WO2018095380A1 - 用于印刷电子器件的组合物及其制备方法和用途 - Google Patents

用于印刷电子器件的组合物及其制备方法和用途 Download PDF

Info

Publication number
WO2018095380A1
WO2018095380A1 PCT/CN2017/112701 CN2017112701W WO2018095380A1 WO 2018095380 A1 WO2018095380 A1 WO 2018095380A1 CN 2017112701 W CN2017112701 W CN 2017112701W WO 2018095380 A1 WO2018095380 A1 WO 2018095380A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
group
composition
ether
organic
Prior art date
Application number
PCT/CN2017/112701
Other languages
English (en)
French (fr)
Inventor
潘君友
杨曦
闫晓林
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201780059392.0A priority Critical patent/CN109790406B/zh
Priority to US16/463,025 priority patent/US20190276696A1/en
Publication of WO2018095380A1 publication Critical patent/WO2018095380A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Definitions

  • the present invention relates to the field of organic optoelectronic materials, and in particular to a composition for printing electronic devices, a preparation method thereof and use thereof.
  • the organic light-emitting diode which is a new generation display technology, is prepared by an evaporation method.
  • the preparation process involves a large number of vacuum processes, low material utilization rate, and requires a fine mask (FMM), which is costly and good. The rate is low.
  • FMM fine mask
  • inkjet printing can produce functional material films in a large area and at low cost.
  • inkjet printing has low energy consumption, low water consumption, and environmental protection, and is a production technology with great advantages and potential.
  • Another new display technology, quantum dot light-emitting diode (QLED) cannot be evaporated and must be prepared by printing. Therefore, to achieve print display, it is necessary to break through key issues such as printing ink and related printing processes. Viscosity and surface tension are important parameters that affect the printing ink and printing process. A promising printing ink needs to have the proper viscosity and surface tension.
  • Organic semiconductor materials have gained widespread attention and significant progress in their use in electronic and optoelectronic devices due to their solution processability.
  • Solution processability allows the organic functional material to form a thin film of the functional material in the device by certain coating and printing techniques. Such a technology can effectively reduce the processing cost of electronic and optoelectronic devices, and meet the process requirements of large-area preparation.
  • KATEEVA discloses an ester solvent-based organic small molecule material ink for printing OLEDs (US2015044802A1)
  • UNIVERSAL DISPLAY CORPORATION discloses A printable organic small molecular material ink based on an aromatic ketone or aromatic ether solvent (US20120205637)
  • SEIKO EPSON CORPORATION discloses a printable organic polymer material ink based on a substituted benzene derivative solvent.
  • printing inks involving organic functional materials are: CN102408776A, CN103173060A, CN103824959A, CN1180049C, CN102124588B, US2009130296A1, US2014097406A1, and the like.
  • Quantum dots are nano-sized semiconductor materials with quantum confinement effects. When stimulated by light or electricity, quantum dots emit fluorescence with specific energy. The color (energy) of fluorescence is determined by the chemical composition and size of quantum dots. Therefore, the control of the size and shape of quantum dots can effectively regulate its electrical and optical properties.
  • countries are studying the application of quantum dots in full color, mainly in the display field.
  • quantum dots as electroluminescent devices (QLEDs) have been rapidly developed, and device lifetimes have been greatly improved, as in Peng et al., Nature Vol515 96 (2015) and Qian et al., in Nature Photonics Vol 9 259 ( Reported in 2015).
  • Nanoco Technologies Ltd. discloses a method for printing a printable ink formulation comprising nanoparticles (CN101878535B).
  • Printable nanoparticle inks and corresponding nanoparticle-containing films are obtained by selecting suitable solvents such as toluene and dodecyl selenol; Samsung Electronics discloses a quantum dot ink for inkjet printing. (US8765014B2).
  • the ink contains a concentration of quantum dot material, an organic solvent, and an alcohol polymer additive having a high viscosity.
  • a quantum dot film is obtained by printing the ink, and a quantum dot electroluminescent device is prepared;
  • QD Vision, Inc. discloses a quantum dot ink formulation comprising a host material, a quantum dot Materials and an additive (US2010264371A1).
  • composition for printed electronic devices a method of making the same, and uses thereof are provided that address one or more of the problems involved in the background.
  • compositions for printing electronic devices comprising a functional material and a solvent, the solvent being evaporable from the composition to form a thin film of functional material;
  • the solvent is at least mixed by two organic solvents, the first solvent and the second solvent, the first solvent and the second solvent are mutually soluble, the first solvent and the first solvent
  • the boiling point of at least one organic solvent in the two solvents is ⁇ 160 ° C
  • the boiling point of the second solvent is greater than the first solvent
  • the viscosity of the second solvent is greater than the first solvent, the second solvent and
  • the difference in viscosity of the first solvent is at least 2 cPs.
  • the preparation method of the above composition comprises the following steps:
  • An electronic device comprising a thin film of functional material formed using the composition described above.
  • 1 is a schematic view of an electronic device of an embodiment
  • composition according to the present invention and the printing ink, or ink have the same meaning and are interchangeable.
  • the host material, the matrix material, the Host or the Matrix material have the same meaning, and they are interchangeable.
  • metal organic complexes metal organic complexes, metal organic complexes, and organometallic complexes have the same meaning and are interchangeable.
  • @25 ° C means measurement at 25 ° C.
  • the present invention provides a composition for printing an electronic device, the composition comprising a functional material and a solvent, the solvent being evaporable from the composition to form a thin film of functional material;
  • the solvent is at least mixed by two organic solvents, the first solvent and the second solvent, the first solvent and the second solvent are mutually soluble, the first solvent and the first solvent
  • the boiling point of at least one organic solvent in the two solvents ⁇ 160 ° C, the boiling point of the second solvent is greater than the first solvent, and the viscosity of the second solvent is greater than the first solvent, and the difference in viscosity between the second solvent and the first solvent is at least 2 cPs .
  • At least one of the first solvent and the second solvent has a boiling point of ⁇ 160 ° C; in one embodiment, a boiling point of at least one of the first solvent and the second solvent ⁇ 180 ° C; in some embodiments, at least one of the first solvent and the second solvent has a boiling point ⁇ 200 ° C; in another embodiment, the first solvent and the second solvent At least one of boiling points ⁇ 250 ° C; in another embodiment, at least one of the first solvent and the second solvent has a boiling point or ⁇ 275 ° C; in another embodiment, the first solvent And at least one of the second solvents has a boiling point of ⁇ 300 °C.
  • both the first solvent and the second solvent have a boiling point of ⁇ 160 ° C; in one embodiment, both the first solvent and the second solvent have a boiling point of ⁇ 180 ° C; In the embodiment, both the first solvent and the second solvent have a boiling point of ⁇ 200 ° C; in one embodiment, both the first solvent and the second solvent have a boiling point of ⁇ 220 ° C; in an embodiment The boiling point of the first solvent and the second solvent are both ⁇ 240 °C.
  • Selecting a solvent having a boiling point within the above range can prevent clogging of the nozzle of the ink jet print head.
  • a composition comprising at least two organic solvents, at least one of which has a viscosity of @25 ° C, in the range of 1 cPs to 100 cPs. That is, at 25 ° C, the viscosity of at least one of the first solvent and the second solvent is from 1 cps to 100 cps.
  • the viscosity of at least one of the first solvent and the second solvent is from 1 cps to 50 cps; in one embodiment, at least one of the first solvent and the second solvent The viscosity is from 1 cps to 40 cps; in one embodiment, the viscosity of at least one of the first solvent and the second solvent is from 1 cps to 30 cps; in one embodiment, the first solvent and the second The viscosity of at least one of the solvents is from 1.5 cps to 20 cps.
  • the viscosity herein refers to the viscosity at ambient temperature at the time of printing, in one embodiment, in the range of 15 ° C to 30 ° C; in one embodiment, in the range of 18 ° C to 28 ° C; in one implementation In the examples, it is in the range of 20 ° C to 25 ° C; in one embodiment, it is in the range of 23 ° C to 25 ° C.
  • Compositions so formulated will be particularly suitable for ink jet printing.
  • a solvent system comprising at least two organic solvents satisfying the above boiling point and viscosity parameters is included in the composition to form a thin film of functional material having uniform thickness and composition properties.
  • the composition according to the present invention has a surface tension of at least one of the first solvent and the second solvent of from 19 dyne/cm to 50 dyne/cm at 25 °C.
  • Specific substrate and specific printing methods require surface tension parameters of suitable compositions.
  • the surface tension of at least one of the two organic solvents is in the range of about 19 dyne/cm to 50 dyne/cm at 25 ° C; in one embodiment The surface tension of at least one of the two organic solvents is in the range of about 22 dyne/cm to 35 dyne/cm at 25 ° C; in one embodiment, at 25 ° C, The surface tension of at least one of the two organic solvents described is in the range of about 25 dyne/cm to 33 dyne/cm.
  • the surface tension of the two organic solvents is in the range of 19 dyne/cm to 50 dyne/cm at 25 ° C; in another embodiment, at 25 ° C.
  • the surface tension of the two organic solvents is in the range of 22 dyne / cm to 35 dyne / cm; in another embodiment, the surface tension of the two organic solvents is 25 dyne at 25 ° C /cm to the range of 33dyne/cm.
  • the surface tension of the composition ranges from 19 dyne/cm to 50 dyne/cm at 25 ° C; in another embodiment, the surface tension of the composition ranges from 22 dyne/cm to 35 dyne/cm. In another embodiment; in another embodiment, the surface tension of the composition is in the range of 25 dyne/cm to 33 dyne/cm.
  • a composition comprising at least two organic solvents, the two organic solvents being a first solvent and a second solvent, the second solvent having a higher boiling point than the first solvent, and the second solvent being a first solvent It has a greater viscosity, resulting in a film of functional material having a uniform thickness distribution during inkjet printing and drying.
  • the first solvent is a good solvent for the functional material.
  • both the first solvent and the second solvent are good solvents for the functional material.
  • the good solvent means a solubility ⁇ 1.0% by weight, preferably ⁇ 1.5% by weight, more preferably ⁇ 2.0% by weight, most preferably ⁇ 2.2% by weight.
  • the invention also relates to a process for the preparation of a composition as described above.
  • composition as described above comprises the following formulation steps:
  • the above method can provide a functional material ink capable of suppressing edge flow and improving the uniformity of the ink jet printing film.
  • the first solvent used has a relatively good solubility to the functional material, ensuring sufficient solubility and stability of the functional material in the solution.
  • the first solvent used has a higher boiling point to prevent clogging of the nozzle during printing and to ensure stability during solution injection.
  • the second solvent used has a higher boiling point and greater viscosity than the first solvent, and the drying process of the inkjet printing of the composition to the substrate is reduced due to the high boiling point and low volatility of the second solvent. The driving force for the edge flow of the solution.
  • the high flow resistance formed can effectively reduce the edge flow strength of the solution, and the edge deposition of the solute is suppressed, thereby improving the unevenness of the inkjet printed deposited film and effectively suppressing the "coffee ring". effect.
  • the drying time of the solution droplets can be prolonged, the time during which the solute is freely diffused from the high concentration region to the low concentration region in the droplets, and the uneven distribution of the solute during the drying process can be reduced. Improve the unevenness of the inkjet printed deposited film.
  • the second solvent has a boiling point at least 10 ° C higher than the boiling point of the first solvent, the first solvent has a boiling point between 100 ° C and 250 ° C, and the second solvent has a boiling point greater than 160 ° C. In one embodiment, the second solvent has a boiling point that is at least 20 ° C higher than the first solvent. In one embodiment, the second solvent has a boiling point at least 30 ° C higher than the first solvent. In one embodiment, the second solvent has a boiling point that is at least 40 ° C higher than the first solvent. In one embodiment, the second solvent has a boiling point at least 50 ° C higher than the first solvent. In one embodiment, the second solvent has a boiling point that is at least 60 ° C higher than the first solvent.
  • the second solvent has a greater viscosity than the first solvent.
  • the difference in viscosity between the two organic solvents is at least 2 cPs; in one embodiment, the difference in viscosity of the two organic solvents is at least 4 cPs; In one embodiment, the difference in viscosity of the two organic solvents is at least 6 cPs; in one embodiment, the difference in viscosity of the two organic solvents is at least 8 cPs; in one embodiment, the difference in viscosity of the two organic solvents is at least 10 cPs.
  • the first solvent comprises from 30% to 90% by weight based on the total weight of the solvent
  • the second solvent comprises from 10% to 70% by weight based on the total weight of the solvent.
  • the second solvent comprises from 20% to 60% by weight of the total solvent; in one embodiment, the second solvent comprises from 20% to 50% by weight of the total solvent; in one embodiment, the second solvent comprises 20% to 40% of the total weight of the solvent.
  • At least one of the two organic solvents included in the composition according to the present invention is based on an aromatic or heteroaromatic solvent.
  • composition comprising at least two organic solvents, and wherein at least one of the organic solvents has the following formula:
  • Ar 1 is an aromatic or heteroaryl ring having 5 to 10 ring atoms, n ⁇ 1, and R is a substituent.
  • the organic solvent is represented by the formula (I), wherein Ar 1 is an aromatic or heteroaromatic ring having 5 to 9 ring atoms.
  • An aromatic group refers to a hydrocarbon group containing at least one aromatic ring, including a monocyclic group and a polycyclic ring system.
  • a heteroaromatic group refers to a hydrocarbon group (containing a hetero atom) comprising at least one heteroaromatic ring, including a monocyclic group and a polycyclic ring system.
  • These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, a fused ring. At least one of these heterocyclic rings is aromatic or heteroaromatic.
  • examples of the aromatic group are: benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, anthracene, benzofluorene, triphenylene, anthracene, anthracene, and derivatives thereof.
  • heteroaromatic groups are: furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, anthracene, anthracene Oxazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrol, furanfuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, pyridine, pyrazine, Pyridazine, pyrimidine, triazine, quinoline, isoquinoline, o-diazine, quinoxaline, phenanthridine, carbaidine, quinazoline, quinazolinone, and derivatives thereof.
  • the composition comprises an organic solvent having the general formula (I), and a more preferred example thereof can be further represented by the following general formula (II) to formula (VI):
  • X is CR 1 or N
  • One or more of the groups R 1 , R 2 , R 3 , R 4 , R 5 , R 6 may be bonded to each other and/or to R 1 , R 2 , R 3 , R 4 , R 5 or R 6
  • Ar 1 in formula (I) is selected from the group consisting of:
  • the aromatic or heteroaromatic solvent is selected from the group consisting of: p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene, 3- Isopropyl biphenyl, p-methyl cumene, dipentylbenzene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, 1,2,3,4-tetramethylbenzene, 1,2,3,5 -tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, 1-methyl Naphthalene, 1,2,4-trichlorobenzene, 1,3-dipropoxybenzene, 4,4-difluorodiphenylmethane, 1,2-dimethoxy-4-(
  • the composition comprises at least one of two organic solvents based on an aromatic ketone.
  • the solvent of the aromatic ketone is a tetralone such as 1-tetralone and 2-tetralone.
  • the tetralone solvent comprises a derivative of 1-tetralone and 2-tetralone, i.e., a tetralone substituted with at least one substituent.
  • substituents include an aliphatic group, an aryl group, a heteroaryl group, a halogen, and the like.
  • the solvent of the aromatic ketone is selected from the group consisting of 2-(phenyl epoxy) tetralone or 6-(methoxy) tetralone.
  • the solvent of the aromatic ketone is selected from the group consisting of acetophenone, propiophenone, benzophenone, and derivatives thereof.
  • the solvent of the aromatic ketone is selected from the group consisting of 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methylpropiophenone, 3-methylpropiophenone Or 2-methylpropiophenone.
  • the composition comprises at least one of two organic solvents which are ketone solvents that do not contain aromatic or heteroaromatic groups, such as isophorone, 2, 6, 8-trimethyl-4-indolone, camphor, and fluorenone.
  • two organic solvents which are ketone solvents that do not contain aromatic or heteroaromatic groups, such as isophorone, 2, 6, 8-trimethyl-4-indolone, camphor, and fluorenone.
  • the composition comprises at least one of two organic solvents based on an aromatic ether.
  • the aromatic ether solvent is selected from the group consisting of 3-phenoxytoluene, butoxybenzene, benzylbutylbenzene, p-anisaldehyde dimethyl acetal, tetrahydro-2-phenoxy-2H-pyran 1,2-Dimethoxy-4-(1-propenyl)benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxytoluene, 4 Ethyl ethyl ether, 1,2,4-trimethoxybenzene, 4-(1-propenyl)-1,2-dimethoxybenzene, 1,3-dimethoxybenzene, glycidylphenyl Ether, dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene, 1-methoxynaphthalene, diphenyl ether, 2-phenoxy Me
  • the aromatic ether solvent is 3-phenoxytoluene.
  • the composition comprises at least one of two organic solvents based on an ester.
  • the ester solvent is selected from the group consisting of alkyl octanoate, alkyl sebacate, alkyl stearate, alkyl benzoate, alkyl phenyl acetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkane Ester or alkyl oleate.
  • the ester solvent is octyl octanoate or diethyl sebacate.
  • a composition comprising at least one of the two organic solvents is selected from the group consisting of aliphatic ketone solvents.
  • the aliphatic ketone solvent is selected from the group consisting of 2-nonanone, 3-fluorenone, 5-fluorenone, 2-nonanone, 2,5-hexanedione, 2,6,8-trimethyl-4-anthracene. Ketone, phorone or di-n-pentyl ketone.
  • a composition comprising at least one of the two organic solvents is selected from the group consisting of aliphatic ether solvents.
  • the aliphatic ether solvent is selected from the group consisting of: pentyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethyl ether Diol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether or tetraethylene glycol dimethyl ether.
  • a composition comprising at least one of the two organic solvents is selected from the group consisting of alicyclic solvents.
  • the cycloaliphatic solvent is selected from the group consisting of tetrahydronaphthalene, cyclohexylbenzene, decalin, 2-phenoxytetrahydrofuran, 1,1'-bicyclohexane, butylcyclohexane, ethyl rosinate, benzyl rosinate , ethylene glycol carbonate, styrene oxide, isophorone, 3,3,5-trimethylcyclohexanone, cycloheptanone, anthrone, 1-tetralone, 2-tetralone, 2-(phenyl epoxy) tetralone, 6-(methoxy)tetralone, ⁇ -butyrolactone, ⁇ -valerolactone, 6-caprolactone, N,N-diethyl Cyclohexylamine, sulfolane or 2,4-dimethylsulfolane.
  • composition comprising at least one of the two organic solvents selected from the group consisting of inorganic ester solvents.
  • the inorganic ester is dissolved and selected from the group consisting of: tributyl borate, triamyl borate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris(2-ethylhexyl) phosphate, triphenyl phosphate, phosphoric acid Diethyl ester, dibutyl phosphate or di(2-ethylhexyl) phosphate.
  • the above solvent system containing at least two organic solvents can be more effectively carried out without adding an additive.
  • Dissolving the functional material can also effectively prevent the occurrence of the "coffee ring effect", thereby obtaining a film having a uniform thickness and a strong charge transporting ability, and is suitable for use in a photovoltaic device.
  • the first solvent is selected from the group consisting of toluene, xylene, chlorobenzene, dichlorobenzene, p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, p-methylcumene. , o-diethylbenzene, tetramethylbenzene, butylbenzene, trichlorobenzene, decalin, butylcyclohexane, butyrolactone, styrene oxide, cycloheptanone, triethyl phosphate or quinoline;
  • the second solvent is selected from the group consisting of: 1-tetralone, 3-phenoxytoluene, 1-methoxynaphthalene, 3-isopropylbiphenyl, benzyl benzoate, dibenzyl ether, phthalic acid Diallyl ester, isodecyl isononanoate, sulfolane or triphenyl phosphate.
  • solvent selection and its proportion is the same as the above examples, except that the second solvent is 3-phenoxytoluene;
  • solvent selection and its proportion are the same as the above examples, except that the second solvent is 1-methoxynaphthalene;
  • solvent selection and its proportion is the same as the above examples, except that the second solvent is 3-isopropylbiphenyl;
  • solvent selection and its proportion are the same as the above examples, except that the second solvent is benzene Benzyl formate;
  • solvent selection and its proportion is the same as the above examples, except that the second solvent is dibenzyl ether;
  • solvent selection and its proportion is the same as the above examples, except that the second solvent is diallyl phthalate;
  • solvent selection and its proportion is the same as the above examples, except that the second solvent is isodecyl isononanoate;
  • solvent selection and its proportion is the same as the above examples, except that the second solvent is sulfolane;
  • solvent selection and ratios are the same as in the above examples, except that the second solvent is triphenyl phosphate.
  • the first solvent is pentylbenzene and the second solvent is 1-tetralone.
  • the first solvent is cycloheptanone and the second solvent is dibenzyl ether.
  • the first solvent is trichlorobenzene and the second solvent is 3-phenoxytoluene.
  • the first solvent is p-cymene and the second solvent is 3-isopropylbiphenyl.
  • the first solvent is o-diethylbenzene and the second solvent is benzyl benzoate.
  • the first solvent is butylbenzene and the second solvent is triphenyl phosphate.
  • the solvent comprising the two organic solvents further comprises another organic solvent selected from the group consisting of methanol, ethanol, 2-methoxyethanol, dichloromethane, and three.
  • the printing ink may further comprise one or more other components, such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, adhesives, etc., for adjusting viscosity, film forming properties, and improving Adhesion, etc.
  • the printing ink can be deposited into a functional film by a variety of printing or coating techniques including, but not limited to, ink jet printing, Nozzle Printing, typography, screen printing, Dip coating, spin coating, blade coating, roll printing, torsion roll printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit type extrusion coating, and the like.
  • Preferred printing techniques are ink jet printing, jet printing and gravure printing.
  • Helmut Kipphan's Printing Media Handbook: Techniques and Production Methods” (Handbook of Print Media: Technologies and Production Methods). ), ISBN 3-540-67326-1.
  • printing inks suitable for inkjet printing require adjustment of the surface tension, viscosity, and wettability of the ink so that the ink can be ejected through the nozzle at a printing temperature (such as room temperature, 25 ° C) without being sprayed. Drying on the nozzle or clogging the nozzle, or forming a continuous, flat and defect-free film on a particular substrate.
  • a printing temperature such as room temperature, 25 ° C
  • a composition comprising at least one functional material.
  • the functional material can be a material having certain optoelectronic functions.
  • Photoelectric functions include, but are not limited to, hole injection function, hole transport function, electron transport function, electron injection function, electron blocking function, hole blocking function, light emitting function, main body function and light absorbing function.
  • the corresponding functional materials are called hole injection material (HIM), hole transport material (HTM), electron transport material (ETM), electron injecting material (EIM), electron blocking material (EBM), hole blocking material (HBM). ), Emitter, Host and Organic Dyes.
  • the viscosity can also be adjusted by adjusting the concentration of the functional material in the composition.
  • the solvent system of the present invention comprising at least two organic solvents facilitates the adjustment of the printing ink to an appropriate range in accordance with the printing method used.
  • the weight ratio of the functional material in the composition is from 0.3% to 30% by weight
  • the weight ratio of the functional material in the composition is from 0.5% to 20% by weight
  • the weight ratio of the functional material in the composition is from 0.5% to 15% by weight
  • the weight ratio of functional material in the composition is from 0.5% to 10% by weight.
  • the functional material may be an organic material or an inorganic material.
  • the functional material included in a composition is an inorganic nanomaterial.
  • the inorganic nanomaterial is an inorganic semiconductor nanoparticle material.
  • the inorganic nanomaterial has an average particle size in the range of about 1 to 1000 nm. In another embodiment, the inorganic nanomaterial has an average particle size in the range of about 1 to 100 nm. In another embodiment, the inorganic nanomaterial has an average particle size in the range of about 1 to 20 nm. In another embodiment, the inorganic nanomaterial has an average particle size in the range of about 1 to 10 nm.
  • the inorganic nanomaterial may be selected from different shapes, and may be different nanotopography such as a sphere, a cube, a rod, a disk or a branched structure, and a mixture of particles of various shapes.
  • the inorganic nanomaterial is a quantum dot material having a very narrow, monodisperse size distribution, i.e., the size difference between the particles and the particles is very small.
  • the deviation of the monodisperse quantum dots in the size of the root mean square is less than 15% rms; more preferably, the deviation of the monodisperse quantum dots in the size of the root mean square is less than 10% rms; optimally, monodisperse Quantum dots have a root mean square deviation of less than 5% rms in size.
  • the inorganic nanomaterial is a luminescent material.
  • the luminescent inorganic nanomaterial is a quantum dot luminescent material.
  • luminescent quantum dots can illuminate at wavelengths between 380 nanometers and 2500 nanometers.
  • a quantum dot having a CdS core has an emission wavelength in a range of about 400 nm to 560 nm; a quantum dot having a CdSe core has an emission wavelength in a range of about 490 nm to 620 nm; and an emission point of a quantum dot having a CdTe core is located at a wavelength of about 400 nm to 560 nm; a range of about 620 nm to 680 nm; a quantum dot having an InGaP core having an emission wavelength of about 600 nm to 700 nm; a quantum dot having a PbS core having an emission wavelength of about 800 nm to 2500 nm; having a PbSe core
  • the quantum dot has an emission wavelength in the range of about 1200 nm to 2500 nm; the quantum dot having the CuInGaS core has an
  • the quantum dot material comprises at least one blue light having a peak wavelength of 450 nm to 460 nm, or green light having a peak wavelength of 520 nm to 540 nm, or a red light having a peak wavelength of 615 nm to 630 nm. Light, or a mixture thereof.
  • the quantum dots contained may be selected from a particular chemical composition, topographical structure, and/or size to achieve light that emits the desired wavelength under electrical stimulation.
  • a particular chemical composition, topographical structure, and/or size to achieve light that emits the desired wavelength under electrical stimulation.
  • quantum dots For the relationship between the luminescent properties of quantum dots and their chemical composition, morphology and/or size, see Annual Review of Material Sci., 2000, 30, 545-610; Optical Materials Express., 2012, 2, 594-628; Nano Res, 2009. , 2, 425-447. The entire contents of the above-listed patent documents are hereby incorporated by reference.
  • the narrow particle size distribution of the quantum dots enables quantum dots to have a narrower luminescence spectrum (J. Am. Chem. Soc., 1993, 115, 8706; US 20150108405). Furthermore, depending on the chemical composition and structure employed, the size of the quantum dots needs to be adjusted accordingly within the above-described size range to achieve the luminescent properties of the desired wavelength.
  • the luminescent quantum dots are semiconductor nanocrystals.
  • the semiconductor nanocrystals have a size ranging from about 2 nanometers to about 15 nanometers. Furthermore, depending on the chemical composition and structure employed, the size of the quantum dots needs to be adjusted accordingly within the above-described size range to achieve the luminescent properties of the desired wavelength.
  • the semiconductor nanocrystal includes at least one semiconductor material, wherein the semiconductor material may be selected from group IV, II-VI, II-V, III-V, III-VI, IV-VI of the periodic table, Group I-III-VI, Group II-IV-VI, Group II-IV-V binary or multi-component semiconductor compounds or mixtures thereof.
  • the semiconductor material may be selected from the group consisting of Group IV semiconductor compounds, from elemental Si, Ge, and binary compounds SiC, SiGe.
  • the luminescent quantum dots comprise a Group II-VI semiconductor material, preferably selected from the group consisting of CdSe, CdS, CdTe, ZnO, ZnSe, ZnS, ZnTe, HgS, HgSe, HgTe, CdZnSe, and any combination thereof.
  • the synthesis of CdSe, CdS is relatively mature and this material is used as a luminescent quantum dot for visible light.
  • the luminescent quantum dots comprise a Group III-V semiconductor material, preferably selected from the group consisting of InAs, InP, InN, GaN, InSb, InAsP, InGaAs, GaAs, GaP, GaSb, AlP, AlN, AlAs, AlSb, CdSeTe, ZnCdSe and any combination thereof.
  • the luminescent quantum dots comprise a Group IV-VI semiconductor material, preferably selected from the group consisting of PbSe, PbTe, PbS, PbSnTe, Tl 2 SnTe 5, and any combination thereof.
  • the quantum dots are a core-shell structure.
  • the core and the shell may comprise one or more semiconductor materials, the same or different.
  • the core of the quantum dot may be selected from the group IV, II-VI, II-V, III-V, III-VI, IV-VI, I-III-VI of the periodic table, Group II-IV-VI, Group II-IV-V binary or multi-element semiconductor compounds.
  • quantum dot nuclei include: ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaSe, GaSb, HgO, HgS, HgSe, HgTe, InAs An alloy or mixture of InN, InSb, AlAs, AlN, AlP, AlSb, PbO, PbS, PbSe, PbTe, Ge, Si, and any combination thereof.
  • the shell of the quantum dot contains a semiconductor material that is the same as or different from the core.
  • Semiconductor materials that can be used for the shell include Group IV, II-VI, II-V, III-V, III-VI, IV-VI, I-III-VI, II-IV-VI of the Periodic Table of the Elements. Group, II-IV-V binary or multi-component semiconductor compounds.
  • quantum dot nuclei include: ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaSe, GaSb, HgO, HgS, HgSe, HgTe, InAs An alloy or mixture of InN, InSb, AlAs, AlN, AlP, AlSb, PbO, PbS, PbSe, PbTe, Ge, Si, and any combination thereof.
  • the quantum dots having a core-shell structure may include a single layer or a multilayer structure.
  • the shell includes one or more semiconductor materials that are the same or different from the core. In one embodiment, two or more shells are included on the surface of the quantum dot core. In a preferred embodiment, the shell has a thickness of from about 1 to 20 layers. In a more preferred embodiment, the shell has a thickness of about 5 to 10 layers.
  • the semiconductor material used for the shell has a larger band gap than the core.
  • the core nucleus has a type I semiconductor heterostructure.
  • the semiconductor material used for the shell has a smaller band gap than the core.
  • the semiconductor material used for the shell has an atomic crystal structure that is the same as or close to the core. Such a choice is beneficial to reduce the stress between the core shells and make the quantum dots more stable.
  • Examples of suitable luminescent quantum dots using a core-shell structure are:
  • Red light CdSe/CdS, CdSe/CdS/ZnS, CdSe/CdZnS, etc.
  • Green light CdZnSe/CdZnS, CdSe/ZnS, etc.
  • Blue light CdS/CdZnS, CdZnS/ZnS, etc.
  • the method of preparing the quantum dots is a gelatinous growth method. In one embodiment, the method of preparing monodisperse quantum dots is selected from the group consisting of hot-inject and/or heating-up.
  • the preparation method is contained in the document Nano Res, 2009, 2, 425-447; Chem. Mater., 2015, 27(7), pp 2246-2285. The entire contents of the above-listed documents are hereby incorporated by reference.
  • the surface of the quantum dot comprises an organic ligand.
  • Organic ligands can control the growth process of quantum dots, regulate the appearance of quantum dots and reduce surface defects of quantum dots to improve the luminous efficiency and stability of quantum dots.
  • the organic ligand may be selected from the group consisting of pyridine, pyrimidine, furan, amine, alkylphosphine, alkylphosphine oxide, alkylphosphonic acid or alkylphosphinic acid, alkyl mercaptan and the like.
  • organic ligands include, but are not limited to, tri-n-octylphosphine, tri-n-octylphosphine oxide, trihydroxypropylphosphine, tributylphosphine, tris(dodecyl)phosphine, dibutyl phosphite , tributyl phosphite, octadecyl phosphite, trilauryl phosphite, tris(dodecyl) phosphite, triisodecyl phosphite, bis(2-ethylhexyl) phosphate, Tris(tridecyl)phosphate, hexadecylamine, oleylamine, octadecylamine, bisoctadecylamine, octadecylamine, bis(2-ethylhexyl)amine, oleyl
  • the surface of the quantum dot comprises an inorganic ligand.
  • Quantum dots protected by inorganic ligands can be obtained by ligand exchange of organic ligands on the surface of quantum dots. Examples of specific inorganic ligands include, but are not limited to, S 2- , HS - , Se 2- , HSe - , Te 2- , HTe - , TeS 3 2- , OH - , NH 2 - , PO 4 3- , MoO 4 2- , and so on. Examples of such inorganic ligand quantum dots can be found in documents: J. Am. Chem. Soc. 2011, 133, 10612-10620; ACS Nano, 2014, 9, 9388-9402. The entire contents of the above-listed documents are hereby incorporated by reference.
  • the quantum dot surface has one or more of the same or different ligands.
  • the luminescence spectrum exhibited by the monodisperse quantum dots has a symmetrical peak shape and a narrow half width.
  • the better the monodispersity of quantum dots the more symmetric the luminescence peaks are and the narrower the half-width.
  • the quantum dot has a half-width of light emission of less than 70 nanometers; more preferably, the quantum half-width of the quantum dot is less than 40 nanometers; most preferably, the quantum half-width of the quantum dot is smaller than 30 nanometers.
  • the quantum dots have a luminescence quantum efficiency of greater than 10%, preferably greater than 50%, more preferably greater than 60%, and most preferably greater than 70%.
  • the luminescent semiconductor nanocrystals are nanorods.
  • the properties of nanorods are different from those of spherical nanocrystals.
  • the luminescence of the nanorods is polarized along the long rod axis, while the luminescence of the spherical grains is unpolarized (see Woggon et al, Nano Lett., 2003, 3, p509).
  • Nanorods have excellent optical gain characteristics, making them possible to use as laser gain materials (see Banin et al. Adv. Mater. 2002, 14, p317).
  • the luminescence of the nanorods can be reversibly turned on and off under the control of an external electric field (see Banin et al, Nano Lett.
  • nanorods can be preferentially incorporated into the device of the present invention under certain circumstances.
  • preparation of the semiconductor nanorods are, for example, WO03097904A1, US2008188063A1, US2009053522A1, and KR20050121443A, the entire contents of each of which are hereby incorporated by reference.
  • the inorganic nanomaterial is a perovskite nanoparticle material, in particular a luminescent perovskite nanoparticle material.
  • the perovskite nanoparticle material has the structural formula of AMX 3 wherein A may be selected from an organic amine or an alkali metal cation, M may be selected from a metal cation, and X may be selected from an oxygen or a halogen anion.
  • CsPbCl 3 CsPb(Cl/Br) 3 , CsPbBr 3 , CsPb(I/Br) 3 , CsPbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 Pb (Cl/Br 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 Pb(I/Br) 3 , CH 3 NH 3 PbI 3 and the like.
  • Literature on perovskite nanoparticle materials is NanoLett., 2015, 15, 3692-3696; ACS Nano, 2015, 9, 4533-4542; Angewandte Chemie, 2015, 127(19): 5785-5788; NanoLett., 2015 , 15(4), pp 2640–2644; Adv. Optical Mater. 2014, 2, 670–678; The Journal of Physical Chemistry Letters, 2015, 6(3): 446-450; J. Mater. Chem. A, 2015, 3,9187-9193; Inorg.Chem.2015, 54, 740–745; RSC Adv., 2014, 4, 55908-55911; J. Am. Chem.
  • the inorganic nanomaterial is a metal nanoparticle material.
  • the metal nanoparticles include, but are not limited to, chromium (Cr), molybdenum (Mo), tungsten (W), ruthenium (Ru), rhenium (Rh), nickel (Ni), silver (Ag), copper (Cu Nanoparticles of zinc (Zn), palladium (Pd), gold (Au), hungry (Os), ruthenium (Re), iridium (Ir), and platinum (Pt).
  • Cr chromium
  • Mo molybdenum
  • Mo tungsten
  • Ru ruthenium
  • Rh nickel
  • silver Ag
  • copper Copper
  • palladium (Pd) palladium
  • Au gold
  • Au gold
  • Ir iridium
  • platinum platinum
  • the inorganic nanomaterial has charge transport properties.
  • the inorganic nanomaterial has electron transport capabilities.
  • such inorganic nanomaterials are selected from the group consisting of n-type semiconductor materials.
  • n-type inorganic semiconductor materials include, but are not limited to, metal chalcogen compounds, metal phosphorus group compounds, or elemental semiconductors such as metal oxides, metal sulfides, metal selenides, metal tellurides, metal nitrides, Metal phosphide, or metal arsenide.
  • the preferred n-type inorganic semiconductor material is selected from the group consisting of ZnO, ZnS, ZnSe, TiO 2 , ZnTe, GaN, GaP, AlN, CdSe, CdS, CdTe, CdZnSe, and any combination thereof.
  • the inorganic nanomaterial has a hole transporting ability.
  • such inorganic nanomaterials are selected from p-type semiconductor materials.
  • the inorganic p-type semiconductor material may be selected from the group consisting of NiOx, WOx, MoOx, RuOx, VOx, CuOx, and any combination thereof.
  • a printing ink comprising the above composition.
  • a printing ink comprises at least two and two or more inorganic nanomaterials.
  • a composition comprises at least one organic functional material.
  • the organic functional materials include: hole (also called hole) injection or transport material (HIM/HTM), hole blocking material (HBM), electron injection or transport material (EIM/ETM), electron blocking material (EBM) ), organic host material (Host), singlet illuminant (fluorescent illuminant), thermally activated delayed fluorescent luminescent material (TADF), triplet illuminant (phosphorescent illuminant), especially luminescent organic metal complex, organic dye.
  • HIM/HTM hole injection or transport material
  • HBM hole blocking material
  • EIM/ETM electron injection or transport material
  • EBM electron blocking material
  • organic host material Host
  • singlet illuminant fluorescent illuminant
  • TADF thermally activated delayed fluorescent luminescent material
  • triplet illuminant phosphorescent illuminant
  • Various organic functional materials are described in detail in, for example, WO2010135519A1, US20090134784A1, and WO2011110277A1,
  • the solubility of the organic functional material in the above solvent is at least 0.2 wt%
  • the solubility of the organic functional material in the above solvent is at least 0.3 wt%
  • the solubility of the organic functional material in the above solvent is at least 0.6 wt%
  • the organic functional material has a solubility in the above solvent of at least 1.0 wt%;
  • the organic functional material has a solubility in the above solvent of at least 1.5% by weight.
  • the organic functional material may be a small molecule and a high polymer material.
  • the small molecule organic material means a material having a molecular weight of at most 4000 g/mol, and the material having a molecular weight higher than 4000 g/mol is collectively referred to as a high polymer.
  • a composition comprising a functional material is an organic small molecule material.
  • the organic functional material in a composition comprises at least one host material and at least one illuminant.
  • the organic functional material in a composition comprises a host material and a singlet emitter.
  • the organic functional material in a composition comprises a host material and a triplet emitter.
  • the organic functional material in a composition comprises a host material and a thermally activated delayed fluorescent luminescent material.
  • the organic functional material in a composition comprises a hole transport material (HTM).
  • HTM hole transport material
  • the organic functional material in a composition comprises a hole transporting material (HTM), the HTM comprising a crosslinkable group.
  • HTM hole transporting material
  • Suitable organic HIM/HTM materials may optionally comprise compounds having the following structural units: phthalocyanine, porphyrin, amine, aromatic amine, biphenyl triarylamine, thiophene, thiophene such as dithienothiophene and thiophene, pyrrole, aniline , carbazole, azide and azepine and their derivatives.
  • suitable HIMs also include fluorocarbon-containing polymers, conductively doped polymers, conductive polymers such as PEDOT:PSS.
  • An electron blocking layer is used to block electrons from adjacent functional layers, particularly the luminescent layer. In contrast to a light-emitting device without a barrier layer, the presence of an EBL typically results in an increase in luminous efficiency.
  • the electron blocking material (EBM) of the electron blocking layer (EBL) requires a higher LUMO than an adjacent functional layer such as a light emitting layer.
  • the EBM has a larger excited state level than the adjacent luminescent layer, such as a singlet or triplet, depending on the illuminant; at the same time, the EBM has a hole transport function.
  • HIM/HTM materials that typically have high LUMO levels can be used as EBMs.
  • cyclic aromatic amine-derived compounds useful as HIM, HTM or EBM include, but are not limited to, the following general structure:
  • Each of Ar 1 to Ar 9 may be independently selected from the group consisting of a cyclic aromatic hydrocarbon compound such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalrene, phenanthrene, anthracene, anthracene, fluorene, anthracene, anthracene; Heterocyclic compounds such as dibenzothiophene, dibenzofuran, furan, thiophene, benzofuran, benzothiophene, oxazole, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, evil Triazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, acesulfazine, oxadiazine, hydrazine
  • Ar 1 to Ar 9 may be independently selected from the group consisting of:
  • n is an integer from 1 to 20; X 1 to X 8 are CH or N; and Ar 1 is as defined above.
  • metal complexes that can be used as HTM or HIM include, but are not limited to, the following general structures:
  • M is a metal having an atomic weight greater than 40
  • (Y 1 -Y 2 ) is a two-dentate ligand, Y 1 and Y 2 are independently selected from C, N, O, P and S; L is an ancillary ligand; m is an integer from 1 to The maximum coordination number of this metal; m+n is the maximum coordination number of this metal.
  • (Y 1 -Y 2 ) is a 2-phenylpyridine derivative.
  • (Y 1 -Y 2 ) is a carbene ligand.
  • M is selected from Ir, Pt, Os, and Zn.
  • the HOMO of the metal complex is greater than -5.5 eV (relative to the vacuum level).
  • any compound selected from the group consisting of HIM/HTM compounds is selected from the group consisting of HIM/HTM compounds:
  • the example of the triplet host material is not particularly limited, and any metal complex or organic compound may be used as a host as long as its triplet energy is higher than that of the illuminant (especially a triplet illuminant or a phosphorescent illuminant).
  • metal complexes that can be used as the triplet host include, but are not limited to, the following general structure:
  • M is a metal
  • (Y 3 -Y 4) is a two teeth ligand, Y 3 and Y 4 are independently selected from C, N, O, P, and S
  • L is an ancillary ligand
  • m is an integer , the value from 1 to the maximum coordination number of this metal
  • m + n is the maximum coordination number of this metal.
  • the metal complex that can be used as the triplet host has the following form:
  • (O-N) is a two-tooth ligand in which the metal is coordinated to the O and N atoms.
  • M can be selected from Ir or Pt.
  • Examples of the organic compound which can be used as the host of the triplet state are selected from compounds containing a cyclic aromatic hydrocarbon group such as benzene, biphenyl, triphenyl, benzo, anthracene; compounds containing an aromatic heterocyclic group such as dibenzothiophene, Dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, carbazole, pyridinium, pyrrole dipyridine, pyrazole, imidazole, three Azole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, thiazide, dioxazin, hydrazine Anthracen
  • the triplet host material can be selected from compounds comprising at least one of the following groups:
  • R 1 to R 7 may be independently selected from each other: hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl or heteroaryl.
  • R 1 -R 7 are aryl or heteroaryl, they have the same meaning as Ar 1 and Ar 2 described above; n is an integer from 0 to 20; X 1 -X 8 is selected from CH or N; X 9 Selected from CR 1 R 2 or NR 1 .
  • the triplet host material is selected from the group consisting of:
  • the example of the singlet host material is not particularly limited, and any organic compound may be used as a host as long as its singlet energy is higher than that of the illuminant (especially a singlet illuminant or a fluorescent illuminant).
  • Examples of the organic compound used as the singlet host material may be selected from the group consisting of a cyclic aromatic compound such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, anthracene, phenanthrene, anthracene, anthracene, fluorene, fluorene, fluorene, An aromatic heterocyclic compound such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, oxazole, carbazole, pyridine Anthraquinone, pyrrole dipyridine, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, triazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrim
  • the singlet host material can be selected from compounds comprising at least one of the following groups:
  • R 1 may be independently selected from each other: hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl or heteroaryl; Ar 1 is aryl or heteroaryl it is the same meaning Ar 1 as defined above in HTM; n is an integer from 0 to 20; X 1 -X 8 is selected from CH or N; X 9 and X 10 is selected from CR 1 R 2 or NR 1.
  • the fluorenyl singlet host material is selected from the group consisting of:
  • Singlet emitters tend to have longer conjugated pi-electron systems.
  • styrylamine and its derivatives disclosed in JP 2913116 B and WO 2001021729 A1
  • indenoindenes and derivatives thereof disclosed in WO 2008/006449 and WO 2007/140847.
  • the singlet emitter can be selected from the group consisting of monostyrylamine, dibasic styrylamine, ternary styrylamine, quaternary styrylamine, styrene phosphine, styrene ether or arylamine.
  • a monostyrylamine refers to a compound comprising an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • a binary styrylamine refers to a compound comprising two unsubstituted or substituted styryl groups and to One less amine, preferably an aromatic amine.
  • a ternary styrylamine refers to a compound comprising three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound comprising four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a preferred styrene is stilbene, which may be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • An arylamine or an aromatic amine refers to a compound comprising three unsubstituted or substituted aromatic ring or heterocyclic systems directly attached to the nitrogen.
  • at least one of these aromatic or heterocyclic ring systems has a fused ring system, and preferably the fused ring system has at least 14 aromatic ring atoms.
  • Preferred examples thereof are aromatic decylamine, aromatic quinone diamine, aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine.
  • An aromatic amide refers to a compound in which a diaryl arylamine group is attached directly to the oxime, preferably at the position of 9.
  • An aromatic quinone diamine refers to a compound in which two diaryl arylamine groups are attached directly to the oxime, preferably at the 9,10 position.
  • the aromatic decylamine, the aromatic guanidine diamine, the aromatic thiamine and the aromatic thiamine are similarly defined, wherein the diarylamine group is preferably attached to the 1 or 1,6 position of the oxime.
  • Further preferred singlet emitters can be selected from indenoindole-amines and indenofluorene-diamines, as disclosed in WO 2006/122630, benzoindoloindole-amines and benzoindenoindole-diamines , as disclosed in WO 2008/006449, dibenzoindolo-amine and dibenzoindeno-diamine, as disclosed in WO 2007/140847.
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: ruthenium (e.g. 9,10-bis(2-naphthoquinone)), naphthalene, tetraphenylene, xanthene , phenanthrene, anthracene (such as 2,5,8,11-tetra-t-butylhydrazine), anthracene, phenylene (such as 4,4'-bis(9-ethyl-3-carbazolevinyl) -1,1'-biphenyl), indenylindole, decacycloolefin, hexacenebenzene, anthracene, spirobifluorene, aryl hydrazine (eg US20060222886), arylene vinyl (eg US5121029, US5130603), ring Pentadiene such as tetraphenylcyclopentadiene
  • the singlet emitter is selected from the group consisting of:
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ E st ), and triplet excitons can be converted into singlet exciton luminescence by inter-system crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the TADF material needs to have a small singlet-triplet energy level difference ( ⁇ E st ).
  • ⁇ E st a small singlet-triplet energy level difference
  • the ⁇ E st ⁇ 0.3 eV; in one embodiment, ⁇ E st ⁇ 0.2 eV; in one embodiment, ⁇ E st ⁇ 0.1 eV; in one embodiment, ⁇ E st ⁇ 0.05 eV.
  • TADF has better fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154064( A1), Adachi, et.al. Adv. Mater., 21, 2009, 4802, Adachi, et. al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett ., 101, 2012, 093306, Adachi, et. al. Chem.
  • the TADF luminescent material is selected from the group consisting of:
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L) n , wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are attached to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element or a lanthanide or a lanthanide.
  • Preferred is Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy, Re, Cu or Ag, with Os, Ir, Ru, Rh, Re, Pd or Pt being particularly preferred.
  • the triplet emitter comprises a chelating ligand, ie the ligand is coordinated to the metal by at least two bonding sites
  • the triplet emitter comprises two or three identical or different bidentate or multidentate ligands.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • the organic ligand is selected from the group consisting of: a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, and a 2(1-naphthyl)pyridine derivative. , or 2 phenylquinoline derivatives. All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from the group consisting of transition metal elements or lanthanides or actinides;
  • Ar 1 may be the same or different at each occurrence, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through the donor atom, a cyclic group and Metal coordination; each occurrence of Ar 2 may be the same or different, is a cyclic group containing at least one C atom through which a cyclic group is attached to the metal; Ar 1 and Ar 2 are covalently The linkages are linked together and each may carry one or more substituent groups which may also be joined together by a substituent group; each occurrence of L may be the same or different and is an ancillary ligand, preferably a double-chirp chelate The ligand, preferably a monoanionic bidentate chelate ligand; m is 1, 2 or 3, preferably 2 or 3, particularly preferably 3; n is 0, 1, or 2, preferably 0 Or 1, with a special priority of 0;
  • the triplet emitter is selected from the group consisting of:
  • the functional material comprised by the composition is a polymeric material.
  • organic small molecule functional materials described above including HIM, HTM, ETM, EIM, Host, fluorescent illuminants, phosphorescent emitters, and TADF can all be included as repeating units in the high polymer.
  • the high polymer suitable for the present invention is a conjugated high polymer.
  • conjugated polymers have the following general formula:
  • A can independently select the same or different structural units when appearing multiple times
  • B ⁇ -conjugated structural unit having a large energy gap, also called a Backbone Unit, selected from a monocyclic or polycyclic aryl or heteroaryl group, and the preferred unit form is benzene, bis. Biphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, 9,10-dihydrophenanthrene, anthracene, diterpene, spirobifluorene, p-phenylacetylene, ruthenium, fluorene, dibenzo-indole And hydrazine, hydrazine and their derivatives.
  • a Backbone Unit selected from a monocyclic or polycyclic aryl or heteroaryl group, and the preferred unit form is benzene, bis. Biphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, 9,10-dihydrophenanthrene, anthrac
  • a ⁇ -conjugated structural unit having a small energy gap may be selected from hole injection or transport materials (HIM/HTM) containing the above-described functions according to different functional requirements. , electron injection or transport material (EIM/ETM), host material (Host), singlet illuminant (fluorescent illuminant), structural unit of heavy illuminant (phosphorescent illuminant).
  • HIM/HTM hole injection or transport materials
  • EIM/ETM electron injection or transport material
  • host material Host
  • singlet illuminant fluorescent illuminant
  • structural unit of heavy illuminant phosphorescent illuminant
  • the functional material included in the composition is a high polymer HTM.
  • the high polymer HTM material is a homopolymer, preferably: polythiophene, polypyrrole, polyaniline, polybiphenyl triarylamine, polyvinylcarbazole, and derivatives thereof.
  • the high polymer HTM material is a conjugated copolymer represented by Chemical Formula 1, wherein
  • B ⁇ -conjugated structural unit having a large energy gap, also called a Backbone Unit, selected from a monocyclic or polycyclic aryl or heteroaryl group, and the preferred unit form is benzene, bis. Biphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, 9,10-dihydrophenanthrene, anthracene, diterpene, spirobifluorene, p-phenylacetylene, ruthenium, fluorene, dibenzo-indole And hydrazine, hydrazine and their derivatives.
  • a Backbone Unit selected from a monocyclic or polycyclic aryl or heteroaryl group, and the preferred unit form is benzene, bis. Biphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, 9,10-dihydrophenanthrene, anthrac
  • A a functional group having a hole transporting ability, which may be the same or differently selected from the structural unit containing the hole injection or transport material (HIM/HTM) described above; in a preferred embodiment, A Selected from amines, biphenyl triarylamines, thiophenes, And thiophenes such as dithienothiophene and thiophene, pyrrole, aniline, carbazole, indenocarbazole, azepine and pentacene, phthalocyanine, porphyrin and derivatives thereof.
  • HIM/HTM hole injection or transport material
  • the conjugated high polymer as HTM may be selected from the following compounds:
  • R is each independently selected from the group consisting of hydrogen, a linear alkyl group having 1 to 20 C atoms, an alkoxy group or a thioalkoxy group, or a branched or cyclic group having 3 to 20 C atoms.
  • r 0, 1, 2, 3 or 4;
  • s 0, 1, 2, 3, 4 or 5;
  • Another preferred class of organic functional materials are polymers having electron transport capabilities, including conjugated high polymers and non-conjugated high polymers.
  • the preferred high polymer ETM material is a homopolymer which is preferably selected from the group consisting of polyphenanthrene, polyphenanthroline, polyfluorene, polyspiroquinone, polyfluorene and its derivatives.
  • the preferred high polymer ETM material is a conjugated copolymer represented by Chemical Formula 1, wherein A may independently select the same or different forms in multiple occurrences:
  • B ⁇ -conjugated structural unit having a large energy gap, also called a Backbone Unit, selected from a monocyclic or polycyclic aryl or heteroaryl group, and the preferred unit form is benzene, bis. Biphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, 9,10-dihydrophenanthrene, anthracene, diterpene, spirobifluorene, p-phenylacetylene, ruthenium, fluorene, dibenzo-indole And hydrazine, hydrazine and their derivatives.
  • a Backbone Unit selected from a monocyclic or polycyclic aryl or heteroaryl group, and the preferred unit form is benzene, bis. Biphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, 9,10-dihydrophenanthrene, anthrac
  • A a functional group having electron transporting ability, preferably selected from the group consisting of tris(8-hydroxyquinoline)aluminum (AlQ3), benzene, diphenylene, naphthalene, anthracene, phenanthrene, Dihydrophenanthrene, anthracene, diterpene, snail , p-phenylacetylene, anthracene, anthracene, 9,10-Dihydrophenanthrene, phenazine, phenanthroline, ruthenium, fluorene, dibenzo-indenoindole, indenylnaphthalene, benzindene and its derivatives .
  • AlQ3 tris(8-hydroxyquinoline)aluminum
  • the functional material comprised by the composition according to the invention is a luminescent polymer.
  • the luminescent polymer is a conjugated polymer having the general formula:
  • a functional group having a hole or electron transporting ability which may be selected from structural units containing the above-described hole injecting or transporting material (HIM/HTM), or electron injecting or transporting material (EIM/ETM).
  • A2 a group having a light-emitting function, which may be selected from structural units including the above-described singlet light emitter (fluorescent light emitter) and heavy light emitter (phosphorescent light emitter).
  • luminescent polymers are disclosed in the following patent applications: WO2007043495, WO2006118345, WO2006114364, WO2006062226, WO2006052457, WO2005104264, WO2005056633, WO2005033174, WO2004113412, WO2004041901, WO2003099901, WO2003051092, WO2003020790, WO2003020790, US2020040076853, US2020040002576, US2007208567, US2005962631, EP 201345477, EP 2001 344 788, DE 10 2004 020 298, the entire disclosure of which is incorporated herein by reference.
  • the high polymer suitable for the present invention is a non-conjugated high polymer.
  • This can be that all functional groups are on the side chain and the backbone is a non-conjugated high polymer.
  • Some of these non-conjugated high polymers useful as phosphorescent or phosphorescent materials are disclosed in U.S. Patent Nos. 7,250,226, issued toJ.S. Pat. It is disclosed in patent applications such as JP2005108556, JP2005285661 and JP2003338375.
  • the non-conjugated high polymer may be a high polymer, and the functional units conjugated to the main chain are linked by non-conjugated linking units. Examples of such high polymers are in DE102009023154.4 and DE102009023156.0. There is publicity in it. The entire contents of the above patent documents are hereby incorporated by reference.
  • the present invention also relates to a method of forming a composition of the above-described composition on a thin film of a functional material on the electronic device, comprising the steps of:
  • the composition is applied to the electronic device using a method of printing or coating; the solvent in the composition is evaporated.
  • the present invention relates to a method of preparing a film comprising a functional material by a method of printing or coating.
  • the printing or coating method in which any of the compositions as described above is applied to a substrate by printing or coating may be selected from the group consisting of: inkjet printing, Nozzle Printing, typography, silk. Screen printing, dip coating, spin coating, blade coating, roller printing, reverse roll printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit type extrusion coating, and the like.
  • the film comprising the functional material is prepared by a method of ink jet printing.
  • Inkjet printers that can be used to print inks in accordance with the present invention are commercially available printers and include drop-on-demand printheads. These printers are available from Fujifilm Dimatix (Lebanon, NH), Trident International (Brookfield, Conn.), Epson (Torrance, Calif), Hitachi Data systems Corporation (Santa Clara, Calif), Xaar PLC (Cambridge, United Kingdom), and Idanit. Technologies, Limited (Rishon Le Zion, Isreal) purchased.
  • the present invention can be printed using Dimatix Materials Printer DMP-3000 (Fujifilm).
  • the invention further relates to an electronic device comprising a thin film of functional material formed using the composition described above.
  • the electronic device may comprise one or more layers of a functional material film, wherein at least one of the functional films is prepared using the composition of the present invention, particularly by printing or coating.
  • Suitable electronic devices include: quantum dot light-emitting diodes (QLEDs), quantum dot photovoltaic cells (QPV), quantum dot light-emitting cells (QLEEC), quantum dot field effect transistors (QFETs), quantum dot luminescence field effect transistors, quantum dot lasers, Quantum dot sensors, organic light emitting diodes (OLEDs), organic photovoltaic cells (OPVs), organic light emitting cells (OLEEC), organic field effect transistors (OFETs), organic light-emitting field effect transistors, organic lasers, organic sensors, and the like.
  • QLEDs quantum dot light-emitting diodes
  • QPV quantum dot photovoltaic cells
  • QLEEC quantum dot light-emitting cells
  • QFETs quantum dot field effect transistors
  • quantum dot luminescence field effect transistors quantum dot lasers
  • Quantum dot sensors organic light emitting diodes (OLEDs), organic photovoltaic cells (OPVs),
  • FIG. 1 is a schematic diagram of an electronic device of an embodiment.
  • the electronic device is an electroluminescent device or a photovoltaic cell, as shown in FIG. 1, comprising a substrate 101, an anode 102, at least one emissive layer or light absorbing layer 104, and a cathode 106.
  • the following is only for the description of the electroluminescent device.
  • the substrate 101 can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate may be selected from polymeric films or plastics having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, and most preferably more than 300 ° C. Examples of suitable substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode 102 can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into the HIL or HTL or the luminescent layer.
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the p-type semiconductor material as the HIL or HTL is less than 0.5 eV, preferably less than 0.3 eV, and preferably less than 0.2eV.
  • the anode material include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • a suitable physical vapor deposition process including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned.
  • Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • Cathode 106 can include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the absolute value of the difference between the work function of the cathode and the LUMO level or the conduction band level of the n-type semiconductor material as EIL or ETL or HBL is less than 0.5 eV, preferably less than 0.3 eV, preferably It is less than 0.2eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include: Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the light-emitting layer 104 includes at least one light-emitting functional material, and the thickness thereof may be between 2 nm and 200 nm.
  • the light-emitting layer is prepared by printing the printing ink of the present invention, wherein the printing ink contains at least one of the above-mentioned light-emitting functional materials, particularly quantum dots. Or organic functional materials.
  • a light emitting device further comprises a hole injection layer (HIL) or hole transport layer (HTL) 103 comprising an organic HTM or inorganic p-type material as described above.
  • HIL hole injection layer
  • HTL hole transport layer
  • the HIL or HTL can be prepared by printing the printing ink of the present invention, wherein the printing ink contains a functional material having a hole transporting ability, particularly a quantum dot or an organic HTM material.
  • a light emitting device further comprises an electron injection layer (EIL) or electron transport layer (ETL) 105 comprising an organic ETM or inorganic n-type material as described above.
  • EIL electron injection layer
  • ETL electron transport layer
  • the EIL or ETL can be prepared by printing a printing ink of the present invention, wherein the printing ink contains functional materials having electron transport capabilities, particularly quantum dots or organic ETM materials.
  • the invention further relates to the use of a light emitting device according to the invention in various applications, including, but not limited to, various display devices, backlights, illumination sources, and the like.
  • n-hexane was added to the three-necked flask, and then the liquid in the three-necked flask was transferred to a plurality of 10 mL centrifuge tubes, centrifuged to remove the lower layer precipitate, and repeated three times; acetone was added to the liquid after the post-treatment 1 to precipitate Centrifuge, remove the supernatant, leave a precipitate; then dissolve the precipitate with n-hexane, add acetone to precipitate, centrifuge, remove the supernatant, leave a precipitate, repeat three times; finally dissolve the precipitate with toluene, transfer to glass Stored in the bottle.
  • Solvents of pentylbenzene (5.7 g) and 1-tetralone (3.8 g) were weighed separately (weight ratio 60:40). Put the stirrer in the vial, clean it and transfer it to the glove box. The quantum dots were precipitated from the solution with acetone and centrifuged to obtain a quantum dot solid. Weigh 0.5g of quantum dot solids in a glove box, add to the pentanyl solvent in the vial, stir at 60 ° C until the quantum dots are completely dispersed, continue to add 1-tetralone solvent to obtain a mixed solution and continue Stir until the quantum dots are completely dispersed and cool to room temperature. The obtained quantum dot solution was filtered through a 0.2 ⁇ m PTFE filter. Seal and store.
  • the cycloheptanone (5.7 g) and dibenzyl ether (3.8 g) solvents were weighed separately (weight ratio 60:40). Put the stirrer in the vial, clean it and transfer it to the glove box. Weigh 0.5g of ZnO nanoparticle solids in a glove box, add to the cycloheptanone solvent in the vial, stir at 60 ° C until the ZnO nanoparticles are completely dispersed, continue to add the dibenzyl ether solvent to obtain a mixed solution and continue Stir until the ZnO nanoparticles are completely dispersed and cooled to room temperature. The obtained ZnO nanoparticle solution was filtered through a 0.2 ⁇ m PTFE filter. Seal and store.
  • organic functional materials referred to in the following examples are all commercially available, such as Jilin Olite (Jilin OLED Material Tech Co., Ltd., www.jl-oled.com), or synthesized according to methods reported in the literature.
  • Example 7 Preparation of organic light-emitting layer material printing ink containing trichlorobenzene and 3-phenoxytoluene
  • the luminescent layer organic functional material comprises a phosphorescent host material and a phosphorescent illuminant material.
  • the phosphorescent host material is selected from the group consisting of carbazole derivatives as follows:
  • the phosphorescent emitter material is selected from the group consisting of ruthenium complexes as follows:
  • Trichlorobenzene (5.88 g) and 3-phenoxytoluene (3.92 g) solvent were weighed separately (weight ratio 60:40). Put the stirrer in the vial, clean it and transfer it to the glove box. 0.18 g of the phosphorescent host material and 0.02 g of the phosphorescent emitter material were weighed into a glove box, added to a trichlorobenzene solvent in a vial, and stirred and mixed. After stirring at a temperature of 60 ° C until the organic functional material was completely dissolved, the solvent of 3-phenoxytoluene was continuously added to obtain a mixed solution and stirring was continued until the organic material was completely dissolved, and cooled to room temperature. The obtained organic functional material solution was filtered through a 0.2 ⁇ m PTFE filter. Seal and store.
  • Example 8 Preparation of organic light-emitting layer material printing ink containing p-cymenebenzene and 3-isopropylbiphenyl
  • the luminescent layer organic functional material comprises a fluorescent host material and a fluorescent illuminant material.
  • the fluorescent host material is selected from the group consisting of the following spiro derivatives:
  • the fluorescent emitter material is selected from the group consisting of:
  • the solvent of p-cymene (5.88 g) and 3-isopropylbiphenyl (3.92 g) was weighed separately (weight ratio 60:40). Put the stirrer in the vial, clean it and transfer it to the glove box. 0.19 g of the fluorescent host material and 0.01 g of the phosphor material were weighed in a glove box, and added to a p-methylisopropylbenzene solvent in a vial, and stirred and mixed. After stirring at a temperature of 60 ° C until the organic functional material was completely dissolved, the 3-isopropylbiphenyl solvent was continuously added to obtain a mixed solution and stirring was continued until the organic material was completely dissolved, and cooled to room temperature. The obtained organic functional material solution was filtered through a 0.2 ⁇ m PTFE filter. Seal and store.
  • Example 9 Preparation of organic light-emitting layer material printing ink containing o-diethylbenzene and benzyl benzoate
  • the luminescent layer organic functional material comprises a host material and a TADF material.
  • the host material is selected from the group consisting of the following structures:
  • the TADF material is selected from the group consisting of the following structures:
  • Solvents of o-diethylbenzene (5.88 g) and benzyl benzoate (3.92 g) were weighed separately (weight ratio 60:40). Put the stirrer in the vial, clean it and transfer it to the glove box. 0.18 g of the host material and 0.02 g of the TADF material were weighed in a glove box, added to the o-diethylbenzene solvent in the vial, and stirred and mixed. After stirring at a temperature of 60 ° C until the organic functional material is completely dissolved, the solvent of benzyl benzoate is continuously added to obtain a mixed solution and stirring is continued until the organic material is completely dissolved and cooled to room temperature. The obtained organic functional material solution was filtered through a 0.2 ⁇ m PTFE filter. Seal and store.
  • the printing ink comprises a hole transport layer material having a hole transporting ability.
  • the hole transporting material is selected from the following triarylamine derivatives:
  • Solvents of o-butylbenzene (5.88 g) and triphenyl phosphate (3.92 g) were weighed separately (weight ratio 60:40). Put the stirrer in the vial, clean it and transfer it to the glove box. 0.2 g of the hole transporting material was weighed in a glove box, added to the styrene-butadiene solvent in the vial, and stirred and mixed. After stirring at a temperature of 60 ° C until the organic functional material was completely dissolved, the solvent of triphenyl phosphate was continuously added to obtain a mixed solution and stirring was continued until the organic material was completely dissolved, and cooled to room temperature. The obtained organic functional material solution was filtered through a 0.2 ⁇ m PTFE filter. Seal and store.
  • the viscosity of the functional material ink was tested by a DV-I Prime Brookfield rheometer; the surface tension of the functional material ink was tested by a SITA bubble pressure tomometer.
  • the functional material ink obtained in Example 5 had a viscosity of 5.1 ⁇ 0.3 cPs and a surface tension of 33.1 ⁇ 0.2 dyne/cm.
  • the functional material ink obtained in Example 6 had a viscosity of 5.4 ⁇ 0.3 cPs and a surface tension of 33.5 ⁇ 0.1 dyne/cm.
  • the functional material ink obtained in Example 7 had a viscosity of 4.5 ⁇ 0.3 cPs and a surface tension of 32.6 ⁇ 0.1 dyne/cm.
  • the functional material ink obtained in Example 8 had a viscosity of 6.1 ⁇ 0.5 cPs and a surface tension of 29.7 ⁇ 0.5 dyne/cm.
  • the functional material ink obtained in Example 9 had a viscosity of 6.3 ⁇ 0.5 cPs and a surface tension of 33.5 ⁇ 0.5 dyne/cm.
  • the functional material ink obtained in Example 10 had a viscosity of 6.6 ⁇ 0.5 cPs and a surface tension of 32.2 ⁇ 0.5 dyne/cm.
  • the inkjet printing side For example, functional layers in the light emitting diode, such as the light emitting layer and the charge transport layer, can be prepared, and the specific steps are as follows.
  • the ink containing the functional material is loaded into an ink tank which is assembled to an ink jet printer such as Dimatix Materials Printer DMP-3000 (Fujifilm).
  • the waveform, pulse time and voltage of the jetted ink are adjusted to optimize ink jetting and to stabilize the ink jet range.
  • OLED/QLED organic light-emitting diode/quantum dot light-emitting diode
  • the substrate of the OLED/QLED is 0.7 mm sputtered with an indium tin oxide (ITO) electrode pattern. Thick glass.
  • the pixels are patterned on the ITO to form a layer of holes for depositing printing ink.
  • the HIL/HTL material is then inkjet printed into the well and the solvent is removed by drying at elevated temperature in a vacuum to obtain a HIL/HTL film.
  • the printing ink containing the luminescent functional material is ink-jet printed onto the HIL/HTL film, and the solvent is removed by drying at a high temperature in a vacuum atmosphere to obtain a luminescent layer film.
  • a printing ink containing a functional material having electron transporting properties is ink-jet printed onto the luminescent layer film, and the solvent is removed by drying at a high temperature in a vacuum atmosphere to form an electron transport layer (ETL).
  • ETL electron transport layer
  • ETL electron transport layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种组合物,该组合物用于在印刷电子器件中形成功能材料薄膜,该组合物包含功能材料和溶剂,溶剂可从组合物中蒸发以形成功能材料薄膜;溶剂至少由两种有机溶剂混合而成,两种有机溶剂为第一溶剂和第二溶剂,第一溶剂和第二溶剂互溶,第一溶剂和第二溶剂中至少一种有机溶剂的沸点≥160℃,第二溶剂的沸点大于第一溶剂,且第二溶剂的粘度大于第一溶剂,第二溶剂和第一溶剂的粘度差至少为2cPs。上述至少包含两种有机溶剂的溶剂体系无需添加添加剂即能够更有效地溶解功能材料,还能有效地防止"咖啡环效应"的发生,从而可以得到厚度均匀、电荷传输能力强的薄膜。

Description

用于印刷电子器件的组合物及其制备方法和用途 技术领域
本发明涉及有机光电材料技术领域,特别是涉及一种用于印刷电子器件的组合物及其制备方法和用途。
本申请要求于2016年11月23日提交中国专利局、申请号为201611048311.0、发明名称为“一种适合于印刷的组合物”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
背景技术
作为新一代显示技术的有机发光二极管(OLED)是用蒸镀方法制备的,其制备过程中涉及大量的真空制程,材料利用率低,同时需要精细掩模(FMM),成本较高,同时良率低。为了解决上述问题,采用印刷工艺实现高分辨全彩色显示的技术越来越受到关注。例如,喷墨打印能够大面积低成本地制备功能材料薄膜,相比传统的半导体生产工艺,喷墨打印低能耗,耗水量少,绿色环保,是具有极大的优势和潜力的生产技术。另一种新型显示技术,量子点发光二极管(QLED),无法蒸镀,必须以印刷的方法制备。因此,实现印刷显示,必须突破印刷油墨及相关印刷工艺等关键问题。粘度和表面张力是影响印刷油墨及打印过程的重要参数。一种有前景的印刷墨水需要具备适当的粘度和表面张力。
有机半导体材料由于其溶液加工性,在电子和光电子器件中的应用已获得了广泛的关注并取得了显著的进展。溶液加工性使得有机功能材料可以通过一定的涂覆和印刷技术在器件中形成该功能材料的薄膜。这样的技术可以有效降低电子和光电子器件的加工成本,且满足大面积制备的工艺需求。目前,已有数家公司报道了用于打印的有机半导体材料油墨,例如:KATEEVA,INC公开了一种用于可印刷OLED的基于酯类溶剂的有机小分子材料油墨(US2015044802A1);UNIVERSAL DISPLAY CORPORATION公开了一种可印刷的基于芳族酮或芳族醚类溶剂的有机小分子材料油墨(US20120205637);SEIKO EPSON CORPORATION公开了可印刷的基于取代的苯衍生物溶剂的有机聚合物材料油墨。其它的涉及有机功能材料的印刷油墨的例子有:CN102408776A、CN103173060A、CN103824959A、CN1180049C、CN102124588B、US2009130296A1、US2014097406A1等。
另一类可适合于印刷的功能材料是无机纳米材料,特别是量子点。量子点是具有量子限制效应的纳米尺寸的半导体材料,当受到光或电的刺激,量子点会发出具有特定能量的荧光,荧光的颜色(能量)由量子点的化学组成和尺寸形状决定。因此,对量子点尺寸形状的控制能有效调控其电学和光学性质。目前,各国都在研究量子点在全彩方面的应用,主要集中在显示领域。最近,量子点作为发光层的电致发光器件(QLED)得到了迅速发展,器件寿命得到很大的提高,如Peng等,在Nature Vol515 96(2015)及Qian等,在Nature Photonics Vol 9 259(2015)中所报道的。目前,已有数家公司报道了用于打印的量子点油墨:英国纳米技术有限公司(Nanoco Technologies Ltd)公开了一种包含纳米粒子的可印刷的油墨制剂的方法(CN101878535B)。通过选用合适的溶剂,比如甲苯和十二烷硒醇,得到了可印刷的纳米粒子油墨及相应的包含纳米粒子的薄膜;三星(Samsung Electronics)公开了一种用于喷墨打印的量子点油墨(US8765014B2)。这种油墨包含一定浓度的量子点材料、有机溶剂和具有高粘度的醇类聚合物添加剂。通过打印该油墨得到了量子点薄膜,并制备了量子点电致发光器件;QD视光(QD Vision,Inc.)公开了一种量子点的油墨制剂,包含一种主体材料、一种量子点材料和一种添加剂(US2010264371A1)。
其它的涉及量子点印刷油墨的专利有:US2008277626A1,US2015079720A1,US2015075397A1,TW201340370A,US2007225402A1,US2008169753A1,US2010265307A1,US2015101665A1,WO2008105792A2。在这些已公开的专利中,为了调控油墨的物理参数,这些量子点油墨都包含有其它的添加剂,如醇类聚合物。具有绝缘性质的聚合物添加剂的引入往往会降低薄膜的电荷传输能力,对器件的光电性能具有负面影响,限制了其在光电器件中的广泛应用。
此外,在喷墨打印干燥成膜的过程中,经常性的伴随有“咖啡环效应”,即溶质材料容易向液滴边缘沉积,造成干燥后的薄膜出现边缘厚中心薄的形貌。这是因为在干燥过程中,溶剂主要从液滴边缘开始挥发,溶液体积变化则主要发生在液滴中心,继而导致溶液由中心向边缘流动。由此得到的厚度不均匀的薄膜对光电器件的进一步加工和器件性能都是十分不利的。因此,寻求一种合适的溶剂体系,降低喷墨打印薄膜的“咖啡环效应”,对改善薄膜的均匀性及器件的性能都显得尤为重要。
发明内容
根据本申请的各种实施例,提供一种用于印刷电子器件的组合物及其制备方法和用途,解决了背景技术中所涉及的一个或多个问题。
一种用于印刷电子器件的组合物,所述组合物包含功能材料和溶剂,所述溶剂可从所述组合物中蒸发以形成功能材料薄膜;
所述溶剂至少由两种有机溶剂混合而成,所述两种有机溶剂为第一溶剂和第二溶剂,所述第一溶剂和所述第二溶剂互溶,所述第一溶剂和所述第二溶剂中至少一种有机溶剂的沸点≥160℃,所述第二溶剂的沸点大于所述第一溶剂,且所述第二溶剂的粘度大于所述第一溶剂,所述第二溶剂和所述第一溶剂的粘度差至少为2cPs。
上述组合物的制备方法,包括如下工序:
1)使所述功能材料中的任一固体成分溶解到所述第一溶剂的工序,和
2)向溶解有所述的固体成分的所述第一溶剂中加入所述第二溶剂形成混合溶液的工序。
一种电子器件,包括使用上述的组合物所形成的功能材料薄膜。
附图说明:
图1是一实施例的电子器件的示意图
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
在本发明中,按照本发明的组合物和印刷油墨,或油墨具有相同的含义,它们之间可以互换。
在本发明中,主体材料,基质材料,Host或Matrix材料具有相同的含义,它们之间可以互换。
在本发明中,金属有机络合物,金属有机配合物,有机金属配合物具有相同的含义,可以互换。
在本发明中,@25℃是指在25℃的条件下进行测量。
本发明提供一种用于印刷电子器件的组合物,所述组合物包含功能材料和溶剂,所述溶剂可从所述组合物中蒸发以形成功能材料薄膜;
所述溶剂至少由两种有机溶剂混合而成,所述两种有机溶剂为第一溶剂和第二溶剂,所述第一溶剂和所述第二溶剂互溶,所述第一溶剂和所述第二溶剂中至少一种有机溶剂的沸点 ≥160℃,所述第二溶剂的沸点大于所述第一溶剂,且所述第二溶剂的粘度大于所述第一溶剂,所述第二溶剂和所述第一溶剂的粘度差至少为2cPs。
在一实施例中,所述第一溶剂和所述第二溶剂中至少一种的沸点≥160℃;在一实施例中,所述第一溶剂和所述第二溶剂中至少一种的沸点≥180℃;在一些实施例中,所述第一溶剂和所述第二溶剂中至少一种的沸点≥200℃;在另一实施例中,所述第一溶剂和所述第二溶剂中至少一种的沸点≥250℃;在另一实施例中,所述第一溶剂和所述第二溶剂中至少一种的沸点或≥275℃;在另一实施例中,所述第一溶剂和所述第二溶剂中至少一种的沸点≥300℃。
在一实施例中,所述第一溶剂和所述第二溶剂的沸点都≥160℃;在一实施例中,所述第一溶剂和所述第二溶剂沸点都≥180℃;在一实施例中,所述第一溶剂和所述第二溶剂的沸点都≥200℃;在一实施例中,所述第一溶剂和所述第二溶剂的沸点都≥220℃;在一实施例中,所述第一溶剂和所述第二溶剂的沸点都≥240℃。
选择沸点在上述范围内的溶剂可以防止堵塞喷墨印刷头的喷嘴。
在一实施例中,一种组合物,包含的至少两种的有机溶剂,其中至少一种的粘度@25℃,在1cPs到100cPs范围。也就是说,25℃的条件下,所述第一溶剂以及所述第二溶剂中至少一种的粘度为1cps~100cps。
在一个实施例中,所述第一溶剂以及所述第二溶剂中至少一种的粘度为1cps~50cps;在一个实施例中,所述第一溶剂以及所述第二溶剂中至少一种的粘度为1cps~40cps;在一个实施例中,所述第一溶剂以及所述第二溶剂中至少一种的粘度为1cps~30cps;在一个实施例中,所述第一溶剂以及所述第二溶剂中至少一种的粘度为1.5cps~20cps。这里的粘度是指在印刷时的环境温度下的粘度,在一个实施例中,在15℃~30℃的范围内;在一个实施例中,在18℃~28℃的范围内;在一个实施例中,在20℃~25℃的范围内;在一个实施例中,在23℃~25℃的范围内。如此配制的组合物将特别适合于喷墨印刷。
组合物中包含满足上述沸点及粘度参数的至少两种有机溶剂的溶剂体系,以便形成具有均匀厚度及组成性质的功能材料薄膜。
在某些优先的实施例中,按照本发明的组合物,在25℃的条件下,所述第一溶剂以及所述第二溶剂中至少一种的表面张力为19dyne/cm~50dyne/cm。
特定的基板和特定的印刷方法需要合适的组合物的表面张力参数。例如对喷墨印刷,在一实施例中,在25℃的条件下,所述的两种有机溶剂中至少一种的表面张力约在19dyne/cm到50dyne/cm的范围内;在一个实施例中,在25℃的条件下,所述的两种有机溶剂中至少一种的表面张力约在22dyne/cm到35dyne/cm的范围内;在一个实施例中,在25℃的条件下,所述的两种有机溶剂中至少一种的表面张力约在25dyne/cm到33dyne/cm的范围内。
在另一个实施例中,在25℃的条件下,所述的两种有机溶剂的表面张力都在19dyne/cm到50dyne/cm的范围内;在另一个实施例中,在25℃的条件下,所述两种有机溶剂的表面张力都在22dyne/cm到35dyne/cm的范围内;在另一个实施例中,在25℃的条件下,所述的两种有机溶剂的表面张力都在25dyne/cm到33dyne/cm的范围内。
在一个实施例中,在25℃的条件下,组合物的表面张力在19dyne/cm到50dyne/cm的范围内;在另一个实施例中,组合物的表面张力在22dyne/cm到35dyne/cm的范围内;在另一个实施例中,组合物的表面张力在25dyne/cm到33dyne/cm的范围内。
另外,一种组合物,包含至少两种有机溶剂,所述两种有机溶剂为第一溶剂和第二溶剂,第二溶剂比第一溶剂具有更高的沸点,且第二溶剂比第一溶剂具有更大的粘度,从而使得在喷墨打印和干燥过程中形成厚度分布均匀的功能材料薄膜。
在一个实施例中,第一溶剂是所述功能材料的良溶剂。
在一个实施例中,第一溶剂和第二溶剂都是所述功能材料的良溶剂。
良溶剂是指溶解度≥1.0重量%,较好是≥1.5重量%,更好是≥2.0重量%,最好是≥2.2重量%。
本发明还涉及如上所述的组合物的一种制备方法。
根据该方法,一种如上所述的组合物,包括如下配制工序:
1)使所述功能材料中的任一固体成分溶解到第一溶剂的工序,和
2)向溶解有所述的固体成分的第一溶剂加入第二溶剂的工序。
上述方法可以得到能够抑制边缘流动、改善喷墨打印薄膜均匀性的功能材料油墨。
根据该方法,所用的第一溶剂对功能材料具有比较好的溶解性,保证功能材料在溶液中足够的溶解性和稳定性。所用的第一溶剂具有较高的沸点从而防止打印过程中喷嘴的阻塞并保证溶液喷射过程中的稳定性。所用的第二溶剂与第一溶剂相比具有更高的沸点和更大的粘度,在将组合物喷墨打印到基底的干燥过程中,由于第二溶剂的高沸点和低挥发性,降低了溶液边缘流动的驱动力。同时由于第二溶剂的高粘度,所形成的高流动阻力,可以使溶液边缘流动强度有效降低,溶质的边缘沉积得到抑制,从而改善喷墨打印沉积薄膜的不均匀性,有效抑制“咖啡环”效应。此外,由于第二溶剂的高沸点和低挥发性,可以延长溶液液滴干燥时间,增加溶质在液滴中由高浓度区域向低浓度区域自由扩散的时间,降低干燥过程中溶质的不均匀分布,改善喷墨打印沉积薄膜的不均匀性。
在一实施例中,第二溶剂的沸点比第一溶剂的沸点至少高10℃,第一溶剂的沸点介于100℃和250℃之间,第二溶剂的沸点大于160℃。在一实施例中,第二溶剂的沸点比第一溶剂至少高20℃。在一实施例中,第二溶剂的沸点比第一溶剂至少高30℃。在一实施例中,第二溶剂的沸点比第一溶剂至少高40℃。在一实施例中,第二溶剂的沸点比第一溶剂至少高50℃。在一实施例中,第二溶剂的沸点比第一溶剂至少高60℃。
在一个实施例中,如上所述的一种组合物,第二溶剂具有比第一溶剂更大的粘度。为了实现上述的抑制“咖啡环”效应的高流动阻力,在一实施例中,两种有机溶剂的粘度差至少为2cPs;在一实施例中,两种有机溶剂的粘度差至少为4cPs;在一实施例中,两种有机溶剂的粘度差至少为6cPs;在一实施例中,两种有机溶剂的粘度差至少为8cPs;在一实施例中,两种有机溶剂的粘度差至少为10cPs。
如上所述的一种组合物,其中第一溶剂占溶剂总重量的30%~90%,第二溶剂占溶剂总重量的10%~70%。在一实施例中,第二溶剂占溶剂总重量的20%~60%;在一实施例中,第二溶剂占溶剂总重量的20%~50%;在一实施例中,第二溶剂占溶剂总重量的20%~40%。
在一个实施例中,按照本发明的组合物,包含的两种有机溶剂中,至少有一种是基于芳族或杂芳族的溶剂。
在另一个实施例中,一种组合物,包含至少两种有机溶剂,且其中至少有一种有机溶剂具有如下的通式:
Figure PCTCN2017112701-appb-000001
其中,
Ar1是具有5~10个环原子的芳环或杂芳环,n≥1,R是取代基。
在一个实施例中,按照通式(I)所示的有机溶剂,其中Ar1是具有5~9个环原子的芳族环或杂芳族环。芳族基团指至少包含一个芳环的烃基,包括单环基团和多环的环系统。杂芳族基团指包含至少一个杂芳环的烃基(含有杂原子),包括单环基团和多环的环系统。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些 环种,至少一个是芳族的或杂芳族的。
具体地,芳族基团的例子有:苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、及其衍生物。
具体地,杂芳族基团的例子有:呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
在某些优先的实施例中,所述的组合物包含有具有通式(I)的有机溶剂,其较为优选的例子可以用以下的通式(II)~通式(VI)进一步表示:
Figure PCTCN2017112701-appb-000002
其中,
X是CR1或N;
Y选自CR2R3,SiR4R5,NR6或,C(=O),S,或O。
R1,R2,R3,R4,R5,R6各自独立地选自H、D或具有1至10个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至10个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至10个C原子的取代的酮基基团,或具有2至10个C原子的烷氧基羰基基团,或具有7至10个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至10个环原子的取代或未取代的芳族或杂芳族环系,或具有5至10个环原子的芳氧基或杂芳氧基基团,或其组合。
其中一个或多个基团R1,R2,R3,R4,R5,R6可以彼此和/或与R1,R2,R3,R4,R5或R6所连接的原子一起形成单环或多环的脂族或芳族环系。
在一个实施例中,R1,R2,R3,R4,R5,R6各自独立地选自H、D,或具有1至6个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至6个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至6个C原子的取代的酮基基团,或具有2至6个C原子的烷氧基羰基基团,或具有7至6个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至8个环原子的取代或未取代的芳族或杂芳族环系,或具有5至8个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,R1,R2,R3,R4,R5或R6可彼此和/或与R1,R2,R3,R4,R5或R6所连接的原子一起形成单环或多环的脂族或芳族环系。
在一个实施例中,通式(I)中的Ar1选自如下结构单元:
Figure PCTCN2017112701-appb-000003
在某些实施例中,通式(I)中的至少一个取代基R选自具有1至10个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至10个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至10个C原子的取代的酮基基团,或具有2至10个C原子的烷氧基羰基基团,或具有7至10个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至10个环原子的取代或未取代的芳族或杂芳族环系,或具有5至10个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,R可彼此和/或与其所连接的原子一起形成单环或多环的脂族或芳族环系。
在一个实施例中,通式(I)中的至少一个取代基R选自具有1至6个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至6个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至6个C原子的取代的酮基基团,或具有2至6个C原子的烷氧基羰基基团,或具有6至7个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至8个环原子的取代或未取代的芳族或杂芳族环系,或具有5至8个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个基团R可以彼此和/或与其连接的原子一起形成单环或多环的脂族或芳族环系。
在其中一实施例中,基于芳族或杂芳族溶剂选自:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、1-甲 基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α、α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚、2-异丙基萘、喹啉、异喹啉、8-羟基喹啉、2-呋喃甲酸甲酯、2-呋喃甲酸乙酯等。
在一实施例中,所述的组合物,包含的两种有机溶剂中,至少有一种是基于芳族酮的有机溶剂。
在一实施例中,所述的芳族酮的溶剂为四氢萘酮,例如:1-四氢萘酮和2-四氢萘酮。
在另一些实施例中,所述的四氢萘酮溶剂包含1-四氢萘酮和2-四氢萘酮的衍生物,即被至少一个取代基取代的四氢萘酮。这些取代基包括脂肪族基、芳基、杂芳基、卤素等。
在一实施例中,芳族酮的溶剂选自2-(苯基环氧)四氢萘酮或6-(甲氧基)四氢萘酮。
在另一些实施例中,所述的芳族酮的溶剂选自:苯乙酮、苯丙酮、二苯甲酮、及其衍生物。
在一实施例中,芳族酮的溶剂选自4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮或2-甲基苯丙酮。
在另一些实施例中,所述的组合物,包含的两种有机溶剂中,至少有一种是不含有芳族或杂芳族基团的酮溶剂,例如:异佛尔酮、2,6,8-三甲基-4-壬酮、樟脑、葑酮。
在另一个实施方案中,所述的组合物,包含的两种有机溶剂中,至少有一种是基于芳族醚的有机溶剂。
所述芳族醚溶剂选自:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃或乙基-2-萘基醚。
在一个实施例中,所述的芳族醚溶剂是3-苯氧基甲苯。
在一个实施例中,所述的组合物,包含的两种有机溶剂中,至少有一种是基于酯的有机溶剂。
所述酯溶剂选自:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯或油酸烷酯等。
在一个实施例中,所述酯溶剂是辛酸辛酯或癸二酸二乙酯。
在一个实施例中,一种组合物,包含的两种有机溶剂中,至少有一种有机溶剂选自脂肪族酮溶剂。
所述脂肪族酮溶剂选自:2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、佛尔酮或二正戊基酮等。
在一个实施例中,一种组合物,包含的两种有机溶剂中,至少有一种有机溶剂选自脂肪族醚溶剂。
所述脂肪族醚溶剂选自:戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚或四乙二醇二甲醚等。
在另一些优先的实施例中,一种组合物,包含的两种有机溶剂中,至少有一种有机溶剂选自脂环族溶剂。
所述脂环族溶剂选自:四氢萘、环己基苯、十氢化萘、2-苯氧基四氢呋喃、1,1’-双环己烷、丁基环己烷、松香酸乙酯、松香酸苄酯、乙二醇碳酸酯、氧化苯乙烯、异佛尔酮、3,3,5-三甲基环己酮、环庚酮、葑酮、1-四氢萘酮、2-四氢萘酮、2-(苯基环氧)四氢萘酮、6-(甲氧基)四氢萘酮、γ-丁内酯、γ-戊内酯、6-己内酯、N,N-二乙基环己胺、环丁砜或2,4-二甲基环丁砜。
在另一些优先的实施例中,一种组合物,包含的两种有机溶剂中,至少有一种有机溶剂选自无机酯溶剂。
所述无机酯溶解选自:硼酸三丁酯、硼酸三戊酯、磷酸三甲酯、磷酸三乙酯、磷酸三丁酯、磷酸三(2-乙基己基)酯、磷酸三苯酯、磷酸二乙酯、磷酸二丁酯或磷酸二(2-乙基己基)酯等。
相比于传统的溶解功能材料的溶剂(如甲苯、二甲苯、氯仿、氯苯、二氯苯、正庚烷等),上述至少包含两种有机溶剂的溶剂体系无需添加添加剂即能够更有效地溶解功能材料,还能有效地防止“咖啡环效应”的发生,从而可以得到厚度均匀、电荷传输能力强的薄膜,适宜用于光电器件。
下面列出部分上述溶剂例子的沸点、表面张力及粘度参数,但不限于此:
Figure PCTCN2017112701-appb-000004
Figure PCTCN2017112701-appb-000005
Figure PCTCN2017112701-appb-000006
Figure PCTCN2017112701-appb-000007
Figure PCTCN2017112701-appb-000008
在一实施例中,所述第一溶剂选自:甲苯、二甲苯、氯苯、二氯苯、对二异丙基苯、戊苯、四氢萘、环己基苯、对甲基异丙苯、邻二乙苯、四甲基苯、丁苯、三氯苯、十氢化萘、丁基环己烷、丁内酯、氧化苯乙烯、环庚酮、磷酸三乙酯或喹啉;
所述第二溶剂选自:1-四氢萘酮、3-苯氧基甲苯、1-甲氧基萘、3-异丙基联苯、苯甲酸苄酯、二苄醚、邻苯二甲酸二烯丙酯、异壬酸异壬酯、环丁砜或磷酸三苯酯。
具体如下表所示(但不限制于):
Figure PCTCN2017112701-appb-000009
另一实施例的双溶剂体系:溶剂选取及其比例与上述例子相同,不同的是第二溶剂是3-苯氧基甲苯;
另一实施例的双溶剂体系:溶剂选取及其比例与上述例子相同,不同的是第二溶剂是1-甲氧基萘;
另一实施例的双溶剂体系:溶剂选取及其比例与上述例子相同,不同的是第二溶剂是3-异丙基联苯;
另一实施例的双溶剂体系:溶剂选取及其比例与上述例子相同,不同的是第二溶剂是苯 甲酸苄酯;
另一实施例的双溶剂体系:溶剂选取及其比例与上述例子相同,不同的是第二溶剂是二苄醚;
另一实施例的双溶剂体系:溶剂选取及其比例与上述例子相同,不同的是第二溶剂是邻苯二甲酸二烯丙酯;
另一实施例的双溶剂体系:溶剂选取及其比例与上述例子相同,不同的是第二溶剂是异壬酸异壬酯;
另一实施例的双溶剂体系:溶剂选取及其比例与上述例子相同,不同的是第二溶剂是环丁砜;
另一实施例的双溶剂体系:溶剂选取及其比例与上述例子相同,不同的是第二溶剂是磷酸三苯酯。
在一实施例中,所述第一溶剂为戊苯,所述第二溶剂为1-四氢萘酮。
在一实施例中,所述第一溶剂为环庚酮,所述第二溶剂为二苄醚。
在一实施例中,所述第一溶剂为三氯苯,所述第二溶剂为3-苯氧基甲苯。
在一实施例中,所述第一溶剂为对甲基异丙苯,所述第二溶剂为3-异丙基联苯。
在一实施例中,所述第一溶剂为邻二乙苯,所述第二溶剂为苯甲酸苄酯。
在一实施例中,所述第一溶剂为丁苯,所述第二溶剂为磷酸三苯酯。
在另一些实施例中,所述的包含有两种有机溶剂的溶剂进一步包含有另一种有机溶剂,所述有机溶剂选自:甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或其混合物。
所述的印刷油墨还可以另外包括一个或多个其他组份,例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。
所述的印刷油墨可以通过多种打印或涂布技术沉积得到功能薄膜,适合的打印或涂布技术包括(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。优选的打印技术是喷墨印刷,喷印及凹版印刷。有关打印技术,及其对有关油墨的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。一般地,不同的打印技术对所采用的油墨有不同的特性要求。例如,适用于喷墨打印的印刷油墨,需要对油墨的表面张力、粘度、及浸润性进行调控,使得油墨在印刷温度下(比如室温,25℃)能够很好地经由喷嘴喷出而不至于干燥于喷嘴上或堵塞喷嘴,或能在特定的基板上形成连续、平整和无缺陷的薄膜。
一种组合物包含至少一种功能材料。
该功能材料可以是具有某些光电功能的材料。光电功能包括,但不限于,空穴注入功能,空穴传输功能,电子传输功能,电子注入功能,电子阻挡功能,空穴阻挡功能,发光功能,主体功能和光吸收功能。相应的功能材料被称为空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光体(Emitter),主体材料(Host)和有机染料。
还可以通过对组合物中功能材料的浓度进行调节来调节粘度。本发明的包含有至少两种有机溶剂的溶剂体系可方便人们将印刷油墨按照所用的印刷方法在适当的范围内进行调节。
在一实施例中,组合物中的功能材料的重量比为0.3%~30wt%;
在一实施例中,组合物中的功能材料的重量比为0.5%~20wt%;
在一实施例中,组合物中的功能材料的重量比为0.5%~15wt%;
在一实施例中,组合物中的功能材料的重量比为0.5%~10wt%。
该功能材料可以是有机材料或无机材料。
在一个实施例中,一种组合物中包含的功能材料是无机纳米材料。
在一个实施例中,所述的组合物中,所述无机纳米材料是无机半导体纳米粒子材料。
在一实施例中,无机纳米材料的平均粒径约在1到1000nm的范围内。在另一实施例中,无机纳米材料的平均粒径约在1到100nm的范围内。在另一实施例中,无机纳米材料的平均粒径约在1到20nm的范围内。在另一实施例中,无机纳米材料的平均粒径约在1到10nm的范围内。
所述的无机纳米材料可以选自不同的形状,可以为球形、立方体、棒状、盘形或支化结构等不同纳米形貌,以及各种形状颗粒的混合物。
在一个实施例中,所述的无机纳米材料是量子点材料,具有非常狭窄的、单分散的尺寸分布,即颗粒与颗粒之间的尺寸差异非常小。优选地,单分散的量子点在尺寸上的偏差均方根小于15%rms;更优地,单分散的量子点在尺寸上的偏差均方根小于10%rms;最优地,单分散的量子点在尺寸上的偏差均方根小于5%rms。
在一个实施例中,所述的无机纳米材料是发光材料。
在一个实施例中,所述的发光无机纳米材料是量子点发光材料。
一般地,发光量子点可以在波长380纳米到2500纳米之间发光。例如,具有CdS核的量子点的发光波长位于约400纳米到560纳米的范围;具有CdSe核的量子点的发光波长位于约490纳米到620纳米的范围;具有CdTe核的量子点的发光波长位于约620纳米到680纳米的范围;具有InGaP核的量子点的发光波长位于约600纳米到700纳米的范围;具有PbS核的量子点的发光波长位于约800纳米到2500纳米的范围;具有PbSe核的量子点的发光波长位于约1200纳米到2500纳米的范围;具有CuInGaS核的量子点的发光波长位于约600纳米到680纳米的范围;具有ZnCuInGaS核的量子点的发光波长位于约500纳米到620纳米的范围;具有CuInGaSe核的量子点的发光波长位于约700纳米到1000纳米的范围;
在一个实施例中,所述的量子点材料包含至少一种能够发出发光峰值波长位于450nm~460nm的蓝光、或发光峰值波长位于520nm~540nm的绿光、或发光峰值波长位于615nm~630nm的红光,或其混合物。
所包含的量子点可以选自特殊的化学组成、形貌结构和/或大小尺寸,以获得在电刺激下发出所需波长的光。关于量子点的发光性质与其化学组成、形貌结构和/或大小尺寸的关系可以参见Annual Review of Material Sci.,2000,30,545-610;Optical Materials Express.,2012,2,594-628;Nano Res,2009,2,425-447。特此将上述列出的专利文件中的全部内容并入本文作为参考。
量子点的窄的粒径分布能使量子点具有更窄的发光光谱(J.Am.Chem.Soc.,1993,115,8706;US 20150108405)。此外,根据所采用的化学组成和结构的不同,量子点的尺寸需在上述的尺寸范围内做相应调节,以获得所需波长的发光性质。
在一个实施例中,发光量子点是半导体纳米晶体。在一实施例中,所述半导体纳米晶体的尺寸为约2纳米到约15纳米的范围内。此外,根据所采用的化学组成和结构的不同,量子点的尺寸需在上述的尺寸范围内做相应调节,以获得所需波长的发光性质。
所述的半导体纳米晶体包括至少一种半导体材料,其中半导体材料可选自元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物或其混合物。
所述的半导体材料可选自:IV族半导体化合物,由单质Si、Ge和二元化合物SiC、SiGe 组成;II-VI族半导体化合物,由二元化合物包括CdSe、CdTe、CdO、CdS、CdSe、ZnS、ZnSe、ZnTe、ZnO、HgO、HgS、HgSe、HgTe,三元化合物包括CdSeS、CdSeTe、CdSTe、CdZnS、CdZnSe、CdZnTe、CgHgS、CdHgSe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、HgZnS、HgSeSe及四元化合物包括CgHgSeS、CdHgSeTe、CgHgSTe、CdZnSeS、CdZnSeTe、HgZnSeTe、HgZnSTe、CdZnSTe、HgZnSeS、组成;III-V族半导体化合物,由二元化合物包括AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb,三元化合物包括AlNP、AlNAs、AlNSb、AlPAs、AlPSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、InNP、InNAs、InNSb、InPAs、InPSb、和四元化合物包括GaAlNAs、GaAlNSb、GaAlPAs、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb组成,或IV-VI族半导体化合物,由二元化合物包括SnS、SnSe、SnTe、PbSe、PbS、PbTe,三元化合物包括SnSeS、SnSeTe、SnSTe、SnPbS、SnPbSe、SnPbTe、PbSTe、PbSeS、PbSeTe和四元化合物包括SnPbSSe、SnPbSeTe、SnPbSTe组成。
在一个实施例中,发光量子点包含有II-VI族半导体材料,优先选自CdSe,CdS,CdTe,ZnO,ZnSe,ZnS,ZnTe,HgS,HgSe,HgTe,CdZnSe及其任意组合。在一实施例中,CdSe,CdS的合成相对成熟而将此材料用作用于可见光的发光量子点。
在另一个实施例中,发光量子点包含有III-V族半导体材料,优先选自InAs,InP,InN,GaN,InSb,InAsP,InGaAs,GaAs,GaP,GaSb,AlP,AlN,AlAs,AlSb,CdSeTe,ZnCdSe及其任意组合。
在另一个实施例中,发光量子点包含有IV-VI族半导体材料,优先选自PbSe,PbTe,PbS,PbSnTe,Tl2SnTe5及其任意组合。
在一个实施例中,量子点为一核壳结构。核与壳可以相同或不同地包括一种或多种半导体材料。
所述的量子点的核可以选自上述的元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物。具体的用于量子点核的实例包括:ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgS、MgSe、GaAs、GaN、GaP、GaSe、GaSb、HgO、HgS、HgSe、HgTe、InAs、InN、InSb、AlAs、AlN、AlP、AlSb、PbO、PbS、PbSe、PbTe、Ge、Si,及其任意组合的合金或混合物。
所述的量子点的壳包含有与核相同或不同的半导体材料。可用于壳的半导体材料包括元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物。具体的用于量子点核的实例包括:ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgS、MgSe、GaAs、GaN、GaP、GaSe、GaSb、HgO、HgS、HgSe、HgTe、InAs、InN、InSb、AlAs、AlN、AlP、AlSb、PbO、PbS、PbSe、PbTe、Ge、Si,及其任意组合的合金或混合物。
所述的具有核壳结构的量子点,壳可以包括单层或多层的结构。壳包括一种或多种与核相同或不同的半导体材料。在一实施例中,在量子点核的表面包含有两种或两种以上的壳。在一个优选的实施例中,壳具有约1到20层的厚度。在一个更为优选的实施例中,壳具有约5到10层的厚度。
在一个实施例中,用于壳的半导体材料具有比核更大的带隙。特别优先的,壳核具有I型的半导体异质结构。
在另一个实施例中,用于壳的半导体材料具有比核更小的带隙。
在一个实施例中,用于壳的半导体材料具有与核相同或接近的原子晶体结构。这样的选择有利于减小核壳间的应力,使量子点更为稳定。
合适的采用核壳结构的发光量子点的例子(但不限制于)有:
红光:CdSe/CdS,CdSe/CdS/ZnS,CdSe/CdZnS等
绿光:CdZnSe/CdZnS,CdSe/ZnS等
蓝光:CdS/CdZnS,CdZnS/ZnS等
在一个实施例中,量子点的制备方法是胶状生长法。在一个实施例中,制备单分散的量子点的方法选自热注射法(hot-inject)和/或加热法(heating-up)。制备方法包含在文件Nano Res,2009,2,425-447;Chem.Mater.,2015,27(7),pp 2246–2285。特此将上述列出的文件中的全部内容并入本文作为参考。
在一个实施例中,所述量子点的表面包含有有机配体。有机配体可以控制量子点的生长过程,调控量子点的相貌和减小量子点表面缺陷从而提高量子点的发光效率及稳定性。所述的有机配体可以选自吡啶,嘧啶,呋喃,胺,烷基膦,烷基膦氧化物,烷基膦酸或烷基次膦酸,烷基硫醇等。具体的有机配体的实例包括但不限制于三正辛基膦,三正辛基氧化膦,三羟基丙基膦,三丁基膦,三(十二烷基)膦,亚磷酸二丁酯,亚磷酸三丁酯,亚磷酸十八烷基酯,亚磷酸三月桂酯,亚磷酸三(十二烷基)酯,亚磷酸三异癸酯,双(2-乙基己基)磷酸酯,三(十三烷基)磷酸酯,十六胺,油胺,十八胺,双十八胺,三十八胺,双(2-乙基己基)胺,辛胺,二辛胺,三辛胺,十二胺,双十二胺,三十二胺,十六胺,苯基磷酸,己基磷酸,四癸基磷酸,辛基磷酸,正十八烷基磷酸,丙烯二磷酸,二辛醚,二苯醚,辛硫醇或十二烷基硫醇。
在另一个实施例中,所述量子点的表面包含有无机配体。由无机配体保护的量子点可以通过对量子点表面有机配体进行配体交换得到。具体的无机配体的实例包括但不限制于:S2-,HS-,Se2-,HSe-,Te2-,HTe-,TeS3 2-,OH-,NH2 -,PO4 3-,MoO4 2-,等。该类无机配体量子点的例子可以参考文件:J.Am.Chem.Soc.2011,133,10612-10620;ACS Nano,2014,9,9388-9402。特此将上述列出的文件中的全部内容并入本文作为参考。
在某些实施例中,量子点表面具有一种或多种相同或不同的配体。
在一个实施例中,具有单分散的量子点所表现出的发光光谱具有对称的峰形和窄的半峰宽。一般地,量子点的单分散性越好,其所表现的发光峰越对称,且半峰宽越窄。优选地,所述的量子点的发光半峰宽小于70纳米;更优选地,所述的量子点的发光半峰宽小于40纳米;最优选地,所述的量子点的发光半峰宽小于30纳米。
一般地,所述的量子点的发光量子效率大于10%,较好是大于50%,更好是大于60%,最好是大于70%。
其他可能对本发明有用的有关量子点的材料,技术,方法,应用和其他信息,在以下专利文献中有所描述,WO2007/117698,WO2007/120877,WO2008/108798,WO2008/105792,WO2008/111947,WO2007/092606,WO2007/117672,WO2008/033388,WO2008/085210,WO2008/13366,WO2008/063652,WO2008/063653,WO2007/143197,WO2008/070028,WO2008/063653,US6207229,US6251303,US6319426,US6426513,US6576291,US6607829,US6861155,US6921496,US7060243,US7125605,US7138098,US7150910,US7470379,US7566476,WO2006134599A1,特此将上述列出的专利文件中的全部内容并入本文作为参考。
在另一个实施方案中,发光半导体纳米晶体是纳米棒。纳米棒的特性不同于球形纳米晶粒。例如,纳米棒的发光沿长棒轴偏振化,而球形晶粒的发光是非偏振的(参见Woggon等,Nano Lett.,2003,3,p509)。纳米棒具有优异的光学增益特性,使得它们可能用作激光增益材料(参见Banin等Adv.Mater.2002,14,p317)。此外,纳米棒的发光可以可逆地在外部电场的控制下打开和关闭(参见Banin等,Nano Lett.2005,5,p1581)。纳米棒的这些特性可以在某种情况下优先地结合到本发明的器件中。制备半导体纳米棒的例子有,WO03097904A1,US2008188063A1,US2009053522A1,KR20050121443A,特此将上述列出的专利文件中的全部内容并入本文作为参考。
在另一些实施例中,按照本发明的组合物中,所述的无机纳米材料是钙钛矿纳米粒子材料,特别是发光钙钛矿纳米粒子材料。
钙钛矿纳米粒子材料具有AMX3的结构通式,其中A可选自有机胺或碱金属阳离子,M可 选自金属阳离子,X可选自氧或卤素阴离子。具体的实例包括但不限制于:CsPbCl3,CsPb(Cl/Br)3,CsPbBr3,CsPb(I/Br)3,CsPbI3,CH3NH3PbCl3,CH3NH3Pb(Cl/Br)3,CH3NH3PbBr3,CH3NH3Pb(I/Br)3,CH3NH3PbI3等。有关钙钛矿纳米粒子材料的文献有NanoLett.,2015,15,3692-3696;ACS Nano,2015,9,4533-4542;Angewandte Chemie,2015,127(19):5785-5788;NanoLett.,2015,15(4),pp 2640–2644;Adv.Optical Mater.2014,2,670–678;The Journal of Physical Chemistry Letters,2015,6(3):446-450;J.Mater.Chem.A,2015,3,9187-9193;Inorg.Chem.2015,54,740–745;RSC Adv.,2014,4,55908-55911;J.Am.Chem.Soc.,2014,136(3),pp 850–853;Part.Part.Syst.Charact.2015,doi:10.1002/ppsc.201400214;Nanoscale,2013,5(19):8752-8780。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在另一个实施例中,按照本发明的组合物中,所述的无机纳米材料是金属纳米粒子材料。特别优先的是发光金属纳米粒子材料。
所述的金属纳米粒子包括但不限制于:铬(Cr)、钼(Mo)、钨(W)、钌(Ru)、铑(Rh)、镍(Ni)、银(Ag)、铜(Cu)、锌(Zn)、钯(Pd)、金(Au)、饿(Os)、铼(Re)、铱(Ir)和铂(Pt)的纳米粒子。常见的金属纳米粒子的种类、形貌和合成方法可以参见:Angew.Chem.Int.Ed.2009,48,60-103;Angew.Chem.Int.Ed.2012,51,7656-7673;Adv.Mater.2003,15,No.5,353-389;Adv.Mater.2010,22,1781-1804;Small.2008,3,310-325;Angew.Chem.Int.Ed.2008,47,2-46等及其所引用的文献,特此将上述列出的文献中的全部内容并入本文作为参考。
在另一个实施方案中,所述的无机纳米材料具有电荷传输的性能。
在一个实施例中,所述的无机纳米材料具有电子传输能力。优先的,这类无机纳米材料选自n型半导体材料。n型无机半导体材料的例子包括,但不限于,金属硫族元素化合物,金属磷族元素化合物,或元素半导体,如金属氧化物,金属硫化物,金属硒化物,金属碲化物,金属氮化物,金属磷化物,或金属砷化物。优先的n-型无机半导体材料选自ZnO,ZnS,ZnSe,TiO2,ZnTe,GaN,GaP,AlN,CdSe,CdS,CdTe,CdZnSe及其任意组合。
在某些实施例中,所述的无机纳米材料具有空穴传输能力。优先的,这类无机纳米材料选自p型半导体材料。无机p-型半导体材料可选NiOx,WOx,MoOx,RuOx,VOx,CuOx及它们的任何组合。
在一实施例中,一种包含上述组合物的印刷油墨。
在一实施例中,一种印刷油墨,包含至少两种及两种以上的无机纳米材料。
在另一个实施例中,一种组合物包含有至少一种有机功能材料。
所述的有机功能材料包括:空穴(也称电洞)注入或传输材料(HIM/HTM)、空穴阻挡材料(HBM)、电子注入或传输材料(EIM/ETM)、电子阻挡材料(EBM)、有机主体材料(Host)、单重态发光体(荧光发光体)、热激活延迟荧光发光材料(TADF)、三重态发光体(磷光发光体),特别是发光有机金属络合物,有机染料。例如在WO2010135519A1、US20090134784A1和WO2011110277A1中对各种有机功能材料有详细的描述,特此,将该3项专利文件中的全部内容并入本文作为参考。
在一实施例中,有机功能材料在上述溶剂中的溶解度至少是0.2wt%;
在一实施例中,有机功能材料在上述溶剂中的溶解度至少是0.3wt%;
在一实施例中,有机功能材料在上述溶剂中的溶解度至少是0.6wt%;
在一实施例中,有机功能材料在上述溶剂中的溶解度至少是1.0wt%;
在一实施例中,有机功能材料在上述溶剂中的溶解度至少是1.5wt%。
有机功能材料可以是小分子和高聚物材料。在本发明中,小分子有机材料是指分子量至多为4000g/mol的材料,分子量高于4000g/mol的材料统称为高聚物。
在一个优先的实施方案中,一种组合物,包含的功能材料为有机小分子材料。
在一实施例中,一种组合物中的有机功能材料包含有至少一种的主体材料和至少一种的发光体。
在一个实施例中,一种组合物中的有机功能材料包含有一种主体材料和一种单重态发光体。
在另一个实施例中,一种组合物中的有机功能材料包含有一种主体材料和一种三重态发光体。
在另一个实施例中,一种组合物中的有机功能材料包含有一种主体材料和一种热激活延迟荧光发光材料。
在另一个实施方案中,一种组合物中的有机功能材料包含有一种空穴传输材料(HTM)。
在另一个实施方案中,一种组合物中的有机功能材料包含有一种空穴传输材料(HTM),所述的HTM包含有一可交联基团。
下面对将对适合的实施例中所述的有机小分子功能材料作一些较详细的描述(但不限于此)。
1.HIM/HTM/EBM
合适的有机HIM/HTM材料可选包含有如下结构单元的化合物:酞菁、卟啉、胺、芳香胺、联苯类三芳胺、噻吩、并噻吩如二噻吩并噻吩和并噻吩、吡咯、苯胺、咔唑、氮茚并氮芴及它们的衍生物。另外,合适的HIM也包括含有氟烃的聚合物、含有导电掺杂的聚合物、导电聚合物,如PEDOT:PSS。
电子阻挡层(EBL)用来阻挡来自相邻功能层,特别是发光层的电子。对比一个没有阻挡层的发光器件,EBL的存在通常会导致发光效率的提高。电子阻挡层(EBL)的电子阻挡材料(EBM)需要有比相邻功能层,如发光层更高的LUMO。
在一个优先的实施方案中,EBM有比相邻发光层更大的激发态能级,如单重态或三重态,这取决于发光体;同时,该EBM有空穴传输功能。通常具有高的LUMO能级的HIM/HTM材料可以作为EBM。
可用作HIM,HTM或EBM的环芳香胺衍生化合物的例子包括(但不限于)如下的通式结构:
Figure PCTCN2017112701-appb-000010
每个Ar1到Ar9可独立选自环芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、非那烯、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、呋喃、噻吩、苯并呋喃、苯并噻吩、咔唑、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮(杂)萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、二苯并硒吩、苯并硒吩、苯并呋喃吡啶、吲哚咔唑、吡啶吲哚、吡咯二吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个方面,Ar1到Ar9可独立选自包含如下组的基团:
Figure PCTCN2017112701-appb-000011
n是1到20的整数;X1到X8是CH或N;Ar1如以上所定义。
环芳香胺衍生化合物的另外的例子可参见US3567450,US4720432,US5061569,US3615404,和US5061569.
可用作HTM或HIM的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2017112701-appb-000012
M是一金属,有大于40的原子量;
(Y1-Y2)是一两齿配体,Y1和Y2独立地选自C、N、O、P和S;L是一个辅助配体;m是一整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个实施例中,(Y1-Y2)是2-苯基吡啶衍生物.
在另一个实施例中,(Y1-Y2)是一卡宾配体.
在另一个实施例中,M选于Ir、Pt、Os和Zn.
在另一个方面,金属络合物的HOMO大于-5.5eV(相对于真空能级)。
在一实施例中,选自以下任意化合物作为HIM/HTM的化合物:
Figure PCTCN2017112701-appb-000013
2.三重态主体材料(Triplet Host):
三重态主体材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为主体,只要其三重态能量比发光体(特别是三重态发光体或磷光发光体)更高。可用作三重态主体(Host)的金属络合物的例子包括(但不限于)如下的通式结构:
Figure PCTCN2017112701-appb-000014
M是一金属;(Y3-Y4)是一两齿配体,Y3和Y4独立地选自C,N,O,P,和S;L是一个辅助配体;m是一整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个优先的实施方案中,可用作三重态主体的金属络合物有如下形式:
Figure PCTCN2017112701-appb-000015
(O-N)是一两齿配体,其中金属与O和N原子配位。
在某一个实施方案中,M可选于Ir或Pt。
可作为三重态主体的有机化合物的例子选自包含有环芳香烃基的化合物,例如苯、联苯、三苯基、苯并、芴;包含有芳香杂环基的化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三唑类、恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、恶唑、二苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮杂萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃并吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩苯并二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个实施方案中,三重态主体材料可选于包含至少一个以下基团的化合物:
Figure PCTCN2017112701-appb-000016
Figure PCTCN2017112701-appb-000017
R1-R7可相互独立地选自:氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂烷基,芳基或杂芳基。当R1-R7是芳基或杂芳基时,它们与上述的Ar1和Ar2意义相同;n是一个从0到20的整数;X1-X8选自CH或N;X9选自CR1R2或NR1
在一实施例中,三重态主体材料选自以下化合物:
Figure PCTCN2017112701-appb-000018
3.单重态主体材料(Singlet Host):
单重态主体材料的例子并不受特别的限制,任何有机化合物都可能被用作为主体,只要其单重态能量比发光体(特别是单重态发光体或荧光发光体)更高。
作为单重态主体材料使用的有机化合物的例子可选自含有环芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、萉、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、噌啉、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩二吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。
在一个实施方案中,单重态主体材料可选于包含至少一个以下基团的化合物:
Figure PCTCN2017112701-appb-000019
其中,R1可相互独立地选自:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基或杂芳基;Ar1是芳基或杂芳基,它与上述的HTM中定义的Ar1意义相同;n是一个从0到20的整数;X1-X8选自CH或N;X9和X10选自CR1R2或NR1
在一实施例中,蒽基单重态主体材料选自以下化合物:
Figure PCTCN2017112701-appb-000020
4.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺及其衍生物,和在WO2008/006449和WO2007/140847中公开的茚并芴及其衍生物。
在一个优先的实施方案中,单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚或芳胺。
一个一元苯乙烯胺是指一化合物,它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个二元苯乙烯胺是指一化合物,它包含二个无取代或取代的苯乙烯基组和至 少一个胺,最好是芳香胺。一个三元苯乙烯胺是指一化合物,它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接连接氮的无取代或取代的芳香环或杂环系统。优选这些芳香族或杂环的环系统中至少有一个具有稠环系统,并最好该稠环系统至少有14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。一个芳香蒽胺是指一化合物,其中一个二元芳基胺基团直接联到蒽上,最好是在9的位置上。一个芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好连到芘的1或1,6位置上。
基于乙烯胺及芳胺的单重态发光体的例子,可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389,WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1和US 2008/0113101 A1特此上述列出的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯极其衍生物的单重态发光体的例子有US 5121029。
进一步的优选的单重态发光体可选于茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺和苯并茚并芴-二胺,如WO 2008/006449所公开的,二苯并茚并芴-胺和二苯并茚并芴-二胺,如WO2007/140847所公开的。
其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽(如9,10-二(2-萘并蒽)),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑(如4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘(如US20060222886),亚芳香基乙烯(如US5121029,US5130603),环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物(US 2007/0092753A1),双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在一实施例中,单重态发光体选自以下化合物:
Figure PCTCN2017112701-appb-000021
Figure PCTCN2017112701-appb-000022
5.热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。
TADF材料需要具有较小的单线态-三线态能级差(ΔEst)。在一实施例中,该ΔEst<0.3eV;在一实施例中,ΔEst<0.2eV;在一实施例中,ΔEst<0.1eV;在一实施例中,ΔEst<0.05eV。在一个优先的实施方案中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
在一实施例中,TADF发光材料选自以下化合物:
Figure PCTCN2017112701-appb-000023
Figure PCTCN2017112701-appb-000024
6.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,优选1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置连接到一个聚合物上,最好是通过有机配体。
在一个实施方案中,金属原子M选自过渡金属元素或镧系元素或锕系元素。优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd或Pt。
在一个实施例中,三重态发光体包含有螯合配体,即配体通过至少两个结合点与金属配 位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
在一实施例中,有机配体选自:苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2017112701-appb-000025
其中M是一金属,选自过渡金属元素或镧系元素或锕系元素;
Ar1每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过该施主原子,环状基团与金属配位连接;Ar2每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar1和Ar2由共价键连接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L每次出现时可以是相同或不同,是一个辅助配体,优选于双齿螯合配体,最好是单阴离子双齿螯合配体;m是1,2或3,优先地是2或3,特别优先地是3;n是0,1,或2,优先地是0或1,特别优先地是0;
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在一实施例中,三重态发光体选自以下化合物:
Figure PCTCN2017112701-appb-000026
Figure PCTCN2017112701-appb-000027
Figure PCTCN2017112701-appb-000028
Figure PCTCN2017112701-appb-000029
在一实施例中,组合物所包含的功能材料为高聚物材料。
以上所述的有机小分子功能材料,包括HIM,HTM,ETM,EIM,Host,荧光发光体,磷光发光体,TADF都可以作为重复单元包含在该高聚物中。
在一个实施例中,适合于本发明的高聚物是共轭高聚物。一般地,共轭高聚物有如下通式:
Figure PCTCN2017112701-appb-000030
其中B,A在多次出现时可独立选择相同或不同的结构单元
B:具有较大的能隙的π-共轭结构单元,也称骨干单元(Backbone Unit),选自单环或多环芳基或杂芳基,优先选择的单元形式为苯,联二亚苯(Biphenylene),萘,蒽,菲,二氢菲,9,10-二氢菲,芴,二芴,螺二芴,对苯乙炔,反茚并芴,顺茚并,二苯并-茚并芴,茚并萘及它们的衍生物。
A:具有较小能隙的π-共轭结构单元,也称功能单元(Functional Unit),按照不同的功能要求,可选自包含有以上所述的空穴注入或传输材料(HIM/HTM),电子注入或传输材料(EIM/ETM),主体材料(Host),单重态发光体(荧光发光体),重态发光体(磷光发光体)的结构单元。
x,y:>0,且x+y=1;
在一实施例中,组合物中所包含的功能材料为高聚物HTM。
在一个实施例中,高聚物HTM材料为均聚物,该均聚物优选:聚噻吩,聚吡咯,聚苯胺,聚联苯类三芳胺,聚乙烯基咔唑及其衍生物。
在另一个实施例中,高聚物HTM材料为化学式1表示的共轭共聚物,其中
B:具有较大的能隙的π-共轭结构单元,也称骨干单元(Backbone Unit),选自单环或多环芳基或杂芳基,优先选择的单元形式为苯,联二亚苯(Biphenylene),萘,蒽,菲,二氢菲,9,10-二氢菲,芴,二芴,螺二芴,对苯乙炔,反茚并芴,顺茚并,二苯并-茚并芴,茚并萘及它们的衍生物。
A:具有空穴输运能力的功能基团,可相同或不同地选自包含有以上所述的空穴注入或传输材料(HIM/HTM)的结构单元;在一个优先的实施例中,A选自胺,联苯类三芳胺,噻吩, 并噻吩如二噻吩并噻吩和并噻吩,吡咯,苯胺,咔唑,indenocarbazole,氮茚并氮芴,并五苯,酞菁,卟啉及其的衍生物。
x,y:>0,且x+y=1;通常y≥0.10,比较好为≥0.15,更好为≥0.20,最好为x=y=0.5.
在一实施例中,作为HTM的共轭高聚物可选自以下化合物:
Figure PCTCN2017112701-appb-000031
其中,
R各自彼此独立地选自:氢,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个基团R可以彼此和/或与所述基团R键合的环形成单环或多环的脂族或芳族环系;
r是0,1,2,3或4;
s是0,1,2,3,4或5;
x,y:>0,且x+y=1;通常y≥0.10,比较好为≥0.15,更好为≥0.20,最好为x=y=0.5。
另一类优先选择的有机功能材料是具有电子传输能力的高聚物,包括共轭高聚物和非共轭高聚物。
优先选择的高聚物ETM材料为均聚物,该均聚物优先选自:聚菲,聚菲罗啉,聚茚并芴,聚螺二芴,聚芴及其衍生物。
优先选择的高聚物ETM材料为化学式1表示的共轭共聚物,其中A在多次出现时可独立选择相同或不同的形式:
B:具有较大的能隙的π-共轭结构单元,也称骨干单元(Backbone Unit),选自单环或多环芳基或杂芳基,优先选择的单元形式为苯,联二亚苯(Biphenylene),萘,蒽,菲,二氢菲,9,10-二氢菲,芴,二芴,螺二芴,对苯乙炔,反茚并芴,顺茚并,二苯并-茚并芴,茚并萘及它们的衍生物。
A:具有电子输运能力的功能基,优先选自三(8-羟基喹啉)铝(AlQ3),苯,联二亚苯,萘,蒽,菲,Dihydrophenanthrene,芴,二芴,螺二芴,对苯乙炔,芘,苝,9,10-Dihydrophenanthrene,吩嗪,菲罗啉,反茚并芴,顺茚并,二苯并-茚并芴,茚并萘,苯并蒽及其衍生物。
x,y:>0,且x+y=1;通常y≥0.10,比较好为≥0.15,更好为≥0.20,最好为x=y=0.5.
在另一个实施方案中,按照本发明的组合物包含的功能材料为发光高聚物。
在一个优先的实施例中,发光高聚物是有如下通式的共轭高聚物:
Figure PCTCN2017112701-appb-000032
B:与化学式1的定义相同。
A1:具有空穴或电子输运能力的功能基,可选自包含有以上所述的空穴注入或传输材料(HIM/HTM),或电子注入或传输材料(EIM/ETM)的结构单元。
A2:具有发光功能的基团,可选自包含有以上所述的单重态发光体(荧光发光体),重态发光体(磷光发光体)的结构单元。
x,y,z:>0,且x+y+z=1;
发光高聚物的例子在如下的专利申请中公开:WO2007043495,WO2006118345,WO2006114364,WO2006062226,WO2006052457,WO2005104264,WO2005056633,WO2005033174,WO2004113412,WO2004041901,WO2003099901,WO2003051092,WO2003020790,WO2003020790,US2020040076853,US2020040002576,US2007208567,US2005962631,EP201345477,EP2001344788,DE102004020298,特将以上专利文件中的全部内容并入本文作为参考。
在另一个的实施例中,适合于本发明的高聚物是非共轭高聚物。这可以是所有功能基团都在侧链上,而主链是非共轭的高聚物。一些用作磷光主体或磷光发光材料的这类非共轭高聚物在US 7250226 B2,JP2007059939A,JP2007211243A2和JP2007197574A2等专利申请中有公开,一些用作荧光发光材料的这类非共轭高聚物在JP2005108556,JP2005285661和JP2003338375等专利申请中有公开。另外,非共轭高聚物也可以是一种高聚物,主链上共轭的功能单元通过非共轭的链接单元链接起来,这种高聚物的例子在DE102009023154.4和DE102009023156.0中有公开。特将以上专利文件中的全部内容并入本文作为参考。
本发明还涉及使上述的组合物在所述电子器件上形成功能材料薄膜的方法,包括以下步骤:
使用打印或涂布的方法,将所述组合物涂布到所述电子器件上;使所述组合物中的所述溶剂蒸发。
即本发明涉及一种通过打印或涂布的方法制备包含功能材料的薄膜的方法。
其中将如上所述的任何一种组合物用印刷或涂布的方法涂布于一基板上的印刷或涂布的方法可选自:喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。
在一个优选的实施例中,包含功能材料的薄膜为通过喷墨打印的方法制备。可用于打印按照本发明的油墨的喷墨打印机为已商业化的打印机,且包含按需打印喷头(drop-on-demand printheads)。这些打印机可以从Fujifilm Dimatix(Lebanon,N.H.),Trident International(Brookfield,Conn.),Epson(Torrance,Calif),Hitachi Data systems Corporation(Santa Clara,Calif),Xaar PLC(Cambridge,United Kingdom),和Idanit Technologies,Limited(Rishon Le Zion,Isreal)购得。例如,本发明可以使用Dimatix Materials Printer DMP-3000(Fujifilm)进行打印。
本发明进一步涉及包括使用上述的组合物所形成的功能材料薄膜的电子器件。另外,该电子器件可以包含有一层或多层功能材料薄膜,其中至少有一层功能薄膜是利用本发明的组合物制备而成,特别是通过打印或涂布的方法制备。
合适的电子器件包括:量子点发光二极管(QLED)、量子点光伏电池(QPV)、量子点发光电池(QLEEC)、量子点场效应管(QFET)、量子点发光场效应管、量子点激光器,量子点传感器,有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器,有机传感器等。
图1是一实施例的电子器件的示意图。该电子器件是电致发光器件或光伏电池,如图1所示,包括一基片101,一阳极102,至少一发光层或光吸收层104,一阴极106。以下仅针对电致发光器件做说明。
基片101可以是不透明或透明的。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基材可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优先的实施例中,基片可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极102可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到HIL或HTL或发光层中。在一个的实施例中,阳极的功函数和作为HIL或HTL的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于,Al,Cu,Au,Ag,Mg,Fe,Co,Ni,Mn,Pd,Pt,ITO,铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极106可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和作为EIL或ETL或HBL的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括:Al,Au,Ag,Ca,Ba,Mg,LiF/Al,MgAg合金,BaF2/Al,Cu,Fe,Co,Ni,Mn,Pd,Pt,ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
发光层104中至少包含有一发光功能材料,其厚度可以在2nm到200nm之间。在一个优 先的实施例中,按照本发明的发光器件中,其发光层是通过打印本发明的印刷油墨制备而成,其中印刷油墨中包含有至少一种如上所述的发光功能材料,特别是量子点或有机功能材料。
在一个实施例中,按照本发明的发光器件进一步包含有一个空穴注层(HIL)或空穴传输层(HTL)103,其中包含有如上所述的有机HTM或无机p型材料。在一个优选的实施例中,HIL或HTL可以通过打印本发明的印刷油墨制备而成,其中印刷油墨中包含有具有空穴传输能力的功能材料,特别是量子点或有机HTM材料。
在另一个实施例中,按照本发明的发光器件进一步包含有一个电子注层(EIL)或电子传输层(ETL)105,其中包含有如上所述的有机ETM或无机n型材料。在某些实施例中,EIL或ETL可以通过打印本发明的印刷油墨制备而成,其中印刷油墨中包含有具有电子传输能力的功能材料,特别是量子点或有机ETM材料。
本发明还涉及按照本发明的发光器件在各种场合的应用,包括,但不限于,各种显示器件,背光源,照明光源等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
实施例:
实施例1:蓝光量子点的制备(CdZnS/ZnS)
称取0.0512g的S和量取2.4mL十八烯(ODE)于25mL的单口烧瓶中,置于油锅中加热至80℃使S溶解,备用,以下简称溶液1;称取0.1280g的S和量取5mL油胺(OA)于25mL的单口烧瓶中,置于油锅中加热至90℃使S溶解,备用,以下简称溶液2;称量0.1028gCdO和1.4680g的乙酸锌,量取5.6mL的OA于50mL的三口烧瓶中,将三口烧瓶置于150mL的加热套中,两边瓶口用胶塞塞住,上方连接一个冷凝管,再连接至双排管,加热至150℃,抽真空40min,再通氮气;用注射器将12mL的ODE加入到三口烧瓶中,升温至310℃时快速用注射器将1.92mL的溶液1打进三口烧瓶中,计时12min;12min一到,用注射器将4mL的溶液2滴加至三口烧瓶中,滴加速度大约为0.5mL/min,反应3h,停止反应,立刻把三口烧瓶放入水中冷却至150℃;
将过量的正己烷加入至三口烧瓶中,然后将三口烧瓶中的液体转移至多个10mL的离心管中,离心,除去下层沉淀,重复三次;在经过后处理1的液体中加入丙酮至有沉淀产生,离心,除去上层清液,留下沉淀;再用正己烷溶解沉淀,后加丙酮至有沉淀出来,离心,除去上层清液,留下沉淀,重复三次;最后用甲苯溶解沉淀,转移至玻璃瓶中存储。
实施例2:绿光量子点的制备(CdZnSeS/ZnS)
称量0.0079g的硒和0.1122g的硫于25mL的单口烧瓶中,量取2mL的三辛基膦(TOP),通氮气,搅拌,备用,以下简称溶液1;称量0.0128g的CdO和0.3670g的乙酸锌,量取2.5mL的OA于25mL的三口烧瓶中,两边瓶口用胶塞塞住,上方连接一个冷凝管,再连接至双排管,将三口烧瓶置于50mL的加热套中,抽真空通氮气,加热至150℃,抽真空30min,注射7.5mL的ODE,再加热至300℃快速注射1mL的溶液1,计时10min;10min一到,立刻停止反应,将三口烧瓶置于水中冷却。
往三口烧瓶中加入5mL的正己烷,然后就混合液加入至多个10mL的离心管中,加入丙酮至有沉淀出来,离心。取沉淀,除去上层清液,用正己烷将沉淀溶解,加入丙酮至有沉淀产生,离心。重复三次。最后的沉淀用少量的甲苯溶解,转移至玻璃瓶中储存。
实施例3:红光量子点的制备(CdSe/CdS/ZnS)
1mmol的CdO,4mmol的OA和20ml的ODE加入到100ml三口烧瓶中,鼓氮气,升 温至300℃形成Cd(OA)2前驱体.在此温度下,快速注入0.25mL的溶有0.25mmol的Se粉的TOP。反应液在此温度下反应90秒,生长得到约3.5纳米的CdSe核。0.75mmol的辛硫醇在300℃下逐滴加入到反应液中,反应30分钟后生长约1纳米厚的CdS壳。4mmol的Zn(OA)2和2ml的溶有4mmol的S粉的TBP随后逐滴加入到反应液中,用以生长ZnS壳(约1纳米)。反应持续10分钟后,冷却至室温。
往三口烧瓶中加入5mL的正己烷,然后就混合液加入至多个10mL的离心管中,加入丙酮至有沉淀出来,离心。取沉淀,除去上层清液,用正己烷将沉淀溶解,加入丙酮至有沉淀产生,离心。重复三次。最后的沉淀用少量的甲苯溶解,转移至玻璃瓶中储存。
实施例4:ZnO纳米粒子的制备
将1.475g醋酸锌溶于62.5mL甲醇中,得到溶液1。将0.74g KOH溶于32.5mL甲醇中,得到溶液2。溶液1升温至60℃,激烈搅拌。使用进样器将溶液2逐滴滴加进溶液1。滴加完成后,该混合溶液体系在60℃下继续搅拌2小时。移去加热源,将溶液体系静置2小时。采用4500rpm,5min的离心条件,对反应溶液离心清洗三遍以上。最终得到白色固体为直径约3nm的ZnO纳米粒子。
实施例5:含戊苯与1-四氢萘酮的量子点印刷油墨的制备
分别称量戊苯(5.7g)与1-四氢萘酮(3.8g)溶剂(重量比为60:40)。在小瓶内放入搅拌子,清洗干净后转移至手套箱中。用丙酮将量子点从溶液中析出,离心得到量子点固体。在手套箱中称取0.5g量子点固体,加到小瓶中的戊苯溶剂中,在60℃温度下搅拌直至量子点完全分散后,继续加入1-四氢萘酮溶剂,得到混合溶液并持续搅拌直至量子点完全分散,冷却至室温。将得到的量子点溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例6:含环庚酮与二苄醚的ZnO纳米粒子印刷油墨的制备
分别称量环庚酮(5.7g)与二苄醚(3.8g)溶剂(重量比为60:40)。在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在手套箱中称取0.5g ZnO纳米粒子固体,加到小瓶中的环庚酮溶剂中,在60℃温度下搅拌直至ZnO纳米粒子完全分散后,继续加入二苄醚溶剂,得到混合溶液并持续搅拌直至ZnO纳米粒子完全分散,冷却至室温。将得到的ZnO纳米粒子溶液经0.2μm PTFE滤膜过滤。密封并保存。
以下实施例中所涉及的有机功能材料均是可商业购得,如吉林奥莱德(JilinOLED Material Tech Co.,Ltd,www.jl-oled.com),或按照文献报道的方法合成而得。
实施例7:含三氯苯与3-苯氧基甲苯的有机发光层材料印刷油墨的制备
在该实施例中,发光层有机功能材料包含一种磷光主体材料和一种磷光发光体材料。磷光主体材料选自如下的咔唑衍生物:
Figure PCTCN2017112701-appb-000033
磷光发光体材料选自如下铱配合物:
Figure PCTCN2017112701-appb-000034
分别称量三氯苯(5.88g)与3-苯氧基甲苯(3.92g)溶剂(重量比为60:40)。在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在手套箱中称取0.18g磷光主体材料和0.02g磷光发光体材料,加到小瓶中的三氯苯溶剂中,搅拌混合。在60℃温度下搅拌直至有机功能材料完全溶解后,继续加入3-苯氧基甲苯溶剂,得到混合溶液并持续搅拌直至有机材料完全溶解,冷却至室温。将得到的有机功能材料溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例8:含对甲基异丙基苯与3-异丙基联苯的有机发光层材料印刷油墨的制备
在该实施例中,发光层有机功能材料包含一种荧光主体材料和一种荧光发光体材料。
荧光主体材料选自如下的螺芴衍生物:
Figure PCTCN2017112701-appb-000035
荧光发光体材料选自如下化合物:
Figure PCTCN2017112701-appb-000036
分别称量对甲基异丙基苯(5.88g)与3-异丙基联苯(3.92g)溶剂(重量比为60:40)。在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在手套箱中称取0.19g荧光主体材料和0.01g荧光发光体材料,加到小瓶中的对甲基异丙基苯溶剂中,搅拌混合。在60℃温度下搅拌直至有机功能材料完全溶解后,继续加入3-异丙基联苯溶剂,得到混合溶液并持续搅拌直至有机材料完全溶解,冷却至室温。将得到的有机功能材料溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例9:含邻二乙苯与苯甲酸苄酯的有机发光层材料印刷油墨的制备
在该实施例中,发光层有机功能材料包含一种主体材料和一种TADF材料。
主体材料选自如下结构的化合物:
Figure PCTCN2017112701-appb-000037
TADF材料选自如下结构的化合物:
Figure PCTCN2017112701-appb-000038
分别称量邻二乙苯(5.88g)与苯甲酸苄酯(3.92g)溶剂(重量比为60:40)。在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在手套箱中称取0.18g主体材料和0.02g TADF材料,加到小瓶中的邻二乙苯溶剂中,搅拌混合。在60℃温度下搅拌直至有机功能材料完全溶解后,继续加入苯甲酸苄酯溶剂,得到混合溶液并持续搅拌直至有机材料完全溶解,冷却至室温。将得到的有机功能材料溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例10:含丁苯与磷酸三苯酯的空穴传输材料印刷油墨的制备
在该实施例中,印刷油墨包含一种具有空穴传输能力的空穴传输层材料。
空穴传输材料选自如下的三芳胺衍生物:
Figure PCTCN2017112701-appb-000039
分别称量邻丁苯(5.88g)与磷酸三苯酯(3.92g)溶剂(重量比为60:40)。在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在手套箱中称取0.2g空穴传输材料,加到小瓶中的丁苯溶剂中,搅拌混合。在60℃温度下搅拌直至有机功能材料完全溶解后,继续加入磷酸三苯酯溶剂,得到混合溶液并持续搅拌直至有机材料完全溶解,冷却至室温。将得到的有机功能材料溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例11:粘度及表面张力测试
功能材料油墨的粘度由DV-I Prime Brookfield流变仪测试;功能材料油墨的表面张力由SITA气泡压力张力仪测试。
经上述测试,实施例5得到的功能材料油墨的粘度为5.1±0.3cPs,表面张力为33.1±0.2dyne/cm。
经上述测试,实施例6得到的功能材料油墨的粘度为5.4±0.3cPs,表面张力为33.5±0.1dyne/cm。
经上述测试,实施例7得到的功能材料油墨的粘度为4.5±0.3cPs,表面张力为32.6±0.1dyne/cm。
经上述测试,实施例8得到的功能材料油墨的粘度为6.1±0.5cPs,表面张力为29.7±0.5dyne/cm。
经上述测试,实施例9得到的功能材料油墨的粘度为6.3±0.5cPs,表面张力为33.5±0.5dyne/cm。
经上述测试,实施例10得到的功能材料油墨的粘度为6.6±0.5cPs,表面张力为32.2±0.5dyne/cm。
利用上述制备的基于两种有机溶剂体系的包含功能材料的印刷油墨,通过喷墨打印的方 式,可制备发光二极管中的功能层,如发光层和电荷传输层,具体步骤如下。
将包含功能材料的油墨装入油墨桶中,油墨桶装配于喷墨打印机,如Dimatix Materials Printer DMP-3000(Fujifilm)。调节喷射油墨的波形、脉冲时间和电压,使油墨喷射达到最优,且实现油墨喷射范围的稳定化。在制备功能材料薄膜为发光层的有机发光二极管/量子点发光二极管(OLED/QLED)器件时,按照如下技术方案:OLED/QLED的基板为溅射有氧化铟锡(ITO)电极图案的0.7mm厚的玻璃。在ITO上使像素界定层图案话,形成内部用于沉积打印油墨的孔。然后将HIL/HTL材料喷墨打印至该孔中,真空环境下高温干燥移除溶剂,得到HIL/HTL薄膜。此后,将包含发光功能材料的印刷油墨喷墨打印到HIL/HTL薄膜上,真空环境下高温干燥移除溶剂,得到发光层薄膜。随后将包含有电子传输性能的功能材料的印刷油墨喷墨打印到发光层薄膜上,真空环境下高温干燥移除溶剂,形成电子传输层(ETL)。在使用有机电子传输材料时,ETL也可通过真空热蒸镀而成。然后Al阴极通过真空热蒸镀而成,最后封装完成OLED/QLED器件制备。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种用于印刷电子器件的组合物,其特征在于,所述组合物包含功能材料和溶剂,所述溶剂可从所述组合物中蒸发以形成功能材料薄膜;
    所述溶剂至少由两种有机溶剂混合而成,所述两种有机溶剂为第一溶剂和第二溶剂,所述第一溶剂和所述第二溶剂互溶,所述第一溶剂和所述第二溶剂中至少一种有机溶剂的沸点≥160℃,所述第二溶剂的沸点大于所述第一溶剂,且所述第二溶剂的粘度大于所述第一溶剂,所述第二溶剂和所述第一溶剂的粘度差至少为2cPs。
  2. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,25℃的条件下,所述第一溶剂以及所述第二溶剂中至少一种的粘度为1cps~100cps。
  3. 根据权利要求1-2任一项所述的用于印刷电子器件的组合物,其特征在于,25℃的条件下,所述第一溶剂以及所述第二溶剂中至少一种的表面张力为19dyne/cm~50dyne/cm。
  4. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述第二溶剂的沸点比所述第一溶剂的沸点至少高10℃,所述第一溶剂的沸点为100℃~250℃,所述第二溶剂的沸点≥160℃。
  5. 根据权利要求1-4任一项所述的用于印刷电子器件的组合物,其特征在于,所述第一溶剂占所述溶剂的总重量的30%~90%,所述第二溶剂占所述溶剂的总重量的10%~70%。
  6. 根据权利1-4任一项所述的用于印刷电子器件的组合物,其特征在于,所述第一溶剂或所述第二溶剂各自独立地选自:取代或未取代的芳族溶剂、取代或未取代的杂芳族溶剂、芳族酮溶剂、芳族醚溶剂、酯溶剂、直链脂肪族溶剂、脂环族溶剂、脂肪族酮溶剂、脂肪族醚溶剂、醇溶剂、无机酯溶剂。
  7. 根据权利要求6所述的用于印刷电子器件的组合物,其特征在在于,所述取代或未取代的芳族溶剂选自:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、、N-甲基二苯胺、4-异丙基联苯、α、α-二氯二苯甲烷、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚或2-异丙基萘;
    所述取代或未取代的杂芳族溶剂选自:2-苯基吡啶、3-苯基吡啶、4-(3-苯基丙基)吡啶、喹啉、异喹啉、8-羟基喹啉、2-呋喃甲酸甲酯或2-呋喃甲酸乙酯;
    所述芳族酮溶剂选自:1-四氢萘酮、2-四氢萘酮、苯乙酮、苯丙酮或二苯甲酮,所述1-四氢萘酮或2-四氢萘酮各自独立地任选被脂肪族基、芳基、杂芳基或卤素的取代基取代;所述苯乙酮、苯丙酮或二苯甲酮各自独立地任选被甲基取代;
    所述芳族醚溶剂选自:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃或乙基-2-萘基醚;
    所述酯溶剂选自:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯或油酸烷酯;
    所述脂环族溶剂选自:四氢萘、环己基苯、十氢化萘、2-苯氧基四氢呋喃、1,1’-双环己烷、丁基环己烷、松香酸乙酯、松香酸苄酯、乙二醇碳酸酯、氧化苯乙烯、异佛尔酮、3,3,5-三甲基环己酮、环庚酮、葑酮、1-四氢萘酮、2-四氢萘酮、2-(苯基环氧)四氢萘酮、6-(甲氧基)四氢萘酮、γ-丁内酯、γ-戊内酯、6-己内酯、N,N-二乙基环己胺、环丁砜或2,4-二甲 基环丁砜;
    所述脂肪族酮溶剂选自:2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、二正戊基酮、佛尔酮、异佛尔酮、2,6,8-三甲基-4-壬酮、樟脑或葑酮;
    所述脂肪族醚溶剂选自:戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚或四乙二醇二甲醚;
    所述无机酯溶剂选自:硼酸三丁酯、硼酸三戊酯、磷酸三甲酯、磷酸三乙酯、磷酸三丁酯、磷酸三(2-乙基己基)酯、磷酸三苯酯、磷酸二乙酯、磷酸二丁酯或磷酸二(2-乙基己基)酯。
  8. 根据权利要求7所述的用于印刷电子器件的组合物,其特征在于,所述第一溶剂选自:甲苯、二甲苯、氯苯、二氯苯、对二异丙基苯、戊苯、四氢萘、环己基苯、对甲基异丙苯、邻二乙苯、四甲基苯、丁苯、三氯苯、十氢化萘、丁基环己烷、丁内酯、氧化苯乙烯、环庚酮、磷酸三乙酯或喹啉;
    所述第二溶剂选自:1-四氢萘酮、3-苯氧基甲苯、1-甲氧基萘、3-异丙基联苯、苯甲酸苄酯、二苄醚、邻苯二甲酸二烯丙酯、异壬酸异壬酯、环丁砜或磷酸三苯酯。
  9. 根据权利要求8所述的用于印刷电子器件的组合物,其特征在于,所述第一溶剂为戊苯,所述第二溶剂为1-四氢萘酮;
    或者所述第一溶剂为环庚酮,所述第二溶剂为二苄醚;
    或者所述第一溶剂为三氯苯,所述第二溶剂为3-苯氧基甲苯;
    或者所述第一溶剂为对甲基异丙苯,所述第二溶剂为3-异丙基联苯;
    或者所述第一溶剂为邻二乙苯,所述第二溶剂为苯甲酸苄酯;
    或者所述第一溶剂为丁苯,所述第二溶剂为磷酸三苯酯。
  10. 根据权利要求8或9所述的用于印刷电子器件的组合物,其特征在于,所述第一溶剂和所述第二溶剂的重量比为40:60~80:20。
  11. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述溶剂还包括:甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚或其混合物。
  12. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述功能材料占所述组合物的重量百分比为0.3%~30%,所述溶剂占所述组合物的重量百分比为70%~99.7%。
  13. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述功能材料为无机纳米材料或有机功能材料。
  14. 根据权利要求1所述的用于印刷电子器件的组合物,其特征在于,所述的无机纳米材料是量子点材料,所述量子点材料的粒径具有单分散的尺寸分布,所述量子点材料的形状选自球形、立方体、棒状或支化结构。
  15. 根据权利要求14所述的用于印刷电子器件的组合物,其特征在于,所述量子点材料为半导体纳米晶体;所述半导体纳米晶体包括至少一种半导体材料;所述半导体材料选自:元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物或其混合物。
  16. 根据权利要求15所述的用于印刷电子器件的组合物,其特征在于,其特征在于,所 述无机纳米材料选自钙钛矿纳米材料、金属纳米粒子材料、金属氧化物纳米粒子材料或其混合物。
  17. 根据权利要求13所述的用于印刷电子器件的组合物,其特征在于,所述有机功能材料包括:空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体、主体材料及有机染料中的一种或多种。
  18. 根据权利要求15所述的用于印刷电子器件的组合物,其特征在于,所述有机功能材料包含有至少一种主体材料和至少一种发光体。
  19. 一种制备权利要求1~18中任一项所述的组合物的方法,包括如下工序:
    1)使所述功能材料中的任一固体成分溶解到所述第一溶剂的工序,和
    2)向溶解有所述的固体成分的所述第一溶剂中加入所述第二溶剂形成混合溶液的工序。
  20. 一种电子器件,其特征在于,包括使用权利要求1~18中任一项所述的组合物所形成的功能材料薄膜。
PCT/CN2017/112701 2016-11-23 2017-11-23 用于印刷电子器件的组合物及其制备方法和用途 WO2018095380A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780059392.0A CN109790406B (zh) 2016-11-23 2017-11-23 用于印刷电子器件的组合物及其制备方法和用途
US16/463,025 US20190276696A1 (en) 2016-11-23 2017-11-23 Formulations for printed electronic devices, preparation methods and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611048311 2016-11-23
CN201611048311.0 2016-11-23

Publications (1)

Publication Number Publication Date
WO2018095380A1 true WO2018095380A1 (zh) 2018-05-31

Family

ID=62195762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112701 WO2018095380A1 (zh) 2016-11-23 2017-11-23 用于印刷电子器件的组合物及其制备方法和用途

Country Status (3)

Country Link
US (1) US20190276696A1 (zh)
CN (1) CN109790406B (zh)
WO (1) WO2018095380A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085749A (zh) * 2018-06-15 2019-08-02 广东聚华印刷显示技术有限公司 量子点墨水及其制备方法和量子点发光器件
WO2020245592A1 (en) * 2019-06-06 2020-12-10 Peroled Limited Perovskite ink formulations
CN112210247A (zh) * 2019-07-09 2021-01-12 精工爱普生株式会社 溶剂型墨组合物
US11149040B2 (en) 2017-11-03 2021-10-19 Amgen Inc. Fused triazole agonists of the APJ receptor
US11807624B2 (en) 2018-05-01 2023-11-07 Amgen Inc. Substituted pyrimidinones as agonists of the APJ receptor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018095381A1 (zh) * 2016-11-23 2018-05-31 广州华睿光电材料有限公司 印刷油墨组合物及其制备方法和用途
CN107833976A (zh) * 2017-10-24 2018-03-23 深圳市华星光电半导体显示技术有限公司 Qled器件的制作方法及qled器件
JP2022506510A (ja) * 2018-11-06 2022-01-17 メルク パテント ゲーエムベーハー 電子デバイスの有機素子を形成する方法
CN112531123B (zh) * 2019-09-19 2022-09-06 Tcl科技集团股份有限公司 电子传输膜层的制备方法和量子点发光二极管的制备方法
CN115960491B (zh) * 2022-12-16 2024-03-29 深圳市华星光电半导体显示技术有限公司 墨水、oled器件及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102504803A (zh) * 2011-09-29 2012-06-20 中国科学院长春应用化学研究所 一种利用对流改善喷墨打印薄膜均匀性的有机发光材料溶液及其制备方法
CN102504804A (zh) * 2011-09-29 2012-06-20 中国科学院长春应用化学研究所 一种利用抑制边缘流动改善喷墨打印薄膜均匀性的有机发光材料溶液及其制备方法
WO2014035716A1 (en) * 2012-08-27 2014-03-06 Corning Incorporated Semiconducting fused thiophene polymer ink formulation
US20150132496A1 (en) * 2013-11-11 2015-05-14 Lg Display Co., Ltd. Ink for display device manufacturing and method for manufacturing of the same, method for manufacturing using the same
CN105336879A (zh) * 2015-10-19 2016-02-17 Tcl集团股份有限公司 Qled及qled显示装置的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4307839B2 (ja) * 2001-03-10 2009-08-05 メルク パテント ゲーエムベーハー 有機半導体の溶液および分散液
US20050067949A1 (en) * 2003-09-30 2005-03-31 Sriram Natarajan Solvent mixtures for an organic electronic device
JP2005328030A (ja) * 2005-02-09 2005-11-24 Mitsubishi Chemicals Corp 半導体デバイス作製用インク、及びそれを用いた半導体デバイスの作製方法
JP6201538B2 (ja) * 2013-09-03 2017-09-27 セイコーエプソン株式会社 機能層形成用インクの製造方法、有機el素子の製造方法
CN105038408B (zh) * 2015-08-14 2020-01-07 广州华睿光电材料有限公司 印刷油墨及应用其印刷而成的电子器件
CN105062193B (zh) * 2015-08-14 2020-01-31 广州华睿光电材料有限公司 印刷油墨组合物及电子器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102504803A (zh) * 2011-09-29 2012-06-20 中国科学院长春应用化学研究所 一种利用对流改善喷墨打印薄膜均匀性的有机发光材料溶液及其制备方法
CN102504804A (zh) * 2011-09-29 2012-06-20 中国科学院长春应用化学研究所 一种利用抑制边缘流动改善喷墨打印薄膜均匀性的有机发光材料溶液及其制备方法
WO2014035716A1 (en) * 2012-08-27 2014-03-06 Corning Incorporated Semiconducting fused thiophene polymer ink formulation
US20150132496A1 (en) * 2013-11-11 2015-05-14 Lg Display Co., Ltd. Ink for display device manufacturing and method for manufacturing of the same, method for manufacturing using the same
CN105336879A (zh) * 2015-10-19 2016-02-17 Tcl集团股份有限公司 Qled及qled显示装置的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149040B2 (en) 2017-11-03 2021-10-19 Amgen Inc. Fused triazole agonists of the APJ receptor
US11807624B2 (en) 2018-05-01 2023-11-07 Amgen Inc. Substituted pyrimidinones as agonists of the APJ receptor
CN110085749A (zh) * 2018-06-15 2019-08-02 广东聚华印刷显示技术有限公司 量子点墨水及其制备方法和量子点发光器件
CN110085749B (zh) * 2018-06-15 2021-07-20 广东聚华印刷显示技术有限公司 量子点墨水及其制备方法和量子点发光器件
WO2020245592A1 (en) * 2019-06-06 2020-12-10 Peroled Limited Perovskite ink formulations
CN112210247A (zh) * 2019-07-09 2021-01-12 精工爱普生株式会社 溶剂型墨组合物

Also Published As

Publication number Publication date
CN109790406B (zh) 2021-12-07
US20190276696A1 (en) 2019-09-12
CN109790406A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
EP3546532B1 (en) Printing ink composition, preparation method therefor, and uses thereof
WO2018095380A1 (zh) 用于印刷电子器件的组合物及其制备方法和用途
WO2017080325A1 (zh) 印刷组合物及其应用
CN105062193B (zh) 印刷油墨组合物及电子器件
WO2017028639A1 (zh) 印刷油墨及应用其印刷而成的电子器件
WO2017080323A1 (zh) 印刷组合物及其应用
WO2017080307A1 (zh) 用于印刷电子器件的组合物及其在电子器件中的应用
WO2017076135A1 (zh) 电致发光器件、其制备方法及油墨组合物
WO2017080317A1 (zh) 用于印刷电子的组合物及其在电子器件中的应用
WO2017092619A1 (zh) 三联苯并环戊二烯类化合物、高聚物、混合物、组合物以及有机电子器件
CN109791996B (zh) 高聚物及电致发光器件
US20180346748A1 (en) Formulation for printing electronic device and application thereof in electronic device
WO2017080318A1 (zh) 印刷电子组合物、包含其的电子器件及功能材料薄膜的制备方法
CN108137971B (zh) 用于印刷电子的组合物及其在电子器件中的应用
WO2017092476A1 (zh) 螺环衍生物、高聚物、混合物、组合物以及有机电子器件
WO2016091218A1 (zh) 一种显示器件及其制备方法
US11555128B2 (en) Printing composition, electronic device comprising same and preparation method for functional material thin film
WO2017080324A1 (zh) 含无机纳米材料的印刷组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874368

Country of ref document: EP

Kind code of ref document: A1