WO2017077919A1 - ステアリングホイールの位置調節装置 - Google Patents
ステアリングホイールの位置調節装置 Download PDFInfo
- Publication number
- WO2017077919A1 WO2017077919A1 PCT/JP2016/081750 JP2016081750W WO2017077919A1 WO 2017077919 A1 WO2017077919 A1 WO 2017077919A1 JP 2016081750 W JP2016081750 W JP 2016081750W WO 2017077919 A1 WO2017077919 A1 WO 2017077919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adjustment
- steering wheel
- state
- rod
- adjusting
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/02—Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
- B62D1/16—Steering columns
- B62D1/18—Steering columns yieldable or adjustable, e.g. tiltable
- B62D1/184—Mechanisms for locking columns at selected positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/02—Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
- B62D1/16—Steering columns
- B62D1/18—Steering columns yieldable or adjustable, e.g. tiltable
- B62D1/185—Steering columns yieldable or adjustable, e.g. tiltable adjustable by axial displacement, e.g. telescopically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/02—Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
- B62D1/16—Steering columns
- B62D1/18—Steering columns yieldable or adjustable, e.g. tiltable
- B62D1/187—Steering columns yieldable or adjustable, e.g. tiltable with tilt adjustment; with tilt and axial adjustment
Definitions
- the present invention relates to an improvement in a position adjustment device for a steering wheel that can adjust, for example, a front-rear position or a vertical position of a steering wheel for steering an automobile.
- the automobile steering device is configured as shown in FIG. 12, and transmits the rotation of the steering wheel 1 to the input shaft 3 of the steering gear unit 2, and a pair of left and right tie rods 4 as the input shaft 3 rotates. Push and pull 4 to give the front wheels a steering angle.
- the steering wheel 1 is supported and fixed to the rear end portion of the steering shaft 5, and the steering shaft 5 is rotatably supported by the steering column 6 with the cylindrical steering column 6 inserted in the axial direction. ing.
- the front end portion of the steering shaft 5 is connected to the rear end portion of the intermediate shaft 8 via a universal joint 7, and the front end portion of the intermediate shaft 8 is connected to the input shaft 3 via another universal joint 9. Has been.
- the steering apparatus As described above, it has conventionally been provided with a tilt mechanism for adjusting the vertical position of the steering wheel 1 and a telescopic mechanism for adjusting the front-rear position according to the physique and driving posture of the driver. It is considered (for example, refer to Patent Document 1).
- the upper front end portion of the housing 10 fixed to the front end portion of the steering column 6 is formed in the width direction with respect to the vehicle body 11 (the width direction is the width direction of the vehicle body,
- the tilt shaft 12 arranged in the same direction as in the present specification and claims is supported in a swingable manner.
- a displacement side bracket 13 is provided on the lower surface of the intermediate portion of the steering column 6 in the axial direction, and a fixed side bracket 14 is provided in a state where the displacement side bracket 13 is sandwiched from both sides in the width direction.
- the fixed bracket 14 has a long tilt adjustment hole 15 which is long in the vertical direction, and a portion of the displacement side bracket 13 which is aligned with a part of both the tilt adjustment long holes 15 has an axial direction.
- Telescopic adjustment long holes 16 that are long in the front-rear direction are formed.
- An adjusting rod 17 is inserted in a state where the tilt adjusting long hole 15 and the telescopic adjusting long hole 16 are inserted in the width direction. In accordance with this, the steering shaft 5 and the steering column 6 can be extended and contracted.
- the front and rear positions of the steering wheel 1 can be adjusted by making the telescopic adjustment long holes 16 long holes in the front-rear direction. Then, by operating an adjustment lever (not shown) provided at one end of the adjustment rod 17, the force for holding the displacement side bracket 13 from both sides in the width direction can be adjusted by the fixed side bracket 14, and the position of the steering wheel 1 can be adjusted.
- an adjustment lever not shown
- the steering column 6 is slidably fitted to the front part of the outer column 18 arranged on the rear side and the rear part of the inner column 19 arranged on the front side, so that the entire length can be expanded and contracted.
- a slit 20 is provided in the front portion of the outer column 18 made by die-casting a light alloy so that the inner diameter of the front portion can be elastically expanded and contracted.
- a pair of left and right sandwiched plate portions 21 and 21 are provided in a portion sandwiching the slit 20 from both the left and right sides, and the displacement side bracket 13 is configured by the both sandwiched plate portions 21 and 21.
- telescopic adjustment long holes 16 and 16 that are long in the front-rear direction are formed in the sandwiched plate portions 21 and 21.
- a pair of left and right support plate portions 22 and 22 provided on the fixed side bracket 14 are disposed in a portion sandwiching the displacement side bracket 13 from both the left and right sides, and the both support plate portions 22 and 22 are tilted.
- Tilt adjusting slots 15, 15 are formed in a partial arc shape centering on the shaft 12 (see FIG. 12) and long in the vertical direction.
- An adjustment rod 17 is inserted in the width direction into the long holes 15 and 15 for tilt adjustment and the long holes 16 and 16 for telescopic adjustment.
- an adjusting lever 23 is provided at one end of the adjusting rod 17 in the axial direction
- a nut 24 is provided at the other end in the axial direction
- a thrust bearing 25 is provided at a portion near one end in the axial direction.
- the adjusting rod 17 as described above can be moved up and down along the tilt adjusting elongated holes 15, 15, but does not rotate as the adjusting lever 23 swings.
- the adjustment lever 23 When adjusting the position of the steering wheel 1, the adjustment lever 23 is swung in a predetermined direction (generally downward), and the drive cam 26 is rotated in the unlocking direction. Then, the axial dimension of the cam device 28 is reduced, and the distance between the driven cam 27 and the nut 24 is increased. As a result, the surface pressure of the contact portion between the inner side surfaces of the support plate portions 22 and 22 and the outer side surfaces of the sandwiched plate portions 21 and 21 is reduced or lost, and at the same time, the inner diameter of the front end portion of the outer column 18 is reduced. It expands elastically, and the surface pressure at the contact portion between the inner peripheral surface of the front end portion of the outer column 18 and the outer peripheral surface of the rear end portion of the inner column 19 decreases. In this state, the vertical position and the front-rear position of the steering wheel 1 can be adjusted within a range in which the adjustment rod 17 can move in both the tilt adjustment long holes 15 and 15 and the both telescopic adjustment long holes 16 and 16.
- the adjustment lever 23 is swung in the reverse direction (generally upward).
- the drive side cam 26 is rotated in the lock direction which is the rotation direction when switching to the locked state.
- the axial direction dimension of the cam apparatus 28 is expanded, and the space
- the surface pressure of the abutting portion between the inner side surfaces of the both support plate portions 22 and 22 and the outer side surfaces of the both sandwiched plate portions 21 and 21 increases, and at the same time, the inner diameter of the front end portion of the outer column 18 is elastic. Accordingly, the surface pressure of the contact portion between the inner peripheral surface of the front end portion of the outer column 18 and the outer peripheral surface of the rear end portion of the inner column 19 rises, and the steering wheel 1 can be held at the adjusted position.
- the steering wheel 1 can be adjusted in the state where the position of the steering wheel 1 can be adjusted (unlocked state) and can be maintained (the locked state).
- a front-rear direction gap exists between the outer peripheral surface of the adjusting rod 17 and the inner surface (front surface and rear surface) of the tilt adjusting long hole 15.
- the outer column 18 can be substantially displaced in the front-rear direction and the up-down direction by the vertical gaps 29a, 29b or the front-rear gap, so that the sense of support rigidity of the steering wheel 1 is reduced. As a result, the driver may feel uncomfortable.
- the present invention can smoothly adjust the position of the steering wheel in the unlocked state, and the front / rear direction or the vertical direction of the steering wheel in the locked state.
- the invention was invented to realize a structure capable of improving the feeling of support rigidity in at least one of the directions.
- the steering wheel position adjusting device of the present invention includes a steering column, a displacement side bracket, a first through hole, a fixed side bracket, a pair of second through holes, an adjustment rod, and a pair of pressing portions. And an expansion / contraction mechanism.
- the steering column is provided around a steering shaft that fixes a steering wheel to an end portion thereof, and rotatably supports the steering shaft.
- the displacement side bracket is fixed to a part of the steering column.
- the first through hole is provided in the displacement side bracket so as to penetrate the displacement side bracket in the width direction.
- the fixed side bracket has a pair of support plate portions provided in a state of sandwiching the displacement side bracket from both sides in the width direction, and is fixed to the vehicle body side.
- Both the second through holes are provided in portions of the both support plate portions that are aligned with each other.
- the adjusting rod is provided in a state where the first through hole and the second through holes are inserted in the width direction.
- the both pressing portions are provided at portions projecting from the outer surfaces of the both support plate portions at both ends of the adjusting rod.
- the expansion / contraction mechanism is for expanding / contracting the interval between the pressing portions.
- at least one of the first through hole and the second through hole is a long adjustment hole that is long in the position adjustment direction, which is the direction in which the position of the steering wheel should be adjustable. .
- the position adjustment direction is the front-rear direction when the position of the steering wheel is adjusted by a telescopic mechanism, and the vertical direction when the position of the steering wheel is adjusted by a tilt mechanism. Further, when the expansion / contraction mechanism is expanded / contracted, the adjusting rod rotates.
- the adjustment rod has a gap adjustment portion.
- the gap adjusting portion is disposed inside the adjusting long hole. And in the state of adjusting the position of the outer peripheral surface of the gap adjusting portion and the inner surface of the adjusting long hole in a state where the adjusting rod is rotated in a state where the position of the steering wheel can be held (locked state).
- the first through hole is a long hole (telescopic adjustment long hole) that is long in the front-rear direction. And let the said adjustment long hole be said 1st through-hole.
- both the second through holes are long holes (tilt adjusting long holes) that are long in the vertical direction. And let the said adjustment long hole be said 2nd through-hole.
- the gap adjusting portion can be configured by a non-circular portion having a non-circular cross-sectional shape.
- the said non-circular part is comprised by the resin part externally fixed by the outer peripheral surface of the said adjustment rod, for example.
- the dimension in the position adjustment direction is made smaller than the dimension in the direction orthogonal to the position adjustment direction.
- the cross-sectional shape regarding the virtual plane orthogonal to the axial direction of the said adjustment rod regarding the outer peripheral surface of the said non-circular part be an ellipse (or oval), for example.
- the convex part which protruded to radial direction outward is formed in the axial direction intermediate part of the said adjustment rod, for example. And the part which aligns with this convex part regarding an axial direction among this adjustment rod is made into the said non-circular part.
- the outer peripheral surface of the convex portion has a cross-sectional shape related to a virtual plane orthogonal to the central axis of the adjusting rod on the central axis of the adjusting rod.
- An arcuate shape having a center axis that is eccentric to the center can be employed.
- the crank portion including an eccentric shaft portion that is eccentric with respect to the rotation center of the adjusting rod. Can be configured.
- the position of the steering wheel can be smoothly adjusted in the unlocked state, and the steering wheel can be supported in the locked state. It can improve the rigidity. That is, in the case of the present invention, the gap in the direction perpendicular to the position adjustment direction between the outer peripheral surface of the gap adjustment portion and the inner surface of the adjustment long hole is made smaller in the locked state than in the unlocked state. For this reason, in the unlocked state, based on the presence of a gap between the outer peripheral surface of the adjustment rod and the inner surface of the adjustment long hole in the direction orthogonal to the position adjustment direction, The adjustment rod can be smoothly displaced in the position adjustment direction inside the long slot for adjustment.
- the gap is smaller than in the unlocked state, so that the distance that the adjusting rod is displaced in the direction perpendicular to the position adjusting direction inside the adjusting slot is reduced. it can.
- the feeling of support rigidity of the steering wheel is improved, and the uncomfortable feeling felt by the driver can be reduced (or zero).
- FIG. 15A is a view similar to FIG. 14 showing the first embodiment of the present invention, and is a view showing an unlocked state (A) and a view showing a locked state (B). It is a figure for showing arrangement
- FIG. 1 which shows 2nd Embodiment of this invention.
- FIG. 2 which shows 3rd Embodiment of this invention.
- FIG. 2 which shows 7th Embodiment of this invention.
- the partial side view which shows one example of the steering device used as the object of this invention.
- FIG. 14 is a sectional view taken along line XIV-XIV in FIG. 13.
- the steering device transmits the rotation of the steering wheel 1 (see FIG. 12) to the input shaft 3 of the steering gear unit 2, and with the rotation of the input shaft 3, the left and right via the rack and pinion mechanism.
- a pair of tie rods 4, 4 are pushed and pulled to give a steering angle to the wheels.
- the steering wheel 1 is supported and fixed to the rear end portion of the steering shaft 5.
- the steering shaft 5 is inserted into the cylindrical steering column 6 (6a) in the axial direction, and the steering column 6 (6a). Is supported rotatably.
- the front end portion of the steering shaft 5 is connected to the rear end portion of the intermediate shaft 8 via a universal joint 7, and the front end portion of the intermediate shaft 8 is connected to the input shaft 3 via another universal joint 9. It is connected to the.
- An electric motor 30 serving as a power source is provided in front of the steering column 6 in order to apply a steering assist force to the steering shaft 5.
- the steering shaft 5 that supports and fixes the steering wheel 1 at the rear end includes a front end portion of the outer shaft 31 provided on the rear side (right side in FIG. 12) and a rear shaft 32 provided on the front side (left side in FIG. 12).
- the front and rear positions of the outer shaft 31 can be adjusted by spline engagement with the end portion.
- such a steering shaft 5 is provided inside a steering column 6a formed by combining the outer column 18a and the inner column 19a in a telescopic form (in a telescopic manner) by a ball bearing such as a single row deep groove type (not shown), Supports only rotation.
- the outer diameter of the outer peripheral surface of the inner column 19a is a plurality of locations in the circumferential direction (five locations in the present embodiment) that are fitted to the inner peripheral surface of the outer column 18a.
- Raised portions 33 are formed so as to protrude to the side.
- a housing 10 (see FIG. 12) is fixed to the front end portion of the steering column 6a (inner column 19a), and the upper front end portion of the housing 10 is a tilt shaft 12 disposed in the width direction with respect to the vehicle body (not shown). Thus, it is supported in a state in which it can swing in the vertical direction around the tilt shaft 12. Also, in the housing 10, a worm-type speed reducer including a worm and a worm wheel (not shown) constituting an electric assist mechanism is disposed. Then, based on the torque acting on the inner shaft 32, the steering shaft 5 is provided with a steering assist force by rotationally driving the worm by the electric motor 30 fixed to the housing 10.
- the vertical position of the steering wheel 1 can be adjusted based on the rocking displacement about the tilt shaft 12, and the front and rear of the steering wheel 1 can be adjusted based on the expansion and contraction of the steering shaft 5 and the steering column 6a.
- the position can be adjusted.
- a displacement side bracket 13a having a substantially U-shaped cross section is coupled and fixed to a part of the steering column 6a by welding above the steering column 6a.
- a fixed bracket 14 is supported on the vehicle body side.
- the displacement side bracket 13a is a plate-like member disposed in the vertical direction, and a pair of sandwiched plate portions 21a and 21a whose lower end portions are welded to the outer peripheral surface of the steering column 6a; It consists of the bottom part 34 which the upper end edges of both the clamping board parts 21a and 21a continued in the width direction.
- telescopic adjustment long holes 16a, 16a that are long in the front-rear direction are formed in the sandwiched plate portions 21a, 21a.
- the outer column 18a is provided with a pair of slits 20a, 20a which are long in the front-rear direction at two positions spaced in the circumferential direction of the upper end of the front part, so that the inner diameter of the front part can be elastically expanded / contracted. .
- the sandwiched plate portions 21a and 21a sandwich the slits 20a and 20a from the left and right sides.
- the fixed side bracket 14 is provided in a state where the displacement side bracket 13a is sandwiched from both sides in the width direction.
- the fixed-side bracket 14 includes a mounting plate portion 35 provided on the upper portion, and a pair of left and right support plate portions 22 and 22 that hang downward from the mounting plate portion 35.
- the fixed bracket 14 is supported by the mounting plate portion 35 via a pair of release capsules 36 and 36 so as to be able to be removed forward during a secondary collision.
- a pair of notch grooves opened at the rear edge are formed at both ends in the width direction of the mounting plate portion 35, and the release capsules 36, 36 fixed to the vehicle body by a coupling member (not shown) The cutout grooves are engaged with each other.
- the support plate portions 22 and 22 are formed with a pair of tilt adjustment elongated holes 15 and 15 that are partially arc-shaped around the tilt shaft 12 and are long in the vertical direction.
- the long holes 15 and 15 for tilt adjustment can be formed in a rectangular shape that is long in the vertical direction, instead of a partial arc shape.
- an adjusting rod 17a is inserted in the width direction through both the tilt adjusting long holes 15, 15 and the both telescopic adjusting long holes 16a, 16a.
- a pressing plate 38 and a thrust bearing 25a are arranged in this order from the other support plate portion 22.
- the driven cam 27, the driving cam 26, and the adjusting lever 23 are arranged in this order from the one support plate 22 side.
- the pressing plate 38 and the driven cam 27 correspond to the pressing portion of the present invention.
- the driven cam 27 and the driving cam 26 constitute a cam device 28 corresponding to the expansion / contraction mechanism of the present invention.
- the driven cam 27 is made of sintered metal, has a center hole (not shown) for inserting the adjusting rod 17a, and has a substantially rectangular plate shape as a whole. Further, on the outer side surface (left side surface in FIG. 1) of the driven cam 27, a driven cam surface that is an uneven surface in the circumferential direction is formed. Such a driven cam 27 is externally fitted in a state in which a portion near one end in the axial direction of the adjusting rod 17a is inserted into the center hole so as to be able to rotate relative to the adjusting rod 17a.
- an engagement convex portion (not shown) that protrudes inward in the width direction is provided on the inner surface of the driven cam 27. Then, the driven cam 27 is rotated relative to the one support plate 22 by engaging the engagement convex portion with the tilt adjusting long hole 15 formed in the one support plate 22. I'm blocking things.
- the drive-side cam 26 is made of sintered metal, has a center hole (not shown) for inserting the adjusting rod 17a (passing loosely so as not to be press-fitted), and has a substantially annular plate shape as a whole. . Further, on the inner side surface (right side surface in FIG. 1) of the drive side cam 26, a drive side cam surface which is an uneven surface in the circumferential direction is formed. Further, on the outer side surface of the drive side cam 26, there is provided a drive side engagement convex portion (not shown) protruding outward in the width direction from the outer side surface.
- Such a drive-side cam 26 is assembled to the adjustment rod 17a in a state in which the center hole is fitted into the outer peripheral surface of the adjustment rod 17a near the one end in the axial direction. Further, in this state, the driving side engaging convex portion is engaged with an engaging concave portion (not shown) provided at the base end portion of the adjusting lever 23. In this way, the drive side cam 26 can rotate integrally with the adjustment lever 23.
- the base end portion of the adjustment lever 23 is coupled and fixed to one end portion of the adjustment rod 17a in the axial direction so that the adjustment lever 23 and the adjustment rod 17a can rotate integrally. ing.
- Non-circular portions 41 and 41 are provided.
- the adjustment rod 17a includes a male screw portion (not shown) formed on the outer peripheral surface of one end portion in the axial direction, and one non-circular portion 41 provided on the other side in the axial direction from the male screw portion, A cylindrical surface portion 42 provided on the outer peripheral surface of the other non-circular portion 41 in the axial direction, the other non-circular portion 41 provided on the other axial side of the cylindrical surface portion 42, and the other axial end portion And a head 37 provided on the head.
- both the non-circular parts 41 and 41 are arrange
- the structure which provides only any one of both the non-circular parts 41 and 41 is also employable.
- the major axis direction of the non-circular portions 41, 41 is the direction in which the telescopic adjustment long holes 16a, 16a are disposed (see FIG. 2).
- the drive cam 26 when shifting from the unlocked state to the state in which the position of the steering wheel 1 can be held (locked state) with respect to the left-right direction and the front-rear direction of the vehicle body and the position adjusting direction of the present invention.
- the adjusting rod 17a is arranged so as to coincide with the direction inclined 45 ° in the rotation direction (clockwise in FIG. 2). In such a state, the convex portion constituting the driving side cam surface of the driving side cam 26 opposes the concave portion constituting the driven side cam surface of the driven side cam 27 in the axial direction.
- the axial dimension of 28 is shrunk.
- the cam device 28 is configured so that the longitudinal direction of the non-circular portions 41 and 41 coincides with the direction orthogonal to the direction in which the telescopic adjustment long holes 16a and 16a are disposed in the locked state. (Adjusting the amount of relative displacement of the drive cam 26 with respect to the driven cam 27) and adjusting rod 17a. That is, when shifting from the unlocked state to the locked state, the drive cam 26 and the adjusting rod 17a rotate 45 ° about the center axis of the adjusting lever 23 as the adjusting lever 23 swings (rotates).
- each convex portion constituting the driving side cam surface of the driving side cam 26 rides on each convex portion constituting the driven side cam surface of the driven side cam 27 (becomes a state facing each convex portion),
- the axial dimension of the cam device 28 is expanded.
- the non-circular portions 41, 41 are moved from the state shown in FIG. 2 (A) to the state shown in FIG. 2 (B) inside the telescopic adjusting long holes 16a, 16a. (Turns 45 ° clockwise in FIG. 2).
- the positional relationship between the non-circular portions 41 and 41 with respect to the telescopic adjustment long holes 16a and 16a in the unlocked state and the locked state is not limited to the configuration shown in FIG. Various configurations can also be adopted.
- the above-described vertical gaps 44a and 44b are also present in the locked state (L 44a > 0, L 44b > 0), but the vertical gap 44a , 44b may be zero. That is, it is possible to adopt a configuration in which the upper and lower edges of the outer peripheral surfaces of the non-circular portions 41 and 41 are brought into contact with the upper and lower surfaces of the telescopic adjustment long holes 16a and 16a in the locked state.
- the steering wheel front-rear position adjustment in the unlocked state can be performed smoothly, and the steering wheel in the locked state can be performed. It is possible to improve the feeling of support rigidity in the vertical direction. That is, in the case of this embodiment, in the locked state, it exists between the upper and lower edges of the outer peripheral surfaces of the non-circular portions 41 and 41 and the upper and lower surfaces of the telescopic adjustment long holes 16a and 16a.
- the sum (L 43a + L 43b ) of the vertical gaps 44a and 44b is smaller than the sum (L 44a + L 44b ) of both the vertical gaps 43a and 43b in the unlocked state (L 44a + L 44b ⁇ L 43a + L 43b ).
- the adjustment rod 17a may be smoothly displaced in the front-rear direction inside the telescopic adjustment long holes 16a, 16a based on the presence of both the vertical gaps 43a, 43b. it can.
- the adjustment rod 17a is positioned in the vertical direction inside the telescopic adjustment long holes 16a and 16a.
- the displaceable distance can be reduced. As a result, the feeling of support rigidity of the steering wheel 1 is improved, and the uncomfortable feeling felt by the driver can be reduced (or reduced to zero).
- the non-circular portions 41 and 41 may be provided at least in the range of the telescopic adjustment long holes 16a and 16a in the axial direction of the adjustment rod 17a.
- the telescopic adjustment long holes 16a and 16a and both tilt adjustment long holes 15 and 15 may be provided.
- the steering column 6 can be slidably fitted to the front portion of the outer column 18 disposed on the rear side and the rear portion of the inner column 19 disposed on the front side, so that the entire length can be expanded and contracted.
- a slit 20 is provided in the front part of the outer column 18 made by die-casting a light alloy such as an aluminum alloy so that the inner diameter of the front part can be elastically expanded and reduced.
- a pair of left and right sandwiched plate portions 21 and 21 are provided in a portion sandwiching the slit 20 from both the left and right sides, and the displacement side bracket 13 is configured by the both sandwiched plate portions 21 and 21.
- telescopic adjustment long holes 16 and 16 that are long in the front-rear direction are formed in the sandwiched plate portions 21 and 21.
- a pair of left and right support plate portions 22, 22 provided on the fixed bracket 14 is disposed in a portion that sandwiches the displacement side bracket 13 from both the left and right sides, and the support plate portions 22, 22 are tilted.
- Tilt adjusting slots 15, 15 are formed in a partial arc shape centering on the shaft 12 (see FIG. 12) and long in the vertical direction.
- An adjusting rod 17b is inserted in the width direction into the long holes 15 and 15 for tilt adjustment and the long holes 16 and 16 for telescopic adjustment.
- the long holes 15 and 15 for tilt adjustment can be formed in a rectangular shape that is long in the vertical direction, instead of a partial arc shape.
- the driven cam 27a and the driving cam 26a constitute a cam device 28a corresponding to the expansion / contraction mechanism of the present invention.
- the driven cam 27a is made of sintered metal, has a center hole (not shown) for inserting the adjusting rod 17b, and has a substantially rectangular plate shape as a whole. Further, on the outer side surface (the right side surface in FIG. 4) of the driven cam 27a, a driven cam surface that is an uneven surface in the circumferential direction is formed. On the other hand, an engagement convex portion 39 protruding inward in the width direction is formed on the inner surface of the driven cam 27a.
- Such a driven cam 27a is externally fitted in a state in which a portion near the other axial end of the adjusting rod 17b is inserted into the center hole so as to be able to rotate relative to the adjusting rod 17b. Further, in this state, the engagement convex portion 39 of the driven cam 27 a is disposed inside the tilt adjusting long hole 15 formed in the other support plate portion 22. In this way, rotation of the driven cam 27a with respect to the other support plate portion 22 is prevented.
- the drive-side cam 26a is made of sintered metal, has a center hole (not shown) for inserting the adjusting rod 17b (inserted loosely so as not to be press-fitted), and has a substantially annular plate shape as a whole. . Further, on the inner side surface (left side surface in FIG. 4) of the driving side cam 26a, a driving side cam surface that is an uneven surface in the circumferential direction is formed. Further, on the outer side surface of the driving side cam 26a, a driving side engaging convex portion 40 protruding from the outer side in the width direction is provided.
- Such a drive-side cam 26a is assembled to the adjustment rod 17b with the center hole fitted in the outer peripheral surface of the adjustment rod 17b near the other end in the axial direction. Further, in this state, the driving side engaging convex portion 40 is engaged with an engaging concave portion (not shown) provided at the base end portion of the adjusting lever 23. In this way, the drive cam 26a can rotate integrally with the adjustment lever 23.
- the base end of the adjusting lever 23 is coupled to the other axial end of the adjusting rod 17b, and the adjusting lever 23 and the adjusting rod 17b are coupled and fixed so that they can rotate integrally.
- the outer column 18 (displacement side bracket 13) is attached upward by a spring 59 in order to assist the operation in adjusting the vertical position of the steering wheel 1 (see FIG. 12). It is fast.
- a pair of crank portions 45a and 45b corresponding to the gap adjusting portion of the present invention are provided at two positions in the middle portion of the adjusting rod 17b in the axial direction.
- the adjustment rod 17b includes, in order from one end side in the axial direction, a male screw portion 46, one shaft portion 47, one inclined continuous portion 48, an eccentric shaft portion 49, and the other inclined continuous portion 50.
- the other shaft part 51 and the head part 37a are provided.
- the male threaded portion 46 is formed on the outer peripheral surface of one axial end portion of the adjustment rod 17b.
- One shaft portion 47 has a circular cross-sectional shape, and one axial end edge thereof is continuous with the other axial end edge of the male screw portion 46.
- One inclined continuous portion 48 is provided in a state of being inclined in a direction away from one shaft portion 47 toward the other side in the axial direction.
- One inclined continuous portion 48 has one axial end edge continuous to the other axial end edge of one shaft portion 47.
- the eccentric shaft portion 49 has a circular cross-sectional shape, and is provided in a state where the central axis is eccentric with respect to the central axis of the one shaft portion 47.
- One axial end edge of the eccentric shaft portion 49 is continuous with the other axial end edge of the one inclined continuous portion 48.
- the other inclined continuous portion 50 is provided in a state of being inclined in a direction away from the eccentric shaft portion 49 toward the other side in the axial direction.
- the other inclined continuous portion 50 has one axial end edge continuous to the other axial end edge of the eccentric shaft portion 49.
- the other shaft portion 51 has a circular cross-sectional shape and is provided coaxially with the one shaft portion 47.
- One axial end edge of the other shaft portion 51 is continuous with the other axial end edge of the other inclined continuous portion 50.
- the head portion 37 a is provided in a state where one axial side surface is continuous with the other axial end edge of the other shaft portion 51.
- one crank portion 45a is constituted by a portion closer to the other end in the axial direction of one shaft portion 47, one inclined continuous portion 48, and a portion closer to one end in the axial direction of the eccentric shaft portion 49.
- the other crank portion 45b is constituted by the portion near the other end in the axial direction of the eccentric shaft portion 49, the other inclined continuous portion 50, and the portion near the one end in the axial direction of the other shaft portion 51.
- both the crank portions 45 a and 45 b are disposed inside the telescopic adjustment long holes 16 and 16 of the both sandwiched plate portions 21 and 21.
- the eccentric direction of the eccentric shaft portion 49 constituting the crank portions 45a and 45b with respect to the one shaft portion 47 and the other shaft portion 51 is changed. From the unlocked state to the state in which the position of the steering wheel 1 can be held (locked state) with respect to the direction in which the telescopic adjustment long holes 16 and 16 are disposed (the front-rear direction and the position adjusting direction of the present invention).
- the adjustment rod 17b is arranged so as to coincide with the direction inclined by 45 ° in the rotation direction of the drive side cam 26a when shifting.
- the eccentric shaft portion 49 constituting the crank portions 45a and 45b coincides with a direction (vertical direction) perpendicular to the direction in which the telescopic adjustment long holes 16 and 16 are disposed.
- the configuration of the cam device 28a is devised (the relative displacement amount of the driving cam 26a with respect to the driven cam 27a is regulated), and the adjustment rod 17i is disposed. That is, when shifting from the unlocked state to the locked state, the drive cam 26a and the adjusting rod 17b move to their own central axes (one shaft portion and the other shaft portion) as the adjusting lever 23 swings (rotates). Rotate 45 degrees around the center axis).
- the convex portion constituting the driving cam surface of the driving cam 26a rides on the convex portion constituting the driven cam surface of the driven cam 27a (becomes a state facing the convex portion), and the cam device 28a.
- the axial dimension of is expanded.
- the eccentric shaft portion 49 constituting both the crank portions 45a and 45b is located inside the telescopic adjusting long holes 16a and 16a from the state shown in FIG. Transition (rotation) to the state shown in (B).
- the clearance (distance) between the upper and lower edges of the outer peripheral surfaces of the crank portions 45a and 45b and the upper and lower surfaces of the telescopic adjustment long holes 16a and 16a in the locked state is unlocked.
- the gaps (distances) between the upper and lower edges of the outer peripheral surfaces of the crank portions 45a and 45b and the upper and lower surfaces of the telescopic adjustment long holes 16a and 16a are made smaller.
- a third embodiment of the present invention will be described with reference to FIG. Also in this embodiment, a pair of non-circular portions 41a are provided at two positions in the axial direction of the adjusting rod 17c, similarly to the adjusting rod 17a of the first embodiment described above.
- a pair of non-circular resin portions 53 are fitted and fixed at two positions in the axially intermediate portion of the outer peripheral surface of the adjustment rod 17c so as to cover both positions.
- a portion of the adjustment rod 17c where both the non-circular resin portions 53 are fitted and fixed is defined as both non-circular portions 41a.
- the cross-sectional shape of the outer peripheral surface of both non-circular resin portions 53 is an elliptical shape.
- the major axis direction of both the non-circular portions 41a is the telescopic adjustment long holes 16a, 16a.
- the adjusting rod 17c is arranged so as to coincide with the direction inclined 45 ° in the clockwise direction (5).
- the cam device 28 is arranged such that the longitudinal direction of both non-circular portions 41a coincides with the direction (vertical direction) orthogonal to the direction (front-rear direction) of the telescopic adjustment long holes 16a, 16a.
- the control rod 17c is arranged in addition to devising the configuration (to restrict the relative displacement of the drive cam 26 with respect to the driven cam 27).
- the upper and lower edges (both edges in the major axis direction) of the outer peripheral surface of both non-circular portions 41a, and the upper and lower surfaces of both telescopic adjustment long holes 16a, 16a are in contact with each other.
- the upper and lower edges (both edges in the major axis direction) of the outer peripheral surface of both non-circular portions 41a and the upper and lower surfaces of the telescopic adjustment long holes 16a, 16a are shown in FIG. A configuration in which the vertical gaps 44c and 44d as shown in FIG.
- Other structures, functions, and effects are the same as those in the first embodiment described above.
- a fourth embodiment of the present invention will be described with reference to FIG. Also in this embodiment, a pair of non-circular portions 41b are provided at two positions in the axial direction of the adjusting rod 17d, similarly to the adjusting rod 17a of the first embodiment described above.
- a pair of eccentricity is provided at two positions opposite to each other in the radial direction of the adjustment rod 17d among the two positions separated in the axial direction of the intermediate portion of the adjustment rod 17d in the axial direction.
- Convex portions 54 and 54 are formed.
- the eccentric convex portions 54 and 54 have a curvature larger than the curvature of the outer peripheral surface of the portion of the adjusting rod 17d where the eccentric convex portions 54 and 54 are provided, and the center of the adjusting rod 17d. It has a central axis O 54 that is eccentric with respect to the axis O 17d .
- the part in which both the eccentric convex parts 54 and 54 of the adjustment rod 17d were formed is made into the both non-circular part 41b whose cross-sectional shape is substantially elliptical shape.
- the major axis direction of both non-circular portions 41b ⁇ both eccentricity convex with respect to the radial direction of the adjustment rod 17d is from the unlocked state with respect to the arrangement direction of the telescopic adjustment long holes 16a and 16a (the front-rear direction and the left-right direction in FIG. 7A). It coincides with the direction inclined 45 ° in the rotation direction (clockwise in FIG. 7) of the driving cam 26 (see FIG. 1) when shifting the steering wheel 1 to a state where it can be held (locked state).
- the adjustment rod 17d is arranged.
- both non-circular portions 41b coincides with the direction (vertical direction) orthogonal to the direction (front-rear direction) of the telescopic adjustment long holes 16a, 16a.
- the configuration of the cam device 28 is devised (the relative displacement amount of the driving cam 26 with respect to the driven cam 27 is regulated), and the adjusting rod 17d is disposed.
- the shape (the amount of eccentricity, the amount of protrusion with respect to the central axis of the adjustment rod 17d) of both eccentric convex parts 54 and 54 can also differ. Further, it is possible to adopt a structure in which only one of the two eccentric convex portions 54, 54 is provided. Other structures, functions, and effects are the same as those in the first embodiment described above.
- a fifth embodiment of the present invention will be described with reference to FIG. Also in this embodiment, a pair of non-circular portions 41c are provided at two positions in the axial direction of the adjusting rod 17e, similarly to the adjusting rod 17a of the first embodiment described above.
- the eccentric convex part 54a is formed in one position regarding the circumferential direction of the two positions spaced apart in the axial direction of the axial direction intermediate part of the adjustment rod 17e.
- the eccentric convex portion 54a has a curvature larger than the curvature of the outer peripheral surface (the outer peripheral surface of the portion excluding the eccentric convex portion 54a) of the adjustment rod 17e where the eccentric convex portion 54a is provided, and has a center axis O 54a that is eccentric with respect to the central axis O 17e of the adjusting rod 17e.
- the part in which the eccentric convex part 54a was provided among the adjustment rods 17e is made into the both non-circular part 41c.
- the direction in which the eccentric convex portion 54a of both the non-circular portions 41c is formed is the direction in which the telescopic adjustment long holes 16a and 16a are disposed (front-rear direction).
- the configuration of the cam device 28 is devised so as to coincide with the direction ⁇ vertical direction in FIG. 8B ⁇ (the relative displacement amount of the driving cam 26 with respect to the driven cam 27 is regulated) and adjusted.
- a rod 17e is arranged.
- a vertical gap 55b is provided between the lower end edge of the outer peripheral surface of both the non-circular portions 41c and the lower surface of both telescopic adjustment long holes 16a, 16a. ing.
- the vertical gap 55b is not provided.
- Other structures, functions, and effects are the same as those in the first embodiment described above.
- the eccentric convex portion 54b is formed at one position in the circumferential direction of two positions separated in the axial direction of the intermediate portion of the adjusting rod 17f in the axial direction.
- the eccentric convex portion 54b has a curvature larger than the curvature of the outer peripheral surface of the portion of the adjusting rod 17f where the eccentric convex portion 54b is provided (the portion excluding the eccentric convex portion 54b), and is adjusted. It has eccentric center axis O 54b with respect to the central axis O 17f of the rod 17f. And the part in which the eccentric convex part 54b was provided among the adjustment rods 17f is made into the both non-circular part 41d.
- the direction in which the eccentric convex portion 54b of both the non-circular portions 41d is formed is perpendicular to the direction in which the telescopic adjustment long holes 16a and 16a are disposed.
- the configuration of the cam device 28 is devised so as to match ⁇ vertical direction in FIG. 9B ⁇ (the relative displacement amount of the driving cam 26 with respect to the driven cam 27 is regulated), and the adjustment rod 17f is disposed. is doing.
- the outer column 18a and the displacement side bracket 13a hang down due to the influence of gravity, and the outer peripheral surfaces of both non-circular portions 41d.
- the portions that are in contact with the upper surfaces of the telescopic adjustment long holes 16a and 16a are portions that are not eccentric with respect to the central axis (rotation center) O 17f of the adjustment rod 17f. For this reason, the abutting part is not displaced in the vertical direction.
- FIG. 1 A seventh embodiment of the present invention will be described with reference to FIG.
- the outer column 18a and the displacement side bracket 13a are urged upward in order to assist the operation when adjusting the vertical position of the steering wheel 1 (see FIG. 12).
- This is applied to a structure having a mechanism (for example, a spring 59 shown in FIG. 4).
- a pair of non-circular portions 41e are provided at two positions in the axial direction of the adjustment rod 17g, similarly to the adjustment rod 17a of the first embodiment described above.
- the eccentric convex part 54c is formed in one position regarding the circumferential direction of two positions spaced apart in the axial direction of the axial direction intermediate part of the adjusting rod 17g.
- the eccentric convex portion 54c has a curvature larger than the curvature of the outer peripheral surface of the portion of the adjusting rod 17g where the eccentric convex portion 54c is provided (the portion excluding the eccentric convex portion 54c), and the adjusting rod It has a central axis O 54c eccentric to the central axis O 17 g of the rod 17 g.
- the part in which the eccentric convex part 54c of the adjustment rod 17g was provided is made into the both non-circular part 41e.
- the direction in which the eccentric convex portion 54c of both the non-circular portions 41e is formed is for both telescopic adjustments.
- the state shifts from the unlocked state to the state where the position of the steering wheel 1 can be held (locked state).
- the adjusting rod 17g is arranged so as to coincide with the direction inclined by 45 ° in the rotation direction (clockwise direction in FIG. 10) of the driving cam 26 (see FIG. 1).
- the direction in which the eccentric convex portion 54c of both the non-circular portions 41e is formed is the direction in which the telescopic adjustment long holes 16a and 16a are disposed (front-rear direction).
- the configuration of the cam device 28 is devised so as to coincide with the direction (vertical direction) perpendicular to (the relative displacement of the driving cam 26 with respect to the driven cam 27 is restricted), and an adjustment rod 17g is arranged. Yes.
- the locked state the upper and lower edges of the outer peripheral surfaces of the non-circular portions 41e are brought into contact with the upper and lower surfaces of the telescopic adjustment long holes 16a and 16a.
- the outer column 18a and the displacement side bracket 13a are pushed upward, and the lower end edge of the outer peripheral surface of both the non-circular portions 41e
- the telescopic adjustment long holes 16a, 16a are in contact with the lower surfaces of the two telescopic adjustment holes.
- the portion in contact with the lower surfaces of both telescopic adjustment long holes 16a, 16a is a portion that is not eccentric with respect to the central axis (rotation center) O 17g of the adjustment rod 17g.
- the contacting part does not move up and down. Therefore, even if the adjustment rod 17g is rotated, the outer column 18a and the displacement side bracket 13a are not displaced in the vertical direction. As a result, the driver does not feel uncomfortable when shifting from the unlocked state to the locked state.
- Other structures, functions, and effects are the same as those in the first embodiment described above.
- the adjusting rod 17i constituting the steering wheel position adjusting device of the present embodiment includes a pair of non-circular portions 41f at two positions in the axial direction.
- both the non-circular portions 41f are connected to the pair of tilt adjusting long holes 15 and 15 formed in the both support plate portions 22 and 22 constituting the fixed bracket 14 (see FIG. 1). Arranged inside.
- both the non-circular portions 41f are paired with a pair of telescopic adjustment long holes 16a, 16a formed in both sandwiched plate portions 21a, 21a constituting the displacement side bracket 13a (see FIG. 1). It is not arranged inside. That is, in the case of this embodiment, the cross-sectional shape of the part arrange
- the major axis direction of both non-circular portions 41f is the length for both tilt adjustments.
- the state shifts from the unlocked state to the state in which the position of the steering wheel 1 can be held (locked state).
- the adjustment rod 17i is arranged so as to coincide with the direction inclined 45 ° in the rotation direction (clockwise direction in FIG. 11) of the drive side cam 26 (see FIG. 1).
- the major axis direction of both non-circular portions 41f is the long holes 15 and 15 for both tilt adjustments.
- the configuration of the cam device 28 is devised so as to coincide with the direction (front-rear direction) perpendicular to the direction in which the cam 27 is disposed (the relative displacement of the driving cam 26 with respect to the driven cam 27 is regulated) and the adjusting rod 17i. Is arranged. That is, when shifting from the unlocked state to the locked state, the drive cam 26 and the adjustment rod 17i are 45 ° centered on their own central axes as the adjustment lever 23 (see FIG. 1) swings (rotates). Rotate.
- both the non-circular portions 41f shift from the state shown in FIG. 11A to the state shown in FIG. 11B inside the tilt adjusting long holes 15, 15. (Rotate 45 ° clockwise in FIG. 11). Note that the positional relationship of the two non-circular portions 41f with respect to both the tilt adjusting long holes 15, 15 in the unlocked state and the locked state is not limited to the state shown in FIG.
- the major axis direction can also be provided in a state rotated about 45 ° counterclockwise from the state shown in FIG.
- the dimension between the front edge and the rear edge of the outer peripheral surface of both the non-circular portions 41f and the front and rear surfaces of both the tilt adjusting long holes 15, 15 is L.
- the locked state between the front and rear edges (both edges in the major axis direction) of the outer peripheral surface of both non-circular portions 41f and the front and rear surfaces of the tilt adjusting long holes 15, 15 are each dimension L 58c, an L 58d, 1 pair of longitudinal direction gap 58c, is 58d are present.
- L 58c + L 58d which is the sum of the dimensions of both the front-rear gaps 58c, 58d in the locked state
- L 58a + L 58b which is the sum of the dimensions of both the front-rear gaps 58a, 58b in the unlocked state.
- L58c + L58d ⁇ L58a + L58b the front-rear direction gaps 58c and 58d as described above are present even in the locked state (L 58c > 0, L 58d > 0).
- both ends in the minor axis direction ⁇ both ends in the left-right direction in FIG. 11B) of the outer peripheral surface of both non-circular portions 41f, and the front and rear surfaces of both tilt adjusting slots 15, 15 It is also possible to adopt a configuration in which the abuts.
- the sizes of the front-rear direction gaps 58a and 58b are made equal.
- the sizes of the front-rear direction gaps 58a and 58b can be varied.
- the vertical position adjustment of the steering wheel in the unlocked state can be performed smoothly, and the steering wheel in the locked state can be performed. It is possible to improve the feeling of support rigidity in the front-rear direction.
- the front-rear direction existing between the front and rear end edges of the outer peripheral surface of both the non-circular portions 41f and the front and rear surfaces of both tilt adjusting slots 15, 15 The sum of the gaps 58c and 58d (L 58c + L 58d ) is determined by the relationship between the front and rear end edges of the outer circumferential surfaces of the non-circular portions 41f and the front and rear surfaces of the tilt adjusting long holes 15 and 15 in the unlocked state. It is smaller than the sum (L 58a + L 58b ) of both the front-rear direction gaps 58a and 58b existing between them (L 58c + L 58d ⁇ L 58a + L 58b ).
- the adjusting rod 17a in the unlocked state, can be smoothly displaced in the vertical direction inside the tilt adjusting long holes 15 and 15 based on the presence of both front and rear direction gaps 58a and 58b. it can.
- the front-rear direction gaps 58c, 58d are smaller than the front-rear direction gaps 58a, 58b, so that the adjustment rod 17a extends in the front-rear direction inside the tilt adjustment slots 15, 15.
- the displaceable distance can be reduced. As a result, the feeling of support rigidity in the front-rear direction of the steering wheel 1 is improved, and the uncomfortable feeling felt by the driver can be reduced (or zero).
- the non-circular portion 41f is rotated by 90 ° in the circumferential direction with respect to the portion of the adjusting rod 17i disposed inside the telescopic adjusting long holes 16a, 16a.
- a non-circular portion (not shown) having an elliptical shape can also be used.
- the non-circular portion is arranged inside the telescopic adjustment long holes 16a and 16a so as to be in the same state as in the first embodiment.
- the structure in which the non-circular portion is disposed inside the telescopic adjustment long holes 16a, 16a and the structure in which the both non-circular portions 41f are disposed inside the tilt adjusting long holes 15, 15 are simultaneously employed.
- illustration is abbreviate
- a gap adjusting portion such as the crank portions 45a and 45b of the second embodiment described above may be employed.
- Other structures, functions, and effects are the same as those in the first embodiment described above.
- the structure of the gap adjusting portion is not limited to the structure of each of the embodiments described above. That is, the amount of displacement in the direction orthogonal to the position adjustment direction in a state where the position of the steering wheel can be maintained is greater than the amount of displacement in the direction orthogonal to the position adjustment direction in a state where the position of the steering wheel can be adjusted.
- Various structures that can be made small can be adopted. In other words, as the structure of the clearance adjustment portion, the clearance adjustment portion and the inner surface of the adjustment long hole (telescopic adjustment long hole or tilt adjustment long hole) in a state where the position of the steering wheel can be held.
- the gaps in the direction perpendicular to the position adjustment direction between the two and the position can be made smaller than the gap in the direction in which the position of the steering wheel can be adjusted.
- the structures of the above-described embodiments can be implemented in combination as appropriate. That is, if the structure of the first to seventh embodiments and the structure of the eighth embodiment are combined, it is possible to improve the feeling of support rigidity in the vertical direction and the front-rear direction of the steering wheel.
- a structure in which any one of the non-circular portions 41 of the first embodiment described above is the non-circular portion 41f of the eighth embodiment described above may be employed.
- one gap adjustment part formed near the axial end of the adjustment rod is arranged inside the telescopic adjustment long hole, and the one gap adjustment part and the telescopic adjustment long hole above and below the telescopic adjustment long hole in the locked state. It is assumed that the gap in the vertical direction (total gap) existing between both sides in the direction can be made smaller than the gap in the unlocked state.
- the other gap adjusting portion formed on the portion closer to the other end in the axial direction of the adjusting rod is arranged inside the tilt adjusting long hole, and the other gap adjusting portion and the tilt adjusting long hole in the locked state are arranged.
- the gap in the front-rear direction (total gap) existing between both sides of the front-rear direction is made smaller than the gap in the unlocked state. If such a structure is employ
- non-circular diameter portion of the present invention may include a straight portion in the outer diameter, and may be, for example, a rectangular shape.
- expansion / contraction mechanism that expands / contracts the interval between the pressing portions is not limited to the cam device of the above-described embodiment, and may be a fastening mechanism using a screw, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering Controls (AREA)
Abstract
Description
ステアリングコラム6は、後側に配置したアウタコラム18の前部と、前側に配置したインナコラム19の後部とを摺動可能に嵌合させて、全長を伸縮可能にしている。このうち、例えば軽合金をダイキャスト成形する事により造ったアウタコラム18の前部には、スリット20が設けられて、該前部の内径を弾性的に拡縮可能としている。又、該スリット20を左右両側から挟む部分に左右1対の被挟持板部21、21が設けられ、該両被挟持板部21、21により変位側ブラケット13を構成している。又、該両被挟持板部21、21には、前後方向に長いテレスコ調節用長孔16、16が形成されている。又、固定側ブラケット14に設けられた左右1対の支持板部22、22が、変位側ブラケット13を左右両側から挟持する部分に配置されると共に、該両支持板部22、22にはチルト軸12(図12参照)を中心とする部分円弧状で上下方向に長い、チルト調節用長孔15、15が形成されている。そして、該両チルト調節用長孔15、15及び両テレスコ調節用長孔16、16に、調節ロッド17が幅方向に挿通されている。
但し、ロック状態に於いて、アウタコラム18が、上下方向隙間29a、29b又は前後方向隙間の分だけ前後方向及び上下方向に実質的に変位可能である為、ステアリングホイール1の支持剛性感が低下して、運転者に違和感を与える可能性がある。
ステアリングコラムは、端部にステアリングホイールを固定するステアリングシャフトの周囲に設けられて該ステアリングシャフトを回転自在に支持する為のものである。
前記変位側ブラケットは、前記ステアリングコラムの一部に固設されている。
前記第一通孔は、前記変位側ブラケットに、該変位側ブラケットを幅方向に貫通する状態で設けられている。
前記固定側ブラケットは、前記変位側ブラケットを幅方向両側から挟む状態で設けられた1対の支持板部を有し、車体側に固定される。
前記両第二通孔は、前記両支持板部の互いに整合する部分に設けられている。
前記調節ロッドは、前記第一通孔及び該両第二通孔を幅方向に挿通した状態で設けられている。
前記両押圧部は、該調節ロッドの両端部で前記両支持板部の外側面から突出した部分に設けられている。
前記拡縮機構は、該押圧部間の間隔を拡縮する為のものである。
又、前記第一通孔と前記両第二通孔とのうちの少なくとも一方の通孔を、前記ステアリングホイールの位置を調節可能とすべき方向である位置調節方向に長い調節用長孔としている。尚、該位置調節方向とは、テレスコピック機構により前記ステアリングホイールの位置を調節する場合には前後方向であり、チルト機構により該ステアリングホイールの位置を調節する場合には上下方向である。
更に、前記拡縮機構を拡縮する際に、前記調節ロッドが回転する。
又、該隙間調整部が、前記調節用長孔の内側に配置されている。
そして、前記ステアリングホイールの位置を保持できる状態(ロック状態)に前記調節ロッドを回転させた状態での、前記隙間調整部の外周面と前記調節用長孔の内面との、前記位置調節方向に直交する方向(幅方向)に関する隙間が、前記ステアリングホイールの位置を調節可能な状態(アンロック状態)に前記調節ロッドを回転させた状態での、前記隙間調整部の外周面と前記調節用長孔の内面との、前記位置調節方向に直交する方向に関する隙間よりも小さい。
又、上記発明を実施する場合には、例えば、前記非円形部を、前記調節ロッドの外周面に外嵌固定された樹脂部分により構成する。
又、上述の様な本発明のステアリングホイールの位置調節装置を実施する場合には、具体的に、前記隙間調整部を、前記調節ロッドの回転中心に対して偏心した偏心軸部を含むクランク部により構成する事ができる。
即ち、本発明の場合、隙間調整部の外周面と調節用長孔の内面との位置調節方向に直交する方向に関する隙間を、ロック状態で、アンロック状態よりも小さくしている。この為、アンロック状態に於いては、前記調節ロッドの外周面と、前記調節用長孔の内面との間に存在する、前記位置調節方向に直交する方向に関する隙間の存在に基づいて、前記調節ロッドが前記調節用長孔の内側で、前記位置調節方向に滑らかに変位する事ができる。一方、ロック状態に於いては、前記隙間が、アンロック状態よりも小さくなる為、前記調節ロッドが、前記調節用長孔の内側で、前記位置調節方向に直交する方向に変位する距離を小さくできる。この結果、前記ステアリングホイールの支持剛性感が向上して、運転者が感じる違和感を減少(乃至はゼロに)する事ができる。
本発明の第1実施形態に就いて、図1、2を参照しつつ説明する。本実施形態のステアリングホイールの位置調節装置を適用したステアリング装置は、図12に記載したステアリング装置の構造とほぼ同様である為、以下、図12を参照しつつ、本実施形態のステアリング装置の基本的構造に就いて簡単に説明し、その後、本実施形態の特徴部分の構造に就いて説明する。
本実施形態の場合、押圧プレート38と被駆動側カム27とが、本発明の押圧部に相当する。
尚、被駆動側カム27の内側面には、幅方向内方に向けて突出した係合凸部(図示省略)が設けられている。そして、該係合凸部を一方の支持板部22に形成されたチルト調節用長孔15に係合させる事により、被駆動側カム27が、一方の支持板部22に対して相対回転する事を阻止している。
そして、ロック状態に於ける上下方向隙間44a、44bの寸法の和であるL44a+L44bを、アンロック状態に於ける上下方向隙間43a、43bの寸法の和であるL43a+L43bよりも小さくしている(L44a+L44b<L43a+L43b)。
尚、本実施形態の場合、ロック状態に於いても、上述の様な上下方向隙間44a、44bを存在させている(L44a>0、L44b>0としている)が、該上下方向隙間44a、44bをゼロとする構成を採用する事もできる。即ち、ロック状態に於いて、非円形部41、41の外周面の上端縁及び下端縁と、テレスコ調節用長孔16a、16aの上面及び下面とを当接させる構成を採用する事もできる。
即ち、本実施形態の場合、ロック状態に於いて、両非円形部41、41の外周面の上端縁及び下端縁と、両テレスコ調節用長孔16a、16aの上面及び下面との間に存在する上下方向隙間44a、44bの和(L43a+L43b)を、アンロック状態での両上下方向隙間43a、43bの和(L44a+L44b)よりも小さくしている(L44a+L44b<L43a+L43b)。この為、アンロック状態に於いては、両上下方向隙間43a、43bの存在に基づいて、調節ロッド17aが両テレスコ調節用長孔16a、16aの内側で、前後方向に滑らかに変位する事ができる。一方、ロック状態に於いては、上下方向隙間44a、44bが、両上下方向隙間43a、43bよりも小さくなる為、調節ロッド17aが、両テレスコ調節用長孔16a、16aの内側で、上下方向に変位可能な距離を小さくできる。この結果、ステアリングホイール1の支持剛性感が向上して、運転者が感じる違和感を減少(乃至はゼロに)する事ができる。
本発明の第2実施形態に就いて、図4を参照しつつ説明する。本実施形態のステアリングホイールの位置調節装置を適用したステアリング装置の基本的な構成は、前述した従来構造及び第1実施形態のステアリング装置とほぼ同様である。以下、本実施形態のステアリング装置の具体的構造に就いて、図4を参照しつつ説明する。
本実施形態の場合、押圧プレート38aと被駆動側カム27aとが、本発明の押圧部に相当する。
更に、本実施形態の場合、ステアリングホイール1(図12参照)の上下方向の位置を調節する際の操作を補助する為に、ばね59により、アウタコラム18(変位側ブラケット13)を上方に付勢している。
一方の軸部47は、断面形状が円形状であり、軸方向一端縁が、雄ねじ部46の軸方向他端縁に連続している。
一方の傾斜連続部48は、軸方向他方側に向かうほど、一方の軸部47から離れる方向に傾斜した状態で設けられている。一方の傾斜連続部48は、軸方向一端縁が一方の軸部47の軸方向他端縁に連続している。
偏心軸部49は、断面形状が円形状であり、中心軸が一方の軸部47の中心軸に対して偏心した状態で設けられている。偏心軸部49の軸方向一端縁は、一方の傾斜連続部48の軸方向他端縁に連続している。
他方の傾斜連続部50は、軸方向他方側に向かうほど、偏心軸部49から離れる方向に傾斜した状態で設けられている。他方の傾斜連続部50は、軸方向一端縁が偏心軸部49の軸方向他端縁に連続している。
他方の軸部51は、断面形状が円形状であり、一方の軸部47と同軸に設けられている。他方の軸部51の軸方向一端縁は、他方の傾斜連続部50の軸方向他端縁に連続している。
頭部37aは、軸方向一側面を他方の軸部51の軸方向他端縁に連続した状態で設けられている。
一方、偏心軸部49の軸方向他端寄り部分と、他方の傾斜連続部50と、他方の軸部51の軸方向一端寄り部分とにより、他方のクランク部45bを構成している。そして、本実施形態の場合、両クランク部45a、45bは、両被挟持板部21、21の両テレスコ調節用長孔16、16の内側に配置されている。
その他の構造及び作用・効果は、前述した第1実施形態の場合と同様である。
本発明の第3実施形態に就いて、図5を参照しつつ説明する。本実施形態の場合も、前述した第1実施形態の調節ロッド17aと同様に、調節ロッド17cの軸方向2箇所位置に1対の非円形部41aが設けられている。
一方、ロック状態で、両非円形部41aの長手方向が、両テレスコ調節用長孔16a、16aの配設方向(前後方向)に直交する方向(上下方向)に一致する様に、カム装置28の構成を工夫する(被駆動側カム27に対する駆動側カム26の相対変位量を規制する)と共に、調節ロッド17cが配置されている。
その他の構造及び作用・効果は、前述した第1実施形態の場合と同様である。
本発明の第4実施形態に就いて、図7を参照しつつ説明する。本実施形態の場合も、前述した第1実施形態の調節ロッド17aと同様に、調節ロッド17dの軸方向2箇所位置に1対の非円形部41bが設けられている。
該両偏心凸部54、54はそれぞれ、調節ロッド17dのうちの該両偏心凸部54、54が設けられた部分の外周面の曲率よりも大きい曲率を有し、且つ、調節ロッド17dの中心軸O17dに対して偏心した中心軸O54を有している。
そして、調節ロッド17dのうちの両偏心凸部54、54が形成された部分を、断面形状が略楕円形状の両非円形部41bとしている。
一方、図7(B)に示すロック状態で、両非円形部41bの長手方向が、両テレスコ調節用長孔16a、16aの配設方向(前後方向)に直交する方向(上下方向)に一致する様に、カム装置28の構成を工夫する(被駆動側カム27に対する駆動側カム26の相対変位量を規制する)と共に、調節ロッド17dを配置している。尚、本実施形態を実施する場合には、両偏心凸部54、54の形状(調節ロッド17dの中心軸に対する偏心量、突出量)は、互いに異ならせる事もできる。又、両偏心凸部54、54の何れか一方のみを設けた構造を採用する事もできる。
その他の構造及び作用・効果は、前述した第1実施形態の場合と同様である。
本発明の第5実施形態に就いて、図8を参照しつつ説明する。本実施形態の場合も、前述した第1実施形態の調節ロッド17aと同様に、調節ロッド17eの軸方向2箇所位置に1対の非円形部41cが設けられている。
該偏心凸部54aは、調節ロッド17eのうちの該偏心凸部54aが設けられた部分の外周面(該偏心凸部54aを除いた部分の外周面)の曲率よりも大きい曲率を有し、且つ、調節ロッド17eの中心軸O17eに対して偏心した中心軸O54aを有している。
そして、調節ロッド17eのうちの偏心凸部54aが設けられた部分を、両非円形部41cとしている。
一方、図8(B)に示すロック状態で、両非円形部41cのうちの偏心凸部54aが形成されている方向を、両テレスコ調節用長孔16a、16aの配設方向(前後方向)に直交する方向{図8(B)の上下方向}に一致する様に、カム装置28の構成を工夫する(被駆動側カム27に対する駆動側カム26の相対変位量を規制する)と共に、調節ロッド17eを配置している。
尚、本実施形態の場合、アンロック状態に於いて、両非円形部41cの外周面の下端縁と、両テレスコ調節用長孔16a、16aの下面との間に、上下方向隙間55bを設けている。但し、該上下方向隙間55bを設けない構造を採用する事もできる。
その他の構造及び作用・効果は、前述した第1実施形態の場合と同様である。
本発明の第6実施形態に就いて、図9を参照しつつ説明する。本実施形態の場合も、前述した第1実施形態の調節ロッド17aと同様に、調節ロッド17fの軸方向2箇所位置に1対の非円形部41dが設けられている。
該偏心凸部54bは、調節ロッド17fのうちの該偏心凸部54bが設けられた部分(該偏心凸部54bを除いた部分)の外周面の曲率よりも大きい曲率を有し、且つ、調節ロッド17fの中心軸O17fに対して偏心した中心軸O54bを有している。
そして、調節ロッド17fのうちの偏心凸部54bが設けられた部分を、両非円形部41dとしている。
一方、図9(B)に示すロック状態で、両非円形部41dのうちの偏心凸部54bが形成されている方向を、両テレスコ調節用長孔16a、16aの配設方向に直交する方向{図9(B)の上下方向}に一致する様に、カム装置28の構成を工夫する(被駆動側カム27に対する駆動側カム26の相対変位量を規制する)と共に、調節ロッド17fを配置している。
その他の構造及び作用・効果は、前述した第1実施形態の場合と同様である。
本発明の第7実施形態に就いて、図10を参照しつつ説明する。本実施形態は、例えば、ステアリングホイール1(図12参照)の上下方向の位置を調節する際の操作を補助する為に、アウタコラム18a及び変位側ブラケット13a(図1参照)を上方に付勢する機構(例えば、図4に示すばね59等)を有する構造に適用したものである。この様な本実施形態の場合も、前述した第1実施形態の調節ロッド17aと同様に、調節ロッド17gの軸方向2箇所位置に1対の非円形部41eが設けられている。
該偏心凸部54cは、調節ロッド17gのうちの該偏心凸部54cが設けられた部分(該偏心凸部54cを除いた部分)の外周面の曲率よりも大きい曲率を有し、且つ、調節ロッド17gの中心軸O17gに対して偏心した中心軸O54cを有している。
そして、調節ロッド17gのうちの偏心凸部54cが設けられた部分を、両非円形部41eとしている。
一方、図10(B)に示すロック状態で、両非円形部41eのうちの偏心凸部54cが形成されている方向を、両テレスコ調節用長孔16a、16aの配設方向(前後方向)に直交する方向(上下方向)に一致する様に、カム装置28の構成を工夫する(被駆動側カム27に対する駆動側カム26の相対変位量を規制する)と共に、調節ロッド17gを配置している。
以上の様な本実施形態の構造は、アンロック状態に於いて、アウタコラム18a及び変位側ブラケット13a(図1参照)が、上方に押し上げられ、両非円形部41eの外周面の下端縁と、両テレスコ調節用長孔16a、16aの下面とが当接しているが、図10(A)に示すアンロック状態から、図10(B)に示すロック状態に移行する際、両非円形部41eの外周面のうち、両テレスコ調節用長孔16a、16aの下面と当接している部分は、調節ロッド17gの中心軸(回転中心)O17gに対して偏心していない部分である為、当接している部分が、上下方向に変位する事がない。従って、調節ロッド17gを回転させても、アウタコラム18a及び変位側ブラケット13aが上下方向に変位する事がない。この結果、アンロック状態からロック状態に移行する際に、運転者に違和感を与える事もない。
その他の構造及び作用・効果は、前述した第1実施形態の場合と同様である。
本発明の第8実施形態に就いて、図11を参照しつつ説明する。本実施形態のステアリングホイールの位置調節装置を構成する調節ロッド17iは、軸方向2箇所位置に1対の非円形部41fを備える。
一方、ロック状態に於いて、両非円形部41fの外周面の前端縁及び後端縁(長径方向両端縁)と、両チルト調節用長孔15、15の前面及び後面との間には、それぞれの寸法がL58c、L58dである、1対の前後方向隙間58c、58dが存在している。
そして、ロック状態に於ける両前後方向隙間58c、58dの寸法の和であるL58c+L58dを、アンロック状態に於ける両前後方向隙間58a、58bの寸法の和であるL58a+L58bよりも小さくしている(L58c+L58d<L58a+L58b)。
尚、本実施形態の場合、ロック状態に於いても、上述の様な前後方向隙間58c、58dを存在させている(L58c>0、L58d>0としている)。但し、該両前後方向隙間58c、58cをゼロとする構成を採用する事もできる。即ち、ロック状態に於いて、両非円形部41fの外周面の短径方向両端縁{図11(B)の左右方向両端縁}と、両チルト調節用長孔15、15の前面及び後面とを当接させる構成を採用する事もできる。又、本実施形態の場合、各前後方向隙間58a、58bの大きさを等しくしている。但し、該各前後方向隙間58a、58bの大きさを異ならせる事もできる。
即ち、本実施形態の場合、ロック状態に於いて、両非円形部41fの外周面の前後方向両端縁と、両チルト調節用長孔15、15の前面及び後面との間に存在する前後方向隙間58c、58dの和(L58c+L58d)を、アンロック状態での、両非円形部41fの外周面の前後方向両端縁と、両チルト調節用長孔15、15の前面及び後面との間に存在する両前後方向隙間58a、58bの和(L58a+L58b)よりも小さくしている(L58c+L58d<L58a+L58b)。この為、アンロック状態に於いては、両前後方向隙間58a、58bの存在に基づいて、調節ロッド17aが両チルト調節用長孔15、15の内側で、上下方向に滑らかに変位する事ができる。一方、ロック状態に於いては、前後方向隙間58c、58dが、両前後方向隙間58a、58bよりも小さくなる為、調節ロッド17aが、両チルト調節用長孔15、15の内側で前後方向に変位可能な距離を小さくできる。この結果、ステアリングホイール1の前後方向に関する支持剛性感が向上して、運転者が感じる違和感を減少(乃至はゼロに)する事ができる。
又、図示は省略するが、非円形部41fとして、前述した各実施形態の構造を採用する事もできる。又、該非円形部41fの代わりに、前述した第2実施形態のクランク部45a、45bの様な隙間調整部を採用する事もできる。
その他の構造及び作用・効果は、前述した第1実施形態の場合と同様である。
又、前述した各実施形態の構造は、適宜組み合わせて実施する事ができる。即ち、第1乃至第7実施形態の構造と、第8実施形態の構造とを組み合わせて実施すれば、ステアリングホイールの上下方向及び前後方向に関する支持剛性感の向上を図る事ができる。
更に、例えば、前述した第1実施形態の何れか一方の非円形部41を、前述した第8実施形態の非円形部41fとした構造を採用する事もできる。即ち、調節ロッドの軸方向一端寄り部分に形成した一方の隙間調整部を、テレスコ調節用長孔の内側に配置され、ロック状態での、一方の隙間調整部と、テレスコ調節用長孔の上下方向両面との間に存在する、上下方向に関する隙間(隙間の総和)を、アンロック状態での当該方向に関する隙間よりも小さくできる構造のものとする。一方、調節ロッドの軸方向他端寄り部分に形成した他方の隙間調整部を、チルト調節用長孔の内側に配置されて、ロック状態での、他方の隙間調整部と、チルト調節用長孔の前後方向両面との間に存在する、前後方向に関する隙間(隙間の総和)を、アンロック状態での当該方向に関する隙間よりも小さくできる構造のものとする。この様な構成を採用すれば、調節ロッドの2箇所位置に設けた非円形部により、ロック状態での、該ステアリングホイールの上下方向及び前後方向の支持剛性感を向上する事ができる。
さらに、押圧部間の間隔を拡縮する拡縮機構としては、上記実施形態のカム装置に限定されるものでなく、例えば、ねじによる締結機構であてもよい。
2 ステアリングギヤユニット
3 入力軸
4 タイロッド
5 ステアリングシャフト
6、6a ステアリングコラム
7 自在継手
8 中間シャフト
9 自在継手
10 ハウジング
11 車体
12 チルト軸
13、13a 変位側ブラケット
14 固定側ブラケット
15 チルト調節用長孔
16、16a テレスコ調節用長孔
17、17a、17b、17c、17d、17e、17f、17g、17i 調節ロッド
18、18a アウタコラム
19、19a インナコラム
20、20a スリット
21、21a 被挟持板部
22 支持板部
23 調節レバー
24、24a、24b ナット
25、25a、25b スラストベアリング
26、26a 駆動側カム
27、27a 被駆動側カム
28、28a カム装置
29a、29b 上下方向隙間
30 電動モータ
31 アウタシャフト
32 インナシャフト
33 隆起部
34 底部
35 取付板部
36 離脱カプセル
37、37a 頭部
38 押圧プレート
39 係合凸部
40 駆動側係合凸部
41、41a、41b、41c、41d、41e、41f 非円形部
42 円筒面部
43a、43b 上下方向隙間
44a、44b、44c、44d 上下方向隙間
45a、45b クランク部
46 雄ねじ部
47 一方の軸部
48 一方の傾斜連続部
49 偏心軸部
50 他方の傾斜連続部
51 他方の軸部
52 上下方向隙間
53 非円形樹脂部
54、54a、54b、54c 偏心凸部
55a、55b 上下方向隙間
56 上下方向隙間
57 上下方向隙間
58a、58b、58c、58d 前後方向隙間
59 ばね
Claims (9)
- 端部にステアリングホイールを固定するステアリングシャフトの周囲に設けられて該ステアリングシャフトを回転自在に支持するステアリングコラムと、
該ステアリングコラムの一部に固設された変位側ブラケットと、
該変位側ブラケットに、該変位側ブラケットを幅方向に貫通する状態で設けられた第一通孔と、
前記変位側ブラケットを幅方向両側から挟む状態で設けられた1対の支持板部を有し、車体側に固定される固定側ブラケットと、
前記両支持板部の互いに整合する部分に設けられた1対の第二通孔と、
前記第一通孔及び該両第二通孔を幅方向に挿通した状態で設けられた調節ロッドと、
該調節ロッドの両端部で前記両支持板部の外側面から突出した部分に設けられた1対の押圧部と、
該押圧部間の間隔を拡縮する拡縮機構と、を備え、
前記第一通孔と前記両第二通孔とのうちの少なくとも一方の通孔を、前記ステアリングホイールの位置を調節可能とすべき方向である位置調節方向に長い調節用長孔とし、
前記拡縮機構を拡縮する際に、前記調節ロッドが回転するステアリングホイールの位置調節装置であって、
前記調節ロッドが、隙間調整部を有しており、
前記隙間調整部が、前記調節用長孔の内側に配置されており、
前記ステアリングホイールの位置を保持できる状態での、前記隙間調整部の外周面と前記調節用長孔の内面との、前記位置調節方向に直交する方向に関する隙間が、
前記ステアリングホイールの位置を調節可能な状態での、前記隙間調整部の外周面と前記調節用長孔の内面との、前記位置調節方向に直交する方向に関する隙間よりも小さい事を特徴とした、
ステアリングホイールの位置調節装置。 - 前記ステアリングホイールの前後位置を調節可能なテレスコピック機能を備えており、
前記第一通孔が前後方向に長い長孔であり、
前記調節用長孔が、前記第一通孔である、請求項1に記載したステアリングホイールの位置調節装置。 - 前記ステアリングホイールの上下位置を調節可能なチルト機能を備えており、
前記両第二通孔が上下方向に長い長孔であり、
前記調節用長孔が、前記第二通孔である、請求項1または2に記載したステアリングホイールの位置調節装置。 - 前記隙間調整部が、断面形状が非円形状の非円形部により構成されている、請求項1~3のうちの何れか一項に記載したステアリングホイールの位置調節装置。
- 前記非円形部が、前記調節ロッドの外周面に外嵌固定された樹脂部分により構成されている、請求項4に記載したステアリングホイールの位置調節装置。
- 前記ステアリングホイールの位置を保持できる状態での、前記非円形部の、前記調節ロッドの軸方向に直交する仮想平面に関する断面形状のうち、前記位置調節方向の寸法が、該位置調節方向に直交する方向の寸法よりも小さい、請求項4または5に記載したステアリングホイールの位置調節装置。
- 前記非円形部の、前記調節ロッドの軸方向に直交する仮想平面に関する断面形状が、楕円形である、請求項4~6のうちの何れか1項に記載した、ステアリングホイールの位置調節装置。
- 前記調節ロッドの軸方向中間部に径方向外方に突出した凸部が形成されており、該調節ロッドのうち、軸方向に関して該凸部と整合する部分を、前記非円形部としている、請求項4~6のうちの何れか1項に記載したステアリングホイールの位置調節装置。
- 前記隙間調整部が、前記調節ロッドの回転中心に対して偏心した偏心軸部を含むクランク部により構成されている、請求項1~3のうちの何れか一項に記載したステアリングホイールの位置調節装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680045354.5A CN107848559B (zh) | 2015-11-02 | 2016-10-26 | 方向盘的位置调节装置 |
EP16861981.5A EP3318466A4 (en) | 2015-11-02 | 2016-10-26 | Position adjustment device for steering wheel |
JP2017548723A JP6658766B2 (ja) | 2015-11-02 | 2016-10-26 | ステアリングホイールの位置調節装置 |
US15/749,570 US10597064B2 (en) | 2015-11-02 | 2016-10-26 | Position adjustment device for steering wheel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015216127 | 2015-11-02 | ||
JP2015-216127 | 2015-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017077919A1 true WO2017077919A1 (ja) | 2017-05-11 |
Family
ID=58662566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/081750 WO2017077919A1 (ja) | 2015-11-02 | 2016-10-26 | ステアリングホイールの位置調節装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10597064B2 (ja) |
EP (1) | EP3318466A4 (ja) |
JP (1) | JP6658766B2 (ja) |
CN (1) | CN107848559B (ja) |
WO (1) | WO2017077919A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015000029A1 (de) * | 2015-01-08 | 2016-07-14 | Thyssenkrupp Ag | Lenksäule mit adaptierbarer Schwenklagerung |
JP6609208B2 (ja) * | 2016-03-23 | 2019-11-20 | 富士機工株式会社 | ステアリングコラム装置 |
JP7104881B2 (ja) * | 2018-05-08 | 2022-07-22 | 株式会社ジェイテクト | ステアリング装置 |
US11673600B2 (en) * | 2018-11-29 | 2023-06-13 | Steering Solutions Ip Holding Corporation | Steering column assembly and method of manufacture |
JP7327093B2 (ja) * | 2019-11-12 | 2023-08-16 | 日本精工株式会社 | ステアリング装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147780U (ja) * | 1988-03-29 | 1989-10-12 | ||
JP2005239094A (ja) * | 2004-02-27 | 2005-09-08 | Yamada Seisakusho Co Ltd | ステアリングコラム位置調整装置の支持構造 |
JP2009255848A (ja) * | 2008-04-18 | 2009-11-05 | Yamada Seisakusho Co Ltd | チルトステアリング装置 |
WO2009157294A1 (ja) * | 2008-06-24 | 2009-12-30 | 日本精工株式会社 | テレスコピックステアリング装置 |
JP2012011837A (ja) * | 2010-06-30 | 2012-01-19 | Fuji Kiko Co Ltd | ステアリングコラム装置 |
JP2013047060A (ja) * | 2011-08-29 | 2013-03-07 | Jtekt Corp | 車両のステアリング装置 |
JP2015155287A (ja) * | 2014-02-21 | 2015-08-27 | 日本精工株式会社 | ステアリング装置 |
US9428214B2 (en) * | 2014-12-18 | 2016-08-30 | Mando Corporation | Steering column for vehicle |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2113164B (en) * | 1982-01-15 | 1985-07-17 | Ford Motor Co | Mounting for an adjustable steering column |
US5730465A (en) * | 1995-09-11 | 1998-03-24 | Nastech Europe Limited | Adjustable vehicle steering column clamping mechanism |
US6139057A (en) * | 1999-02-04 | 2000-10-31 | Delphi Technologies, Inc. | Position control apparatus for steering column |
FR2810956B1 (fr) * | 2000-06-29 | 2002-10-11 | Ecia Equip Composants Ind Auto | Ensemble du type comprenant une colonne de direction et une structure de support, et vehicule automobile correspondant |
JP3645164B2 (ja) | 2000-09-28 | 2005-05-11 | 光洋精工株式会社 | ステアリング装置のチルト機構 |
FR2837771B1 (fr) | 2002-03-26 | 2004-08-13 | Faurecia Ind | Ensemble de colonne de direction de vehicule, et vehicule muni d'un tel ensemble |
US20060131864A1 (en) * | 2004-12-20 | 2006-06-22 | Delphi Technologies, Inc. | Steering column collapse guidance system |
KR101062339B1 (ko) * | 2006-06-07 | 2011-09-05 | 주식회사 만도 | 틸트 앤 텔레스코픽 조향장치 |
EP2105369A2 (en) | 2008-03-25 | 2009-09-30 | NSK Ltd. | Steering apparatus |
JP2009227181A (ja) * | 2008-03-25 | 2009-10-08 | Nsk Ltd | ステアリング装置 |
JP5723226B2 (ja) * | 2011-06-07 | 2015-05-27 | 株式会社山田製作所 | ステアリング装置 |
CN103818427A (zh) | 2014-03-14 | 2014-05-28 | 施立平 | 全封闭无间隙方向盘可倾式转向机构 |
CN204077769U (zh) | 2014-08-08 | 2015-01-07 | 安徽江淮汽车股份有限公司 | 一种转向管柱调节机构 |
CN104097679B (zh) | 2014-08-08 | 2016-08-17 | 安徽江淮汽车股份有限公司 | 一种转向管柱调节机构 |
CN204279597U (zh) | 2014-11-27 | 2015-04-22 | 长安大学 | 一种基于主动安全的汽车转向传动装置 |
JP6403336B2 (ja) * | 2015-04-21 | 2018-10-10 | 株式会社ジェイテクト | ステアリング装置 |
-
2016
- 2016-10-26 WO PCT/JP2016/081750 patent/WO2017077919A1/ja active Application Filing
- 2016-10-26 US US15/749,570 patent/US10597064B2/en active Active
- 2016-10-26 CN CN201680045354.5A patent/CN107848559B/zh active Active
- 2016-10-26 JP JP2017548723A patent/JP6658766B2/ja active Active
- 2016-10-26 EP EP16861981.5A patent/EP3318466A4/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147780U (ja) * | 1988-03-29 | 1989-10-12 | ||
JP2005239094A (ja) * | 2004-02-27 | 2005-09-08 | Yamada Seisakusho Co Ltd | ステアリングコラム位置調整装置の支持構造 |
JP2009255848A (ja) * | 2008-04-18 | 2009-11-05 | Yamada Seisakusho Co Ltd | チルトステアリング装置 |
WO2009157294A1 (ja) * | 2008-06-24 | 2009-12-30 | 日本精工株式会社 | テレスコピックステアリング装置 |
JP2012011837A (ja) * | 2010-06-30 | 2012-01-19 | Fuji Kiko Co Ltd | ステアリングコラム装置 |
JP2013047060A (ja) * | 2011-08-29 | 2013-03-07 | Jtekt Corp | 車両のステアリング装置 |
JP2015155287A (ja) * | 2014-02-21 | 2015-08-27 | 日本精工株式会社 | ステアリング装置 |
US9428214B2 (en) * | 2014-12-18 | 2016-08-30 | Mando Corporation | Steering column for vehicle |
Non-Patent Citations (1)
Title |
---|
See also references of EP3318466A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN107848559B (zh) | 2020-09-22 |
JP6658766B2 (ja) | 2020-03-04 |
JPWO2017077919A1 (ja) | 2018-04-26 |
US10597064B2 (en) | 2020-03-24 |
CN107848559A (zh) | 2018-03-27 |
EP3318466A4 (en) | 2018-08-22 |
US20180237052A1 (en) | 2018-08-23 |
EP3318466A1 (en) | 2018-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017077919A1 (ja) | ステアリングホイールの位置調節装置 | |
JP6278102B2 (ja) | テレスコピック式ステアリング装置 | |
EP3257721A1 (en) | Telescopic steering device | |
JP5783294B2 (ja) | ステアリングコラム | |
WO2015133017A1 (ja) | テレスコピックステアリング装置用アウタコラム及びテレスコピックステアリング装置 | |
JP6460263B2 (ja) | ステアリングホイールの上下位置調節装置 | |
JP2018144801A (ja) | ステアリング装置 | |
JP5641057B2 (ja) | ステアリング装置 | |
JP6710984B2 (ja) | ステアリングホイールの位置調節装置 | |
US20170057536A1 (en) | Electronic release linkage with collapsible link member for vehicle steering column | |
JP6759786B2 (ja) | ステアリング装置用支持ブラケット及びステアリング装置 | |
JP2018202963A (ja) | ステアリング装置 | |
JP6623715B2 (ja) | ステアリングホイールの位置調節装置 | |
JP2008273377A (ja) | 車両用操舵装置 | |
JP6668619B2 (ja) | テレスコピック式ステアリングコラム装置 | |
JP2018202962A (ja) | ステアリングホイールの上下位置調節装置 | |
JP2017197007A5 (ja) | ||
JP6613820B2 (ja) | ステアリング装置 | |
JP2017206075A (ja) | ステアリング装置 | |
JP2017197007A (ja) | ステアリングホイールの位置調節装置 | |
WO2015098269A1 (ja) | テレスコピックステアリング装置用アウタコラム | |
JP6406020B2 (ja) | ステアリングホイールの位置調節装置 | |
JP2017136933A (ja) | ステアリング装置 | |
JP2017056820A (ja) | ステアリングホイールの位置調節装置 | |
JP2017019482A (ja) | ステアリング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16861981 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017548723 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016861981 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15749570 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |