配管300bを経由して気化器100bで生成された原料ガス(つまり、原料としてCo(TMHD)を含む原料溶液が気化されて得られた原料ガス)がシャワーヘッド240b内に導入される。シャワーヘッド240bは、拡散室242bと、この拡散室242bに連通する多数のガス吐出孔244bと、拡散室242cと、この拡散室242cに連通する多数のガス吐出孔244cとを有している。配管300aを介してシャワーヘッド240bの拡散室242bに導入された原料ガスは、ガス吐出孔244bからサセプタ222上のウエハWに向けて吐出される。また、配管300bを介してシャワーヘッド240bの拡散室242cに導入された原料ガスは、ガス吐出孔244cからサセプタ222上のウエハWに向けて吐出される。そして、ガス吐出孔244bから吐出された原料ガスと、ガス吐出孔244cから吐出された原料ガスとは、成膜室200の内部において混合される。
10 成膜装置
100 気化器
110 気液混合部
111 原料溶液供給管
112 キャリアガス供給管
120 ノズル
121 熱媒流路
130 気化室
131 排気装置
141 ヒータ
141a 断熱材
142 ヒータ電源
151 熱媒流路
151a 断熱材
152 熱媒流路
152a 断熱材
153 熱媒ユニット
161 熱媒輸送管
162 熱媒ユニット
170 制御装置
200 成膜室
210 天壁
212 底壁
222 サセプタ
224 支持部材
226 ヒータ
228 電源
230 排気ポート
232 排気系
240 シャワーヘッド
242 拡散室
244 ガス吐出孔
300 配管

Claims (9)

  1.  原料を含む溶液とキャリアガスとを混合する気液混合部と、
     前記気液混合部によって混合された前記原料を含む溶液を噴射するノズルと、
     前記ノズルによって噴射された前記原料を含む溶液を気化する気化室と、
     前記気化室の温度を調整する第1の温度調整機構と、
     前記気液混合部の温度を調整する第2の温度調整機構と、
     前記ノズルの温度を調整する第3の温度調整機構と、
     前記第1の温度調整機構によって前記原料の気化温度よりも高い第1の温度に前記気化室の温度を調整し、前記第2の温度調整機構によって前記第1の温度よりも低い第2の温度に前記気液混合部の温度を調整し、前記第3の温度調整機構によって前記第1の温度と前記第2の温度との間の温度範囲に属し、かつ、前記溶液の溶媒の気化温度よりも低い第3の温度に前記ノズルの温度を調整する制御部と
     を有することを特徴とする気化器。
  2.  前記第3の温度は、前記第1の温度と前記第2の温度との中間値に対応し、かつ、前記溶液の溶媒の気化温度よりも低いことを特徴とする請求項1に記載の気化器。
  3.  前記第1の温度は、前記原料の気化温度よりも高く、かつ、前記原料が熱分解する温度よりも低い温度であることを特徴とする請求項1又は2に記載の気化器。
  4.  前記第2の温度調整機構は、
     前記気液混合部へ前記キャリアガスを供給するキャリアガス供給管の温度をさらに調整し、
     前記制御部は、
     前記第2の温度調整機構によって前記気液混合部の温度及び前記キャリアガス供給管の温度を前記第2の温度に調整することを特徴とする請求項1に記載の気化器。
  5.  前記原料は、Li(TMHD)であり、
     前記気化室の圧力をPh(kPa)とし、前記気液混合部の温度をTm(℃)とし、前記溶液の溶媒の気化温度をTsov(℃)とすると、前記溶液の溶媒は、以下の式(1)及び式(2)が満たされるように、選択されることを特徴とする請求項1に記載の気化器。
     Ph<29   …(1)
     Tsov>{11.94ln(Ph)+157.38+Tm}/2   …(2)
  6.  前記原料は、Li(TMHD)及びCo(TMHD)であり、
     前記気化室の圧力をPh(kPa)とし、前記気液混合部の温度をTm(℃)とし、前記溶液の溶媒の気化温度をTsov(℃)とすると、前記溶液の溶媒は、以下の式(3)及び式(4)が満たされるように、選択されることを特徴とする請求項1に記載の気化器。
     Ph<29   …(3)
     Tsov>{11.94ln(Ph)+157.38+Tm}/2   …(4)
  7.  前記原料は、Co(TMHD)であり、
     前記気化室の圧力をPh(kPa)とし、前記気液混合部の温度をTm(℃)とし、前記溶液の溶媒の気化温度をTsov(℃)とすると、前記溶液の溶媒は、以下の式(5)及び式(6)が満たされるように、選択されることを特徴とする請求項1に記載の気化器。
     Ph<101   …(5)
     Tsov>{17.744ln(Ph)+45.483+Tm}/2   …(6)
  8.  原料を含む溶液を気化して原料ガスを生成する気化器と、
     前記気化器によって生成された原料ガスを用いて成膜処理を行う成膜室と
     を有し、
     前記気化器は、
     原料を含む溶液とキャリアガスとを混合する気液混合部と、
     前記気液混合部によって混合された前記原料を含む溶液を噴射するノズルと、
     前記ノズルによって噴射された前記原料を含む溶液を気化する気化室と、
     前記気化室の温度を調整する第1の温度調整機構と、
     前記気液混合部の温度を調整する第2の温度調整機構と、
     前記ノズルの温度を調整する第3の温度調整機構と、
     前記第1の温度調整機構によって前記原料の気化温度よりも高い第1の温度に前記気化室の温度を調整し、前記第2の温度調整機構によって前記第1の温度よりも低い第2の温度に前記気液混合部の温度を調整し、前記第3の温度調整機構によって前記第1の温度と前記第2の温度との間の温度範囲に属し、かつ、前記溶液の溶媒の気化温度よりも低い第3の温度に前記ノズルの温度の調整する制御部と
     を有することを特徴とする成膜装置。
  9.  原料を含む溶液とキャリアガスとを混合する気液混合部と、
     前記気液混合部によって混合された前記原料を含む溶液を噴射するノズルと、
     前記ノズルによって噴射された前記原料を含む溶液を気化する気化室と、
     前記気化室の温度を調整する第1の温度調整機構と、
     前記気液混合部の温度を調整する第2の温度調整機構と、
     前記ノズルの温度を調整する第3の温度調整機構と
     を有する気化器による温度制御方法であって、
     前記第1の温度調整機構によって前記原料の気化温度よりも高い第1の温度に前記気化室の温度を調整し、前記第2の温度調整機構によって前記第1の温度よりも低い第2の温度に前記気液混合部の温度を調整し、前記第3の温度調整機構によって前記第1の温度と前記第2の温度との間の温度範囲に属し、かつ、前記溶液の溶媒の気化温度よりも低い第3の温度に前記ノズルの温度を調整する
     ことを特徴とする温度制御方法。
PCT/JP2016/076453 2015-11-10 2016-09-08 気化器、成膜装置及び温度制御方法 WO2017081924A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187012145A KR102584113B1 (ko) 2015-11-10 2016-09-08 기화기, 성막 장치 및 온도 제어 방법
JP2017550013A JP6450469B2 (ja) 2015-11-10 2016-09-08 気化器、成膜装置及び温度制御方法
CN201680020078.7A CN107431015B (zh) 2015-11-10 2016-09-08 气化器、成膜装置和温度控制方法
US15/971,173 US20180251891A1 (en) 2015-11-10 2018-05-04 Vaporizer, film forming apparatus, and temperature control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015220275 2015-11-10
JP2015-220275 2015-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/971,173 Continuation US20180251891A1 (en) 2015-11-10 2018-05-04 Vaporizer, film forming apparatus, and temperature control method

Publications (1)

Publication Number Publication Date
WO2017081924A1 true WO2017081924A1 (ja) 2017-05-18

Family

ID=58694903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076453 WO2017081924A1 (ja) 2015-11-10 2016-09-08 気化器、成膜装置及び温度制御方法

Country Status (5)

Country Link
US (1) US20180251891A1 (ja)
JP (1) JP6450469B2 (ja)
KR (1) KR102584113B1 (ja)
CN (1) CN107431015B (ja)
WO (1) WO2017081924A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100737A (ja) * 2004-09-30 2006-04-13 Tokyo Electron Ltd 気化器、成膜装置及び成膜方法
JP2008519744A (ja) * 2004-11-10 2008-06-12 インダストリー−アカデミック コーポレーション ファウンデーション,ヨンセイ ユニバーシティ 磁性または金属酸化物ナノ粒子の製造方法
JP2008231515A (ja) * 2007-03-20 2008-10-02 Tokyo Electron Ltd 気化器,気化モジュール,成膜装置
JP2008294147A (ja) * 2007-05-23 2008-12-04 Watanabe Shoko:Kk 気化装置、及び、気化装置を備えた成膜装置
WO2010038515A1 (ja) * 2008-09-30 2010-04-08 東京エレクトロン株式会社 気化器およびそれを用いた成膜装置
JP2012132043A (ja) * 2010-12-20 2012-07-12 Furukawa Electric Co Ltd:The Cvd装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW565626B (en) * 1996-11-20 2003-12-11 Ebara Corp Liquid feed vaporization system and gas injection device
EP0933450B1 (en) * 1998-01-19 2002-04-17 Sumitomo Electric Industries, Ltd. Method of making SiC single crystal and apparatus for making SiC single crystal
US6136725A (en) * 1998-04-14 2000-10-24 Cvd Systems, Inc. Method for chemical vapor deposition of a material on a substrate
JP3823591B2 (ja) 1999-03-25 2006-09-20 三菱電機株式会社 Cvd原料用気化装置およびこれを用いたcvd装置
JP4439030B2 (ja) 1999-04-01 2010-03-24 東京エレクトロン株式会社 気化器、処理装置、処理方法、及び半導体チップの製造方法
KR100649852B1 (ko) * 1999-09-09 2006-11-24 동경 엘렉트론 주식회사 기화기 및 이것을 이용한 반도체 제조 시스템
US20040025787A1 (en) * 2002-04-19 2004-02-12 Selbrede Steven C. System for depositing a film onto a substrate using a low pressure gas precursor
CN100367471C (zh) * 2003-05-12 2008-02-06 东京毅力科创株式会社 气化器和半导体处理装置
EP1741802B1 (en) * 2004-03-29 2013-08-21 Tadahiro Ohmi Film-forming apparatus and film-forming method
JP4601535B2 (ja) * 2005-09-09 2010-12-22 株式会社リンテック 低温度で液体原料を気化させることのできる気化器
JP5090341B2 (ja) * 2006-04-05 2012-12-05 株式会社堀場エステック 液体材料気化装置
FR2900070B1 (fr) * 2006-04-19 2008-07-11 Kemstream Soc Par Actions Simp Dispositif d'introduction ou d'injection ou de pulverisation d'un melange de gaz vecteur et de composes liquides et procede de mise en oeuvre dudit dispositif.
JP5059371B2 (ja) * 2006-10-18 2012-10-24 東京エレクトロン株式会社 気化器および成膜装置
WO2009038168A1 (ja) * 2007-09-21 2009-03-26 Tokyo Electron Limited 成膜装置および成膜方法
US20100159132A1 (en) * 2008-12-18 2010-06-24 Veeco Instruments, Inc. Linear Deposition Source
JP2015039001A (ja) * 2014-09-18 2015-02-26 株式会社渡辺商行 気化器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100737A (ja) * 2004-09-30 2006-04-13 Tokyo Electron Ltd 気化器、成膜装置及び成膜方法
JP2008519744A (ja) * 2004-11-10 2008-06-12 インダストリー−アカデミック コーポレーション ファウンデーション,ヨンセイ ユニバーシティ 磁性または金属酸化物ナノ粒子の製造方法
JP2008231515A (ja) * 2007-03-20 2008-10-02 Tokyo Electron Ltd 気化器,気化モジュール,成膜装置
JP2008294147A (ja) * 2007-05-23 2008-12-04 Watanabe Shoko:Kk 気化装置、及び、気化装置を備えた成膜装置
WO2010038515A1 (ja) * 2008-09-30 2010-04-08 東京エレクトロン株式会社 気化器およびそれを用いた成膜装置
JP2012132043A (ja) * 2010-12-20 2012-07-12 Furukawa Electric Co Ltd:The Cvd装置

Also Published As

Publication number Publication date
CN107431015A (zh) 2017-12-01
JP6450469B2 (ja) 2019-01-09
US20180251891A1 (en) 2018-09-06
CN107431015B (zh) 2021-11-12
KR20180079316A (ko) 2018-07-10
KR102584113B1 (ko) 2023-10-04
JPWO2017081924A1 (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
US10844484B2 (en) Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
JP4324619B2 (ja) 気化装置、成膜装置及び気化方法
KR100780143B1 (ko) 기재상에 하나 이상의 층을 증착하기 위한 장치와 방법
CN104810306B (zh) 立式热处理装置和热处理方法
JP5372816B2 (ja) 成膜装置および成膜方法
US10047436B2 (en) Raw material supply method, raw material supply apparatus, and storage medium
CN112400222A (zh) 用于控制处理材料到沉积腔室的流动的设备和方法
TW201200623A (en) Delivery assemblies and related methods
JP2009246168A (ja) 液体原料気化器及びそれを用いた成膜装置
US20160273109A1 (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP6450469B2 (ja) 気化器、成膜装置及び温度制御方法
JP6688290B2 (ja) 複数箇所にて供給される希釈ガス流をもつ温度制御されたガス供給管
JPH08157296A (ja) 原料またはガスの供給装置
JPH10168572A (ja) 反応ガス噴射ヘッド
JP4677873B2 (ja) 成膜装置
JP6302379B2 (ja) 基板処理装置及び処理ガス生成器
JP4404674B2 (ja) 薄膜製造装置
WO2017179680A1 (ja) HfN膜の製造方法およびHfN膜
JP2001295046A (ja) 銅薄膜の気相成長装置
JP5656683B2 (ja) 成膜方法および記憶媒体
JP2010067906A (ja) 気化器及びそれを用いた成膜装置
WO2018083989A1 (ja) シャワーヘッド及び基板処理装置
US20230416920A1 (en) Substrate processing apparatus and substrate processing method
JP3063113B2 (ja) 化学気相成長装置
JP2016195214A (ja) Mocvd装置による窒化膜を成膜する成膜方法及び成膜装置、並びにシャワーヘッド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017550013

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187012145

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863888

Country of ref document: EP

Kind code of ref document: A1