WO2017028639A1 - 印刷油墨及应用其印刷而成的电子器件 - Google Patents

印刷油墨及应用其印刷而成的电子器件 Download PDF

Info

Publication number
WO2017028639A1
WO2017028639A1 PCT/CN2016/088639 CN2016088639W WO2017028639A1 WO 2017028639 A1 WO2017028639 A1 WO 2017028639A1 CN 2016088639 W CN2016088639 W CN 2016088639W WO 2017028639 A1 WO2017028639 A1 WO 2017028639A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aromatic
printing ink
solvent
organic solvent
Prior art date
Application number
PCT/CN2016/088639
Other languages
English (en)
French (fr)
Inventor
潘君友
杨曦
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to US15/751,370 priority Critical patent/US20180237691A1/en
Publication of WO2017028639A1 publication Critical patent/WO2017028639A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label

Definitions

  • the present invention relates to a printing ink comprising an inorganic nanomaterial, the printing ink comprising at least one inorganic nanomaterial, in particular a quantum dot, and at least one organic solvent based on an aromatic ketone or an aromatic ether; Further relates to electronic devices, in particular electroluminescent devices, printed using such printing inks.
  • Quantum dots are nano-sized semiconductor materials with quantum confinement effects. When stimulated by light or electricity, quantum dots emit fluorescence with specific energy. The color (energy) of fluorescence is determined by the chemical composition and size of quantum dots. Therefore, the control of the size and shape of quantum dots can effectively regulate its electrical and optical properties. At present, countries are studying the application of quantum dots in full color, mainly in the display field.
  • quantum dots have been rapidly developed as electroluminescent devices (QLEDs), and device lifetimes have been greatly improved, as in Peng et al., Nature Vol515 96 (2015) and Qian et al., in Nature Photonics Vol9 259 ( Reported in 2015).
  • QLEDs electroluminescent devices
  • electrons and holes are injected into the light-emitting layer to illuminate under an applied electric field.
  • Spin coating is currently the primary method for forming quantum dot luminescent layer films.
  • spin coating techniques are difficult to apply to the fabrication of large area electroluminescent devices.
  • inkjet printing can produce quantum dot films on a large scale and low cost; compared with traditional semiconductor production processes, inkjet printing has low energy consumption, low water consumption, and environmental protection, which is a great advantage and potential for production. technology. Viscosity and surface tension are important parameters that affect the printing ink and printing process.
  • One Promising printing inks require proper viscosity and surface tension.
  • quantum dot inks for printing several companies have reported quantum dot inks for printing:
  • Nanoco Technologies Ltd. discloses a method of printing a printable ink formulation comprising nanoparticles (CN101878535B).
  • a printable ink formulation comprising nanoparticles (CN101878535B).
  • a suitable ink substrate such as toluene and dodecyl selenol
  • a printable nanoparticle ink and a corresponding nanoparticle-containing film are obtained.
  • the ink contains a concentration of quantum dot material, an organic solvent, and an alcohol polymer additive having a high viscosity.
  • a quantum dot film was obtained by printing the ink, and a quantum dot electroluminescent device was prepared.
  • QD Vision discloses a quantum dot ink formulation comprising a host material, a quantum dot material and an additive (US2010264371A1).
  • a novel printing ink comprising an inorganic nanomaterial, the printing ink comprising at least one inorganic nanomaterial, in particular a quantum dot material, and at least one An organic solvent based on an aromatic ketone or an aromatic ether; the invention further provides an electronic device, in particular a photovoltaic device, in particular an electroluminescent device, printed using such a printing ink.
  • a printing ink comprising an inorganic nano material, in particular a quantum dot, and at least one organic solvent based on an aromatic ketone or an aromatic ether, the organic solvent based on an aromatic ketone or an aromatic ether having a high boiling point
  • the aromatic ketone or aromatic ether-based organic solvent can be evaporated from the solvent system at 200 ° C and its viscosity @ 25 ° C in the range of 1 cPs to 100 cPs to form an inorganic nano material film.
  • the organic solvent based on the aromatic ketone or aromatic ether described herein has a surface tension of @25 ° C in the range of 19 dyne/cm to 50 dyne/cm.
  • the organic solvent of the aromatic ketone and the aromatic ether respectively has a structural formula represented by the general formulae (I) and (II):
  • Ar1 and Ar2 may be the same or different and are each a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 40 ring atoms;
  • Ar1 and Ar2 may also be different, and one of them has 5 to 40 ring atoms.
  • a substituted or unsubstituted aromatic or heteroaromatic ring system the other being a linear alkyl, alkoxy or thioalkoxy group having 1 to 20 C atoms, or having 3 to 20 C atoms a branched or cyclic alkyl, alkoxy or thioalkoxy group or a silyl group, or a substituted keto group having 1 to 20 C atoms, having 2 to 20
  • the substituted or unsubstituted aromatic or heteroaromatic group in which Ar1 and Ar2 in the general formulae (I) and (II) are selected has a structure represented by the following formula:
  • X is CR1 or N
  • the organic solvent is a single aromatic ketone solvent, or a mixture of a plurality of aromatic ketone solvents, or a mixture of an aromatic ketone solvent and another solvent; or the organic solvent is a single aromatic ether solvent, or a mixture of a plurality of aromatic ether solvents, or a mixture of an aromatic ether solvent and other solvents; or the organic solvent is a mixture of an aromatic ketone solvent and an aromatic ether solvent, or a mixture of the mixture with other solvents.
  • the organic solvent of the aromatic ketone described therein is 1-tetralone, 2-tetralone, acetophenone, propiophenone, benzophenone, and derivatives thereof.
  • the organic solvent of the aromatic ether described therein is 3-phenoxytoluene, butoxybenzene, benzylbutylbenzene, p-anisaldehyde dimethyl acetal, tetrahydro-2-phenoxy-2H- Pyran, 1,2-dimethoxy-4-(1-propenyl)benzene, 1,3-dipropylbenzene, 2,5-dimethoxytoluene, dibenzyl ether, 1,2- Dimethoxybenzene, glycidyl phenyl ether, and the like.
  • the aromatic ketone-based organic solvent described therein is tetralone or contains at least 50% by weight of tetralone and at least one other solvent.
  • the aromatic ether-based organic solvent described therein is 3-phenoxytoluene or contains at least 50% by weight of 3-phenoxytoluene and at least one other solvent.
  • the inorganic nanomaterial described therein is a quantum dot material, that is, the particle diameter thereof has a monodisperse size distribution, and the shape thereof may be selected from different nanotopography such as a sphere, a cube, a rod or a branched structure.
  • It comprises at least one luminescent quantum dot material having an emission wavelength between 380 nm and 2500 nm.
  • the at least one inorganic nanomaterial described therein is Group IV, II-VI, II-V, III-V, III-VI, IV-VI, I-III-VI of the periodic table, Group II-IV-VI, Group II-IV-V binary or multi-component semiconductor compounds or mixtures of these compounds.
  • the at least one inorganic nanomaterial described therein is a perovskite nanoparticle material, particularly a perovskite nanoparticle having a luminescent property, or a metal nanoparticle material, or a metal oxide nanoparticle material, or mixture.
  • the organic functional material may be selected from the group consisting of a hole injection material (HIM), a hole transport material (HTM), an electron transport material (ETM), an electron injecting material (EIM), and an electron.
  • HIM hole injection material
  • HTM hole transport material
  • ETM electron transport material
  • EIM electron injecting material
  • EBM Barrier material
  • HBM hole blocking material
  • Emitter illuminator
  • Hos host material
  • the weight ratio of the inorganic nanomaterial is 0.3% to 70%, and the weight ratio of the organic solvent containing the aromatic ketone or the aromatic ether is 30% to 99.7%.
  • An electronic device comprising a functional layer printed from a printing ink as described above, wherein an organic solvent based on an aromatic ketone or an aromatic ether can be evaporated from a solvent system to form a film comprising an inorganic nanomaterial.
  • the electronic device may be selected from a quantum dot light emitting diode (QLED), a quantum dot photovoltaic cell (QPV), a quantum dot light emitting cell (QLEEC), a quantum dot field effect transistor (QFET), Quantum dot luminescence field effect transistor, quantum dot laser, quantum dot sensor, etc.
  • QLED quantum dot light emitting diode
  • QPV quantum dot photovoltaic cell
  • QLEEC quantum dot light emitting cell
  • QFET quantum dot field effect transistor
  • Quantum dot luminescence field effect transistor Quantum dot luminescence field effect transistor
  • quantum dot laser quantum dot laser
  • quantum dot sensor etc.
  • the present invention provides a printing ink comprising inorganic nanoparticles comprising at least one inorganic nanomaterial, in particular a quantum dot material, and at least one organic solvent based on an aromatic ketone or an aromatic ether.
  • the viscosity and the surface tension can be adjusted to a suitable range in accordance with a specific printing method, particularly ink jet printing, to facilitate printing, and a film having a uniform surface can be formed.
  • the organic solvent based on the aromatic ketone or the aromatic ether can be effectively removed by post-treatment, such as heat treatment or vacuum treatment, which is advantageous for ensuring the performance of the electronic device.
  • the present invention therefore provides a printing ink for the preparation of high quality quantum dot films, providing a technical solution for printable quantum dot electronic or optoelectronic devices.
  • FIG. 1 is a structural view of a preferred electroluminescent device according to the present invention, in which 101 is a substrate, 102 is an anode, 103 is a hole injection layer (HIL) or a hole transport layer (HTL), and 104 is a light-emitting layer.
  • 105 is an electron injection layer (EIL) or an electron transport layer (ETL), and 106 is a cathode.
  • the invention provides a printing ink comprising an inorganic nano material and at least one organic solvent based on an aromatic ketone or an aromatic ether, the organic solvent based on an aromatic ketone or an aromatic ether having a boiling point higher than 200 ° C And its viscosity @25 ° C, in the range of 1 cPs to 100 cPs, Preferably, it is in the range of 1 cPs to 50 cPs, more preferably in the range of 1 cPs to 30 cPs, more preferably in the range of 1.5 cPs to 20 cPs, and the organic solvent based on an aromatic ketone or an aromatic ether can be evaporated from the solvent system to Forming an inorganic nanomaterial film.
  • the printing ink according to the present invention wherein the organic solvent based on an aromatic ketone or an aromatic ether has a surface tension of @25 ° C, preferably in the range of 19 dyne/cm to 50 dyne/cm, preferably It is in the range of 20dyne/cm to 40dyne/cm, more preferably in the range of 22dyne/cm to 35dyne/cm, and most preferably in the range of 25dyne/cm to 33dyne/cm.
  • the printing ink according to the present invention wherein the organic solvent of the aromatic ketone and the aromatic ether respectively has a structural formula represented by the general formulae (I) and (II):
  • Ar 1 and Ar 2 may be the same or different and are each a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 40 ring atoms;
  • Ar 1 and Ar 2 may also be different, and one of them is a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 40 ring atoms, and the other is a linear alkyl group having 1 to 20 C atoms.
  • An aromatic group refers to a hydrocarbon group containing at least one aromatic ring, including a monocyclic group and a polycyclic ring system.
  • a heteroaromatic group refers to a hydrocarbon group (containing a hetero atom) comprising at least one heteroaromatic ring, including a monocyclic group and a multiple ring system.
  • These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, a fused ring. At least one of these rings of the polycyclic ring is aromatic or heteroaromatic.
  • substituted or unsubstituted aromatic or heteroaromatic groups selected from the group consisting of Ar 1 and Ar 2 in the formulae (I) and (II) have the formula structure:
  • X is CR 1 or N
  • R 1 , R 2 , R 3 are H, D, or a linear alkyl, alkoxy or thioalkoxy group having 1 to 20 C atoms, or a branch having 3 to 20 C atoms Or a cyclic alkyl, alkoxy or thioalkoxy group or a silyl group, or a substituted keto group having 1 to 20 C atoms, having 2 to 20 C atoms
  • R 1 , R 2 , R 3 are H, D, or a linear alkyl, alkoxy or thioalkoxy group having from 1 to 10 C atoms, or A branched or cyclic alkyl, alkoxy or thioalkoxy group of 3 to 10 C atoms is either a silyl group or a substituted keto group having 1 to 10 C atoms.
  • suitable aromatic groups are: benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, anthracene, benzopyrene, triphenylene, anthracene, anthracene, and derivatives thereof.
  • heteroaromatic groups are: furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, anthracene , carbazole, pyrroloimidazole, pyrrolopyrrol, thienopyrrole, thienothiophene, furopyrrol, furanfuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, pyridine, pyridyl Azine, pyridazine, pyrimidine, triazine, quinoline, isoquinoline, o-diazepine, quinoxaline, phenanthridine, carbaidine, quinazoline, quinazolinone, and derivatives thereof.
  • suitable aromatic or heteroaromatic groups may be selected from, but not limited to, the following groups:
  • substitution of R 1 may be further carried out on these groups to obtain a substituted aromatic ring or heteroaryl ring.
  • the aromatic ketone or aromatic ether-based solvent system according to the present invention is capable of efficiently dispersing inorganic nanoparticles, particularly quantum dot materials, as a new dispersing solvent to replace the solvent of conventionally used dispersed inorganic nanoparticles, such as toluene, Xylene, chloroform, chlorobenzene, dichlorobenzene, n-heptane, and the like.
  • organic solvents based on aromatic ketones or aromatic ethers for dispersing inorganic nanoparticles, in particular quantum dots are selected taking into account their boiling point parameters.
  • the aromatic ether-based organic solvent has a boiling point higher than 200 ° C; in certain embodiments, the aromatic ketone or aromatic ether-based organic solvent has a high boiling point At 250 ° C. In another In some preferred embodiments, the aromatic ketone or aromatic ether-based organic solvent has a boiling point above 275 ° C or above 300 ° C. The boiling points within these ranges are beneficial for preventing nozzle clogging of the inkjet printhead.
  • the organic solvent based on an aromatic ketone or an aromatic ether can be evaporated from a solvent system to form a film containing inorganic nanomaterials (or quantum dots).
  • organic solvents based on aromatic ketones or aromatic ethers used to disperse inorganic nanomaterials, particularly quantum dots are selected for their surface tension parameters.
  • Suitable ink surface tension parameters are suitable for a particular substrate and a particular printing method.
  • the organic solvent based on an aromatic ketone or an aromatic ether has a surface tension at 25 ° C in the range of about 19 dyne / cm to 50 dyne / cm;
  • the aromatic ketone or aromatic ether-based organic solvent has a surface tension at 25 ° C ranging from about 22 dyne/cm to 35 dyne/cm; in a most preferred embodiment, the The organic solvent based on the aromatic ketone or aromatic ether has a surface tension at 25 ° C ranging from about 25 dyne/cm to 33 dyne/cm.
  • organic solvents based on aromatic ketones or aromatic ethers for dispersing inorganic nanomaterials, in particular quantum dots are selected taking into account the viscosity parameters of their inks.
  • the viscosity can be adjusted by different methods, such as by selection of a suitable organic solvent and concentration of the nanomaterial in the ink.
  • the printing ink according to the present invention comprises a weight ratio of inorganic nanomaterials in the range of 0.3% to 70% by weight, preferably 0.5% to 50% by weight, more preferably 0.5% to 30% by weight, most preferably It is in the range of 1% to 10% by weight.
  • the ink of the aromatic ketone or aromatic ether-based organic solvent has a viscosity at the above composition ratio of less than 100 cps; in a more preferred embodiment, the The ink of the organic solvent of the ketone or aromatic ether has a viscosity at the above composition ratio of less than 50 cps; In a most preferred embodiment, the ink of the aromatic ketone or aromatic ether-based organic solvent has a viscosity of 1.5 to 20 cps at the above composition ratio.
  • An ink obtained by a solvent system based on an aromatic ketone or an aromatic ether satisfying the above boiling point, surface tension parameter and viscosity parameter can form inorganic nanoparticles having a uniform thickness and composition properties, particularly a film of quantum dots.
  • the aromatic ketone or aromatic ether-based solvent system that is well suited for use comprises a system of a single aromatic ketone solvent, or a mixture of a plurality of aromatic ketone solvents, or a aryl group. a mixture of a ketone solvent and another solvent; or a single aromatic ether solvent, or a mixture of a plurality of aromatic ether solvents, or a mixture of an aromatic ether solvent and another solvent; or a mixture of an aromatic ketone solvent and an aromatic ether solvent Or a mixture of the mixture with other solvents.
  • the solvent of the aromatic ketone is a tetralone.
  • the tetralone involved in the present invention include 1-tetralone and 2-tetralone as follows.
  • the tetralone solvent comprises a derivative of 1-tetralone and 2-tetralone, ie, a tetralone substituted with at least one substituent.
  • substituents include an aliphatic group, an aryl group, a heteroaryl group, a halogen, and the like. Specific examples are 2-(phenyl epoxy)tetralone and 6-(methoxy)tetralone.
  • the solvent of the aromatic ketone is acetophenone, propiophenone, benzophenone, and derivatives thereof, such as 4-methylacetophenone, 3-methylacetophenone , 2-methylacetophenone, 4-methylpropiophenone, 3-methylpropiophenone, 2-methylpropiophenone.
  • the present invention may comprise some ketone solvents that do not contain aromatic or heteroaromatic groups, such as isophorone, 2,6,8-trimethyl-4-indanone. , camphor, ketone, ketone.
  • the aromatic ketone based solvent system is a mixture that can comprise at least 50% of the total weight of the solvent.
  • the aromatic ketone solvent is included in at least 70% by weight of the total solvent; more preferably, the aromatic ketone solvent is included in at least 90% by weight of the total solvent.
  • the aromatic ketone-based solvent system comprises at least 99% by weight of an aromatic ketone solvent, or consists essentially of an aromatic ketone solvent, or consists entirely of an aromatic ketone solvent.
  • the invention relates to a printing ink, characterized in that the aromatic ketone-based organic solvent is 1-tetralone or contains at least 50% by weight of 1-tetrahydrogen. Naphthone and at least one other solvent.
  • the invention relates to a printing ink, characterized in that the aromatic ketone-based organic solvent is 2-tetralone or comprises at least 50% by weight of 2-four. Hydronaphthalone and at least one other solvent.
  • possible aromatic ether solvents suitable for use in the present invention are: 3-phenoxytoluene, butoxybenzene, benzylbutylbenzene, p-anisaldehyde dimethyl acetal, tetrahydrogen -2-phenoxy-2H-pyran, 1,2-dimethoxy-4-(1-propenyl)benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxytoluene, 4-ethylbenyl ether, 1,2,4-trimethoxybenzene, 4-(1-propenyl)-1,2-dimethoxybenzene, 1,3- Dimethoxybenzene, glycidylphenyl ether, dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene.
  • the aromatic ether solvent is 3-benzene as shown below Oxytoluene:
  • the aromatic ether-based solvent system is a mixture that may comprise an aromatic ether solvent in at least 50% of the total weight of the solvent.
  • the aromatic ether solvent is included in at least 70% by weight of the total solvent; more preferably, the aromatic ether solvent is included in at least 90% by weight of the total solvent.
  • the aromatic ether-based solvent system comprises at least 99% by weight of an aromatic ether solvent, or consists essentially of an aromatic ether solvent, or consists entirely of an aromatic ether solvent.
  • the invention relates to a printing ink, characterized in that the aromatic ether-based organic solvent is 3-phenoxytoluene or comprises at least 50% by weight of 3-phenoxy Toluene and at least one other solvent.
  • 3-phenoxytoluene, or mixtures thereof with other ether solvents, or other non-ether solvents are well suited for use in the aromatic ether-based solvent systems described.
  • the aromatic ether-based solvent system can comprise 3-phenoxytoluene in at least 50% of the total weight of the solvent.
  • the 3-phenoxytoluene is included in at least 70% by weight of the total solvent; more preferably, the 3-phenoxytoluene is included in at least 90% by weight of the total solvent.
  • the aromatic ether-based solvent system comprises at least 99% by weight of 3-phenoxytoluene or consists essentially of 3-phenoxytoluene or consists entirely of 3-phenoxytoluene .
  • the printing ink further comprises another organic solvent.
  • organic solvents include, but are not limited to, methanol, ethanol, 2-methoxyethanol, Dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, 1,4-dioxane, acetone , methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, Butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthalene, decalin, hydrazine and/or mixtures thereof.
  • the printing ink may further comprise one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, adhesives, etc., for adjusting viscosity, film forming properties, and improving adhesion. Wait.
  • the printing ink can be deposited by various techniques to obtain a quantum dot film, and suitable printing or coating techniques include, but are not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, Spin coating, blade coating, roller printing, reverse roll printing, lithographic printing, flexographic printing, rotary printing, spray coating, brushing or pad printing, slit-type extrusion coating, and the like.
  • Preferred printing techniques are gravure, inkjet and inkjet printing. For more information on printing techniques and their related ink requirements, such as solvents and concentrations, viscosity, etc., see Handbook of Print Media: Technologies and Production Methods, edited by Helmut Kipphan. , ISBN 3-540-67326-1.
  • printing inks suitable for inkjet printing require adjustment of the surface tension, viscosity, and wettability of the ink so that the ink can be ejected through the nozzle at a printing temperature (such as room temperature, 25 ° C) without being sprayed. Drying on the nozzle or clogging the nozzle, or forming a continuous, flat and defect-free film on a particular substrate.
  • a printing temperature such as room temperature, 25 ° C
  • the printing ink according to the invention comprises at least one inorganic nanomaterial.
  • the inorganic nanomaterials have an average particle size in the range of from about 1 to 1000 nm. In certain preferred embodiments, the inorganic nanomaterials have an average particle size of from about 1 to 100 nm. In some more preferred embodiments, the inorganic nanomaterials have an average particle size of from about 1 to 20 nm, preferably from 1 to 10 nm.
  • the inorganic nanomaterials may be selected from different shapes including, but not limited to, different nanotopography such as spheres, cubes, rods, discs or branched structures, as well as mixtures of particles of various shapes.
  • the inorganic nanomaterial is a quantum dot material having a very narrow, monodisperse size distribution, i.e., the size difference between the particles and the particles is very small.
  • the deviation of the monodisperse quantum dots in the size of the root mean square is less than 15% rms; more preferably, the deviation of the monodisperse quantum dots in the size of the root mean square is less than 10% rms; optimally, monodisperse Quantum dots have a root mean square deviation of less than 5% rms in size.
  • the inorganic nanomaterial is an inorganic semiconductor material.
  • the inorganic nanomaterial is a luminescent material.
  • the luminescent inorganic nanomaterial is a quantum dot luminescent material.
  • luminescent quantum dots can illuminate at wavelengths between 380 nanometers and 2500 nanometers.
  • the luminescent wavelength of a quantum dot having a CdS core is in the range of about 400 nm to 560 nm; the luminescent wavelength of a quantum dot having a CdSe nucleus is in the range of about 490 nm to 620 nm; the luminescent wavelength of a quantum dot having a CdTe core Located in the range of about 620 nm to 680 nm; the quantum wavelength of the quantum dots having the InGaP core is in the range of about 600 nm to 700 nm; the wavelength of the quantum dots having the PbS core is about 800 nm to 2500 nm range; the quantum wavelength of the quantum dot with PbSe core is in the range of about 1200 nm to 2500 nm; the wavelength of the quantum dot with CuInGaS core is in the range of about 600
  • the quantum dot material comprises at least one blue light having a peak wavelength of 450 nm to 460 nm, or green light having a peak wavelength of 520 nm to 540 nm, or a peak wavelength of 615 nm to 630 nm. Red light, or a mixture of them.
  • the quantum dots contained may be selected from a particular chemical composition, topographical structure, and/or size to achieve light that emits the desired wavelength under electrical stimulation.
  • a particular chemical composition, topographical structure, and/or size to achieve light that emits the desired wavelength under electrical stimulation.
  • quantum dots For the relationship between the luminescent properties of quantum dots and their chemical composition, morphology and/or size, see Annual Review of Material Sci., 2000, 30, 545-610; Optical Materials Express., 2012, 2, 594-628; Nano Res, 2009. , 2, 425-447. The entire contents of the above-listed patent documents are hereby incorporated by reference.
  • the narrow particle size distribution of the quantum dots enables quantum dots to have a narrower luminescence spectrum (J. Am. Chem. Soc., 1993, 115, 8706; US 20150108405). Furthermore, depending on the chemical composition and structure employed, the size of the quantum dots needs to be adjusted accordingly within the above-described size range to achieve the luminescent properties of the desired wavelength.
  • the luminescent quantum dots are semiconductor nanocrystals.
  • the semiconductor nanocrystals have a size in the range of from about 5 nanometers to about 15 nanometers.
  • the size of the quantum dots needs to be within the above-mentioned size range depending on the chemical composition and structure employed. Adjust accordingly to obtain the luminescent properties of the desired wavelength.
  • the semiconductor nanocrystal includes at least one semiconductor material, wherein the semiconductor material may be selected from Group IV, II-VI, II-V, III-V, III-VI, IV-VI of the periodic table, Group I-III-VI, Group II-IV-VI, Group II-IV-V binary or multi-component semiconductor compounds or mixtures thereof.
  • Examples of specific semiconductor materials include, but are not limited to, Group IV semiconductor compounds composed of elemental Si, Ge, C, and binary compounds SiC, SiGe; Group II-VI semiconductor compounds, including binary compounds including CdSe, CdTe, CdO, CdS, CdSe, ZnS, ZnSe, ZnTe, ZnO, HgO, HgS, HgSe, HgTe, ternary compounds including CdSeS, CdSeTe, CdSTe, CdZnS, CdZnSe, CdZnTe, CgHgS, CdHgSe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, HgZnS, HgSeSe and quaternary compounds include CgHgSeS, CdHgSeTe, CgHgSTe, CdZnSeS, CdZn
  • the luminescent quantum dots comprise a Group II-VI semiconductor compound, preferably selected from the group consisting of CdSe, CdS, CdTe, ZnO, ZnSe, ZnS, ZnTe, HgS, HgSe, HgTe, CdZnSe, and any combination thereof.
  • this material is used as a luminescent quantum dot for visible light due to the relatively mature synthesis of CdSe.
  • the luminescent quantum dots comprise a Group III-V semiconductor compound, preferably selected from the group consisting of InAs, InP, InN, GaN, InSb, InAsP, InGaAs, GaAs, GaP, GaSb, AlP, AlN, AlAs, AlSb, CdSeTe, ZnCdSe and any combination thereof.
  • a Group III-V semiconductor compound preferably selected from the group consisting of InAs, InP, InN, GaN, InSb, InAsP, InGaAs, GaAs, GaP, GaSb, AlP, AlN, AlAs, AlSb, CdSeTe, ZnCdSe and any combination thereof.
  • the luminescent quantum dots comprise a Group IV-VI semiconductor compound, preferably selected from the group consisting of PbSe, PbTe, PbS, PbSnTe, Tl 2 SnTe 5, and any combination thereof.
  • the quantum dots are a core-shell structure.
  • the core and the shell respectively comprise one or more semiconductor materials, either identically or differently.
  • the core of the quantum dot may be selected from the group IV, II-VI, II-V, III-V, III-VI, IV-VI, I-III-VI of the periodic table, Group II-IV-VI, Group II-IV-V binary or multi-element semiconductor compounds.
  • quantum dot nuclei include, but are not limited to, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaSe, GaSb, HgO, HgS, HgSe, An alloy or mixture of HgTe, InAs, InN, InSb, AlAs, AlN, AlP, AlSb, PbO, PbS, PbSe, PbTe, Ge, Si, and any combination thereof.
  • the shell of the quantum dots is selected from semiconductor materials that are the same or different from the core, and are preferably selected from semiconductor materials different from the core.
  • Semiconductor materials that can be used for the shell include Group IV, II-VI, II-V, III-V, III-VI, IV-VI, I-III-VI, II-IV-VI of the Periodic Table of the Elements. Group, II-IV-V binary or multi-component semiconductor compounds.
  • quantum dots examples include, but are not limited to, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaSe, GaSb, HgO, HgS, HgSe, HgTe, InAs, InN, An alloy or mixture of InSb, AlAs, AlN, AlP, AlSb, PbO, PbS, PbSe, PbTe, Ge, Si, and any combination thereof.
  • the quantum dots having a core-shell structure may include a single layer or a multilayer structure.
  • the shell includes one or more semiconductor materials that are the same or different from the core.
  • the shell has a thickness of from about 1 to 20 layers.
  • the shell has a thickness of about 5 to 10 layers.
  • two or more shells are grown on the surface of the quantum dot core.
  • the semiconductor material used for the shell has a larger band gap than the core.
  • the core nucleus has a type I semiconductor heterojunction structure.
  • the semiconductor material used for the shell has a smaller band gap than the core.
  • the semiconductor material used for the shell has an atomic crystal structure that is the same as or close to the core. Such a choice is beneficial to reduce the stress between the core shells and make the quantum dots more stable.
  • the core-shell quantum dots employed are (but are not limited to):
  • Red light CdSe/CdS, CdSe/CdS/ZnS, CdSe/CdZnS, etc.
  • Green light CdZnSe/CdZnS, CdSe/ZnS, etc.
  • Blue light CdS/CdZnS, CdZnS/ZnS, etc.
  • a preferred method of preparing quantum dots is a colloidal growth method.
  • the method of preparing monodisperse quantum dots is selected from the group consisting of hot-inject and/or heating. (heating-up).
  • the preparation method is contained in the literature Nano Res, 2009, 2, 425-447; Chem. Mater., 2015, 27(7), pp 2246-2285. The entire contents of the above-listed documents are hereby incorporated by reference.
  • the surface of the quantum dot comprises an organic ligand.
  • Organic ligands can control the growth process of quantum dots, regulate the appearance of quantum dots and reduce surface defects of quantum dots to improve the luminous efficiency and stability of quantum dots.
  • the organic ligand may be selected from the group consisting of pyridine, pyrimidine, furan, amine, alkylphosphine, alkylphosphine oxide, alkylphosphonic acid or alkylphosphinic acid, alkyl mercaptan and the like.
  • organic ligands include, but are not limited to, tri-n-octylphosphine, tri-n-octylphosphine oxide, trihydroxypropylphosphine, tributylphosphine, tris(dodecyl)phosphine, dibutyl phosphite , tributyl phosphite, octadecyl phosphite, trilauryl phosphite, tris(dodecyl) phosphite, triisodecyl phosphite, bis(2-ethylhexyl) phosphate, Tris(tridecyl)phosphate, hexadecylamine, oleylamine, octadecylamine, bisoctadecylamine, octadecylamine, bis(2-ethylhexyl)amine, oleyl
  • the surface of the quantum dot comprises an inorganic ligand.
  • Quantum dots protected by inorganic ligands can be obtained by ligand exchange of organic ligands on the surface of quantum dots. Examples of specific inorganic ligands include, but are not limited to, S 2- , HS - , Se 2- , HSe - , Te 2- , HTe - , TeS 3 2- , OH - , NH 2 - , PO 4 3- , MoO 4 2- , and so on. Examples of such inorganic ligand quantum dots can be found in documents: J. Am. Chem. Soc. 2011, 133, 10612-10620; ACS Nano, 2014, 9, 9388-9402. The entire contents of the above-listed documents are hereby incorporated by reference.
  • the quantum dot surface has one or more of the same or different ligands.
  • the luminescence spectrum exhibited by the monodisperse quantum dots has a symmetrical peak shape and a narrow half width.
  • the better the monodispersity of quantum dots the more symmetric the luminescence peaks are and the narrower the half-width.
  • the quantum dots have a full width at half maximum of less than 70 nanometers; more preferably, the quantum dots have a full width at half maximum of less than 40 nanometers; most preferably, the quantum dots have a full width at half maximum of less than 30 nanometers.
  • the quantum dots have a luminescence quantum efficiency of 10% to 100%.
  • the quantum dots have a luminescence quantum efficiency greater than 50%; more preferably, the quantum dots have a luminescence quantum efficiency greater than 80%; most preferably, the quantum dots have a luminescence quantum efficiency greater than 90%.
  • the luminescent semiconductor nanocrystals are nanorods.
  • the properties of nanorods are different from those of spherical nanocrystals.
  • the nanorods emit light along a long rod axis.
  • the luminescence of spherical grains is non-polarized (see Woggon et al, Nano Lett., 2003, 3, p509).
  • Nanorods have excellent optical gain characteristics, making them possible to use as laser gain materials (see Banin et al. Adv. Mater. 2002, 14, p317).
  • the luminescence of the nanorods can be reversibly turned on and off under the control of an external electric field (see Banin et al, Nano Lett. 2005, 5, p1581).
  • nanorods can be preferentially incorporated into the device of the present invention under certain circumstances.
  • preparation of the semiconductor nanorods are, for example, WO03097904A1, US2008188063A1, US2009053522A1, and KR20050121443A, the entire contents of each of which are hereby incorporated by reference.
  • the inorganic nanomaterial is a perovskite nanoparticle material, in particular a luminescent perovskite nanoparticle material.
  • the perovskite nanoparticle material has the structural formula of AMX 3 wherein A comprises an organic amine or an alkali metal cation, M comprises a metal cation, and X comprises an oxygen or halogen anion.
  • A comprises an organic amine or an alkali metal cation
  • M comprises a metal cation
  • X comprises an oxygen or halogen anion.
  • Specific examples include, but are not limited to, CsPbCl 3 , CsPb(Cl/Br) 3 , CsPbBr 3 , CsPb(I/Br) 3 , CsPbI 3 , CH 3 NH 3 PbCl 3 , CH 3 NH 3 Pb (Cl/Br 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 Pb(I/Br) 3 , CH 3 NH 3 PbI 3 and the like.
  • perovskite nanoparticle materials can be found in NanoLett., 2015, 15, 3692-3696; ACS Nano, 2015, 9, 4533-4542; Angewandte Chemie, 2015, 127(19): 5785-5788; Nano Lett., 2015, 15(4), pp 2640–2644; Adv. Optical Mater. 2014, 2, 670–678; The Journal of Physical Chemistry Letters, 2015, 6(3): 446-450; J. Mater. Chem. A, 2015 , 3, 9187-9193; Inorg. Chem. 2015, 54, 740–745; RSC Adv., 2014, 4, 55908-55911; J. Am. Chem.
  • the inorganic nanomaterial is a metal nanoparticle material.
  • the metal nanoparticles include, but are not limited to, chromium (Cr), molybdenum (Mo), tungsten (W), ruthenium (Ru), rhenium (Rh), nickel (Ni), silver (Ag), copper (Cu Nanoparticles of zinc (Zn), palladium (Pd), gold (Au), hungry (Os), ruthenium (Re), iridium (Ir), and platinum (Pt).
  • Cr chromium
  • Mo molybdenum
  • Mo tungsten
  • Ru ruthenium
  • Rh nickel
  • silver Ag
  • copper Copper
  • palladium (Pd) palladium
  • Au gold
  • Au gold
  • Ir iridium
  • platinum platinum
  • the inorganic nanomaterial has charge transport properties.
  • the inorganic nanomaterial has electron transport capabilities.
  • such inorganic nanomaterials are selected from the group consisting of n-type semiconductor materials.
  • n-type inorganic semiconductor materials include, but are not limited to, metal chalcogenides, metal phosphorus group elements, or elemental semiconductors such as metal oxides, metal sulfides, metal selenides, metal tellurides, metal nitrides, Metal phosphide, or metal arsenide.
  • the preferred n-type inorganic semiconductor material is selected from the group consisting of ZnO, ZnS, ZnSe, TiO2, ZnTe, GaN, GaP, AlN, CdSe, CdS, CdTe, CdZnSe, and any combination thereof.
  • the inorganic nanomaterial has a hole transporting ability.
  • such inorganic nanomaterials are selected from p-type semiconductor materials.
  • the inorganic p-type semiconductor material can be selected from the group consisting of NiOx, WOx, MoOx, RuOx, VOx, CuOx, and any combination thereof.
  • the printing ink according to the present invention comprises at least two and two or more inorganic nanomaterials.
  • the printing ink according to the present invention further comprises at least one organic functional material.
  • OLEDs hole injection materials
  • HTM hole transport materials
  • ETM electron transport materials
  • EIM electron injecting materials
  • EBM hole blocking material
  • Emitter emitter
  • Host host material
  • the invention further relates to an electronic device comprising one or more functional films, at least one of which is prepared by means of a printing ink according to the invention, in particular by printing or coating.
  • the film comprising nanoparticles according to the present invention is prepared by a method of printing or coating.
  • the film comprising nanoparticles is printed by inkjet Method preparation.
  • Inkjet printers for printing inks comprising quantum dots of the present invention are commercially available printers and include drop-on-demand printheads. These printers are available from Fujifilm Dimatix (Lebanon, NH), Trident International (Brookfield, Conn.), Epson (Torrance, Calif), Hitachi Data systems Corporation (Santa Clara, Calif), Xaar PLC (Cambridge, United Kingdom), and Idanit. Technologies, Limited (Rishon Le Zion, Isreal) purchased.
  • the present invention can be printed using Dimatix Materials Printer DMP-3000 (Fujifilm).
  • Suitable electronic devices include, but are not limited to, quantum dot light emitting diodes (QLEDs), quantum dot photovoltaic cells (QPVs), quantum dot luminescent cells (QLEEC), quantum dot field effect transistors (QFETs), quantum dot luminescence field effect transistors, quantum dots. Lasers, quantum dot sensors, etc.
  • QLEDs quantum dot light emitting diodes
  • QPVs quantum dot photovoltaic cells
  • QLEEC quantum dot luminescent cells
  • QFETs quantum dot field effect transistors
  • quantum dot luminescence field effect transistors quantum dots.
  • the electronic device described above is an electroluminescent device, as shown in FIG. 1, comprising a substrate (101), an anode (102), at least one luminescent layer (104), and a cathode. (106).
  • the substrate (101) may be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate may be selected from polymeric films or plastics having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, and most preferably more than 300 ° C.
  • suitable substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode (102) may comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into the HIL or HTL or the luminescent layer.
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the p-type semiconductor material as the HIL or HTL is less than 0.5 eV, preferably less than 0.3 eV, and preferably less than 0.2eV.
  • the anode material include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • a suitable physical vapor deposition process including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned.
  • Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode (106) can comprise a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the absolute value of the difference between the work function of the cathode and the LUMO level or the conduction band level of the n-type semiconductor material as EIL or ETL or HBL is less than 0.5 eV, preferably less than 0.3 eV, preferably It is less than 0.2eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the luminescent layer (104) includes at least one luminescent nanomaterial having a thickness between 2 nm and 200 nm.
  • the luminescent layer is prepared by printing a printing ink according to the invention, wherein the printing ink comprises a luminescent nanomaterial as described above, in particular a quantum dot.
  • the light emitting device further comprises a hole injection layer (HIL) or hole transport layer (HTL) (103) containing the organic HTM or inorganic p type as described above. material.
  • HIL hole injection layer
  • HTL hole transport layer
  • the HIL or HTL can be prepared by printing the printing ink of the present invention, wherein the printing ink contains inorganic nanomaterials having hole transporting ability, particularly quantum dots.
  • the light emitting device according to the present invention further comprises an electron injection layer (EIL) or electron transport layer (ETL) (105) comprising an organic ETM or inorganic n-type material as described above.
  • EIL electron injection layer
  • ETL electron transport layer
  • the EIL or ETL can be prepared by printing the printing ink of the present invention, wherein the printing ink contains inorganic nanomaterials having electron transporting ability, particularly quantum dots.
  • the invention further relates to the use of a light emitting device according to the invention in various applications, including, but not limited to, various display devices, backlights, illumination sources, and the like.
  • Nitrogen gas 12 mL of ODE was added to a three-necked flask with a syringe.
  • the temperature was raised to 310 ° C, 1.92 mL of the solution 1 was quickly injected into a three-necked flask with a syringe for 12 min; 12 min, and 4 mL of the solution was dropped by a syringe.
  • the dropping rate is about 0.5 mL/min, reacting for 3 hours, stopping the reaction, and immediately putting the three-necked flask into water and cooling to 150 ° C;
  • n-hexane was added to the three-necked flask, and then the liquid in the three-necked flask was transferred to a plurality of 10 mL centrifuge tubes, centrifuged to remove the lower layer precipitate, and repeated three times; acetone was added to the liquid after the post-treatment 1 to precipitate Centrifuge, remove the supernatant, leave a precipitate; then dissolve the precipitate with n-hexane, add acetone to precipitate, centrifuge, remove the supernatant, leave a precipitate, repeat three times; finally dissolve the precipitate with toluene, transfer to glass Stored in the bottle.
  • solution 1 Weigh 0.0079 g of selenium and 0.1122 g of sulfur in a 25 mL single-necked flask, measure 2 mL of TOP, pass nitrogen, stir, and reserve, hereinafter referred to as solution 1; weigh 0.0128 g of CdO and 0.3670 g of zinc acetate. Take 2.5mL of OA in a 25mL three-necked flask, plug the two sides of the bottle with a rubber stopper, connect a condenser tube at the top, connect to the double-row tube, place the three-necked flask in a 50mL heating jacket, and vacuum the nitrogen.
  • Example 8 Preparation of quantum dot printing ink containing a mixture of 1-tetralone and acetophenone
  • Example 9 Preparation of a quantum dot printing ink containing a mixture of 3-phenoxytoluene and 1-methoxynaphthalene
  • the viscosity of the quantum dot ink was tested by a DV-I Prime Brookfield rheometer; the surface tension of the quantum dot ink was tested by a SITA bubble pressure tomometer.
  • the electron dot ink obtained in Example 5 had a viscosity of 9.3 ⁇ 0.3 cPs and a surface tension of 38.1 ⁇ 0.1 dyne/cm.
  • the electron dot ink obtained in Example 6 had a viscosity of 6.7 ⁇ 0.3 cPs and a surface tension of 33.1 ⁇ 0.1 dyne/cm.
  • the electron dot ink obtained in Example 7 had a viscosity of 6.5 ⁇ 0.3 cPs and a surface tension of 35.1 ⁇ 0.1 dyne/cm.
  • the electron dot ink obtained in Example 8 had a viscosity of 4.3 ⁇ 0.3 cPs and a surface tension of 37.3 ⁇ 0.1 dyne/cm.
  • the electron dot ink obtained in Example 9 had a viscosity of 6.3 ⁇ 0.3 cPs and a surface tension of 34.9 ⁇ 0.1 dyne/cm.
  • the functional layer in the quantum dot light-emitting diode such as the light-emitting layer and the charge transport layer, can be prepared by inkjet printing using the above-prepared printing ink containing quantum dots based on an aromatic ketone or aromatic ether solvent system. as follows.
  • the ink containing the quantum dots is loaded into an ink tank which is mounted on an ink jet printer such as Dimatix Materials Printer DMP-3000 (Fujifilm).
  • the waveform, pulse time and voltage of the jetted ink are adjusted to optimize ink jetting and to stabilize the ink jet range.
  • the substrate of the QLED is a 0.7 mm thick glass sputtered with an indium tin oxide (ITO) electrode pattern.
  • ITO indium tin oxide
  • the HIL/HTL material is then inkjet printed into the well and the solvent is removed by drying at elevated temperature in a vacuum to obtain a HIL/HTL film.
  • the printing ink containing the luminescent quantum dots is ink-jet printed onto the HIL/HTL film, and the solvent is removed by drying at a high temperature in a vacuum atmosphere to obtain a quantum dot luminescent layer film.
  • a printing ink containing quantum dots having electron transporting properties is ink-jet printed onto the light-emitting layer film, and the solvent is removed by drying at a high temperature in a vacuum atmosphere to form an electron transport layer (ETL).
  • ETL electron transport layer
  • ETL electron transport layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Metallurgy (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种包含无机纳米材料的印刷油墨,提供的印刷油墨包含至少一种无机纳米材料,特别是量子点,及至少一种基于芳族酮或芳族醚的有机溶剂;还涉及应用此印刷油墨印刷而成的电子器件,特别是电致发光器件。

Description

印刷油墨及应用其印刷而成的电子器件 技术领域
本发明涉及一种包含无机纳米材料的印刷油墨,所述的印刷油墨包含至少一种无机纳米材料,特别是量子点,及至少一种基于芳族酮或芳族醚的有机溶剂;本发明还进一步涉及应用此印刷油墨印刷而成的电子器件,特别是电致发光器件。
背景技术
量子点是具有量子限制效应的纳米尺寸的半导体材料,当受到光或电的刺激,量子点会发出具有特定能量的荧光,荧光的颜色(能量)由量子点的化学组成和尺寸形状决定。因此,对量子点尺寸形状的控制能有效调控其电学和光学性质。目前,各国都在研究量子点在全彩方面的应用,主要集中在显示领域。
近年来,量子点作为发光层的电致发光器件(QLED)得到了迅速发展,器件寿命得到很大的提高,如Peng等,在Nature Vol515 96(2015)及Qian等,在Nature Photonics Vol9 259(2015)中所报道的。电致发光器件在外加电场下,电子和空穴分别注入发光层复合而发光。旋转涂覆是目前主要的用以形成量子点发光层薄膜的方法。然而,旋转涂覆技术难以应用于大面积电致发光器件的制备。相比之下,喷墨打印能够大面积低成本地制备量子点薄膜;相比传统的半导体生产工艺,喷墨打印低能耗,耗水量少,绿色环保,是具有极大的优势和潜力的生产技术。粘度和表面张力是影响印刷油墨及打印过程的重要参数。一 种有前景的印刷墨水需要具备适当的粘度和表面张力。目前,已有数家公司报道了用于打印的量子点油墨:
英国纳米技术有限公司(Nanoco Technologies Ltd)公开了一种包含纳米粒子的可印刷的油墨制剂的方法(CN101878535B)。通过选用合适的墨基材,比如甲苯和十二烷硒醇,得到了可印刷的纳米粒子油墨及相应的包含纳米粒子的薄膜。
三星(Samsung Electronics)公开了一种用于喷墨打印的量子点油墨(US8765014B2)。这种油墨包含一定浓度的量子点材料、有机溶剂和具有高粘度的醇类聚合物添加剂。通过打印该油墨得到了量子点薄膜,并制备了量子点电致发光器件。
QD视光(QD Vision,Inc.)公开了一种量子点的油墨制剂,包含一种主体材料、一种量子点材料和一种添加剂(US2010264371A1)。
其它的涉及量子点印刷油墨的专利有:US2008277626A1,US2015079720A1,US2015075397A1,TW201340370A,US2007225402A1,US2008169753A1,US2010265307A1,US2015101665A1,WO2008105792A2。在这些已公开的专利中,为了调控油墨的物理参数,这些量子点油墨都包含有其它的添加剂,如醇类聚合物。具有绝缘性质的聚合物添加剂的引入往往会降低薄膜的电荷传输能力,对器件的光电性能具有负面影响,限制了其在光电器件中的广泛应用。因此,寻找到一种具有适当的表面张力和粘度的用于分散量子点的有机溶剂体系显得尤为重要。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种新型的包含有无机纳米材料的印刷油墨,所述的印刷油墨包含至少一种无机纳米材料,特别是量子点材料,及至少一种基于芳族酮或芳族醚的有机溶剂;本发明还进一步提供应用此印刷油墨印刷而成的电子器件,特别是光电器件,尤其特别是电致发光器件。
本发明的技术方案如下:
一种印刷油墨,包含有一种无机纳米材料,特别是量子点,和至少一种基于芳族酮或芳族醚的有机溶剂,所述的基于芳族酮或芳族醚的有机溶剂其沸点高于200℃,并且其粘度@25℃,在1cPs到100cPs范围,所述的基于芳族酮或芳族醚的有机溶剂可从溶剂体系中蒸发,以形成无机纳米材料薄膜。
其中所述的基于芳族酮或芳族醚的有机溶剂其表面张力@25℃,在19dyne/cm到50dyne/cm范围。
其中所述的芳族酮和芳族醚的有机溶剂分别有一种如通式(I)和(II)所示的结构式:
Figure PCTCN2016088639-appb-000001
其中,
Ar1和Ar2可以相同或不同,且均是具有5至40个环原子的取代或未取代的芳族或杂芳族环系;
Ar1和Ar2也可以不同,且其中一个是具有5至40个环原子的 取代或未取代的芳族或杂芳族环系,另一个是具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团,或这些体系的组合。
其中通式(I)和(II)中的Ar1和Ar2选自的取代或未取代的芳族或杂芳族基团具有如下通式所示的结构:
Figure PCTCN2016088639-appb-000002
其中,
X是CR1或N;
Y选自CR2R3,SiR2R3,NR2或,C(=O),S,或O;
R1,R2,R3是H,D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN), 氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个基团R1,R2,R3可以彼此或与所述基团键合的环形成单环或多环的脂族或芳族环系。
其中所述的有机溶剂是单一的芳族酮溶剂、或多种芳族酮溶剂的混合物、或芳族酮溶剂与其它溶剂的混合物;或所述的有机溶剂是单一的芳族醚溶剂、或多种芳族醚溶剂的混合物、或芳族醚溶剂与其它溶剂的混合物;或所述的有机溶剂是芳族酮溶剂和芳族醚溶剂的混合物,或该混合物进一步与其它溶剂的混合物。
其中所述的芳族酮的有机溶剂是1-四氢萘酮、2-四氢萘酮、苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物。
其中所述的芳族醚的有机溶剂是3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,3-二丙基苯、2,5-二甲氧基甲苯、二苄基醚、1,2-二甲氧基苯、缩水甘油基苯基醚等。
其中所述的基于芳族酮的有机溶剂是四氢萘酮,或包含至少50%重量的四氢萘酮和另外至少一种其它溶剂。
其中所述的基于芳族醚的有机溶剂是3-苯氧基甲苯,或包含至少50%重量的3-苯氧基甲苯和另外至少一种其它溶剂。
其中其中所述的无机纳米材料是量子点材料,即其粒径具有单分散的尺寸分布,其形状可选自球形、立方体、棒状或支化结构等不同纳米形貌。
其中包含至少一种发光量子点材料,其发光波长位于380nm~2500nm之间。
其中所述的至少一种的无机纳米材料为元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物或由这些化合物组成的混合物。
其中所述的至少一种的无机纳米材料为一种钙钛矿纳米粒子材料,特别是具有发光性质的钙钛矿纳米粒子、或金属纳米粒子材料、或金属氧化物纳米粒子材料,或它们的混合物。
其中进一步包含至少一种有机功能材料,所述的有机功能材料可选自空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光体(Emitter),主体材料(Host)。
其中无机纳米材料的重量比为0.3%~70%,包含有基于芳族酮或芳族醚的有机溶剂的重量比为30%~99.7%。
一种电子器件,包含有一功能层,其由如上所述的印刷油墨印刷而成,其中基于芳族酮或芳族醚的有机溶剂可从溶剂体系中蒸发,以形成包含有无机纳米材料薄膜。
其中所述电子器件可选于量子点发光二极管(QLED)、量子点光伏电池(QPV)、量子点发光电池(QLEEC)、量子点场效应管(QFET)、 量子点发光场效应管、量子点激光器,量子点传感器等。
有益效果:
本发明提供一种包含无机纳米粒子的印刷油墨,包含至少一种无机纳米材料,特别是量子点材料,及至少一种基于芳族酮或芳族醚的有机溶剂。按照本发明的印刷油墨,可以将粘度和表面张力,按照特定的印刷方法,特别是喷墨印刷,调节到合适的范围便于打印,并形成表面均匀的薄膜。同时基于芳族酮或芳族醚的有机溶剂可以通过后处理有效移除,如热处理或真空处理,有利保证电子器件的性能。因此本发明提供了一种用于制备高质量量子点薄膜的印刷油墨,为可印刷量子点电子或光电子器件提供了技术解决方案。
附图说明
图1是按照本发明的一种优先的电致发光器件结构图,图中101是基板,102是阳极,103是空穴注入层(HIL)或空穴传输层(HTL),104是发光层,105是电子注入层(EIL)或电子传输层(ETL),106是阴极。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的详细说明和具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种印刷油墨,包含有一种无机纳米材料和至少一种基于芳族酮或芳族醚的有机溶剂,所述的基于芳族酮或芳族醚的有机溶剂其沸点高于200℃,并且其粘度@25℃,在1cPs到100cPs范围, 较好是在1cPs到50cPs范围,更好是在1cPs到30cPs范围,最好是在1.5cPs到20cPs范围,所述的基于芳族酮或芳族醚的有机溶剂可从溶剂体系中蒸发,以形成无机纳米材料薄膜。
在某些实施例中,按照本发明的印刷油墨,其中,所述的基于芳族酮或芳族醚的有机溶剂其表面张力@25℃,在19dyne/cm到50dyne/cm范围,较好是在20dyne/cm到40dyne/cm范围,更好是在22dyne/cm到35dyne/cm范围,最好是在25dyne/cm到33dyne/cm范围。
在某些优先的实施例中,按照本发明的印刷油墨,其中,所述的芳族酮和芳族醚的有机溶剂分别有一种如通式(I)和(II)所示的结构式:
Figure PCTCN2016088639-appb-000003
其中,
Ar1和Ar2可以相同或不同,且均是具有5至40个环原子的取代或未取代的芳族或杂芳族环系;
Ar1和Ar2也可以不同,且其中一个是具有5至40个环原子的取代或未取代的芳族或杂芳族环系,另一个是具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基 基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团,或这些体系的组合。
在一些优选的实施例中,上述的Ar1和Ar2可以相同或不同,且均是具有5至20个环原子的取代或未取代的芳族或杂芳族环系;Ar1和Ar2也可以不同,且其中一个是具有5至20个环原子的取代或未取代的芳族或杂芳族环系,另一个是具有1至10个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至10个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至10个C原子的取代的酮基基团,具有2至10个C原子的烷氧基羰基基团,具有7至10个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团,或这些体系的组合。
在某些优先的实施例中,按照通式(I)所示的芳族酮和通式(II)所示的芳族醚的有机溶剂,其中Ar1或Ar2选自取代或未取代的芳族或杂芳族基团。芳族基团是指至少包含一个芳环的烃基,包括单环基团和多换的环系统。杂芳族基团是指包含至少一个杂芳环的烃基(含有杂原子),包括单环基团和多换的环系统。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的 这些环中,至少一个是芳族的或杂芳族的。
在某些更加优先的实施例中,通式(I)和(II)中的Ar1和Ar2选自的取代或未取代的芳族或杂芳族基团,具有如下通式所示的结构:
Figure PCTCN2016088639-appb-000004
其中,
X是CR1或N;
Y选自CR2R3,SiR2R3,NR2或,C(=O),S,或O;
R1,R2,R3是H,D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个基团R1,R2,R3可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在一个更加优先的实施例中,R1,R2,R3是H,D,或具有1至 10个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至10个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至10个C原子的取代的酮基基团,具有2至10个C原子的烷氧基羰基基团,具有7至10个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至20个环原子的取代或未取代的芳族或杂芳族环系,或具有5至20个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个基团R1,R2,R3可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
具体地,合适的芳族基团的例子有:苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、及其衍生物。
具体地,合适的杂芳族基团的例子有:呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
更加具体地,合适的芳族或杂芳族基团可选自(但不限制于)如下基团:
Figure PCTCN2016088639-appb-000005
并且,可以进一步在这些基团上进行R1的取代,得到取代的芳环或杂芳环。
按照本发明的基于芳族酮或芳族醚的溶剂体系能够有效地分散无机纳米粒子,特别是量子点材料,即作为新的分散溶剂以取代传统使用的分散无机纳米粒子的溶剂,如甲苯、二甲苯、氯仿、氯苯、二氯苯、正庚烷等。
特别地,用于分散无机纳米粒子,特别是量子点的基于芳族酮或芳族醚的有机溶剂在选取时需考虑其沸点参数。在某些优选的实施例中,所述的基于芳族醚的有机溶剂的沸点高于200℃;在某些实施例中,所述的基于芳族酮或芳族醚的有机溶剂其沸点高于250℃。在另 一些优选实施例中,所述的基于芳族酮或芳族醚的有机溶剂其沸点高于275℃或高于300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述的基于芳族酮或芳族醚的有机溶剂可从溶剂体系中蒸发,以形成包含有无机纳米材料(或量子点)的薄膜。
特别地,用于分散无机纳米材料,特别是量子点的基于芳族酮或芳族醚的有机溶剂在选取时需考虑其表面张力参数。合适的油墨表面张力参数适合于特定的基板和特定的印刷方法。例如对喷墨印刷,在一个优选的实施例中,所述的基于芳族酮或芳族醚的有机溶剂在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;在一个更为优选的实施例中,所述的基于芳族酮或芳族醚的有机溶剂在25℃下的表面张力约在22dyne/cm到35dyne/cm范围;在一个最为优选的实施例中,所述的基于芳族酮或芳族醚的有机溶剂在25℃下的表面张力约在25dyne/cm到33dyne/cm范围。
特别地,用于分散无机纳米材料,特别是量子点的基于芳族酮或芳族醚的有机溶剂在选取时需考虑其油墨的粘度参数。粘度可以通过不同的方法调节,如通过合适的有机溶剂的选取和油墨中纳米材料的浓度。一般地,按照本发明的印刷油墨包含的无机纳米材料的重量比为0.3%~70wt%范围,较好的为0.5%~50wt%范围,更好的为0.5%~30wt%范围,最好的为1%~10wt%范围。在一个优选的实施例中,所述的基于芳族酮或芳族醚的有机溶剂的油墨在上述组成比例下的粘度低于100cps;在一个更为优选的实施例中,所述的基于芳族酮或芳族醚的有机溶剂的油墨在上述组成比例下的粘度低于50cps; 在一个最为优选的实施例中,所述的基于芳族酮或芳族醚的有机溶剂的油墨在上述组成比例下的粘度为1.5到20cps。
满足上述沸点,表面张力参数及粘度参数的基于芳族酮或芳族醚的溶剂体系获得的油墨能够形成具有均匀厚度及组成性质的无机纳米粒子,特别是量子点的薄膜。
在某些实施例中,能很好的适用于所述的基于芳族酮或芳族醚的溶剂体系包含如下体系:单一的芳族酮溶剂、或多种芳族酮溶剂的混合物、或芳族酮溶剂与其它溶剂的混合物;或单一的芳族醚溶剂、或多种芳族醚溶剂的混合物、或芳族醚溶剂与其它溶剂的混合物;或芳族酮溶剂和芳族醚溶剂的混合物,或该混合物进一步与其它溶剂的混合物。
在某些实施例中,所述的芳族酮的溶剂是一种四氢萘酮。本发明中涉及的四氢萘酮的例子包含如下的1-四氢萘酮和2-四氢萘酮。
Figure PCTCN2016088639-appb-000006
在某些实施例中,所述的四氢萘酮溶剂包含1-四氢萘酮和2-四氢萘酮的衍生物,即被至少一个取代基取代的四氢萘酮。这些取代基包括脂肪族基、芳基、杂芳基、卤素等。具体的例子有2-(苯基环氧)四氢萘酮和6-(甲氧基)四氢萘酮。
在另一些实施例中,所述的芳族酮的溶剂是苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮。
在另一些实施例中,本发明的可以包含一些不含有芳族或杂芳族基团的酮溶剂,这些例子有:异佛尔酮、2,6,8-三甲基-4-壬酮、樟脑、葑酮、。
在某些实施例中,基于芳族酮的溶剂体系是一混合物,可以包含的芳族酮溶剂在溶剂总重量的至少50%。优选地,包含的芳族酮溶剂在溶剂总重量的至少70%;更优地,包含的芳族酮溶剂在溶剂总重量的至少90%。最优地,所述的基于芳族酮的溶剂体系包含至少99%重量比的芳族酮溶剂,或基本上由芳族酮溶剂组成,或完全由芳族酮溶剂组成。
在一个优先的实施例中,本发明涉及的一种印刷油墨,其特征在于,所述的基于芳族酮的有机溶剂是1-四氢萘酮,或包含至少50%重量的1-四氢萘酮和另外至少一种其它溶剂。
在另一个优先的实施例中,本发明涉及的一种印刷油墨,其特征在于,所述的基于芳族酮的有机溶剂是2-四氢萘酮,或包含至少50%重量的2-四氢萘酮和另外至少一种其它溶剂。
在某些实施例中,适用于本发明的可能的芳族醚溶剂有:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯。
在一个优先的实施例中,所述的芳族醚溶剂是如下所示的3-苯 氧基甲苯:
Figure PCTCN2016088639-appb-000007
在某些实施例中,基于芳族醚的溶剂体系是一混合物,可以包含的芳族醚溶剂在溶剂总重量的至少50%。优选地,包含的芳族醚溶剂在溶剂总重量的至少70%;更优地,包含的芳族醚溶剂在溶剂总重量的至少90%。最优地,所述的基于芳族醚的溶剂体系包含至少99%重量比的芳族醚溶剂,或基本上由芳族醚溶剂组成,或完全由芳族醚溶剂组成。
在一个优先的实施例中,本发明涉及的一种印刷油墨,其特征在于,所述的基于芳族醚的有机溶剂是3-苯氧基甲苯,或包含至少50%重量的3-苯氧基甲苯和另外至少一种其它溶剂。
在某一个实施例中,3-苯氧基甲苯,或其与其他醚溶剂,或其与其它非醚溶剂的混合物均能很好的适用于所述的基于芳族醚的溶剂体系。
在一个具体的实施例中,基于芳族醚的溶剂体系可以包含的3-苯氧基甲苯在溶剂总重量的至少50%。优选地,包含的3-苯氧基甲苯在溶剂总重量的至少70%;更优地,包含的3-苯氧基甲苯在溶剂总重量的至少90%。最优地,所述的基于芳族醚的溶剂体系包含至少99%重量比的3-苯氧基甲苯,或基本上由3-苯氧基甲苯组成,或完全由3-苯氧基甲苯组成。
在另一些实施例中,所述的印刷油墨进一步包含有另一种有机溶剂。有机溶剂的例子,包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、 二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
所述的印刷油墨还可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。
所述的印刷油墨可以通过多种技术沉积得到量子点薄膜,适合的打印或涂布技术包括(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。优选的打印技术是凹版印刷,喷印及喷墨印刷。有关打印技术,及其对有关油墨的相关要求,如溶剂及浓度,粘度等的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。一般地,不同的打印技术对所采用的油墨有不同的特性要求。例如,适用于喷墨打印的印刷油墨,需要对油墨的表面张力、粘度、及浸润性进行调控,使得油墨在印刷温度下(比如室温,25℃)能够很好地经由喷嘴喷出而不至于干燥于喷嘴上或堵塞喷嘴,或能在特定的基板上形成连续、平整和无缺陷的薄膜。
按照本发明的印刷油墨,包含至少一种无机纳米材料。
在某些实施例中,无机纳米材料的平均粒径约在1到1000nm范围内。在某些优先的实施例中,无机纳米材料的平均粒径约在1到100nm。在某些更为优先的实施例中,无机纳米材料的平均粒径约在1到20nm,最好在1到10nm。
所述的无机纳米材料可以选自不同的形状,包含但不限于球形、立方体、棒状、盘形或支化结构等不同纳米形貌,以及各种形状颗粒的混合物。
在一个优先的实施例中,所述的无机纳米材料是量子点材料,具有非常狭窄的、单分散的尺寸分布,即颗粒与颗粒之间的尺寸差异非常小。优选地,单分散的量子点在尺寸上的偏差均方根小于15%rms;更优地,单分散的量子点在尺寸上的偏差均方根小于10%rms;最优地,单分散的量子点在尺寸上的偏差均方根小于5%rms。
在某些优先的实施例中,所述的无机纳米材料是无机半导体材料。
在另一个优先的实施例中,所述的无机纳米材料是发光材料。
在某些优先的实施例中,所述的发光无机纳米材料是量子点发光材料。
一般地,发光量子点可以在波长380纳米到2500纳米之间发光。例如,已发现,具有CdS核的量子点的发光波长位于约400纳米到560纳米范围;具有CdSe核的量子点的发光波长位于约490纳米到620纳米范围;具有CdTe核的量子点的发光波长位于约620纳米到680纳米范围;具有InGaP核的量子点的发光波长位于约600纳米到700纳米范围;具有PbS核的量子点的发光波长位于约800纳米到 2500纳米范围;具有PbSe核的量子点的发光波长位于约1200纳米到2500纳米范围;具有CuInGaS核的量子点的发光波长位于约600纳米到680纳米范围;具有ZnCuInGaS核的量子点的发光波长位于约500纳米到620纳米范围;具有CuInGaSe核的量子点的发光波长位于约700纳米到1000纳米范围;
在一个优选的实施例中,所述的量子点材料包含至少一种能够发出发光峰值波长位于450nm~460nm的蓝光、或发光峰值波长位于520nm~540nm的绿光、或发光峰值波长位于615nm~630nm的红光,或它们的混合物。
所包含的量子点可以选自特殊的化学组成、形貌结构和/或大小尺寸,以获得在电刺激下发出所需波长的光。关于量子点的发光性质与其化学组成、形貌结构和/或大小尺寸的关系可以参见Annual Review of Material Sci.,2000,30,545-610;Optical Materials Express.,2012,2,594-628;Nano Res,2009,2,425-447。特此将上述列出的专利文件中的全部内容并入本文作为参考。
量子点的窄的粒径分布能使量子点具有更窄的发光光谱(J.Am.Chem.Soc.,1993,115,8706;US 20150108405)。此外,根据所采用的化学组成和结构的不同,量子点的尺寸需在上述的尺寸范围内做相应调节,以获得所需波长的发光性质。
优选地,发光量子点是半导体纳米晶体。在一个实施例中,半导体纳米晶体的尺寸为约5纳米到约15纳米的范围内。此外,根据所采用的化学组成和结构的不同,量子点的尺寸需在上述的尺寸范围内 做相应调节,以获得所需波长的发光性质。
所述的半导体纳米晶体包括至少一种半导体材料,其中半导体材料可选为元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物或他们的混合物。具体所述的半导体材料的实例包括,但不限制于:IV族半导体化合物,由单质Si、Ge、C和二元化合物SiC、SiGe组成;II-VI族半导体化合物,由二元化合物包括CdSe、CdTe、CdO、CdS、CdSe、ZnS、ZnSe、ZnTe、ZnO、HgO、HgS、HgSe、HgTe,三元化合物包括CdSeS、CdSeTe、CdSTe、CdZnS、CdZnSe、CdZnTe、CgHgS、CdHgSe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、HgZnS、HgSeSe及四元化合物包括CgHgSeS、CdHgSeTe、CgHgSTe、CdZnSeS、CdZnSeTe、HgZnSeTe、HgZnSTe、CdZnSTe、HgZnSeS、组成;III-V族半导体化合物,由二元化合物包括AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb,三元化合物包括AlNP、AlNAs、AlNSb、AlPAs、AlPSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、InNP、InNAs、InNSb、InPAs、InPSb、和四元化合物包括GaAlNAs、GaAlNSb、GaAlPAs、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb组成;IV-VI族半导体化合物,由二元化合物包括SnS、SnSe、SnTe、PbSe、PbS、PbTe,三元化合物包括SnSeS、SnSeTe、SnSTe、SnPbS、SnPbSe、SnPbTe、PbSTe、PbSeS、PbSeTe和四元化合物包括SnPbSSe、SnPbSeTe、SnPbSTe组成。
在一个优先的实施例中,发光量子点包含有II-VI族半导体化合物,优先选自CdSe,CdS,CdTe,ZnO,ZnSe,ZnS,ZnTe,HgS,HgSe,HgTe,CdZnSe及它们的任何组合。在合适的实施方案中,由于CdSe的合成相对成熟而将此材料用作用于可见光的发光量子点。
在另一个优先的实施例中,发光量子点包含有III-V族半导体化合物,优先选自InAs,InP,InN,GaN,InSb,InAsP,InGaAs,GaAs,GaP,GaSb,AlP,AlN,AlAs,AlSb,CdSeTe,ZnCdSe及它们的任何组合。
在另一个优先的实施例中,发光量子点包含有IV-VI族半导体化合物,优先选自PbSe,PbTe,PbS,PbSnTe,Tl2SnTe5及它们的任何组合。
在一个优选的实施例中,量子点为一核壳结构。核与壳分别相同或不同地包括一种或多种半导体材料。
所述的量子点的核可以选自上述的元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物。具体的用于量子点核的实例包括但不限制于ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgS、MgSe、GaAs、GaN、GaP、GaSe、GaSb、HgO、HgS、HgSe、HgTe、InAs、InN、InSb、AlAs、AlN、AlP、AlSb、PbO、PbS、PbSe、PbTe、Ge、Si,及它们任意组合的合金或混合物。
所述的量子点的壳选自与核相同或不同的半导体材料,优先地选自与核不同的半导体材料。可用于壳的半导体材料包括元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物。具体的用于量子点 核的实例包括但不限制于ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、MgS、MgSe、GaAs、GaN、GaP、GaSe、GaSb、HgO、HgS、HgSe、HgTe、InAs、InN、InSb、AlAs、AlN、AlP、AlSb、PbO、PbS、PbSe、PbTe、Ge、Si,及它们任意组合的合金或混合物。
所述的具有核壳结构的量子点,壳可以包括单层或多层的结构。壳包括一种或多种与核相同或不同的半导体材料。在一个优选的实施例中,壳具有约1到20层的厚度。在一个更为优选的实施例中,壳具有约5到10层的厚度。在某些实施例中,在量子点核的表面生长两种或两种以上的壳。
在一个优选的实施例中,用于壳的半导体材料具有比核更大的带隙。特别优先的,壳核具有I型的半导体异质结结构。
在另一个优选的实施例中,用于壳的半导体材料具有比核更小的带隙。
在一个优选的实施例中,用于壳的半导体材料具有与核相同或接近的原子晶体结构。这样的选择有利于减小核壳间的应力,使量子点更为稳定。
在一个优选的实施例中,所采用的核壳量子点为(但不限制于):
红光:CdSe/CdS,CdSe/CdS/ZnS,CdSe/CdZnS等
绿光:CdZnSe/CdZnS,CdSe/ZnS等
蓝光:CdS/CdZnS,CdZnS/ZnS等
优选的量子点的制备方法是胶状生长法。在一个优选的实施例中,制备单分散的量子点的方法选自热注射法(hot-inject)和/或加热法 (heating-up)。制备方法包含在文献Nano Res,2009,2,425-447;Chem.Mater.,2015,27(7),pp 2246–2285。特此将上述列出的文献中的全部内容并入本文作为参考。
在一个优选的实施例中,所述量子点的表面包含有有机配体。有机配体可以控制量子点的生长过程,调控量子点的相貌和减小量子点表面缺陷从而提高量子点的发光效率及稳定性。所述的有机配体可以选自吡啶,嘧啶,呋喃,胺,烷基膦,烷基膦氧化物,烷基膦酸或烷基次膦酸,烷基硫醇等。具体的有机配体的实例包括但不限制于三正辛基膦,三正辛基氧化膦,三羟基丙基膦,三丁基膦,三(十二烷基)膦,亚磷酸二丁酯,亚磷酸三丁酯,亚磷酸十八烷基酯,亚磷酸三月桂酯,亚磷酸三(十二烷基)酯,亚磷酸三异癸酯,双(2-乙基己基)磷酸酯,三(十三烷基)磷酸酯,十六胺,油胺,十八胺,双十八胺,三十八胺,双(2-乙基己基)胺,辛胺,二辛胺,三辛胺,十二胺,双十二胺,三十二胺,十六胺,苯基磷酸,己基磷酸,四癸基磷酸,辛基磷酸,正十八烷基磷酸,丙烯二磷酸,二辛醚,二苯醚,辛硫醇,十二烷基硫醇。
在另一个优选的实施例中,所述量子点的表面包含有无机配体。由无机配体保护的量子点可以通过对量子点表面有机配体进行配体交换得到。具体的无机配体的实例包括但不限制于:S2-,HS-,Se2-,HSe-,Te2-,HTe-,TeS3 2-,OH-,NH2 -,PO4 3-,MoO4 2-,等。该类无机配体量子点的例子可以参考文件:J.Am.Chem.Soc.2011,133,10612-10620;ACS Nano,2014,9,9388-9402。特此将上述列出的文件 中的全部内容并入本文作为参考。
在某些实施例中,量子点表面具有一种或多种相同或不同的配体。
在一个优选的实施例中,具有单分散的量子点所表现出的发光光谱具有对称的峰形和窄的半峰宽。一般地,量子点的单分散性越好,其所表现的发光峰越对称,且半峰宽越窄。优选地,所述的量子点的半峰宽小于70纳米;更优选地,所述的量子点的半峰宽小于40纳米;最优选地,所述的量子点的半峰宽小于30纳米。
所述的量子点具有10%~100%的发光量子效率。优选地,量子点具有大于50%的发光量子效率;更加优选地,量子点具有大于80%的发光量子效率;最优选地,量子点具有大于90%的发光量子效率。
其他可能对本发明有用的有关量子点的材料,技术,方法,应用和其他信息,在以下专利文献中有所描述,WO2007/117698,WO2007/120877,WO2008/108798,WO2008/105792,WO2008/111947,WO2007/092606,WO2007/117672,WO2008/033388,WO2008/085210,WO2008/13366,WO2008/063652,WO2008/063653,WO2007/143197,WO2008/070028,WO2008/063653,US6207229,US6251303,US6319426,US6426513,US6576291,US6607829,US6861155,US6921496,US7060243,US7125605,US7138098,US7150910,US7470379,US7566476,WO2006134599A1,特此将上述列出的专利文件中的全部内容并入本文作为参考。
在另一个优先的实施方案中,发光半导体纳米晶体是纳米棒。纳米棒的特性不同于球形纳米晶粒。例如,纳米棒的发光沿长棒轴偏振 化,而球形晶粒的发光是非偏振的(参见Woggon等,Nano Lett.,2003,3,p509)。纳米棒具有优异的光学增益特性,使得它们可能用作激光增益材料(参见Banin等Adv.Mater.2002,14,p317)。此外,纳米棒的发光可以可逆地在外部电场的控制下打开和关闭(参见Banin等,Nano Lett.2005,5,p1581)。纳米棒的这些特性可以在某种情况下优先地结合到本发明的器件中。制备半导体纳米棒的例子有,WO03097904A1,US2008188063A1,US2009053522A1,KR20050121443A,特此将上述列出的专利文件中的全部内容并入本文作为参考。
在另一些优先的实施例中,按照本发明的印刷油墨中,所述的无机纳米材料是钙钛矿纳米粒子材料,特别是发光钙钛矿纳米粒子材料。
所述的钙钛矿纳米粒子材料具有AMX3的结构通式,其中A包括有机胺或碱金属阳离子,M包括金属阳离子,X包括具氧或卤素阴离子。具体的实例包括但不限制于:CsPbCl3,CsPb(Cl/Br)3,CsPbBr3,CsPb(I/Br)3,CsPbI3,CH3NH3PbCl3,CH3NH3Pb(Cl/Br)3,CH3NH3PbBr3,CH3NH3Pb(I/Br)3,CH3NH3PbI3等。钙钛矿纳米粒子材料的例子可参见NanoLett.,2015,15,3692-3696;ACS Nano,2015,9,4533-4542;Angewandte Chemie,2015,127(19):5785-5788;Nano Lett.,2015,15(4),pp 2640–2644;Adv.Optical Mater.2014,2,670–678;The Journal of Physical Chemistry Letters,2015,6(3):446-450;J.Mater.Chem.A,2015,3,9187-9193;Inorg.Chem.2015,54,740–745;RSC Adv.,2014,4,55908-55911;J.Am.Chem.Soc.,2014,136(3),pp 850–853;Part.Part.Syst.Charact.2015,doi:10.1002/ppsc.201400214;Nanoscale,2013, 5(19):8752-8780。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在另一优先的实施例中,按照本发明的印刷油墨中,所述的无机纳米材料是金属纳米粒子材料。
所述的金属纳米粒子包括但不限制于:铬(Cr)、钼(Mo)、钨(W)、钌(Ru)、铑(Rh)、镍(Ni)、银(Ag)、铜(Cu)、锌(Zn)、钯(Pd)、金(Au)、饿(Os)、铼(Re)、铱(Ir)和铂(Pt)的纳米粒子。常见的金属纳米粒子的种类、形貌和合成方法可以参见:Angew.Chem.Int.Ed.2009,48,60-103;Angew.Chem.Int.Ed.2012,51,7656-7673;Adv.Mater.2003,15,No.5,353-389;Adv.Mater.2010,22,1781-1804;Small.2008,3,310-325;Angew.Chem.Int.Ed.2008,47,2-46等及其所引用的文献,特此将上述列出的文献中的全部内容并入本文作为参考。
在另一个优先的实施例中,所述的无机纳米材料具有电荷传输的性能。
在一个优先的实施例中,所述的无机纳米材料具有电子传输能力。优先的,这类无机纳米材料选自n型半导体材料。n型无机半导体材料的例子包括,但不限于,金属硫族元素化物,金属磷族元素化物,或元素半导体,如金属氧化物,金属硫化物,金属硒化物,金属碲化物,金属氮化物,金属磷化物,或金属砷化物。优先的n-型无机半导体材料选自ZnO,ZnS,ZnSe,TiO2,ZnTe,GaN,GaP,AlN,CdSe,CdS,CdTe,CdZnSe及它们的任何组合。
在某些的实施例中,所述的无机纳米材料具有空穴传输能力。优先的,这类无机纳米材料选自p型半导体材料。无机p-型半导体材料可选自NiOx,WOx,MoOx,RuOx,VOx,CuOx及它们的任何组合。
在某些的实施例中,按照本发明的印刷油墨,包含至少两种及两种以上的无机纳米材料。
在某些的实施例中,按照本发明的印刷油墨,进一步包含至少一种有机功能材料。如上所述,本发明的一个目的是将电子器件从溶液中制备,有机材料由于其在有机溶液中的可溶性及其固有的柔性,可以在某种情况下结合到电子器件的功能层中,带来另外的好处,如增强器件的柔性,提高成膜性能等。原则上,所有的用于OLEDs的有机功能材料,包括但不限于空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光体(Emitter),主体材料(Host)都可用于本发明的印刷油墨中。例如在WO2010135519A1和US20090134784A1中对各种有机功能材料有详细的描述,特此将这两篇专利文件中的全部内容并入本文作为参考。
本发明进一步涉及一电子器件,包含有一层或多层功能薄膜,其中至少有一层薄膜是利用按照本发明的印刷油墨制备,特别是通过打印或涂布的方法制备。
本发明涉及的包含纳米粒子的薄膜为通过打印或涂布的方法制备。在一个优选的实施例中,包含纳米粒子的薄膜为通过喷墨打印的 方法制备。用于打印本发明包含量子点的油墨的喷墨打印机为已商业化的打印机,且包含按需打印喷头(drop-on-demand printheads)。这些打印机可以从Fujifilm Dimatix(Lebanon,N.H.),Trident International(Brookfield,Conn.),Epson(Torrance,Calif),Hitachi Data systems Corporation(Santa Clara,Calif),Xaar PLC(Cambridge,United Kingdom),和Idanit Technologies,Limited(Rishon Le Zion,Isreal)购得。例如,本发明可以使用Dimatix Materials Printer DMP-3000(Fujifilm)进行打印。
合适的电子器件包括但不限于量子点发光二极管(QLED)、量子点光伏电池(QPV)、量子点发光电池(QLEEC)、量子点场效应管(QFET)、量子点发光场效应管、量子点激光器,量子点传感器等。
在一个优先的实施例中,以上所述的电子器件是电致发光器件,如图一所示,包括一基片(101),一阳极(102),至少一发光层(104),一阴极(106)。基片(101)可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基材可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优先的实施例中,基片可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极(102)可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到HIL或HTL或发光层中。在一个的实施例中,阳极的功函数和作为HIL或HTL的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于,Al,Cu,Au,Ag,Mg,Fe,Co,Ni,Mn,Pd,Pt,ITO,铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极(106)可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和作为EIL或ETL或HBL的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于,Al,Au,Ag,Ca,Ba,Mg,LiF/Al,MgAg合金,BaF2/Al,Cu,Fe,Co,Ni,Mn,Pd,Pt,ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
发光层(104)中至少包含有一发光纳米材料,其厚度可以在2nm到200nm之间。在一个优先的实施例中,按照本发明的发光器件中, 其发光层是通过打印按照本发明的印刷油墨制备而成,其中印刷油墨中包含有一种如上所述的发光纳米材料,特别是量子点。
在一个优先的实施例中,按照本发明的发光器件进一步包含有一个空穴注层(HIL)或空穴传输层(HTL)(103),其中包含有如上所述的有机HTM或无机p型材料。在一个优选的实施例中,HIL或HTL可以通过打印本发明的印刷油墨制备而成,其中印刷油墨中包含有具有空穴传输能力的无机纳米材料,特别是量子点。
在另一个优先的实施例中,按照本发明的发光器件进一步包含有一个电子注层(EIL)或电子传输层(ETL)(105),其中包含有如上所述的有机ETM或无机n型材料。在一个优选的实施例中,EIL或ETL可以通过打印本发明的印刷油墨制备而成,其中印刷油墨中包含有具有电子传输能力的无机纳米材料,特别是量子点。
本发明还涉及按照本发明的发光器件在各种场合的应用,包括,但不限于,各种显示器件,背光源,照明光源等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
实施例:
实施例1:蓝光量子点的制备(CdZnS/ZnS)
称取0.0512g的S和量取2.4mLODE于25mL的单口烧瓶中,置于油锅中加热至80℃使S溶解,备用,以下简称溶液1;称取0.1280g 的S和量取5mLOA于25mL的单口烧瓶中,置于油锅中加热至90℃使S溶解,备用,以下简称溶液2;称量0.1028gCdO和1.4680g的乙酸锌,量取5.6mL的OA于50mL的三口烧瓶中,将三口烧瓶置于150mL的加热套中,两边瓶口用胶塞塞住,上方连接一个冷凝管,再连接至双排管,加热至150℃,抽真空40min,再通氮气;用注射器将12mL的ODE加入到三口烧瓶中,升温至310℃时快速用注射器将1.92mL的溶液1打进三口烧瓶中,计时12min;12min一到,用注射器将4mL的溶液2滴加至三口烧瓶中,滴加速度大约为0.5mL/min,反应3h,停止反应,立刻把三口烧瓶放入水中冷却至150℃;
将过量的正己烷加入至三口烧瓶中,然后将三口烧瓶中的液体转移至多个10mL的离心管中,离心,除去下层沉淀,重复三次;在经过后处理1的液体中加入丙酮至有沉淀产生,离心,除去上层清液,留下沉淀;再用正己烷溶解沉淀,后加丙酮至有沉淀出来,离心,除去上层清液,留下沉淀,重复三次;最后用甲苯溶解沉淀,转移至玻璃瓶中存储。
实施例2:绿光量子点的制备(CdZnSeS/ZnS)
称量0.0079g的硒和0.1122g的硫于25mL的单口烧瓶中,量取2mL的TOP,通氮气,搅拌,备用,以下简称溶液1;称量0.0128g的CdO和0.3670g的乙酸锌,量取2.5mL的OA于25mL的三口烧瓶中,两边瓶口用胶塞塞住,上方连接一个冷凝管,再连接至双排管,将三口烧瓶置于50mL的加热套中,抽真空通氮气,加热至150℃,抽真空30min,注射7.5mL的ODE,再加热至300℃快速注射1mL的溶液 1,计时10min;10min一到,立刻停止反应,将三口烧瓶置于水中冷却。
往三口烧瓶中加入5mL的正己烷,然后就混合液加入至多个10mL的离心管中,加入丙酮至有沉淀出来,离心。取沉淀,除去上层清液,用正己烷将沉淀溶解,加入丙酮至有沉淀产生,离心。重复三次。最后的沉淀用少量的甲苯溶解,转移至玻璃瓶中储存。
实施例3:红光量子点的制备(CdSe/CdS/ZnS)
1mmol的CdO,4mmol的OA和20ml的ODE加入到100ml三口烧瓶中,鼓氮气,升温至300℃形成Cd(OA)2前驱体.在此温度下,快速注入0.25mL的溶有0.25mmol的Se粉的TOP。反应液在此温度下反应90秒,生长得到约3.5纳米的CdSe核。0.75mmol的辛硫醇在300℃下逐滴加入到反应液中,反应30分钟后生长约1纳米厚的CdS壳。4mmol的Zn(OA)2和2ml的溶有4mmol的S粉的TBP随后逐滴加入到反应液中,用以生长ZnS壳(约1纳米)。反应持续10分钟后,冷却至室温。
往三口烧瓶中加入5mL的正己烷,然后就混合液加入至多个10mL的离心管中,加入丙酮至有沉淀出来,离心。取沉淀,除去上层清液,用正己烷将沉淀溶解,加入丙酮至有沉淀产生,离心。重复三次。最后的沉淀用少量的甲苯溶解,转移至玻璃瓶中储存。
实施例4:ZnO纳米粒子的制备
将1.475g醋酸锌溶于62.5mL甲醇中,得到溶液1。将0.74g KOH溶于32.5mL甲醇中,得到溶液2。溶液1升温至60℃,激烈 搅拌。使用进样器将溶液2逐滴滴加进溶液1。滴加完成后,该混合溶液体系在60℃下继续搅拌2小时。移去加热源,将溶液体系静置2小时。采用4500rpm,5min的离心条件,对反应溶液离心清洗三遍以上。最终得到白色固体为直径约3nm的ZnO纳米粒子。
实施例5:含1-四氢萘酮的量子点印刷油墨的制备
本发明中涉及的有机溶剂的沸点及流变学参数如下表1所示。
表1
Figure PCTCN2016088639-appb-000008
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.5g1-四氢萘酮。用丙酮将量子点从溶液中析出,离心得到量子点固体。在手套箱中称取0.5g量子点固体,加到小瓶中的溶剂体系中, 搅拌混合。在60℃温度下搅拌直至量子点完全分散后,冷却至室温。将得到的量子点溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例6:含3-苯氧基甲苯的量子点印刷油墨的制备
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.5g3-苯氧基甲苯。用丙酮将量子点从溶液中析出,离心得到量子点固体。在手套箱中称取0.5g量子点固体,加到小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至量子点完全分散后,冷却至室温。将得到的量子点溶液经0.2μm PTFE滤膜过滤。密封并保存。实施例7:含1-四氢萘酮和3-苯氧基甲苯混合物的量子点印刷油墨的制备
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.5g 1-四氢萘酮和3-苯氧基甲苯(重量比为1:1)。用丙酮将量子点从溶液中析出,离心得到量子点固体。在手套箱中称取0.5g量子点固体,加到小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至量子点完全分散后,冷却至室温。将得到的量子点溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例8:含1-四氢萘酮和苯乙酮混合物的量子点印刷油墨的制备
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.5g 1-四氢萘酮和苯乙酮(重量比为9:1)。用丙酮将量子点从溶液中析出,离心得到量子点固体。在手套箱中称取0.5g量子点固体,加到小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至量子点完全分散后,冷却至室温。将得到的量子点溶液经0.2μm PTFE滤 膜过滤。密封并保存。
实施例9:含3-苯氧基甲苯和1-甲氧基萘混合物的量子点印刷油墨的制备
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.5g 3-苯氧基甲苯和1-甲氧基萘(重量比为9:1)。用丙酮将量子点从溶液中析出,离心得到量子点固体。在手套箱中称取0.5g量子点固体,加到小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至量子点完全分散后,冷却至室温。将得到的量子点溶液经0.2μm PTFE滤膜过滤。密封并保存。
实施例10:粘度及表面张力测试
量子点油墨的粘度由DV-I Prime Brookfield流变仪测试;量子点油墨的表面张力由SITA气泡压力张力仪测试。
经上述测试,实施例5得到的电子点油墨的粘度为9.3±0.3cPs,表面张力为38.1±0.1dyne/cm。
经上述测试,实施例6得到的电子点油墨的粘度为6.7±0.3cPs,表面张力为33.1±0.1dyne/cm。
经上述测试,实施例7得到的电子点油墨的粘度为6.5±0.3cPs,表面张力为35.1±0.1dyne/cm。
经上述测试,实施例8得到的电子点油墨的粘度为4.3±0.3cPs,表面张力为37.3±0.1dyne/cm。
经上述测试,实施例9得到的电子点油墨的粘度为6.3±0.3cPs,表面张力为34.9±0.1dyne/cm。
利用上述制备的基于芳族酮或芳族醚溶剂体系的包含量子点的印刷油墨,通过喷墨打印的方式,可制备量子点发光二极管中的功能层,如发光层和电荷传输层,具体步骤如下。
将包含量子点的油墨装入油墨桶中,油墨桶装配于喷墨打印机,如Dimatix Materials Printer DMP-3000(Fujifilm)。调节喷射油墨的波形、脉冲时间和电压,使油墨喷射达到最优,且实现油墨喷射范围的稳定化。在制备量子点薄膜为发光层的QLED器件时,按照如下技术方案:QLED的基板为溅射有氧化铟锡(ITO)电极图案的0.7mm厚的玻璃。在ITO上使像素界定层图案话,形成内部用于沉积打印油墨的孔。然后将HIL/HTL材料喷墨打印至该孔中,真空环境下高温干燥移除溶剂,得到HIL/HTL薄膜。此后,将包含发光量子点的印刷油墨喷墨打印到HIL/HTL薄膜上,真空环境下高温干燥移除溶剂,得到量子点发光层薄膜。随后将包含有电子传输性能的量子点的印刷油墨喷墨打印到发光层薄膜上,真空环境下高温干燥移除溶剂,形成电子传输层(ETL)。在使用有机电子传输材料时,ETL也可通过真空热蒸镀而成。然后Al阴极通过真空热蒸镀而成,最后封装完成QLED器件制备。

Claims (17)

  1. 一种印刷油墨,包含有一种无机纳米材料,和至少一种基于芳族酮或芳族醚的有机溶剂,其特征在于,所述的基于芳族酮或芳族醚的有机溶剂其沸点高于200℃,并且其粘度@25℃,在1cPs到100cPs范围,所述的基于芳族酮或芳族醚的有机溶剂可从溶剂体系中蒸发,以形成无机纳米材料薄膜。
  2. 根据权利要求1所述的印刷油墨,其特征在于,所述的基于芳族酮或芳族醚的有机溶剂其表面张力@25℃,在19dyne/cm到50dyne/cm范围。
  3. 根据权利要求1所述的印刷油墨,其特征在于,所述的芳族酮和芳族醚的有机溶剂分别有一种如通式(I)和(II)所示的结构式:
    Figure PCTCN2016088639-appb-100001
    其中,
    Ar1和Ar2可以相同或不同,且均是具有5至40个环原子的取代或未取代的芳族或杂芳族环系;
    Ar1和Ar2也可以不同,且其中一个是具有5至40个环原子的取代或未取代的芳族或杂芳族环系,另一个是具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,具有2至20个C原子 的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团,或这些体系的组合。
  4. 根据权利要求1所述的印刷油墨,其特征在于,通式(I)和(II)中的Ar1和Ar2选自的取代或未取代的芳族或杂芳族基团具有如下通式所示的结构:
    Figure PCTCN2016088639-appb-100002
    其中,
    X是CR1或N;
    Y选自CR2R3、SiR2R3、NR2、C(=O)、S或O;
    R1,R2,R3是H,D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团, Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个基团R1,R2,R3可以彼此或与所述基团键合的环形成单环或多环的脂族或芳族环系。
  5. 根据权利要求1所述的印刷油墨,其特征在于,所述的有机溶剂是单一的芳族酮溶剂、多种芳族酮溶剂的混合物、芳族酮溶剂与其它溶剂的混合物;或所述的有机溶剂是单一的芳族醚溶剂、多种芳族醚溶剂的混合物、芳族醚溶剂与其它溶剂的混合物;或所述的有机溶剂是芳族酮溶剂和芳族醚溶剂的混合物,或该混合物进一步与其它溶剂的混合物。
  6. 根据权利要求1所述的印刷油墨,其特征在于,所述的芳族酮的有机溶剂是1-四氢萘酮、2-四氢萘酮、苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物。
  7. 根据权利要求1所述的印刷油墨,其特征在于,所述的芳族醚的有机溶剂是3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,3-二丙基苯、2,5-二甲氧基甲苯、二苄基醚、1,2-二甲氧基苯、缩水甘油基苯基醚等。
  8. 根据权利要求1的印刷油墨,其特征在于,所述的基于芳族酮的有机溶剂是四氢萘酮,或包含至少50%重量的四氢萘酮和另外至少一种其它溶剂。
  9. 根据权利要求1所述的印刷油墨,其特征在于,所述的基于 芳族醚的有机溶剂是3-苯氧基甲苯,或包含至少50%重量的3-苯氧基甲苯和另外至少一种其它溶剂。
  10. 根据权利要求1所述的印刷油墨,其特征在于,所述的无机纳米材料是量子点材料,即其粒径具有单分散的尺寸分布,其形状可选自球形、立方体、棒状或支化结构的纳米形貌。
  11. 根据权利要求10所述的印刷油墨,其特征在于,包含至少一种发光量子点材料,其发光波长位于380nm~2500nm之间。
  12. 根据权利要求1所述的印刷油墨,其特征在于,所述的至少一种的无机纳米材料为元素周期表IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族二元或多元半导体化合物,或由这些化合物组成的混合物。
  13. 根据权利要求1所述的印刷油墨,其特征在于,所述的至少一种的无机纳米材料为一种钙钛矿纳米粒子材料,特别是具有发光性质的钙钛矿纳米粒子、或金属纳米粒子材料、或金属氧化物纳米粒子材料,或它们的混合物。
  14. 根据权利要求1所述的印刷油墨,其特征在于,进一步包含至少一种有机功能材料,所述的有机功能材料可选自空穴注入材料(HIM)、空穴传输材料(HTM)、电子传输材料(ETM)、电子注入材料(EIM)、电子阻挡材料(EBM)、空穴阻挡材料(HBM)、发光体(Emitter)、主体材料(Host)。
  15. 根据权利要求1所述的印刷油墨,其特征在于,无机纳米材料的重量比为0.3%~70%,包含有基于芳族酮或芳族醚的有机溶剂的 重量比为30%~99.7%。
  16. 一种电子器件,包含有一功能层,其由如权利要求1~15任一项所述的印刷油墨印刷而成,其中基于芳族酮或芳族醚的有机溶剂可从溶剂体系中蒸发,以形成包含有无机纳米材料薄膜。
  17. 一种如权利要求16所述的电子器件,其特征在于,所述电子器件可选于量子点发光二极管(QLED)、量子点光伏电池(QPV)、量子点发光电池(QLEEC)、量子点场效应管(QFET)、量子点发光场效应管、量子点激光器、量子点传感器。
PCT/CN2016/088639 2015-08-14 2016-07-05 印刷油墨及应用其印刷而成的电子器件 WO2017028639A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/751,370 US20180237691A1 (en) 2015-08-14 2016-07-05 Printing ink and electronic device manufactured by printing with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015105023803 2015-08-14
CN201510502380.3A CN105038408B (zh) 2015-08-14 2015-08-14 印刷油墨及应用其印刷而成的电子器件

Publications (1)

Publication Number Publication Date
WO2017028639A1 true WO2017028639A1 (zh) 2017-02-23

Family

ID=54445395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088639 WO2017028639A1 (zh) 2015-08-14 2016-07-05 印刷油墨及应用其印刷而成的电子器件

Country Status (3)

Country Link
US (1) US20180237691A1 (zh)
CN (1) CN105038408B (zh)
WO (1) WO2017028639A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019119613A1 (zh) * 2017-12-18 2019-06-27 广东聚华印刷显示技术有限公司 电致发光材料墨水及其电致发光器件
CN112397658A (zh) * 2019-08-19 2021-02-23 Tcl集团股份有限公司 一种复合材料及其制备方法与量子点发光二极管

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080317A1 (zh) * 2015-11-12 2017-05-18 广州华睿光电材料有限公司 用于印刷电子的组合物及其在电子器件中的应用
CN108137967A (zh) * 2015-11-12 2018-06-08 广州华睿光电材料有限公司 含无机纳米材料的印刷组合物及其应用
CN108291105B (zh) * 2015-11-12 2021-09-10 广州华睿光电材料有限公司 用于印刷电子器件的组合物及其在电子器件中的应用
US11555128B2 (en) 2015-11-12 2023-01-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing composition, electronic device comprising same and preparation method for functional material thin film
WO2017080318A1 (zh) * 2015-11-12 2017-05-18 广州华睿光电材料有限公司 印刷电子组合物、包含其的电子器件及功能材料薄膜的制备方法
CN108137970A (zh) * 2015-11-12 2018-06-08 广州华睿光电材料有限公司 印刷组合物及其应用
CN108137971B (zh) * 2015-11-12 2021-07-06 广州华睿光电材料有限公司 用于印刷电子的组合物及其在电子器件中的应用
KR20180084087A (ko) * 2015-11-12 2018-07-24 광저우 차이나레이 옵토일렉트로닉 매터리얼즈 엘티디. 프린팅 제제 및 이의 적용
CN105315792B (zh) * 2015-11-18 2020-01-10 Tcl集团股份有限公司 量子点油墨及其制备方法、量子点发光二极管
CN105670388B (zh) * 2016-03-24 2019-07-02 深圳市华星光电技术有限公司 量子点打印墨水的制作方法及制得的量子点打印墨水
CN106356462A (zh) * 2016-08-23 2017-01-25 苏州星烁纳米科技有限公司 包括量子点和能量转移分子的发光二极管装置及其制备方法、显示装置
CN109790406B (zh) * 2016-11-23 2021-12-07 广州华睿光电材料有限公司 用于印刷电子器件的组合物及其制备方法和用途
CN109790407B (zh) * 2016-11-23 2021-12-07 广州华睿光电材料有限公司 印刷油墨组合物及其制备方法和用途
KR102569673B1 (ko) 2017-03-13 2023-08-24 수미토모 케미칼 컴퍼니 리미티드 페로브스카이트 화합물을 포함하는 혼합물
CN108624134A (zh) * 2017-03-15 2018-10-09 Tcl集团股份有限公司 无机纳米材料印刷油墨及其制备方法
CN108795154A (zh) * 2017-04-28 2018-11-13 Tcl集团股份有限公司 氧化锌基纳米颗粒墨水
EP3630920B1 (en) * 2017-06-02 2022-12-07 Nexdot Ink comprising encapsulated nanoparticles
CN107400414B (zh) * 2017-07-03 2021-06-29 苏州星烁纳米科技有限公司 量子点油墨及电致发光器件
CN109251589A (zh) * 2017-07-14 2019-01-22 Tcl集团股份有限公司 无机纳米材料油墨及其制备方法和应用、qled器件
CN107474632A (zh) * 2017-08-25 2017-12-15 深圳市华星光电半导体显示技术有限公司 喷墨打印用钙钛矿墨水及其制备方法
US20190062581A1 (en) * 2017-08-25 2019-02-28 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Inkjet printing perovskite ink and method of making the same
CN107502065A (zh) * 2017-10-18 2017-12-22 福州大学 一种基于喷墨打印的量子点墨水
CN109810572A (zh) * 2017-11-21 2019-05-28 深圳Tcl工业研究院有限公司 无机纳米材料印刷油墨及其制备方法和应用
CN107892282B (zh) * 2018-01-03 2020-11-17 苏州大学 一种尺寸均一的碲化铅纳米棒、制备方法及其应用
CN108323023B (zh) * 2018-01-16 2020-07-17 湖南国盛石墨科技有限公司 一种基于热固化石墨烯导电油墨印刷方法
CN108258157A (zh) * 2018-01-22 2018-07-06 苏州大学 钙钛矿量子点及其合成方法
CN110294972A (zh) * 2018-03-22 2019-10-01 深圳Tcl工业研究院有限公司 一种油墨
CN110607094B (zh) * 2018-06-14 2024-04-05 香港科技大学 油墨组合物、纳米棒增强膜、喷墨打印方法及液晶显示装置
CN109321038A (zh) * 2018-10-10 2019-02-12 福州大学 一种基于喷墨打印的量子点墨水
CN110726801A (zh) * 2019-10-31 2020-01-24 山东泰星新材料股份有限公司 一种监测烷基次膦酸反应状态的方法
CN111117357B (zh) * 2019-12-24 2022-08-19 阜阳欣奕华材料科技有限公司 一种量子点墨水、电致发光器件
CN113122057A (zh) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 量子点墨水、量子点薄膜的制备方法
CN113122063A (zh) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 量子点墨水、量子点薄膜的制备方法
KR20210098589A (ko) * 2020-01-31 2021-08-11 삼성디스플레이 주식회사 잉크 조성물, 이를 이용한 발광 장치 및 이의 제조 방법
CN113054107B (zh) * 2021-02-05 2022-10-21 广州追光科技有限公司 一种用于有机太阳能电池涂布的有机溶液组合

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089058A (zh) * 2006-06-14 2007-12-19 三星电机株式会社 用于喷墨打印的导电油墨组合物
US20090314991A1 (en) * 2008-01-14 2009-12-24 Samsung Electronics Co., Ltd. Quantum dot ink composition for inkjet printing and electronic device using the same
CN101747678A (zh) * 2008-12-10 2010-06-23 施乐公司 银纳米微粒油墨组合物
CN102675965A (zh) * 2011-03-07 2012-09-19 施乐公司 包含银纳米颗粒的溶剂型油墨
CN102844902A (zh) * 2010-04-12 2012-12-26 默克专利有限公司 用于制备有机电子器件的组合物和方法
CN105062218A (zh) * 2015-08-21 2015-11-18 Tcl集团股份有限公司 一种喷墨打印用的量子点油墨及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100021985A1 (en) * 2007-03-20 2010-01-28 The Regents Of The University Of California Mechanical process for creating particles in fluid
KR100934752B1 (ko) * 2008-04-10 2009-12-30 주식회사 잉크테크 광전자 소자용 잉크 조성물
US9090860B2 (en) * 2008-10-08 2015-07-28 The Regents Of The University Of California Process for creating shape-designed particles in a fluid
US8174000B2 (en) * 2009-02-11 2012-05-08 Universal Display Corporation Liquid compositions for inkjet printing of organic layers or other uses
EP2449039B1 (en) * 2009-06-30 2017-03-15 Hewlett-Packard Development Company, L.P. Ink-jet overcoats including latex polymers and inorganic nano particles
EP2517278B1 (en) * 2009-12-22 2019-07-17 Merck Patent GmbH Electroluminescent formulations
US10615343B2 (en) * 2014-09-05 2020-04-07 Merck Patent Gmbh Formulations and electronic devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089058A (zh) * 2006-06-14 2007-12-19 三星电机株式会社 用于喷墨打印的导电油墨组合物
US20090314991A1 (en) * 2008-01-14 2009-12-24 Samsung Electronics Co., Ltd. Quantum dot ink composition for inkjet printing and electronic device using the same
CN101747678A (zh) * 2008-12-10 2010-06-23 施乐公司 银纳米微粒油墨组合物
CN102844902A (zh) * 2010-04-12 2012-12-26 默克专利有限公司 用于制备有机电子器件的组合物和方法
CN102675965A (zh) * 2011-03-07 2012-09-19 施乐公司 包含银纳米颗粒的溶剂型油墨
CN105062218A (zh) * 2015-08-21 2015-11-18 Tcl集团股份有限公司 一种喷墨打印用的量子点油墨及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019119613A1 (zh) * 2017-12-18 2019-06-27 广东聚华印刷显示技术有限公司 电致发光材料墨水及其电致发光器件
US11637257B2 (en) 2017-12-18 2023-04-25 Guangdong Juhua Printed Display Technology Co. Ltd Electroluminescent material ink and electroluminescent device thereof
CN112397658A (zh) * 2019-08-19 2021-02-23 Tcl集团股份有限公司 一种复合材料及其制备方法与量子点发光二极管

Also Published As

Publication number Publication date
CN105038408A (zh) 2015-11-11
CN105038408B (zh) 2020-01-07
US20180237691A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2017028639A1 (zh) 印刷油墨及应用其印刷而成的电子器件
WO2017028640A1 (zh) 印刷油墨组合物及电子器件
US10787584B2 (en) Printing ink and electronic device
WO2017080317A1 (zh) 用于印刷电子的组合物及其在电子器件中的应用
EP3546532B1 (en) Printing ink composition, preparation method therefor, and uses thereof
WO2017080325A1 (zh) 印刷组合物及其应用
CN108352453B (zh) 电致发光器件、其制备方法及油墨组合物
WO2018095380A1 (zh) 用于印刷电子器件的组合物及其制备方法和用途
WO2017080323A1 (zh) 印刷组合物及其应用
WO2017080307A1 (zh) 用于印刷电子器件的组合物及其在电子器件中的应用
US20180346748A1 (en) Formulation for printing electronic device and application thereof in electronic device
WO2018103747A1 (zh) 高聚物及电致发光器件
US11555128B2 (en) Printing composition, electronic device comprising same and preparation method for functional material thin film
CN108137972B (zh) 印刷电子组合物、包含其的电子器件及功能材料薄膜的制备方法
WO2017080316A1 (zh) 用于印刷电子的组合物及其在电子器件中的应用
WO2017080324A1 (zh) 含无机纳米材料的印刷组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836503

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15751370

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836503

Country of ref document: EP

Kind code of ref document: A1