WO2017080307A1 - 用于印刷电子器件的组合物及其在电子器件中的应用 - Google Patents

用于印刷电子器件的组合物及其在电子器件中的应用 Download PDF

Info

Publication number
WO2017080307A1
WO2017080307A1 PCT/CN2016/099015 CN2016099015W WO2017080307A1 WO 2017080307 A1 WO2017080307 A1 WO 2017080307A1 CN 2016099015 W CN2016099015 W CN 2016099015W WO 2017080307 A1 WO2017080307 A1 WO 2017080307A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
printing
organic
functional material
Prior art date
Application number
PCT/CN2016/099015
Other languages
English (en)
French (fr)
Inventor
潘君友
杨曦
黄宏
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201680059812.0A priority Critical patent/CN108291105B/zh
Priority to KR1020187016322A priority patent/KR20180083888A/ko
Publication of WO2017080307A1 publication Critical patent/WO2017080307A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Definitions

  • the present invention relates to a composition suitable for printing electronic devices and its use in electronic devices, particularly in electroluminescent devices.
  • an organic light-emitting diode which is a new generation display technology
  • OLED organic light-emitting diode
  • FMM fine mask
  • the cost is high.
  • the yield is low.
  • inkjet printing can produce functional material films in a large area and at low cost.
  • inkjet printing has low energy consumption, low water consumption, and environmental protection, and is a production technology with great advantages and potential.
  • QLED quantum dot light-emitting diode
  • Viscosity and surface tension are important parameters that affect the printing ink and printing process.
  • a promising printing ink needs to have the proper viscosity and surface tension.
  • Organic semiconductor materials have gained widespread attention and significant progress in their use in electronic and optoelectronic devices due to their solution processability.
  • Solution processability allows the organic functional material to form a thin film of the functional material in the device by certain coating and printing techniques. Such a technology can effectively reduce the processing cost of electronic and optoelectronic devices, and meet the process requirements of large-area preparation.
  • KATEEVA discloses an ester solvent-based organic small molecule material ink for printing OLEDs (US2015044802A1)
  • UNIVERSAL DISPLAY CORPORATION discloses A printable organic small molecular material ink based on an aromatic ketone or aromatic ether solvent (US20120205637)
  • SEIKO EPSON CORPORATION discloses a printable organic polymer material ink based on a substituted benzene derivative solvent.
  • printing inks involving organic functional materials are: CN102408776A, CN103173060A, CN103824959A, CN1180049C, CN102124588B, US2009130296A1, US2014097406A1, and the like.
  • Quantum dots are nano-sized semiconductor materials with quantum confinement effects. When stimulated by light or electricity, quantum dots emit fluorescence with specific energy. The color (energy) of fluorescence is determined by the chemical composition and size of quantum dots. Therefore, the control of the size and shape of quantum dots can effectively regulate its electrical and optical properties.
  • countries are studying the application of quantum dots in full color, mainly in the display field.
  • quantum dots have been rapidly developed as electroluminescent devices (QLEDs), and device lifetimes have been greatly improved, as in Peng et al., Nature Vol515 96 (2015) and Qian et al., in Nature Photonics Vol 9 259. (2015) reported.
  • the company discloses a method of printing a printable ink formulation comprising nanoparticles (CN101878535B).
  • Printable nanoparticle inks and corresponding nanoparticle-containing films are obtained by selecting suitable ink substrates such as toluene and dodecyl selenol; Samsung Electronics discloses a quantum for inkjet printing.
  • Point ink (US8765014B2).
  • the ink contains a concentration of quantum dot material, an organic solvent, and an alcohol polymer additive having a high viscosity.
  • a quantum dot film is obtained by printing the ink, and a quantum dot electroluminescent device is prepared;
  • QD Vision, Inc. discloses a quantum dot ink formulation comprising a host material, a quantum dot Materials and an additive (US2010264371A1).
  • One of the objects of the present invention is to provide a novel composition suitable for use in printed electronic devices.
  • a composition for printing an electronic device comprising at least one functional material and a solvent system comprising at least one organic solvent, the organic solvent comprising at least one alicyclic based structure and having the general formula (I) Organic solvents:
  • R 1 is an aliphatic or heteroalicyclic ring structure having 3 to 20 ring atoms, n is an integer greater than or equal to 0, and when n ⁇ 1, R 2 is a substituent; the boiling point of the organic solvent ⁇ 150 ° C, and the organic solvent can be evaporated from the solvent system to form a film containing the functional material.
  • the organic solvent having the alicyclic structure and having the general formula (I) has a viscosity at 25 ° C ranging from 1 cPs to 100 cPs.
  • the organic solvent having the alicyclic structure and having the general formula (I) has a surface tension at 25 ° C at 19 dyne/cm. Up to 50dyne/cm.
  • R 1 in the organic solvent having the alicyclic structure and having the general formula (I) has a formula selected from the following formulae A structure shown:
  • the organic solvent having the alicyclic structure and having the general formula (I) may be selected from the group consisting of tetrahydronaphthalene, cyclohexylbenzene, and ten.
  • the solvent system is a mixed solvent further comprising at least one other organic solvent, and is based on an alicyclic structure and has the general formula (I)
  • the organic solvent accounts for more than 50% of the total weight of the mixed solvent.
  • the functional material is an inorganic nanomaterial.
  • the functional material is a quantum dot material, that is, its particle diameter has a monodisperse size distribution, and its shape may be selected from a sphere, a cube, and a rod. Or different nanotopography such as branched structures.
  • the functional material is a luminescent quantum dot material having an emission wavelength between 380 nm and 2500 nm.
  • the composition for printing electronic devices described above comprises an inorganic functional material, and the inorganic functional material is selected from Group IV, II-VI, II-V of the periodic table, a binary or polyvalent semiconductor compound of Group III-V, Group III-VI, Group IV-VI, Group I-III-VI, Group II-IV-VI, Group II-IV-V, or any two or more thereof mixture.
  • the functional material may be a perovskite nanoparticle material, particularly preferably a luminescent perovskite nanomaterial, a metal nanoparticle material, a metal.
  • the functional material is an organic functional material.
  • the organic functional material may be selected from the group consisting of: hole injection material (HIM), hole transport material (HTM), and electron transport material (ETM). ), an electron injecting material (EIM), an electron blocking material (EBM), a hole blocking material (HBM), an illuminant (Emitter), a host material, an organic dye, or a mixture of any two or more thereof.
  • HIM hole injection material
  • HTM hole transport material
  • ETM electron transport material
  • EIM electron injecting material
  • EBM electron blocking material
  • HBM hole blocking material
  • emitter illuminant
  • the organic functional material may comprise at least one host material and at least one illuminant.
  • the weight ratio of the functional material to the composition may be from 0.3% to 30%, and the organic solvent is included in the combination.
  • the weight ratio of the substance may be from 70% to 99.7%.
  • It is still another object of the present invention to provide an electronic device comprising a composition for printing electronic devices, any of the compositions for printing electronic devices, any combination of the above for printed electronic devices A functional layer printed on the article, and wherein the organic solvent having the alicyclic structure and having the general formula (I) contained in the composition can be evaporated from the solvent system to form a thin film of the functional material.
  • the above electronic device may be selected from the group consisting of a quantum dot light emitting diode (QLED), a quantum dot photovoltaic cell (QPV), a quantum dot light emitting cell (QLEEC), a quantum dot field effect transistor (QFET), and a quantum.
  • QLED quantum dot light emitting diode
  • QPV quantum dot photovoltaic cell
  • QLEEC quantum dot light emitting cell
  • QFET quantum dot field effect transistor
  • Point light field effect transistor quantum dot laser, quantum dot sensor, organic light emitting diode (OLED), organic Photovoltaic cells (OPV), organic light-emitting cells (OLEEC), organic field effect transistors (OFETs), organic light-emitting FETs, organic lasers, or organic sensors.
  • the method is laid on a substrate, wherein the printing or coating method can be selected from, but not limited to, inkjet printing, Nozzle Printing, letterpress printing, screen printing, dip coating, spin coating, doctor blade Coating, roller printing, torsion roll printing, lithography, flexographic printing, rotary printing, spray coating, brushing, pad printing, or slit-type extrusion coating.
  • a further object of the invention also relates to the printing process of the composition and its use in electronic devices, in particular in electroluminescent devices.
  • the invention has the beneficial effects that the printing composition for printing electronic device according to the invention can adjust the viscosity and surface tension to a suitable range in use according to a specific printing method, especially inkjet printing. Print and form a film with a uniform surface. At the same time, the organic solvent can be effectively removed by post-treatment, such as heat treatment or vacuum treatment, to ensure the performance of the electronic device. Accordingly, the present invention provides an ink composition for preparing a high quality functional film, particularly a printing ink comprising quantum dots and an organic semiconductor material, which provides an excellent technical solution for printed electronic or optoelectronic devices. .
  • FIG. 1 is a structural view of a preferred embodiment of a light emitting device according to the present invention, in which 101 is a substrate, 102 is an anode, 103 is a hole injection layer (HIL) or a hole transport layer (HTL), 104 is A light-emitting layer (electroluminescence device) or a light absorbing layer (photovoltaic cell), 105 is an electron injection layer (EIL) or an electron transport layer (ETL), and 106 is a cathode.
  • HIL hole injection layer
  • HTL hole transport layer
  • 104 is A light-emitting layer (electroluminescence device) or a light absorbing layer (photovoltaic cell)
  • 105 is an electron injection layer (EIL) or an electron transport layer (ETL)
  • 106 is a cathode.
  • the present invention provides a novel composition for printing electronic devices comprising a composition comprising at least one functional material and at least one organic solvent based on an alicyclic structure.
  • the alicyclic structure-based organic solvent has a viscosity at 25 ° C in the range of 1 cPs to 100 cPs, a surface tension at 25 ° C in the range of 19 dyne / cm to 50 dyne / cm, and a boiling point higher than 150 ° C .
  • the invention also relates to the printing process of such compositions and their use in electronic devices, particularly in electroluminescent devices.
  • the invention still further relates to electronic devices made using such compositions.
  • composition for printing an electronic device comprising at least one functional material and a solvent system comprising at least one organic solvent, the organic solvent comprising at least one lipid-based ring Family structure and organic solvent of the general formula (I):
  • R 1 is an aliphatic or heteroalicyclic ring structure having 3 to 20 ring atoms, n is an integer greater than or equal to 0, and when n ⁇ 1, R 2 is a substituent.
  • the organic solvent has a boiling point of ⁇ 150 ° C and can be evaporated from the solvent system to form a film of the functional material contained therein.
  • Solvents used to dissolve functional materials should be considered for their boiling point parameters.
  • the organic solvent having the alicyclic structure and having the general formula (I) has a boiling point of ⁇ 150 °C.
  • the organic solvent having the alicyclic structure and having the general formula (I) has a boiling point of ⁇ 180 ° C or 200 ° C; in certain embodiments, the alicyclic based structure has a pass
  • the organic solvent of the formula (I) has a boiling point of ⁇ 220 ° C; in other preferred embodiments, the organic solvent having the alicyclic structure and having the general formula (I) has a boiling point of ⁇ 250 ° C or ⁇ 300 ° C.
  • the boiling points within these ranges are beneficial for preventing nozzle clogging of the inkjet printhead.
  • the organic solvent may be evaporated from the solvent system by vacuum drying or the like to form a film containing the functional material.
  • the organic solvent of the alicyclic structure and having the general formula (I) in the composition has a viscosity at 25 ° C ranging from 1 cPs to 100 cPs.
  • the organic solvent used to dissolve the functional material should be considered for its viscosity parameters.
  • the viscosity can be adjusted by different methods, such as by the selection of a suitable organic solvent and the concentration of the functional material in the ink.
  • the organic solvent having the alicyclic structure and having the general formula (I) has a viscosity at 25 ° C in the range of about 1 cps to 100 cps; more preferably in the range of 1 cps to 50 cps; most preferably It is in the range of 1.5cps to 20cps.
  • the content of the organic solvent containing the aliphatic structure according to the present invention in the printing ink can be conveniently adjusted in an appropriate range in accordance with the printing method used.
  • the printing ink of the present invention comprises a functional material in a weight ratio of the composition of from 0.3% to 30% by weight, more preferably from 0.5% to 20% by weight, even more preferably from 0.5% to 15% by weight. Most preferably, it is in the range of 1% to 10% by weight.
  • the ink containing the alicyclic structure-based organic solvent has a viscosity at the above composition ratio of less than 100 cps; in a more preferred embodiment, the inclusion comprises an alicyclic structure.
  • the ink of the organic solvent has a viscosity at the above composition ratio of less than 50 cps; in a most preferred embodiment, the ink containing the organic solvent based on the alicyclic structure has a viscosity at the above composition ratio of 1.5 to 20 cps.
  • the viscosity herein refers to the viscosity at ambient temperature at the time of printing, and is generally 15 to 30 ° C, more preferably 18 to 28 ° C, still more preferably 20 to 25 ° C, and most preferably 23 to 25 ° C.
  • the printing ink thus formulated will be particularly suitable for ink jet printing.
  • the organic solvent of the composition based on the alicyclic structure and having the general formula (I) has a surface tension at 25 ° C in the range of 19 dyne / cm to 50 dyne / cm.
  • Suitable ink surface tension parameters are suitable for a particular substrate and a particular printing method.
  • the organic solvent of the alicyclic structure and having the general formula (I) has a surface tension at 25 ° C of about 19 dyne / cm to 50 dyne / cm;
  • the surface tension of the organic solvent having the alicyclic structure and having the general formula (I) at 25 ° C is about In the range of 22dyne/cm to 35dyne/cm; in a most preferred embodiment, the organic solvent of the alicyclic structure and having the general formula (I) has a surface tension of about 25 dyne/cm to 33 dyne at 25 °C. /cm range.
  • the ink of the present invention has a surface tension at 25 ° C in the range of from about 19 dyne / cm to 50 dyne / cm; more preferably in the range of from 22 dyne / cm to 35 dyne / cm; most preferred It is in the range of 25dyne/cm to 33dyne/cm.
  • the obtained ink can form a functional material film having uniform thickness and composition properties.
  • R 1 has a pass selected from the group consisting of The structure shown in any of the formulas:
  • examples of the organic solvent having the alicyclic structure and having the general formula (I) include, but are not limited to, tetrahydronaphthalene, cyclohexylbenzene, decalin, 2-phenoxytetrahydrofuran, 1,1'-bicyclohexane, butylcyclohexane, ethyl rosinate, benzyl rosinate, ethylene glycol carbonate, styrene oxide, isophorone, 3, 3, 5 -trimethylcyclohexanone, cycloheptanone, anthrone, 1-tetralone, 2-tetralone, 2-(phenylepoxy)tetralone, 6-(methoxy)tetra Hydronaphthalenone, ⁇ -butyrolactone, ⁇ -valerolactone, 6-caprolactone, N,N-diethylcyclohexylamine, or sulfolane, 2,4
  • compositions of the present invention comprise two or more solvents.
  • the mixed solvent contains at least one of the solvent based on the alicyclic structure and having the formula (I) and at least one other organic solvent.
  • the solvent having the alicyclic structure and having the general formula (I) accounts for more than 50% by weight based on the total weight of the mixed solvent; in a more preferred embodiment, the alicyclic solvent accounts for the total weight of the mixed solvent.
  • the solvent based on the alicyclic structure and having the general formula (I) comprises more than 80% by weight based on the total weight of the mixed solvent; in a most preferred embodiment, based on the fat a solvent having a cyclic structure and having the formula (I), which is more than 90% by weight based on the total weight of the mixed solvent, or consists essentially of a solvent having the alicyclic structure and having the general formula (I), or all based on an alicyclic structure A solvent composition having the general formula (I).
  • the organic solvent based on the alicyclic structure and having the general formula (I) is cyclohexylbenzene.
  • the solvent is a mixture of cyclohexylbenzene and at least one other solvent, and the cyclohexylbenzene is more than 50% by weight based on the total weight of the mixed solvent, more preferably 80% or more, and most preferably 90%. %the above.
  • the organic solvent based on the alicyclic structure and having the formula (I) is 1,1'-bicyclohexane.
  • the mixed solvent is a mixture of 1,1'-bicyclohexane and at least one other solvent, and 1,1'-bicyclohexane accounts for more than 50% by weight of the total mixed solvent; The best is more than 80%; the best is more than 90%.
  • the organic solvent based on the alicyclic structure and having the general formula (I) is ⁇ -valerolactone.
  • the solvent is a mixture of ⁇ -valerolactone and at least one other solvent, and ⁇ -valerolactone accounts for 50% or more, more preferably 80% or more, based on the total weight of the mixed solvent. Most preferably, it is 90% or more.
  • the organic solvent based on the alicyclic structure and having the general formula (I) is sulfolane.
  • the mixed solvent is a mixture of sulfolane and at least one other solvent, and the sulfolane is more than 50% by weight based on the total weight of the mixed solvent, more preferably 80% or more, and most preferably 90% or more. .
  • Examples of at least one other solvent described above include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole , morpholine, toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide , tetrahydronaphthalene, decalin, or hydrazine, or a mixture of any two or more thereof.
  • the organic solvent having the alicyclic structure and having the general formula (I) can effectively disperse the functional material, that is, as a new dispersing solvent to replace the solvent of the conventionally used dispersing functional material, such as toluene, xylene, chloroform, chlorine Benzene, dichlorobenzene, n-heptane, etc.
  • the printing ink may further comprise one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, adhesives, etc., for adjusting viscosity, film forming properties, adhesion, etc. .
  • the printing ink can be deposited into a film of functional material by a variety of printing or coating techniques, including, but not limited to, inkjet printing, Nozzle Printing, typography, screen printing, Dip coating, spin coating, blade coating, roller printing, reverse roll printing, lithography, flexographic printing, rotary printing, spray coating, brush coating, pad printing, or slit type extrusion coating.
  • Preferred printing techniques are ink jet printing, jet printing and gravure printing.
  • printing inks suitable for inkjet printing require adjustment of the surface tension, viscosity, and wettability of the ink so that the ink can be ejected through the nozzle at a printing temperature (such as room temperature, 25 ° C) without being sprayed. Drying on the nozzle or clogging the nozzle, or forming a continuous, flat and defect-free film on a particular substrate.
  • a printing temperature such as room temperature, 25 ° C
  • composition for printing electronic devices of the present invention comprises at least one functional material.
  • the functional material preferably refers to a material having certain photoelectric functions.
  • the photoelectric function includes, but is not limited to, a hole injection function, a hole transport function, an electron transport function, an electron injection function, an electron blocking function, a hole blocking function, a light emitting function, and a main function.
  • the corresponding functional materials are called hole injection material (HIM), hole transport material (HTM), electron transport material (ETM), electron injecting material (EIM), electron blocking material (EBM), hole blocking material (HBM). ), an illuminator, a host material, an organic dye, or a mixture of any two or more thereof.
  • the functional material may be an organic material or an inorganic material.
  • the composition for printing electronic devices of the present invention comprises at least one functional material that is an inorganic nanomaterial.
  • the inorganic nanomaterial is an inorganic semiconductor nanoparticle material.
  • the inorganic nanomaterial has an average particle diameter in the range of about 1 to 1000 nm. In certain preferred embodiments, the inorganic nanomaterials have an average particle size in the range of from about 1 to 100 nm. In certain more preferred embodiments, the inorganic nanomaterials have an average particle size of from about 1 to 20 nm, and most preferably from 1 to 10 nm.
  • the inorganic nanomaterials can have different shapes including, but not limited to, different nanotopography such as spheres, cubes, rods, discs, or branched structures, as well as mixtures of particles of various shapes.
  • the inorganic nanomaterial is a quantum dot material having a very narrow, monodisperse size distribution, i.e., the size difference between the particles and the particles is very small.
  • the deviation of the monodisperse quantum dots in size is less than 15% rms; more preferably, the deviation of the monodisperse quantum dots in size is less than 10% rms; most preferably, monodisperse Quantum dots have a root mean square deviation of less than 5% rms in size.
  • the inorganic nanomaterial is a luminescent material.
  • the luminescent inorganic nanomaterial is a quantum dot luminescent material.
  • luminescent quantum dots can illuminate at wavelengths between 380 nanometers and 2500 nanometers.
  • quantum dots having a CdS core have an emission wavelength in the range of about 400 nm to 560 nm; quantum dots having a CdSe core have an emission wavelength in the range of about 490 nm to 620 nm; quantum dots having a CdTe core
  • the illuminating wavelength is in the range of about 620 nm to 680 nm;
  • the luminescent wavelength of the quantum dot having the InGaP nucleus is in the range of about 600 nm to 700 nm;
  • the luminescent wavelength of the quantum dot having the PbS nucleus is in the range of about 800 nm to 2500 nm;
  • the luminescent wavelength of a quantum dot having a PbSe core is in the range of about 1200 nm to 2500 nm; the luminescent wavelength of a quantum dot having a CuInGaS
  • the quantum dot material comprises at least one blue light having a peak wavelength of 450 nm to 460 nm, or green light having a peak wavelength of 520 nm to 540 nm, or a peak wavelength of 615 nm to 630 nm.
  • the quantum dots contained in the above materials may be selected from a particular chemical composition, topography, and/or size to achieve light of a desired wavelength upon electrical stimulation.
  • the narrow particle size distribution of quantum dots enables quantum dots to have a narrower luminescence spectrum. Furthermore, in applications, depending on the chemical composition and structure employed, the size of the quantum dots can be adjusted accordingly to achieve the desired wavelength of luminescent properties.
  • the luminescent quantum dots are semiconductor nanocrystals.
  • semiconductor nanocrystals range in size from about 2 nanometers to about 15 nanometers.
  • the size of the quantum dots needs to be adjusted accordingly within the above-described size range to achieve the luminescent properties of the desired wavelength.
  • the semiconductor nanocrystal comprises at least one semiconductor material, wherein the semiconductor material may be selected from group IV, II-VI, II-V, III-V, III-VI, IV-VI, I of the periodic table. a binary or polyvalent semiconductor compound of Groups III-VI, II-IV-VI, II-IV-V or a mixture of any two or more thereof.
  • the semiconductor material include, but are not limited to, Group IV semiconductor compounds, including, for example, elemental Si, Ge, and binary compounds SiC, SiGe; Group II-VI semiconductor compounds, for example, wherein the binary compounds include CdSe, CdTe, CdO, CdS, CdSe, ZnS, ZnSe, ZnTe, ZnO, HgO, HgS, HgSe, HgTe, ternary compounds including CdSeS, CdSeTe, CdSTe, CdZnS, CdZnSe, CdZnTe, CgHgS, CdHgSe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, HgZnS, HgSeSe, and quaternary compounds include CgHgSeS, CdHgSeTe, CgHgSTe, CdZnS,
  • the luminescent quantum dots comprise a Group II-VI semiconductor material, preferably selected from the group consisting of CdSe, CdS, CdTe, ZnO, ZnSe, ZnS, ZnTe, HgS, HgSe, HgTe, CdZnSe, and any combination thereof.
  • the synthesis of CdS is relatively mature due to CdSe, and this material can be used as a luminescent quantum dot for visible light.
  • the luminescent quantum dot comprises a III-V semiconductor material, preferably selected from the group consisting of InAs, InP, InN, GaN, InSb, InAsP, InGaAs, GaAs, GaP, GaSb, AlP, AlN , AlAs, AlSb, CdSeTe, ZnCdSe or a mixture of any two or more thereof.
  • the luminescent quantum dots comprise a Group IV-VI semiconductor material, preferably selected from the group consisting of PbSe, PbTe, PbS, PbSnTe, Tl 2 SnTe 5 or a mixture of any two or more thereof.
  • the quantum dots are core-shell structures.
  • the core and the shell respectively comprise one or more semiconductor materials, either identically or differently.
  • the core of the quantum dot may be selected from the group IV, II-VI, II-V, III-V, III-VI, IV-VI, I-III-VI, II of the Periodic Table of the Elements above. a binary or polyvalent semiconductor compound of Group IV-VI, Group II-IV-V.
  • quantum dot nuclei include, but are not limited to, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaSe, GaSb, HgO, HgS, HgSe An alloy of HgTe, InAs, InN, InSb, AlAs, AlN, AlP, AlSb, PbO, PbS, PbSe, PbTe, Ge, Si, and any combination thereof, or a mixture of any two or more thereof.
  • the shell of the quantum dot contains a semiconductor material that is the same as or different from the core.
  • Semiconductor materials that can be used for the shell include Group IV, II-VI, II-V, III-V, III-VI, IV-VI, I-III-VI, II-IV-VI of the Periodic Table of the Elements. Group, II-IV-V binary or multi-component semiconductor compounds.
  • quantum dot nuclei include, but are not limited to, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaSe, GaSb, HgO, HgS, HgSe, HgTe
  • the shell may include a single layer or a multilayer structure.
  • the shell may comprise one or more semiconductor materials that are the same or different from the core.
  • the shell has a thickness of from about 1 to 20 layers. In a more preferred embodiment, the shell has a thickness of about 5 to 10 layers. In some embodiments, two or more shells are included on the surface of the quantum dot core.
  • the semiconductor material used for the shell may have a larger band gap than the core.
  • the shell core has a type I semiconductor heterojunction structure.
  • the semiconductor material used for the shell may have a smaller band gap than the core.
  • the semiconductor material used for the shell may have the same or close atomic crystal structure as the core. Such a choice is beneficial to reduce the stress between the core shells and make the quantum dots more stable.
  • Examples of suitable luminescent quantum dots using a core-shell structure are:
  • Red light CdSe/CdS, CdSe/CdS/ZnS, CdSe/CdZnS, etc.;
  • Green light CdZnSe/CdZnS, CdSe/ZnS, etc.
  • Blue light CdS/CdZnS, CdZnS/ZnS, and the like.
  • a preferred method of preparing quantum dots is a colloidal growth method.
  • the method of preparing monodisperse quantum dots may be selected from the group consisting of hot-inject and/or heating-up.
  • the preparation can be found, for example, in the document Nano Res, 2009, 2, 425-447; Chem. Mater., 2015, 27(7), pp 2246-2285.
  • the surface of the quantum dots may comprise an organic ligand.
  • the organic ligand can control the growth process of the quantum dots, regulate the morphology of the quantum dots and reduce the surface defects of the quantum dots, thereby improving the luminous efficiency and stability of the quantum dots.
  • the organic ligand may be selected from, but not limited to, pyridine, pyrimidine, furan, amine, alkylphosphine, alkylphosphine oxide, alkylphosphonic acid or alkylphosphinic acid, alkyl mercaptan, and the like.
  • organic ligands include, but are not limited to, tri-n-octylphosphine, tri-n-octylphosphine oxide, trihydroxypropylphosphine, tributylphosphine, tris(dodecyl)phosphine, dibutyl phosphite, Tributyl phosphite, octadecyl phosphite, trilauryl phosphite, tris(dodecyl) phosphite, triisodecyl phosphite, bis(2-ethylhexyl) phosphate, three (tridecyl) phosphate, hexadecylamine, oleylamine, octadecylamine, bisoctadecylamine, octadecylamine, bis(2-ethylhexyl)amine, octty
  • the surface of the quantum dots may comprise an inorganic ligand.
  • Quantum dots protected by inorganic ligands can be obtained by ligand exchange of organic ligands on the surface of quantum dots. Examples of specific inorganic ligands include, but are not limited to, S 2- , HS - , Se 2- , HSe - , Te 2- , HTe - , TeS 3 2- , OH - , NH 2 - , PO 4 3- , MoO 4 2- , or a mixture of any two or more thereof, and the like.
  • the quantum dot surface can have one or more of the same or different ligands.
  • the luminescence spectrum exhibited by the monodisperse quantum dots may have a symmetrical peak shape and a narrow half width.
  • the quantum dot has a half-width of light emission of less than 70 nanometers; more preferably, the quantum half-width of the quantum dot is less than 40 nanometers; most preferably, the quantum dot has a half-width of light emission of less than 30 nanometers.
  • the quantum dots have a luminescence quantum efficiency of greater than 10%, more preferably greater than 50%, more preferably greater than 60%, and most preferably greater than 70%.
  • the luminescent semiconductor nanocrystals are nanorods.
  • the properties of nanorods are different from those of spherical nanocrystals.
  • the luminescence of the nanorods is polarized along the long rod axis, while the luminescence of the spherical grains is unpolarized.
  • Nanorods have excellent optical gain characteristics, making them possible to use as laser gain materials.
  • the luminescence of the nanorods can be reversibly turned on and off under the control of an external electric field. These characteristics of the nanorods may be preferably incorporated into the device of the present invention under certain circumstances.
  • the inorganic nanomaterial is a perovskite nanoparticle material, particularly a luminescent perovskite nanoparticle material.
  • the perovskite nanoparticle material may have the structural formula of AMX 3 wherein A may be selected from an organic amine or an alkali metal cation, M may be selected from a metal cation, and X may be selected from an oxygen or a halogen anion.
  • CsPbCl 3 CsPb (Cl/Br) 3 , CsPbBr 3 , CsPb (I/Br) 3 , CsPbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 Pb (Cl/Br) 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 Pb(I/Br) 3 , CH 3 NH 3 PbI 3 and the like.
  • the inorganic nanomaterial may be a metal nanoparticle material.
  • Particularly preferred are luminescent metal nanoparticle materials.
  • the metal nanoparticles may include, but are not limited to, chromium (Cr), molybdenum (Mo), tungsten (W), ruthenium (Ru), rhenium (Rh), nickel (Ni), silver (Ag), copper (Cu) Nanoparticles of zinc (Zn), palladium (Pd), gold (Au), hungry (Os), ruthenium (Re), iridium (Ir), and platinum (Pt).
  • the inorganic nanomaterial has charge transport properties.
  • the inorganic nanomaterial has electron transport capabilities.
  • such inorganic nanomaterials are selected from the group consisting of n-type semiconductor materials.
  • the n-type inorganic semiconductor material may include, but are not limited to, a metal chalcogen compound, a metal phosphorus group compound, or an elemental semiconductor such as a metal oxide, a metal sulfide, a metal selenide, a metal telluride, a metal nitride. , metal phosphide, or metal arsenide.
  • Preferred n-type inorganic semiconductor materials may be selected from, but not limited to, ZnO, ZnS, ZnSe, TiO 2 , ZnTe, GaN, GaP, AlN, CdSe, CdS, CdTe, CdZnSe, or a mixture of any two or more thereof.
  • the inorganic nanomaterial has a hole transporting ability.
  • such inorganic nanomaterials may be selected from p-type semiconductor materials.
  • the inorganic p-type semiconductor material may be selected from, but not limited to, NiOx, WOx, MoOx, RuOx, VOx, CuOx, or a mixture of any two or more thereof.
  • the printing ink of the present invention may comprise at least two and two or more inorganic nanomaterials.
  • composition for printing electronic devices of the present invention may comprise at least one organic functional material.
  • the organic functional material may include, but is not limited to, holes (also called holes) injection or transport materials (HIM/HTM), hole blocking materials (HBM), electron injection or transport materials (EIM/ETM), electrons.
  • Barrier material EBM
  • organic host material Host
  • singlet illuminant fluorescent illuminant
  • thermally activated delayed fluorescent luminescent material TADF
  • triplet illuminant phosphorescent illuminant
  • especially luminescent organic metal a compound, an organic dye or a mixture of any two or more thereof.
  • suitable organic functional materials may have a solubility in the solvent of the formula (I) based on the alicyclic structure of the present invention of at least 0.2% by weight, more preferably at least 0.3% by weight, more preferably It is at least 0.6 wt%, more preferably at least 1.0 wt%, and most preferably at least 1.5 wt%.
  • the organic functional material may be a small molecule and a high polymer material.
  • the small molecule organic material means a material having a molecular weight of at most 4000 g/mol, and the material having a molecular weight higher than 4000 g/mol is collectively referred to as a high polymer.
  • the functional material for the composition for printing electronic devices of the present invention may be an organic small molecule material.
  • the composition for printing electronic devices of the present invention wherein The organic functional material may comprise at least one host material and at least one illuminant.
  • the organic functional material may comprise a host material and a singlet emitter.
  • the organic functional material may comprise a host material and a triplet emitter.
  • the organic functional material may comprise a host material and a thermally activated delayed fluorescent luminescent material.
  • the organic functional material comprises a hole transporting material (HTM), and more preferably, the HTM may comprise a crosslinkable group.
  • HTM hole transporting material
  • organic small molecule functional materials suitable for the preferred embodiment will be described in some detail below (but are not limited thereto).
  • Suitable organic HIM/HTM materials may optionally comprise compounds having the following structural units: phthalocyanine, porphyrin, amine, aromatic amine, biphenyl triarylamine, thiophene, thiophene such as dithienothiophene and thiophene, pyrrole , aniline, carbazole, azide and azepine and their derivatives, but are not limited thereto.
  • suitable HIMs also include fluorocarbon-containing polymers, conductively doped polymers, conductive polymers such as PEDOT:PSS, but are not limited thereto.
  • An electron blocking layer is used to block electrons from adjacent functional layers, particularly the luminescent layer.
  • the presence of an EBL generally results in an increase in luminous efficiency.
  • the electron blocking material (EBM) of the electron blocking layer (EBL) requires a higher LUMO than an adjacent functional layer such as a light emitting layer.
  • the HBM has a larger excited state level than the adjacent luminescent layer, such as a singlet or triplet, depending on the illuminant, while the EBM has a hole transport function.
  • HIM/HTM materials that typically have high LUMO levels can be used as EBMs.
  • cyclic aromatic amine-derived compounds useful as HIM, HTM or EBM include, but are not limited to, the following general structures:
  • Each of Ar 1 to Ar 9 may be independently selected from the group consisting of a cyclic aromatic hydrocarbon compound such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalrene, phenanthrene, anthracene, anthracene, fluorene, anthracene, anthracene; Heterocyclic compounds such as dibenzothiophene, dibenzofuran, furan, thiophene, benzofuran, benzothiophene, oxazole, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, evil Triazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, acesulfazine, oxadiazine, hydrazine
  • each Ar may be optionally substituted, and the substituent may be selected from, but not limited to, hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl. .
  • the Ar 1 to Ar 9 may be independently selected from the group consisting of the following, but are not limited thereto:
  • n is an integer from 1 to 20; X 1 to X 8 are CH or N; and Ar 1 is as defined above.
  • metal complexes that can be used as HTM or HIM include, but are not limited to, the following general structures:
  • M is a metal having an atomic weight greater than 40;
  • (Y 1 -Y 2 ) is a bidentate ligand, Y 1 and Y 2 are independently selected from C, N, O, P and S; L is an ancillary ligand; m is an integer selected from 1 to this metal The range of the largest coordination number; m+n is the maximum coordination number of this metal.
  • (Y 1 -Y 2 ) is a 2-phenylpyridine derivative.
  • (Y 1 -Y 2 ) is a carbene ligand.
  • M can be selected from the group consisting of Ir, Pt, Os, and Zn.
  • the HOMO of the metal complex is greater than -5.5 eV (relative to the vacuum level).
  • the triplet host material is not particularly limited, and any metal complex or organic compound may be used as a host as long as its triplet energy is higher than that of the illuminant, particularly a triplet illuminant or a phosphorescent illuminant.
  • metal complexes that can be used as the triplet host include, but are not limited to, the following general structure:
  • M is a metal
  • (Y 3 -Y 4 ) is a bidentate ligand, Y 3 and Y 4 are independently selected from C, N, O, P, and S
  • L is an ancillary ligand
  • m is an integer, The value is selected from the largest coordination number from 1 to this metal; m+n is the maximum coordination number of this metal.
  • the metal complex that can be used as the triplet host can have one of the following forms:
  • (O-N) is a two-dentate ligand in which the metal is coordinated to the O and N atoms.
  • M can be selected from the group consisting of Ir and Pt.
  • Examples of the organic compound which can be a host of a triplet state may be selected from, but not limited to, a compound containing a cyclic aromatic hydrocarbon group such as benzene, biphenyl, triphenyl, benzo, anthracene; a compound containing an aromatic heterocyclic group, Such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, carbazole, pyridinium, pyrrole dipyridine, Pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxazine , o
  • each Ar may be optionally substituted, and the substituent may be hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl, but is not limited thereto. .
  • the triplet host material may be selected from compounds comprising at least one of the following groups, but is not limited thereto:
  • each of R 1 to R 7 may be independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl, But not limited to this; when they are aryl or heteroaryl, they have the same meaning as Ar 1 and Ar 2 described above; n is an integer from 0 to 20; each X 1 -X 8 is selected from CH or N ; X 9 is selected from CR 1 R 2 or NR 1 .
  • triplet host materials examples include but are not limited to this:
  • the example of the singlet host material is not particularly limited, and any organic compound may be used as a host as long as its singlet energy is higher than that of the illuminant, particularly the singlet illuminant or the luminescent illuminant.
  • Examples of the organic compound used as the singlet host material may be selected from, but not limited to, containing a ring.
  • Aromatic hydrocarbon compounds such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, anthracene, phenanthrene, anthracene, anthracene, fluorene, anthracene, anthracene; aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran , dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, carbazole, pyridinium, pyrrole dipyridine, pyrazole, imidazole, triazole, iso Oxazole, thiazole, oxadiazole, triazole, dioxazole, thiadiazole, pyridine, pyridazine,
  • the singlet host material may be selected from, but not limited to, a compound comprising at least one of the following groups:
  • each R 1 may be independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl, but is not limited thereto
  • Ar 1 is an aryl or heteroaryl group which has the same meaning as Ar 1 defined in the above HTM
  • n is an integer from 0 to 20
  • each X 1 -X 8 is selected from CH or N
  • X 9 And X 10 are independently selected from CR 1 R 2 or NR 1 .
  • Singlet emitters tend to have longer conjugated pi-electron systems. To date, there have been many examples such as styrylamine and its derivatives and indenoindene and its derivatives.
  • the singlet emitter may be selected from the group consisting of monobasic styrylamine, dibasic styrylamine, ternary styrylamine, quaternary styrylamine, styrene phosphine, styrene ether and arylamine, But it is not limited to this.
  • the monostyrylamine refers to a compound comprising an unsubstituted or optionally substituted styrene group and at least one amine, preferably an aromatic amine.
  • the dibasic styrylamine refers to a compound comprising two unsubstituted or optionally substituted styrene groups and at least one amine, preferably an aromatic amine.
  • the ternary styrylamine refers to a compound comprising three unsubstituted or optionally substituted styrene groups and at least one amine, preferably an aromatic amine.
  • Tetrastyrylamine refers to a compound comprising four unsubstituted or optionally substituted styrene groups and at least one amine, preferably an aromatic amine.
  • the preferred styrene is stilbene, which may be further substituted. Accordingly, the definitions of phosphines and ethers are similar to those of amines.
  • An arylamine or an aromatic amine refers to a compound comprising three unsubstituted or optionally substituted aromatic ring or heterocyclic systems directly bonded to a nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably selected from the group consisting of fused ring systems, and most preferably has at least 14 aromatic ring atoms.
  • Aromatic decylamine refers to a compound in which one of the diarylamine groups is attached directly to the oxime, preferably at the position of 9.
  • Aromatic quinone diamine refers to a compound in which two diarylamine groups are attached directly to the oxime, preferably at the 9,10 position.
  • the aromatic decylamine, the aromatic guanidine diamine, the aromatic thiamine and the aromatic thiamine are similarly defined, wherein the diarylamine group is preferably attached to the 1 or 1,6 position of the oxime.
  • Further preferred singlet emitters may be selected from the group consisting of an indeno-amine and an indeno-diamine, a benzoindole-amine and a benzoindole-diamine, a dibenzoindeno-amine and Dibenzoindoloindole-diamine and the like.
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: for example, 9,10-bis(2-naphthoquinone), naphthalene, tetraphenyl, xanthene, phenanthrene , ⁇ (such as 2,5,8,11-tetra-t-butyl fluorene), anthracene, phenylene such as (4,4'-bis(9-ethyl-3-carbazolevinyl)-1 , 1'-biphenyl), indenylindole, decacycloolefin, hexacene benzene, anthracene, spirobifluorene, aryl hydrazine, arylene vinyl, cyclopentadiene such as tetraphenylcyclopentadiene, Rubrene, coumarin, rhodamine, quinacridone, pyran such as 4 (di)
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ E st ), and triplet excitons can be converted into singlet exciton luminescence by inter-system crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the TADF material needs to have a small singlet-triplet energy level difference, typically ⁇ E st ⁇ 0.3eV, more preferably ⁇ E st ⁇ 0.2eV, more preferably ⁇ E st ⁇ 0.1eV, and most preferably ⁇ E st ⁇ 0.05eV.
  • TADF has better fluorescence quantum efficiency.
  • TADF luminescent materials are listed in the table below, but are not limited to this:
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter may be a metal complex of the formula M(L) n , wherein M is a metal atom, and each time L may be the same or different, it is an organic compound.
  • the body is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, more preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from the group consisting of transition metal elements or lanthanides or actinides, preferably selected from the group consisting of Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb.
  • Dy, Re, Cu or Ag is particularly preferably selected from Os, Ir, Ru, Rh, Re, Pd or Pt, but is not limited thereto.
  • the triplet emitter may comprise a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, it being particularly preferred to consider that the triplet emitter comprises two or three identical or different Double or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • organic ligand examples may be selected from, but not limited to, a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, and a 2(1-naphthyl)pyridine derivative. Or a 2-phenylquinoline derivative. All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from the group consisting of transition metal elements or lanthanides or actinides;
  • Ar 1 may be the same or different at each occurrence, which is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, coordinated to the metal through its cyclic group Connection;
  • Ar 2 may be the same or different each time it appears, which is a cyclic group containing at least one C atom through which a cyclic group is attached to the metal;
  • Ar 1 and Ar 2 are bonded by a covalent bond Together, each may carry one or more substituent groups, which may also be linked together by a substituent group;
  • each occurrence of L may be the same or different, which is an ancillary ligand, preferably a bidentate chelating ligand Most preferably a monoanionic bidentate chelate ligand;
  • m is 1, 2 or 3, preferably 2 or 3, particularly preferably 3;
  • n is 0, 1, or 2, preferably 0 or 1, Particularly preferably 0;
  • triplet emitters Some examples of suitable triplet emitters are listed in the table below, but are not limited to this:
  • the functional material for the composition for printing electronic devices of the present invention may be a high polymer material.
  • the above organic small molecule functional materials may include HIM, HTM, ETM, EIM, Host, fluorescent illuminants, phosphorescent emitters, TADF, etc., and all of them may be included in the high polymer as repeating units.
  • the high polymer suitable for the present invention may be a conjugated high polymer.
  • conjugated polymers have the following general formula:
  • A can independently select the same or different structural units when appearing multiple times
  • B a ⁇ -conjugated structural unit having a larger energy gap, also called a Backbone Unit, selected from a monocyclic or polycyclic aryl or heteroaryl group, and a preferred unit form is selected from the group consisting of: benzene, two Biphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, 9,10-dihydrophenanthrene, anthracene, diterpene, spirobifluorene, p-phenylacetylene, ruthenium, hydrazine, dibenzo- ⁇ ⁇ , ⁇ and naphthalene and its derivatives.
  • a Backbone Unit selected from a monocyclic or polycyclic aryl or heteroaryl group
  • a preferred unit form is selected from the group consisting of: benzene, two Biphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene
  • a ⁇ -conjugated structural unit having a smaller energy gap may be selected from, but not limited to, containing the hole injection or transport material (HIM) described above according to different functional requirements.
  • HIM hole injection or transport material
  • EIM/ETM electronic injection or transport material
  • host material Host
  • singlet illuminant fluorescent illuminant
  • structural unit of heavy illuminant phosphorescent illuminant
  • the composition for printing electronic devices of the present invention comprises a functional material that is a high polymer HTM.
  • the high polymer HTM material is a homopolymer, and the preferred homopolymer is selected from the group consisting of polythiophene, polypyrrole, polyaniline, polybiphenyl triarylamine, polyvinylcarbazole and derivatives thereof. .
  • the high polymer HTM material is a conjugated copolymer represented by Chemical Formula 1, wherein
  • A a functional group having a hole transporting ability, which may be the same or differently selected from the structural unit containing the hole injection or transport material (HIM/HTM) described above; in a preferred embodiment, A is selected From amines, biphenyls, triarylamines, thiophenes, thiophenes such as dithienothiophenes and thiophenes, pyrrole, aniline, carbazole, indenocarbazole, arsenazo, pentacene, phthalocyanine, porphyrin and derivatives thereof .
  • HIM/HTM hole injection or transport material
  • R is each independently selected from each other: hydrogen, a linear alkyl group having 1 to 20 C atoms, an alkoxy group or a thioalkoxy group, and a branch or ring having 3 to 20 C atoms.
  • r selected from 0, 1, 2, 3 or 4;
  • s selected from 0, 1, 2, 3, 4 or 5;
  • Another preferred class of organic functional materials can be polymers having electron transport capabilities, including conjugated high polymers and non-conjugated high polymers.
  • Preferred high polymer ETM materials are homopolymers, and preferred homopolymers may be selected from the group consisting of polyphenanthrene, polyphenanthroline, polyfluorene, polyspiroquinone, polyfluorene and derivatives thereof.
  • a preferred high polymer ETM material may be a conjugated copolymer represented by Chemical Formula 1, wherein A may independently select the same or different forms in multiple occurrences:
  • A a functional group having an electron transporting ability, preferably selected from the group consisting of tris(8-hydroxyquinoline)aluminum (AlQ3), benzene, diphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, anthracene, diterpene, Spirobiindole, p-phenylacetylene, anthraquinone, anthracene, 9,10-dihydrophenanthrene, phenazine, phenanthroline, ruthenium fluorene, cis-hydrazino, dibenzo-indene, anthracene, naphthalene, benzo ⁇ and their derivatives
  • the composition for printing electronic devices of the present invention comprises
  • the functional material is a luminescent polymer.
  • the luminescent polymer is a conjugated high polymer having the following general formula:
  • A1 a functional group having a hole or electron transporting ability, which may be selected from, but not limited to, a hole injecting or transporting material (HIM/HTM), or an electron injecting or transporting material (EIM/ETM). Structural unit.
  • HIM/HTM hole injecting or transporting material
  • EIM/ETM electron injecting or transporting material
  • A2 a group having a light-emitting function, which may be selected from, but not limited to, a structural unit containing the above-described singlet light-emitting body (fluorescent light-emitting body) and heavy-state light-emitting body (phosphorescent light-emitting body).
  • a high polymer suitable for the present invention may be a non-conjugated high polymer.
  • This can be that all functional groups are on the side chain and the backbone is a non-conjugated high polymer. Examples thereof may be selected from, but not limited to, a non-conjugated high polymer used as a phosphorescent host or a phosphorescent material, and used as a non-conjugated high polymer of a fluorescent material.
  • the non-conjugated high polymer may also be a polymer in which the functional units conjugated in the main chain are linked by a non-conjugated linking unit.
  • the present invention also relates to a method of preparing a film comprising a functional material by a method of printing or coating, wherein any of the compositions for printing electronic devices as described above is applied to a substrate by printing or coating.
  • the method of printing or coating may be selected from, but not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, spin coating, blade coating, roll printing, Twist roll printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, and the like.
  • the film comprising the functional material is prepared by ink jet printing.
  • Inkjet printers that can be used to print the inks of the present invention can be commercially available printers and include drop-on-demand printheads. These printers are available, for example, from Fujifilm Dimatix (Lebanon, NH), Trident International (Brookfield, Conn.), Epson (Torrance, Calif), Hitachi Data systems Corporation (Santa Clara, Calif), Xaar PLC (Cambridge, United Kingdom), and Idanit Technologies, Limited (Rishon Le Zion, Isreal).
  • the present invention can be printed using Dimatix Materials Printer DMP-3000 (Fujifilm).
  • the invention further relates to an electronic device comprising one or more functional films, wherein at least one functional film is prepared using the printing ink composition of the invention, in particular by printing or coating Prepared.
  • Suitable electronic devices include, but are not limited to, quantum dot light emitting diodes (QLEDs), quantum dot photovoltaic cells (QPV), quantum dot luminescent cells (QLEEC), quantum dot field effect transistors (QFETs), quantum dot luminescence field effect transistors, quantum Point laser, quantum dot sensor, organic light emitting diode (OLED), organic photovoltaic cell (OPV), Organic light-emitting cells (OLEEC), organic field effect transistors (OFETs), organic light-emitting field effect transistors, organic lasers, organic sensors, etc.
  • QLEDs quantum dot light emitting diodes
  • QPV quantum dot photovoltaic cells
  • QLEEC quantum dot luminescent cells
  • QFETs quantum dot field effect transistors
  • quantum dot luminescence field effect transistors quantum Point laser, quantum dot sensor, organic light emitting diode (OLED), organic photovoltaic cell (OPV), Organic light-emitting cells (OLEEC),
  • the electronic device described above is an electroluminescent device or a photovoltaic cell, as shown in Figure 1, comprising a substrate (101), an anode (102), at least one luminescent layer or a light absorbing layer ( 104), cathode (106).
  • a substrate 101
  • an anode 102
  • at least one luminescent layer or a light absorbing layer 104
  • cathode 106
  • the substrate (101) may be opaque or transparent.
  • a transparent substrate can be used to make transparent light-emitting components.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate may be selected from polymeric films or plastics having a glass transition temperature Tg of 150 ° C or higher, more preferably more than 200 ° C, more preferably more than 250 ° C, and most preferably more than 300 ° C. Examples of suitable substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN), but are not limited thereto.
  • the anode (102) may comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into the HIL or HTL or the luminescent layer.
  • the absolute value of the difference between the work function of the anode and the HOMO level or valence band energy level of the p-type semiconductor material as the HIL or HTL is less than 0.5 eV, more preferably less than 0.3 eV, and most preferably less than 0.2. eV.
  • the anode material include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • anode material can be deposited using any suitable technique, such as suitable physical vapor deposition, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned.
  • Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode (106) may comprise a conductive metal or a metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the absolute value of the difference between the work function of the cathode and the LUMO level or conduction band level of the n-type semiconductor material as EIL or ETL or HBL is less than 0.5 eV, more preferably less than 0.3 eV, most preferably Less than 0.2eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the luminescent layer (104) may include at least one layer of luminescent functional material having a thickness between 2 nm and 200 nm.
  • the light-emitting layer is prepared by printing the printing ink of the present invention, wherein the printing ink comprises at least one light-emitting functional material as described above, in particular Quantum dots or organic functional materials.
  • the light emitting device of the present invention may further comprise a hole injection layer (HIL) or a hole transport layer (HTL) (103) containing the organic HTM or inorganic p type as described above. material.
  • HIL hole injection layer
  • HTL hole transport layer
  • the HIL or HTL can be prepared by printing the printing ink of the present invention, wherein the printing ink contains a functional material having a hole transporting ability, particularly a quantum dot or an organic HTM material.
  • the light emitting device of the present invention may further comprise an electron injection layer (EIL) or an electron transport layer (ETL) (105) containing the organic ETM or inorganic n-type material as described above.
  • EIL electron injection layer
  • ETL electron transport layer
  • the EIL or ETL can be prepared by printing a printing ink of the present invention, wherein the printing ink contains functional materials having electron transport capabilities, particularly quantum dots or organic ETM materials.
  • the invention further relates to the use of the light-emitting device of the invention in various applications, including, but not limited to, various display devices, backlights, illumination sources, and the like.
  • centrifuge to remove the lower layer Precipitate, repeat three times; add acetone to the liquid after the post-treatment 1 to precipitate, centrifuge, remove the supernatant, leaving a precipitate; then dissolve the precipitate with n-hexane, add acetone to precipitate, centrifuge, remove the upper layer The supernatant was left to precipitate and repeated three times. Finally, the precipitate was dissolved in toluene and transferred to a glass bottle for storage.
  • solution 1 Weigh 0.0079 g of selenium and 0.1122 g of sulfur in a 25 mL single-necked flask, measure 2 mL of TOP, pass nitrogen, stir, and reserve, hereinafter referred to as solution 1; weigh 0.0128 g of CdO and 0.3670 g of zinc acetate. Measure 2.5 mL of OA in a 25 mL three-necked flask, plug the two sides with a rubber stopper, connect a condenser tube at the top, connect to a double-row tube, place the three-necked flask in a 50 mL heating jacket, and evacuate.
  • Nitrogen gas heated to 150 ° C, vacuumed for 30 min, injected 7.5 mL of ODE, and then heated to 300 ° C to quickly inject 1 mL of solution 1 for 10 min; 10 min, immediately stop the reaction, the three-necked flask was placed in water to cool.
  • organic functional materials involved in the following examples are all commercially available, such as Jilin Elound (Jilin OLED Material Tech Co., Ltd., www.jl-oled.com), or synthesized according to methods reported in the literature. .
  • Example 7 Preparation of printing ink for organic light-emitting layer material containing ⁇ -valerolactone
  • the luminescent layer organic functional material comprises a phosphorescent host material and a phosphorescent luminescent material material.
  • the phosphorescent host material is selected from the group consisting of carbazole derivatives as follows:
  • the phosphorescent material is selected from the group consisting of ruthenium complexes as follows:
  • Example 8 Preparation of organic luminescent layer material printing ink containing 2,4-dimethyl sulfolane
  • the luminescent layer organic functional material comprises a fluorescent host material and a fluorescent illuminant material.
  • the fluorescent host material is selected from the group consisting of the following spiro derivatives:
  • the fluorescent emitter material is selected from the group consisting of:
  • the luminescent layer organic functional material comprises a host material and a TADF material.
  • the host material is selected from the group consisting of the following structures:
  • the TADF material is selected from the group consisting of the following structures:
  • the printing ink comprises a hole transport layer material having a hole transporting ability.
  • the hole transporting material is selected from the following triarylamine derivatives:
  • the viscosity of the functional material ink was tested by a DV-I Prime Brookfield rheometer; the surface tension of the functional material ink was tested by a SITA bubble pressure tomometer.
  • Example 12 Preparation of an electronic device functional layer using the printing ink of the present invention
  • the functional layer in the light-emitting diode such as the light-emitting layer and the charge transport layer, can be prepared by inkjet printing using the printing ink containing the functional material based on the alicyclic solvent system prepared above, and the specific steps are as follows.
  • the ink containing the functional material is loaded into an ink tank which is assembled to an ink jet printer such as Dimatix Materials Printer DMP-3000 (Fujifilm).
  • the waveform, pulse time and voltage of the jetted ink are adjusted to optimize ink jetting and to stabilize the ink jet range.
  • the substrate of the QLED is a 0.7 mm thick glass sputtered with an indium tin oxide (ITO) electrode pattern.
  • ITO indium tin oxide
  • the HIL/HTL material is then inkjet printed into the well and the solvent is removed by drying at elevated temperature in a vacuum to obtain a HIL/HTL film.
  • the printing ink containing the luminescent functional material is ink-jet printed onto the HIL/HTL film, and the solvent is removed by drying at a high temperature in a vacuum atmosphere to obtain a luminescent layer film.
  • a printing ink containing a functional material having electron transporting properties is ink-jet printed onto the luminescent layer film, and the solvent is removed by drying at a high temperature in a vacuum atmosphere to form an electron transport layer (ETL).
  • ETL electron transport layer
  • ETL electron transport layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种适合于制备印刷电子器件的组合物,提供的组合物包含至少一种功能材料及至少一种基于脂环族结构的有机溶剂。在某些优选的实施例中,所述有机溶剂在25℃下的粘度,在1cPs到100cPs范围内;在25℃下的表面张力,在19dyne/cm到50dyne/cm范围内;沸点高于150℃。还涉及此组合物的印刷工艺及在电子器件中的应用,特别是在电致发光器件中的应用。还进一步涉及利用此组合物制备的电子器件。

Description

用于印刷电子器件的组合物及其在电子器件中的应用 技术领域
本发明涉及一种适合于印刷电子器件的组合物及其在电子器件中的应用,特别是在电致发光器件中的应用。
背景技术
目前,作为新一代显示技术的有机发光二极管(OLED)是用蒸镀方法制备的,其制备过程中涉及大量的真空制程,材料利用率低,同时需要精细掩模(FMM),成本较高,同时良率低。为了解决上述问题,采用印刷工艺实现高分辨全彩色显示的技术越来越受到关注。例如,喷墨打印能够大面积低成本地制备功能材料薄膜,相比传统的半导体生产工艺,喷墨打印低能耗,耗水量少,绿色环保,是具有极大的优势和潜力的生产技术。另一种新型显示技术,量子点发光二极管(QLED),无法蒸镀,必须以印刷的方法制备。
实现印刷显示,必须突破印刷油墨及相关印刷工艺等关键问题。粘度和表面张力是影响印刷油墨及打印过程的重要参数。一种有前景的印刷墨水需要具备适当的粘度和表面张力。
有机半导体材料由于其溶液加工性,在电子和光电子器件中的应用已获得了广泛的关注并取得了显著的进展。可溶液加工性使得有机功能材料可以通过一定的涂覆和印刷技术在器件中形成该功能材料的薄膜。这样的技术可以有效降低电子和光电子器件的加工成本,且满足大面积制备的工艺需求。目前,已有数家公司报道了用于打印的有机半导体材料油墨,例如:KATEEVA,INC公开了一种用于可印刷OLED的基于酯类溶剂的有机小分子材料油墨(US2015044802A1);UNIVERSAL DISPLAY CORPORATION公开了一种可印刷的基于芳族酮或芳族醚类溶剂的有机小分子材料油墨(US20120205637);SEIKO EPSON CORPORATION公开了可印刷的基于取代的苯衍生物溶剂的有机聚合物材料油墨。其它的涉及有机功能材料的印刷油墨的例子有:CN102408776A、CN103173060A、CN103824959A、CN1180049C、CN102124588B、US2009130296A1、US2014097406A1等。
另一类可适合于印刷的功能材料是无机纳米材料,特别是量子点。量子点是具有量子限制效应的纳米尺寸的半导体材料,当受到光或电的刺激,量子点会发出具有特定能量的荧光,荧光的颜色(能量)由量子点的化学组成和尺寸形状决定。因此,对量子点尺寸形状的控制能有效调控其电学和光学性质。目前,各国都在研究量子点在全彩方面的应用,主要集中在显示领域。近年来,量子点作为发光层的电致发光器件(QLED)得到了迅速发展,器件寿命得到很大的提高,如Peng等,在Nature Vol515 96(2015)及Qian等,在Nature Photonics Vol 9 259(2015)中所报道的。目前,已有数家公司报道了用于打印的量子点油墨:英国纳米技术有限 公司(Nanoco Technologies Ltd)公开了一种包含纳米粒子的可印刷的油墨制剂的方法(CN101878535B)。通过选用合适的墨基材,比如甲苯和十二烷硒醇,得到了可印刷的纳米粒子油墨及相应的包含纳米粒子的薄膜;三星(Samsung Electronics)公开了一种用于喷墨打印的量子点油墨(US8765014B2)。这种油墨包含一定浓度的量子点材料、有机溶剂和具有高粘度的醇类聚合物添加剂。通过打印该油墨得到了量子点薄膜,并制备了量子点电致发光器件;QD视光(QD Vision,Inc.)公开了一种量子点的油墨制剂,包含一种主体材料、一种量子点材料和一种添加剂(US2010264371A1)。
其它的涉及量子点印刷油墨的专利有:US2008277626A1,US2015079720A1,US2015075397A1,TW201340370A,US2007225402A1,US2008169753A1,US2010265307A1,US2015101665A1,WO2008105792A2。但是,在这些已公开的专利中,为了调控油墨的物理参数,这些量子点油墨都包含有其它的添加剂,如醇类聚合物。具有绝缘性质的聚合物添加剂的引入往往会降低薄膜的电荷传输能力,对器件的光电性能具有负面影响,限制了其在光电器件中的广泛应用。
发明内容
本发明的目的之一,在于提供一种新型的适合用于印刷电子器件的组合物。
本发明的技术方案如下:
一种用于印刷电子器件的组合物,包含有至少一种功能材料和含有至少一种有机溶剂的溶剂体系,所述有机溶剂中包括至少一种基于脂环族结构且具有通式(I)的有机溶剂:
Figure PCTCN2016099015-appb-000001
其中,R1是具有3~20个环原子的脂肪环或杂脂肪环结构,n是大于或等于0的整数,且当n≥1时,R2是取代基;所述有机溶剂的沸点≥150℃,且所述有机溶剂可从溶剂体系中蒸发,以形成含有所述功能材料的薄膜。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述基于脂环族结构且具有通式(I)的有机溶剂在25℃下的粘度在1cPs到100cPs范围。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述基于脂环族结构且具有通式(I)的有机溶剂其在25℃下的表面张力,在19dyne/cm到50dyne/cm的范围内。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述基于脂环族结构且具有通式(I)的有机溶剂中的R1具有选自如下的通式中任一种所示的结构:
Figure PCTCN2016099015-appb-000002
其中,
X选自CR3R4、C(=O)、S、S(=O)2、O、SiR5R6,NR7或P(=O)R8
每个R3、R4、R5、R6、R7、R8可以独立选自以下各项中的任一种:H,D,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的任选取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团;其中所述R3、R4、R5、R6、R7、R8中的一个或多个同时存在时,可以独立存在或在彼此之间和/或与R1或R2之间形成单环或多环的脂族或芳族环系。
在其中一个实施例中,以上所述用于印刷电子器件的组合物的每个取代基R2可以相同或不同地选自以下各项中的任一种:具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的任选取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,其中所述R2中的一个或多个同时存在时,可以彼此独立存在,或在彼此之间和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述基于脂环族结构且具有通式(I)的有机溶剂可以选自:四氢萘、环己基苯、十氢化萘、2-苯氧基四氢呋喃、1,1’-双环己烷、丁基环己烷、松香酸乙酯、松香酸苄酯、乙 二醇碳酸酯、氧化苯乙烯、异佛尔酮、3,3,5-三甲基环己酮、环庚酮、葑酮、1-四氢萘酮、2-四氢萘酮、2-(苯基环氧)四氢萘酮、6-(甲氧基)四氢萘酮、γ-丁内酯、γ-戊内酯、6-己内酯、N,N-二乙基环己胺、环丁砜、2,4-二甲基环丁砜,或其中任意两种及以上的混合物。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述溶剂体系是进一步包含至少一种其他有机溶剂的混合溶剂,且基于脂环族结构且具有通式(I)的有机溶剂占混合溶剂总重量的50%以上。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述功能材料是无机纳米材料。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述功能材料是量子点材料,即其粒径具有单分散的尺寸分布,其形状可选自球形、立方体、棒状或支化结构等不同纳米形貌。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述功能材料是发光量子点材料,其发光波长位于380nm~2500nm之间。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,包含有无机功能材料,且所述无机功能材料选自元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族的二元或多元半导体化合物,或其中任意两种或以上的混合物。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述功能材料可以是钙钛矿纳米粒子材料,特别是优选为发光钙钛矿纳米材料、金属纳米粒子材料、金属氧化物纳米粒子材料,或其中任意两种或以上的混合物。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述功能材料是有机功能材料。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述有机功能材料可选自:空穴注入材料(HIM)、空穴传输材料(HTM)、电子传输材料(ETM)、电子注入材料(EIM)、电子阻挡材料(EBM)、空穴阻挡材料(HBM)、发光体(Emitter)、主体材料(Host)、有机染料,或其中任意两种或以上的混合物。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述有机功能材料可以包含有至少一种主体材料和至少一种发光体。
在其中一个实施例中,以上所述用于印刷电子器件的组合物中,所述功能材料占所述组合物的重量比可以为0.3%~30%,且包含的有机溶剂的占所述组合物的重量比可以为70%~99.7%。
本发明的又一目的在于,提供一种电子器件,其包含有由一种用于印刷电子器件的组合物任一种用于印刷电子器件的组合物如上任一种用于印刷电子器件的组合物印刷而成的功能层,且其中组合物中所包含的的所述基于脂环族结构且具有通式(I)的有机溶剂可从溶剂体系中蒸发,以形成功能材料薄膜。
在其中一个实施例中,以上所述电子器件,可选自量子点发光二极管(QLED)、量子点光伏电池(QPV)、量子点发光电池(QLEEC)、量子点场效应管(QFET)、量子点发光场效应管、量子点激光器,量子点传感器,有机发光二极管(OLED)、有机 光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器,或有机传感器等。
本发明的又一目的在于,提供一种功能材料薄膜的制备方法,包括:将上述的一种用于印刷电子器件的组合物任一种用于印刷电子器件的组合物用印刷或涂布的方法铺设于基板上,其中所述印刷或涂布的方法可选自(但不限于):喷墨打印、喷印(Nozzle Printing)、活版印刷、丝网印刷、浸涂、旋转涂布、刮刀涂布、辊筒印花、扭转辊印刷、平版印刷、柔版印刷、轮转印刷、喷涂、刷涂、移印,或狭缝型挤压式涂布等。
本发明的又一目的,还涉及此组合物的印刷工艺及在电子器件中的应用,特别是在电致发光器件中的应用。
本发明的有益效果在于,本发明所述的用于印刷电子器件的印刷组合物,可以在使用中根据特定的印刷方法,特别是喷墨印刷,将粘度和表面张力调节到合适的范围以便于打印,并形成表面均匀的薄膜。同时,有机溶剂可以通过后处理有效移除,如热处理或真空处理,有利于保证电子器件的性能。因此,本发明提供了一种用于制备高质量功能薄膜的油墨组合物,特别是包含有量子点和有机半导体材料的印刷油墨,为印刷电子或光电子器件提供了一种效果卓越的技术解决方案。
附图说明
图1是根据本发明所述的发光器件的一个优选实施例的结构图,图中101是基板,102是阳极,103是空穴注入层(HIL)或空穴传输层(HTL),104是发光层(电致发光器件)或光吸收层(光伏电池),105是电子注入层(EIL)或电子传输层(ETL),106是阴极。
具体实施方式
本发明提供一种新型的用于印刷电子器件的组合物,提供的组合物包含至少一种功能材料及至少一种基于脂环族结构的有机溶剂。优选地,所述基于脂环族结构的有机溶剂在25℃下的粘度在1cPs到100cPs范围内,在25℃下的表面张力在19dyne/cm到50dyne/cm范围内,且沸点高于150℃。本发明还涉及此组合物的印刷工艺及在电子器件中的应用,特别是在电致发光器件中的应用。本发明还进一步涉及利用此组合物制备的电子器件。
为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的详细说明和具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的一个实施例中,提供一种用于印刷电子器件的组合物,包含有至少一种功能材料和含有至少一种有机溶剂的溶剂体系,所述有机溶剂中包括至少一种基于脂环族结构且具有通式(I)的有机溶剂:
Figure PCTCN2016099015-appb-000003
其中,
R1是具有3~20个环原子的脂肪环或杂脂肪环结构,n是大于或等于0的整数,且当n≥1时,R2是取代基。所述有机溶剂的沸点≥150℃,且可从溶剂体系中蒸发,以形成所含功能材料的薄膜。
用于溶解功能材料的溶剂在选取时需考虑其沸点参数。在本发明的一些实施例中,所述基于脂环族结构且具有通式(I)的有机溶剂的沸点≥150℃。在某些实施例中,所述基于脂环族结构且具有通式(I)的有机溶剂的沸点≥180℃或200℃;在某些实施例中,所述基于脂环族结构且具有通式(I)的有机溶剂的沸点≥220℃;在另一些优选实施例中,所述基于脂环族结构且具有通式(I)的有机溶剂的沸点≥250℃或≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述有机溶剂可以通过真空干燥等方式从溶剂体系中蒸发,以形成包含功能材料薄膜。
本发明的一个实施例中,所述组合物中所述基于脂环族结构且具有通式(I)的有机溶剂在25℃下的粘度在1cPs到100cPs范围。
用于溶解功能材料的有机溶剂,在选取时需考虑其粘度参数。粘度可以通过不同的方法调节,如通过合适的有机溶剂的选取和油墨中功能材料的浓度。在一个优选的实施例中,所述基于脂环族结构且具有通式(I)的有机溶剂在25℃下的粘度约在1cps~100cps范围内;更优选是在1cps到50cps范围;最优选是在1.5cps到20cps范围。
根据本发明所述的包含有基于脂肪族结构的有机溶剂在印刷油墨中的含量,可以方便地按照所用的印刷方法在适当的范围进行调节。一般地,本发明所述的印刷油墨包含的功能材料的占所述组合物的重量比为0.3%~30wt%范围,较优选为0.5%~20wt%范围,更优选为0.5%~15wt%范围,最优选为1%~10wt%范围。在一个优选的实施例中,所述包含基于脂环族结构的有机溶剂的油墨在上述组成比例下的粘度低于100cps;在一个更为优选的实施例中,所述包含基于脂环族结构的有机溶剂的油墨在上述组成比例下的粘度低于50cps;在一个最为优选的实施例中,所述包含基于脂环族结构的有机溶剂的油墨在上述组成比例下的粘度为1.5到20cps。这里的粘度是指在印刷时的环境温度下的粘度,一般在15-30℃,较优选的是18-28℃,更优选是20-25℃,最优选是23-25℃。如此配制的印刷油墨将特别适合于喷墨印刷。
本发明的一个实施例中,所述组合物所含的基于脂环族结构且具有通式(I)的有机溶剂在25℃下的表面张力在19dyne/cm到50dyne/cm范围内。
合适的油墨表面张力参数适合于特定的基板和特定的印刷方法。例如对喷墨印刷,在一个优选的实施例中,所述基于脂环族结构且具有通式(I)的有机溶剂在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;在一个更为优选的实施例中,所述基于脂环族结构且具有通式(I)的有机溶剂在25℃下的表面张力约 在22dyne/cm到35dyne/cm范围;在一个最为优选的实施例中,所述基于脂环族结构且具有通式(I)的有机溶剂在25℃下的表面张力约在25dyne/cm到33dyne/cm范围。
在一个优选的实施例中,本发明所述的油墨在25℃下的表面张力约在19dyne/cm到50dyne/cm范围内;更优选的是在22dyne/cm到35dyne/cm范围内;最优选的是在25dyne/cm到33dyne/cm范围内。
使用含有满足上述沸点、表面张力参数及粘度参数的基于脂环族结构且具有通式(I)的有机溶剂的溶剂体系,所获得的油墨能够形成具有均匀厚度及组成性质的功能材料薄膜。
在一个优选的实施例中,本发明所述的用于印刷电子器件的组合物中,所述基于脂环族结构且具有通式(I)的有机溶剂中,R1具有选自如下的通式中任一种所示的结构:
Figure PCTCN2016099015-appb-000004
其中,
X选自CR3R4、C(=O)、S、S(=O)2、O、SiR5R6,NR7,或P(=O)R8
每个R3、R4、R5、R6、R7、R8独立选自以下各项中的任一种:H,D,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的任选取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,其中R3、R4、R5、R6、R7、R8中的一个或多个同时存在时,可以彼此独立存在或在彼此之间和/或与R1或R2之间形成单环或多环的脂族或芳族环系。
在一些优选的实施例中,每个R3、R4、R5、R6、R7、R8可以是相同或不同地选自以下各项中的任一种:H,D,或具有1至10个C原子的直链烷基、烷氧基 或硫代烷氧基基团,具有3至10个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,具有1至10个C原子的取代的酮基基团,具有2至10个C原子的烷氧基羰基基团,具有7至10个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至20个环原子的任选取代或未取代的芳族或杂芳族环系,或具有5至20个环原子的芳氧基或杂芳氧基基团,其中R3、R4、R5、R6、R7、R8中的一个或多个同时存在时,可以彼此独立存在或在彼此之间和/或与R1或R2之间形成单环或多环的脂族或芳族环系。
在另一个优选的实施例中,本发明所述的用于印刷电子器件的组合物中,所述基于脂环族结构且具有通式(I)的有机溶剂中的取代基R2可以相同或不同地选自:具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的任选取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团;其中R2中的一个或多个同时存在时,可以彼此独立存在或在彼此之间和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在一个特别优选的实施例中,每个取代基R2可以相同或不同地选自具有1至10个C原子的直链烷基、烷氧基或硫代烷氧基基团,具有3至10个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,具有1至10个C原子的取代的酮基基团,具有2至10个C原子的烷氧基羰基基团,具有7至10个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至20个环原子的任选取代或未取代的芳族或杂芳族环系,或具有5至20个环原子的芳氧基或杂芳氧基基团,其中一个或多个基团R2可以在彼此之间和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
本发明所述的用于印刷电子器件的组合物中,基于脂环族结构且具有通式(I)的有机溶剂的例子有,但不限于:四氢萘、环己基苯、十氢化萘、2-苯氧基四氢呋喃、1,1’-双环己烷、丁基环己烷、松香酸乙酯、松香酸苄酯、乙二醇碳酸酯、氧化苯乙烯、异佛尔酮、3,3,5-三甲基环己酮、环庚酮、葑酮、1-四氢萘酮、2-四氢萘酮、2-(苯基环氧)四氢萘酮、6-(甲氧基)四氢萘酮、γ-丁内酯、γ-戊内酯、6-己内酯、N,N-二乙基环己胺,或环丁砜、2,4-二甲基环丁砜,或其中任意两种或以上的混合物。
在另一些实施例中,本发明的组合物包含两种及以上的溶剂。该混合溶剂包含至少一种所述基于脂环族结构且具有通式(I)的溶剂和至少一种其它有机溶剂。在一个优选的实施例中,基于脂环族结构且具有通式(I)的溶剂占混合溶剂总重量的50%以上;在一个较为优选的实施例中,脂环族溶剂占混合溶剂总重量的70%以上;在一个更为优选的实施例中,基于脂环族结构且具有通式(I)的溶剂占混合溶剂总重量的80%以上;在一个最为优选的实施例中,基于脂环族结构且具有通式(I)的溶剂占混合溶剂总重量的90%以上,或基本由基于脂环族结构且具有通式(I)的溶剂组成,或全部由基于脂环族结构且具有通式(I)的溶剂组成。
在一个优选的实施例中,基于脂环族结构且具有通式(I)的有机溶剂是环己基苯。
在另一个优选的中,所述溶剂是环己基苯和至少一种其他溶剂的混合物,且环己基苯占混合溶剂总重量的50%以上,较优选的是80%以上,最优选的是90%以上。
在某些优选的实施例中,所述基于脂环族结构且具有通式(I)的有机溶剂是1,1’-双环己烷。
在一个优选的实施例中,所述混合溶剂是1,1’-双环己烷和至少一种其它溶剂的混合物,且1,1’-双环己烷占混合溶剂总重量的50%以上;较优的是80%以上;最优的是90%以上。
在某些优选的实施例中,基于脂环族结构且具有通式(I)的有机溶剂是γ-戊内酯。
在一个优选的实施例中,所述溶剂是γ-戊内酯和至少一种其它溶剂的混合物,且γ-戊内酯占混合溶剂总重量的50%以上,较优选的是80%以上,最优选的是90%以上。
在某些优选的实施例中,基于脂环族结构且具有通式(I)的有机溶剂是环丁砜。
在一个优选的实施例中,所述混合溶剂是环丁砜和至少一种其它溶剂的混合物,且环丁砜占混合溶剂总重量的50%以上,较优选的是80%以上,最优选的是90%以上。
以上所述至少一种其它溶剂的例子,包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷,或茚,或其中任意两种或以上的混合物。
所述基于脂环族结构且具有通式(I)的有机溶剂能够有效地分散功能材料,即作为新的分散溶剂以取代传统使用的分散功能材料的溶剂,如甲苯、二甲苯、氯仿、氯苯、二氯苯、正庚烷等。
下面列出部分上述例子的沸点、表面张力及粘度参数:
Figure PCTCN2016099015-appb-000005
Figure PCTCN2016099015-appb-000006
所述印刷油墨还可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。
所述印刷油墨可以通过多种打印或涂布技术沉积得到功能材料薄膜,适合的打印或涂布技术包括(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂,移印,或狭缝型挤压式涂布等。优选的打印技术是喷墨印刷,喷印及凹版印刷。有关打印技术,及其对有关油墨的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。一般地,不同的打印技术对所采用的油墨有不同的特性要求。例如,适用于喷墨打印的印刷油墨,需要对油墨的表面张力、粘度、及浸润性进行调控,使得油墨在印刷温度下(比如室温,25℃)能够很好地经由喷嘴喷出而不至于干燥于喷嘴上或堵塞喷嘴,或能在特定的基板上形成连续、平整和无缺陷的薄膜。
本发明所述的用于印刷电子器件的组合物包含至少一种功能材料。
在本发明中,所述功能材料优选是指具有某些光电功能的材料。所述光电功能包括,但不限于,空穴注入功能,空穴传输功能,电子传输功能,电子注入功能,电子阻挡功能,空穴阻挡功能,发光功能,主体功能。相应的功能材料被称为空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光体(Emitter),主体材料(Host),有机染料,或其中任意两种或以上的混合物。
所述功能材料可以是有机材料或无机材料。
在一个优选的实施例中,本发明所述的用于印刷电子器件的组合物包含的至少一种功能材料是无机纳米材料。
优选地,所述无机纳米材料是无机半导体纳米粒子材料。
本发明中,无机纳米材料的平均粒径约在1到1000nm的范围内。在某些优选的实施例中,无机纳米材料的平均粒径约在1到100nm的范围内。在某些更为优选的实施例中,无机纳米材料的平均粒径约在1到20nm,最优选在1到10nm的范围内。
所述无机纳米材料可以具有不同的形状,包含但不限于球形、立方体、棒状、盘形或支化结构等不同纳米形貌,以及各种形状颗粒的混合物。
在一个优选的实施例中,所述无机纳米材料是量子点材料,具有非常狭窄的、单分散的尺寸分布,即颗粒与颗粒之间的尺寸差异非常小。优选地,单分散的量子点在尺寸上的偏差均方根小于15%rms;更优选地,单分散的量子点在尺寸上的偏差均方根小于10%rms;最优选地,单分散的量子点在尺寸上的偏差均方根小于5%rms。
在一个优选的实施例中,所述无机纳米材料是发光材料。
在一个更加优选的实施例中,所述发光无机纳米材料是量子点发光材料。
一般地,发光量子点可以在波长380纳米到2500纳米之间发光。例如,已发现,具有CdS核的量子点的发光波长位于约400纳米到560纳米范围内;具有CdSe核的量子点的发光波长位于约490纳米到620纳米范围内;具有CdTe核的量子点的发光波长位于约620纳米到680纳米范围内;具有InGaP核的量子点的发光波长位于约600纳米到700纳米范围内;具有PbS核的量子点的发光波长位于约800纳米到2500纳米范围内;具有PbSe核的量子点的发光波长位于约1200纳米到2500纳米范围内;具有CuInGaS核的量子点的发光波长位于约600纳米到680纳米范围内;具有ZnCuInGaS核的量子点的发光波长位于约500纳米到620纳米范围内;具有CuInGaSe核的量子点的发光波长位于约700纳米到1000纳米范围内。
在一个优选的实施例中,所述量子点材料包含至少一种能够发出发光峰值波长位于450nm~460nm的蓝光,或发光峰值波长位于520nm~540nm的绿光,或发光峰值波长位于615nm~630nm的红光的量子点发光材料,或其中任意两种或以上的混合物。
上述材料中所包含的量子点可以选自特殊的化学组成、形貌结构和/或大小尺寸,以获得在电刺激下发出所需波长的光。
量子点的窄的粒径分布能使量子点具有更窄的发光光谱。此外,在应用中,根据所采用的化学组成和结构的不同,量子点的尺寸可以在上述的尺寸范围内做相应调节,以获得所需波长的发光性质。
优选地,所述发光量子点是半导体纳米晶体。一般地,半导体纳米晶体的尺寸为约2纳米到约15纳米的范围内。此外,根据所采用的化学组成和结构的不同,量子点的尺寸需在上述的尺寸范围内做相应调节,以获得所需波长的发光性质。
所述半导体纳米晶体包括至少一种半导体材料,其中半导体材料可选为元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族的二元或多元半导体化合物或其中任意两种或以上的混合物。具体所述半导体材料的实例包括,但不限于:IV族半导体化合物,例如包括单质Si、Ge和二元化合物SiC、SiGe;II-VI族半导体化合物,例如,其中二元化合物包括CdSe、CdTe、CdO、CdS、CdSe、ZnS、ZnSe、ZnTe、ZnO、HgO、HgS、HgSe、HgTe,三元化合物包括CdSeS、CdSeTe、CdSTe、CdZnS、CdZnSe、CdZnTe、CgHgS、CdHgSe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、HgZnS、HgSeSe,以及四元化合物包括CgHgSeS、CdHgSeTe、CgHgSTe、CdZnSeS、CdZnSeTe、 HgZnSeTe、HgZnSTe、CdZnSTe、HgZnSeS;III-V族半导体化合物,例如,其中二元化合物包括AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb,三元化合物包括AlNP、AlNAs、AlNSb、AlPAs、AlPSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、InNP、InNAs、InNSb、InPAs、InPSb,以及四元化合物包括GaAlNAs、GaAlNSb、GaAlPAs、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;IV-VI族半导体化合物,例如,其中二元化合物包括SnS、SnSe、SnTe、PbSe、PbS、PbTe,三元化合物包括SnSeS、SnSeTe、SnSTe、SnPbS、SnPbSe、SnPbTe、PbSTe、PbSeS、PbSeTe,以及四元化合物包括SnPbSSe、SnPbSeTe、SnPbSTe。
在一个优选的实施例中,发光量子点包含有II-VI族半导体材料,优选地,选自CdSe,CdS,CdTe,ZnO,ZnSe,ZnS,ZnTe,HgS,HgSe,HgTe,CdZnSe及其任意组合。在一个优选的实施例中,由于CdSe,CdS的合成相对成熟,而可以将此材料用作用于可见光的发光量子点。
在另一个优选的实施例中,发光量子点包含有III-V族半导体材料,优选地,其选自InAs,InP,InN,GaN,InSb,InAsP,InGaAs,GaAs,GaP,GaSb,AlP,AlN,AlAs,AlSb,CdSeTe,ZnCdSe或其中任意两种或以上的混合物。
在另一个优选的实施例中,发光量子点包含有IV-VI族半导体材料,优选地,选自PbSe,PbTe,PbS,PbSnTe,Tl2SnTe5或其中任意两种或以上的混合物。
在一个优选的实施例中,量子点为核壳结构。核与壳分别相同或不同地包括一种或多种半导体材料。
所述量子点的核可以选自上述的元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族的二元或多元半导体化合物。具体的用于量子点核的实例包括,但不限于:ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgS、MgSe、GaAs、GaN、GaP、GaSe、GaSb、HgO、HgS、HgSe、HgTe、InAs、InN、InSb、AlAs、AlN、AlP、AlSb、PbO、PbS、PbSe、PbTe、Ge、Si及其任意组合的合金或其中任意两种或以上的混合物。
所述量子点的壳包含有与核相同或不同的半导体材料。可用于壳的半导体材料包括元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物。具体的用于量子点核的实例包括但不限于ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgS、MgSe、GaAs、GaN、GaP、GaSe、GaSb、HgO、HgS、HgSe、HgTe、InAs、InN、InSb、AlAs、AlN、AlP、AlSb、PbO、PbS、PbSe、PbTe、Ge、Si,及其任意组合的合金或其中任意两种或以上的混合物。
所述具有核壳结构的量子点中,其壳可以包括单层或多层的结构。所述壳可以包括一种或多种与核相同或不同的半导体材料。在一个优选的实施例中,壳具有约1到20层的厚度。在一个更为优选的实施例中,壳具有约5到10层的厚度。在某些实施例中,在量子点核的表面包含有两种或两种以上的壳。
在一个优选的实施例中,用于壳的半导体材料可以具有比核更大的带隙。特别优选地,壳核具有I型的半导体异质结结构。
在另一个优选的实施例中,用于壳的半导体材料可以具有比核更小的带隙。
在一个优选的实施例中,用于壳的半导体材料可以具有与核相同或接近的原子晶体结构。这样的选择有利于减小核壳间的应力,使量子点更为稳定。
合适的采用核壳结构的发光量子点的例子(但不限于)有:
红光:CdSe/CdS,CdSe/CdS/ZnS,CdSe/CdZnS等;
绿光:CdZnSe/CdZnS,CdSe/ZnS等;
蓝光:CdS/CdZnS,CdZnS/ZnS等。
优选的量子点制备方法是胶状生长法。在一个优选的实施例中,制备单分散的量子点的方法可以选自热注射法(hot-inject)和/或加热法(heating-up)。制备方法可以参见,例如文件Nano Res,2009,2,425-447;Chem.Mater.,2015,27(7),pp 2246-2285所述。
在一个优选的实施例中,所述量子点的表面可以包含有有机配体。有机配体可以控制量子点的生长过程,调控量子点的形貌和减小量子点表面缺陷,从而提高量子点的发光效率及稳定性。所述有机配体可以选自,但不限于,吡啶、嘧啶、呋喃、胺、烷基膦、烷基膦氧化物、烷基膦酸或烷基次膦酸、烷基硫醇等。具体的有机配体的实例包括但不限于三正辛基膦、三正辛基氧化膦、三羟基丙基膦、三丁基膦、三(十二烷基)膦、亚磷酸二丁酯、亚磷酸三丁酯、亚磷酸十八烷基酯、亚磷酸三月桂酯、亚磷酸三(十二烷基)酯、亚磷酸三异癸酯、双(2-乙基己基)磷酸酯、三(十三烷基)磷酸酯、十六胺、油胺、十八胺、双十八胺、三十八胺、双(2-乙基己基)胺、辛胺、二辛胺、三辛胺、十二胺、双十二胺、三十二胺、十六胺、苯基磷酸、己基磷酸、四癸基磷酸、辛基磷酸、正十八烷基磷酸、丙烯二磷酸、二辛醚、二苯醚、辛硫醇、十二烷基硫醇等或其中任意两种或以上的混合物。
在另一个优选的实施例中,所述量子点的表面可以包含有无机配体。由无机配体保护的量子点,可以通过对量子点表面有机配体进行配体交换得到。具体的无机配体的实例包括,但不限于:S2-,HS-,Se2-,HSe-,Te2-,HTe-,TeS3 2-,OH-,NH2 -,PO4 3-,MoO4 2-,或其中任意两种或以上的混合物等。
在某些实施例中,量子点表面可以具有一种或多种相同或不同的配体。
在一个优选的实施例中,具有单分散的量子点所表现出的发光光谱可以具有对称的峰形和窄的半峰宽。一般地,量子点的单分散性越好,其所表现的发光峰越对称,且半峰宽越窄。优选地,所述量子点的发光半峰宽小于70纳米;更优选地,所述量子点的发光半峰宽小于40纳米;最优选地,所述量子点的发光半峰宽小于30纳米。
一般地,所述量子点的发光量子效率大于10%,较优选是大于50%,更优选是大于60%,最优选是大于70%。
在另一个优选的实施例中,发光半导体纳米晶体是纳米棒。纳米棒的特性不同于球形纳米晶粒。例如,纳米棒的发光沿长棒轴偏振化,而球形晶粒的发光是非偏振的。纳米棒具有优异的光学增益特性,使得它们可能用作激光增益材料。此外,纳米棒的发光可以可逆地在外部电场的控制下打开和关闭,。纳米棒的这些特性可以在某种情况下优选地结合到本发明的器件中。
在另一些优选的实施例中,本发明所述的用于印刷电子器件的组合物中,所述无机纳米材料是钙钛矿纳米粒子材料,特别是发光钙钛矿纳米粒子材料。
钙钛矿纳米粒子材料可以具有AMX3的结构通式,其中A可选自有机胺或碱金属阳离子,M可选自金属阳离子,X可选自氧或卤素阴离子。具体的实例包括但不限于:CsPbCl3、CsPb(Cl/Br)3、CsPbBr3、CsPb(I/Br)3、CsPbI3、CH3NH3PbCl3、CH3NH3Pb(Cl/Br)3、CH3NH3PbBr3、CH3NH3Pb(I/Br)3、CH3NH3PbI3等。
在另一优选的实施例中,本发明所述的用于印刷电子器件的组合物中,所述无机纳米材料可以是金属纳米粒子材料。特别优选的是发光金属纳米粒子材料。
所述金属纳米粒子可以包括,但不限于:铬(Cr)、钼(Mo)、钨(W)、钌(Ru)、铑(Rh)、镍(Ni)、银(Ag)、铜(Cu)、锌(Zn)、钯(Pd)、金(Au)、饿(Os)、铼(Re)、铱(Ir)和铂(Pt)的纳米粒子。
在另一个优选的实施例中,所述无机纳米材料具有电荷传输的性能。
在一个优选的实施例中,所述无机纳米材料具有电子传输能力。优选地,这类无机纳米材料选自n型半导体材料。n型无机半导体材料的例子可以包括,但不限于,金属硫族元素化合物,金属磷族元素化合物,或元素半导体,如金属氧化物,金属硫化物,金属硒化物,金属碲化物,金属氮化物,金属磷化物,或金属砷化物。优选的n-型无机半导体材料可以选自,但不限于:ZnO、ZnS、ZnSe、TiO2、ZnTe、GaN、GaP、AlN、CdSe、CdS、CdTe、CdZnSe或其中任意两种或以上的混合物。
在某些实施例中,所述无机纳米材料具有空穴传输能力。优选地,这类无机纳米材料可以选自p型半导体材料。无机p-型半导体材料可以选自,但不限于:NiOx、WOx、MoOx、RuOx、VOx、CuOx或其中任意两种或以上的混合物。
在某些的实施例中,本发明所述的印刷油墨,可以包含至少两种及两种以上的无机纳米材料。
在另一个特别优选的实施例中,本发明所述的用于印刷电子器件的组合物可以包含有至少一种有机功能材料。
所述有机功能材料可以包括,但不限于,空穴(也称电洞)注入或传输材料(HIM/HTM)、空穴阻挡材料(HBM)、电子注入或传输材料(EIM/ETM)、电子阻挡材料(EBM)、有机主体材料(Host)、单重态发光体(荧光发光体)、热激活延迟荧光发光材料(TADF)、三重态发光体(磷光发光体),特别是发光有机金属络合物,有机染料或其中任意两种或以上的混合物。
一般地,合适的有机功能材料在本发明所述的基于脂环族结构且具有通式(I)的溶剂中的溶解度可以至少是0.2wt%,较优选为至少是0.3wt%,更优选为至少是0.6wt%,更优选为至少是1.0wt%,最优选为至少是1.5wt%。
有机功能材料可以是小分子和高聚物材料。在本发明中,小分子有机材料是指分子量至多为4000g/mol的材料,分子量高于4000g/mol的材料统称为高聚物。
在一个优选的实施例中,本发明所述的用于印刷电子器件的组合物包含的功能材料可以为有机小分子材料。
在某些优选的实施例中,本发明所述的用于印刷电子器件的组合物,其中所 述有机功能材料可以包含有至少一种的主体材料和至少一种的发光体。
在一个优选的实施例中,所述有机功能材料可以包含有一种主体材料和一种单重态发光体。
在另一个优选的实施例中,所述有机功能材料可以包含有一种主体材料和一种三重态发光体。
在另一个优选的实施例中,所述有机功能材料可以包含有一种主体材料和一种热激活延迟荧光发光材料。
在另一些优选的实施例中,所述有机功能材料包含有一种空穴传输材料(HTM),更加优选地,所述HTM可以包含有可交联基团。
下面对将对适合优选的实施例的有机小分子功能材料作一些较详细的描述(但不限于此)。
1.HIM/HTM/EBM
合适的有机HIM/HTM材料可以可选地包含有如下结构单元的化合物:酞菁、卟啉、胺、芳香胺、联苯类三芳胺、噻吩、并噻吩如二噻吩并噻吩和并噻吩、吡咯、苯胺、咔唑、氮茚并氮芴及它们的衍生物,但不限于此。另外,合适的HIM也包括含有氟烃的聚合物、含有导电掺杂的聚合物、导电聚合物,如PEDOT:PSS,但不限于此。
电子阻挡层(EBL)用来阻挡来自相邻功能层,特别是发光层的电子。对比没有阻挡层的发光器件,EBL的存在通常会使得发光效率的提高。电子阻挡层(EBL)的电子阻挡材料(EBM)需要有比相邻功能层,如发光层更高的LUMO。在一个优选的实施例中,HBM有比相邻发光层更大的激发态能级,如单重态或三重态,取决于发光体,同时,EBM有空穴传输功能。通常具有高的LUMO能级的HIM/HTM材料可以作为EBM。
可用作HIM,HTM或EBM的环芳香胺衍生化合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2016099015-appb-000007
每个Ar1到Ar9可独立选自环芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、非那烯、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、呋喃、噻吩、苯并呋喃、苯并噻吩、咔唑、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮(杂)萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、二苯并硒吩、苯并硒吩、苯并呋喃吡啶、吲哚咔唑、吡啶吲哚、吡咯二吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过例如至少一个以下的基团连 接在一起,:氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团,但不限于此。其中,每个Ar还可以任选取代,取代基可以选自,但不限于:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个方面,所述Ar1到Ar9可独立选自包含如下基团,但不限于此:
Figure PCTCN2016099015-appb-000008
其中,n是1到20的整数;X1到X8是CH或N;Ar1如以上所定义。
可用作HTM或HIM的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2016099015-appb-000009
其中,M是金属,有大于40的原子量;
(Y1-Y2)是两齿配体,Y1和Y2独立地选自C、N、O、P和S;L是辅助配体;m是整数,其值选自从1到此金属的最大配位数的范围;m+n是此金属的最大配位数。
在一个实施例中,(Y1-Y2)是2-苯基吡啶衍生物。
在另一个实施例中,(Y1-Y2)是卡宾配体。
在另一个实施例中,M可以选自Ir、Pt、Os和Zn。
在另一个方面,金属络合物的HOMO大于-5.5eV(相对于真空能级).
下面的表中列出了适合HIM/HTM化合物的例子,但不限于此:
Figure PCTCN2016099015-appb-000010
Figure PCTCN2016099015-appb-000011
2.三重态主体材料(Triplet Host):
三重态主体材料并无特别限制,任何金属络合物或有机化合物都可能用作为主体,只要其三重态能量比发光体,特别是三重态发光体或磷光发光体更高即可。可用作三重态主体(Host)的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2016099015-appb-000012
其中,M是金属;(Y3-Y4)是两齿配体,Y3和Y4独立地选自C、N、O、P、和S;L是辅助配体;m是整数,其值选自从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个优选的实施例中,可用作三重态主体的金属络合物可以有如下形式之一:
Figure PCTCN2016099015-appb-000013
其中,(O-N)是一两齿配体,其中金属与O和N原子配位。
在某一个实施例中,M可选自Ir和Pt。
可作为三重态主体的有机化合物的例子可以选自,但不限于:包含有环芳香烃基的化合物,例如苯、联苯、三苯基、苯并、芴;包含有芳香杂环基的化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三唑类、恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、恶唑、二苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮杂萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃并吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩苯并二吡啶;包含有2至10环结构的基团,其可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过例如至少一个以下的基团连接在一起,:氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团,但不限于此。其中,每个Ar还可以任选取代,取代基可选为氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基,但不限于此。
在一个优选的实施例中,三重态主体材料可选自包含至少一个以下基团的化合物,但不限于此:
Figure PCTCN2016099015-appb-000014
其中,每个R1-R7可相互独立地选自如下的基团:氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂烷基,芳基和杂芳基,但不限于此;当它们是芳基或杂芳基时,其与上述的Ar1和Ar2意义相同;n是一个从0到20的整数;每个X1-X8选自CH或N;X9选自CR1R2或NR1
下面的表中列出了合适的三重态主体材料的例子,但不限于此:
Figure PCTCN2016099015-appb-000015
3.单重态主体材料(Singlet Host):
单重态主体材料的例子并不受特别的限制,任何有机化合物都可能被用作为主体,只要其单重态能量比发光体,特别是单重态发光体或荧光发光体更高即可。
作为单重态主体材料使用的有机化合物的例子可以选自,但不限于:含有环 芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、萉、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、噌啉、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩二吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并在彼此之间直接或通过至少一个以下的基团连接在一起:氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团,但不限于此。
在一个优选的实施例中,单重态主体材料可以选自,但不限于包含至少一个以下基团的化合物:
Figure PCTCN2016099015-appb-000016
其中,每个R1可相互独立地选自如下的基团:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基,但不限于此;Ar1是芳基或杂芳基,它与上述的HTM中定义的Ar1意义相同;n是一个从0到20的整数;每个X1-X8选自CH或N;X9和X10独立选自CR1R2或NR1
下面的表中列出了一些蒽基单重态主体材料的例子,但不限于此:
Figure PCTCN2016099015-appb-000017
4.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如苯乙烯胺及其衍生物和茚并芴及其衍生物。
在一个优选的实施例中,单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚和芳胺,但不限于此。
一元苯乙烯胺是指包含一个无取代或任选取代的苯乙烯团基团和至少一个胺(优选为芳香胺)的化合物。二元苯乙烯胺是指包含二个无取代或任选取代的苯乙烯基团和至少一个胺(优选为芳香胺)的化合物。三元苯乙烯胺是指包含三个无取代或任选取代的苯乙烯基团和至少一个胺(优选为芳香胺)的化合物。四元苯乙烯胺是指包含四个无取代或任选取代的苯乙烯基团和至少一个胺(优选为芳香胺)的化合物。优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应地,膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指包含三个直接联接氮的无取代或任选取代的芳香环或杂环系统的化合物。这些芳香族或杂环的环系统中至少有一个优选地选自稠环系统,并最优选为有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺,但不限于此。芳香蒽胺是指其中一个二元芳基胺基团直接连到蒽上,最好是在9的位置上的化合物。芳香蒽二胺是指其中二个二元芳基胺基团直接连到蒽上,最好是在9,10的位置上的化合物。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好连到芘的1或1,6位置上。
进一步优选的单重态发光体可选自茚并芴-胺和茚并芴-二胺,苯并茚并芴-胺和苯并茚并芴-二胺,二苯并茚并芴-胺和二苯并茚并芴-二胺等。
其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘,亚芳香基乙烯,环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物,双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮,但不限于此。
下面的表中列出一些合适的单重态发光体的例子,但不限于此:
Figure PCTCN2016099015-appb-000018
5.热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。
TADF材料需要具有较小的单线态-三线态能级差,一般是ΔEst<0.3eV,较优选是ΔEst<0.2eV,更优选是ΔEst<0.1eV,最优选是ΔEst<0.05eV。在一个优选的实施例中,TADF有较好的荧光量子效率。
下面的表中列出一些合适的TADF发光材料的例子,但不限于此:
Figure PCTCN2016099015-appb-000019
Figure PCTCN2016099015-appb-000020
6.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优选的实施例中,三重态发光体可以是通式为M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,其为有机配体,通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,较优选为1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优选的实施例中,金属原子M选自过渡金属元素或镧系元素或锕系元素,优选为选自Ir、Pt、Pd、Au、Rh、Ru、Os、Sm、Eu、Gd、Tb、Dy、Re、Cu或Ag,特别优选选择Os、Ir、Ru、Rh、Re、Pd或Pt,但不限于此。
优选地,三重态发光体可以包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优选考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可以选自,但不限于:苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2-苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优选选自乙酸丙酮或苦味酸。
在一个优选的实施例中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2016099015-appb-000021
其中M是金属,选自过渡金属元素或镧系元素或锕系元素;
Ar1每次出现时可以是相同或不同,其为环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过其环状基团与金属配位连接;Ar2每次出现时可以是相同或不同,其为环状基团,其中至少包含有一个C原子,通过其环状基团与金属连接;Ar1和Ar2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L每次出现时可以是相同或不同,其为辅助配体,优选为双齿螯合配体,最优选为单阴离子双齿螯合配体;m是1,2或3,优选地是2或3,特别优选地是3;n是0,1,或2,优选地是0或1,特别优选地是0;
下面的表中列出一些合适的三重态发光体的例子,但不限于此:
Figure PCTCN2016099015-appb-000022
Figure PCTCN2016099015-appb-000023
Figure PCTCN2016099015-appb-000024
在另一个优选的实施例中,本发明所述的用于印刷电子器件的组合物包含的功能材料可以为高聚物材料。
一般地,以上所述有机小分子功能材料可以包括HIM,HTM,ETM,EIM,Host,荧光发光体,磷光发光体,TADF等,且其都可以作为重复单元包含在高聚物中。
在一个优选的实施例中,适合于本发明的高聚物可以是共轭高聚物。一般地,共轭高聚物有如下通式:
Figure PCTCN2016099015-appb-000025
其中B,A在多次出现时可独立选择相同或不同的结构单元
B:具有较大的能隙的π-共轭结构单元,也称骨干单元(Backbone Unit),选自单环或多环芳基或杂芳基,优选的单元形式选自:苯、联二亚苯(Biphenylene)、萘、蒽、菲、二氢菲、9,10-二氢菲、芴、二芴、螺二芴、对苯乙炔、反茚并芴、顺茚并、二苯并-茚并芴、茚并萘及其衍生物.
A:具有较小能隙的π-共轭结构单元,也称功能单元(Functional Unit),按照不同的功能要求,可以选自,但不限于包含有以上所述空穴注入或传输材料(HIM/HTM),电子注入或传输材料(EIM/ETM),主体材料(Host),单重态发光体(荧光发光体),重态发光体(磷光发光体)的结构单元。
x,y:>0,且x+y=1;
在某些较为优选的实施例中,本发明所述的用于印刷电子器件的组合物包含的功能材料为高聚物HTM。
在一个优选的实施例中,高聚物HTM材料为均聚物,优选的均聚物选自聚噻吩、聚吡咯、聚苯胺、聚联苯类三芳胺、聚乙烯基咔唑及其衍生物.
在另一个特别优选的实施例中,高聚物HTM材料为化学式1表示的共轭共聚物,其中
A:具有空穴输运能力的功能基团,可相同或不同地选自包含有以上所述空穴注入或传输材料(HIM/HTM)的结构单元;在一个优选的实施例中,A选自胺、联苯类三芳胺、噻吩、并噻吩如二噻吩并噻吩和并噻吩、吡咯、苯胺、咔唑、indenocarbazole、氮茚并氮芴、并五苯、酞菁、卟啉及其衍生物。
x,y:>0,且x+y=1;通常y≥0.10,优选为y≥0.15,更优选为y≥0.20,最优选为x=y=0.5。
下面列出合适的可作为HTM的共轭高聚物的例子,但不限于此:
Figure PCTCN2016099015-appb-000026
Figure PCTCN2016099015-appb-000027
其中,
R各自在彼此之间独立地选自:氢,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的任选取代或未取代的芳族或杂芳族环系,具有5至40个环原子的芳氧基或杂芳氧基基团,其中一个或多个基团R可以在彼此之间和/或与所述基团R键合的环形成单环或多环的脂族或芳族环系;
r:选自0,1,2,3或4;
s:选自0,1,2,3,4或5;
x,y:>0,且x+y=1;通常y≥0.10,较优选为≥0.15,更优选为≥0.20,最优选为x=y=0.5。
另一类优选的有机功能材料可以是具有电子传输能力的高聚物,包括共轭高聚物和非共轭高聚物。
优选的高聚物ETM材料为均聚物,优选的均聚物可以选自聚菲、聚菲罗啉、聚茚并芴、聚螺二芴、聚芴及其衍生物。
优选的高聚物ETM材料可以为化学式1表示的共轭共聚物,其中A在多次出现时可独立选择相同或不同的形式:
A:具有电子输运能力的功能基团,优选选自三(8-羟基喹啉)铝(AlQ3)、苯、联二亚苯、萘、蒽、菲、二氢菲、芴、二芴、螺二芴、对苯乙炔、芘、苝,9,10-二氢菲、吩嗪、菲罗啉、反茚并芴、顺茚并、二苯并-茚并芴、茚并萘、苯并蒽及它们的衍生物
x,y:>0,且x+y=1.通常y≥0.10,较优选为y≥0.15,更优选为y≥0.20,最优选为x=y=0.5.
在另一个优选的实施例中,本发明所述的用于印刷电子器件的组合物包含的 功能材料为发光高聚物。
在一个特别优选的实施例中,发光高聚物是有如下通式的共轭高聚物高聚物有如下通式:
Figure PCTCN2016099015-appb-000028
B:与化学式1的定义相同。
A1:具有空穴或电子输运能力的功能基,可以选自,但不限于:包含有以上所述空穴注入或传输材料(HIM/HTM),或电子注入或传输材料(EIM/ETM)的结构单元。
A2:具有发光功能的基团,可以选自,但不限于:包含有以上所述单重态发光体(荧光发光体),重态发光体(磷光发光体)的结构单元。
x,y,z:>0,且x+y+z=1;
在另一个实施例中,适合于本发明的高聚物可以是非共轭高聚物。这可以是所有功能基团都在侧链上,而主链是非共轭的高聚物。其示例可以选自,但不限于:用作磷光主体或磷光发光材料的非共轭高聚物,用作荧光发光材料的非共轭高聚物。另外,非共轭高聚物也可以是主链上共轭的功能单元通过非共轭的连接单元连接起来的高聚物,
本发明还涉及一种通过打印或涂布的方法制备包含功能材料的薄膜的方法,其中将如上所述任何一种用于印刷电子器件的组合物用印刷或涂布的方法涂布于一基板上,其中印刷或涂布的方法可选自(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。
在一个优选的实施例中,包含功能材料的薄膜是通过喷墨打印的方法制备的。可用于打印本发明所述的油墨的喷墨打印机可以是市售的打印机,且包含按需打印喷头(drop-on-demand printheads)。这些打印机可以从例如Fujifilm Dimatix(Lebanon,N.H.),Trident International(Brookfield,Conn.),Epson(Torrance,Calif),Hitachi Data systems Corporation(Santa Clara,Calif),Xaar PLC(Cambridge,United Kingdom),和Idanit Technologies,Limited(Rishon Le Zion,Isreal)购得。例如,本发明可以使用Dimatix Materials Printer DMP-3000(Fujifilm)进行打印。
本发明进一步涉及一种电子器件,其包含有一层或多层功能薄膜,其中至少有一层功能薄膜是利用本发明所述的印刷油墨组合物制备而成的,特别是通过打印或涂布的方法制备的。
合适的电子器件包括但不限于:量子点发光二极管(QLED)、量子点光伏电池(QPV)、量子点发光电池(QLEEC)、量子点场效应管(QFET)、量子点发光场效应管、量子点激光器,量子点传感器,有机发光二极管(OLED)、有机光伏电池(OPV)、 有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器,有机传感器等。
在一个优选的实施例中,以上所述电子器件是电致发光器件或光伏电池,如图1所示,其中包括基片(101)、阳极(102)、至少一个发光层或光吸收层(104)、阴极(106)。以下仅针对电致发光器件做说明。
基片(101)可以是不透明或透明的。一透明的基板可以用来制造透明的发光元器件。基材可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。优选地,基片有平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片可选自聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较优选是超过200℃,更优选是超过250℃,最优选是超过300℃。合适的基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN),但不限于此。
阳极(102)可包括导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到HIL或HTL或发光层中。在一个实施例中,阳极的功函数和作为HIL或HTL的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较优选是小于0.3eV,最优选是小于0.2eV。阳极材料的例子包括但不限于、Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极(106)可包括导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个实施例中,阴极的功函数和作为EIL或ETL或HBL的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较优选是小于0.3eV,最优选是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于,Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
发光层(104)中可以至少包含有一层发光功能材料,其厚度可以在2nm到200nm之间。在一个优选的实施例中,本发明所述的发光器件中,其发光层是通过打印本发明的印刷油墨制备而成,其中印刷油墨中包含有至少一种如上所述发光功能材料,特别是量子点或有机功能材料。
在一个优选的实施例中,本发明所述的发光器件可以进一步包含有空穴注层(HIL)或空穴传输层(HTL)(103),其中包含有如上所述有机HTM或无机p型材料。在一个优选的实施例中,HIL或HTL可以通过打印本发明的印刷油墨制备而成,其中印刷油墨中包含有具有空穴传输能力的功能材料,特别是量子点或有机HTM材料。
在另一个优选的实施例中,本发明所述的发光器件可以进一步包含有电子注层(EIL)或电子传输层(ETL)(105),其中包含有如上所述有机ETM或无机n型材料。在某些实施例中,EIL或ETL可以通过打印本发明的印刷油墨制备而成,其中印刷油墨中包含有具有电子传输能力的功能材料,特别是量子点或有机ETM材料。
本发明还涉及本发明所述的发光器件在各种场合的应用,包括,但不限于,各种显示器件,背光源,照明光源等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖.
实施例:
实施例1:蓝光量子点的制备(CdZnS/ZnS)
称取0.0512g的S和量取2.4mL ODE置于25mL的单口烧瓶中,置于油浴中加热至80℃使S溶解,备用,以下简称溶液1;称取0.1280g的S和量取5mLOA置于25mL的单口烧瓶中,置于油浴中加热至90℃使S溶解,备用,以下简称溶液2;称量0.1028gCdO和1.4680g的乙酸锌,量取5.6mL的OA置于50mL的三口烧瓶中,将三口烧瓶置于150mL的加热套中,两边瓶口用胶塞塞住,上方连接冷凝管,再连接至双排管,加热至150℃,抽真空40min,再通氮气;用注射器将12mL的ODE加入到三口烧瓶中,升温至310℃时快速用注射器将1.92mL的溶液1打进三口烧瓶中,计时12min;12min一到,用注射器将4mL的溶液2滴加至三口烧瓶中,滴加速度大约为0.5mL/min,反应3h,停止反应,立刻把三口烧瓶放入水中冷却至150℃;将过量的正己烷加入至三口烧瓶中,然后将三口烧瓶中的液体转移至多个10mL的离心管中,离心,除去下层沉淀,重复三次;在经过后处理1的液体中加入丙酮至有沉淀产生,离心,除去上层清液,留下沉淀;再用正己烷溶解沉淀,后加丙酮至有沉淀出来,离心,除去上层清液,留下沉淀,重复三次;最后用甲苯溶解沉淀,转移至玻璃瓶中存储。
实施例2:绿光量子点的制备(CdZnSeS/ZnS)
称量0.0079g的硒和0.1122g的硫置于25mL的单口烧瓶中,量取2mL的TOP,通氮气,搅拌,备用,以下简称溶液1;称量0.0128g的CdO和0.3670g的乙酸锌,量取2.5mL的OA置于25mL的三口烧瓶中,两边瓶口用胶塞塞住,上方连接一个冷凝管,再连接至双排管,将三口烧瓶置于50mL的加热套中,抽真空通氮气,加热至150℃,抽真空30min,注射7.5mL的ODE,再加热至300℃快速注射1mL的溶液1,计时10min;10min一到,立刻停止反应,将三口烧瓶置于水中冷却。
往三口烧瓶中加入5mL的正己烷,然后就混合液加入至多个10mL的离心管中,加入丙酮至有沉淀出来,离心。取沉淀,除去上层清液,用正己烷将沉淀溶解,加入丙酮至有沉淀产生,离心。重复三次。最后的沉淀用少量的甲苯溶解,转移至玻璃瓶中储存。
实施例3:红光量子点的制备(CdSe/CdS/ZnS)
1mmol的CdO,4mmol的OA和20ml的ODE加入到100ml三口烧瓶中,鼓氮气,升温至300℃形成Cd(OA)2前驱体.在此温度下,快速注入0.25mL的溶有0.25mmol的Se粉的TOP。反应液在此温度下反应90秒,生长得到约3.5纳米的CdSe核。0.75mmol的辛硫醇在300℃下逐滴加入到反应液中,反应30分钟后生长约1纳米厚的CdS壳。4mmol的Zn(OA)2和2ml的溶有4mmol的S粉的TBP随后逐滴加入到反应液中,用以生长ZnS壳(约1纳米)。反应持续10分钟后,冷却至室温。
往三口烧瓶中加入5mL的正己烷,然后就混合液加入至多个10mL的离心管中,加入丙酮至有沉淀出来,离心。取沉淀,除去上层清液,用正己烷将沉淀溶解,加入丙酮至有沉淀产生,离心。重复三次。最后的沉淀用少量的甲苯溶解,转移至玻璃瓶中储存。
实施例4:ZnO纳米粒子的制备
将1.475g醋酸锌溶于62.5mL甲醇中,得到溶液1。将0.74g KOH溶于32.5mL甲醇中,得到溶液2。溶液1升温至60℃,激烈搅拌。使用进样器将溶液2逐滴滴加进溶液1。滴加完成后,该混合溶液体系在60℃下继续搅拌2小时。移去加热源,将溶液体系静置2小时。采用4500rpm,5min的离心条件,对反应溶液离心清洗三遍以上。最终得到白色固体为直径约3nm的ZnO纳米粒子。
实施例5:含环己基苯的量子点印刷油墨的制备
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.5g环己基苯溶剂。用丙酮将量子点从溶液中析出,离心得到量子点固体。在手套箱中称取0.5g量子点固体,加到小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至量子点完全分散后,冷却至室温。将得到的量子点溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例6:含1,1’-双环己烷的ZnO纳米粒子印刷油墨的制备
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.5g1,1’-双环己烷溶剂。在手套箱中称取0.5g ZnO纳米粒子固体,加到小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至ZnO纳米粒子完全分散后,冷却至室温。将得到的ZnO纳米粒子溶液经0.2μm PTFE滤膜过滤。密封并保存。
以下实施例中所涉及的有机功能材料均是可商业购得,如吉林奥莱德(Jilin OLED Material Tech Co.,Ltd,www.jl-oled.com),或按照文献报道的方法合成而得。
实施例7:含γ-戊内酯的有机发光层材料印刷油墨的制备
在该实施例中,发光层有机功能材料包含一种磷光主体材料和一种磷光发光 材料。磷光主体材料选自如下的咔唑衍生物:
Figure PCTCN2016099015-appb-000029
磷光发光材料选自如下铱配合物:
Figure PCTCN2016099015-appb-000030
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.8gγ-戊内酯溶剂。在手套箱中称取0.18g磷光主体材料和0.02g磷光发光体材料,加到小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至有机化合物完全分散后,冷却至室温。将得到的有机化合物溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例8:含2,4-二甲基环丁砜的有机发光层材料印刷油墨的制备
在该实施例中,发光层有机功能材料包含一种荧光主体材料和一种荧光发光体材料。
荧光主体材料选自如下的螺芴衍生物:
Figure PCTCN2016099015-appb-000031
荧光发光体材料选自如下化合物:
Figure PCTCN2016099015-appb-000032
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.8g 2,4-二甲基环丁砜。在手套箱中称取0.19g荧光主体材料和0.01g荧光发光体材料,加到小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至有机功能材料完全溶解后,冷却至室温。将得到的有机功能材料溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例9:含葑酮的有机发光层材料印刷油墨的制备
在该实施例中,发光层有机功能材料包含一种主体材料和一种TADF材料。
主体材料选自如下结构的化合物:
Figure PCTCN2016099015-appb-000033
TADF材料选自如下结构的化合物:
Figure PCTCN2016099015-appb-000034
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.8g葑酮。在手套箱中称取0.19g主体材料和0.01g TADF材料,加到小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至有机功能材料完全溶解后,冷却至室温。将得到的有机功能材料溶液经0.2μm PTFE滤膜过滤。密封并保存
实施例10:含环丁砜的空穴传输材料印刷油墨的制备
在该实施例中,印刷油墨包含一种具有空穴传输能力的空穴传输层材料。
空穴传输材料选自如下的三芳胺衍生物:
Figure PCTCN2016099015-appb-000035
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.8g环丁砜溶剂。在手套箱中称取0.2g空穴传输材料,加到小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至有机化合物完全分散后,冷却至室温。将得到的有机化合物溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例11:粘度及表面张力测试
功能材料油墨的粘度由DV-I Prime Brookfield流变仪测试;功能材料油墨的表面张力由SITA气泡压力张力仪测试。
经上述测试,根据本发明实施例5至实施例10中制备得到的功能材料油墨的粘度和表面张力如下表所示:
实施例 粘度(cPs) 表面张力(dyne/cm)
5 5.1±0.5 32.5±0.3
6 4.8±0.5 31.8±0.3
7 4.6±0.5 28.8±0.5
8 8.7±0.5 27.2±0.3
9 4.7±0.5 29.8±0.5
10 10.5±0.3 33.5±0.3
实施例12:利用本发明的印刷油墨制备电子器件功能层
利用上述制备的基于脂环族溶剂体系的包含功能材料的印刷油墨,通过喷墨打印的方式,可制备发光二极管中的功能层,如发光层和电荷传输层,具体步骤如下。
将包含功能材料的油墨装入油墨桶中,油墨桶装配于喷墨打印机,如Dimatix Materials Printer DMP-3000(Fujifilm)。调节喷射油墨的波形、脉冲时间和电压,使油墨喷射达到最优,且实现油墨喷射范围的稳定化。在制备功能材料薄膜为发光层的QLED器件时,按照如下技术方案:QLED的基板为溅射有氧化铟锡(ITO)电极图案的0.7mm厚的玻璃。在ITO上使像素界定层图案话,形成内部用于沉积打印油墨的孔。然后将HIL/HTL材料喷墨打印至该孔中,真空环境下高温干燥移除溶剂,得到HIL/HTL薄膜。此后,将包含发光功能材料的印刷油墨喷墨打印到HIL/HTL薄膜上,真空环境下高温干燥移除溶剂,得到发光层薄膜。随后将包含有电子传输性能的功能材料的印刷油墨喷墨打印到发光层薄膜上,真空环境下高温干燥移除溶剂,形成电子传输层(ETL)。在使用有机电子传输材料时,ETL也可通过真空热蒸镀而成。然后Al阴极通过真空热蒸镀而成,最后封装完成QLED器件制备。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种用于印刷电子器件的组合物,包含有至少一种功能材料和含有至少一种有机溶剂的溶剂体系,所述有机溶剂中包括至少一种基于脂环族结构且具有通式(I)的有机溶剂:
    Figure PCTCN2016099015-appb-100001
    其中,R1是具有3~20个环原子的脂肪环或杂脂肪环结构,n是大于或等于0的整数,且当n≥1时,R2是取代基;
    所述有机溶剂的沸点≥150℃,且所述有机溶剂能够从溶剂体系中蒸发,以形成含有所述功能材料的薄膜。
  2. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述基于脂环族结构且具有通式(I)的有机溶剂在25℃下的粘度在1cPs到100cPs的范围内。
  3. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述基于脂环族结构且具有通式(I)的有机溶剂在25℃下的表面张力在19dyne/cm到50dyne/cm的范围内。
  4. 根据权利要求3所述的用于印刷电子器件的组合物,其特征在于,所述基于脂环族结构且具有通式(I)的有机溶剂中,所述R1具有选自如下通式中任一种所示的结构:
    Figure PCTCN2016099015-appb-100002
    其中,
    选自CR3R4、C(=O)、S、S(=O)2、O、SiR5R6,NR7或P(=O)R8
    每个R3、R4、R5、R6、R7、R8独立选自以下各项中的任一种:H,D,具有1 至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,具有5至40个环原子的任选取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团;其中,所述R3、R4、R5、R6、R7、R8中的一个或多个基团同时存在时能够在彼此之间和/或与R1或R2之间形成单环或多环的脂族或芳族环系。
  5. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,每个所述R2相同或不同地选自以下各项中的任一种:具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,具有3至20个C原子的支链或环状的烷基、烷氧基、硫代烷氧基基团或甲硅烷基基团,具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,具有5至40个环原子的任选取代或未取代的芳族或杂芳族环系,具有5至40个环原子的芳氧基或杂芳氧基基团;其中,所述R2中的一个或多个同时存在时,彼此之间独立存在或在彼此之间和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
  6. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述基于脂环族结构且具有通式(I)的有机溶剂选自:四氢萘、环己基苯、十氢化萘、2-苯氧基四氢呋喃、1,1’-双环己烷、丁基环己烷、松香酸乙酯、松香酸苄酯、乙二醇碳酸酯、氧化苯乙烯、异佛尔酮、3,3,5-三甲基环己酮、环庚酮、葑酮、1-四氢萘酮、2-四氢萘酮、2-(苯基环氧)四氢萘酮、6-(甲氧基)四氢萘酮、γ-丁内酯、γ-戊内酯、6-己内酯、N,N-二乙基环己胺、环丁砜或2,4-二甲基环丁砜,或其中任意两种及以上的混合物。
  7. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述溶剂体系是进一步包含至少一种其他有机溶剂的混合溶剂,且所述基于脂环族结构且具有通式(I)的有机溶剂占混合溶剂总重量的50%以上。
  8. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,其中所述功能材料是无机纳米材料。
  9. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,其中所述功能材料是量子点材料。
  10. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,其中所述功能材料是发光波长位于380nm~2500nm之间的发光量子点材料。
  11. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述功能材料包含无机功能材料,且所述无机功能材料选自元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族的 二元或多元半导体化合物,或其中任意两种或以上的混合物。
  12. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述功能材料是钙钛矿纳米粒子材料。
  13. 根据权利要求12所述的用于印刷电子器件的组合物,其特征在于,所述钙钛矿纳米粒子材料选自:发光钙钛矿纳米材料、金属纳米粒子材料、金属氧化物纳米粒子材料,或其中任意两种或以上的混合物。
  14. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述功能材料是有机功能材料。
  15. 根据权利要求14所述的用于印刷电子器件的组合物,其特征在于,所述有机功能材料选自:空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体、主体材料、有机染料,或其中任意两种或以上的混合物。
  16. 根据权利要求15所述的用于印刷电子器件的组合物,其特征在于,所述有机功能材料包含有至少一种主体材料和至少一种发光体。
  17. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述功能材料占所述组合物的重量比为0.3%~30%,所述有机溶剂占所述组合物的重量比为70%~99.7%。
  18. 一种电子器件,其包含有由如权利要求1所述的用于印刷电子器件的组合物印刷或涂布而成的功能层,其中所述组合物中所包含的所述基于脂环族结构且具有通式(I)的有机溶剂能够从溶剂体系中蒸发,以形成功能材料薄膜。
  19. 根据权利要求18所述的电子器件,其特征在于,所述电子器件选自:量子点发光二极管、量子点光伏电池、量子点发光电池、量子点场效应管、量子点发光场效应管、量子点激光器,量子点传感器,有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器或有机传感器。
  20. 一种功能材料薄膜的制备方法,包括:将根据权利要求1所述的用于印刷电子器件的组合物用印刷或涂布的方法铺设于基板上;其中,所述印刷或涂布的方法选自:喷墨打印、喷印、活版印刷、丝网印刷、浸涂、旋转涂布、刮刀涂布、辊筒印花、扭转辊印刷、平版印刷、柔版印刷、轮转印刷、喷涂、刷涂、移印或狭缝型挤压式涂布。
PCT/CN2016/099015 2015-11-12 2016-09-14 用于印刷电子器件的组合物及其在电子器件中的应用 WO2017080307A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680059812.0A CN108291105B (zh) 2015-11-12 2016-09-14 用于印刷电子器件的组合物及其在电子器件中的应用
KR1020187016322A KR20180083888A (ko) 2015-11-12 2016-09-14 전자 장치 인쇄용 조성물 및 전자 장치에서 이의 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510770158.1 2015-11-12
CN201510770158 2015-11-12

Publications (1)

Publication Number Publication Date
WO2017080307A1 true WO2017080307A1 (zh) 2017-05-18

Family

ID=58695902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099015 WO2017080307A1 (zh) 2015-11-12 2016-09-14 用于印刷电子器件的组合物及其在电子器件中的应用

Country Status (3)

Country Link
KR (1) KR20180083888A (zh)
CN (1) CN108291105B (zh)
WO (1) WO2017080307A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287656A (zh) * 2017-06-13 2017-10-24 华中科技大学 一种iii‑v族量子点诱导生长钙钛矿晶体的方法
WO2018221860A1 (ko) * 2017-05-29 2018-12-06 주식회사 엘지화학 잉크 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
CN109439067A (zh) * 2018-10-16 2019-03-08 苏州星烁纳米科技有限公司 量子点墨水及量子点彩膜
WO2019228620A1 (en) * 2018-05-30 2019-12-05 Toyota Motor Europe Inks comprising nanoparticles for high-performance inkjet-printed optoelectronics
WO2022039179A1 (ja) * 2020-08-21 2022-02-24 国立大学法人山形大学 樹脂インク及び電子デバイス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102572134B1 (ko) * 2018-07-24 2023-08-28 삼성전자주식회사 양자점 소자와 표시 장치
KR20210101494A (ko) * 2020-02-10 2021-08-19 한국화학연구원 페로브스카이트 용액, 이를 이용한 페로브스카이트 막의 제조방법 및 이를 이용한 페로브스카이트 태양전지의 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310930A (zh) * 1999-03-29 2001-08-29 精工爱普生株式会社 组合物及膜的制造方法以及功能元件及其制造方法
CN102470441A (zh) * 2009-07-30 2012-05-23 国立大学法人京都大学 金属类纳米颗粒、含有该金属类纳米颗粒的分散液及其制造方法
CN102668152A (zh) * 2009-12-23 2012-09-12 默克专利有限公司 包括聚合粘结剂的组合物
CN103360862A (zh) * 2012-04-02 2013-10-23 精工爱普生株式会社 功能层形成用油墨、发光元件的制造方法、发光装置及电子设备
CN104130629A (zh) * 2014-07-30 2014-11-05 深圳市宇顺电子股份有限公司 导电墨水及其制备方法
WO2015065499A2 (en) * 2013-10-31 2015-05-07 Kateeva, Inc Polythiophene-containing ink compositions for inkjet printing
CN105038408A (zh) * 2015-08-14 2015-11-11 广州华睿光电材料有限公司 印刷油墨及应用其印刷而成的电子器件
CN105062193A (zh) * 2015-08-14 2015-11-18 广州华睿光电材料有限公司 印刷油墨组合物及电子器件
CN105153811A (zh) * 2015-08-14 2015-12-16 广州华睿光电材料有限公司 印刷油墨及电子器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1894976B1 (en) * 2005-05-20 2015-09-30 Sumitomo Chemical Company, Limited Polymer composition and polymer light-emitting device using same
US7993763B2 (en) * 2007-05-10 2011-08-09 Universal Display Corporation Organometallic compounds having host and dopant functionalities
KR20100004258A (ko) * 2008-07-03 2010-01-13 포항공과대학교 산학협력단 잉크젯 프린트 잉크 및 이를 이용한 유기박막 트랜지스터
CN104277538B (zh) * 2013-07-07 2019-08-09 潘才法 一种包含有稳定剂的组合物及其在有机电子器件中的应用
KR102145424B1 (ko) * 2013-11-11 2020-08-18 엘지디스플레이 주식회사 표시장치 제조용 잉크 및 이를 이용한 표시장치의 제조방법
JP6610921B2 (ja) * 2014-03-27 2019-11-27 セイコーエプソン株式会社 非水系インクジェットインク組成物、インク収容体、インクジェット記録方法およびインクジェット記録装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310930A (zh) * 1999-03-29 2001-08-29 精工爱普生株式会社 组合物及膜的制造方法以及功能元件及其制造方法
CN102470441A (zh) * 2009-07-30 2012-05-23 国立大学法人京都大学 金属类纳米颗粒、含有该金属类纳米颗粒的分散液及其制造方法
CN102668152A (zh) * 2009-12-23 2012-09-12 默克专利有限公司 包括聚合粘结剂的组合物
CN103360862A (zh) * 2012-04-02 2013-10-23 精工爱普生株式会社 功能层形成用油墨、发光元件的制造方法、发光装置及电子设备
WO2015065499A2 (en) * 2013-10-31 2015-05-07 Kateeva, Inc Polythiophene-containing ink compositions for inkjet printing
CN104130629A (zh) * 2014-07-30 2014-11-05 深圳市宇顺电子股份有限公司 导电墨水及其制备方法
CN105038408A (zh) * 2015-08-14 2015-11-11 广州华睿光电材料有限公司 印刷油墨及应用其印刷而成的电子器件
CN105062193A (zh) * 2015-08-14 2015-11-18 广州华睿光电材料有限公司 印刷油墨组合物及电子器件
CN105153811A (zh) * 2015-08-14 2015-12-16 广州华睿光电材料有限公司 印刷油墨及电子器件

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221860A1 (ko) * 2017-05-29 2018-12-06 주식회사 엘지화학 잉크 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
CN109937243A (zh) * 2017-05-29 2019-06-25 株式会社Lg化学 墨组合物、使用其的有机发光元件及其制造方法
KR102062953B1 (ko) * 2017-05-29 2020-01-06 주식회사 엘지화학 잉크 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
JP2020512419A (ja) * 2017-05-29 2020-04-23 エルジー・ケム・リミテッド インク組成物、これを用いた有機発光素子及びその製造方法
CN109937243B (zh) * 2017-05-29 2021-12-10 株式会社Lg化学 墨组合物、使用其的有机发光元件及其制造方法
US11236246B2 (en) 2017-05-29 2022-02-01 Lg Chem, Ltd. Ink composition, organic light-emitting element using same, and fabrication method thereof
CN107287656A (zh) * 2017-06-13 2017-10-24 华中科技大学 一种iii‑v族量子点诱导生长钙钛矿晶体的方法
CN107287656B (zh) * 2017-06-13 2018-02-27 华中科技大学 一种iii‑v族量子点诱导生长钙钛矿晶体的方法
WO2019228620A1 (en) * 2018-05-30 2019-12-05 Toyota Motor Europe Inks comprising nanoparticles for high-performance inkjet-printed optoelectronics
CN109439067A (zh) * 2018-10-16 2019-03-08 苏州星烁纳米科技有限公司 量子点墨水及量子点彩膜
CN109439067B (zh) * 2018-10-16 2022-02-22 苏州星烁纳米科技有限公司 量子点墨水及量子点彩膜
WO2022039179A1 (ja) * 2020-08-21 2022-02-24 国立大学法人山形大学 樹脂インク及び電子デバイス

Also Published As

Publication number Publication date
KR20180083888A (ko) 2018-07-23
CN108291105B (zh) 2021-09-10
CN108291105A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
EP3546532B1 (en) Printing ink composition, preparation method therefor, and uses thereof
WO2017080325A1 (zh) 印刷组合物及其应用
WO2017028640A1 (zh) 印刷油墨组合物及电子器件
WO2018095380A1 (zh) 用于印刷电子器件的组合物及其制备方法和用途
WO2017028639A1 (zh) 印刷油墨及应用其印刷而成的电子器件
CN105153811B (zh) 一种用于印刷电子的油墨
WO2017080307A1 (zh) 用于印刷电子器件的组合物及其在电子器件中的应用
WO2017080323A1 (zh) 印刷组合物及其应用
US20180331312A1 (en) Electroluminescent device, preparation method thereof, and ink formulation
WO2017080316A1 (zh) 用于印刷电子的组合物及其在电子器件中的应用
US20180346748A1 (en) Formulation for printing electronic device and application thereof in electronic device
WO2017080317A1 (zh) 用于印刷电子的组合物及其在电子器件中的应用
WO2018103747A1 (zh) 高聚物及电致发光器件
WO2017080318A1 (zh) 印刷电子组合物、包含其的电子器件及功能材料薄膜的制备方法
WO2016091218A1 (zh) 一种显示器件及其制备方法
US11555128B2 (en) Printing composition, electronic device comprising same and preparation method for functional material thin film
WO2017080324A1 (zh) 含无机纳米材料的印刷组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187016322

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016322

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16863484

Country of ref document: EP

Kind code of ref document: A1