WO2017073761A1 - 多能性幹細胞の胚様体形成方法および多能性幹細胞の胚様体形成用組成物 - Google Patents

多能性幹細胞の胚様体形成方法および多能性幹細胞の胚様体形成用組成物 Download PDF

Info

Publication number
WO2017073761A1
WO2017073761A1 PCT/JP2016/082150 JP2016082150W WO2017073761A1 WO 2017073761 A1 WO2017073761 A1 WO 2017073761A1 JP 2016082150 W JP2016082150 W JP 2016082150W WO 2017073761 A1 WO2017073761 A1 WO 2017073761A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
degradation product
atelocollagen
cells
mef
Prior art date
Application number
PCT/JP2016/082150
Other languages
English (en)
French (fr)
Inventor
康一 森本
沙織 國井
Original Assignee
学校法人近畿大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人近畿大学 filed Critical 学校法人近畿大学
Priority to JP2017547909A priority Critical patent/JP6822668B2/ja
Publication of WO2017073761A1 publication Critical patent/WO2017073761A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K4/00Peptides having up to 20 amino acids in an undefined or only partially defined sequence; Derivatives thereof
    • C07K4/12Peptides having up to 20 amino acids in an undefined or only partially defined sequence; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]

Definitions

  • the present invention relates to a method for forming embryoid bodies of pluripotent stem cells and a composition for forming embryoid bodies of pluripotent stem cells.
  • Collagen is one of the proteins constituting the dermis, ligaments, tendons, bones and cartilage, and is the main component of the extracellular matrix of multicellular organisms. As research progresses, it has become clear that collagen has various physiological functions, and research for finding new physiological functions of collagen molecules and research for finding new uses of collagen molecules are still ongoing. Is underway.
  • one collagen molecule is composed of three polypeptide chains, and that these three polypeptide chains form a helical structure to form one collagen molecule. It has become.
  • a region in each polypeptide chain for forming a helical structure is called a triple helical domain, and the triple helical domain has a characteristic amino acid sequence.
  • the triple helical domain has a characteristic amino acid sequence in which the amino acid sequence represented by “Gly-XY” appears repeatedly and continuously.
  • amino acids other than glycine that is, X and Y can be various amino acids.
  • the telopeptide which is the main antigenic site of collagen, is present at the amino terminus and / or carboxyl terminus of the collagen molecule (in other words, the amino terminus and carboxyl terminus of each polypeptide chain constituting the collagen molecule).
  • the telopeptide is present on the amino terminal side and / or the carboxyl terminal side of the above-described triple helical domain in each polypeptide chain constituting the collagen molecule.
  • telocollagen A collagen molecule from which such a telopeptide has been partially excised is called atelocollagen.
  • Patent Document 1 discloses a technique of using a degradation product obtained by treating collagen or atelocollagen with a protease (for example, pepsin and actinidine) as a medical material for hemostasis. More specifically, in Patent Document 1, first, the skin of yellowfin tuna is subjected to pepsin treatment to obtain an aqueous solution containing atelocollagen, and further, sodium chloride is added to the aqueous solution to obtain atelocollagen. Precipitation and recovery. In addition, when recovering atelocollagen as a precipitate, sodium chloride is removed together with the supernatant.
  • a protease for example, pepsin and actinidine
  • Patent Document 2 discloses a technique in which a degradation product obtained by treating collagen or atelocollagen with a protease is used as a composition for preventing or treating arteriosclerosis and diseases caused by arteriosclerosis. More specifically, Patent Document 2 discloses a composition for preventing or treating arteriosclerosis and diseases caused by arteriosclerosis, which is obtained by degrading collagen after removing minerals with protease. Techniques used as objects are disclosed.
  • Patent Document 3 Non-Patent Document 3, Non-Patent Document 4, and Non-Patent Document 5
  • a hanging drop method for example, Non-Patent Document 6
  • a culture method using a superhydrophilic treated culture dish for example, Non-Patent Document 4
  • the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide use of a degradation product of collagen having a novel physiological function or a degradation product of atelocollagen.
  • the present inventors can use a degradation product of collagen having a specific structure or a degradation product of atelocollagen as a scaffold material in the case of forming embryoid bodies of pluripotent stem cells. I found out. And based on this novel knowledge, it came to complete this invention.
  • an embryoid body formation method is a method of forming an embryoid body of a pluripotent stem cell, and A step of culturing with a degradation product or a degradation product of atelocollagen, wherein the degradation product contains at least a part of the triple helical domain of the collagen or atelocollagen.
  • the degradation product contains at least one of the following degradation products of collagen (A) to (C) or degradation product of atelocollagen.
  • the amino acid sequence represented by (1) or (2) is preferably the amino acid sequence of the amino terminal of the triple helical domain.
  • the cleavage in the amino acid sequence represented by any one of (1) to (3) above is performed at least in the ⁇ 1 chain and ⁇ 2 chain of the collagen or atelocollagen. On the other hand, it is preferable to be carried out.
  • the composition for forming an embryoid body is a composition for forming an embryoid body of pluripotent stem cells containing a degradation product of collagen or a degradation product of atelocollagen, the degradation product Includes at least a part of the triple helical domain of the collagen or atelocollagen.
  • the degradation product contains at least one or more of the following degradation products of collagen (A) to (C) or degradation products of atelocollagen.
  • the amino acid sequence represented by (1) or (2) is preferably the amino acid sequence at the amino terminal of the triple helical domain.
  • the cleavage in the amino acid sequence represented by any of (1) to (3) above is performed within the ⁇ 1 chain and ⁇ 2 chain of the collagen or atelocollagen. It is preferable that at least one of the above is performed.
  • an embryoid body of pluripotent stem cells can be easily formed.
  • an effect is obtained that an embryoid body can be formed in a shorter period of time as compared with the conventional embryoid body forming method.
  • FIG. 1 It is a figure which shows the form of the ES cell observed under the phase-contrast microscope,
  • (a) is using a DMEM culture medium (LIF (+)) in a gelatin coat culture dish in the presence of MEF (MEF (+)).
  • (B) is a diagram showing the morphology of ES cells cultured for 3 days, using a DMEM medium (LIF (+)) in the presence of MEF (MEF (+)) in a collagen degradation product-coated culture dish.
  • (C) is a diagram showing the morphology of ES cells cultured for 3 days using a DMEM medium (LIF (+)) in a collagen degradation product gel culture dish in the presence of MEF (MEF (+)) for 3 days.
  • FIG. 5 shows the morphology of ES cells observed under a phase contrast microscope.
  • A shows a gelatin-coated culture dish in the presence of MEF (MEF (+)) using a DMEM medium (LIF ( ⁇ )).
  • (B) is a diagram showing the morphology of ES cells cultured for 3 days, using a DMEM medium (LIF ( ⁇ )) in a collagen degradation product-coated culture dish in the presence of MEF (MEF (+)).
  • (C) is a diagram showing the morphology of ES cells cultured for 3 days in a collagen degradation product gel culture dish in the presence of MEF (MEF (+)) using DMEM medium (LIF ( ⁇ )) for 3 days. It is a figure which shows the form of the cultured ES cell.
  • FIG. 1 It is a figure which shows the result of having investigated the intracellular alkaline phosphatase activity of ES cell
  • (a) is a DMEM culture medium (LIF (+)) in a gelatin coat culture dish in the presence of MEF (MEF (+)).
  • (B) is a diagram showing the results of alkaline phosphatase activity staining of ES cells cultured for 2 days in a collagen degradation product-coated culture dish in the presence of MEF (MEF (+)) in a DMEM medium (LIF).
  • (+) Is a diagram showing the results of alkaline phosphatase activity staining of ES cells cultured for 2 days, and (c) is a collagen degradation product gel culture dish in the presence of MEF (MEF (+)), It is a figure which shows the result of alkaline phosphatase activity dyeing
  • FIG. 5 shows the morphology of ES cells observed under a phase contrast microscope.
  • (A) is a gelatin-coated culture dish in the absence of MEF (MEF ( ⁇ )) using DMEM medium (LIF (+)).
  • FIG. 4B shows the morphology of ES cells cultured for 3 days using a DMEM medium (LIF (+)) in the absence of MEF (MEF ( ⁇ )) in a collagen degradation product-coated culture dish.
  • C is a diagram showing the morphology of ES cells cultured for 3 days using a DMEM medium (LIF (+)) in a collagen degradation gel culture dish in the absence of MEF (MEF (-)). It is a figure which shows the form of the ES cell cultured for 3 days.
  • FIG. 5 shows the morphology of ES cells observed under a phase contrast microscope.
  • A shows a gelatin-coated culture dish in the absence of MEF (MEF ( ⁇ )) using DMEM medium (LIF ( ⁇ )).
  • FIG. B is a diagram showing the morphology of ES cells cultured for 3 days using a DMEM medium (LIF ( ⁇ )) in the absence of MEF (MEF ( ⁇ )) in a collagen degradation product-coated culture dish.
  • C shows the morphology of ES cells cultured for 3 days using a DMEM medium (LIF (-)) in the absence of MEF (MEF (-)) in a collagen degradation gel culture dish. It is a figure which shows the form of the ES cell cultured for 3 days.
  • FIG. 1 The figure which shows the result of having observed the embryoid body obtained after culturing the ES cell which contained the GFP gene on the collagen degradation product gel culture dish for 4 days on the culture condition of MEF (+) and LIF (+) under the microscope.
  • (A) is a figure which shows the form of the embryoid body observed under the phase-contrast microscope, and (b) observes the fluorescence of the GFP of the embryoid body shown in (a) under the fluorescence microscope.
  • FIG. 1 is a diagram showing the result of staining the nucleus of each cell of the embryoid body shown in (a) with Hoechstech33342 and observing under a fluorescence microscope, (d) It is a figure which shows the result of having superimposed the image of (a), (b) and (c). The figure which shows the result of having observed the embryoid body obtained after culture
  • (A) is a figure which shows the form of the embryoid body observed under the phase-contrast microscope, and (b) observes the fluorescence of the GFP of the embryoid body shown in (a) under the fluorescence microscope.
  • (C) is a diagram showing the result of staining the nucleus of each cell of the embryoid body shown in (a) with Hoechstech33342 and observing under a fluorescence microscope, (d) It is a figure which shows the result of having superimposed the image of (a), (b) and (c).
  • FIG. 1 It is a figure which shows the form of the iPS cell observed under the phase-contrast microscope, (a) is a figure which shows the form of the iPS cell cultured for four days in the collagen degradation product coating culture dish, (b) is Lipidure. It is a figure which shows the form of the iPS cell cultured for 4 days in the culture dish. It is a figure which shows the form of the iPS cell observed under the phase-contrast microscope, (a) is a figure which shows the form of the iPS cell cultured for 12 days in the collagen degradation product coating culture dish, (b) is Lipidure. It is a figure which shows the form of the iPS cell cultured for 12 days in the culture dish. FIG.
  • FIG. 7 is a diagram showing a radar chart of the relative expression level of each marker with the maximum value of the expression level obtained from the result of quantitative RT-PCR as 100, (a) is formed on a collagen degradation product-coated culture dish It is a figure which shows the relative expression level of each marker in the embryoid body of the obtained mouse ES cell, (b) is a figure which shows the relative expression level of each marker in the embryoid body of the mouse ES cell formed in the Lipidure culture dish. (C) is a figure which shows the relative expression level of each marker in the embryoid body of the mouse
  • Coexistence is a diagram showing the morphology of ES cells cultured for 1 day using DMEM medium (LIF (+)),
  • e is a collagen degradation product-coated culture dish (derived from porcine skin, In sequence number 26), it is a figure which shows the form of the ES cell culture
  • FIG. 1 It is a figure which shows the result of having investigated the intracellular alkaline phosphatase activity of ES cell
  • (a) is a DMEM culture medium (LIF (+)) in a gelatin coat culture dish in the presence of MEF (MEF (+)).
  • (B) is a diagram showing the results of alkaline phosphatase activity staining of ES cells cultured for 1 day using a DMEM medium (LIF (+)) in the presence of MEF (MEF (+)) in an atelocollagen-coated culture dish.
  • FIG. 3 is a view showing the results of observing a colony obtained after culturing ES cells containing a GFP gene in a gelatin-coated culture dish for 1 day under a culture condition of MEF (+) and LIF (+) under a microscope;
  • (a) is a figure which shows the form of the said colony observed under the phase contrast microscope
  • (b) is a figure which shows the result of having observed the fluorescence of GFP of the said colony shown in (a) under the fluorescence microscope.
  • C) is a figure which shows the result of having superimposed the image of (a) and (b).
  • FIG. 5 shows the morphology of ES cells observed under a phase contrast microscope.
  • (A) is a gelatin-coated culture dish in the absence of MEF (MEF ( ⁇ )) using DMEM medium (LIF (+)).
  • (B) shows the morphology of ES cells cultured for 1 day using DMEM medium (LIF (+)) in an atelocollagen-coated culture dish in the absence of MEF (MEF ( ⁇ )).
  • (C) shows DMEM medium in the absence of MEF (MEF ( ⁇ )) in a collagen degradation product-coated culture dish (derived from pig skin, SEQ ID NO: 27).
  • FIG. 4 is a view showing the morphology of ES cells cultured in DMEM medium (LIF (+)) for 1 day in the absence of coexistence (MEF ( ⁇ )), (e) is a collagen degradation product-coated culture dish (pig skin)
  • FIG. 3 is a view showing the morphology of ES cells cultured in DMEM medium (LIF (+)) for 1 day in the absence of MEF (MEF ( ⁇ )) in part-derived, SEQ ID NO: 26).
  • FIG. 4 is a view showing the morphology of ES cells cultured in DMEM medium (LIF (+)) for 1 day in the absence of MEF (MEF ( ⁇ )) in part-derived, SEQ ID NO: 26).
  • FIG. 6 shows the results of examining the intracellular alkaline phosphatase activity of ES cells.
  • A is a DMEM medium (LIF (+)) in a gelatin-coated culture dish in the absence of MEF (MEF ( ⁇ )).
  • B shows the results of alkaline phosphatase activity staining of ES cells cultured for 1 day using a DMEM medium (LIF) in an atelocollagen-coated culture dish in the absence of MEF (MEF ( ⁇ )).
  • (+) Shows the results of alkaline phosphatase activity staining of ES cells cultured for 1 day using (+)), (c) shows the MEF in a collagen degradation product-coated culture dish (derived from pig skin, SEQ ID NO: 27).
  • (E) is a diagram showing the results of alkaline phosphatase activity staining of ES cells cultured for 1 day using (LIF (+)).
  • (E) is a collagen degradation product-coated culture dish (derived from pig skin, SEQ ID NO: 26).
  • FIG. 3 shows the results of alkaline phosphatase activity staining of ES cells cultured in DMEM medium (LIF (+)) for 1 day in the absence of MEF (MEF ( ⁇ )).
  • An embryoid body formation method according to an embodiment of the present invention (hereinafter, also referred to as “embryoid body formation method of this embodiment”) is a method for forming an embryoid body of pluripotent stem cells.
  • the composition includes a culturing step of culturing a pluripotent stem cell together with a degradation product of collagen or a degradation product of atelocollagen.
  • the “pluripotent stem cell” is a cell having differentiation pluripotency capable of differentiating into all cells other than the placenta and self-replicating ability.
  • pluripotent stem cells include embryonic stem cells (ES cells), embryonic stem cells derived from cloned embryos obtained by nuclear transfer (nuclear transplant ES cells; ntES cells), and induced pluripotent stem cells (iPS cells). ), Embryonic germ cells (EG cells), pluripotent stem cells derived from biological tissues (Muse cells (Multilineage-differentiating Stress Enduring cells)), and the like, but are not limited thereto.
  • examples of the “pluripotent stem cells” include, but are not limited to, those derived from humans, primates such as cynomolgus monkeys, mice, and the like.
  • the “embryoid body” is a spherical cell mass formed from pluripotent stem cells, which has the ability to differentiate into various cells under appropriate differentiation-inducing conditions.
  • An “embryoid body” is also referred to as an Embryoid Body (EB).
  • EB Embryoid Body
  • the “embryoid body” in the present specification also includes “embryoid body-like cell aggregate” which is an aggregate of cells in the course of formation of embryoid bodies from pluripotent stem cells.
  • an “embryoid body” refers to a pluripotency marker (for example, Nanog, OCT3 / 4 (Octamer-binding transcription factor 3/4), TRA-1-60, SSEA-3 (stage-specific embedded protein antigen) -3) etc.), and differentiation markers (eg, SOX1 (SRY (sex determining region Y) -box 1), SOX7 (SRY (sex determining region Y) -box 7), SOX17 (SRY (sex determining region Y) -box 17), HNF-3 ⁇ (Hepatocyte Nuclear Factor 3 ⁇ ) / FoxA2 (forkhead box protein A2), GATA4 (GATA binding protein 4), GATA6 (GATA binding protein 6), Otx2o (Orthodenticle home) ), CXCR4 (Chemokine (CXC Motif) Receptor 4), GSC (goosecoid), etc.) may be expressed.
  • a pluripotency marker for example, Nanog,
  • the “embryoid body” preferably has the ability to differentiate into all three germ layers (ectoderm, endoderm, mesoderm). Embryoid bodies that have the ability to differentiate into all three germ layers can be suitably used for inducing differentiation into the target cells.
  • the size of the “embryoid body” is not particularly limited, but the longest diameter is preferably 50 to 1000 ⁇ m, more preferably 100 to 500 ⁇ m.
  • the shape of the “embryoid body” is not particularly limited, but is preferably a spherical shape, a substantially spherical shape, an elliptical shape, a substantially elliptical shape, or the like.
  • the formation of an embryoid body by the embryoid body formation method of the present embodiment can be confirmed by confirming the presence of a spherical cell mass under the naked eye or under a microscope.
  • the embryoid body obtained by the embryoid body formation method of the present embodiment has the ability to differentiate into various cells. This means that the embryoid body can be expressed under known appropriate differentiation-inducing conditions (for example, known It can be confirmed by culturing under conditions for inducing differentiation into blood cells, conditions for inducing differentiation into nerve cells, etc.) and confirming that cells derived from embryoid bodies have differentiated into target cells.
  • the differentiation of cells derived from embryoid bodies into the target cells can be confirmed by confirming the morphology of the differentiated cells, gene expression, etc. using a known method.
  • the “degradation product of collagen or degradation product of atelocollagen” includes at least a part of the triple helical domain of collagen or atelocollagen. That is, the degradation product may include the entire triple helical domain of collagen or atelocollagen, or may include a part of the triple helical domain.
  • the “collagen degradation product or atelocollagen degradation product” will be described in detail later.
  • the culturing step is a step of culturing pluripotent stem cells together with a degradation product of collagen or a degradation product of atelocollagen.
  • “Cultivating pluripotent stem cells together with collagen degradation products or atelocollagen degradation products” means that pluripotent stem cells are pluripotent in an environment in which collagen degradation products or atelocollagen degradation products exist in contact with pluripotent stem cells. It means culturing sex stem cells.
  • pluripotent stem cells may be cultured using a culture vessel coated on the inner surface with a degradation product of collagen or a degradation product of atelocollagen.
  • pluripotent stem cells may be cultured on a gel composition containing a degradation product of collagen or a degradation product of atelocollagen.
  • the collagen degradation product or atelocollagen degradation product is preferably present so as to prevent contact between the pluripotent stem cells and the inner surface of the culture vessel for culturing the pluripotent stem cells.
  • the embryoid body of a pluripotent stem cell can be formed efficiently.
  • a culture container for culturing pluripotent stem cells a container usually used for cell culture can be used.
  • the culture vessel may be a dish type, plate type, or bottle type.
  • the amount of collagen degradation product or atelocollagen degradation product used in the embryoid body formation method of the present embodiment is not particularly limited.
  • pluripotent stem cells when pluripotent stem cells are cultured using a culture vessel whose inner surface is coated with a degradation product of collagen or degradation product of atelocollagen, 2 mg / mL to 20 mg / mL, preferably 3 mg / mL Aqueous solution containing collagen degradation product or atelocollagen degradation product of ⁇ 16 mg / mL, more preferably 5 mg / mL to 15 mg / mL, alternatively 5 mg / mL to 20 mg / mL, preferably 8 mg / mL to 16 mg / mL And the inner surface of the culture vessel can be coated with the aqueous solution of the decomposition product.
  • the inner surface of the culture vessel may be coated before starting the culture of pluripotent stem cells. If the concentration of the decomposition product in the aqueous solution of the decomposition product is 2 mg / mL or more, embryoid bodies can be formed uniformly. Moreover, if the density
  • the final concentration is 2 mg / mL to 15 mg / mL or 5 mg / mL. It is preferable that ⁇ 15 mg / mL collagen degradation product or atelocollagen degradation product is contained in the gel composition, or 5 mg / mL to 12 mg / mL or 5 mg / mL to 11 mg / mL collagen degradation product or It is more preferable that the degradation product of atelocollagen is contained in the gel composition.
  • the gel composition More preferably, 7 mg / mL to 10 mg / mL or 8 mg / mL to 10 mg / mL collagen degradation product or atelocollagen degradation product is contained in the gel composition. If the concentration of the degradation product contained in the gel composition is 2 mg / mL or more as the final concentration, embryoid bodies can be formed uniformly. Moreover, if the density
  • a gel composition containing a collagen degradation product or atelocollagen degradation product is prepared by, for example, converting a collagen degradation product or atelocollagen degradation product into a concentrated culture solution (for example, 5-fold concentrated DMEM) and a reconstitution buffer. (50 mM sodium hydroxide, 260 mM sodium bicarbonate, 200 mM HEPES), and this mixture is added to the culture dish and allowed to stand in a CO 2 incubator at 37 ° C. for about 30 minutes. .
  • the medium used in the culture step is not particularly limited as long as it is a pluripotent stem cell medium.
  • a medium can be appropriately selected according to the type of pluripotent stem cells to be used.
  • a known culture medium used for maintaining the proliferation of pluripotent stem cells can be used.
  • Such a culture medium can be prepared by adding a non-essential amino acid, sodium pyruvate, 2-mercaptoethanol, fetal bovine serum, glutamine, nucleoside, LIF and the like to a basic medium.
  • the basic medium a conventionally known medium for animal cells can be used. Examples thereof include Ham's F12 medium, ⁇ -MEM medium, DMEM medium, RPMI-1640 medium, and the like. These basic media may be used alone or in combination.
  • Serum may or may not be contained in the basic medium.
  • the basic medium may contain an artificial serum substitute instead of serum.
  • artificial serum substitutes include KnockOut (registered trademark) Serum® Replacement (manufactured by Invitrogen).
  • the basic medium may or may not contain a leukemia inhibitory factor (LIF).
  • LIF is usually added to the culture medium in order to maintain the undifferentiated state of mouse ES cells. Therefore, when forming embryoid bodies from mouse ES cells, embryoid bodies are usually formed in the absence of LIF.
  • a medium containing LIF is used as the embryoid body-forming medium, a medium not containing LIF As in the case of using embryos, embryoid bodies can be formed from mouse ES cells.
  • pluripotent stem cells may be co-cultured with feeder cells, or feeder cells may not be present.
  • feeder cells cells usually used as feeder cells in the maintenance culture of pluripotent stem cells can be used.
  • mouse embryonic fibroblast (MEF) can be mentioned.
  • MEF mouse embryonic fibroblast
  • the seeding density of pluripotent stem cells is not particularly limited, but is preferably 1 ⁇ 10 3 to 1 ⁇ 10 6 cells per ml of medium, and preferably 2 ⁇ 10 3 to 5 ⁇ 10 5 cells. More preferably, the number is 5 ⁇ 10 3 to 5 ⁇ 10 4 .
  • the number of seeding is extremely small, the cell viability tends to decrease and it becomes difficult to form embryoid bodies.
  • the seeding number is extremely large, it becomes easy to form a heterogeneous large embryoid body. In these cases, problems such as reproducibility tend to occur when differentiation is induced.
  • the seeding density may be determined as appropriate depending on the type of pluripotent stem cells, and is not limited at all.
  • the culture conditions in the culture process may be any conditions that allow normal cell culture.
  • the culture temperature is, for example, 30 ° C. to 40 ° C., preferably 37 ° C.
  • the culture is performed in an atmosphere of CO 2 -containing air, and the CO 2 concentration is, for example, 2% to 5%, preferably 5%.
  • the culture period can be appropriately set according to what kind of embryoid body it is desired to form. For example, the longer the culture period, the larger embryoid bodies can be formed.
  • the culture period varies depending on the type of pluripotent stem cells used, it is preferably at least 1 day, more preferably 3 days or more, and even more preferably 5 days or more.
  • the culture days are preferably 20 days or less at the longest, more preferably 15 days or less, and further preferably 10 days or less. If the culture days are short, the size of the embryoid body is uneven and difficult to stabilize. On the other hand, as the number of days of culture increases, the quality of the embryoid body tends to decrease and non-uniform differentiation tends to occur.
  • the number of days for these cultures is not particularly limited as long as the optimum period is determined appropriately depending on the number of seeded cells.
  • embryoid bodies of ES cells for example, when mouse ES cells are used, it takes a long time (for example, at least about 7 days for the hanging drop method) to obtain embryoid bodies. .
  • the embryoid body formation method of the present embodiment for example, when mouse ES cells are used, the embryoid body is formed on the first day after the start of culture, as shown in the Examples described later. Is done.
  • the conventional method for obtaining embryoid bodies of ES cells has poor reproducibility and requires skill, but in the embryoid body forming method of the present embodiment, a basic cell culture technique is used to perform basic operations.
  • a basic cell culture technique is used to perform basic operations.
  • researchers who have a good culture technique can easily form embryoid bodies.
  • the embryoid body formation method of the present embodiment is excellent not only in that the embryoid body is formed, but also in that an embryoid body having the ability to differentiate into ectoderm, endoderm and / or mesoderm can be formed. ing. Such an advantage was first found by the present inventors. Also in the examples described later, it is shown that the embryoid body that has not been observed so far is formed by the embryoid body forming method of the present embodiment. In the Examples, it is also shown that the obtained embryoid body expresses a differentiation marker.
  • the medium may be changed during the culture period.
  • the medium may be changed every day or once every 2 to 5 days.
  • a good culture environment can be maintained by changing the medium at an appropriate frequency.
  • the conventional hanging drop method or the superhydrophilic treatment culture dish it is usually not possible to change the medium without burdening the cells.
  • the embryoid body formation method of this embodiment it is possible to exchange the medium without imposing a burden on the cells.
  • the embryoid body formation method of this embodiment may further include steps other than the culture step described above.
  • a confirmation step for confirming the quality of the formed embryoid body may be further included.
  • the above-mentioned “quality of embryoid body” means the degree of embryoid body undifferentiation and / or differentiation, differentiation ability of embryoid body, embryoid body size (embryoid body diameter), embryoid body Body shape is intended.
  • the confirmation step may be, for example, a step for confirming the degree of embryoid body undifferentiation and / or differentiation, in order to confirm the quality of the embryoid body.
  • the degree of undifferentiation and / or differentiation of the embryoid body can be confirmed, for example, by confirming the expression of known differentiation markers, undifferentiation markers, etc. in the embryoid body at the gene level or protein level.
  • the differentiation ability of the embryoid body is, for example, cultured under known appropriate differentiation induction conditions (for example, known differentiation induction conditions for blood cells, differentiation induction conditions for nerve cells, etc.) This can be confirmed by confirming that cells derived from embryoid bodies have differentiated into the target cells.
  • known appropriate differentiation induction conditions for example, known differentiation induction conditions for blood cells, differentiation induction conditions for nerve cells, etc.
  • the size and shape of the embryoid body can be confirmed, for example, by measuring the diameter and shape of the embryoid body under a phase contrast microscope.
  • the confirmation step may be performed during the above-described culture step or after the culture step. By performing the confirmation step in the middle of the culture step, the culture period can be adjusted appropriately.
  • the embryoid body formation method of the present embodiment may further include a recovery step of recovering the embryoid body after the culture step.
  • the above-mentioned “degradation product of collagen or degradation product of atelocollagen” (hereinafter sometimes simply referred to as “degradation product”) is at least a part of the triple helical domain of collagen or atelocollagen. It is the structure containing. That is, the degradation product may include the entire triple helical domain of collagen or atelocollagen, or may include a part of the triple helical domain.
  • the degradation product contains at least one or more of the following degradation products of collagen (A) to (C) or degradation products of atelocollagen:
  • B a chemical bond between X 1 and X 2 , a chemical bond between X 2 and G in the amino acid sequence shown in the following (2) in the triple helical domain of the collagen or atelocollagen, G and A chemical bond between X 3 , a chemical bond between X 4 and G, a chemical bond between X 6 and G, a chemical bond between G and X 7 , or a bond between X 14 and G
  • the collagen and atelocollagen used as the material of the degradation product are not particularly limited, and may be any known collagen and atelocollagen.
  • Collagen that becomes the material of the degradation product includes mammals (eg, cow, pig, rabbit, human, rat or mouse), birds (eg, chicken), or fish (eg, shark, carp, eel, tuna ( For example, yellowfin tuna), tilapia, Thailand, salmon, etc.) can be used.
  • mammals eg, cow, pig, rabbit, human, rat or mouse
  • birds eg, chicken
  • fish eg, shark, carp, eel, tuna ( For example, yellowfin tuna), tilapia, Thailand, salmon, etc.) can be used.
  • collagen derived from the dermis, tendon, bone or fascia of mammals or birds, or collagen derived from the skin or scales of fish is used as the collagen as a material of the degradation product. be able to.
  • telopeptide As the atelocollagen that becomes the material of the degradation product, telopeptide is partially obtained from the amino terminus and / or carboxyl terminus of the collagen molecule obtained by treating the above-mentioned mammalian, avian or fish collagen with a protease (for example, pepsin). The removed atelocollagen can be used.
  • a protease for example, pepsin
  • chicken, bovine, bovine, human or rat collagen or atelocollagen can be preferably used as the degradation material, and porcine, bovine or human collagen or atelocollagen is more preferably used as the degradation material. it can.
  • the material can be obtained simply, safely, and in large quantities, and a collagen degradation product or atelocollagen degradation product that is safer for humans can be obtained. Can be realized.
  • fish collagen or atelocollagen as a material of the degradation product, it is preferable to use shark, carp, eel, tuna (eg yellowfin tuna), tilapia, Thai or salmon collagen or atelocollagen, tuna, tilapia, More preferably, tie or salmon collagen or atelocollagen is used.
  • tuna eg yellowfin tuna
  • tilapia tilapia
  • Thai or salmon collagen or atelocollagen tuna, tilapia
  • tie or salmon collagen or atelocollagen is used.
  • telocollagen When using atelocollagen as the material of the decomposition product, it is preferable to use atelocollagen having a heat denaturation temperature of preferably 15 ° C or higher, more preferably 20 ° C or higher.
  • telo eg, yellowfin tuna
  • tilapia or carp has a heat denaturation temperature of 25 ° C. or higher, and therefore it is preferable to use these atelocollagens.
  • the denaturation temperature of the decomposition product can be adjusted to preferably 15 ° C. or higher, more preferably 20 ° C. or higher. As a result, if it is the said structure, the decomposition product excellent in the stability at the time of storage and the stability at the time of utilization is realizable.
  • Collagen and atelocollagen that are the materials of the degradation product can be obtained by a known method.
  • collagen can be eluted by putting a tissue rich in collagen of mammals, birds or fish into an acidic solution of about pH 2-4.
  • a protease such as pepsin is added to the eluate to partially remove the amino terminal and / or carboxyl terminal telopeptide of the collagen molecule.
  • atelocollagen can be precipitated by adding a salt such as sodium chloride to the eluate.
  • the “collagen degradation product or atelocollagen degradation product” described above contains at least one or more of the following collagen degradation products or atelocollagen degradation products (A) to (C):
  • the “triple helical domain” refers to an amino acid sequence represented by “Gly-XY” (X and Y are arbitrary amino acids), at least 3 or more, more preferably at least 80 or more, Preferably, it is a domain comprising at least 300 or more consecutive amino acid sequences, which contributes to the formation of a helical structure.
  • the above-mentioned “collagen degradation product or atelocollagen degradation product” means any one of the amino acid sequences represented by any one of the above (1) to (3) in the triple helical domain of collagen or atelocollagen. It may be a decomposed product obtained by cutting one of the above.
  • the “degradation product of collagen or degradation product of atelocollagen” may include the whole or a part of the C-terminal side of the triple helical domain of collagen or atelocollagen. There may be.
  • the collagen or atelocollagen degradation product includes a part of the C-terminal part of the collagen or atelocollagen triple helical domain
  • the collagen or atelocollagen part of the C-terminal part of the atelocollagen may contain 3 amino acids or more, 5 amino acids or more, 10 amino acids or more.
  • sequence information of the C-terminal sequence of chicken type I collagen is described in S. Kunii et al., Journal of Biological Chemistry, Vol.285, No.23, pp.17465-17470, June4, 2010.
  • the “collagen degradation product or atelocollagen degradation product” includes at least one or more of the collagen degradation products (A) to (C) or the degradation product of atelocollagen. That's fine. That is, the “collagen degradation product or atelocollagen degradation product” may contain one of the collagen degradation products (A) to (C) or the degradation product of atelocollagen alone. One or more of the degradation products of collagen (A) to (C) or the degradation product of atelocollagen may be contained in combination.
  • the polypeptide chain in which the chemical bond is broken in the triple helical domain may be any polypeptide chain among a plurality of types of polypeptide chains constituting collagen or atelocollagen.
  • polypeptide chain in which the chemical bond is broken may be either ⁇ 1 chain or ⁇ 2 chain.
  • the polypeptide chain in which the chemical bond is broken is preferably at least both ⁇ 1 chain and ⁇ 2 chain among the above-mentioned polypeptide chains.
  • the polypeptide chain in which the chemical bond is broken is an ⁇ 1 chain among the polypeptide chains described above.
  • cleavage can be easily caused only by a specific polypeptide chain.
  • the collagen degradation product or atelocollagen degradation product may be one in which three polypeptide chains form a helical structure.
  • the degradation product of collagen or the degradation product of atelocollagen is one in which three polypeptide chains do not form a helical structure, or three polypeptide chains do not partially form a helical structure. Also good. Whether or not the three polypeptide chains form a helical structure can be confirmed by a known method (for example, circular dichroism spectrum).
  • Collagen degradation products or atelocollagen degradation products basically contain three polypeptide chains, but chemical bond breakage may occur in one of the three polypeptide chains.
  • chemical bond cleavage may occur in two polypeptide chains of the three polypeptide chains, or chemical bond cleavage may occur in all three polypeptide chains.
  • a network-like association may be formed by a plurality of helical structures, or a fibrous association may be formed.
  • the network means a structure in which molecules are linked by hydrogen bonds, electrostatic interaction, van der Waals bonds, etc. to form a three-dimensional network, and a gap is formed between the networks.
  • the term “fibrous” means a substantially linear structure in which molecules are connected by hydrogen bonding, electrostatic interaction, van der Waals bonding, or the like.
  • an aggregate is intended to mean a single structural unit in which two or more molecules interact with each other and are linked by the same kind of molecules without being based on a covalent bond. Whether or not a network-like or fibrous aggregate is formed can be confirmed by observing with an electron microscope.
  • the collagen degradation product or atelocollagen degradation product may have a crosslinked structure.
  • the polypeptide chain and the polypeptide chain may be cross-linked by a cross-linking agent between the helical structure and the helical structure, or the polypeptide chain and the helical structure.
  • the cross-linked structure can be formed by a well-known cross-linking method. Examples thereof include a chemical crosslinking method, a crosslinking method by heat treatment, and a crosslinking method by irradiation with radiation such as ultraviolet rays.
  • crosslinking agent used for chemical crosslinking examples include water-soluble carbodiimide compounds such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, diepoxy compounds such as epichlorohydrin and bisepoxydiethylene glycol, NaBH 4 and the like. Is mentioned.
  • the concentration of the crosslinking agent is preferably 10 ⁇ 3 to 10% by mass with respect to the degradation product of collagen or degradation product of atelocollagen.
  • a crosslinked structure can be formed by bringing a degradation product of collagen or a degradation product of atelocollagen into contact with a crosslinking agent at 5 to 40 ° C. for 3 to 48 hours.
  • a crosslinked structure can be formed by irradiating the degradation product of collagen or the degradation product of atelocollagen with, for example, an ultraviolet lamp for 3 to 48 hours at room temperature.
  • a collagen degradation product or atelocollagen degradation product is heated under reduced pressure, preferably at a temperature of about 110 to 160 ° C., for about 3 to 48 hours to form a crosslinked structure. it can.
  • the degradation product of collagen having a cross-linked structure or degradation product of atelocollagen has the advantage of improved collagenase resistance and strength.
  • the collagen degradation product or the atelocollagen degradation product may be subjected to a desired chemical modification, if necessary.
  • the chemical modification include acylation, myristylation, and polyethylene glycol modification.
  • a degradation product subjected to succinylation which is a kind of acylation, is obtained by reacting a degradation product of collagen or a degradation product of atelocollagen with succinic anhydride in a neutral pH solvent such as a phosphate buffer.
  • a neutral pH solvent such as a phosphate buffer.
  • the degradation product subjected to the modification with polyethylene glycol can be obtained by reacting polyethylene glycol activated with cyanuric chloride with a degradation product of collagen or a degradation product of atelocollagen.
  • the chemical bond between X 1 and X 2 in the amino acid sequence represented by the following (1) in the above-described triple helical domain, X 2 and G Chemical degradation product or atelocollagen in which a chemical bond between G, X 3 , a chemical bond between X 4 and G, or a chemical bond between X 6 and G is cleaved Of degradation products of (1) -GX 1 -X 2 -GX 3 -X 4 -GX 5 -X 6 -G-: (However, G is glycine, and X 1 to X 6 are arbitrary amino acids).
  • a degradation product of collagen or degradation product of atelocollagen in which the chemical bond between X 14 and G is broken (2) -GX 1 -X 2 -GX 3 -X 4 -GX 5 -X 6 -GX 7 -X 8 -GX 9 -X 10 -GX 11 -X 12 -GX 13 -X 14 -G-: (However, G is glycine, and X 1 to X 14 are arbitrary amino acids).
  • the chemical bond between Y 1 and Y 2 in the amino acid sequence represented by the following (3) at the amino terminus of the triple helical domain is cleaved.
  • Collagen degradation products or atelocollagen degradation products are included; (3) -Y 1 -Y 2 -Y 3 -GY 4 -Y 5 -GY 6 -Y 7 -GY 8 -Y 9 -G- (where G is glycine, Y 1 to Y 9 are any amino acids).
  • the position in the triple helical domain of the amino acid sequence shown in (1) or (2) above is not particularly limited.
  • the amino acid sequence represented by (1) or (2) above may be present inside the triple helical domain, but is preferably present at the amino terminus of the triple helical domain (in other words, In the amino acid sequence represented by the above (1) or (2), “G” arranged at the most amino terminal side in the amino acid sequence is “G” arranged at the most amino terminal side in the triple helical domain. Is preferred).
  • the specific position of the amino acid sequence represented by (1) or (2) is not particularly limited. . 1 or more, 5 or more, 10 or more, 50 or more, 100 or more, 150 or more, 200 or more, 250 on the amino terminal side of the amino acid sequence represented by (1) or (2)
  • amino acid sequence represented by (1) or (2) There may be an amino acid sequence in which 250 or more or 300 or more “Gly-XY” (X and Y are arbitrary amino acids) are continuous.
  • a portion other than the amino acid sequence shown in (1) or (2) in the triple helical domain (that is, the amino acid sequence shown in (1) or (2) above is present inside the triple helical domain.
  • the amino terminal side and / or the carboxyl terminal side of the amino acid sequence shown in (1) or (2), wherein the amino acid sequence shown in (1) or (2) above is at the amino terminal of the triple helical domain When it exists, the carboxyl terminal side of the amino acid sequence represented by (1) or (2) may not be cleaved, or one or more sites may be cleaved.
  • Each of the above X 1 to X 6 can be any amino acid, and the type of amino acid is not particularly limited. Each of X 1 to X 6 may be at least partly the same type of amino acid, or all may be different types of amino acid.
  • each of X 1 to X 6 is glycine, alanine, valine, leucine, isoleucine, serine, threonine, tyrosine, cysteine, methionine, aspartic acid, asparagine, glutamic acid, glutamine, arginine, lysine, histidine, phenylalanine, tyrosine, Any of tryptophan, hydroxyproline, and hydroxylysine may be used.
  • X 1 to X 6 may be the same amino acid, and the other may be different amino acids.
  • At least one selected from the group consisting of X 1 , X 3 and X 5 among X 1 to X 6 is proline, and the other may be any amino acid.
  • X 1 may be proline and X 2 to X 6 may be any amino acid.
  • X 1 and X 3 may be proline, and X 2 and X 4 to X 6 may be any amino acid.
  • X 1 , X 3 and X 5 may be proline, and X 2 , X 4 and X 6 may be any amino acid.
  • X 1 , X 3 and X 5 are proline
  • X 2 is an amino acid containing a sulfur atom in the side chain (eg cysteine or methionine) or an amino acid containing a hydroxyl group in the side chain (eg hydroxyproline).
  • X 4 and X 6 may be any amino acid.
  • X 1 , X 3 and X 5 are proline
  • X 2 is an amino acid containing a sulfur atom in the side chain (eg, cysteine or methionine)
  • X 4 has an aliphatic side chain.
  • An amino acid for example, glycine, alanine, valine, leucine or isoleucine
  • an amino acid having a hydroxyl group in the side chain for example, hydroxyproline, hydroxylysine or serine
  • X 6 may be any amino acid.
  • X 1 , X 3 and X 5 are proline
  • X 2 is an amino acid containing a sulfur atom in the side chain (eg, cysteine or methionine)
  • X 4 has an aliphatic side chain.
  • An amino acid eg, glycine, alanine, valine, leucine or isoleucine
  • an amino acid containing a hydroxyl group in the side chain eg, hydroxyproline, hydroxylysine or serine
  • X 6 is an amino acid containing a base in the side chain (eg, arginine) Lysine or histidine).
  • X 1 , X 3 and X 5 may be proline
  • X 2 may be methionine
  • X 4 may be alanine or serine
  • X 6 may be arginine
  • each of X 1 ⁇ X 6 may be the same configuration as the X 1 ⁇ X 6 described above.
  • a specific configuration of X 7 to X 14 will be described below.
  • Each of X 7 to X 14 may be any amino acid, and the type of amino acid is not particularly limited. Each of X 7 to X 14 may be at least partly the same type of amino acid, or all may be different types of amino acid.
  • each of X 7 to X 14 is glycine, alanine, valine, leucine, isoleucine, serine, threonine, tyrosine, cysteine, methionine, aspartic acid, asparagine, glutamic acid, glutamine, arginine, lysine, histidine, phenylalanine, tyrosine, Any of tryptophan, hydroxyproline, and hydroxylysine may be used.
  • X 7 to X 14 , X 8 , X 9 , X 10 , X 12 and X 13 may be the same amino acid, and the other may be different amino acids.
  • At least one selected from the group consisting of X 8 , X 9 , X 10 , X 12 and X 13 is proline or hydroxyproline, and the other is any amino acid It may be.
  • X 8 may be proline or hydroxyproline, and the other may be any amino acid.
  • X 7 to X 14 may be proline or hydroxyproline, and the other may be any amino acid.
  • X 7 to X 14 , X 8 , X 9 and X 10 may be proline or hydroxyproline, and the other may be any amino acid.
  • X 7 to X 14 , X 8 , X 9 , X 10 and X 12 may be proline or hydroxyproline, and the other may be any amino acid.
  • X 7 to X 14 , X 8 , X 9 , X 10 , X 12 and X 13 may be proline or hydroxyproline, and the other may be any amino acid.
  • X 7 to X 14 , X 8 , X 9 , X 10 , X 12 and X 13 are proline or hydroxyproline
  • X 7 is an amino acid having an aliphatic side chain (for example, Glycine, alanine, valine, leucine or isoleucine), and the other may be any amino acid.
  • X 7 to X 14 , X 8 , X 9 , X 10 , X 12 and X 13 are proline or hydroxyproline
  • X 7 and X 11 are amino acids having an aliphatic side chain.
  • glycine, alanine, valine, leucine or isoleucine may be any amino acid.
  • X 7 to X 14 , X 8 , X 9 , X 10 , X 12 and X 13 are proline or hydroxyproline
  • X 7 and X 11 are amino acids having an aliphatic side chain.
  • amino acid X 14 has is and undissociated side chains are hydrophilic (serine, threonine, asparagine or glutamine) may be used.
  • X 7 to X 14 , X 8 , X 9 , X 10 , X 12 and X 13 are proline or hydroxyproline
  • X 7 is leucine
  • X 11 is alanine
  • X 14 may be glutamine.
  • the amino acid sequence shown in (3) above is located at the amino terminus of the triple helical domain. That is, G located between Y 3 and Y 4 indicates glycine located on the most amino terminal side in the triple helical domain.
  • Y 1 , Y 2 and Y 3 represent amino acids located on the amino terminal side of the triple helical domain in a plurality of types of polypeptide chains constituting collagen or atelocollagen.
  • amino acid sequence represented by (3) There may be an amino acid sequence in which 300 or more “Gly-XY” (X and Y are arbitrary amino acids) are continuous.
  • the portion other than the amino acid sequence shown in (3) in the triple helical domain (that is, the carboxyl terminal side of the amino acid sequence shown in (3) above) may not be cleaved, or one or more sites may be It may be cut.
  • Each of Y 1 to Y 9 can be any amino acid, and the type of amino acid is not particularly limited. Each of Y 1 to Y 9 may be at least partly the same type of amino acid, or all may be different types of amino acids.
  • each of Y 1 to Y 9 is glycine, alanine, valine, leucine, isoleucine, serine, threonine, tyrosine, cysteine, methionine, aspartic acid, asparagine, glutamic acid, glutamine, arginine, lysine, histidine, phenylalanine, tyrosine, Any of tryptophan, hydroxyproline, and hydroxylysine may be used.
  • Y 3 may be proline and Y 1 and Y 2 may be any amino acid.
  • Y 3 is proline and Y 1 and Y 2 are amino acids having an aliphatic side chain (for example, glycine, alanine, valine, leucine or isoleucine) or amino acids having a hydroxyl group in the side chain (hydroxy Proline, hydroxylysine or serine).
  • amino acids having an aliphatic side chain for example, glycine, alanine, valine, leucine or isoleucine
  • amino acids having a hydroxyl group in the side chain hydroxy Proline, hydroxylysine or serine
  • Y 3 may be proline
  • Y 1 may be alanine or serine
  • Y 2 may be valine
  • Y 4 to Y 9 is not particularly limited, but Y 4 and X 1 are the same amino acid, Y 5 and X 2 are the same amino acid, and Y 6 and X 3 May be the same amino acid, Y 7 and X 4 may be the same amino acid, Y 8 and X 5 may be the same amino acid, and Y 9 and X 6 may be the same amino acid.
  • the degradation product of collagen or degradation product of atelocollagen used in one embodiment of the present invention can be in a liquid state even at a temperature close to human body temperature.
  • the collagen degradation product or atelocollagen degradation product used in one embodiment of the present invention has a higher concentration at which gelation starts than the conventional collagen degradation product or atelocollagen degradation product.
  • the degradation product of collagen or degradation product of atelocollagen used in one embodiment of the present invention includes an amino acid sequence represented by the above (1) in the triple helical domain of collagen or atelocollagen, between X 1 and X 2 . chemical bond, chemical bond between X 2 and G, the chemical bond between G and X 3, the chemical bond between X 4 and G, or a chemical bond cleavage between X 6 and G And a degradation product of collagen or a degradation product of atelocollagen.
  • the degradation product of collagen or degradation product of atelocollagen used in one embodiment of the present invention includes an amino acid sequence represented by (2) in the triple helical domain of collagen or atelocollagen, between X 1 and X 2 .
  • chemical bond, chemical bond between X 2 and G, the chemical bond between G and X 3, the chemical bond between X 4 and G, chemical bond between X 6 and G, G and X chemical bond between the 7 or a chemical bond between X 14 and G is disconnected contains decomposition product or decomposition product of atelocollagen collagen.
  • the collagen degradation product or atelocollagen degradation product used in one embodiment of the present invention includes Y 1 and Y 2 of the amino acid sequence represented by (3) above in the amino terminal of the triple helical domain of collagen or atelocollagen.
  • a degradation product of collagen or a degradation product of atelocollagen is included, in which the chemical bond between and is broken.
  • the above cutting can be appropriately performed by a desired method.
  • collagen or atelocollagen that has already been cut can be produced by a chemical synthesis method.
  • a chemical synthesis method a general well-known chemical synthesis method can be used.
  • DNA encoding collagen or atelocollagen that has already been cut is inserted into a known protein expression vector. Then, after introducing the protein expression vector into a desired host (for example, E. coli, yeast, insect cells, animal cells, etc.), expression of collagen or atelocollagen that has already been cleaved is induced in the host. In this way, it is also possible to produce collagen or atelocollagen that has already been cut.
  • a desired host for example, E. coli, yeast, insect cells, animal cells, etc.
  • the method for producing a collagen degradation product or atelocollagen degradation product is as follows: A) Chemical bond between X 1 and X 2 , chemical bond between X 2 and G, G and X 3 in the amino acid sequence shown in the following (1) in the triple helical domain of collagen or atelocollagen chemical bonding, between the chemical binding, X 4 and G between or to cut the chemical bond between X 6 and G, the cutting process, or B) Chemical bond between X 1 and X 2 , chemical bond between X 2 and G, G and X 3 in the amino acid sequence shown in the following (2) in the triple helical domain of collagen or atelocollagen chemical bond between the chemical bond between X 4 and G, chemical bond between X 6 and G, chemical bond between G and X 7, or, between X 14 and G Breaking process, breaking chemical bonds, or C) A production method including a cleavage step of cleaving a chemical bond between
  • the method for producing a collagen degradation product or atelocollagen degradation product may be a production method including the following cutting step. That means D) Chemical bond between X 1 and X 2 , chemical bond between X 2 and G, G and X 3 in the amino acid sequence shown in the following (1) in the triple helical domain of collagen or atelocollagen chemical bond, chemical bond between X 4 and G, and disconnects any one chemical bond selected from a chemical bond between X 6 and G between the cutting step or, E) Chemical bond between X 1 and X 2 , chemical bond between X 2 and G, G and X 3 in the amino acid sequence shown in the following (2) in the triple helical domain of collagen or atelocollagen chemical bond between the chemical bond between X 4 and G, chemical bond between X 6 and G, chemical bond between G and X 7, and, between X 14 and G A cleavage step of cleaving any one chemical bond selected from chemical bonds, or F) Cleavage step of cleaving the chemical bond between cle
  • the cutting step is not particularly limited as long as it is a step of cutting a chemical bond at a specific position of the amino acid sequence represented by (1) to (3).
  • the cleavage step may be a step of actually cleaving a chemical bond in the triple helical domain to produce a degradation product of collagen or a degradation product of atelocollagen (for example, an enzymatic method).
  • the process of producing a degradation product of collagen or a degradation product of atelocollagen whose chemical bond in the triple helical domain has already been cleaved is the concept of “cleavage step” in the present application. It can also be included.
  • the cleavage step can be configured as follows.
  • the above-mentioned cutting step can be performed by degrading collagen or atelocollagen with an enzyme (for example, protease (for example, cysteine protease)).
  • an enzyme for example, protease (for example, cysteine protease)
  • the enzyme is not particularly limited, but for example, cysteine protease is preferably used.
  • cysteine protease it is preferable to use a cysteine protease having a larger amount of acidic amino acids than a basic amino acid amount, or a cysteine protease active at a hydrogen ion concentration in an acidic region.
  • cysteine proteases include cathepsin B [EC 3.4.22.1], papain [EC 3.4.22.2], ficin [EC 3.4.22.3], actinidin [EC 3. 4.2.14], cathepsin L [EC 3.4.22.15], cathepsin H [EC 3.4.222.16], cathepsin S [EC 3.4.22.27], bromelain [EC 3 4.2.32], cathepsin K [EC 3.4.22.38], alloline, calcium-dependent protease, and the like.
  • papain, ficin, actinidine, cathepsin K, alloline or bromelain are preferably used, and papain, ficin, actinidine and cathepsin K are more preferably used.
  • the enzyme described above can be obtained by a known method.
  • it can be obtained by preparation of an enzyme by chemical synthesis; extraction of an enzyme from cells or tissues of bacteria, fungi, various animals and plants; preparation of an enzyme by genetic engineering means;
  • commercially available enzymes can also be used.
  • the cleavage step can be performed according to the following methods (i) to (iii).
  • an enzyme eg, protease
  • the cleavage step can be performed according to the following methods (i) to (iii).
  • the following methods (i) to (iii) are merely examples of the cutting step, and the present invention is not limited to these methods (i) to (iii).
  • the following methods (i) and (ii) are examples of methods used for cleaving a chemical bond at a specific position of the amino acid sequence represented by (1) or (2).
  • the method (iii) is an example of a method used for breaking a chemical bond at a specific position of the amino acid sequence shown in (3).
  • Specific examples of the method (i) described above include a method of bringing collagen or atelocollagen into contact with an enzyme in an aqueous solution containing a high concentration of salt.
  • Specific examples of the method (ii) described above include, for example, a method in which an aqueous solution containing a high concentration salt and an enzyme are contacted in advance, and then the enzyme is contacted with collagen or atelocollagen.
  • Specific examples of the method (iii) described above include a method of bringing collagen or atelocollagen into contact with an enzyme in an aqueous solution containing a low concentration salt.
  • aqueous solution is not particularly limited, for example, water can be used.
  • the specific structure of the salt is not particularly limited, but chloride is preferably used.
  • the chloride is not particularly limited, but for example, it is possible to use NaCl, KCl, and LiCl or MgCl 2.
  • the concentration of the salt in the aqueous solution containing the high concentration salt is not particularly limited, but it can be said that a higher concentration is preferable.
  • the concentration is preferably 200 mM or higher, more preferably 500 mM or higher, more preferably 1000 mM or higher, more preferably 1500 mM or higher, and most preferably 2000 mM or higher.
  • the upper limit of the salt concentration in the aqueous solution containing the high-concentration salt is not particularly limited, but may be, for example, 2500 mM.
  • the salt concentration is higher than 2500 mM, most of the protein is salted out, and as a result, the degradation efficiency of collagen or atelocollagen by the enzyme tends to be lowered.
  • the salt concentration is 2500 mM or less, the degradation efficiency of collagen or atelocollagen by the enzyme can be increased.
  • the concentration of the salt in the aqueous solution containing the high-concentration salt is preferably 200 mM or more and 2500 mM or less, more preferably 500 mM or more and 2500 mM or less, more preferably 1000 mM or more and 2500 mM or less, and more preferably 1500 mM or more. It is more preferably 2500 mM or less, and most preferably 2000 mM or more and 2500 mM or less.
  • the specificity of the cleavage site of collagen or atelocollagen by the enzyme can be increased as the salt concentration in the aqueous solution containing the high-concentration salt is higher.
  • the degradation product of collagen or the degradation product of atelocollagen used in one embodiment of the present invention can be made more uniform and highly bioactive.
  • the concentration of the salt in the aqueous solution containing the low-concentration salt is not particularly limited.
  • the concentration is preferably lower than 200 mM, more preferably 150 mM or less, more preferably 100 mM or less, more preferably 50 mM or less, and most preferably about 0 mM.
  • the amount of collagen or atelocollagen dissolved in the aqueous solution is not particularly limited.
  • the amount of the enzyme to be added to the aqueous solution is not particularly limited. For example, it is preferable to add 10 to 20 parts by weight of the enzyme with respect to 100 parts by weight of collagen or atelocollagen.
  • conditions for contacting collagen or atelocollagen with an enzyme in an aqueous solution are not particularly limited, and can be set as appropriate, but within the following ranges. Is preferred.
  • the pH of the aqueous solution is preferably pH 2.0 to 7.0, and more preferably pH 2.5 to 6.5.
  • a known buffer can be added to the aqueous solution. If it is the said pH, collagen or atelocollagen can be melt
  • the temperature is not particularly limited, and the temperature may be selected according to the enzyme used.
  • the temperature is preferably 15 ° C. to 40 ° C., and more preferably 20 ° C. to 35 ° C.
  • the contact time is not particularly limited, and the contact time may be selected according to the amount of enzyme and / or the amount of collagen or atelocollagen.
  • the time is preferably 1 hour to 60 days, more preferably 1 day to 7 days, and even more preferably 3 days to 7 days.
  • the step of removing the impurities can be performed by a general method for separating substances.
  • the step of removing the impurities can be carried out by, for example, electric point precipitation such as dialysis, salting out, gel filtration chromatography, ion exchange chromatography, or hydrophobic interaction chromatography.
  • the cutting step can be performed by degrading collagen or atelocollagen with an enzyme.
  • the collagen or atelocollagen to be decomposed may be contained in the living tissue. That is, the cutting step can be performed by bringing a living tissue and an enzyme into contact with each other.
  • the biological tissue is not particularly limited, and examples thereof include mammalian or avian dermis, tendon, bone or fascia, or fish skin or scales.
  • dermis As the living tissue.
  • the acidic condition is preferably pH 2.5 to 6.5, more preferably pH 2.5 to 5.0, more preferably pH 2.5 to 4.0, and most preferably pH 2.5 to 3.5. It is.
  • the collagen contained in the dermis is brought into contact with the cysteine protease by bringing the cysteine protease into contact with the dermis in the cutting step. It is preferable to make it.
  • the method for producing a collagen degradation product or atelocollagen degradation product having the amino acid sequence represented by (1) or (2) described above is characterized in that, in the cutting step, the dermis is present in the presence of a salt having a concentration of 200 mM or more. And cysteine protease are preferably contacted.
  • the method for producing a degradation product of collagen having the amino acid sequence shown in (3) above or a degradation product of atelocollagen is characterized in that, in the cutting step, the dermis, cysteine, It is preferable to contact with a protease.
  • the cutting process can be configured as follows.
  • polypeptide chain constituting collagen or atelocollagen
  • the polypeptide chain may be appropriately selected according to the type of collagen or atelocollagen, and may be one type of polypeptide chain or multiple types of polypeptide chains.
  • polypeptide chain containing the chemical bond to be cleaved and the position of the chemical bond to be cleaved are determined from the above polypeptides, and the desired polypeptide is assumed when the chemical bond is cleaved. Determine the amino acid sequence of the chain.
  • a desired polypeptide chain is synthesized by a well-known chemical synthesis method according to the determined amino acid sequence.
  • the cutting process can be performed as described above.
  • the method for producing a collagen degradation product or atelocollagen degradation product may include steps other than the cutting step described above.
  • a method for producing a degradation product of collagen or a degradation product of atelocollagen may include a step of purifying a synthesized polypeptide chain after synthesizing a desired polypeptide chain by a well-known chemical synthesis method. Note that the purification may be appropriately performed using a well-known column.
  • the method for producing a collagen degradation product or atelocollagen degradation product may include a step of mixing a desired polypeptide chain with another polypeptide chain.
  • strand it does not specifically limit as another polypeptide chain
  • the cleavage step can be configured as follows.
  • polypeptide chain constituting collagen or atelocollagen
  • the polypeptide chain may be appropriately selected according to the type of collagen or atelocollagen, and may be one type of polypeptide chain or multiple types of polypeptide chains.
  • polypeptide chain containing the chemical bond to be cleaved and the position of the chemical bond to be cleaved are determined from the above polypeptides, and the desired polypeptide is assumed when the chemical bond is cleaved.
  • the amino acid sequence and DNA sequence of the chain are determined.
  • DNA encoding the desired polypeptide chain is inserted into a known protein expression vector. Then, after the protein expression vector is introduced into a desired host (for example, E. coli, yeast, insect cell, animal cell, etc.), the polypeptide chain after the chemical bond is cleaved is expressed in the host.
  • a desired host for example, E. coli, yeast, insect cell, animal cell, etc.
  • the cutting process can be performed as described above.
  • the method for producing a collagen degradation product or atelocollagen degradation product may include steps other than the cutting step described above.
  • a method for producing a degradation product of collagen or a degradation product of atelocollagen may include a step of purifying an expressed polypeptide chain after expressing a desired polypeptide chain in a host. Note that the purification may be appropriately performed using a well-known column.
  • the method for producing a collagen degradation product or atelocollagen degradation product may include a step of mixing a desired polypeptide chain with another polypeptide chain.
  • strand it does not specifically limit as another polypeptide chain
  • the composition for forming an embryoid body according to one embodiment of the present invention is a composition for forming an embryoid body of pluripotent stem cells.
  • a degradation product of collagen or a degradation product of atelocollagen is contained as a main component, and the degradation product contains at least a part of the triple helical domain of the collagen or atelocollagen. That is, the degradation product may include the entire triple helical domain of collagen or atelocollagen, or may include a part of the triple helical domain.
  • the “pluripotent stem cell”, the “embryoid body”, and the “collagen degradation product or atelocollagen degradation product” are as described in the above section “1. Embryoid body formation method”. The description is omitted here.
  • a degradation product of collagen or a degradation product of atelocollagen is contained as a main component having embryoid body formation activity.
  • the amount of collagen degradation product or atelocollagen degradation product contained in the embryoid body-forming composition of the present embodiment is not particularly limited.
  • a degradation product of collagen or a degradation product of atelocollagen may be contained in an amount of 0.1% by weight or more, of which 50% by weight or more is contained. Preferably, it is more preferably 90% by weight or more, and most preferably 100% by weight.
  • the embryoid body-forming composition of the present embodiment is diluted with water or the like to obtain a final concentration of 2 mg / mL to 20 mg / mL, preferably 3 mg / mL to 16 mg / mL, more preferably 5 mg / mL to 15 mg / mL, or 5 mg / mL to 20 mg / mL, preferably 8 mg / mL to 16 mg / mL collagen degradation product or atelocollagen It is possible to prepare a solution containing the degradation product of and to coat the inner surface of the culture vessel using the solution.
  • the concentration of the degradation product in the solution is 2 mg / mL or more, embryoid bodies can be formed uniformly. Moreover, if the density
  • components other than the degradation product of collagen or the degradation product of atelocollagen may be added to the composition for embryoid body formation of the present embodiment.
  • these components are not particularly limited, and desired components can be appropriately added.
  • a collagen degradation product or atelocollagen degradation product is mixed with a concentrated culture solution (eg, 5-fold concentrated DMEM) and a reconstitution buffer (50 mM sodium hydroxide, 260 mM sodium bicarbonate, 200 mM HEPES), It may be a gelled composition.
  • the collagen degradation product or atelocollagen degradation product may be contained in the gelled composition at a final concentration of 2 to 15 mg / mL, or 5 to 15 mg / mL.
  • the collagen degradation product or atelocollagen degradation product used in one embodiment of the present invention has a higher concentration at which gelation starts than the conventional collagen degradation product or atelocollagen degradation product. Therefore, the collagen degradation product or the atelocollagen degradation product used in one embodiment of the present invention at the same concentration as the gelation of the conventional collagen degradation product or atelocollagen degradation product can be stably stored at room temperature. . Therefore, the composition for forming an embryoid body of the present embodiment can be stably stored at room temperature.
  • the embryoid body of a pluripotent stem cell can be formed easily. Moreover, if the composition for embryoid body formation of this embodiment is used, an embryoid body can be formed in a shorter period of time compared with the conventional embryoid body formation method.
  • composition for embryoid body formation of this embodiment can be used in the embryoid body formation method of this embodiment described above regardless of the origin animal, origin site and N-terminal (amino terminal) cleavage site.
  • actinidine was dissolved in 50 mM phosphate buffer (pH 6.5) containing 10 mM dithiothreitol and allowed to stand at 25 ° C. for 90 minutes.
  • actinidine what was refine
  • porcine type I collagen was dissolved in 50 mM citrate buffer (pH 3.0) containing salt. An aqueous solution containing actinidine and the solution containing porcine type I collagen were contacted at 20 ° C. for 10 days or longer to prepare a degradation product of type I collagen.
  • porcine type I collagen was purified based on a well-known method (for example, refer nonpatent literature 2).
  • the degradation product described above was subjected to polyacrylamide gel electrophoresis to separate the degradation product of type I collagen.
  • the degradation product of type I collagen was transferred to a PVDF (Polyvinylidene Difluoride) membrane by a conventional method.
  • the amino terminal amino acid sequence of the ⁇ 1 chain degradation product transferred to the PVDF membrane was determined by the Edman degradation method.
  • Table 1 shows the amino terminus of the ⁇ 1 chain degradation product and the amino acid sequence in the vicinity thereof when the salt concentration is 0 mM, 200 mM, 1000 mM, 1500 mM, or 2000 mM.
  • the cutting site when the salt concentration was high was a new cutting site found by the present inventors.
  • the upper limit of the salt concentration it is considered preferable to set the upper limit of the salt concentration to 500 mM or 800 mM.
  • actinidine was dissolved in 50 mM phosphate buffer (pH 6.5) containing 10 mM dithiothreitol and allowed to stand at 25 ° C. for 90 minutes.
  • type I collagen derived from rat tail or type I collagen derived from chicken skin was dissolved in 50 mM citrate buffer (pH 3.0) containing salt.
  • An aqueous solution containing actinidine and type I collagen derived from rat tail or type I collagen derived from chicken skin were contacted at 20 ° C. for 10 days or longer to prepare a degradation product of type I collagen.
  • actinidine the same thing as what was used in the Example of ⁇ 1> mentioned above was used.
  • type I collagen derived from rat tail and type I collagen derived from chicken skin were purified based on a well-known method (see, for example, Non-Patent Document 2).
  • the degradation product described above was subjected to polyacrylamide gel electrophoresis to separate the degradation product of type I collagen.
  • the degradation product of type I collagen was transferred to a PVDF (Polyvinylidene Difluoride) membrane by a conventional method.
  • the amino terminal amino acid sequence of the ⁇ 1 chain degradation product transferred to the PVDF membrane was determined by the Edman degradation method.
  • Table 2 shows the amino terminus and the amino acid sequence in the vicinity of the ⁇ 1-chain degradation product derived from the rat when the salt concentration is 0 mM and 2000 mM, and the partial structure of the rat-derived ⁇ 1 chain that is undegraded (salt concentration column). (Refer to data with “ ⁇ ”).
  • Table 3 shows amino acid sequences at and near the amino terminus of chicken-derived ⁇ 1 chain degradation products at salt concentrations of 0 mM and 2000 mM, and the partial structure of undegraded chicken-derived ⁇ 1 chain (salt concentration column). (Refer to data with “ ⁇ ”).
  • the cutting site when the salt concentration was high was a new cutting site found by the present inventors.
  • the amount of the degradation product having the amino terminus of the amino acid sequence shown in SEQ ID NO: 24 and the degradation product having the amino terminus of the amino acid sequence shown in SEQ ID NO: 5 are contained in the degradation product.
  • the ratio of the amount of was different depending on the reaction time, reaction pH, reaction temperature and other conditions.
  • the degradation product of type I collagen was transferred to a PVDF (Polyvinylidene Difluoride) membrane by a conventional method.
  • the amino terminal amino acid sequence of the ⁇ 1 chain degradation product transferred to the PVDF membrane was determined by the Edman degradation method.
  • Table 4 shows the case of ⁇ 1-chain derived from swine when using an aqueous solution with a salt concentration of 0 mM, using an aqueous solution with a MgCl 2 concentration of 500 mM, and using an aqueous solution with a KCl concentration of 200 mM.
  • the amino terminus of the degradation product and the amino acid sequence in the vicinity thereof, and the partial structure of the undegraded porcine-derived ⁇ 1 chain are shown.
  • the cutting site was a new cutting site found by the present inventors.
  • cathepsin K which is a kind of cysteine protease, was used to study the ⁇ 1 chain cleavage site under high salt conditions. The test method and test results will be described below.
  • a 50 mM citrate buffer solution (pH 3.0) having a sodium chloride concentration of 2000 mM was prepared. Note that water was used as the solvent of the aqueous solution.
  • cathepsin K was dissolved in 50 mM phosphate buffer (pH 6.5) containing 10 mM dithiothreitol and allowed to stand at 25 ° C. for 45 minutes.
  • phosphate buffer pH 6.5
  • the commercially available thing was utilized as cathepsin K.
  • chicken-derived type I collagen or porcine-derived type I collagen was dissolved in 50 mM citrate buffer (pH 3.0) containing salt.
  • An aqueous solution containing cathepsin K and the solution containing chicken-derived type I collagen or porcine-derived type I collagen were contacted at 20 ° C. for 10 days or longer to prepare a degradation product of type I collagen.
  • chicken type I collagen and porcine type I collagen were purified based on a well-known method (see, for example, Non-Patent Document 2).
  • the degradation product described above was subjected to polyacrylamide gel electrophoresis to separate the degradation product of type I collagen.
  • the degradation product of type I collagen was transferred to a PVDF (Polyvinylidene Difluoride) membrane by a conventional method.
  • the amino terminal amino acid sequence of the ⁇ 1 chain degradation product transferred to the PVDF membrane was determined by the Edman degradation method.
  • Table 5 shows amino acid sequence at and near the amino terminus of the degradation product of swine-derived ⁇ 1 chain, and the partial structure of undegraded swine-derived ⁇ 1 chain (salt concentration column is “-”) ).
  • cathepsin K which is a kind of cysteine protease, is cleaved inside the triple helical domain when the salt concentration is high.
  • the chicken-derived ⁇ 1 chain degradation product includes the chicken-derived ⁇ 1 chain degradation product corresponding to SEQ ID NOS: 11 and 12 below and the amino terminal in SEQ ID NO: 10 below.
  • the ⁇ 1-chain degradation product derived from the chicken corresponding to the broken chemical bond between the 10th “S” and the 11th “G” was confirmed.
  • Actinidine was put into a dialysis tube, and the actinidine was dialyzed against an external dialysis solution having a sodium chloride concentration of 2000 mM. Thereafter, the external dialyzate was changed to distilled water, and dialysis was continued to obtain actinidine.
  • actinidine what was refine
  • actinidine was dissolved in 50 mM phosphate buffer (pH 6.5) containing 10 mM dithiothreitol and allowed to stand at 25 ° C. for 90 minutes.
  • porcine type I collagen was dissolved in 50 mM citrate buffer (pH 3.0) containing salt. An aqueous solution containing actinidine was contacted with porcine-derived type I collagen at 20 ° C. for 3 days or longer to prepare a degradation product of type I collagen. Further, porcine type I collagen was purified based on a well-known method (for example, see Non-Patent Document 2).
  • the degradation product described above was subjected to polyacrylamide gel electrophoresis to separate the degradation product of type I collagen.
  • the degradation product of type I collagen was transferred to a PVDF (Polyvinylidene Difluoride) membrane by a conventional method.
  • the amino terminal amino acid sequence of the ⁇ 1 chain degradation product transferred to the PVDF membrane was determined by the Edman degradation method.
  • Table 6 shows the amino terminal sequence of the ⁇ 1-chain degradation product derived from swine when the dialysis salt concentration is 2000 mM and the amino acid sequence in the vicinity thereof, and the partial structure of undegraded porcine-derived ⁇ 1 chain (in the column for salt concentration). Refer to data with “-”).
  • the amount of the degradation product having the amino terminus of the amino acid sequence shown in SEQ ID NO: 26 and the amount of the degradation product having the amino terminus of the amino acid sequence shown in SEQ ID NO: 27 are contained in the degradation product.
  • the ratio of the degradation product having the amino terminus of the amino acid sequence shown in SEQ ID NO: 15 was different depending on conditions such as reaction time, reaction pH, and reaction temperature.
  • the cutting site when the salt concentration was high included the new cutting site found by the present inventors.
  • Actinidine was put into a dialysis tube, and the actinidine was dialyzed against an external dialysis solution having a sodium chloride concentration of 2000 mM. Thereafter, the external dialyzate was changed to distilled water, and dialysis was continued to obtain actinidine.
  • actinidine what was refine
  • actinidine was dissolved in 50 mM phosphate buffer (pH 6.5) containing 10 mM dithiothreitol and allowed to stand at 25 ° C. for 90 minutes.
  • human-derived type I collagen was dissolved in 50 mM citrate buffer (pH 3.5) containing salt. An aqueous solution containing actinidine was contacted with human-derived type I collagen at 20 ° C. for 10 days or longer to prepare a degradation product of type I collagen. Moreover, human-derived type I collagen was purified based on a well-known method (for example, refer nonpatent literature 2).
  • the degradation product described above was subjected to polyacrylamide gel electrophoresis to separate the degradation product of type I collagen.
  • the degradation product of type I collagen was transferred to a PVDF (Polyvinylidene Difluoride) membrane by a conventional method.
  • the amino terminal amino acid sequence of the ⁇ 1 chain degradation product transferred to the PVDF membrane was determined by the Edman degradation method.
  • the cutting site when the salt concentration was high included the new cutting site found by the present inventors.
  • Actinidine was put into a dialysis tube, and the actinidine was dialyzed against an external dialysis solution having a sodium chloride concentration of 2000 mM. Thereafter, the external dialyzate was changed to distilled water, and dialysis was continued to obtain actinidine.
  • actinidine was dissolved in 50 mM phosphate buffer (pH 6.5) containing 10 mM dithiothreitol and allowed to stand at 25 ° C. for 90 minutes.
  • fish type I collagen (specifically yellowfin tuna) was dissolved in 50 mM citrate buffer (pH 3.0) containing salt.
  • An aqueous solution containing actinidine and fish-derived type I collagen were contacted at 20 ° C. for 3 days or longer to prepare a degradation product of type I collagen.
  • actinidine the same thing as what was used in the Example of ⁇ 1> mentioned above was used.
  • fish-derived type I collagen was purified based on a well-known method (for example, see Non-Patent Document 2).
  • the degradation product described above was subjected to polyacrylamide gel electrophoresis to separate the degradation product of type I collagen.
  • the degradation product of type I collagen was transferred to a PVDF (Polyvinylidene Difluoride) membrane by a conventional method.
  • the amino terminal amino acid sequence of the degradation product of ⁇ 1 chain (fish-derived type I collagen) transferred to the PVDF membrane was determined by the Edman degradation method.
  • Table 8 shows the amino terminus and the amino acid sequence in the vicinity of the ⁇ 1-chain degradation product derived from fish when the salt concentration of the dialysis external solution is 2000 mM. As shown in Table 8, three types of degradation products of ⁇ 1 chain (fish-derived type I collagen) were detected. As amino acid sequences at the amino terminus of each of these degradation products, SEQ ID NO: 18, SEQ ID NO: 19 And the amino acid sequence shown in SEQ ID NO: 31 was successfully identified.
  • cathepsin K was dissolved in 50 mM phosphate buffer (pH 6.5) containing 10 mM dithiothreitol and allowed to stand at 25 ° C. for 45 minutes.
  • human-derived type I collagen was dissolved in 50 mM phosphate buffer (pH 6.0) containing salt.
  • An aqueous solution containing cathepsin K was contacted with human-derived type I collagen at 20 ° C. for 10 days or longer to prepare a degradation product of type I collagen.
  • cathepsin K the same thing as what was used in the Example of ⁇ 1> mentioned above was used.
  • human-derived type I collagen was purified based on a well-known method (for example, refer nonpatent literature 2).
  • the degradation product described above was subjected to polyacrylamide gel electrophoresis to separate the degradation product of type I collagen.
  • the degradation product of type I collagen was transferred to a PVDF (Polyvinylidene Difluoride) membrane by a conventional method.
  • the amino terminal amino acid sequence of the degradation product of ⁇ 2 chain (human-derived type I collagen) transferred to the PVDF membrane was determined by the Edman degradation method.
  • Table 9 shows the amino terminus and the amino acid sequence in the vicinity of the ⁇ 2-chain degradation product derived from human when the salt concentration of the reaction solution is 200 mM.
  • Actinidine was put into a dialysis tube, and the actinidine was dialyzed against an external dialysis solution having a sodium chloride concentration of 2000 mM. Thereafter, the external dialyzate was changed to distilled water, and dialysis was continued to obtain actinidine.
  • actinidine was dissolved in 50 mM phosphate buffer (pH 6.5) containing 10 mM dithiothreitol and allowed to stand at 25 ° C. for 90 minutes.
  • chicken-derived type I collagen was dissolved in 50 mM citrate buffer (pH 3.0) containing salt.
  • An aqueous solution containing actinidine was contacted with chicken-derived type I collagen at 20 ° C. for 7 days or longer to prepare a degradation product of type I collagen.
  • actinidine the same thing as what was used in the Example of ⁇ 1> mentioned above was used.
  • chicken type I collagen was purified based on a well-known method (for example, see Non-Patent Document 2).
  • the degradation product described above was subjected to polyacrylamide gel electrophoresis to separate the degradation product of type I collagen.
  • the degradation product of type I collagen was transferred to a PVDF (Polyvinylidene Difluoride) membrane by a conventional method.
  • the amino terminal amino acid sequence of the degradation product of ⁇ 2 chain (chicken-derived type I collagen) transferred to the PVDF membrane was determined by the Edman degradation method.
  • Table 10 shows the amino terminus of the chicken ⁇ 2-chain degradation product and the amino acid sequence in the vicinity thereof when the salt concentration of the dialysis external solution is 2000 mM.
  • DMEM medium manufactured by Nissui Pharmaceutical Co., Ltd.
  • collagen degradation solution and reconstitution buffer 50 mM sodium hydroxide, 260 mM sodium bicarbonate, 200 mM HEPES
  • 200 ⁇ L of this mixed solution was added to a 35 mm culture dish, spread and coated evenly on the culture dish, and allowed to stand in a 37 ° C. incubator for 30 minutes. This was used as a collagen degradation product gel culture dish.
  • Mouse ES cells transferred from Professor Teruhiko Wakayama, Faculty of Life and Environmental Sciences, University of Yamanashi were used. This mouse ES cell is labeled with GFP (green fluorescent protein), and a gene encoding the GFP protein is inserted into the chromosome.
  • GFP green fluorescent protein
  • CMPMEFCF Murine Embryonic Fibroblasts
  • mitomycin was prepared at 1 ⁇ 10 5 cells / mL.
  • Gelatin-coated culture dish, collagen degradation product coated culture dish, collagen degradation product gel culture dish are seeded with 7 ⁇ 10 4 MEFs each, and DMEM medium containing 10% fetal bovine serum (KnockOut DMEM, manufactured by Thermo Fisher Science) is used. Incubated at 37 ° C. under 5% CO 2 for 1 day.
  • DMEM medium fetal bovine serum DMEM (KnockOut DMEM, manufactured by Thermo Fisher Science)
  • MEF (+) and LIF (+) ES cells cultured in gelatin-coated culture dishes served as controls for this experiment.
  • MEF (+) indicates culture in the presence of MEF
  • MEF ( ⁇ ) indicates culture in the absence of MEF
  • LIF (+) indicates culture in the presence of LIF
  • LIF ( ⁇ ) indicates culture in the absence of LIF.
  • FIG. 1 is a diagram showing the morphology of ES cells cultured in a gelatin-coated culture dish for 3 days in the presence of MEF (MEF (+)) using DMEM medium (LIF (+)).
  • B is a view showing the morphology of ES cells cultured in a collagen degradation product-coated culture dish in the presence of MEF (MEF (+)) for 3 days using DMEM medium (LIF (+)).
  • C is a diagram showing the morphology of ES cells cultured in a collagen degradation product gel culture dish in the presence of MEF (MEF (+)) for 3 days using DMEM medium (LIF (+)).
  • the morphology of ES cells cultured in a collagen degradation product-coated culture dish or collagen degradation product gel culture dish was completely different from that of ES cells cultured in a gelatin-coated culture dish.
  • the ES cells cultured in the gelatin-coated culture dish only formed general ES cell colonies, but the ES cells cultured in the collagen degradation product-coated culture dish were suspended embryos despite the addition of LIF.
  • a body was formed. That is, it was shown that culturing ES cells in a collagen degradation product-coated culture dish can be a new method for forming embryoid bodies.
  • ES cells cultured in a collagen degradation product gel culture dish formed embryoid bodies that had not been observed so far in the presence of LIF. Specifically, it was shown that the embryoid body adhered to the collagen degradation product gel.
  • DMEM medium (LIF ( ⁇ )) DMEM medium containing no LIF and 20% fetal calf serum.
  • LIF ( ⁇ ) DMEM medium
  • 2.5 ⁇ 10 4 mouse ES cells / mL were prepared using DMEM medium (LIF ( ⁇ )).
  • 2 mL of mouse ES cell suspension was seeded on gelatin-coated culture dish, collagen degradation product-coated culture dish, collagen degradation product gel culture dish, which had been previously seeded with MEF, and DMEM medium (LIF (-)) was added. And cultured under conditions of 37 ° C. and 5% CO 2 (culture conditions: MEF (+) and LIF ( ⁇ )). ES cells cultured in gelatin-coated culture dishes served as controls for this experiment.
  • FIG. 2 (a) is a view showing the morphology of ES cells cultured in a gelatin-coated culture dish in the presence of MEF (MEF (+)) for 3 days using DMEM medium (LIF ( ⁇ )).
  • (B) is a view showing the morphology of ES cells cultured in a collagen degradation product-coated culture dish in the presence of MEF (MEF (+)) for 3 days using DMEM medium (LIF ( ⁇ )).
  • (C) shows the morphology of ES cells cultured in a collagen degradation product gel culture dish in the presence of MEF (MEF (+)) for 3 days using DMEM medium (LIF ( ⁇ )).
  • culturing ES cells in a collagen degradation product-coated culture dish can be a new method for forming embryoid bodies.
  • ES cells cultured in a collagen degradation product gel culture dish formed an embryoid body that had not been observed so far in the absence of LIF. Specifically, it was shown that the embryoid body adhered to the collagen degradation product gel.
  • the intracellular alkaline phosphatase activity was examined.
  • DMEM fetal bovine serum
  • FIG. 3 is a diagram showing the results of examining the intracellular alkaline phosphatase activity of ES cells cultured for 2 days under the culture conditions of MEF (+) and LIF (+).
  • FIG. (B) shows the presence or absence of alkaline phosphatase activity of ES cells cultured in a gelatin-coated culture dish for 2 days in the presence of MEF (MEF (+)) using DMEM medium (LIF (+)).
  • FIG. 4 is a view showing the presence or absence of alkaline phosphatase activity of ES cells cultured in a collagen degradation product-coated culture dish for 2 days using DMEM medium (LIF (+)) in the presence of MEF (MEF (+)); c) shows an ES cell cultured in a collagen degradation product gel culture dish in the presence of MEF (MEF (+)) for 2 days using DMEM medium (LIF (+)). It is a diagram showing the presence or absence of alkaline phosphatase activity.
  • FIG. 4 (a) is a figure which shows the form of the ES cell culture
  • ES cells When cultured in a gelatin-coated culture dish, ES cells spread in a single layer, and colonized cells were observed separately from single-adhered cells. There were also cells that showed morphology that showed cell processes. Compared to general ES cell MEF coexistence and LIF presence (Fig. 1 (a)), the number of colonies is small and the size is small, and the cell adhesion is such that each cell can be distinguished. Was shown ((a) of FIG. 4).
  • the observed ES cells formed a three-dimensional cell mass (embryoid body) that adhered or floated on the collagen degradation product gel.
  • the morphology was completely different from the general ES cell culture findings of gelatin-coated culture dishes.
  • the embryoid body adhered to the collagen degradation product gel was relatively larger than the floating embryoid body. ((C) of FIG. 4).
  • the morphology of ES cells cultured in a collagen degradation product-coated culture dish or collagen degradation product gel culture dish using DMEM medium (LIF (+)) in the absence of MEF (MEF ( ⁇ )) The morphology of cultured ES cells was completely different. However, in the presence of MEF (MEF (+)), in the absence of MEF, compared to ES cells cultured in a collagen degradation product-coated culture dish or collagen degradation product gel culture dish using DMEM medium (LIF (+)). Below (MEF (-)), the morphology of ES cells cultured in collagen degradation product-coated culture dish or collagen degradation product gel culture dish using DMEM medium (LIF (+)) is slightly different in size and shape. Although observed, there was no clear difference.
  • ES cells cultured in gelatin-coated culture dishes under MEF ( ⁇ ) and LIF (+) culture conditions formed common ES cell colonies or were single adherent cells. It should be noted that ES cells cultured in collagen degradation product-coated culture dishes under the culture conditions of MEF ( ⁇ ) and LIF (+) formed embryoid bodies even though they were not co-cultured with MEF. That is, it was shown that culturing ES cells in a collagen degradation product-coated culture dish can be a new method for forming embryoid bodies. Similarly, ES cells cultured in a collagen degradation product gel culture dish under the culture conditions of MEF ( ⁇ ) and LIF (+) are formed in the absence of MEF as embryoid bodies that have not been observed so far. It was. Specifically, embryoid bodies formed from ES cells cultured in a collagen degradation product gel culture dish under MEF (-) and LIF (+) culture conditions should adhere or float on the collagen degradation product gel. It has been shown.
  • mice ES cell suspension 2 mL of mouse ES cell suspension was seeded on gelatin-coated culture dish, collagen degradation product-coated culture dish, collagen degradation product gel culture dish not seeded with MEF, respectively, and DMEM medium (LIF (-)) was used.
  • the cells were cultured at 37 ° C. under 5% CO 2 (culture conditions: MEF ( ⁇ ) and LIF ( ⁇ )). ES cells cultured in gelatin-coated culture dishes served as controls for this experiment.
  • FIG. 5 (a) is a view showing the morphology of ES cells cultured in a gelatin-coated culture dish using DMEM medium (LIF ( ⁇ )) for 3 days, and (b) is a collagen degradation product-coated culture.
  • FIG. 4 is a view showing the morphology of ES cells cultured in a dish using DMEM medium (LIF ( ⁇ )) for 3 days, and (c) is a diagram showing DMEM medium (LIF ( ⁇ )) in a collagen degradation gel culture dish. It is a figure which shows the form of the ES cell cultured using for 3 days.
  • ES cells When cultured in a gelatin-coated culture dish, ES cells spread in a single layer, and colonized cells were observed separately from single-adhered cells. There were also cells that showed morphology that showed cell processes. Compared to general ES cell MEF coexistence and LIF presence (Fig. 1 (a)), the number of colonies is small and the size is small, and the cell adhesion is such that each cell can be distinguished. Was shown ((a) of FIG. 5).
  • the observed ES cells formed a three-dimensional cell mass (embryoid body) that adhered or floated on the collagen degradation product gel.
  • the morphology was completely different from the general ES cell culture findings of gelatin-coated culture dishes.
  • the embryoid body adhered to the collagen degradation product gel was relatively larger than the floating embryoid body. ((C) of FIG. 5).
  • the morphology of ES cells cultured in a collagen degradation product-coated culture dish or collagen degradation product gel culture dish using DMEM medium (LIF (-)) in the absence of MEF (MEF (-)) The morphology of cultured ES cells was completely different. However, in the presence of MEF (MEF (+)), collagen degradation product-coated culture dish (FIG. 1 (b)) or collagen degradation product gel culture dish (FIG. 1 (c)) using DMEM medium (LIF (+)). In the absence of MEF (MEF (-)), the cells were cultured in collagen degradation product-coated culture dishes or collagen degradation product gel culture dishes in the absence of MEF (MEF (-)) using DMEM medium (LIF (-)).
  • ES cells cultured in gelatin-coated culture dishes under MEF ( ⁇ ) and LIF ( ⁇ ) culture conditions formed general ES cell colonies or were single adherent cells. It should be noted that ES cells cultured in a collagen degradation product-coated culture dish under the culture conditions of MEF ( ⁇ ) and LIF ( ⁇ ) formed embryoid bodies even though they were not co-cultured with MEF. That is, it was shown that culturing ES cells in a collagen degradation product-coated culture dish can be a new method for forming embryoid bodies.
  • ES cells cultured in a collagen degradation product gel culture dish under the culture conditions of MEF ( ⁇ ) and LIF ( ⁇ ) are formed in the absence of MEF as embryoid bodies that have not been observed so far. It was. Specifically, embryoid bodies formed from ES cells cultured in a collagen degradation product gel culture dish under the culture conditions of MEF (-) and LIF (-) must adhere or float on the collagen degradation product gel. It has been shown.
  • DMEM medium (LIF (+)) mouse ES using DMEM (KnockOut DMEM, manufactured by Thermo Fisher Science) containing 500 U / mL LIF and 20% fetal calf serum is used. 2.5 ⁇ 10 4 cells / mL were prepared.
  • mice ES cell suspension was seeded, respectively, using DMEM medium (LIF (+)) at 37 ° C.
  • the cells were cultured for 4 days under conditions of 5% CO 2 (culture conditions: MEF (+) and LIF (+)). ES cells cultured in gelatin-coated culture dishes served as controls for this experiment.
  • DMEM KnockOut DMEM, manufactured by Thermo Fisher Science
  • LIF ( ⁇ ) 20% fetal calf serum without LIF
  • mouse ES cells 2.5 ⁇ 10 4 pieces / mL were prepared.
  • Collagen degradation product gel culture dish in which MEF has been seeded in advance is seeded with 2 mL of mouse ES cell suspension, using DMEM medium (LIF ( ⁇ )) under conditions of 37 ° C. and 5% CO 2 . For 4 days (culture conditions: MEF (+) and LIF ( ⁇ )).
  • FIG. 6 is a diagram showing the results of observation under a microscope of ES cells cultured for 4 days in a gelatin-coated culture dish under MEF (+) and LIF (+) culture conditions, and (a) shows the phase difference. It is a figure which shows the form of ES cell observed under the microscope, (b) is a figure which shows the result of having observed the fluorescence of GFP of the ES cell shown to (a) under the fluorescence microscope, (c) is (A) is a figure which shows the result of having dye
  • FIG. 7 shows the result of observing an embryoid body obtained after culturing ES cells for 4 days in a collagen degradation product gel culture dish under the culture conditions of MEF (+) and LIF (+) under a microscope.
  • A is a figure which shows the form of the embryoid body observed under the phase-contrast microscope
  • (b) is the fluorescence of the GFP of the embryoid body shown in (a) under the fluorescence microscope.
  • FIG. 6B is a diagram illustrating a result of superimposing images of FIGS.
  • FIG. 8 shows the result of observing an embryoid body obtained after culturing ES cells in a collagen degradation product gel culture dish under a culture condition of MEF (+) and LIF ( ⁇ ) for 4 days under a microscope.
  • FIG. 6B is a diagram illustrating a result of superimposing images of FIGS.
  • ES cells are cultured in a collagen degradation product gel culture dish using DMEM medium (LIF (+)) or DMEM medium (LIF (-)) in the presence of MEF (MEF (+)).
  • the GFP-positive ES cells formed a three-dimensional cell cluster (embryoid body) adhered to the collagen degradation product gel.
  • the morphology was completely different from the general ES cell culture findings of gelatin-coated culture dishes. Since cells other than embryoid bodies were GFP-negative, it was assumed that cells other than embryoid bodies were MEFs (FIGS. 7 (a) to (d) and FIGS. 8 (a) to (d)). ). Moreover, it was guessed that the part enclosed with the broken line in (a) of FIG. 8 is a collagen and the secretion from a cell.
  • a collagen degradation product derived from porcine was prepared to 10 mg / mL, 50 ⁇ L of 6-well plate was coated and allowed to stand for 3 hours.
  • the collagen degradation product is the above-described collagen degradation product (the amino acid sequence represented by (3) in the amino acid sequence represented by SEQ ID NO: 2 among the degradation products of collagen derived from pigs at a salt concentration of 0 mM). Equivalent)) was used.
  • As a control group 1 1 mL of Vitronectin (Thermo Fisher Scientific Co., Ltd.) diluted 100-fold with D-PBS was added to 1 well of a 6-well plate, and allowed to stand for 1 hour or longer.
  • As control group 2 iMatrix 511 (Nippi Co., Ltd.) was coated at 0.5 ⁇ g / cm 2 .
  • Human iPS cell embryoid body formation Human iPS cells were adjusted to 1.0 ⁇ 10 5 using NutriStem medium (Cosmo Bio Inc.) dedicated to iPS cells, and seeded on the culture dish prepared above. Culturing was performed for 5 days under conditions of 37 ° C. and 5% CO 2 . The culture medium was replaced with fresh NutriStem medium every day.
  • NutriStem medium Cosmo Bio Inc.
  • FIG. 9 is a diagram showing the morphology of iPS cells cultured for 1 day in a collagen degradation product-coated culture dish, and (b) is the morphology of iPS cells cultured for 1 day in a Vitronectin-coated culture dish.
  • C is a figure which shows the form of the iPS cell cultured for 1 day in the iMatrix511 coated culture dish.
  • (a) is a view showing the morphology of iPS cells cultured for 5 days in a collagen degradation product-coated culture dish, and (b) is the morphology of iPS cells cultured for 5 days in a Vitronectin-coated culture dish.
  • (C) is a figure which shows the form of the iPS cell cultured for 5 days in the iMatrix511 coated culture dish.
  • FIG. 9 (a) and FIG. 10 (a) When cultured in a collagen degradation product-coated culture dish, it was observed that iPS cells were collected after one day of culture. Further, after 5 days of culture, embryoid bodies were formed (FIG. 9 (a) and FIG. 10 (a)).
  • iPS cells When cultured in a Vitronectin-coated culture dish, it was in the same form as general iPS cell culture findings. That is, after 1 day of culture, iPS cells adhered individually to the bottom of the culture dish and were in the cell form of monolayer culture. After 5 days of culture, the iPS cells were in a hyperproliferative state and were shown to adhere to all of the bottom of the culture dish (FIG. 9 (b) and FIG. 10 (b)).
  • iPS cells When cultured in an iMatrix511 coated culture dish, iPS cells were adhered to the bottom of the culture dish. The observation images after 1 day of culture and after 5 days of culture were in the same form as the general iPS cell culture findings of Vitronectin-coated culture dishes.
  • iPS cells cultured in collagen degradation product-coated culture dishes was completely different from the morphology of iPS cells cultured in Vitronectin-coated culture dishes or iMatrix511-coated culture dishes.
  • iPS cells cultured in Vitronectin-coated culture dishes only showed general iPS cell growth
  • iPS cells cultured in collagen degradation product-coated culture dishes were not added with LIF, etc.
  • Embryoid bodies were formed. That is, it has been shown that culturing iPS cells in a collagen degradation product-coated culture dish can be a new method for forming embryoid bodies.
  • a collagen degradation product was prepared at 10 mg / mL, and 50 ⁇ L of 6-well plate was coated and allowed to stand for 3 hours.
  • Lipdure (NOF Corporation) whose plastic surface was processed with 2-methacryloyloxyethyl phosphorylcholine monomer was used. It is widely known that iPS cells form floating embryoid bodies when cultured in Lipdure culture dishes.
  • Human iPS cell embryoid body formation Human iPS cells were adjusted to 3.0 ⁇ 10 5 using NutriStem medium (Cosmo Bio Inc.) dedicated to iPS cells, and seeded on the culture dish prepared above. Culturing was carried out for 12 days under conditions of 37 ° C. and 5% CO 2 . During the culturing period, half of the amount was replaced with fresh NutriStem medium every day until the fourth day of culturing. After the fifth day of culture, half the amount was changed every other day using hiPS medium, which is a medium exclusively for iPS cells not containing basic fibroblast growth factor (bFGF).
  • bFGF basic fibroblast growth factor
  • FIG. 11 (a) is a view showing the morphology of iPS cells cultured for 4 days in a collagen degradation product-coated culture dish, and (b) is the morphology of iPS cells cultured for 4 days in a Lipidure culture dish.
  • FIG. 12 (a) is a diagram showing the morphology of iPS cells cultured for 12 days in a collagen degradation product-coated culture dish, and FIG. 12 (b) is a diagram of iPS cells cultured for 12 days in a Lipidure culture dish. It is a figure which shows a form.
  • FIG. 11 (a) When cultured in a collagen degradation product-coated culture dish, it was observed that iPS cells formed embryoid bodies after 4 days of culture (FIG. 11 (a)). Furthermore, as a result of culturing in a dedicated medium not containing bFGF up to the 12th day, it was shown that the embryoid body was maintained ((a) of FIG. 12).
  • Human iPS cell embryoid body formation using collagen-decomposed coat culture dish is easier to replace the medium because it adheres to the bottom of the culture dish than human iPS cell embryoid body formation in Lipidure culture dish.
  • the advantage of being revealed Lipidure culture dishes tend to cause erroneous loss of cells due to suction when the medium is changed. Moreover, it was feared that the embryoid bodies recovered from the Lipidure culture dish became enormous when the embryoid bodies contacted each other during the centrifugation in the medium exchange. On the other hand, it was found that such a problem hardly occurs in the collagen degradation product-coated culture dish. Furthermore, it was revealed that the embryoid bodies of iPS cells formed in the collagen degradation product-coated culture dish did not collapse even when cultured in a dedicated medium not containing bFGF.
  • the embryoid bodies of human iPS cells cultured in collagen degradation product-coated culture dishes were not clearly different in morphological findings compared to human iPS cells in Lipidure culture dishes. In other words, it was shown that culturing embryoid bodies of human iPS cells in a collagen degradation product-coated culture dish can be a new method for maintaining embryoid bodies.
  • mice ES cells obtained using a collagen degradation product can be induced to differentiate.
  • an EB-dedicated medium containing no LIF medium supplemented with 20% fetal bovine serum, 1 mM MEM Sodium Pyruvate Solution, 1/100 diluted MEM Non Essential Amino Acid Solution, 10 ⁇ M ⁇ -mercaptoethanol in DMEM medium
  • mouse ES cells 5.0 ⁇ 10 4 cells / well were prepared using “EB medium”).
  • 12-well plate collagen degradation product-coated culture dishes or Lipidure culture dishes prepared in the same manner as above were prepared, and mouse ES cell suspensions were seeded.
  • EB medium Using EB medium, the cells were cultured at 37 ° C. and 5% CO 2 for 15 days. The medium was replaced with fresh EB medium every day after 2 days of culture. ES cells before seeding cultured in gelatin-coated culture dishes served as controls for this experiment.
  • RNA purification buffer Lysis Buffer RA1 Takara Bio Inc.
  • ⁇ -Mixed with mercaptoethanol 70% ethanol and mixed well.
  • the resulting solution was centrifuged on an RNA purification spin column, adsorbed on a gel, washed, DNase-treated and eluted from the column to purify the total RNA of embryoid bodies in each culture dish.
  • RNA cDNA was synthesized by RT-PCR method using TotalScript RT Master Mix (Perfect Real Time) manufactured by Takara Bio Inc., using total RNA as a template.
  • the cDNA solution after the reaction was stored at ⁇ 20 ° C. or ⁇ 80 ° C. until the next experiment.
  • RNA expression levels of the following three differentiation markers were examined.
  • GATA4 GATA Binding Protein 4
  • AFP ⁇ fetoprotein
  • NKX2.5 specific to cardiac progenitor cells
  • NK-2 transcription factor related, locus 5 was used to quantify the RNA expression level.
  • each primer, a reagent such as SYBR Fast qPCR Mix, and an appropriate amount of ultrapure water, etc. are mixed, and a conventional cycler using Real Cycler Real Time System (Takara Bio Inc.) Quantitative RT-PCR was performed.
  • FIG. 13 shows a radar chart of the relative expression level of each marker, with the maximum value of the expression level obtained from the RT-PCR result being 100. It was revealed that the embryoid body of mouse ES cells formed in the collagen degradation product-coated culture dish has a low relative expression level of NKX2.5 but a high relative expression level of GATA4 and AFP ((a) of FIG. 13). ). The RNA relative expression level of the embryoid body formed in the Lipidure culture dish was the same as that of the embryoid body of the collagen degradation product-coated culture dish ((b) of FIG. 13).
  • the embryoid body of the collagen degradation product-coated culture dish also has sufficient ability to induce differentiation. Since the embryoid body of the conventional Lipidure culture dish is floating, it tends to form a large aggregate. Therefore, the differentiation of ES cells and iPS cells in a Lipidure culture dish greatly affects the quality of differentiation. On the other hand, the embryoid body of the collagen degradation product-coated culture dish can improve the reproducibility and quality of differentiation.
  • the concentration of collagen degradation product in a 35 mm culture dish (the degradation product of type I collagen derived from pig skin (SEQ ID NO: 27) is 3.2 mg / mL to 9.6 mg / mL, type I derived from rat tendon Collagen degradation product (mixture of SEQ ID NO: 24 and SEQ ID NO: 5) is 2.8 mg / mL to 8.4 mg / mL, and porcine skin type I collagen degradation product (SEQ ID NO: 26) is 3.3 mg / mL. mL) was added, and the mixture was thoroughly blended into the culture dish and allowed to stand at room temperature for 5 hours to obtain a collagen degradation product-coated culture dish.
  • Mouse ES cells transferred from Professor Teruhiko Wakayama, Faculty of Life and Environmental Sciences, University of Yamanashi were used. This mouse ES cell is labeled with GFP (green fluorescent protein), and a gene encoding the GFP protein is inserted into the chromosome.
  • GFP green fluorescent protein
  • CMPMEFCF Mouse embryo-derived fibroblasts (Murine Embryonic Fibroblasts: MEF) (CMPMEFCF, manufactured by DS Pharma Biomedical) treated with mitomycin were prepared at 6.1 ⁇ 10 4 cells / mL. 1.2 ⁇ 10 5 MEFs were seeded on gelatin-coated culture dishes, atelocollagen-coated culture dishes (porcine tendon-derived pepsin-solubilized type I collagen, COL 1, manufactured by Asahi Techno Glass Co., Ltd.) and collagen degradation product-coated culture dishes. Then, using a DMEM medium (DMEM, manufactured by Nissui Pharmaceutical Co., Ltd.) containing 10% fetal bovine serum, the cells were cultured for 1 day under conditions of 37 ° C. and 5% CO 2 .
  • DMEM medium fetal bovine serum
  • DMEM medium (LIF (+)) DMEM medium (LIF (+)) containing 500 U / mL leukemia inhibitory factor (LIF) and 20% fetal bovine serum.
  • LIF leukemia inhibitory factor
  • MEF (+) and LIF (+) ES cells cultured in gelatin-coated culture dishes and atelocollagen-coated culture dishes served as controls for this experiment.
  • MEF (+) indicates culturing in the presence of MEF.
  • LIF (+) indicates culturing in the presence of LIF.
  • FIG. 14 is a diagram showing the morphology of ES cells cultured in a gelatin-coated culture dish in the presence of MEF (MEF (+)) for 1 day using DMEM medium (LIF (+)).
  • FIG. B is a figure which shows the form of the ES cell culture
  • (c) Shows an ES cell cultured for 1 day in a collagen degradation product-coated culture dish (derived from pig skin, SEQ ID NO: 27) in the presence of MEF (MEF (+)) using DMEM medium (LIF (+)).
  • D shows a DMEM medium (in the presence of MEF (+)) in a collagen degradation product-coated culture dish (rat tendon derived, mixture of SEQ ID NO: 24 and SEQ ID NO: 5) in the presence of MEF (MEF (+)).
  • LIF ( ) Shows the morphology of ES cells cultured for 1 day, and (e) shows a collagen degradation product-coated culture dish (derived from pig skin, SEQ ID NO: 26) in the presence of MEF (MEF (+)). ) Shows the morphology of ES cells cultured for 1 day in DMEM medium (LIF (+)). When cultured in a gelatin-coated culture dish and an atelocollagen-coated culture dish, MEF adhered and extended to the bottom surface of the gelatin-coated culture dish. Meanwhile, ES cells formed colonies. It was the same form as general ES cell culture findings (FIGS. 14A and 14B).
  • ES cells When cultured in a collagen degradation product-coated culture dish, ES cells form a three-dimensional cell mass (embryoid body), which is completely different from the general ES cell culture findings in gelatin-coated culture dishes and atelocollagen-coated culture dishes. It was in a different form ((c) to (e) in FIG. 14). MEF was adhered to the bottom of the collagen degradation product-coated culture dish, but did not extend to the entire bottom like gelatin-coated culture dishes and atelocollagen-coated culture dishes. It was glued.
  • the morphology of the ES cells cultured in the collagen degradation product-coated culture dish was completely different from that of the ES cells cultured in the gelatin-coated culture dish and the atelocollagen-coated culture dish.
  • ES cells cultured in gelatin-coated culture dishes and atelocollagen-coated culture dishes only formed general ES cell colonies, ES cells cultured in collagen-degraded product-coated culture dishes became adherent embryoid bodies. Formed.
  • animal species eg, pig, rat
  • origin site eg, skin and tendon
  • N-terminal cleavage site eg, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 24, SEQ ID NO: 5
  • culturing ES cells in collagen degradation product-coated culture dishes has been shown to be a new way of forming embryoid bodies.
  • Test 9 for the ability of collagen degradation products to form embryoid bodies 9> In order to examine the undifferentiated ability of ES cells cultured in gelatin-coated culture dishes, atelocollagen-coated culture dishes, and collagen degradation product-coated culture dishes, intracellular alkaline phosphatase activity was examined.
  • the concentration of collagen degradation product in a 35 mm culture dish (the degradation product of type I collagen derived from pig skin (SEQ ID NO: 27) is 3.2 mg / mL to 9.6 mg / mL, type I derived from rat tendon Collagen degradation product (mixture of SEQ ID NO: 24 and SEQ ID NO: 5) is 2.8 mg / mL to 8.4 mg / mL, and porcine skin type I collagen degradation product (SEQ ID NO: 26) is 3.3 mg / mL. mL) was added, and the mixture was thoroughly blended into the culture dish and allowed to stand at room temperature for 5 hours to obtain a collagen degradation product-coated culture dish.
  • DMEM medium (LIF (+)) DMEM medium (LIF (+))
  • Mouse ES cells were seeded at 5.0 ⁇ 10 4 cells / cm 2 each in gelatin-coated culture dishes, atelocollagen-coated culture dishes, and collagen degradation product-coated culture dishes previously seeded with MEF, and DMEM medium (LIF ( +)) was used under the conditions of 37 ° C. and 5% CO 2 (culture conditions: MEF (+) and LIF (+)).
  • ES cells cultured in gelatin-coated culture dishes and atelocollagen-coated culture dishes served as controls for this experiment.
  • the cell culture supernatant was removed and washed with sterile PBS. Subsequently, in order to fix the cells, a 4% paraformaldehyde solution was added until the cells were immersed, and the cells were allowed to stand at room temperature for 30 minutes. Thereafter, the operation of adding sterile distilled water and washing until the cells were immersed was repeated twice. After removing the washing solution, the alkaline phosphatase staining solution attached to TRACP & ALP double-stain kit (product code MK300, manufactured by Takara Bio Inc.) was added to the culture dish and allowed to stand at 37 ° C. for 45 minutes. In order to stop the reaction, the staining solution was removed and washed three times with sterilized distilled water. The results are shown in FIG.
  • FIG. 15 is a diagram showing the results of examining the intracellular alkaline phosphatase activity of ES cells cultured for 1 day under the culture conditions of MEF (+) and LIF (+).
  • FIG. (B) shows the results of alkaline phosphatase staining of ES cells cultured in a gelatin-coated culture dish for 1 day using DMEM medium (LIF (+)) in the presence of MEF (MEF (+)).
  • (C) shows the results of alkaline phosphatase staining of ES cells cultured for 1 day using DMEM medium (LIF (+)) in the presence of MEF (MEF (+)) in an atelocollagen-coated culture dish.
  • FIG. 4 shows the results of alkaline phosphatase staining of ES cells cultured for 1 day in DMEM medium (LIF (+)) in the presence of MEF (MEF (+)), (e) is a collagen degradation product coat
  • DMEM medium LIF (+)
  • Embryoid bodies formed from ES cells cultured in collagen degradation product-coated culture dishes were shown to be positive for alkaline phosphatase activity as well as colonies of ES cells cultured in gelatin-coated culture dishes and atelocollagen-coated culture dishes. ((C) to (e) in FIG. 15).
  • the co-cultured MEF was negative for alkaline phosphatase activity.
  • the concentration of collagen degradation product in a 35 mm culture dish (the degradation product of type I collagen derived from pig skin (SEQ ID NO: 27) is 3.2 mg / mL to 9.6 mg / mL, type I derived from rat tendon Collagen degradation product (mixture of SEQ ID NO: 24 and SEQ ID NO: 5) is 2.8 mg / mL to 8.4 mg / mL, and porcine skin type I collagen degradation product (SEQ ID NO: 26) is 3.3 mg / mL. mL) was added, and the mixture was thoroughly blended into the culture dish and allowed to stand at room temperature for 5 hours to obtain a collagen degradation product-coated culture dish.
  • DMEM Human fetal bovine serum
  • LIF (+) fetal bovine serum
  • Mouse ES cells were seeded at 5.0 ⁇ 10 4 cells / cm 2 each in gelatin-coated culture dishes and collagen degradation product-coated culture dishes previously seeded with MEF, and DMEM medium (LIF (+)) was used. The cells were cultured under the conditions of 37 ° C. and 5% CO 2 (culture conditions: MEF (+) and LIF (+)). ES cells cultured in gelatin-coated culture dishes served as controls for this experiment.
  • FIG. 16 shows the results of observing, under a microscope, colonies obtained after culturing ES cells containing a GFP gene in a gelatin-coated culture dish for 1 day under the culture conditions of MEF (+) and LIF (+). It is a figure, (a) is a figure which shows the form of the said colony observed under the phase contrast microscope, (b) observed the fluorescence of GFP of the said colony shown in (a) under the fluorescence microscope. It is a figure which shows a result, (c) is a figure which shows the result of having superimposed the image of (a) and (b). Further, FIG.
  • FIG. 17 is obtained after culturing ES cells containing the GFP gene for 1 day in a collagen degradation-coated culture dish (derived from porcine skin, SEQ ID NO: 27) under the culture conditions of MEF (+) and LIF (+). It is a figure which shows the result of having observed the obtained embryoid body under the microscope, (a) is a figure which shows the form of the said embryoid body observed under the phase-contrast microscope, (b) is (a) (C) is a figure which shows the result of having overlapped the image of (a) and (b), It is a figure which shows the result of having observed the fluorescence of GFP of the said embryoid body shown in FIG. . FIG.
  • FIG. 18 shows ES cells containing the GFP gene in a collagen degradation product-coated culture dish (derived from rat tendon, a mixture of SEQ ID NO: 24 and SEQ ID NO: 5) under the culture conditions of MEF (+) and LIF (+). It is a figure which shows the result of having observed the embryoid body obtained after culture
  • the animal species eg, pig, rat
  • origin site eg, skin and tendon
  • N-terminal cleavage site eg, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 24, sequence
  • Test 11 regarding the ability of collagen degradation products to form embryoid bodies 11> (Culture dish) Degradation product of collagen described above (degradation product of type I collagen derived from pig skin (SEQ ID NO: 27), or degradation product of type I collagen derived from rat tendon (mixture of SEQ ID NO: 24 and SEQ ID NO: 5), or pig A commercially available culture dish contacted with a skin-derived type I collagen degradation product (SEQ ID NO: 26) was used for the test.
  • the concentration of collagen degradation product in a 35 mm culture dish (the degradation product of type I collagen derived from pig skin (SEQ ID NO: 27) is 3.2 mg / mL to 9.6 mg / mL, type I derived from rat tendon Collagen degradation product (mixture of SEQ ID NO: 24 and SEQ ID NO: 5) is 2.8 mg / mL to 8.4 mg / mL, and porcine skin type I collagen degradation product (SEQ ID NO: 26) is 3.3 mg / mL. mL) was added, and the mixture was thoroughly blended into the culture dish and allowed to stand at room temperature for 5 hours to obtain a collagen degradation product-coated culture dish.
  • DMEM medium (LIF (+)) fetal calf serum
  • Mouse ES cells were seeded at 5.0 ⁇ 10 4 cells / cm 2 in gelatin-coated culture dishes, atelocollagen-coated culture dishes, and collagen degradation product-coated culture dishes that were not seeded with MEF, respectively, and DMEM medium (LIF (+) ) Under the conditions of 37 ° C. and 5% CO 2 (culture conditions: MEF ( ⁇ ) and LIF (+)). ES cells cultured in gelatin-coated culture dishes and atelocollagen-coated culture dishes served as controls for this experiment.
  • MEF ( ⁇ ) indicates culturing in the absence of MEF.
  • LIF (+) indicates culturing in the presence of LIF.
  • FIG. 20 (a) is a view showing the morphology of ES cells cultured in a gelatin-coated culture dish for 1 day using DMEM medium (LIF (+)), and (b) is in an atelocollagen-coated culture dish.
  • FIG. 4 is a view showing the morphology of ES cells cultured for 1 day using DMEM medium (LIF (+)), (c) shows DMEM in a collagen degradation product-coated culture dish (derived from pig skin, SEQ ID NO: 27).
  • FIGS. 20 (c) to 20 (e) When cultured in a collagen-decomposed product-coated culture dish, the observed ES cells form adherent or floating three-dimensional cell clusters (embryoid bodies) (FIGS. 20 (c) to 20 (e)), which are gelatin-coated.
  • the culture dish and the atelocollagen-coated culture dish were completely different from the general ES cell culture findings (FIGS. 14A and 14B).
  • the morphology of ES cells cultured in a collagen degradation product-coated culture dish using DMEM medium is different from that of the animal species (eg, pig, rat) of collagen degradation product. ), In the gelatin-coated culture dish and the atelocollagen-coated culture dish regardless of the origin site (for example, skin and tendon) and the N-terminal cleavage site (for example, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 24, SEQ ID NO: 5). The morphology of cultured ES cells was completely different. However, in comparison with ES cells (FIG.
  • ES cells cultured in the gelatin-coated culture dish and the atelocollagen-coated culture dish under the MEF ( ⁇ ) and LIF (+) culture conditions were single adherent cells.
  • ES cells cultured in a collagen degradation product-coated culture dish are composed of animal species of collagen degradation product (eg, pig, rat), origin site (eg skin and tendon) and N-terminal cleavage site (eg, Regardless of SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 24, SEQ ID NO: 5), embryoid bodies were formed even under conditions where MEF was not co-cultured.
  • culturing ES cells in a collagen degradation product-coated culture dish means that the animal species (eg, pig, rat), origin site (eg, skin and tendon) and N-terminal cleavage site (eg, sequence) of the collagen degradation product No. 26, SEQ ID NO: 27, SEQ ID NO: 24, SEQ ID NO: 5), it was shown that this could be a new method for forming embryoid bodies.
  • animal species eg, pig, rat
  • origin site eg, skin and tendon
  • N-terminal cleavage site eg, sequence
  • the concentration of collagen degradation product in a 35 mm culture dish (the degradation product of type I collagen derived from pig skin (SEQ ID NO: 27) is 3.2 mg / mL to 9.6 mg / mL, type I derived from rat tendon Collagen degradation product (mixture of SEQ ID NO: 24 and SEQ ID NO: 5) is 2.8 mg / mL to 8.4 mg / mL, and porcine skin type I collagen degradation product (SEQ ID NO: 26) is 3.3 mg / mL. mL) was added, and the mixture was thoroughly blended into the culture dish and allowed to stand at room temperature for 5 hours to obtain a collagen degradation product-coated culture dish.
  • DMEM medium (LIF (+)) DMEM medium (LIF (+))
  • DMEM medium (LIF (+)) DMEM medium containing 500 U / mL LIF and 20% fetal calf serum
  • 2.5 ⁇ 10 5 cells / ML was prepared.
  • Mouse ES cells were seeded at 5.0 ⁇ 10 4 cells / cm 2 in gelatin-coated culture dishes, atelocollagen-coated culture dishes, and collagen degradation product-coated culture dishes that were not seeded with MEF, respectively, and DMEM medium (LIF (+) ) Under the conditions of 37 ° C. and 5% CO 2 .
  • ES cells cultured in gelatin-coated culture dishes and atelocollagen-coated culture dishes served as controls for this experiment.
  • FIG. 21 is a diagram showing the results of examining the intracellular alkaline phosphatase activity of ES cells cultured in the absence of MEF (MEF ( ⁇ )) and LIF (+) for 1 day.
  • (A) shows the result of alkaline phosphatase activity staining of ES cells cultured in DMEM medium (LIF (+)) for 1 day in a gelatin-coated culture dish in the absence of MEF (MEF ( ⁇ )).
  • (B) shows alkaline phosphatase activity staining of ES cells cultured for 1 day using DMEM medium (LIF (+)) in the absence of MEF (MEF ( ⁇ )) in an atelocollagen-coated culture dish.
  • (C) shows a result of collagen degradation product-coated culture dish (derived from pig skin, SEQ ID NO: 27) in the absence of MEF (MEF ( ⁇ )
  • (d) is a collagen degradation product-coated culture dish (derived from rat tendon, sequence) No. 24 and a mixture of SEQ ID NO: 5) shows the results of alkaline phosphatase activity staining of ES cells cultured for 1 day in DMEM medium (LIF (+)) in the absence of MEF (MEF ( ⁇ )).
  • E is a collagen degradation product-coated culture dish (derived from pig skin, SEQ ID NO: 26) in the absence of MEF (MEF ( ⁇ )) using DMEM medium (LIF (+)). It is a figure which shows the result of alkaline phosphatase activity dyeing
  • Single ES cells cultured in gelatin-coated and atelocollagen-coated culture dishes in MEF ( ⁇ ) and LIF (+) culture conditions are colonies of ES cells in MEF (+) and LIF (+) culture conditions. It was shown that the alkaline phosphatase activity was positive in the same manner as ((a) and (b) in FIG. 15) ((a) and (b) in FIG. 21).
  • Adherent and floating embryoid bodies formed from ES cells cultured under the culture conditions of MEF (-) and LIF (+) in a collagen degradation product-coated culture dish were cultured under the culture conditions of MEF (+) and LIF (+). It was shown to be positive for alkaline phosphatase activity (Figs.
  • the embryoid body formed from ES cells cultured in a collagen degradation product-coated culture dish in the absence of MEF is also the species of collagen degradation product (eg, pig, rat), the origin site (eg, skin) And tendon) and the N-terminal cleavage site (for example, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 24, SEQ ID NO: 5), indicating that the undifferentiated ability is maintained.
  • the collagen degradation product of this example has the ability to form embryoid bodies of mouse ES cells and human iPS cells and can be used for differentiation induction required thereafter. became.
  • an appropriate differentiation-inducing medium for long-term differentiation into endoderm, mesoderm, and ectoderm By further culturing the embryoid body obtained by the method of one embodiment of the present invention in an appropriate differentiation-inducing medium for long-term differentiation into endoderm, mesoderm, and ectoderm, further neural tissue, bone / cartilage tissue Reconstruction of fat tissue and muscle tissue is expected.
  • the present invention can be used in industries related to regenerative medicine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

新規な生理機能を有するコラーゲンの分解物またはアテロコラーゲンの分解物の利用を提供する。本発明の一実施形態に係る多能性幹細胞の胚様体を形成させる方法は、多能性幹細胞を、コラーゲンの分解物またはアテロコラーゲンの分解物と共に培養する工程を包含し、上記分解物は、上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインの少なくとも一部分を含んでいる。

Description

多能性幹細胞の胚様体形成方法および多能性幹細胞の胚様体形成用組成物
 本発明は多能性幹細胞の胚様体形成方法および多能性幹細胞の胚様体形成用組成物に関する。
 コラーゲンは、真皮、靭帯、腱、骨および軟骨などを構成するタンパク質の1つであって、多細胞生物の細胞外マトリクスの主成分である。研究が進むにつれて、コラーゲンが様々な生理機能を有していることが明らかになり、現在も、コラーゲン分子の新たな生理機能を見出すための研究や、コラーゲン分子の新たな用途を見出すための研究が進められている。
 現在までの研究によって、1つのコラーゲン分子は3つのポリペプチド鎖によって構成されており、これら3つのポリペプチド鎖が螺旋構造を形成することによって、1つのコラーゲン分子が形成されていることが明らかになっている。
 螺旋構造を形成するための各ポリペプチド鎖内の領域は、トリプルヘリカルドメインと呼ばれ、当該トリプルヘリカルドメインは、特徴的なアミノ酸配列を有している。具体的に、トリプルヘリカルドメインは、「Gly-X-Y」にて示されるアミノ酸配列が繰り返し連続して出現するという特徴的なアミノ酸配列を有している。なお、上述した3つのアミノ酸からなるアミノ酸配列において、グリシン以外のアミノ酸、つまりXおよびYは、様々なアミノ酸であり得る。
 コラーゲン分子のアミノ末端および/またはカルボキシル末端(換言すれば、コラーゲン分子を構成している各ポリペプチド鎖のアミノ末端およびカルボキシル末端)には、コラーゲンの主たる抗原部位であるテロペプチドが存在する。当該テロペプチドは、コラーゲン分子を構成する各ポリペプチド鎖内において、上述したトリプルヘリカルドメインよりもアミノ末端側および/またはカルボキシル末端側に存在している。
 プロテアーゼなどの酵素を用いて処理することによりコラーゲン分子からテロペプチドを部分的に切除すると、コラーゲン分子の抗原性を低く抑えられることが知られている。このようなテロペプチドが部分的に切除されたコラーゲン分子をアテロコラーゲンと呼ぶ。
 現在までの研究によって、コラーゲン、アテロコラーゲン、および、プロテアーゼによるこれらの分解物、が様々な生理機能を有していることが明らかになり、当該生理機能に基づいたコラーゲン、アテロコラーゲン、および、プロテアーゼによるこれらの分解物の様々な用途が開発されている(例えば、特許文献1および2参照)。
 特許文献1では、コラーゲンまたはアテロコラーゲンをプロテアーゼ(例えば、ペプシンおよびアクチニダインなど)で処理した分解物を、止血用の医療用材料として用いる技術が開示されている。更に具体的に、特許文献1では、まず、キハダマグロの皮部に対してペプシン処理を施して、アテロコラーゲンを含有している水溶液を取得し、更に、当該水溶液に塩化ナトリウムを加えることによって、アテロコラーゲンを沈殿および回収している。なお、アテロコラーゲンを沈殿物として回収する際に、塩化ナトリウムは、上清と共に除去されることになる。そして、特許文献1では、沈殿物として回収されたアテロコラーゲンに対してアクチニダインによる分解処理を施して分解物を得、当該分解物を、止血用の医療用材料として用いている。
 一方、特許文献2では、コラーゲンまたはアテロコラーゲンをプロテアーゼで処理した分解物を、動脈硬化症および動脈硬化症に起因する疾患の予防または治療のための組成物として用いる技術が開示されている。更に具体的に、特許文献2では、ミネラルを除去した後のコラーゲンをプロテアーゼによって分解して得られるコラーゲンの分解物を、動脈硬化症および動脈硬化症に起因する疾患の予防または治療のための組成物として用いる技術が開示されている。
 上述したように、コラーゲンおよびアテロコラーゲンをプロテアーゼによって分解する場合には、塩濃度が低い条件下にて分解することが一般的である。そして、このような塩濃度が低い条件下におけるコラーゲンの分解物またはアテロコラーゲンの分解物のアミノ酸配列は既に決定されており、そのアミノ酸配列は、非特許文献1などに開示されている。
 ところで、胚性幹細胞(ES細胞)をin vitroで種々の細胞に分化誘導させる方法として、ES細胞の胚様体を形成させ、当該胚様体を目的の細胞へと分化誘導させる方法が広く用いられている(例えば、特許文献3、非特許文献3、非特許文献4および非特許文献5等)。ES細胞の胚様体を得る方法としては、ハンギングドロップ法(例えば、非特許文献6)や、超親水性処理培養皿を使用した培養方法(例えば、非特許文献4)が一般的である。
国際公開第2004/020470号パンフレット(2004年3月11日公開) 日本国公開特許公報「特開2001-31586号(2001年2月6日公開)」 日本国公開特許公報「特開2012-139246号(2012年7月26日公開)」
S. Kunii et al., Journal of Biological Chemistry, Vol.285, No.23, pp.17465-17470, June4, 2010 K. Morimoto et al., Bioscience, Biotechnology, and Biochemistry, Vol.68, pp.861-867, 2004 James A. Thomson, Joseph Itskovitz-Eldor, Sander S. Shapiro, Michelle A. Waknitz, Jennifer J. Swiergiel, Vivienne S. Marshall, Jeffrey M. Jones, Science 282, 1145-47 (1998) T. Nakano, S. Ando, N. Takata, M. Kawada, K. Muguruma, K. Sekiguchi, K. Saito, S. Yonemura, M. Eiraku, Y. Sasai, Cell Stem Cell, 10, 771-785, (2012) Joseph Itskovitz-Eldor, Maya Schuldiner, Dorit Karsenti, Amir Eden, OfraYanuka, Michal Amit, Hermona Soreq, Nissim Benvenisty, Molecular Medicine 6(2), 88-95, (2000) Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW., Biotechnol Bioeng. 78, 442-53(2002)
 上述したように、コラーゲン、アテロコラーゲン、および、これらの分解物の生理機能に関する研究が進んでいるが、これらの生理機能の全てが解明されているわけではない。
 これらが有する新たな生理機能を見出すことは、医療分野、食品分野、化粧品分野および基礎研究分野などの様々な分野の発展に大きく寄与できるものと考えられる。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、新規な生理機能を有するコラーゲンの分解物またはアテロコラーゲンの分解物の利用を提供することにある。
 本発明者らは、上記課題に鑑み鋭意検討した結果、特定の構造を有するコラーゲンの分解物またはアテロコラーゲンの分解物を、多能性幹細胞の胚様体を形成させる場合の足場材料として使用し得ることを見出した。そして、この新規知見に基づいて、本発明を完成するに至った。
 つまり、上記の課題を解決するために、本発明の一実施形態に係る胚様体形成方法は、多能性幹細胞の胚様体を形成させる方法であって、多能性幹細胞を、コラーゲンの分解物またはアテロコラーゲンの分解物と共に培養する工程を包含し、当該分解物は、上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインの少なくとも一部分を含んでいることを特徴としている。
 本発明の一実施形態に係る胚様体形成方法では、上記分解物は、以下(A)~(C)のコラーゲンの分解物またはアテロコラーゲンの分解物の内の少なくとも1種類以上を含有しているものであり得る:
 (A)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(1)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、または、XとGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
 (B)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(2)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、または、X14とGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
 (C)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインのアミノ末端の下記(3)にて示されるアミノ酸配列の、YとYとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
  (1)-G-X-X-G-X-X-G-X-X-G-;
  (2)-G-X-X-G-X-X-G-X-X-G-X-X-G-X-X10-G-X11-X12-G-X13-X14-G-;
  (3)-Y-Y-Y-G-Y-Y-G-Y-Y-G-Y-Y-G-;
(但し、Gは、グリシンであり、X~X14およびY~Yは、任意のアミノ酸である)。
 本発明の一実施形態に係る胚様体形成方法では、上記(1)または(2)にて示されるアミノ酸配列は、上記トリプルヘリカルドメインのアミノ末端のアミノ酸配列であることが好ましい。
 本発明の一実施形態に係る胚様体形成方法では、上記(1)~(3)の何れかにて示されるアミノ酸配列における切断が、上記コラーゲンまたはアテロコラーゲンのα1鎖内およびα2鎖内の少なくとも一方で行われていることが好ましい。
 本発明の一実施形態に係る胚様体形成用組成物は、コラーゲンの分解物またはアテロコラーゲンの分解物を含有している多能性幹細胞の胚様体形成用組成物であって、上記分解物は、上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインの少なくとも一部分を含んでいることを特徴としている。
 本発明の一実施形態に係る胚様体形成用組成物では、上記分解物は、以下(A)~(C)のコラーゲンの分解物またはアテロコラーゲンの分解物の内の少なくとも1種類以上を含有しているものであり得る:
 (A)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(1)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、または、XとGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
 (B)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(2)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、または、X14とGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
 (C)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインのアミノ末端の下記(3)にて示されるアミノ酸配列の、YとYとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
  (1)-G-X-X-G-X-X-G-X-X-G-;
  (2)-G-X-X-G-X-X-G-X-X-G-X-X-G-X-X10-G-X11-X12-G-X13-X14-G-;
  (3)-Y-Y-Y-G-Y-Y-G-Y-Y-G-Y-Y-G-;
(但し、Gは、グリシンであり、X~X14およびY~Yは、任意のアミノ酸である)。
 本発明の一実施形態に係る胚様体形成用組成物では、上記(1)または(2)にて示されるアミノ酸配列は、上記トリプルヘリカルドメインのアミノ末端のアミノ酸配列であることが好ましい。
 本発明の一実施形態に係る胚様体形成用組成物では、上記(1)~(3)の何れかにて示されるアミノ酸配列における切断が、上記コラーゲンまたはアテロコラーゲンのα1鎖内およびα2鎖内の少なくとも一方で行われていることが好ましい。
 本発明によれば、多能性幹細胞の胚様体を容易に形成させることができるという効果を奏する。また、本発明によれば、従来の胚様体形成方法と比較して、より短期間で胚様体を形成させることができるという効果を奏する。
位相差顕微鏡下で観察したES細胞の形態を示す図であり、(a)は、ゼラチンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図であり、(b)は、コラーゲン分解物コート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物ゲル培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図である。なお、MEFはマウス胎児由来線維芽細胞(Murine Embryonic Fibroblasts)を、LIFは白血病抑制因子(Leukemia Inhibitory Factor)を意味する。また、(+)は共存下での培養、(-)は非共存下での培養を示す。 位相差顕微鏡下で観察したES細胞の形態を示す図であり、(a)は、ゼラチンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図であり、(b)は、コラーゲン分解物コート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物ゲル培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図である。 ES細胞の細胞内在性のアルカリ性ホスファターゼ活性を調べた結果を示す図であり、(a)は、ゼラチンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて2日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(b)は、コラーゲン分解物コート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて2日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(c)は、コラーゲン分解物ゲル培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて2日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図である。 位相差顕微鏡下で観察したES細胞の形態を示す図であり、(a)は、ゼラチンコート培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図であり、(b)は、コラーゲン分解物コート培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物ゲル培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図である。 位相差顕微鏡下で観察したES細胞の形態を示す図であり、(a)は、ゼラチンコート培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図であり、(b)は、コラーゲン分解物コート培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物ゲル培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図である。 MEF(+)且つLIF(+)の培養条件においてゼラチンコート培養皿において4日間培養したGFP遺伝子を内在したES細胞を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察したES細胞の形態を示す図であり、(b)は、(a)に示したES細胞のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は、(a)に示したES細胞の各細胞の核をHoechst 33342染色し、蛍光顕微鏡下で観察した結果を示す図であり、(d)は、(a)、(b)および(c)の画像を重ね合せた結果を示す図である。 MEF(+)且つLIF(+)の培養条件においてコラーゲン分解物ゲル培養皿においてGFP遺伝子を内在したES細胞を4日間培養した後に得られた胚様体を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した胚様体の形態を示す図であり、(b)は、(a)に示した胚様体のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は、(a)に示した胚様体の各細胞の核をHoechst 33342染色し、蛍光顕微鏡下で観察した結果を示す図であり、(d)は、(a)、(b)および(c)の画像を重ね合せた結果を示す図である。 MEF(+)且つLIF(-)の培養条件においてコラーゲン分解物ゲル培養皿においてGFP遺伝子を内在したES細胞を4日間培養した後に得られた胚様体を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した胚様体の形態を示す図であり、(b)は、(a)に示した胚様体のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は、(a)に示した胚様体の各細胞の核をHoechst 33342染色し、蛍光顕微鏡下で観察した結果を示す図であり、(d)は、(a)、(b)および(c)の画像を重ね合せた結果を示す図である。 位相差顕微鏡下で観察したiPS細胞の形態を示す図であり、(a)は、コラーゲン分解物コート培養皿において、1日間培養したiPS細胞の形態を示す図であり、(b)は、Vitronectinコート培養皿において、1日間培養したiPS細胞の形態を示す図であり、(c)は、iMatrix511コート培養皿において、1日間培養したiPS細胞の形態を示す図である。 位相差顕微鏡下で観察したiPS細胞の形態を示す図であり、(a)は、コラーゲン分解物コート培養皿において、5日間培養したiPS細胞の形態を示す図であり、(b)は、Vitronectinコート培養皿において、5日間培養したiPS細胞の形態を示す図であり、(c)は、iMatrix511コート培養皿において、5日間培養したiPS細胞の形態を示す図である。 位相差顕微鏡下で観察したiPS細胞の形態を示す図であり、(a)は、コラーゲン分解物コート培養皿において、4日間培養したiPS細胞の形態を示す図であり、(b)は、Lipidure培養皿において、4日間培養したiPS細胞の形態を示す図である。 位相差顕微鏡下で観察したiPS細胞の形態を示す図であり、(a)は、コラーゲン分解物コート培養皿において、12日間培養したiPS細胞の形態を示す図であり、(b)は、Lipidure培養皿において、12日間培養したiPS細胞の形態を示す図である。 定量RT-PCRの結果から得られた発現量の最大値を100として、各マーカーの相対発現量をレーダーチャート化したものを示す図であり、(a)は、コラーゲン分解物コート培養皿で形成したマウスES細胞の胚様体における各マーカーの相対発現量を示す図であり、(b)は、Lipidure培養皿で形成したマウスES細胞の胚様体における各マーカーの相対発現量を示す図であり、(c)は、ゼラチンコート培養皿で形成したマウスES細胞の胚様体における各マーカーの相対発現量を示す図である。 位相差顕微鏡下で観察したES細胞の形態を示す図であり、(a)は、ゼラチンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(b)は、アテロコラーゲンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号27)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(d)は、コラーゲン分解物コート培養皿(ラット腱由来、配列番号24と配列番号5との混合物)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(e)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号26)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図である。 ES細胞の細胞内在性のアルカリ性ホスファターゼ活性を調べた結果を示す図であり、(a)は、ゼラチンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(b)は、アテロコラーゲンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(c)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号27)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(d)は、コラーゲン分解物コート培養皿(ラット腱由来、配列番号24と配列番号5との混合物)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(e)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号26)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図である。 MEF(+)且つLIF(+)の培養条件においてゼラチンコート培養皿においてGFP遺伝子を内在したES細胞を1日間培養した後に得られたコロニーを、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した上記コロニーの形態を示す図であり、(b)は、(a)に示した上記コロニーのGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は(a)および(b)の画像を重ね合せた結果を示す図である。 MEF(+)且つLIF(+)の培養条件においてコラーゲン分解物コート培養皿(ブタ皮部由来、配列番号27)においてGFP遺伝子を内在したES細胞を1日間培養した後に得られた胚様体を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した上記胚様体の形態を示す図であり、(b)は、(a)に示した上記胚様体のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は(a)および(b)の画像を重ね合せた結果を示す図である。 MEF(+)且つLIF(+)の培養条件においてコラーゲン分解物コート培養皿(ラット腱由来、配列番号24と配列番号5との混合物)においてGFP遺伝子を内在したES細胞を1日間培養した後に得られた胚様体を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した上記胚様体の形態を示す図であり、(b)は、(a)に示した上記胚様体のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は(a)および(b)の画像を重ね合せた結果を示す図である。 MEF(+)且つLIF(+)の培養条件においてコラーゲン分解物コート培養皿(ブタ皮部由来、配列番号26)においてGFP遺伝子を内在したES細胞を1日間培養した後に得られた胚様体を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した上記胚様体の形態を示す図であり、(b)は、(a)に示した上記胚様体のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は(a)および(b)の画像を重ね合せた結果を示す図である。 位相差顕微鏡下で観察したES細胞の形態を示す図であり、(a)は、ゼラチンコート培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(b)は、アテロコラーゲンコート培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号27)において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(d)は、コラーゲン分解物コート培養皿(ラット腱由来、配列番号24と配列番号5との混合物)において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(e)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号26)において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図である。 ES細胞の細胞内在性のアルカリ性ホスファターゼ活性を調べた結果を示す図であり、(a)は、ゼラチンコート培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(b)は、アテロコラーゲンコート培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(c)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号27)において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(d)は、コラーゲン分解物コート培養皿(ラット腱由来、配列番号24と配列番号5との混合物)において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(e)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号26)において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図である。
 以下、本発明の実施の形態について、詳細に説明する。ただし、本発明はこれに限定されるものではなく、記述した範囲内で種々の変形を加えた態様で実施できるものである。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
 〔1.胚様体形成方法〕
 本発明の一実施形態に係る胚様体形成方法(以下、「本実施形態の胚様体形成方法」ともいう。)は、多能性幹細胞の胚様体を形成させる方法であって、多能性幹細胞を、コラーゲンの分解物またはアテロコラーゲンの分解物と共に培養する培養工程を包含する構成である。
 ここで、本明細書において、上記「多能性幹細胞」は、胎盤以外のすべての細胞に分化可能な分化多能性と、自己複製能とを有する細胞である。そのような多能性幹細胞としては、例えば、胚性幹細胞(ES細胞)、核移植により得られるクローン胚由来の胚性幹細胞(核移植ES細胞;ntES細胞)、人工多能性幹細胞(iPS細胞)、胚性生殖細胞(EG細胞)、生体組織に由来する多能性幹細胞(Muse細胞(Multilineage-differentiating Stress Enduring cells))などを挙げることができるが、これらに限定されない。また、上記「多能性幹細胞」としては、例えば、ヒト、カニクイザルなどの霊長類、マウスなどに由来するものが挙げられるが、これらに限定されない。
 本明細書において、上記「胚様体」は、多能性幹細胞から形成された球状の細胞塊であって、適切な分化誘導条件下で種々の細胞へ分化する能力を有しているものをいう。「胚様体」は、エンブリオイド・ボディー(Embryoid Body:EB)とも称される。本明細書における「胚様体」には、多能性幹細胞から胚様体が形成される途中の細胞の凝集体である「胚様体様細胞凝集体」も包含される。本明細書において、「胚様体」は、多能性マーカー(例えば、Nanog、OCT3/4(Octamer-binding transcription factor 3/4)、TRA-1-60、SSEA-3(stage-specific embryonic antigen-3)など)を発現していてもよく、また分化マーカー(例えば、SOX1(SRY (sex determining region Y)-box 1)、SOX7(SRY (sex determining region Y)-box 7)、SOX17(SRY (sex determining region Y)-box 17)、HNF-3β(Hepatocyte Nuclear Factor 3β)/FoxA2(forkhead box protein A2)、GATA4(GATA binding protein 4)、GATA6(GATA binding protein 6)、Otx2(Orthodenticle homeobox 2)、CXCR4(Chemokine (C-X-C Motif) Receptor 4)、GSC(goosecoid)など)を発現していてもよい。「胚様体」は、三胚葉(外胚葉、内胚葉、中胚葉)全てに分化できる能力を有していることが好ましい。三胚葉全てに分化できる能力を有している胚様体は、目的の細胞への分化誘導に好適に用いることができる。
 また、「胚様体」の大きさは特に制限されないが、最長径が、50~1000μmであることが好ましく、100~500μmであることがより好ましい。「胚様体」の形は特に制限されないが、球形、略球形、楕円形、略楕円形等であることが好ましい。
 本実施形態の胚様体形成方法によって胚様体が形成されたことは、肉眼または顕微鏡下で球状の細胞塊の存在を確認することによって確認することができる。本実施形態の胚様体形成方法によって得られた胚様体が種々の細胞へ分化する能力を有していることは、当該胚様体を、公知の適切な分化誘導条件(例えば、公知の、血液細胞への分化誘導条件、神経細胞への分化誘導条件など)で培養し、胚様体由来の細胞が目的の細胞へと分化したことを確認することによって、確認することができる。胚様体由来の細胞が目的の細胞へと分化したことは、分化した細胞の形態、遺伝子発現などを公知の手法を用いて確認することによって、確認することができる。
 本実施形態の胚様体形成方法において、上記「コラーゲンの分解物またはアテロコラーゲンの分解物」は、コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインの少なくとも一部分を含んでいる構成である。つまり、上記分解物は、コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインの全体を含んでいてもよいし、トリプルヘリカルドメインの一部分を含んでいてもよい。「コラーゲンの分解物またはアテロコラーゲンの分解物」については、後段で詳細に説明する。
 以下に、本実施形態の胚様体形成方法について詳細に説明する。
 (1-1.培養工程)
 培養工程は、多能性幹細胞を、コラーゲンの分解物またはアテロコラーゲンの分解物と共に培養する工程である。「多能性幹細胞を、コラーゲンの分解物またはアテロコラーゲンの分解物と共に培養する」とは、コラーゲンの分解物またはアテロコラーゲンの分解物が多能性幹細胞と接触可能に存在している環境中で多能性幹細胞を培養することを意味している。例えば、一実施形態において、コラーゲンの分解物またはアテロコラーゲンの分解物を用いて内面をコートした培養容器を用いて、多能性幹細胞を培養してもよい。また、他の実施形態において、コラーゲンの分解物またはアテロコラーゲンの分解物を含有しているゲル組成物上で多能性幹細胞を培養してもよい。コラーゲンの分解物またはアテロコラーゲンの分解物は、多能性幹細胞と当該多能性幹細胞を培養するための培養容器の内面との接触を妨げるように存在していることが好ましい。これにより、多能性幹細胞の胚様体を効率よく形成することができる。多能性幹細胞を培養するための培養容器は、細胞培養に通常用いられる容器を使用することができる。培養容器は、ディッシュ型のものであってもよく、プレート型、ボトル型のものであってもよい。
 本実施形態の胚様体形成方法に使用するコラーゲンの分解物またはアテロコラーゲンの分解物の量は特に限定されない。
 一実施形態において、コラーゲンの分解物またはアテロコラーゲンの分解物を用いて内面をコートした培養容器を用いて、多能性幹細胞を培養する場合は、2mg/mL~20mg/mL、好ましくは3mg/mL~16mg/mL、より好ましくは5mg/mL~15mg/mL、あるいは5mg/mL~20mg/mL、好ましくは8mg/mL~16mg/mLのコラーゲンの分解物またはアテロコラーゲンの分解物を含有している水溶液を調製し、当該分解物の水溶液を用いて、培養容器の内面をコートすることができる。培養容器の内面のコートは、多能性幹細胞の培養を開始する前に行えばよい。上記分解物の水溶液における上記分解物の濃度が2mg/mL以上であれば、胚様体を均一に形成することができる。また、上記分解物の水溶液における上記分解物の濃度が20mg/mL以下であれば、再現性が良好となる。これに対して、上記分解物の水溶液における上記分解物の濃度が2mg/mL未満である場合は、胚様体の形成が不均一になる場合がある。また、上記分解物の水溶液における上記分解物の濃度が20mg/mLよりも高い場合は、粘性が高くなり再現性が不良となる場合がある。
 他の実施形態において、コラーゲンの分解物またはアテロコラーゲンの分解物を含有しているゲル組成物上で多能性幹細胞を培養する場合は、最終濃度として、2mg/mL~15mg/mLまたは5mg/mL~15mg/mLのコラーゲンの分解物またはアテロコラーゲンの分解物が、ゲル組成物中に含有されていることが好ましく、5mg/mL~12mg/mLまたは5mg/mL~11mg/mLのコラーゲンの分解物またはアテロコラーゲンの分解物が、ゲル組成物中に含有されていることがより好ましい。7mg/mL~10mg/mLまたは8mg/mL~10mg/mLのコラーゲンの分解物またはアテロコラーゲンの分解物が、ゲル組成物中に含有されていることがよりさらに好ましい。ゲル組成物中に含有されている上記分解物の濃度が、最終濃度として2mg/mL以上であれば、胚様体を均一に形成することができる。また、ゲル組成物中に含有されている上記分解物の濃度が、最終濃度として15mg/mL以下であれば、再現性が良好となる。これに対して、ゲル組成物中に含有されている上記分解物の濃度が、最終濃度として2mg/mL未満である場合は、胚様体の形成が不均一になる場合がある。また、ゲル組成物中に含有されている上記分解物の濃度が、最終濃度として15mg/mLよりも高い場合は、粘性が高くなり再現性が不良となる場合がある。
 コラーゲンの分解物またはアテロコラーゲンの分解物を含有しているゲル組成物は、例えば、コラーゲンの分解物またはアテロコラーゲンの分解物を、濃縮培養液(例えば、5倍濃縮DMEMなど)と再構成用緩衝液(50mM 水酸化ナトリウム、260mM 炭酸水素ナトリウム、200mM HEPES)と混合し、この混合液を培養皿に添加して、37℃のCOインキュベーター内で30分間程度静置することによって作製することができる。
 培養工程において用いる培地は、多能性幹細胞の培地であれば特に制限されない。このような培地としては、使用する多能性幹細胞の種類に応じて適宜選択することができる。例えば、多能性幹細胞の増殖維持に用いられる公知の培養培地を用いることができる。このような培養培地は、基本培地に、非必須アミノ酸、ピルビン酸ナトリウム、2-メルカプトエタノール、ウシ胎児血清、グルタミン、ヌクレオシド、LIFなどを添加して調製することができる。
 基本培地としては、従来公知の動物細胞用の培地を用いることができる。例えば、Ham’s F12培地、α-MEM培地、DMEM培地、RPMI-1640培地などが挙げられる。これらの基本培地は、単独で使用されても、複数を混合して使用されてもよい。
 基本培地には、血清が含有されていてもよいし、または含有されていなくてもよい。また、基本培地は、血清の代わりに人工血清代替物を含んでいてもよい。そのような人工血清代替物としては、例えば、KnockOut(登録商標)Serum Replacement(インビトロジェン製)を挙げることができる。
 また、基本培地には、白血病抑制因子(leukemia inhibitory factor:LIF)が含有されていてもよいし、または含有されていなくてもよい。ここで、LIFは、通常、マウスES細胞の未分化状態を維持するために培養培地に添加される。従って、マウスES細胞から胚様体を形成する場合は、通常は、LIF非存在下において胚様体の形成が行われる。しかし、本実施形態の胚様体形成方法によれば、驚くべきことに、胚様体形成用培地としてLIFを含有している培地を用いた場合であっても、LIFを含有していない培地を用いた場合と同様に、マウスES細胞から胚様体を形成することができる。
 培養工程では、多能性幹細胞をフィーダー細胞と共培養させてもよく、フィーダー細胞が存在していなくてもよい。フィーダー細胞としては、多能性幹細胞の維持培養においてフィーダー細胞として通常用いられる細胞を使用することができる。例えば、マウス胎児由来線維芽細胞(mouse embryonic fibroblast:MEF)などを挙げることができる。フィーダー細胞を使用する場合は、多能性幹細胞の培養を開始する少なくとも1日前に、フィーダー細胞を播種しておくことが好ましい。
 多能性幹細胞の播種密度は、特に限定されないが、培地1mlあたり、1×10個~1×10個であることが好ましく、2×10個~5×10個であることがより好ましく、5×10個~5×10個であることがさらに好ましい。一般に、播種数が極端に少ない場合は、細胞の生存率が低下しやすく、また胚様体を形成しにくくなる。一方、播種数が極端に多い場合は、不均一で大きな胚様体を形成しやすくなる。これらの場合、分化誘導する際に、再現性などの問題が生じやすい。播種密度は、多能性幹細胞の種類により適宜最適な密度を決めればよく、何ら限定されるものではない。
 培養工程における培養条件としては、通常の細胞培養が行われる条件であればよい。培養温度は、例えば、30℃~40℃、好ましくは37℃である。培養は、CO含有空気の雰囲気下で行われ、CO濃度は、例えば、2%~5%、好ましくは5%である。培養期間は、どのような品質の胚様体を形成したいかに応じて適宜設定することができる。例えば、培養期間が長くなるほど、より大きい胚様体を形成することができる。培養期間は、使用する多能性幹細胞の種類により異なるが、短くとも1日間以上であることが好ましく、3日間以上であることがより好ましく、5日間以上であることがさらに好ましい。また、長くとも20日間以下であることが好ましく、15日間以下であることがより好ましく、10日間以下であることがさらに好ましい。培養日数が短いと、胚様体のサイズが不均一で安定しにくい。一方、培養日数が長くなるに従い、胚様体の品質が低下しやすくなり、不均一な分化を起こしやすくなる。これら培養日数は、細胞の播種数により適宜最適な期間を決めればよく、何ら限定されるものではない。
 従来のES細胞の胚様体を得る方法では、例えば、マウスのES細胞を用いた場合は、胚様体を得るまでに長期間(例えば、ハンギングドロップ法では、短くとも7日程度)を要する。これに対して、本実施形態の胚様体形成方法では、例えば、マウスのES細胞を用いた場合は、後述する実施例に示したとおり、培養開始後1日目には胚様体が形成される。
 そして、従来のES細胞の胚様体を得る方法では、再現性が悪く、熟練を要していたが、本実施形態の胚様体形成方法では、一般的な細胞培養の手法によって、基本的な培養技術を有している研究者では容易に胚様体を形成することができる。
 また、本実施形態の胚様体形成方法は、単なる胚様体のみならず、外胚葉、内胚葉および/または中胚葉に分化する能力を有する胚様体を形成することができるという点でも優れている。このような利点は本発明者らによって初めて見出されたものである。後述の実施例においても、本実施形態の胚様体形成方法によれば、これまでに観察されていないような胚様体が形成されることが示されている。また、実施例では、得られた胚様体が分化マーカーを発現することも示されている。
 培養工程では、培養期間中に培地交換を行ってもよい。培地交換を行う場合は、毎日または2~5日に一度、培地交換を行えばよい。適切な頻度で培地交換を行うことによって、良好な培養環境を保つことができる。従来のハンギングドロップ法、または超親水性処理培養皿では、通常、細胞に負担なく培地交換をすることができない。また、培地交換する間に細胞を吸引廃棄する危険性が高くなる。これに対して、本実施形態の胚様体形成方法では、細胞に負担をかけることなく培地交換をすることが可能である。また、培地交換の間に細胞を吸引廃棄する危険性が低い。
 (1-2.その他の工程)
 本実施形態の胚様体形成方法は、上述した培養工程以外の工程を更に包含していてもよい。例えば、形成された胚様体の質を確認する確認工程を更に包含していてもよい。ここで、上記「胚様体の質」とは、胚様体の未分化および/または分化の程度、胚様体の分化能、胚様体の大きさ(胚様体の直径)、胚様体の形が意図される。すなわち、当該確認工程は、胚様体の質を確認するために、例えば、胚様体の未分化および/または分化の程度を確認する工程であってもよく、胚様体の分化能を確認する工程であってもよく、胚様体の大きさ(例えば、直径)を確認する工程であってもよく、胚様体の形(例えば、球形)を確認する工程であってもよい。
 胚様体の未分化および/または分化の程度は、例えば、胚様体における公知の分化マーカー、未分化マーカーなどの発現を遺伝子レベルまたはタンパク質レベルで確認することによって確認することができる。
 また、胚様体の分化能は、例えば、胚様体を公知の適切な分化誘導条件(例えば、公知の、血液細胞への分化誘導条件、神経細胞への分化誘導条件など)で培養し、胚様体由来の細胞が目的の細胞へと分化したことを確認することによって、確認することができる。
 また、胚様体の大きさと形とは、例えば、胚様体の直径と形とを位相差顕微鏡下で測定することによって確認することができる。
 上記確認工程は、上述した培養工程の途中で行ってもよく、培養工程後に行ってもよい。培養工程の途中で上記確認工程を行うことによって、培養期間を適切に調整することができる。
 また、本実施形態の胚様体形成方法は、培養工程後に、胚様体を回収する回収工程を更に包含していてもよい。
 以下に、本実施形態の胚様体形成方法において使用する「コラーゲンの分解物またはアテロコラーゲンの分解物」について詳細に説明する。
 <コラーゲンの分解物またはアテロコラーゲンの分解物>
 本実施形態の胚様体形成方法において、上記「コラーゲンの分解物またはアテロコラーゲンの分解物」(以下、単に「分解物」ともいう場合がある。)は、コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインの少なくとも一部分を含んでいる構成である。つまり、上記分解物は、コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインの全体を含んでいてもよいし、トリプルヘリカルドメインの一部分を含んでいてもよい。
 更に具体的には、上記分解物は、以下(A)~(C)のコラーゲンの分解物またはアテロコラーゲンの分解物の内の少なくとも1種類以上を含有しているものである:
 (A)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(1)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、または、XとGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
 (B)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(2)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、または、X14とGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
 (C)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインのアミノ末端の下記(3)にて示されるアミノ酸配列の、YとYとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
  (1)-G-X-X-G-X-X-G-X-X-G-(配列番号1);
  (2)-G-X-X-G-X-X-G-X-X-G-X-X-G-X-X10-G-X11-X12-G-X13-X14-G-(配列番号14);
  (3)-Y-Y-Y-G-Y-Y-G-Y-Y-G-Y-Y-G-(配列番号13);
(但し、Gは、グリシンであり、X~X14およびY~Yは、任意のアミノ酸である)。
 以下に、各構成について詳細に説明する。
 分解物の材料になるコラーゲンおよびアテロコラーゲンは特に限定されず、周知のコラーゲンおよびアテロコラーゲンであればよい。
 分解物の材料になるコラーゲンとしては、哺乳類(例えば、ウシ、ブタ、ウサギ、ヒト、ラットまたはマウスなど)、鳥類(例えば、ニワトリなど)、または、魚類(例えば、サメ、コイ、ウナギ、マグロ(例えば、キハダマグロ)、ティラピア、タイ、サケなど)のコラーゲンを用いることができる。
 更に具体的には、分解物の材料になるコラーゲンとしては、上記哺乳類または鳥類の真皮、腱、骨または筋膜などに由来するコラーゲン、あるいは、上記魚類の皮膚または鱗などに由来するコラーゲンを用いることができる。
 分解物の材料になるアテロコラーゲンとしては、上記哺乳類、鳥類または魚類のコラーゲンをプロテアーゼ(例えば、ペプシンなど)によって処理して得られる、コラーゲン分子のアミノ末端および/またはカルボキシル末端からテロペプチドが部分的に除去されているアテロコラーゲンを用いることができる。
 これらのなかでは、ニワトリ、ブタ、ウシ、ヒトまたはラットのコラーゲンまたはアテロコラーゲンを分解物の材料として好ましく用いることができ、ブタ、ウシまたはヒトのコラーゲンまたはアテロコラーゲンを分解物の材料として更に好ましく用いることができる。
 また、分解物の材料として魚類のコラーゲンまたはアテロコラーゲンを用いることにより、材料を簡便に、安全に、かつ大量に入手可能であり、ヒトに対してより安全なコラーゲンの分解物またはアテロコラーゲンの分解物を実現することができる。
 なお、分解物の材料として魚類のコラーゲンまたはアテロコラーゲンを用いる場合には、サメ、コイ、ウナギ、マグロ(例えば、キハダマグロ)、ティラピア、タイまたはサケのコラーゲンまたはアテロコラーゲンを用いることが好ましく、マグロ、ティラピア、タイまたはサケのコラーゲンまたはアテロコラーゲンを用いることが更に好ましい。
 分解物の材料としてアテロコラーゲンを用いる場合、熱による変性温度が、好ましくは15℃以上、より好ましくは20℃以上であるアテロコラーゲンを用いることが好ましい。例えば、分解物の材料として魚類のアテロコラーゲンを用いる場合、マグロ(例えば、キハダマグロ)、ティラピアまたはコイなどのアテロコラーゲンは熱変性温度が25℃以上であるので、これらのアテロコラーゲンを用いることが好ましい。
 上記構成であれば、分解物の変性温度を、好ましくは15℃以上、より好ましくは20℃以上に調節することができる。その結果、上記構成であれば、貯蔵時の安定性、利用時の安定性に優れた分解物を実現することができる。
 分解物の材料になるコラーゲンおよびアテロコラーゲンは、周知の方法によって入手することができる。例えば、哺乳類、鳥類または魚類のコラーゲンに富んだ組織をpH2~4程度の酸性溶液に投入することによって、コラーゲンを溶出することができる。更に、当該溶出液にペプシンなどのプロテアーゼを添加して、コラーゲン分子のアミノ末端および/またはカルボキシル末端のテロペプチドを部分的に除去する。更に、当該溶出液に塩化ナトリウムなどの塩を加えることによって、アテロコラーゲンを沈殿させることができる。
 上記「コラーゲンの分解物またはアテロコラーゲンの分解物」は、以下(A)~(C)のコラーゲンの分解物またはアテロコラーゲンの分解物の内の少なくとも1種類以上を含有しているものである:
 (A)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(1)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、または、XとGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
 (B)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(2)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、または、X14とGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
 (C)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインのアミノ末端の下記(3)にて示されるアミノ酸配列の、YとYとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
  (1)-G-X-X-G-X-X-G-X-X-G-;
  (2)-G-X-X-G-X-X-G-X-X-G-X-X-G-X-X10-G-X11-X12-G-X13-X14-G-;
  (3)-Y-Y-Y-G-Y-Y-G-Y-Y-G-Y-Y-G-;
(但し、Gは、グリシンであり、X~X14およびY~Yは、任意のアミノ酸である)。
 本明細書において「トリプルヘリカルドメイン」とは、「Gly-X-Y」(XおよびYは任意のアミノ酸)にて示されるアミノ酸配列が、少なくとも3個以上、より好ましくは少なくとも80個以上、より好ましくは少なくとも300個以上、連続するアミノ酸配列を含むドメインであって、螺旋構造の形成に寄与するドメインを意図する。
 本明細書において、上記「コラーゲンの分解物またはアテロコラーゲンの分解物」は、コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の上記(1)~(3)の何れか1つにて示されるアミノ酸配列内の任意の1箇所が切断された分解物であってもよい。上記「コラーゲンの分解物またはアテロコラーゲンの分解物」は、コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインよりもC末端側の部分の全体を含んでいるものであってもよいし、または一部分を含んでいるものであってもよい。「コラーゲンの分解物またはアテロコラーゲンの分解物」がコラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインよりもC末端側の部分の一部分を含んでいる場合は、コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインよりもC末端側の部分を、3アミノ酸以上、5アミノ酸以上、10アミノ酸以上含んでいてもよい。例えば、ニワトリI型コラーゲンのC末端配列の配列情報は、S. Kunii et al., Journal of Biological Chemistry, Vol.285, No.23, pp.17465-17470, June4, 2010に記載されている。
 一実施形態において、上記「コラーゲンの分解物またはアテロコラーゲンの分解物」は、上記(A)~(C)のコラーゲンの分解物またはアテロコラーゲンの分解物の内の少なくとも1種類以上を含有するものであればよい。すなわち、上記「コラーゲンの分解物またはアテロコラーゲンの分解物」は、上記(A)~(C)のコラーゲンの分解物またはアテロコラーゲンの分解物の内の1種類を単独で含有するものであってもよく、上記(A)~(C)のコラーゲンの分解物またはアテロコラーゲンの分解物の内の1種類以上を組み合せて含有するものであってもよい。
 トリプルヘリカルドメイン内で化学結合の切断が生じているポリペプチド鎖は、コラーゲンまたはアテロコラーゲンを構成する複数種類のポリペプチド鎖のうちの何れのポリペプチド鎖であってもよい。
 例えば、化学結合の切断が生じているポリペプチド鎖は、α1鎖もしくはα2鎖のうちの何れであってもよい。
 化学結合の切断が生じているポリペプチド鎖は、上述したポリペプチド鎖のなかではα1鎖またはα2鎖の少なくとも両方であることが好ましい。
 化学結合の切断が生じているポリペプチド鎖は、上述したポリペプチド鎖のなかではα1鎖であることが更に好ましい。
 コラーゲンの分解物またはアテロコラーゲンの分解物を酵素処理によって作製すれば、容易に特定のポリペプチド鎖のみで切断を生じさせることができる。
 コラーゲンの分解物またはアテロコラーゲンの分解物は、3つのポリペプチド鎖が螺旋構造を形成しているものであってもよい。あるいは、コラーゲンの分解物またはアテロコラーゲンの分解物は、3つのポリペプチド鎖が螺旋構造を形成していないもの、または、3つのポリペプチド鎖が部分的に螺旋構造を形成していないものであってもよい。なお、3つのポリペプチド鎖が螺旋構造を形成しているか否かは、公知の方法(例えば、円偏光二色スペクトル)によって確認することができる。
 コラーゲンの分解物またはアテロコラーゲンの分解物は、基本的に3つのポリペプチド鎖を含んでいるが、3つのポリペプチド鎖のうちの1つのポリペプチド鎖にて化学結合の切断が生じていてもよいし、3つのポリペプチド鎖のうちの2つのポリペプチド鎖にて化学結合の切断が生じていてもよいし、3つのポリペプチド鎖の全てにて化学結合の切断が生じていてもよい。
 3つのポリペプチド鎖が螺旋構造を形成している場合には、複数の螺旋構造体によって、網目状の会合体が形成されていてもよいし、線維状の会合体が形成されていてもよい。
 本明細書において、網目状とは、水素結合または静電的相互作用、ファンデルワールス結合などによって分子が連なって立体的な網目をつくり、当該網目の間に隙間ができている構造を意図する。本明細書において、線維状とは、水素結合または静電的相互作用、ファンデルワールス結合などによって分子が連なって形成された略直線状の構造を意図する。また、本明細書において、会合体とは、同種の分子が共有結合によらないで2分子以上が相互作用して結合し、1つの構造単位となっているものを意図する。網目状または線維状の会合体が形成されているか否かは、電子顕微鏡にて観察することによって確認することができる。
 コラーゲンの分解物またはアテロコラーゲンの分解物は、架橋構造を有するものであってもよい。例えば、ポリペプチド鎖とポリペプチド鎖とが、螺旋構造と螺旋構造とが、または、ポリペプチド鎖と螺旋構造とが、架橋剤によって架橋されていてもよい。
 上記架橋構造は、周知の架橋方法によって形成することができる。例えば、化学架橋する方法、熱処理により架橋する方法、紫外線など放射線照射により架橋する方法などが挙げられる。
 化学架橋に用いる架橋剤としては、例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩などの水溶性カルボジイミド化合物、エピクロロヒドリン、ビスエポキシジエチレングリコールなどのジエポキシ化合物、NaBHなどが挙げられる。
 架橋剤の濃度は、コラーゲンの分解物またはアテロコラーゲンの分解物に対して、好ましくは10-3~10質量%である。好ましくは、5~40℃にて、3~48時間、コラーゲンの分解物またはアテロコラーゲンの分解物と架橋剤とを接触させることにより、架橋構造を形成することができる。
 紫外線により架橋する場合、コラーゲンの分解物またはアテロコラーゲンの分解物に、例えば、室温にて、紫外線ランプなどにより紫外線を3~48時間程度照射することによって、架橋構造を形成することができる。
 熱架橋する場合は、コラーゲンの分解物またはアテロコラーゲンの分解物を、減圧下にて、好ましくは110~160℃程度の温度で、3~48時間程度加熱することによって、架橋構造を形成することができる。
 架橋構造を有するコラーゲンの分解物またはアテロコラーゲンの分解物は、耐コラゲナーゼ性、および、強度が向上しているという利点を有している。
 コラーゲンの分解物またはアテロコラーゲンの分解物は、必要に応じて、所望の化学修飾を施されていてもよい。化学修飾の種類としては、例えば、アシル化、ミリスチル化、ポリエチレングリコール修飾などを挙げることができる。
 例えば、アシル化の一種であるサクシニル化を施した分解物は、コラーゲンの分解物またはアテロコラーゲンの分解物と無水コハク酸とを、リン酸緩衝液などの中性pHの溶媒中で反応させて得ることができる。サクシニル化することにより、中性pHの溶媒に対する分解物の溶解度を向上させることができる。
 また、ポリエチレングリコール修飾を施した分解物は、塩化シアヌルで活性化したポリエチレングリコールと、コラーゲンの分解物またはアテロコラーゲンの分解物とを反応させることにより、得ることができる。
 上述したコラーゲンの分解物またはアテロコラーゲンの分解物では、上述したトリプルヘリカルドメイン内の下記(1)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、または、XとGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物が含まれている;
 (1)-G-X-X-G-X-X-G-X-X-G-:
(但し、Gは、グリシンであり、X~Xは、任意のアミノ酸である)。
 また、上述したコラーゲンの分解物またはアテロコラーゲンの分解物では、上述したトリプルヘリカルドメイン内の下記(2)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、または、X14とGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物が含まれている;
 (2)-G-X-X-G-X-X-G-X-X-G-X-X-G-X-X10-G-X11-X12-G-X13-X14-G-:
(但し、Gは、グリシンであり、X~X14は、任意のアミノ酸である)。
 また、上述したコラーゲンの分解物またはアテロコラーゲンの分解物では、上述したトリプルヘリカルドメインのアミノ末端の下記(3)にて示されるアミノ酸配列の、YとYとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物が含まれている;
 (3)-Y-Y-Y-G-Y-Y-G-Y-Y-G-Y-Y-G-(但し、Gは、グリシンであり、Y~Yは、任意のアミノ酸である)。
 上記(1)または(2)にて示されるアミノ酸配列のトリプルヘリカルドメイン内における位置は、特に限定されない。例えば、上記(1)または(2)にて示されるアミノ酸配列は、トリプルヘリカルドメインの内部に存在していてもよいが、トリプルヘリカルドメインのアミノ末端に存在していることが好ましい(換言すれば、上記(1)または(2)にて示されるアミノ酸配列の中の最もアミノ末端側に配置されている「G」が、トリプルヘリカルドメインの中の最もアミノ末端側に配置されている「G」と一致することが好ましい)。
 上記(1)または(2)にて示されるアミノ酸配列がトリプルヘリカルドメインの内部に存在している場合、当該(1)または(2)にて示されるアミノ酸配列の具体的な位置は特に限定されない。当該(1)または(2)にて示されるアミノ酸配列のアミノ末端側に、1個以上、5個以上、10個以上、50個以上、100個以上、150個以上、200個以上、250個以上または300個以上の「Gly-X-Y」(XおよびYは任意のアミノ酸)が連続するアミノ酸配列が存在していてもよい。また、当該(1)または(2)にて示されるアミノ酸配列のカルボキシル末端側に、1個以上、5個以上、10個以上、50個以上、100個以上、150個以上、200個以上、250個以上または300個以上の「Gly-X-Y」(XおよびYは任意のアミノ酸)が連続するアミノ酸配列が存在していてもよい。
 トリプルヘリカルドメイン内の当該(1)または(2)にて示されるアミノ酸配列以外の部分(すなわち、上記(1)または(2)にて示されるアミノ酸配列がトリプルヘリカルドメインの内部に存在している場合は、当該(1)または(2)にて示されるアミノ酸配列のアミノ末端側および/またはカルボキシル末端側。上記(1)または(2)にて示されるアミノ酸配列がトリプルヘリカルドメインのアミノ末端に存在している場合は、当該(1)または(2)にて示されるアミノ酸配列のカルボキシル末端側)は切断されていなくてもよく、または1箇所以上が切断されていてもよい。
 上記X~Xの各々は、任意のアミノ酸であり得、アミノ酸の種類は特に限定されない。また、X~Xの各々は、少なくとも一部が同じ種類のアミノ酸であってもよいし、全てが異なる種類のアミノ酸であってもよい。
 例えば、X~Xの各々は、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、スレオニン、チロシン、システイン、メチオニン、アスパラギン酸、アスパラギン、グルタミン酸、グルタミン、アルギニン、リシン、ヒスチジン、フェニルアラニン、チロシン、トリプトファン、ヒドロキシプロリン、ヒドロキシリシンのうちの何れであってもよい。
 更に具体的には、X~Xのうち、X、XおよびXが同じアミノ酸であり、その他が別のアミノ酸であってもよい。
 更に具体的には、X~Xのうち、X、XおよびXからなる群から選択される少なくとも1つがプロリンであり、その他が任意のアミノ酸であってもよい。
 更に具体的には、Xがプロリンであり、X~Xが任意のアミノ酸であってもよい。
 更に具体的には、XおよびXがプロリンであり、X、X~Xが任意のアミノ酸であってもよい。
 更に具体的には、X、XおよびXがプロリンであり、X、XおよびXが任意のアミノ酸であってもよい。
 更に具体的には、X、XおよびXがプロリンであり、Xが側鎖に硫黄原子を含むアミノ酸(例えば、システインまたはメチオニン)または側鎖に水酸基を含むアミノ酸(例えば、ヒドロキシプロリン、ヒドロキシリシンまたはセリン)であり、XおよびXが任意のアミノ酸であってもよい。
 更に具体的には、X、XおよびXがプロリンであり、Xが側鎖に硫黄原子を含むアミノ酸(例えば、システインまたはメチオニン)であり、Xが脂肪族の側鎖を有するアミノ酸(例えば、グリシン、アラニン、バリン、ロイシンまたはイソロイシン)または側鎖に水酸基を含むアミノ酸(例えば、ヒドロキシプロリン、ヒドロキシリシンまたはセリン)であり、Xが任意のアミノ酸であってもよい。
 更に具体的には、X、XおよびXがプロリンであり、Xが側鎖に硫黄原子を含むアミノ酸(例えば、システインまたはメチオニン)であり、Xが脂肪族の側鎖を有するアミノ酸(例えば、グリシン、アラニン、バリン、ロイシンまたはイソロイシン)または側鎖に水酸基を含むアミノ酸(例えば、ヒドロキシプロリン、ヒドロキシリシンまたはセリン)であり、Xが側鎖に塩基を含むアミノ酸(例えば、アルギニン、リシンまたはヒスチジン)であってもよい。
 更に具体的には、X、XおよびXがプロリンであり、Xがメチオニンであり、Xがアラニンまたはセリンであり、Xがアルギニンであってもよい。
 上記(2)にて示されるアミノ酸配列では、X~Xの各々は、上述したX~Xと同じ構成であり得る。X~X14の具体的な構成について、以下に説明する。
 上記X~X14の各々は、任意のアミノ酸であり得、アミノ酸の種類は特に限定されない。また、X~X14の各々は、少なくとも一部が同じ種類のアミノ酸であってもよいし、全てが異なる種類のアミノ酸であってもよい。
 例えば、X~X14の各々は、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、スレオニン、チロシン、システイン、メチオニン、アスパラギン酸、アスパラギン、グルタミン酸、グルタミン、アルギニン、リシン、ヒスチジン、フェニルアラニン、チロシン、トリプトファン、ヒドロキシプロリン、ヒドロキシリシンのうちの何れであってもよい。
 更に具体的には、X~X14のうち、X、X、X10、X12およびX13が同じアミノ酸であり、その他が別のアミノ酸であってもよい。
 更に具体的には、X~X14のうち、X、X、X10、X12およびX13からなる群から選択される少なくとも1つがプロリンまたはヒドロキシプロリンであり、その他が任意のアミノ酸であってもよい。
 更に具体的には、X~X14のうち、Xがプロリンまたはヒドロキシプロリンであり、その他が任意のアミノ酸であってもよい。
 更に具体的には、X~X14のうち、XおよびXがプロリンまたはヒドロキシプロリンであり、その他が任意のアミノ酸であってもよい。
 更に具体的には、X~X14のうち、X、XおよびX10がプロリンまたはヒドロキシプロリンであり、その他が任意のアミノ酸であってもよい。
 更に具体的には、X~X14のうち、X、X、X10およびX12がプロリンまたはヒドロキシプロリンであり、その他が任意のアミノ酸であってもよい。
 更に具体的には、X~X14のうち、X、X、X10、X12およびX13がプロリンまたはヒドロキシプロリンであり、その他が任意のアミノ酸であってもよい。
 更に具体的には、X~X14のうち、X、X、X10、X12およびX13がプロリンまたはヒドロキシプロリンであり、Xが脂肪族の側鎖を有するアミノ酸(例えば、グリシン、アラニン、バリン、ロイシンまたはイソロイシン)であり、その他が任意のアミノ酸であってもよい。
 更に具体的には、X~X14のうち、X、X、X10、X12およびX13がプロリンまたはヒドロキシプロリンであり、XおよびX11が脂肪族の側鎖を有するアミノ酸(例えば、グリシン、アラニン、バリン、ロイシンまたはイソロイシン)であり、その他が任意のアミノ酸であってもよい。
 更に具体的には、X~X14のうち、X、X、X10、X12およびX13がプロリンまたはヒドロキシプロリンであり、XおよびX11が脂肪族の側鎖を有するアミノ酸(例えば、グリシン、アラニン、バリン、ロイシンまたはイソロイシン)であり、X14が親水性でありかつ非解離性の側鎖を有するアミノ酸(セリン、スレオニン、アスパラギンまたはグルタミン)であってもよい。
 更に具体的には、X~X14のうち、X、X、X10、X12およびX13がプロリンまたはヒドロキシプロリンであり、Xがロイシンであり、X11がアラニンであり、X14がグルタミンであってもよい。
 上記(3)にて示されるアミノ酸配列は、トリプルヘリカルドメインのアミノ末端に位置している。つまり、YとYとの間に位置しているGは、トリプルヘリカルドメイン内の最もアミノ末端側に位置しているグリシンを示している。そして、Y、YおよびYは、コラーゲンまたはアテロコラーゲンを構成する複数種類のポリペプチド鎖内において、トリプルヘリカルドメインよりもアミノ末端側に位置しているアミノ酸を示している。
 また、当該(3)にて示されるアミノ酸配列のカルボキシル末端側に、1個以上、5個以上、10個以上、50個以上、100個以上、150個以上、200個以上、250個以上または300個以上の「Gly-X-Y」(XおよびYは任意のアミノ酸)が連続するアミノ酸配列が存在していてもよい。
 トリプルヘリカルドメイン内の当該(3)にて示されるアミノ酸配列以外の部分(すなわち、上記(3)にて示されるアミノ酸配列のカルボキシル末端側)は切断されていなくてもよく、または1箇所以上が切断されていてもよい。
 上記Y~Yの各々は、任意のアミノ酸であり得、アミノ酸の種類は特に限定されない。また、Y~Yの各々は、少なくとも一部が同じ種類のアミノ酸であってもよいし、全てが異なる種類のアミノ酸であってもよい。
 例えば、Y~Yの各々は、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、スレオニン、チロシン、システイン、メチオニン、アスパラギン酸、アスパラギン、グルタミン酸、グルタミン、アルギニン、リシン、ヒスチジン、フェニルアラニン、チロシン、トリプトファン、ヒドロキシプロリン、ヒドロキシリシンのうちの何れであってもよい。
 更に具体的には、Yがプロリンであり、YおよびYが任意のアミノ酸であってもよい。
 更に具体的には、Yがプロリンであり、YおよびYが脂肪族の側鎖を有するアミノ酸(例えば、グリシン、アラニン、バリン、ロイシンまたはイソロイシン)または側鎖に水酸基を含むアミノ酸(ヒドロキシプロリン、ヒドロキシリシンまたはセリン)であってもよい。
 更に具体的には、Yがプロリンであり、Yがアラニンまたはセリンであり、Yがバリンであってもよい。
 このとき、Y~Yの具体的な構成は、特に限定されないが、YとXとが同じアミノ酸であり、YとXとが同じアミノ酸であり、YとXとが同じアミノ酸であり、YとXとが同じアミノ酸であり、YとXとが同じアミノ酸であり、YとXとが同じアミノ酸であってもよい。
 従来のコラーゲン、および、アテロコラーゲンは、ヒトの体温に近い温度では溶け難い。一方、本発明の一実施形態に用いるコラーゲンの分解物またはアテロコラーゲンの分解物は、ヒトの体温に近い温度でも液体状であり得る。
 また、本発明の一実施形態に用いるコラーゲンの分解物またはアテロコラーゲンの分解物は、従来のコラーゲンの分解物またはアテロコラーゲンの分解物と比較して、ゲル化し始める濃度が高い。
 本発明の一実施形態に用いるコラーゲンの分解物またはアテロコラーゲンの分解物には、コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の上記(1)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、または、XとGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物が含まれている。
 本発明の一実施形態に用いるコラーゲンの分解物またはアテロコラーゲンの分解物には、コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の上記(2)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、または、X14とGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物が含まれている。
 また、本発明の一実施形態に用いるコラーゲンの分解物またはアテロコラーゲンの分解物には、コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインのアミノ末端の上記(3)にて示されるアミノ酸配列の、YとYとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物が含まれている。
 上記切断は、適宜所望の方法によって行うことができる。
 例えば、既に切断されている状態のコラーゲンまたはアテロコラーゲンを、化学合成法によって作製することが可能である。なお、化学合成法としては、一般的な周知の化学合成法を用いることが可能である。
 また、既に切断されている状態のコラーゲンまたはアテロコラーゲンをコードするDNAを周知のタンパク質発現ベクターに挿入する。そして、当該タンパク質発現ベクターを所望の宿主(例えば、大腸菌、酵母、昆虫細胞、動物細胞など)に導入した後、当該宿主内で、既に切断されている状態のコラーゲンまたはアテロコラーゲンの発現を誘導する。これによって、既に切断されている状態のコラーゲンまたはアテロコラーゲンを作製することも可能である。
 また、コラーゲンまたはアテロコラーゲンを酵素(例えば、プロテアーゼ(例えば、システインプロテアーゼ))によって分解することによって上記切断を行うことも可能である。
 上記切断を行う方法の詳細については、後述する。
 (I.コラーゲンの分解物またはアテロコラーゲンの分解物の製造方法)
 コラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、
 A)コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(1)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、または、XとGとの間の化学結合を切断する、切断工程、または、
 B)コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(2)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、または、X14とGとの間の化学結合を切断する、切断工程、または、
 C)コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインのアミノ末端の下記(3)にて示されるアミノ酸配列の、YとYとの間の化学結合を切断する、切断工程、を含む製造方法である:
 (1)-G-X-X-G-X-X-G-X-X-G-;
 (2)-G-X-X-G-X-X-G-X-X-G-X-X-G-X-X10-G-X11-X12-G-X13-X14-G-;
 (3)-Y-Y-Y-G-Y-Y-G-Y-Y-G-Y-Y-G-;
(但し、Gは、グリシンであり、X~X14およびY~Yは、任意のアミノ酸である)。
 また、コラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、以下の切断工程を含む製造方法であってもよい。つまり、
 D)コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(1)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、および、XとGとの間の化学結合から選択される何れか1つの化学結合を切断する、切断工程、または、
 E)コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(2)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、および、X14とGとの間の化学結合から選択される何れか1つの化学結合を切断する、切断工程、または、
 F)コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインのアミノ末端の下記(3)にて示されるアミノ酸配列の、YとYとの間の化学結合を切断する、切断工程:
 (1)-G-X-X-G-X-X-G-X-X-G-:
 (2)-G-X-X-G-X-X-G-X-X-G-X-X-G-X-X10-G-X11-X12-G-X13-X14-G-:
 (3)-Y-Y-Y-G-Y-Y-G-Y-Y-G-Y-Y-G-:
(但し、Gは、グリシンであり、X~X14およびY~Yは、任意のアミノ酸である)。
 以下に、各構成について詳細に説明する。なお、コラーゲンの分解物またはアテロコラーゲンの分解物自体については既に説明したので、ここでは、その説明を省略する。
 上記切断工程は、(1)~(3)にて示されるアミノ酸配列の特定の箇所の化学結合を切断する工程であればよく、具体的な構成は特に限定されない。
 上記切断工程は、実際にトリプルヘリカルドメイン内の化学結合を切断して、コラーゲンの分解物またはアテロコラーゲンの分解物を作製する工程であってもよい(例えば、酵素法)。
 また、既にトリプルヘリカルドメイン内の化学結合が切断されているコラーゲンの分解物またはアテロコラーゲンの分解物を作製する工程(例えば、化学合成法、組み換えタンパク質の発現)を本願における「切断工程」の概念に含めることもできる。
 以下に、上述した切断工程の詳細を説明する。
  (I-i.酵素法に基づく切断工程)
 酵素法に基づく切断工程を採用する場合には、例えば、以下のように切断工程を構成することができる。
 上記切断工程は、コラーゲンまたはアテロコラーゲンを酵素(例えば、プロテアーゼ(例えば、システインプロテアーゼ))によって分解することによって行うことが可能である。
 上記酵素としては特に限定されないが、例えば、システインプロテアーゼを用いることが好ましい。
 システインプロテアーゼとしては、塩基性アミノ酸量よりも酸性アミノ酸量の方が多いシステインプロテアーゼ、酸性領域の水素イオン濃度において活性であるシステインプロテアーゼを用いることが好ましい。
 このようなシステインプロテアーゼとしては、カテプシンB[EC 3.4.22.1]、パパイン[EC 3.4.22.2]、フィシン[EC 3.4.22.3]、アクチニダイン[EC 3.4.22.14]、カテプシンL[EC 3.4.22.15]、カテプシンH[EC 3.4.22.16]、カテプシンS[EC 3.4.22.27]、ブロメライン[EC 3.4.22.32]、カテプシンK[EC 3.4.22.38]、アロライン、カルシウム依存性プロテアーゼなどを挙げることが可能である。
 これらの中では、パパイン、フィシン、アクチニダイン、カテプシンK、アロラインまたはブロメラインを用いることが好ましく、パパイン、フィシン、アクチニダイン、カテプシンKを用いることが更に好ましい。
 上述した酵素は、公知の方法によって入手することができる。例えば、化学合成による酵素の作製;細菌、真菌、各種動植物の細胞または組織からの酵素の抽出;遺伝子工学的手段による酵素の作製;などによって入手することができる。勿論、市販の酵素を用いることも可能である。
 コラーゲンまたはアテロコラーゲンを酵素(例えば、プロテアーゼ)によって分解することによって切断工程を行う場合には、例えば、以下の(i)~(iii)の方法にしたがって切断工程を行うことができる。以下の(i)~(iii)の方法は、あくまでも切断工程の一例であって、本発明は、これら(i)~(iii)の方法に限定されない。
 なお、以下の(i)および(ii)の方法は、(1)または(2)にて示されるアミノ酸配列の特定の箇所の化学結合を切断するために用いられる方法の一例であり、以下の(iii)の方法は、(3)にて示されるアミノ酸配列の特定の箇所の化学結合を切断するために用いられる方法の一例である。
 (i)高濃度の塩の存在下にて、コラーゲンまたはアテロコラーゲンと、酵素とを接触させる方法。
 (ii)高濃度の塩と接触させた後の酵素と、コラーゲンまたはアテロコラーゲンとを接触させる方法。
 (iii)低濃度の塩の存在下にて、コラーゲンまたはアテロコラーゲンと、酵素とを接触させる方法。
 上述した(i)の方法の具体例としては、例えば、高濃度の塩を含む水溶液中で、コラーゲンまたはアテロコラーゲンと、酵素とを接触させる方法を挙げることができる。
 上述した(ii)の方法の具体例としては、例えば、高濃度の塩を含む水溶液と酵素とを予め接触させ、その後、当該酵素と、コラーゲンまたはアテロコラーゲンとを接触させる方法を挙げることができる。
 上述した(iii)の方法の具体例としては、例えば、低濃度の塩を含む水溶液中で、コラーゲンまたはアテロコラーゲンと、酵素とを接触させる方法を挙げることができる。
 上記水溶液の具体的な構成としては特に限定されないが、例えば、水を用いることが可能である。
 上記塩の具体的な構成としては特に限定されないが、塩化物を用いることが好ましい。塩化物としては、特に限定されないが、例えば、NaCl、KCl、LiClまたはMgClを用いることが可能である。
 上記高濃度の塩を含む水溶液における塩の濃度は特に限定されないが、高いほど好ましいといえる。例えば、当該濃度は、200mM以上であることが好ましく、500mM以上であることがより好ましく、1000mM以上であることがより好ましく、1500mM以上であることがより好ましく、2000mM以上であることが最も好ましい。
 上記高濃度の塩を含む水溶液における塩の濃度の上限値は、特に限定されないが、例えば2500mMであり得る。塩の濃度が2500mMよりも高くなると、タンパク質の多くが塩析してしまい、その結果、酵素によるコラーゲンまたはアテロコラーゲンの分解効率が低下する傾向を示す。一方、塩の濃度が2500mM以下であれば、酵素によるコラーゲンまたはアテロコラーゲンの分解効率を高くすることができる。
 したがって、上記高濃度の塩を含む水溶液における塩の濃度は、200mM以上2500mM以下であることが好ましく、500mM以上2500mM以下であることがより好ましく、1000mM以上2500mM以下であることがより好ましく、1500mM以上2500mM以下であることがより好ましく、2000mM以上2500mM以下であることが最も好ましい。
 上記高濃度の塩を含む水溶液における塩の濃度が高いほど、酵素によるコラーゲンまたはアテロコラーゲンの切断箇所の特異性を上げることができる。その結果、本発明の一実施形態に用いるコラーゲンの分解物またはアテロコラーゲンの分解物を、より均一で、かつ、生理活性が高いものにすることができる。
 上記低濃度の塩を含む水溶液における塩の濃度は特に限定されないが、低いほど好ましいといえる。例えば、当該濃度は、200mMよりも低いことが好ましく、150mM以下であることがより好ましく、100mM以下であることがより好ましく、50mM以下であることがより好ましく、略0mMであることが最も好ましい。
 上記水溶液(例えば、水)に溶解させるコラーゲンまたはアテロコラーゲンの量は特に限定されないが、例えば、1000重量部~10000重量部の水溶液に対して、1重量部のコラーゲンまたはアテロコラーゲンを溶解させることが好ましい。
 上記構成であれば、水溶液に対して酵素が加えられた場合、当該酵素とコラーゲンまたはアテロコラーゲンとを効率よく接触させることができる。そして、その結果、コラーゲンまたはアテロコラーゲンを酵素(例えば、プロテアーゼ)によって効率よく分解することができる。
 上記水溶液に加える酵素の量は特に限定されないが、例えば、100重量部のコラーゲンまたはアテロコラーゲンに対して、10重量部~20重量部の酵素を加えることが好ましい。
 上記構成であれば、水溶液中の酵素の濃度が高いので、コラーゲンまたはアテロコラーゲンを酵素(例えば、プロテアーゼ)によって効率よく分解することができる。
 水溶液中でコラーゲンまたはアテロコラーゲンと酵素とを接触させるときの他の条件(例えば、水溶液のpH、温度、接触時間など)も特に限定されず、適宜、設定することができるが以下の範囲であることが好ましい。
 1)水溶液のpHは、pH2.0~7.0が好ましく、pH2.5~6.5が更に好ましい。水溶液のpHを上述した範囲に保つために、水溶液に対して周知のバッファーを加えることが可能である。上記pHであれば、水溶液中にコラーゲンまたはアテロコラーゲンを均一に溶解することができ、その結果、酵素反応を効率よく進めることができる。
 2)温度は特に限定されず、用いる酵素に応じて温度を選択すればよい。例えば、当該温度は、15℃~40℃であることが好ましく、20℃~35℃であることがより好ましい。
 3)接触時間は特に限定されず、酵素の量、および/または、コラーゲンまたはアテロコラーゲンの量に応じて接触時間を選択すればよい。例えば、当該時間は、1時間~60日間であることが好ましく、1日間~7日間であることがより好ましく、3日間~7日間であることが更に好ましい。
 なお、水溶液中でコラーゲンまたはアテロコラーゲンと酵素とを接触させた後、必要に応じて、pHを再調整する工程、酵素を失活させる工程、および、不純物を除去する工程からなる群より選択される少なくとも1つの工程を経てもよい。
 また、上記不純物を除去する工程は、物質を分離するための一般的な方法によって行うことができる。上記不純物を除去する工程は、例えば、透析、塩析、ゲル濾過クロマトグラフィー、など電点沈殿、イオン交換クロマトグラフィー、または、疎水性相互作用クロマトグラフィーなどによって行うことができる。
 上述したように、切断工程は、コラーゲンまたはアテロコラーゲンを酵素によって分解することによって行うことが可能である。このとき、分解されるコラーゲンまたはアテロコラーゲンは、生体組織中に含有された状態のものであってもよい。つまり、切断工程は、生体組織と酵素とを接触させることによって行うことも可能である。
 生体組織としては、特に限定されず、その例として哺乳類または鳥類の真皮、腱、骨または筋膜、あるいは、魚類の皮膚または鱗を用いることができる。
 高い生理活性を維持し、かつ、多量にコラーゲンの分解物またはアテロコラーゲンの分解物を得るという観点からは、生体組織として真皮を用いることが好ましい。
 生体組織として真皮を用いる場合、酸性条件下で真皮と酵素とを接触させることが好ましい。例えば、上記酸性条件としては、好ましくはpH2.5~6.5、更に好ましくはpH2.5~5.0、更に好ましくはpH2.5~4.0、最も好ましくはpH2.5~3.5である。
 より具体的に、コラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、上記切断工程では、上記システインプロテアーゼと真皮とを接触させることによって、該真皮に含まれるコラーゲンと、上記システインプロテアーゼとを接触させることが好ましい。
 また、上記(1)または(2)にて示されるアミノ酸配列を有するコラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、上記切断工程では、200mM以上の濃度の塩の存在下にて、真皮と、システインプロテアーゼとを接触させることが好ましい。
 また、上記(1)、(2)または(3)にて示されるアミノ酸配列を有するコラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、上記切断工程では、200mM以上の濃度の塩と接触させた後のシステインプロテアーゼと、真皮とを接触させることが好ましい。
 また、上記(3)にて示されるアミノ酸配列を有するコラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、上記切断工程では、200mMよりも低い濃度の塩の存在下にて、真皮と、システインプロテアーゼとを接触させることが好ましい。
  (I-ii.化学合成法)
 化学合成法に基づく切断工程を採用する場合には、例えば、以下のように切断工程を構成することができる。
 まず、周知のデータベースから、コラーゲンまたはアテロコラーゲンを構成する各ポリペプチド鎖のアミノ酸配列の情報を入手する。なお、当該ポリペプチド鎖は、コラーゲンまたはアテロコラーゲンのタイプに応じて適宜選択すればよく、1種類のポリペプチド鎖であってもよく、複数の種類のポリペプチド鎖であってもよい。
 次いで、上記ポリペプチドの中から、切断されるべき化学結合を含むポリペプチド鎖および切断されるべき化学結合の位置を決定するとともに、当該化学結合が切断されたと想定したときの、所望のポリペプチド鎖のアミノ酸配列を決定する。
 最後に、決定されたアミノ酸配列にしたがって、所望のポリペプチド鎖を周知の化学合成法によって合成する。
 以上のようにして、切断工程を実施することができる。
 コラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、上述した切断工程以外の工程を含むことも可能である。
 例えば、コラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、所望のポリペプチド鎖を周知の化学合成法によって合成した後で、合成されたポリペプチド鎖を精製する工程を含んでいてもよい。なお、当該精製は、適宜、周知のカラムを用いて行えばよい。
 コラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、所望のポリペプチド鎖と、他のポリペプチド鎖とを混合する工程を含んでいてもよい。なお、他のポリペプチド鎖としては特に限定されず、同様に化学結合が切断されているポリペプチド鎖であってもよいし、化学結合が切断されていないポリペプチド鎖であってもよい。
  (I-iii.組み換えタンパク質の発現に基づく切断工程)
 組み換えタンパク質の発現に基づく切断工程を採用する場合には、例えば、以下のように切断工程を構成することができる。
 まず、周知のデータベースから、コラーゲンまたはアテロコラーゲンを構成する各ポリペプチド鎖のアミノ酸配列の情報を入手する。なお、当該ポリペプチド鎖は、コラーゲンまたはアテロコラーゲンのタイプに応じて適宜選択すればよく、1種類のポリペプチド鎖であってもよく、複数の種類のポリペプチド鎖であってもよい。
 次いで、上記ポリペプチドの中から、切断されるべき化学結合を含むポリペプチド鎖および切断されるべき化学結合の位置を決定するとともに、当該化学結合が切断されたと想定したときの、所望のポリペプチド鎖のアミノ酸配列およびDNA配列を決定する。
 次いで、所望のポリペプチド鎖をコードするDNAを周知のタンパク質発現ベクターに挿入する。そして、当該タンパク質発現ベクターを所望の宿主(例えば、大腸菌、酵母、昆虫細胞、動物細胞など)に導入した後、当該宿主内で、化学結合が切断された後のポリペプチド鎖を発現させる。
 以上のようにして、切断工程を実施することができる。
 コラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、上述した切断工程以外の工程を含むことも可能である。
 例えば、コラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、宿主内で、所望のポリペプチド鎖を発現させた後で、発現したポリペプチド鎖を精製する工程を含んでいてもよい。なお、当該精製は、適宜、周知のカラムを用いて行えばよい。
 コラーゲンの分解物またはアテロコラーゲンの分解物の製造方法は、所望のポリペプチド鎖と、他のポリペプチド鎖とを混合する工程を含んでいてもよい。なお、他のポリペプチド鎖としては特に限定されず、同様に化学結合が切断されているポリペプチド鎖であってもよいし、化学結合が切断されていないポリペプチド鎖であってもよい。
 〔2.胚様体形成用組成物〕
 本発明の一実施形態に係る胚様体形成用組成物(以下、「本実施形態の胚様体形成用組成物」ともいう。)は、多能性幹細胞の胚様体形成用組成物であって、コラーゲンの分解物またはアテロコラーゲンの分解物を主成分として含み、上記分解物は、上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインの少なくとも一部分を含んでいるものである。つまり、上記分解物は、コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインの全体を含んでいてもよいし、トリプルヘリカルドメインの一部分を含んでいてもよい。上記「多能性幹細胞」、上記「胚様体」、および上記「コラーゲンの分解物またはアテロコラーゲンの分解物」については、上記「1.胚様体形成方法」の項で説明したとおりであるので、ここでは説明は省略する。
 本実施形態の胚様体形成用組成物中には、胚様体形成活性を有する主成分として、コラーゲンの分解物またはアテロコラーゲンの分解物が含まれている。本実施形態の胚様体形成用組成物中に含まれる、コラーゲンの分解物またはアテロコラーゲンの分解物の量は特に限定されない。例えば、本実施形態の胚様体形成用組成物中に、コラーゲンの分解物またはアテロコラーゲンの分解物が、0.1重量%以上含まれていてもよいが、その中でも50重量%以上含まれていることが好ましく、更に90重量%以上含まれていることがより好ましく、100重量%含まれていることが最も好ましい。
 本実施形態の胚様体形成用組成物を用いて培養容器の内面をコートする場合は、本実施形態の胚様体形成用組成物を水等で希釈し、最終濃度として、2mg/mL~20mg/mL、好ましくは3mg/mL~16mg/mL、より好ましくは5mg/mL~15mg/mL、あるいは5mg/mL~20mg/mL、好ましくは8mg/mL~16mg/mLのコラーゲンの分解物またはアテロコラーゲンの分解物を含有している溶液を調製し、当該溶液を用いて、培養容器の内面をコートすることができる。上記溶液における上記分解物の濃度が2mg/mL以上であれば、胚様体を均一に形成することができる。また、上記溶液における上記分解物の濃度が20mg/mL以下であれば、再現性が良好となる。これに対して、上記溶液における上記分解物の濃度が2mg/mL未満である場合は、胚様体の形成が不均一になる場合がある。また、上記溶液における上記分解物の濃度が20mg/mLよりも高い場合は、粘性が高くなり再現性が不良となる場合がある。
 また、本実施形態の胚様体形成用組成物には、コラーゲンの分解物またはアテロコラーゲンの分解物以外の成分が添加されていてもよい。これらの成分としては特に限定されず、適宜、所望の成分を添加することができる。例えば、コラーゲンの分解物またはアテロコラーゲンの分解物を、濃縮培養液(例えば、5倍濃縮DMEMなど)と再構成用緩衝液(50mM 水酸化ナトリウム、260mM 炭酸水素ナトリウム、200mM HEPES)と混合して、ゲル化組成物としてもよい。この場合、コラーゲンの分解物またはアテロコラーゲンの分解物は、ゲル化組成物中に最終濃度として、2~15mg/mL含まれていてもよく、5~15mg/mL含まれていてもよく、5~12mg/mL含まれていることが好ましく、7~10mg/mL含まれていることがより好ましい。ゲル組成物中に含有されている上記分解物の濃度が、最終濃度として2mg/mL以上であれば、胚様体を均一に形成することができる。また、ゲル組成物中に含有されている上記分解物の濃度が、最終濃度として15mg/mL以下であれば、再現性が良好となる。これに対して、ゲル組成物中に含有されている上記分解物の濃度が、最終濃度として2mg/mL未満である場合は、胚様体の形成が不均一になる場合がある。また、ゲル組成物中に含有されている上記分解物の濃度が、最終濃度として15mg/mLよりも高い場合は、粘性が高くなり再現性が不良となる場合がある。
 上述したとおり、本発明の一実施形態に用いるコラーゲンの分解物またはアテロコラーゲンの分解物は、従来のコラーゲンの分解物またはアテロコラーゲンの分解物と比較して、ゲル化し始める濃度が高い。それ故に、従来のコラーゲンの分解物またはアテロコラーゲンの分解物がゲル化する濃度と同じ濃度の本発明の一実施形態に用いるコラーゲンの分解物またはアテロコラーゲンの分解物を、常温にて安定して保存できる。それ故に、本実施形態の胚様体形成用組成物は、常温にて安定して保存できる。
 本実施形態の胚様体形成用組成物を用いれば、多能性幹細胞の胚様体を容易に形成させることができる。また、本実施形態の胚様体形成用組成物を用いれば、従来の胚様体形成方法と比較して、より短期間で胚様体を形成させることができる。
 本実施形態の胚様体形成用組成物は、由来動物、由来部位およびN末端(アミノ末端)切断部位に関わらず、上述した本実施形態の胚様体形成方法において使用することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 以下、本発明を実施例により具体的に説明するが、本発明は実施例によって限定されるものではない。
 <1.ブタ由来のα1鎖の切断における、塩濃度の影響>
 塩化ナトリウムの濃度が0mM、200mM、1000mM、1500mMまたは2000mMである50mM クエン酸緩衝液(pH3.0)を準備した。なお、当該水溶液の溶媒としては、水を用いた。
 アクチニダインを活性化するため、10mM ジチオスレイトールを含む50mM リン酸緩衝液(pH6.5)に対し、アクチニダインを溶解し、90分間、25℃にて静置した。なお、アクチニダインとしては、周知の方法にて精製したものを利用した(例えば、非特許文献2参照)。
 次いで、塩を含む50mM クエン酸緩衝液(pH3.0)に対し、ブタ由来のI型コラーゲンを溶解した。アクチニダインを含む水溶液と、ブタ由来のI型コラーゲンを含む当該溶液と、を10日間以上、20℃にて接触させて、I型コラーゲンの分解物を作製した。なお、ブタ由来のI型コラーゲンは、周知の方法に基づいて精製した(例えば、非特許文献2参照)。
 上述した分解物をポリアクリルアミドゲル電気泳動にかけ、I型コラーゲンの分解物を分離した。
 次いで、I型コラーゲンの分解物を、常法によりPVDF(Polyvinylidene Difluoride)膜へ転写した。そして、PVDF膜へ転写されたα1鎖の分解物のアミノ末端のアミノ酸配列を、エドマン分解法によって決定した。
 なお、実際のエドマン分析は、アプロサイエンス株式会社、または、近畿大学医学部分析機器共同研究室に依頼して、周知の方法にしたがって行った。
 表1に、塩濃度が0mM、200mM、1000mM、1500mMまたは2000mMの場合のα1鎖の分解物のアミノ末端およびその近傍のアミノ酸配列を示す。
 表1に示すように、塩濃度が異なると、α1鎖内の切断箇所が異なることが明らかになった。より具体的には、塩濃度が低いと(例えば、0mM)、トリプルヘリカルドメインの外側で切断が生じ、塩濃度が高いと(例えば、200mM以上)、トリプルヘリカルドメインの内側で切断が生じることが明らかになった。
 塩濃度が高いときの切断箇所は、本発明者が見出した新規な切断箇所であった。
Figure JPOXMLDOC01-appb-T000001
 なお、塩濃度を変化させると、分解物中に含まれる、配列番号2にて示すアミノ酸配列のアミノ末端を有する分解物の量と、配列番号3にて示すアミノ酸配列のアミノ末端を有する分解物の量と、の比率が反応時間、反応pH、反応温度などの条件で異なった。分解物を大量に調製しようとすると、塩濃度が2000mMを超えるとNaClが不溶化した。分解物を大量に調製する場合、塩濃度の上限値を500mMまたは800mMに設定することが好ましいと考えられる。
 <2.ラットおよびニワトリ由来のα1鎖の切断における、塩濃度の影響>
 塩化ナトリウムの濃度が0mM、2000mMである50mM クエン酸緩衝液(pH3.0)を準備した。なお、当該水溶液の溶媒としては、水を用いた。
 アクチニダインを活性化するため、10mM ジチオスレイトールを含む50mM リン酸緩衝液(pH6.5)に対し、アクチニダインを溶解し、90分間、25℃にて静置した。
 次いで、塩を含む50mM クエン酸緩衝液(pH3.0)に対し、ラット尾部由来のI型コラーゲン、または、ニワトリ皮部由来のI型コラーゲンを溶解した。アクチニダインを含む水溶液と、ラット尾部由来のI型コラーゲン、または、ニワトリ皮部由来のI型コラーゲンと、を10日間以上、20℃にて接触させて、I型コラーゲンの分解物を作製した。なお、アクチニダインとしては、上述した<1>の実施例にて用いたものと同じものを用いた。また、ラット尾部由来のI型コラーゲン、および、ニワトリ皮部由来のI型コラーゲンは、周知の方法に基づいて精製した(例えば、非特許文献2参照)。
 上述した分解物をポリアクリルアミドゲル電気泳動にかけ、I型コラーゲンの分解物を分離した。
 次いで、I型コラーゲンの分解物を、常法によりPVDF(Polyvinylidene Difluoride)膜へ転写した。そして、PVDF膜へ転写されたα1鎖の分解物のアミノ末端のアミノ酸配列を、エドマン分解法によって決定した。
 なお、実際のエドマン分析は、アプロサイエンス株式会社、または、近畿大学医学部分析機器共同研究室に依頼して、周知の方法にしたがって行った。
 表2に、塩濃度が0mMおよび2000mMの場合のラット由来のα1鎖の分解物のアミノ末端およびその近傍のアミノ酸配列、および、未分解であるラット由来のα1鎖の部分構造(塩濃度の欄が「-」であるデータを参照)を示す。
 表3に、塩濃度が0mMおよび2000mMの場合のニワトリ由来のα1鎖の分解物のアミノ末端およびその近傍のアミノ酸配列、および、未分解であるニワトリ由来のα1鎖の部分構造(塩濃度の欄が「-」であるデータを参照)を示す。
 表2および3に示すように、異なる種に由来するα1鎖であっても、塩濃度が低いと、(例えば、0mM)、トリプルヘリカルドメインの外側で切断が生じ、塩濃度が高いと、トリプルヘリカルドメインの内側で切断が生じやすいことが明らかになった。
 塩濃度が高いときの切断箇所は、本発明者が見出した新規な切断箇所であった。
 なお、塩濃度が2000mMの場合、分解物中に含まれる、配列番号24にて示すアミノ酸配列のアミノ末端を有する分解物の量と、配列番号5にて示すアミノ酸配列のアミノ末端を有する分解物の量と、の比率が、反応時間、反応pH、反応温度などの条件で異なった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 <3.塩の種類に関する検討>
 塩が添加されていない溶液、MgClの濃度が500mMである水溶液、および、KClの濃度が200mMである水溶液を準備した。なお、当該水溶液の溶媒としては、水を用いた。
 上記水溶液の各々に対し、アクチニダインと、ブタ由来のI型コラーゲンとを混合した後、10日以上、20℃にて反応させて、I型コラーゲンの分解物を作製した。なお、アクチニダインとしては、上述した<1>の実施例にて用いたものと同じものを用いた。また、ブタ由来のI型コラーゲンは、周知の方法に基づいて精製した(例えば、非特許文献2参照)。
 上述した分解物の各々をポリアクリルアミドゲル電気泳動にかけ、α1鎖の分解物を分離した。
 次いで、I型コラーゲンの分解物を、常法によりPVDF(Polyvinylidene Difluoride)膜へ転写した。そして、PVDF膜へ転写されたα1鎖の分解物のアミノ末端のアミノ酸配列を、エドマン分解法によって決定した。
 なお、実際のエドマン分析は、アプロサイエンス株式会社、または、近畿大学医学部分析機器共同研究室に依頼して、周知の方法にしたがって行った。
 表4に、塩濃度0mMである水溶液を用いた場合、MgClの濃度が500mMである水溶液を用いた場合、および、KClの濃度が200mMである水溶液を用いた場合のブタ由来のα1鎖の分解物のアミノ末端およびその近傍のアミノ酸配列、および、未分解であるブタ由来のα1鎖の部分構造(塩濃度の欄が「-」であるデータを参照)を示す。
 表4に示すように、異なる種類の塩であっても、塩濃度が低いと(例えば、0mM)、トリプルヘリカルドメインの外側で切断が生じ、塩濃度が高いと(例えば、200mM KCl、500mM MgCl)、トリプルヘリカルドメインの内側で切断が生じることが明らかになった。なお、200mM KClと500mM MgClの場合、分解物中に含まれる、配列番号2にて示すアミノ酸配列のアミノ末端を有する分解物の量と、配列番号9にて示すアミノ酸配列のアミノ末端を有する分解物の量と、の比率が、反応時間、反応pH、反応温度などの条件で異なった。
 異なる種類の塩を用いた場合の切断箇所は、本発明者が見出した新規な切断箇所であった。
Figure JPOXMLDOC01-appb-T000004
 <4.システインプロテアーゼの種類に関する検討>
 本実施例では、システインプロテアーゼの一種であるカテプシンKを用いて、高塩濃度条件下におけるα1鎖の切断箇所を検討した。以下に、試験方法および試験結果を説明する。
 塩化ナトリウムの濃度が2000mMである50mM クエン酸緩衝液(pH3.0)を準備した。なお、当該水溶液の溶媒としては、水を用いた。
 カテプシンKを活性化するため、10mM ジチオスレイトールを含む50mM リン酸緩衝液(pH6.5)に対し、カテプシンKを溶解し、45分間、25℃にて静置した。なお、カテプシンKとしては、市販のものを利用した。
 次いで、塩を含む50mM クエン酸緩衝液(pH3.0)に対し、ニワトリ由来のI型コラーゲン、または、ブタ由来のI型コラーゲンを溶解した。カテプシンKを含む水溶液と、ニワトリ由来のI型コラーゲン、または、ブタ由来のI型コラーゲンを含む当該溶液と、を10日間以上、20℃にて接触させて、I型コラーゲンの分解物を作製した。なお、ニワトリ由来のI型コラーゲン、および、ブタ由来のI型コラーゲンは、周知の方法に基づいて精製した(例えば、非特許文献2参照)。
 上述した分解物をポリアクリルアミドゲル電気泳動にかけ、I型コラーゲンの分解物を分離した。
 次いで、I型コラーゲンの分解物を、常法によりPVDF(Polyvinylidene Difluoride)膜へ転写した。そして、PVDF膜へ転写されたα1鎖の分解物のアミノ末端のアミノ酸配列を、エドマン分解法によって決定した。
 なお、実際のエドマン分析は、アプロサイエンス株式会社、または、近畿大学医学部分析機器共同研究室に依頼して、周知の方法にしたがって行った。
 表5に、ブタ由来のα1鎖の分解物のアミノ末端およびその近傍のアミノ酸配列、および、未分解であるブタ由来のα1鎖の部分構造(塩濃度の欄が「-」であるデータを参照)を示す。
 表5に示すように、システインプロテアーゼの一種であるカテプシンKであっても、塩濃度が高いと、トリプルヘリカルドメインの内側で切断が生じることが明らかになった。
 また、表5に示すように、システインプロテアーゼの一種であるカテプシンKの場合には、複数種類の切断箇所が確認された。
 なお、ニワトリ由来のI型コラーゲンの分解物の場合、ニワトリ由来のα1鎖の分解物は、下記配列番号11および12に対応するニワトリ由来のα1鎖の分解物と、下記配列番号10におけるアミノ末端から数えて10番目の「S」と11番目の「G」との間の化学結合が切断されたものに対応するニワトリ由来のα1鎖の分解物と、が確認された。
Figure JPOXMLDOC01-appb-T000005
 <5.ブタ由来のα1鎖の切断における、透析塩濃度の影響>
 透析チューブにアクチニダインを入れ、当該アクチニダインを、塩化ナトリウムの濃度が2000mMである透析外液に対して透析した。その後、透析外液を蒸留水に変えて透析を続けてアクチニダインを得た。なお、アクチニダインとしては、周知の方法にて精製したものを利用した(例えば、非特許文献2参照)。アクチニダインを活性化するため、10mM ジチオスレイトールを含む50mM リン酸緩衝液(pH6.5)に対し、アクチニダインを溶解し、90分間、25℃にて静置した。
 次いで、塩を含む50mM クエン酸緩衝液(pH3.0)に対し、ブタ由来のI型コラーゲンを溶解した。アクチニダインを含む水溶液と、ブタ由来のI型コラーゲンと、を3日間以上、20℃にて接触させて、I型コラーゲンの分解物を作製した。また、ブタ由来のI型コラーゲンは、周知の方法に基づいて精製した(例えば、非特許文献2参照)。
 上述した分解物をポリアクリルアミドゲル電気泳動にかけ、I型コラーゲンの分解物を分離した。
 次いで、I型コラーゲンの分解物を、常法によりPVDF(Polyvinylidene Difluoride)膜へ転写した。そして、PVDF膜へ転写されたα1鎖の分解物のアミノ末端のアミノ酸配列を、エドマン分解法によって決定した。
 なお、実際のエドマン分析は、アプロサイエンス株式会社、または、近畿大学医学部分析機器共同研究室に依頼して、周知の方法にしたがって行った。
 表6に、透析塩濃度が2000mMの場合のブタ由来のα1鎖の分解物のアミノ末端およびその近傍のアミノ酸配列、および、未分解であるブタ由来のα1鎖の部分構造(塩濃度の欄が「-」であるデータを参照)を示す。
 表6に示すように、透析塩濃度が高いと、トリプルヘリカルドメインの外側あるいは内側で切断が生じることが明らかになった。なお、2000mMの場合、分解物中に含まれる、配列番号26にて示すアミノ酸配列のアミノ末端を有する分解物の量と、配列番号27にて示すアミノ酸配列のアミノ末端を有する分解物の量と、配列番号15にて示すアミノ酸配列のアミノ末端を有する分解物の量と、の比率が、反応時間、反応pH、反応温度などの条件で異なった。
 塩濃度が高いときの切断箇所は、本発明者が見出した新規な切断箇所が含まれていた。
Figure JPOXMLDOC01-appb-T000006
 <6.ヒト由来のα1鎖の切断における、透析塩濃度の影響>
 透析チューブにアクチニダインを入れ、当該アクチニダインを、塩化ナトリウムの濃度が2000mMである透析外液に対して透析した。その後、透析外液を蒸留水に変えて透析を続けてアクチニダインを得た。なお、アクチニダインとしては、周知の方法にて精製したものを利用した(例えば、非特許文献2参照)。アクチニダインを活性化するため、10mM ジチオスレイトールを含む50mM リン酸緩衝液(pH6.5)に対し、アクチニダインを溶解し、90分間、25℃にて静置した。
 次いで、塩を含む50mM クエン酸緩衝液(pH3.5)に対し、ヒト由来のI型コラーゲンを溶解した。アクチニダインを含む水溶液と、ヒト由来のI型コラーゲンと、を10日間以上、20℃にて接触させて、I型コラーゲンの分解物を作製した。また、ヒト由来のI型コラーゲンは、周知の方法に基づいて精製した(例えば、非特許文献2参照)。
 上述した分解物をポリアクリルアミドゲル電気泳動にかけ、I型コラーゲンの分解物を分離した。
 次いで、I型コラーゲンの分解物を、常法によりPVDF(Polyvinylidene Difluoride)膜へ転写した。そして、PVDF膜へ転写されたα1鎖の分解物のアミノ末端のアミノ酸配列を、エドマン分解法によって決定した。
 なお、実際のエドマン分析は、アプロサイエンス株式会社、または、近畿大学医学部分析機器共同研究室に依頼して、周知の方法にしたがって行った。
 表7に示すように、透析塩濃度が高いと、トリプルヘリカルドメインの外側あるいは内側で切断が生じることが明らかになった。なお、2000mMの場合、分解物中に含まれる、配列番号29にて示すアミノ酸配列のアミノ末端を有する分解物の量と、配列番号30にて示すアミノ酸配列のアミノ末端を有する分解物の量と、配列番号16にて示すアミノ酸配列のアミノ末端を有する分解物の量と、の比率が、反応時間、反応pH、反応温度などの条件で異なった。
 塩濃度が高いときの切断箇所は、本発明者が見出した新規な切断箇所が含まれていた。
Figure JPOXMLDOC01-appb-T000007
 <7.魚類由来のα1鎖の切断>
 透析チューブにアクチニダインを入れ、当該アクチニダインを、塩化ナトリウムの濃度が2000mMである透析外液に対して透析した。その後、透析外液を蒸留水に変えて透析を続けてアクチニダインを得た。アクチニダインを活性化するため、10mM ジチオスレイトールを含む50mM リン酸緩衝液(pH6.5)に対し、アクチニダインを溶解し、90分間、25℃にて静置した。
 次いで、塩を含む50mM クエン酸緩衝液(pH3.0)に対し、魚類(具体的には、キハダマグロ)由来のI型コラーゲンを溶解した。アクチニダインを含む水溶液と、魚類由来のI型コラーゲンと、を3日間以上、20℃にて接触させて、I型コラーゲンの分解物を作製した。なお、アクチニダインとしては、上述した<1>の実施例にて用いたものと同じものを用いた。また、魚類由来のI型コラーゲンは、周知の方法に基づいて精製した(例えば、非特許文献2参照)。
 上述した分解物をポリアクリルアミドゲル電気泳動にかけ、I型コラーゲンの分解物を分離した。
 次いで、I型コラーゲンの分解物を、常法によりPVDF(Polyvinylidene Difluoride)膜へ転写した。そして、PVDF膜へ転写されたα1鎖(魚類由来のI型コラーゲン)の分解物のアミノ末端のアミノ酸配列を、エドマン分解法によって決定した。
 なお、実際のエドマン分析は、アプロサイエンス株式会社、または、近畿大学医学部分析機器共同研究室に依頼して、周知の方法にしたがって行った。
 表8に、透析外液の塩濃度が2000mMの場合の、魚類由来のα1鎖の分解物のアミノ末端およびその近傍のアミノ酸配列を示す。なお、表8に示すように、α1鎖(魚類由来のI型コラーゲン)の分解物としては3種類検出され、これらの分解物の各々のアミノ末端のアミノ酸配列として、配列番号18、配列番号19および配列番号31に示すアミノ酸配列を同定することに成功した。
Figure JPOXMLDOC01-appb-T000008
 <8.ヒト由来のα2鎖の切断>
 <4>と同様にカテプシンKを活性化するため、10mM ジチオスレイトールを含む50mM リン酸緩衝液(pH6.5)に対し、カテプシンKを溶解し、45分間、25℃にて静置した。
 次いで、塩を含む50mM リン酸緩衝液(pH6.0)に対し、ヒト由来のI型コラーゲンを溶解した。カテプシンKを含む水溶液と、ヒト由来のI型コラーゲンと、を10日間以上、20℃にて接触させて、I型コラーゲンの分解物を作製した。なお、カテプシンKとしては、上述した<1>の実施例にて用いたものと同じものを用いた。また、ヒト由来のI型コラーゲンは、周知の方法に基づいて精製した(例えば、非特許文献2参照)。
 上述した分解物をポリアクリルアミドゲル電気泳動にかけ、I型コラーゲンの分解物を分離した。
 次いで、I型コラーゲンの分解物を、常法によりPVDF(Polyvinylidene Difluoride)膜へ転写した。そして、PVDF膜へ転写されたα2鎖(ヒト由来のI型コラーゲン)の分解物のアミノ末端のアミノ酸配列を、エドマン分解法によって決定した。
 なお、実際のエドマン分析は、アプロサイエンス株式会社、または、近畿大学医学部分析機器共同研究室に依頼して、周知の方法にしたがって行った。
 表9に、反応液の塩濃度が200mMの場合の、ヒト由来のα2鎖の分解物のアミノ末端およびその近傍のアミノ酸配列を示す。
Figure JPOXMLDOC01-appb-T000009
 <9.ニワトリ由来のα2鎖の切断>
 透析チューブにアクチニダインを入れ、当該アクチニダインを、塩化ナトリウムの濃度が2000mMである透析外液に対して透析した。その後、透析外液を蒸留水に変えて透析を続けてアクチニダインを得た。アクチニダインを活性化するため、10mM ジチオスレイトールを含む50mM リン酸緩衝液(pH6.5)に対し、アクチニダインを溶解し、90分間、25℃にて静置した。
 次いで、塩を含む50mM クエン酸緩衝液(pH3.0)に対し、ニワトリ由来のI型コラーゲンを溶解した。アクチニダインを含む水溶液と、ニワトリ由来のI型コラーゲンと、を7日間以上、20℃にて接触させて、I型コラーゲンの分解物を作製した。なお、アクチニダインとしては、上述した<1>の実施例にて用いたものと同じものを用いた。また、ニワトリ由来のI型コラーゲンは、周知の方法に基づいて精製した(例えば、非特許文献2参照)。
 上述した分解物をポリアクリルアミドゲル電気泳動にかけ、I型コラーゲンの分解物を分離した。
 次いで、I型コラーゲンの分解物を、常法によりPVDF(Polyvinylidene Difluoride)膜へ転写した。そして、PVDF膜へ転写されたα2鎖(ニワトリ由来のI型コラーゲン)の分解物のアミノ末端のアミノ酸配列を、エドマン分解法によって決定した。
 なお、実際のエドマン分析は、アプロサイエンス株式会社、または、近畿大学医学部分析機器共同研究室に依頼して、周知の方法にしたがって行った。
 表10に、透析外液の塩濃度が2000mMの場合の、ニワトリ由来のα2鎖の分解物のアミノ末端およびその近傍のアミノ酸配列を示す。
Figure JPOXMLDOC01-appb-T000010
 表に示すように、異なる種に由来するα1鎖またはα2鎖であっても、塩濃度が高いと、トリプルヘリカルドメインの内側で切断が生じることが明らかになった。塩濃度が高いときの切断箇所は、本発明者が見出した新規な切断箇所であった。
 <10.コラーゲンの分解物の胚様体形成能に関する試験1>
 (培養皿)
 上述したコラーゲンの分解物(上述の透析塩濃度2000mMにおける、ブタ由来のコラーゲンの分解物、すなわち、配列番号26および配列番号27にて示されるアミノ酸配列((1)、(2)および(3)にて示されるアミノ酸配列に相当)を有する分解物の混合物)と接触させた、市販の培養皿を試験に用いた。具体的には、35mm培養皿に10mg/mLのコラーゲンの分解物の水溶液を60μL添加して、培養皿に十分になじませて室温で5時間静置し、コラーゲン分解物コート培養皿とした。
 また、10mg/mLのコラーゲンの分解物の水溶液を、5倍濃縮したDMEM培地(日水製薬社製)と再構成用緩衝液(50mM 水酸化ナトリウム、260mM 炭酸水素ナトリウム、200mM HEPES)とを混合し、この混合液を35mm培養皿に200μL添加して、培養皿に均一になるよう広げてコートして、37℃のインキュベーター内で30分間静置した。これを、コラーゲン分解物ゲル培養皿とした。
 また、35mm培養皿に0.1%ゼラチン溶液を1mL添加して、培養皿に十分になじませて室温で4時間静置した。4時間後にゼラチン溶液を除去して、ゼラチンコート培養皿とした。
 (マウスES細胞)
 山梨大学生命環境学部生命工学科 若山照彦教授から譲渡されたマウスES細胞を使用した。このマウスES細胞は、GFP(green fluorescent protein)標識されており、GFPタンパク質をコードしている遺伝子が染色体中に挿入されているものである。
 (フィーダー細胞の調製)
 マイトマイシン処理したマウス胎児由来線維芽細胞(Murine Embryonic Fibroblasts:MEF)(CMPMEFCF、DSファーマバイオメディカル製)を1×10個/mLに調製した。ゼラチンコート培養皿、コラーゲン分解物コート培養皿、コラーゲン分解物ゲル培養皿に、MEFをそれぞれ7×10個播種して、10%ウシ胎児血清を含むDMEM培地(KnockOutDMEM、サーモフィッシャーサイエンス製)を用いて、37℃、5%COの条件下にて1日間培養した。
 (胚様体の形成)
 500U/mLの白血病抑制因子(Leukemia Inhibitory Factor:LIF、商品番号199-16051、和光純薬工業株式会社)および20%ウシ胎児血清を含むDMEM(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(+))」と称する。)を用いて、マウスES細胞2.5×10個/mLを調製した。あらかじめMEFを播種しておいたゼラチンコート培養皿、コラーゲン分解物コート培養皿、およびコラーゲン分解物ゲル培養皿に、マウスES細胞懸濁液2mLをそれぞれ播種して、DMEM培地(LIF(+))を用いて、37℃、5%COの条件下にて培養した(培養条件:MEF(+)且つLIF(+))。ゼラチンコート培養皿において培養したES細胞を本実験のコントロールとした。なお、実施例において、「MEF(+)」はMEF共存下での培養、「MEF(-)」はMEF非共存下での培養を示す。また、「LIF(+)」はLIF共存下での培養、「LIF(-)」はLIF非共存下での培養を示す。
 培養期間中は、毎日、新しいDMEM培地(LIF(+))と培地を交換した。
 培養開始3日後に、位相差顕微鏡下でES細胞の形態を観察した。各細胞の形態を、図1に示す。図1中、(a)は、ゼラチンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図であり、(b)は、コラーゲン分解物コート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物ゲル培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図である。
 ゼラチンコート培養皿において培養した場合、MEFはゼラチンコート培養皿の底面に接着して伸展していた。その間にES細胞がコロニーを形成していた。一般的なES細胞の培養所見と同じ形態であった(図1の(a))。
 コラーゲン分解物コート培養皿において培養した場合、MEFはコラーゲン分解物コート培養皿の底面に接着していなかった。観察された細胞は浮遊した3次元細胞塊(胚様体)を形成しており、ゼラチンコート培養皿の一般的なES細胞の培養所見とはまったく異なる形態であった(図1の(b))。
 コラーゲン分解物ゲル培養皿において培養した場合、MEFはコラーゲン分解物ゲル培養皿の底面に接着していた。観察された細胞はコラーゲン分解物ゲルに接着して3次元細胞塊(胚様体)を形成していた。ゼラチンコート培養皿の一般的なES細胞の培養所見とはまったく異なる形態であった。コラーゲン分解物ゲルに接着している胚様体から細胞が伸展して別の胚様体に繋がっているようであった(図1の(c))。
 コラーゲン分解物コート培養皿またはコラーゲン分解物ゲル培養皿において培養したES細胞の形態は、ゼラチンコート培養皿において培養したES細胞の形態とは全く異なっていた。ゼラチンコート培養皿において培養したES細胞は、一般的なES細胞のコロニーを形成しただけであったが、コラーゲン分解物コート培養皿において培養したES細胞は、LIF添加にも関わらず、浮遊した胚様体を形成した。つまり、コラーゲン分解物コート培養皿においてES細胞を培養することは、胚様体を形成させる新たな方法となりうることが示された。一方、コラーゲン分解物ゲル培養皿において培養したES細胞は、これまでに観察されていないような胚様体が、LIF存在下で形成された。具体的には、胚様体は、コラーゲン分解物ゲルに接着していることが示された。
 同様の実験を、LIFを含まず且つ20%ウシ胎児血清を含むDMEM培地(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(-))」と称する。)を用いて行った。具体的には、DMEM培地(LIF(-))を用いて、マウスES細胞2.5×10個/mLを調製した。あらかじめMEFを播種しておいたゼラチンコート培養皿、コラーゲン分解物コート培養皿、コラーゲン分解物ゲル培養皿に、マウスES細胞懸濁液2mLをそれぞれ播種して、DMEM培地(LIF(-))を用いて、37℃、5%COの条件下にて培養した(培養条件:MEF(+)且つLIF(-))。ゼラチンコート培養皿において培養したES細胞を本実験のコントロールとした。
 培養期間中は、毎日、新しいDMEM培地(LIF(-))と培地を交換した。
 培養開始3日後に、位相差顕微鏡下でES細胞の形態を観察した。各細胞の形態を、図2に示す。図2中、(a)は、ゼラチンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図であり、(b)は、コラーゲン分解物コート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物ゲル培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図である。
 ゼラチンコート培養皿において培養した場合、MEFはゼラチンコート培養皿の底面に接着して伸展していた。その間にES細胞がコロニーを形成していた。一般的なES細胞の培養所見と同じ形態であった(図2の(a))。
 コラーゲン分解物コート培養皿において培養した場合、MEFはコラーゲン分解物コート培養皿の底面に接着していなかった。観察された細胞は浮遊した3次元細胞塊(胚様体)を形成しており、ゼラチンコート培養皿の一般的なES細胞の培養所見とはまったく異なる形態であった(図2の(b))。
 コラーゲン分解物ゲル培養皿において培養した場合、MEFはコラーゲン分解物ゲル培養皿の底面に接着していた。観察された細胞はコラーゲン分解物ゲルに接着して3次元細胞塊(胚様体)を形成していた。ゼラチンコート培養皿の一般的なES細胞の培養所見とはまったく異なる形態であった。コラーゲン分解物ゲルに接着している胚様体から細胞が伸展して別の胚様体に繋がっているようであった(図2の(c))。
 DMEM培地(LIF(-))を用いてコラーゲン分解物コート培養皿またはコラーゲン分解物ゲル培養皿において培養したES細胞の形態は、ゼラチンコート培養皿において培養したES細胞の形態とは全く異なっていた。しかし、DMEM培地(LIF(+))を用いてコラーゲン分解物コート培養皿またはコラーゲン分解物ゲル培養皿において培養したES細胞と比較して、形態学的な所見に明確な違いはなかった。ゼラチンコート培養皿において培養したES細胞は、一般的なES細胞のコロニーを形成しただけであったが、コラーゲン分解物コート培養皿において培養したES細胞は、LIFを添加していないにも関わらず、浮遊した胚様体を形成した。つまり、コラーゲン分解物コート培養皿においてES細胞を培養することは、胚様体を形成させる新たな方法となりうることが示された。一方、コラーゲン分解物ゲル培養皿において培養したES細胞は、これまでに観察されていないような胚様体が、LIF非存在下で形成された。具体的には、胚様体は、コラーゲン分解物ゲルに接着していることが示された。
 <11.コラーゲンの分解物の胚様体形成能に関する試験2>
 次に、ゼラチンコート培養皿、コラーゲン分解物コート培養皿またはコラーゲン分解物ゲル培養皿において培養したES細胞の未分化能を調べるため、細胞内在性のアルカリ性ホスファターゼ活性を調べた。
 500U/mLのLIFおよび20%ウシ胎児血清を含むDMEM(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(+))」と称する。)を用いて、マウスES細胞2.5×10個/mLを調製した。あらかじめMEFを播種しておいたゼラチンコート培養皿、コラーゲン分解物コート培養皿、およびコラーゲン分解物ゲル培養皿に、マウスES細胞懸濁液2mLをそれぞれ播種して、DMEM培地(LIF(+))を用いて、37℃、5%COの条件下にて培養した(培養条件:MEF(+)且つLIF(+))。ゼラチンコート培養皿において培養したES細胞を本実験のコントロールとした。培養期間中は、毎日、新しいDMEM培地(LIF(+))と培地を交換した。
 2日間培養後に、細胞の培養上清を取り除き、滅菌PBSで洗浄した。引き続き、細胞を固定するために4%パラホルムアルデヒド溶液を細胞が浸るまで加え、室温で30分間静置した。その後、滅菌蒸留水を細胞が浸るまで加えて洗浄する操作を2回繰り返した。洗浄液を取り除いた後、TRACP&ALP double-stain kit(商品コードMK300、タカラバイオ社製)付属のアルカリ性ホスファターゼ染色液を培養皿に250μL加えて37℃で45分間静置した。反応を停止させるため、染色液を取り除いて滅菌蒸留水で3回洗浄した。結果を図3に示す。
 図3は、MEF(+)且つLIF(+)の培養条件において2日間培養したES細胞の細胞内在性のアルカリ性ホスファターゼ活性を調べた結果を示す図であり、図3中、(a)は、ゼラチンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて2日間培養したES細胞のアルカリ性ホスファターゼ活性の有無を示す図であり、(b)は、コラーゲン分解物コート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて2日間培養したES細胞のアルカリ性ホスファターゼ活性の有無を示す図であり、(c)は、コラーゲン分解物ゲル培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて2日間培養したES細胞のアルカリ性ホスファターゼ活性の有無を示す図である。
 コラーゲン分解物コート培養皿およびコラーゲン分解物ゲル培養皿において培養したES細胞から形成された胚様体は、ゼラチンコート培養皿において培養したES細胞のコロニーと同様にアルカリ性ホスファターゼ活性陽性であることが示された(図3の(a)~(c))。一方、共培養しているMEFはアルカリ性ホスファターゼ活性陰性であった。これらの結果は、コラーゲン分解物コート培養皿およびコラーゲン分解物ゲル培養皿において培養したES細胞から形成された胚様体が未分化能を維持していることを示している。
 <12.コラーゲンの分解物の胚様体形成能に関する試験3>
 MEFを播種している培養皿の代わりに、MEFを播種していない培養皿を用いて、同様の実験を、LIFを含み且つ20%ウシ胎児血清を含むDMEM培地(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(+))」と称する。)を用いて行った。具体的には、DMEM培地(LIF(+))を用いて、マウスES細胞2.5×10個/mLを調製した。MEFを播種していないゼラチンコート培養皿、コラーゲン分解物コート培養皿、コラーゲン分解物ゲル培養皿に、マウスES細胞懸濁液2mLをそれぞれ播種して、DMEM培地(LIF(+))を用いて、37℃、5%COの条件下にて培養した(培養条件:MEF(-)且つLIF(+))。ゼラチンコート培養皿において培養したES細胞を本実験のコントロールとした。
 培養期間中は、毎日、新しいDMEM培地(LIF(+))と培地を交換した。
 培養開始3日後に、位相差顕微鏡下でES細胞の形態を観察した。各細胞の形態を、図4に示す。図4中、(a)は、ゼラチンコート培養皿において、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図であり、(b)は、コラーゲン分解物コート培養皿において、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物ゲル培養皿において、DMEM培地(LIF(+))を用いて3日間培養したES細胞の形態を示す図である。
 ゼラチンコート培養皿において培養した場合、ES細胞が単層に広がり、コロニー形成している細胞と単一で接着している細胞とを区別して観察した。細胞突起を示す形態を示す細胞も存在していた。一般的なES細胞のMEF共存下且つLIF存在下の培養所見(図1(a))と比べてコロニーの数が少なく大きさが小さく、それぞれの細胞が判別できる程度の細胞間接着であることが示された(図4の(a))。
 コラーゲン分解物コート培養皿において培養した場合、観察されたES細胞は接着もしくは浮遊した3次元細胞塊(胚様体)を形成しており(図4の(b))、ゼラチンコート培養皿の一般的なES細胞の培養所見(図4の(a))とはまったく異なる形態であった。どちらかと言えば、浮遊している胚様体の割合が多かった。
 コラーゲン分解物ゲル培養皿において培養した場合、観察されたES細胞はコラーゲン分解物ゲルに接着もしくは浮遊した3次元細胞塊(胚様体)を形成していた。ゼラチンコート培養皿の一般的なES細胞の培養所見とはまったく異なる形態であった。コラーゲン分解物ゲルに接着している胚様体の方が、浮遊している胚様体より比較的大きかった。(図4の(c))。
 MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いてコラーゲン分解物コート培養皿またはコラーゲン分解物ゲル培養皿において培養したES細胞の形態は、ゼラチンコート培養皿において培養したES細胞の形態とは全く異なっていた。しかし、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いてコラーゲン分解物コート培養皿またはコラーゲン分解物ゲル培養皿において培養したES細胞と比較して、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いてコラーゲン分解物コート培養皿またはコラーゲン分解物ゲル培養皿において培養したES細胞の形態は、大きさや形に多少の違いが観察されたが、明確な違いはなかった。MEF(-)且つLIF(+)の培養条件で、ゼラチンコート培養皿において培養したES細胞は、一般的なES細胞のコロニーを形成するか、あるいは単一の接着細胞であった。特筆すべきは、MEF(-)且つLIF(+)の培養条件でコラーゲン分解物コート培養皿において培養したES細胞は、MEFを共培養していないにも関わらず、胚様体を形成した。つまり、コラーゲン分解物コート培養皿においてES細胞を培養することは、胚様体を形成させる新たな方法となりうることが示された。同様に、MEF(-)且つLIF(+)の培養条件でコラーゲン分解物ゲル培養皿において培養したES細胞は、これまでに観察されていないような胚様体が、MEF非存在下で形成された。具体的には、MEF(-)且つLIF(+)の培養条件でコラーゲン分解物ゲル培養皿において培養したES細胞から形成された胚様体は、コラーゲン分解物ゲルに接着あるいは浮遊していることが示された。
 <13.コラーゲンの分解物の胚様体形成能に関する試験4>
 MEFを播種している培養皿の代わりに、MEFを播種していない培養皿を用いて、同様の実験を、LIFを含まない20%ウシ胎児血清を含むDMEM培地(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(-))」と称する。)を用いて行った。具体的には、DMEM培地(LIF(-))を用いて、マウスES細胞2.5×10個/mLを調製した。MEFを播種していないゼラチンコート培養皿、コラーゲン分解物コート培養皿、コラーゲン分解物ゲル培養皿に、マウスES細胞懸濁液2mLをそれぞれ播種して、DMEM培地(LIF(-))を用いて、37℃、5%COの条件下にて培養した(培養条件:MEF(-)且つLIF(-))。ゼラチンコート培養皿において培養したES細胞を本実験のコントロールとした。
 培養期間中は、毎日、新しいDMEM培地(LIF(-))と培地を交換した。
 培養開始3日後に、位相差顕微鏡下でES細胞の形態を観察した。各細胞の形態を、図5に示す。図5中、(a)は、ゼラチンコート培養皿において、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図であり、(b)は、コラーゲン分解物コート培養皿において、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物ゲル培養皿において、DMEM培地(LIF(-))を用いて3日間培養したES細胞の形態を示す図である。
 ゼラチンコート培養皿において培養した場合、ES細胞が単層に広がり、コロニー形成している細胞と単一で接着している細胞とを区別して観察した。細胞突起を示す形態を示す細胞も存在していた。一般的なES細胞のMEF共存下且つLIF存在下の培養所見(図1(a))と比べてコロニーの数が少なく大きさが小さく、それぞれの細胞が判別できる程度の細胞間接着であることが示された(図5の(a))。
 コラーゲン分解物コート培養皿において培養した場合、観察されたES細胞は接着もしくは浮遊した3次元細胞塊(胚様体)を形成しており(図5の(b))、ゼラチンコート培養皿の一般的なES細胞の培養所見(図5の(a))とはまったく異なる形態であった。どちらかと言えば、浮遊している胚様体の割合が多かった。
 コラーゲン分解物ゲル培養皿において培養した場合、観察されたES細胞はコラーゲン分解物ゲルに接着もしくは浮遊した3次元細胞塊(胚様体)を形成していた。ゼラチンコート培養皿の一般的なES細胞の培養所見とはまったく異なる形態であった。コラーゲン分解物ゲルに接着している胚様体の方が、浮遊している胚様体より比較的大きかった。(図5の(c))。
 MEF非共存下(MEF(-))で、DMEM培地(LIF(-))を用いてコラーゲン分解物コート培養皿またはコラーゲン分解物ゲル培養皿において培養したES細胞の形態は、ゼラチンコート培養皿において培養したES細胞の形態とは全く異なっていた。しかし、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いてコラーゲン分解物コート培養皿(図1(b))またはコラーゲン分解物ゲル培養皿(図1(c))において培養したES細胞と比較して、MEF非共存下(MEF(-))で、DMEM培地(LIF(-))を用いてコラーゲン分解物コート培養皿またはコラーゲン分解物ゲル培養皿において培養したES細胞の形態は、大きさや形に多少の違いが観察されたが、明確な違いはなかった。MEF(-)且つLIF(-)の培養条件で、ゼラチンコート培養皿において培養したES細胞は、一般的なES細胞のコロニーを形成するか、あるいは単一の接着細胞であった。特筆すべきは、MEF(-)且つLIF(-)の培養条件でコラーゲン分解物コート培養皿において培養したES細胞は、MEFを共培養していないにも関わらず、胚様体を形成した。つまり、コラーゲン分解物コート培養皿においてES細胞を培養することは、胚様体を形成させる新たな方法となりうることが示された。同様に、MEF(-)且つLIF(-)の培養条件でコラーゲン分解物ゲル培養皿において培養したES細胞は、これまでに観察されていないような胚様体が、MEF非存在下で形成された。具体的には、MEF(-)且つLIF(-)の培養条件でコラーゲン分解物ゲル培養皿において培養したES細胞から形成された胚様体は、コラーゲン分解物ゲルに接着あるいは浮遊していることが示された。
 <14.コラーゲンの分解物の胚様体形成能に関する試験5>
 次に、得られた胚様体がES細胞のみから成るか否かをGFP発現ES細胞を培養して確認した。具体的には、500U/mLのLIFおよび20%ウシ胎児血清を含むDMEM(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(+))」と称する。)を用いて、マウスES細胞2.5×10個/mLを調製した。あらかじめMEFを播種しておいたゼラチンコート培養皿、またはコラーゲン分解物ゲル培養皿に、マウスES細胞懸濁液2mLをそれぞれ播種して、DMEM培地(LIF(+))を用いて、37℃、5%COの条件下にて4日間培養した(培養条件:MEF(+)且つLIF(+))。ゼラチンコート培養皿において培養したES細胞を本実験のコントロールとした。
 さらに、LIFを含まず20%ウシ胎児血清を含むDMEM(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(-))」と称する。)を用いて、マウスES細胞2.5×10個/mLを調製した。あらかじめMEFを播種しておいたコラーゲン分解物ゲル培養皿に、マウスES細胞懸濁液2mLを播種して、DMEM培地(LIF(-))を用いて、37℃、5%COの条件下にて4日間培養した(培養条件:MEF(+)且つLIF(-))。
 4日間培養後に、それぞれの培養条件で培養して得られた細胞の核を、Cellstain(登録商標)-Hoechst 33342 solution(品番H342、株式会社 同仁化学研究所)を用いて染色した。
 結果を図6~図8に示す。図6は、MEF(+)且つLIF(+)の培養条件において、ゼラチンコート培養皿において4日間培養したES細胞を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察したES細胞の形態を示す図であり、(b)は、(a)に示したES細胞のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は、(a)に示したES細胞をHoechst 33342染色し、蛍光顕微鏡下で観察した結果を示す図であり、(d)は、(a)、(b)および(c)の画像を重ね合せた結果を示す図である。また、図7は、MEF(+)且つLIF(+)の培養条件においてコラーゲン分解物ゲル培養皿においてES細胞を4日間培養した後に得られた胚様体を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した胚様体の形態を示す図であり、(b)は、(a)に示した胚様体のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は、(a)に示した胚様体をHoechst 33342染色し、蛍光顕微鏡下で観察した結果を示す図であり、(d)は、(a)、(b)および(c)の画像を重ね合せた結果を示す図である。また、図8は、MEF(+)且つLIF(-)の培養条件においてコラーゲン分解物ゲル培養皿においてES細胞を4日間培養した後に得られた胚様体を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した胚様体の形態を示す図であり、(b)は、(a)に示した胚様体のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は、(a)に示した胚様体をHoechst 33342染色し、蛍光顕微鏡下で観察した結果を示す図であり、(d)は、(a)、(b)および(c)の画像を重ね合せた結果を示す図である。
 その結果、MEF(+)且つLIF(+)の培養条件においてゼラチンコート培養皿においてES細胞を培養した場合、GFP陽性のES細胞が単層に広がり、コロニー形成することが確認できた(図6の(a)~(d))。
 また、MEF共存下(MEF(+))で、DMEM培地(LIF(+))またはDMEM培地(LIF(-))を用いて、ES細胞をコラーゲン分解物ゲル培養皿において培養した場合、観察されたGFP陽性のES細胞は、コラーゲン分解物ゲルに接着した3次元細胞塊(胚様体)を形成していた。ゼラチンコート培養皿の一般的なES細胞の培養所見とはまったく異なる形態であった。胚様体以外の細胞はGFP陰性であることから、胚様体以外の細胞はMEFであると推察された(図7の(a)~(d)および図8の(a)~(d))。また、図8の(a)中の破線で囲った箇所は、コラーゲンと、細胞からの分泌物であると推察された。
 以上の結果から、培養液中のLIFの有無に関わらず、MEF共存下においてコラーゲン分解物ゲル培養皿において形成された胚様体は、ES細胞由来であることが示された。
 <15.コラーゲンの分解物の胚様体形成能に関する試験6>
 (ヒトiPS細胞)
 京都大学 山中伸弥教授の研究室が樹立したヒトiPS細胞(201B7株、RIKEN BRC)を使用した。該iPS細胞株は、染色体解析ですべての細胞が46XXで染色体異常は認められないものである。
 (コラーゲン分解物コート培養皿の作製)
 ブタ由来のコラーゲンの分解物を10mg/mLに調製し、6-well plateに50μLコートして3時間静置した。なお、コラーゲンの分解物としては上述したコラーゲンの分解物(塩濃度0mMにおける、ブタ由来のコラーゲンの分解物のうち、配列番号2にて示されるアミノ酸配列((3)にて示されるアミノ酸配列に相当)を有する分解物)を用いた。対照群1として、Vitronectin(サーモフィッシャーサイエンティフィック株式会社)をD-PBSで100倍に希釈したものを6-well plateの1ウエルに1mLを加え、1時間以上静置した。対照群2として、iMatrix511(株式会社ニッピ)を0.5μg/cmになるようにコートした。
 (ヒトiPS細胞の胚様体形成)
 ヒトiPS細胞はiPS細胞専用のNutriStem培地(コスモバイオ株式会社)を用いて1.0×10個に調整し、上記で作製した培養皿に播種した。培養は、37℃、5%COの条件下にて5日間行った。培養期間中は、毎日、新しいNutriStem培地と交換した。
 培養開始1日後および5日後に、位相差顕微鏡下でiPS細胞の形態を観察した。各細胞の形態を、図9および図10に示す。図9中、(a)は、コラーゲン分解物コート培養皿において、1日間培養したiPS細胞の形態を示す図であり、(b)は、Vitronectinコート培養皿において、1日間培養したiPS細胞の形態を示す図であり、(c)は、iMatrix511コート培養皿において、1日間培養したiPS細胞の形態を示す図である。図10中、(a)は、コラーゲン分解物コート培養皿において、5日間培養したiPS細胞の形態を示す図であり、(b)は、Vitronectinコート培養皿において、5日間培養したiPS細胞の形態を示す図であり、(c)は、iMatrix511コート培養皿において、5日間培養したiPS細胞の形態を示す図である。
 コラーゲン分解物コート培養皿において培養した場合、1日培養後ではiPS細胞が集まっている様子が観察された。また5日培養後では胚様体を形成していた(図9の(a)および図10の(a))。
 Vitronectinコート培養皿において培養した場合、一般的なiPS細胞の培養所見と同じ形態であった。つまり、1日培養後ではiPS細胞は培養皿底面に個々に接着し、単層培養の細胞形態であった。5日培養後ではiPS細胞は過増殖状態となり、培養皿底面の全てに接着していることが示された(図9の(b)および図10の(b))。
 iMatrix511コート培養皿において培養した場合、iPS細胞は培養皿の底面に接着していた。培養1日後および培養5日後の観察像は、Vitronectinコート培養皿の一般的なiPS細胞の培養所見と同様な形態であった。
 コラーゲン分解物コート培養皿において培養したiPS細胞の形態は、Vitronectinコート培養皿またはiMatrix511コート培養皿において培養したiPS細胞の形態とは全く異なっていた。Vitronectinコート培養皿において培養したiPS細胞は、一般的なiPS細胞の増殖を示しただけであったが、コラーゲン分解物コート培養皿において培養したiPS細胞は、LIFなどを添加しないにも関わらず、胚様体を形成した。つまり、コラーゲン分解物コート培養皿においてiPS細胞を培養することは、胚様体を形成させる新たな方法となりうることが示された。
 <16.コラーゲンの分解物の胚様体形成能に関する試験7>
 (塩基性線維芽細胞増殖因子を含まない培地でのiPS細胞の培養)
 <15>と同様の実験を、塩基性線維芽細胞増殖因子(bFGF)を含まない培地を用いて培養12日目まで延長して胚様体の形態を観察した。すなわち、ヒトiPS細胞およびコラーゲン分解物としては、<15>と同様のものを用いた。
 (コラーゲン分解物コート培養皿の作製)
 コラーゲン分解物を10mg/mLに調製し、6-well plateに50μLコートして3時間静置した。対照群として、プラスチック表面を2-メタクリロイルオキシエチルホスホリルコリンモノマーで加工したLipdure(日油株式会社)を用いた。iPS細胞はLipdure培養皿で培養すると、浮遊した胚様体を形成することが広く知られる。
 (ヒトiPS細胞の胚様体形成)
 ヒトiPS細胞はiPS細胞専用のNutriStem培地(コスモバイオ株式会社)を用いて3.0×10個に調整し、上記で作製した培養皿に播種した。培養は、37℃、5%COの条件下にて12日間行った。培養期間中は、培養4日目まで毎日、新しいNutriStem培地と半量交換した。培養5日目以降は、塩基性線維芽細胞増殖因子(bFGF)を含まないiPS細胞専用培地であるhiPS mediumを用いて隔日に半量交換した。
 培養開始4日後および12日後に、位相差顕微鏡下でiPS細胞の形態を観察した。各細胞の4日後および12日後の形態を、それぞれ図11および図12に示す。図11中、(a)は、コラーゲン分解物コート培養皿において、4日間培養したiPS細胞の形態を示す図であり、(b)は、Lipidure培養皿において、4日間培養したiPS細胞の形態を示す図である。図12の(a)は、コラーゲン分解物コート培養皿において、12日間培養したiPS細胞の形態を示す図であり、図12の(b)は、Lipidure培養皿において、12日間培養したiPS細胞の形態を示す図である。
 コラーゲン分解物コート培養皿において培養した場合、4日培養後ではiPS細胞が胚様体を形成する様子が観察された(図11の(a))。さらにbFGFを含まない専用培地で12日目まで培養した結果、胚様体が維持されていることが示された(図12の(a))。
 Lipidure培養皿において4日間培養した場合、一般的なiPS細胞の培養所見と同じく浮遊した胚様体が示された(図11の(b))。さらにbFGFを含まない専用培地で12日目まで培養した結果、胚様体が巨大化していることが示された(図12の(b))。
 コラーゲン分解物コート培養皿を用いたヒトiPS細胞の胚様体形成は、Lipidure培養皿のヒトiPS細胞の胚様体形成と比べて、培養皿底面に接着していることから培地交換が容易であるという利点が明らかになった。Lipidure培養皿は培地交換する際に吸引による細胞の誤損出が起こりやすい。また、Lipidure培養皿から回収した胚様体は、培地交換での遠心作業中に胚様体同士が接触して巨大化することが危惧された。一方、コラーゲン分解物コート培養皿では、そのような問題が起こりにくいことが分かった。さらに、bFGFを含まない専用培地で培養してもコラーゲン分解物コート培養皿で形成したiPS細胞の胚様体は崩壊しないことが明らかになった。
 コラーゲン分解物コート培養皿において培養したヒトiPS細胞の胚様体は、Lipidure培養皿でのヒトiPS細胞と比較して、形態学的な所見に明確な違いは明確ではなかった。つまり、コラーゲン分解物コート培養皿においてヒトiPS細胞の胚様体を培養することは、胚様体を維持させる新たな方法となりうることが示された。
 <17.コラーゲンの分解物の胚様体の分化誘導に関する試験>
 次に、コラーゲンの分解物を用いて得られたマウスES細胞の胚様体を、分化誘導できることを確認した。具体的には、LIFを含まないEB専用培地(DMEM培地に20%ウシ胎児血清、1mM MEM Sodium Pyruvate Solution、1/100希釈MEM Non Essential Amino Acid Solition、10μM β-メルカプトエタノールを添加した培地)(以下、「EB培地」と称する)を用いて、マウスES細胞5.0×10個/wellを調製した。次に、あらかじめ上記と同じ手法で調整した12-well plateのコラーゲン分解物コート培養皿、またはLipidure培養皿を用意し、マウスES細胞懸濁液をそれぞれ播種した。EB培地を用いて、37℃、5%COの条件下にて15日間培養した。培地は培養2日後以降、毎日、新しいEB培地に交換した。ゼラチンコート培養皿において培養した播種前のES細胞を本実験のコントロールとした。
 (マウスES細胞の胚様体からのRNAの抽出)
 15日間培養後に、それぞれの培養条件で培養して得られたマウスES細胞の胚様体を遠心により集め、それぞれのRNAを、total RNA精製用バッファーのLysis Buffer RA1(タカラバイオ株式会社)およびβ-メルカプトエタノールと混合し、さらに70%エタノールを加えてよく混ぜた。得られた溶液をRNA精製用スピンカラムにて遠心してゲルに吸着させ、洗浄し、さらにDNase処理してカラムから溶出させることで、各培養皿の胚様体のtotal RNAを精製した。
 (マウスES細胞の胚様体からのRNAのcDNAの調製)
 常法により、タカラバイオ株式会社製のPrimeScript RT Master Mix (Perfect Real Time)を用いて、total RNAを鋳型として、RT-PCR法によりcDNAを合成した。反応後のcDNA溶液は-20℃もしくは-80℃で次の実験まで保存した。
 (マウスES細胞の胚様体のRNAの解析)
 分化に与えるコラーゲン分解物を用いた培養の影響を調べるため、以下の3つの分化マーカーのRNA発現量を調べた。中内胚葉、内胚葉および中胚葉への分化に関与するGATA4(GATA Binding Protein 4)、内胚葉系の肝細胞に特異的なAFP(αフェトプロテイン)、心筋前駆細胞に特異的なNKX2.5(NK-2 transcription factor related,locus 5)のプライマーを用いて、RNA発現量を定量化した。上記で得られたcDNAを鋳型として、各プライマー、SYBR Fast qPCR Mixなどの試薬と適量の超純水などとを混合し、Thermal Cycler Dice Real Time System (タカラバイオ株式会社)を用いて、常法により定量RT-PCRを行った。
 RT-PCRの結果から得られた発現量の最大値を100として、各マーカーの相対発現量をレーダーチャート化したものを図13に示す。コラーゲン分解物コート培養皿で形成したマウスES細胞の胚様体は、NKX2.5の相対発現量が低いがGATA4とAFPの相対発現量が高いことが明らかになった(図13の(a))。Lipidure培養皿で形成した胚様体のRNA相対発現量は、コラーゲン分解物コート培養皿の胚様体のそれと同様であった(図13の(b))。一方、コントロールであるゼラチンコート培養皿のマウスES細胞では、逆に、NKX2.5の相対発現量がGATA4およびAFPより高いことが示された(図13の(c))。つまり、コラーゲン分解物コート培養皿の胚様体は、Lipidure培養皿の胚様体と同様にES細胞の分化に大きく影響することが明らかになった。ゼラチンコート培養皿の細胞の結果と正反対になることは、胚様体特有の分化誘導に適していることを示している。
 ES細胞やiPS細胞の分化誘導は胚様体を経ることが必須で、胚様体形成後に適切な分化誘導条件を満たすことが重要である。よって、コラーゲン分解物コート培養皿の胚様体も十分に分化誘導する能力を有していることが証明された。従来法のLipidure培養皿の胚様体は浮遊しているので大きな凝集塊を形成しやすい。そのため、Lipidure培養皿でのES細胞およびiPS細胞の分化は、分化の質に大きく影響する。一方、コラーゲン分解物コート培養皿の胚様体は、分化の再現性および質を向上させることが可能となる。
 <18.コラーゲンの分解物の胚様体形成能に関する試験8>
 (培養皿)
 上述したコラーゲンの分解物(ブタ皮部由来のI型コラーゲンの分解物(配列番号27)、あるいはラット腱由来のI型コラーゲンの分解物(配列番号24と配列番号5との混合物)、あるいはブタ皮部由来のI型コラーゲンの分解物(配列番号26))と接触させた、市販の培養皿を試験に用いた。具体的には、35mm培養皿にコラーゲン分解物の濃度(ブタ皮部由来のI型コラーゲンの分解物(配列番号27)は3.2mg/mLから9.6mg/mL、ラット腱由来のI型コラーゲンの分解物(配列番号24と配列番号5との混合物)は2.8mg/mLから8.4mg/mL、ブタ皮部由来のI型コラーゲンの分解物(配列番号26)は3.3mg/mL)を変えて添加し、培養皿に十分になじませて室温で5時間静置し、コラーゲン分解物コート培養皿とした。
 (マウスES細胞)
 山梨大学生命環境学部生命工学科 若山照彦教授から譲渡されたマウスES細胞を使用した。このマウスES細胞は、GFP(green fluorescent protein)標識されており、GFPタンパク質をコードしている遺伝子が染色体中に挿入されているものである。
 (フィーダー細胞の調製)
 マイトマイシン処理したマウス胎児由来線維芽細胞(Murine Embryonic Fibroblasts:MEF)(CMPMEFCF、DSファーマバイオメディカル製)を6.1×10個/mLに調製した。ゼラチンコート培養皿、アテロコラーゲンコート培養皿(ブタ腱由来ペプシン可溶化I型コラーゲン、COL 1、旭テクノグラス社製)、コラーゲン分解物コート培養皿に、MEFをそれぞれ1.2×10個播種して、10%ウシ胎児血清を含むDMEM培地(DMEM、日水製薬株式会社製)を用いて、37℃、5%COの条件下にて1日間培養した。
 (胚様体の形成)
 500U/mLの白血病抑制因子(Leukemia Inhibitory Factor:LIF)および20%ウシ胎児血清を含むDMEM(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(+))」と称する。)を用いて、マウスES細胞2.5×10個/mLを調製した。あらかじめMEFを播種しておいたゼラチンコート培養皿、アテロコラーゲンコート培養皿、コラーゲン分解物コート培養皿に、マウスES細胞をそれぞれ5.0×10個/cm播種して、DMEM培地(LIF(+))を用いて、37℃、5%COの条件下にて培養した(培養条件:MEF(+)且つLIF(+))。ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養したES細胞を本実験のコントロールとした。なお、実施例において、「MEF(+)」はMEF共存下での培養を示す。また、「LIF(+)」はLIF共存下での培養を示す。
 培養開始1日後に、位相差顕微鏡下でES細胞の形態を観察した。各細胞の形態を、図14に示す。図14中、(a)は、ゼラチンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(b)は、アテロコラーゲンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号27)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(d)は、コラーゲン分解物コート培養皿(ラット腱由来、配列番号24と配列番号5との混合物)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(e)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号26)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図である。ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養した場合、MEFはゼラチンコート培養皿の底面に接着して伸展していた。その間にES細胞がコロニーを形成していた。一般的なES細胞の培養所見と同じ形態であった(図14の(a)および(b))。
 コラーゲン分解物コート培養皿において培養した場合、ES細胞は3次元細胞塊(胚様体)を形成しており、ゼラチンコート培養皿およびアテロコラーゲンコート培養皿の一般的なES細胞の培養所見とはまったく異なる形態であった(図14の(c)~(e))。またMEFはコラーゲン分解物コート培養皿の底面に接着していたが、ゼラチンコート培養皿およびアテロコラーゲンコート培養皿のように底面全体に伸展せず、ES細胞の胚様体の底面で主にコラーゲンと接着していた。
 コラーゲン分解物コート培養皿において培養したES細胞の形態は、ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養したES細胞の形態とは全く異なっていた。ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養したES細胞は、一般的なES細胞のコロニーを形成しただけであったが、コラーゲン分解物コート培養皿において培養したES細胞は、接着した胚様体を形成した。つまり、コラーゲン分解物の動物種(例えば、ブタ、ラット)、由来部位(例えば、皮部と腱)およびN末端切断部位(例えば、配列番号26、配列番号27、配列番号24、配列番号5)に関わらず、コラーゲン分解物コート培養皿においてES細胞を培養することは、胚様体を形成させる新たな方法となりうることが示された。
 <19.コラーゲンの分解物の胚様体形成能に関する試験9>
 ゼラチンコート培養皿、アテロコラーゲンコート培養皿、コラーゲン分解物コート培養皿において培養したES細胞の未分化能を調べるため、細胞内在性のアルカリ性ホスファターゼ活性を調べた。
 (培養皿)
 上述したコラーゲンの分解物(ブタ皮部由来のI型コラーゲンの分解物(配列番号27)、あるいはラット腱由来のI型コラーゲンの分解物(配列番号24と配列番号5との混合物)、あるいはブタ皮部由来のI型コラーゲンの分解物(配列番号26))と接触させた、市販の培養皿を試験に用いた。具体的には、35mm培養皿にコラーゲン分解物の濃度(ブタ皮部由来のI型コラーゲンの分解物(配列番号27)は3.2mg/mLから9.6mg/mL、ラット腱由来のI型コラーゲンの分解物(配列番号24と配列番号5との混合物)は2.8mg/mLから8.4mg/mL、ブタ皮部由来のI型コラーゲンの分解物(配列番号26)は3.3mg/mL)を変えて添加し、培養皿に十分になじませて室温で5時間静置し、コラーゲン分解物コート培養皿とした。
 (胚様体の形成)
 500U/mLのLIFおよび20%ウシ胎児血清を含むDMEM(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(+))」と称する。)を用いて、2.5×10個/mLを調製した。あらかじめMEFを播種しておいたゼラチンコート培養皿、アテロコラーゲンコート培養皿、コラーゲン分解物コート培養皿に、マウスES細胞をそれぞれ5.0×10個/cm播種して、DMEM培地(LIF(+))を用いて、37℃、5%COの条件下にて培養した(培養条件:MEF(+)且つLIF(+))。ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養したES細胞を本実験のコントロールとした。
 1日間培養後に、細胞の培養上清を取り除き、滅菌PBSで洗浄した。引き続き、細胞を固定するために4%パラホルムアルデヒド溶液を細胞が浸るまで加え、室温で30分間静置した。その後、滅菌蒸留水を細胞が浸るまで加えて洗浄する操作を2回繰り返した。洗浄液を取り除いた後、TRACP&ALP double-stain kit(商品コードMK300、タカラバイオ社製)付属のアルカリ性ホスファターゼ染色液を培養皿に加えて37℃で45分間静置した。反応を停止させるため、染色液を取り除いて滅菌蒸留水で3回洗浄した。結果を図15に示す。
 図15は、MEF(+)且つLIF(+)の培養条件において1日間培養したES細胞の細胞内在性のアルカリ性ホスファターゼ活性を調べた結果を示す図であり、図15中、(a)は、ゼラチンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ染色の結果を示す図であり、(b)は、アテロコラーゲンコート培養皿において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ染色の結果を示す図であり、(c)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号27)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ染色の結果を示す図であり、(d)は、コラーゲン分解物コート培養皿(ラット腱由来、配列番号24と配列番号5との混合物)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ染色の結果を示す図であり、(e)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号26)において、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ染色の結果を示す図である。
 コラーゲン分解物コート培養皿おいて培養したES細胞から形成された胚様体は、ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養したES細胞のコロニーと同様にアルカリ性ホスファターゼ活性陽性であることが示された(図15の(c)~(e))。一方、共培養しているMEFはアルカリ性ホスファターゼ活性陰性であった。これらの結果は、コラーゲン分解物の動物種(例えば、ブタ、ラット)、由来部位(例えば、皮部と腱)およびN末端切断部位(例えば、配列番号26、配列番号27、配列番号24、配列番号5)に関わらず、コラーゲン分解物コート培養皿において培養したES細胞から形成された胚様体が未分化能を維持していることを示している。
 <20.コラーゲンの分解物の胚様体形成能に関する試験10>
 次に、GFP発現ES細胞を培養して得られた胚様体がES細胞のみから成るか否かを確認した。
 (培養皿)
 上述したコラーゲンの分解物(ブタ皮部由来のI型コラーゲンの分解物(配列番号27)、あるいはラット腱由来のI型コラーゲンの分解物(配列番号24と配列番号5との混合物)、あるいはブタ皮部由来のI型コラーゲンの分解物(配列番号26))と接触させた、市販の培養皿を試験に用いた。具体的には、35mm培養皿にコラーゲン分解物の濃度(ブタ皮部由来のI型コラーゲンの分解物(配列番号27)は3.2mg/mLから9.6mg/mL、ラット腱由来のI型コラーゲンの分解物(配列番号24と配列番号5との混合物)は2.8mg/mLから8.4mg/mL、ブタ皮部由来のI型コラーゲンの分解物(配列番号26)は3.3mg/mL)を変えて添加し、培養皿に十分になじませて室温で5時間静置し、コラーゲン分解物コート培養皿とした。
 (胚様体の形成)
 具体的には、500U/mLのLIFおよび20%ウシ胎児血清を含むDMEM(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(+))」と称する。)を用いて、2.5×10個/mLを調製した。あらかじめMEFを播種しておいたゼラチンコート培養皿、コラーゲン分解物コート培養皿に、マウスES細胞をそれぞれ5.0×10個/cm播種して、DMEM培地(LIF(+))を用いて、37℃、5%COの条件下にて培養した(培養条件:MEF(+)且つLIF(+))。ゼラチンコート培養皿において培養したES細胞を本実験のコントロールとした。
 結果を図16~図19に示す。図16は、MEF(+)且つLIF(+)の培養条件において、ゼラチンコート培養皿においてGFP遺伝子を内在したES細胞を1日間培養した後に得られたコロニーを、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した上記コロニーの形態を示す図であり、(b)は、(a)に示した上記コロニーのGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は、(a)および(b)の画像を重ね合せた結果を示す図である。また、図17は、MEF(+)且つLIF(+)の培養条件においてコラーゲン分解物コート培養皿(ブタ皮部由来、配列番号27)においてGFP遺伝子を内在したES細胞を1日間培養した後に得られた胚様体を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した上記胚様体の形態を示す図であり、(b)は、(a)に示した上記胚様体のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は、(a)および(b)の画像を重ね合せた結果を示す図である。また、図18は、MEF(+)且つLIF(+)の培養条件においてコラーゲン分解物コート培養皿(ラット腱由来、配列番号24と配列番号5との混合物)においてGFP遺伝子を内在したES細胞を1日間培養した後に得られた胚様体を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した上記胚様体の形態を示す図であり、(b)は、(a)に示した上記胚様体のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は、(a)および(b)の画像を重ね合せた結果を示す図である。また、図19は、MEF(+)且つLIF(+)の培養条件においてコラーゲン分解物コート培養皿(ブタ皮部由来、配列番号26)においてGFP遺伝子を内在したES細胞を1日間培養した後に得られた胚様体を、顕微鏡下で観察した結果を示す図であり、(a)は、位相差顕微鏡下で観察した上記胚様体の形態を示す図であり、(b)は、(a)に示した上記胚様体のGFPの蛍光を蛍光顕微鏡下で観察した結果を示す図であり、(c)は、(a)および(b)の画像を重ね合せた結果を示す図である。
 その結果、MEF(+)且つLIF(+)の培養条件においてゼラチンコート培養皿においてES細胞を培養した場合、GFP陽性のES細胞が単層に広がり、コロニー形成することが確認できた(図16の(a)~(c))。
 また、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いて、ES細胞をコラーゲン分解物コート培養皿において培養した場合、観察されたGFP陽性のES細胞は、コラーゲン分解物コートに接着した3次元細胞塊(胚様体)を形成していた。これは、ゼラチンコート培養皿の一般的なES細胞の培養所見とはまったく異なる形態であった。胚様体以外の細胞はGFP陰性であることから、胚様体以外の細胞はMEFであると推察された(図17の(a)~(c)、図18の(a)~(c)および図19の(a)~(c))。
 以上の結果から、コラーゲン分解物の動物種(例えば、ブタ、ラット)、由来部位(例えば、皮部と腱)およびN末端切断部位(例えば、配列番号26、配列番号27、配列番号24、配列番号5)に関わらず、MEF共存下においてコラーゲン分解物コート培養皿において形成された胚様体は、ES細胞由来であることが示された。
 <21.コラーゲンの分解物の胚様体形成能に関する試験11>
 (培養皿)
 上述したコラーゲンの分解物(ブタ皮部由来のI型コラーゲンの分解物(配列番号27)、あるいはラット腱由来のI型コラーゲンの分解物(配列番号24と配列番号5との混合物)、あるいはブタ皮部由来のI型コラーゲンの分解物(配列番号26))と接触させた、市販の培養皿を試験に用いた。具体的には、35mm培養皿にコラーゲン分解物の濃度(ブタ皮部由来のI型コラーゲンの分解物(配列番号27)は3.2mg/mLから9.6mg/mL、ラット腱由来のI型コラーゲンの分解物(配列番号24と配列番号5との混合物)は2.8mg/mLから8.4mg/mL、ブタ皮部由来のI型コラーゲンの分解物(配列番号26)は3.3mg/mL)を変えて添加し、培養皿に十分になじませて室温で5時間静置し、コラーゲン分解物コート培養皿とした。
 (胚様体の形成)
 MEFを播種している培養皿の代わりに、MEFを播種していない培養皿を用いて、同様の実験を、LIFを含み且つ20%ウシ胎児血清を含むDMEM培地(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(+))」と称する。)を用いて行った。具体的には、DMEM培地(LIF(+))を用いて、を用いて、マウスES細胞2.5×10個/mLを調製した。MEFを播種していないゼラチンコート培養皿、アテロコラーゲンコート培養皿、コラーゲン分解物コート培養皿に、マウスES細胞をそれぞれ5.0×10個/cm播種して、DMEM培地(LIF(+))を用いて、37℃、5%COの条件下にて培養した(培養条件:MEF(-)且つLIF(+))。ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養したES細胞を本実験のコントロールとした。なお、実施例において、「MEF(-)」はMEF非共存下での培養を示す。また、「LIF(+)」はLIF共存下での培養を示す。
 培養開始1日後に、位相差顕微鏡下でES細胞の形態を観察した。各細胞の形態を、図20に示す。図20中、(a)は、ゼラチンコート培養皿において、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(b)は、アテロコラーゲンコート培養皿において、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(c)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号27)において、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(d)は、コラーゲン分解物コート培養皿(ラット腱由来、配列番号24と配列番号5との混合物)において、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図であり、(e)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号26))において、DMEM培地(LIF(+))を用いて1日間培養したES細胞の形態を示す図である。
 ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養した場合、ES細胞が単層に広がり、単一で接着している細胞を観察した。細胞突起を示す形態を示す細胞も存在していた。一般的なES細胞のMEF共存下且つLIF存在下の培養所見(図14の(a)および(b))と比べてそれぞれの細胞が判別できる程度の典型的な細胞間接着であることが示された(図20の(a)および(b))。
 コラーゲン分解物コート培養皿において培養した場合、観察されたES細胞は接着もしくは浮遊した3次元細胞塊(胚様体)を形成しており(図20の(c)~(e))、ゼラチンコート培養皿およびアテロコラーゲンコート培養皿の一般的なES細胞の培養所見(図14の(a)および(b))とはまったく異なる形態であった。
 MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いてコラーゲン分解物コート培養皿において培養したES細胞の形態は、コラーゲン分解物の動物種(例えば、ブタ、ラット)、由来部位(例えば、皮部と腱)およびN末端切断部位(例えば、配列番号26、配列番号27、配列番号24、配列番号5)に関わらず、ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養したES細胞の形態とは全く異なっていた。しかし、MEF共存下(MEF(+))で、DMEM培地(LIF(+))を用いてコラーゲン分解物コート培養皿において培養したES細胞(図14の(c)~(e))と比較して、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いてコラーゲン分解物コート培養皿において培養したES細胞(図20の(c)~(e))の形態は、大きさや形、接着、浮遊などに多少の違いが観察されたが、コラーゲン分解物の動物種(例えば、ブタ、ラット)、由来部位(例えば、皮部と腱)およびN末端切断部位(例えば、配列番号26、配列番号27、配列番号24、配列番号5)に関わらず、明確な違いはなかった。
 MEF(-)且つLIF(+)の培養条件で、ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養したES細胞は、単一の接着細胞であった。特筆すべきは、コラーゲン分解物コート培養皿において培養したES細胞は、コラーゲン分解物の動物種(例えば、ブタ、ラット)、由来部位(例えば、皮部と腱)およびN末端切断部位(例えば、配列番号26、配列番号27、配列番号24、配列番号5)に関わらず、MEFを共培養していない条件下でも、胚様体を形成した。つまり、コラーゲン分解物コート培養皿においてES細胞を培養することは、コラーゲン分解物の動物種(例えば、ブタ、ラット)、由来部位(例えば、皮部と腱)およびN末端切断部位(例えば、配列番号26、配列番号27、配列番号24、配列番号5)に関わらず、胚様体を形成させる新たな方法となりうることが示された。
 <22.コラーゲンの分解物の胚様体形成能に関する試験12>
 次に、ゼラチンコート培養皿、アテロコラーゲンコート培養皿、コラーゲン分解物コート培養皿において培養したES細胞の未分化能を調べるため、細胞内在性のアルカリ性ホスファターゼ活性を調べた。
 (培養皿)
 上述したコラーゲンの分解物(ブタ皮部由来のI型コラーゲンの分解物(配列番号27)、あるいはラット腱由来のI型コラーゲンの分解物(配列番号24と配列番号5との混合物)、あるいはブタ皮部由来のI型コラーゲンの分解物(配列番号26))と接触させた、市販の培養皿を試験に用いた。具体的には、35mm培養皿にコラーゲン分解物の濃度(ブタ皮部由来のI型コラーゲンの分解物(配列番号27)は3.2mg/mLから9.6mg/mL、ラット腱由来のI型コラーゲンの分解物(配列番号24と配列番号5との混合物)は2.8mg/mLから8.4mg/mL、ブタ皮部由来のI型コラーゲンの分解物(配列番号26)は3.3mg/mL)を変えて添加し、培養皿に十分になじませて室温で5時間静置し、コラーゲン分解物コート培養皿とした。
 (胚様体の形成)
 500U/mLのLIFおよび20%ウシ胎児血清を含むDMEM(KnockOutDMEM、サーモフィッシャーサイエンス製)(以下、「DMEM培地(LIF(+))」と称する。)を用いて、2.5×10個/mLを調製した。MEFを播種していないゼラチンコート培養皿、アテロコラーゲンコート培養皿、コラーゲン分解物コート培養皿に、マウスES細胞をそれぞれ5.0×10個/cm播種して、DMEM培地(LIF(+))を用いて、37℃、5%COの条件下にて培養した。ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養したES細胞を本実験のコントロールとした。
 1日間培養後に、細胞の培養上清を取り除き、滅菌PBSで洗浄した。引き続き、細胞を固定するために4%パラホルムアルデヒド溶液を細胞が浸るまで加え、室温で30分間静置した。その後、滅菌蒸留水を細胞が浸るまで加えて洗浄する操作を2回繰り返した。洗浄液を取り除いた後、TRACP&ALP double-stain kit(商品コードMK300、タカラバイオ社製)付属のアルカリ性ホスファターゼ染色液を培養皿に加えて37℃で45分間静置した。反応を停止させるため、染色液を取り除いて滅菌蒸留水で3回洗浄した。結果を図21に示す。
 図21は、MEF非共存下(MEF(-))且つLIF(+)の培養条件において1日間培養したES細胞の細胞内在性のアルカリ性ホスファターゼ活性を調べた結果を示す図であり、図21中、(a)は、ゼラチンコート培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(b)は、アテロコラーゲンコート培養皿において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(c)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号27)において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(d)は、コラーゲン分解物コート培養皿(ラット腱由来、配列番号24と配列番号5との混合物)において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図であり、(e)は、コラーゲン分解物コート培養皿(ブタ皮部由来、配列番号26)において、MEF非共存下(MEF(-))で、DMEM培地(LIF(+))を用いて1日間培養したES細胞のアルカリ性ホスファターゼ活性染色の結果を示す図である。
 MEF(-)且つLIF(+)の培養条件で、ゼラチンコート培養皿およびアテロコラーゲンコート培養皿において培養した単一のES細胞は、MEF(+)且つLIF(+)の培養条件のES細胞のコロニー(図15の(a)と(b))と同様にアルカリ性ホスファターゼ活性陽性であることが示された(図21の(a)と(b))。コラーゲン分解物コート培養皿おいてMEF(-)且つLIF(+)の培養条件で培養したES細胞から形成された接着および浮遊した胚様体は、MEF(+)且つLIF(+)の培養条件の接着した胚様体(図15の(c)~(e))と同様にアルカリ性ホスファターゼ活性陽性であることが示された(図21の(c)~(e))。これらの結果は、MEF非共存下でコラーゲン分解物コート培養皿において培養したES細胞から形成された胚様体もコラーゲン分解物の動物種(例えば、ブタ、ラット)、由来部位(例えば、皮部と腱)およびN末端切断部位(例えば、配列番号26、配列番号27、配列番号24、配列番号5)に関わらず、未分化能を維持していることを示している。
 以上のことから、本実施例のコラーゲンの分解物は、マウスES細胞とヒトiPS細胞の胚様体形成能を有していることと、その後に必要とされる分化誘導に活用できることが明らかになった。本発明の一実施形態の方法によって得られた胚様体を適切な分化誘導培地で長期培養することにより、内胚葉、中胚葉、外胚葉に分化させることで、さらに神経組織、骨・軟骨組織、脂肪組織、筋肉組織などの再建が期待される。
 本発明は、再生医療に関わる産業において利用可能である。

Claims (8)

  1.  多能性幹細胞の胚様体を形成させる方法であって、
     多能性幹細胞を、コラーゲンの分解物またはアテロコラーゲンの分解物と共に培養する工程を包含し、
     当該分解物は、上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインの少なくとも一部分を含んでいることを特徴とする、胚様体形成方法。
  2.  上記分解物は、以下(A)~(C)のコラーゲンの分解物またはアテロコラーゲンの分解物の内の少なくとも1種類以上を含有しているものであることを特徴とする、請求項1に記載の胚様体形成方法:
     (A)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(1)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、または、XとGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
     (B)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(2)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、または、X14とGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
     (C)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインのアミノ末端の下記(3)にて示されるアミノ酸配列の、YとYとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
      (1)-G-X-X-G-X-X-G-X-X-G-;
      (2)-G-X-X-G-X-X-G-X-X-G-X-X-G-X-X10-G-X11-X12-G-X13-X14-G-;
      (3)-Y-Y-Y-G-Y-Y-G-Y-Y-G-Y-Y-G-;
    (但し、Gは、グリシンであり、X~X14およびY~Yは、任意のアミノ酸である)。
  3.  上記(1)または(2)にて示されるアミノ酸配列は、上記トリプルヘリカルドメインのアミノ末端のアミノ酸配列であることを特徴とする、請求項2に記載の胚様体形成方法。
  4.  上記(1)~(3)の何れかにて示されるアミノ酸配列における切断が、上記コラーゲンまたはアテロコラーゲンのα1鎖内およびα2鎖内の少なくとも一方で行われていることを特徴とする、請求項2に記載の胚様体形成方法。
  5.  コラーゲンの分解物またはアテロコラーゲンの分解物を含有している多能性幹細胞の胚様体形成用組成物であって、
     当該分解物は、上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインの少なくとも一部分を含んでいることを特徴とする、胚様体形成用組成物。
  6.  上記分解物は、以下(A)~(C)のコラーゲンの分解物またはアテロコラーゲンの分解物の内の少なくとも1種類以上を含有しているものであることを特徴とする、請求項5に記載の胚様体形成用組成物:
     (A)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(1)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、または、XとGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
     (B)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメイン内の下記(2)にて示されるアミノ酸配列の、XとXとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、XとGとの間の化学結合、XとGとの間の化学結合、GとXとの間の化学結合、または、X14とGとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
     (C)上記コラーゲンまたはアテロコラーゲンのトリプルヘリカルドメインのアミノ末端の下記(3)にて示されるアミノ酸配列の、YとYとの間の化学結合が切断された、コラーゲンの分解物またはアテロコラーゲンの分解物;
      (1)-G-X-X-G-X-X-G-X-X-G-;
      (2)-G-X-X-G-X-X-G-X-X-G-X-X-G-X-X10-G-X11-X12-G-X13-X14-G-;
      (3)-Y-Y-Y-G-Y-Y-G-Y-Y-G-Y-Y-G-;
    (但し、Gは、グリシンであり、X~X14およびY~Yは、任意のアミノ酸である)。
  7.  上記(1)または(2)にて示されるアミノ酸配列は、上記トリプルヘリカルドメインのアミノ末端のアミノ酸配列であることを特徴とする、請求項6に記載の胚様体形成用組成物。
  8.  上記(1)~(3)の何れかにて示されるアミノ酸配列における切断が、上記コラーゲンまたはアテロコラーゲンのα1鎖内およびα2鎖内の少なくとも一方で行われていることを特徴とする、請求項6に記載の胚様体形成用組成物。
PCT/JP2016/082150 2015-10-28 2016-10-28 多能性幹細胞の胚様体形成方法および多能性幹細胞の胚様体形成用組成物 WO2017073761A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017547909A JP6822668B2 (ja) 2015-10-28 2016-10-28 多能性幹細胞の胚様体形成方法および多能性幹細胞の胚様体形成用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015212309 2015-10-28
JP2015-212309 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017073761A1 true WO2017073761A1 (ja) 2017-05-04

Family

ID=58630406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082150 WO2017073761A1 (ja) 2015-10-28 2016-10-28 多能性幹細胞の胚様体形成方法および多能性幹細胞の胚様体形成用組成物

Country Status (2)

Country Link
JP (1) JP6822668B2 (ja)
WO (1) WO2017073761A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037986A1 (ja) * 2021-09-13 2023-03-16 公益財団法人京都大学iPS細胞研究財団 多能性幹細胞の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020470A1 (ja) * 2002-08-28 2004-03-11 Tissue Engineering Initiative Co., Ltd. システインプロテアーゼ処理コラーゲンの製造方法およびシステインプロテアーゼ処理コラーゲン
US20050054100A1 (en) * 2003-09-08 2005-03-10 Rennard Stephen I. Methods for fibroblast differentiation
JP2005514944A (ja) * 2002-01-25 2005-05-26 一知 井上 胚性幹細胞の機能性細胞への分化誘導方法
WO2007075807A2 (en) * 2005-12-20 2007-07-05 Es Cell International Pte Ltd. Methods for the directed differentiation of embryonic stem cell
US20080044848A1 (en) * 2006-06-09 2008-02-21 Heidaran Mohammad A Placental niche and use thereof to culture stem cells
WO2008026548A1 (fr) * 2006-08-28 2008-03-06 Matsumoto Dental University Procédé d'inhibition du développement de tératome

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514944A (ja) * 2002-01-25 2005-05-26 一知 井上 胚性幹細胞の機能性細胞への分化誘導方法
WO2004020470A1 (ja) * 2002-08-28 2004-03-11 Tissue Engineering Initiative Co., Ltd. システインプロテアーゼ処理コラーゲンの製造方法およびシステインプロテアーゼ処理コラーゲン
US20050054100A1 (en) * 2003-09-08 2005-03-10 Rennard Stephen I. Methods for fibroblast differentiation
WO2007075807A2 (en) * 2005-12-20 2007-07-05 Es Cell International Pte Ltd. Methods for the directed differentiation of embryonic stem cell
US20080044848A1 (en) * 2006-06-09 2008-02-21 Heidaran Mohammad A Placental niche and use thereof to culture stem cells
WO2008026548A1 (fr) * 2006-08-28 2008-03-06 Matsumoto Dental University Procédé d'inhibition du développement de tératome

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATE YASUSHI ET AL.: "Major amino acids in collagen hydrolysate regulate the differentiation of mouse embryoid bodies", J. BIOSCI. BIOENG., vol. 116, no. 3, 2013, pages 386 - 390, XP055382235 *
MATSUOKA YASUHIRO ET AL.: "Insufficient Folding of Type IV Collagen and Formation of Abnormal Basement Membrane-like Structure in Embryoid Bodies Derived from Hsp47-Null Embryonic Stem Cells", MOLECULAR BIOLOGY OF THE CELL, vol. 15, 2004, pages 4467 - 4475, XP055382237 *
SAORI KUNII ET AL.: "Comparison of Biochemical Properties of Novel Actinidain-hydrolyzed Collagen and Pepsin-hydrolzyed Collagen", MEM. INSTITUTE OF ADVANCED TECHNOLOGY, 2005, pages 19 - 28 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037986A1 (ja) * 2021-09-13 2023-03-16 公益財団法人京都大学iPS細胞研究財団 多能性幹細胞の製造方法
WO2023037544A1 (ja) * 2021-09-13 2023-03-16 公益財団法人京都大学iPS細胞研究財団 多能性幹細胞の製造方法

Also Published As

Publication number Publication date
JPWO2017073761A1 (ja) 2018-08-23
JP6822668B2 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
JP6850455B2 (ja) 網膜色素上皮細胞の製造方法
US20240018469A1 (en) Cellular microcompartment and preparation processes
JP7023228B2 (ja) 幹細胞の製造に用いられるフィブロネクチンフラグメント
CN105473134B (zh) 用于哺乳动物物种中诱导性组织再生的组合物和方法
CA3004251C (en) Cell culture method using laminin fragment-containing medium
JP2021534813A (ja) 非免疫原性の操作された組織ならびにそれを製造および使用する方法
KR101562366B1 (ko) 메타크릴레이트화된 젤라틴을 포함하는, 심근세포분화 유도용 세포 지지체
JP6120428B2 (ja) 分化誘導用組成物
JP6521461B2 (ja) コラーゲンまたはアテロコラーゲンの分解物、当該分解物の製造方法、および、当該分解物の利用
CA3052124A1 (en) Method for controlling differentiation of pluripotent stem cells
JP6822668B2 (ja) 多能性幹細胞の胚様体形成方法および多能性幹細胞の胚様体形成用組成物
JP6916523B2 (ja) 筋衛星細胞培養用材料および筋衛星細胞の培養方法
WO2020081716A2 (en) Biomaterials for 3d cell growth and differentiation
JP6629725B2 (ja) 新規合成ペプチドおよびその利用
JP2014027888A (ja) カワハギ由来の細胞株
JP2019010003A (ja) 軟骨組織塊及びその製造方法、並びに幹細胞から軟骨組織塊を誘導するための培地
JP5882198B2 (ja) ラミニン5を含んだ系で細胞を培養する方法
WO2023157852A1 (ja) 多能性幹細胞から表皮角化細胞への分化誘導方法
US11999972B2 (en) Fibronectin fragment to be used for stem cell production
JP2019010002A (ja) 軟骨組織塊及びその製造方法、並びに幹細胞から軟骨組織塊を誘導するための培地
CN114317410A (zh) 一种猴ips细胞系DT-M001建立及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859989

Country of ref document: EP

Kind code of ref document: A1