WO2017073746A1 - 電極組立体の製造方法及び電極組立体 - Google Patents

電極組立体の製造方法及び電極組立体 Download PDF

Info

Publication number
WO2017073746A1
WO2017073746A1 PCT/JP2016/082106 JP2016082106W WO2017073746A1 WO 2017073746 A1 WO2017073746 A1 WO 2017073746A1 JP 2016082106 W JP2016082106 W JP 2016082106W WO 2017073746 A1 WO2017073746 A1 WO 2017073746A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
tab laminate
laminate
welded portion
electrode assembly
Prior art date
Application number
PCT/JP2016/082106
Other languages
English (en)
French (fr)
Inventor
真也 奥田
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2017547899A priority Critical patent/JP6834973B2/ja
Publication of WO2017073746A1 publication Critical patent/WO2017073746A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One aspect of the present invention relates to a method for manufacturing an electrode assembly and an electrode assembly.
  • Patent Document 1 When manufacturing a lithium secondary battery, a method of welding a plurality of stacked current collecting tabs using a YAG laser or an electron beam is known (see Patent Document 1).
  • An object of one aspect of the present invention is to provide an electrode assembly manufacturing method and an electrode assembly that can reduce an electrical resistance value between stacked tabs.
  • An electrode assembly manufacturing method is a method for manufacturing an electrode assembly having an electrode including a tab, the step of preparing a tab stack having the stacked tabs, and the tab stacking Forming a welded portion on the inner side from the end surface of the tab laminate by irradiating an energy beam to an end surface of the tab laminate extending along the stacking direction of the body, and forming the welded portion.
  • the energy beam is scanned along the direction intersecting the stacking direction of the tab laminate on the end face of the tab laminate.
  • the welded portion spreads in the direction crossing the stacking direction of the tab laminate on the end face of the tab laminate. As a result, when current flows in the stacking direction at the welded portion, the electrical resistance value between the stacked tabs can be reduced.
  • the tab laminate may be disposed on the current collector in the stacking direction of the tab laminate, and the weld may be formed along a contact portion between the tab laminate and the current collector.
  • the tab laminate and the current collector can be firmly connected by the welded portion.
  • the tab laminated body is disposed between a pressing member and a current collector in the laminating direction of the tab laminated body, and the tab laminated body is laminated in the laminating direction of the tab laminated body via the pressing member and the current collector.
  • the energy beam may be applied to the end surface of the tab laminate in a state where the energy beam is pressed.
  • the thickness of the pressing member in the stacking direction of the tab laminate may be smaller than the thickness of the current collector in the stacking direction of the tab laminate.
  • the thickness of the pressing member is relatively small, the difference between the heat capacity of the pressing member and the heat capacity of the tab can be reduced.
  • the scanning may be performed while displacing the energy beam in the stacking direction of the tab stack on the end face of the tab stack.
  • the tab laminate may have another end surface arranged on the opposite side of the tab laminate from the end surface of the tab laminate.
  • the stacked tabs may be connected to each other by the welded portion without using a member positioned across the tab stacked body in the stacking direction of the tab stacked body.
  • the maximum length of the welded portion in the direction orthogonal to the stacking direction of the tab laminate on the end surface of the tab laminate is between the stacking direction of the tab laminate and the direction orthogonal to the stacking direction of the tab laminate.
  • the maximum length of a portion where the welded portion and the tab laminate overlap in the stacking direction of the tab laminate may be larger.
  • the welded portion since the mechanical strength of the welded portion is increased, the welded portion is not easily broken even if stress is generated in the electrode assembly due to, for example, assembly work or external force. Moreover, a weld part can be enlarged in the direction orthogonal to the lamination direction of a tab laminated body in the end surface of a tab laminated body. As a result, since the thermal diffusibility of the welded portion is improved, the generation of sputtered particles due to the energy beam irradiation can be suppressed.
  • the maximum weld depth of the weld in the direction orthogonal to the lamination direction of the tab laminate is less than 2 mm. There may be.
  • the weld When viewed from the normal direction of the end face of the tab laminate, the weld may have an outer shape including a curve.
  • An electrode assembly is an electrode assembly including an electrode including a tab, the tab assembly including the tabs stacked, and the tab stack includes a stack of the tab stacks.
  • a welded portion located inward from an end surface of the tab laminate extending in the direction, and a maximum length of the welded portion in a direction orthogonal to the stacking direction of the tab laminate at the end surface of the tab laminate.
  • the welded portion spreads in the direction intersecting the stacking direction of the tab laminate on the end face of the tab laminate. As a result, when current flows in the stacking direction at the welded portion, the electrical resistance value between the stacked tabs can be reduced.
  • the maximum weld depth of the weld in the direction orthogonal to the lamination direction of the tab laminate is less than 2 mm. There may be.
  • the tab laminate is disposed between the pressing member and the current collector in the stacking direction of the tab laminate, and the thickness of the pressing member in the stacking direction of the tab laminate is in the stacking direction of the tab laminate. It may be smaller than the thickness of the current collector.
  • the thickness of the pressing member is relatively small, the difference between the heat capacity of the pressing member and the heat capacity of the tab can be reduced.
  • the weld When viewed from the normal direction of the end face of the tab laminate, the weld may have an outer shape including a curve.
  • a method of manufacturing an electrode assembly that can reduce an electrical resistance value between stacked tabs can be provided.
  • FIG. 1 is an exploded perspective view of a power storage device including the electrode assembly according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the power storage device taken along line II-II in FIG.
  • FIG. 3 is a perspective view of the electrode assembly according to the first embodiment. 4 is a view showing a part of the electrode assembly of FIG. 3 as viewed from the X-axis direction.
  • FIG. 5 is a diagram illustrating one step in the method of manufacturing the electrode assembly according to the first embodiment.
  • FIG. 6 is a diagram illustrating one step in the method of manufacturing the electrode assembly according to the first embodiment.
  • FIG. 7 is a diagram illustrating one step in the method of manufacturing the electrode assembly according to the first embodiment.
  • FIG. 1 is an exploded perspective view of a power storage device including the electrode assembly according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the power storage device taken along line II-II in FIG.
  • FIG. 3 is a perspective view of the electrode assembly according to
  • FIG. 8 is a diagram illustrating one step in the method of manufacturing the electrode assembly according to the first embodiment.
  • FIG. 9 is a diagram illustrating one step in the method of manufacturing the electrode assembly according to the first embodiment.
  • FIG. 10 is a diagram illustrating one step in the method of manufacturing the electrode assembly according to the first embodiment.
  • FIG. 11 is a diagram illustrating one step in the method of manufacturing the electrode assembly according to the first embodiment.
  • FIG. 12 is a diagram illustrating one step in the method of manufacturing the electrode assembly according to the second embodiment.
  • FIG. 13 is a diagram illustrating one step in the method of manufacturing the electrode assembly according to the second embodiment.
  • FIG. 14 is a diagram illustrating one step in the method of manufacturing the electrode assembly according to the third embodiment.
  • FIG. 15 is a diagram illustrating a step of the method of manufacturing the electrode assembly according to the third embodiment.
  • FIG. 16 is a diagram illustrating a part of an electrode assembly having a weld according to a modification.
  • FIG. 17 is a diagram illustrating the evaluation results of the examples.
  • FIG. 1 is an exploded perspective view of a power storage device including the electrode assembly according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the power storage device taken along line II-II in FIG.
  • the power storage device 1 shown in FIGS. 1 and 2 is a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery or an electric double layer capacitor.
  • the power storage device 1 includes a hollow case 2 having a substantially rectangular parallelepiped shape, for example, and an electrode assembly 3 accommodated in the case 2.
  • the case 2 is made of a metal such as aluminum.
  • the case 2 has a main body 2a that is open on one side and a lid 2b that closes the opening of the main body 2a.
  • an insulating film (not shown) is provided on the inner wall surface of the case 2.
  • a non-aqueous (organic solvent) electrolyte is injected into the case 2.
  • the positive electrode active material layer 15 of the positive electrode 11, the negative electrode active material layer 18 of the negative electrode 12, and the separator 13 described later are porous, and the pores are impregnated with the electrolytic solution. .
  • a positive electrode terminal 5 and a negative electrode terminal 6 are spaced apart from each other on the lid 2 b of the case 2.
  • the positive electrode terminal 5 is fixed to the case 2 via an insulating ring 7, and the negative electrode terminal 6 is fixed to the case 2 via an insulating ring 8.
  • the electrode assembly 3 is a stacked electrode assembly.
  • the electrode assembly 3 includes a plurality of positive electrodes 11 (electrodes), a plurality of negative electrodes 12 (electrodes), and a bag-shaped separator 13 disposed between the positive electrodes 11 and the negative electrodes 12.
  • the positive electrode 11 is accommodated in the separator 13.
  • the plurality of positive electrodes 11 and the plurality of negative electrodes 12 are alternately stacked via the separators 13.
  • the positive electrode 11 has a metal foil 14 made of, for example, an aluminum foil, and a positive electrode active material layer 15 formed on both surfaces of the metal foil 14.
  • the metal foil 14 of the positive electrode 11 includes a rectangular main body 14a and a rectangular tab 14b protruding from one end of the main body 14a.
  • the positive electrode active material layer 15 is a porous layer formed including a positive electrode active material and a binder.
  • the positive electrode active material layer 15 is formed by supporting a positive electrode active material on at least the central portion of the main body 14a on both surfaces of the main body 14a.
  • the positive electrode active material examples include composite oxide, metallic lithium, and sulfur.
  • the composite oxide includes, for example, at least one of manganese, nickel, cobalt, and aluminum and lithium.
  • the tab 14b does not carry a positive electrode active material.
  • an active material may be carried on the base end portion of the tab 14b on the main body 14a side.
  • the tab 14b extends upward from the upper edge of the main body 14a and is connected to the positive electrode terminal 5 via a current collector plate 16 (current collector).
  • the current collector plate 16 is disposed between the tab 14 b and the positive electrode terminal 5.
  • the current collector plate 16 is formed in a rectangular flat plate shape from the same material as the metal foil 14 of the positive electrode 11.
  • the plurality of stacked tabs 14b are disposed between the current collector plate 16 and a protective plate 23 (pressing member) thinner than the current collector plate 16 (see FIG. 3).
  • the protective plate 23 is formed in a rectangular flat plate shape from the same material as the metal foil 14 of the positive electrode 11.
  • the negative electrode 12 includes a metal foil 17 made of, for example, copper foil, and a negative electrode active material layer 18 formed on both surfaces of the metal foil 17. Similar to the metal foil 14 of the positive electrode 11, the metal foil 17 of the negative electrode 12 includes a rectangular main body 17a and a rectangular tab 17b protruding from one end of the main body 17a.
  • the negative electrode active material layer 18 is formed by supporting a negative electrode active material on at least a central portion of the main body 17a on both surfaces of the main body 17a.
  • the negative electrode active material layer 18 is a porous layer formed including a negative electrode active material and a binder.
  • the negative electrode active material examples include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, SiOx (0.5 ⁇ x ⁇ 1.5 ) And the like, and boron-added carbon.
  • the tab 17b does not carry a negative electrode active material.
  • an active material may be carried on the base end portion of the tab 17b on the main body 17a side.
  • the tab 17b extends upward from the upper edge of the main body 17a and is connected to the negative electrode terminal 6 via a current collector plate 19 (current collector).
  • the current collector plate 19 is disposed between the tab 17 b and the negative electrode terminal 6.
  • the current collector plate 19 is formed in a rectangular flat plate shape from the same material as the metal foil 17 of the negative electrode 12.
  • the plurality of laminated tabs 17b are disposed between the current collector plate 19 and a protective plate 27 (pressing member) thinner than the current collector plate 19 (see FIG. 3).
  • the protection plate 27 is formed in a rectangular flat plate shape from the same material as the metal foil 17 of the negative electrode 12.
  • the separator 13 accommodates the positive electrode 11.
  • the separator 13 has a rectangular shape when viewed from the stacking direction of the positive electrode 11 and the negative electrode 12.
  • the separator 13 is formed in a bag shape by welding a pair of long sheet-like separator members to each other.
  • the material of the separator 13 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like.
  • FIG. 3 is a perspective view of the electrode assembly according to the first embodiment. 4 is a view showing a part of the electrode assembly of FIG. 3 as viewed from the X-axis direction.
  • the electrode assembly 3 shown in FIG. 3 includes a plurality of positive electrodes 11 and a plurality of negative electrodes 12 that are stacked on each other via a separator 13.
  • Each of the plurality of positive electrodes 11 includes a main body 14a extending in the XY plane and a tab 14b protruding from one end of the main body 14a in the X-axis direction.
  • Each of the plurality of negative electrodes 12 includes a main body 17a extending in the XY plane and a tab 17b protruding from one end of the main body 17a in the X-axis direction.
  • the tabs 14b and 17b are laminated with each other to form tab laminated bodies 21 and 25, respectively. That is, the electrode assembly 3 includes a tab laminate 21 having a plurality of tabs 14b laminated in the Z-axis direction and a tab laminate 25 having a plurality of tabs 17b laminated in the Z-axis direction.
  • the tab laminates 21 and 25 are arranged apart from each other in the Y-axis direction.
  • the tab laminated body 21 includes end surfaces 21a, 21b, and 21c of the tab laminated body 21 extending along the lamination direction (Z-axis direction) of the tab laminated body 21.
  • the end surfaces 21a and 21b are surfaces that sandwich the tab laminate 21, and the end surface 21c is a surface that connects the end surfaces 21a and 21b. That is, the end faces 21 a and 21 b are arranged on opposite sides of the tab laminate 21.
  • the end surfaces 21a and 21b are surfaces along the XZ plane.
  • the end surface 21 c is a surface that is inclined with respect to the XY plane so that the thickness of the tab laminated body 21 becomes smaller toward the tip of the tab laminated body 21.
  • the tab laminate 21 is disposed between the current collector plate 16 and the protective plate 23 in the Z-axis direction. That is, the tab laminate 21 is disposed on the current collector plate 16 in the Z-axis direction.
  • the protection plate 23 is disposed on the tab laminate 21 in the Z-axis direction.
  • the protective plate 23 is not in contact with the current collector plate 16, and the protective plate 23 and the current collector plate 16 are separated from each other with the tab laminate 21 sandwiched in the stacking direction.
  • the tab laminate 21 is thicker than the protective plate 23, and the current collector plate 16 is thicker than the tab laminate 21.
  • the thickness of the protective plate 23 is larger than the thickness of the tab 14 b and smaller than the thickness of the current collector plate 16.
  • the electrode assembly 3 may not include the protection plate 23 and the current collector plate 16.
  • the length of the current collector plate 16 in the Y-axis direction is larger than the length of the tab laminate 21 in the Y-axis direction (the distance between the end faces 21a and 21b). In the Y-axis direction, the position of the outer end portion of the current collector plate 16 in the Y-axis direction coincides with the position of the end portion of the main body 14a in the Y-axis direction.
  • the length of the protective plate 23 in the Y-axis direction is substantially the same as the length of the tab laminate 21 in the Y-axis direction.
  • the tab laminated body 21 has welded portions W located on the inner side from the end faces 21a and 21b of the tab laminated body 21, respectively.
  • the maximum length W2 of the welded portion W in the direction (eg, the X-axis direction) orthogonal to the lamination direction of the tab laminate 21 on the end faces 21a, 21b of the tab laminate 21 is the lamination direction (eg, the Z-axis direction) of the tab laminate 21.
  • a direction (for example, the Y-axis direction) orthogonal to both the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab-layered structure 21, the stacking direction (for example, the Z-axis direction) of the tab stacked body 21 ) Is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 21 overlap (see FIG. 3).
  • the welded portion W extends to the inside of the current collector plate 16 and the protective plate 23 adjacent to the end surfaces 21a and 21b.
  • the length of the welded portion W in the X-axis direction is preferably substantially equal to the length of the protective plate 23 in the X-axis direction or shorter than the length of the protective plate 23 in the X-axis direction.
  • the welded portion W in the X-axis direction is longer than the length of the protective plate 23 in the X-axis direction, the welded portion W protrudes outside the protective plate 23 in the X-axis direction. Even in those cases, the welded portion W can be formed.
  • the boundary line Wa of the welded portion W is Extending in a direction inclined with respect to both the direction H (for example, the Y-axis direction) perpendicular to the direction and the stacking direction (Z-axis direction) of the tab laminate 21.
  • the welded portion W has two boundary lines Wa, and the welded portion W depends on the shape of the molten pool formed around the energy beam B by irradiation with an energy beam B (see FIG. 6) described later.
  • the distance between the two boundary lines Wa becomes narrower from the outer surface toward the inner side.
  • the welding pool is formed so as to taper inward from the surface of the irradiation object of the energy beam B in the irradiation direction of the energy beam B.
  • the welded portion W is also formed on the current collector plate 16, the density of the current collector plate 16 is different from the density of the tab laminate 21, so the depth of the weld pool formed on the current collector plate 16 and the tab laminate 21 The depth of the weld pool formed is different.
  • the distance between the two boundary lines Wa becomes narrower from the outer surface of the welded portion W toward the inside.
  • the smaller one of the angles formed by one boundary line Wa of the weld W and the direction H is ⁇
  • the other boundary line Wa of the weld W and the direction H Is the smaller angle of ⁇
  • is the smaller angle of the angles formed by the direction J and the direction H projected from the irradiation direction of the energy beam B on the YZ plane. It becomes a value between ⁇ .
  • the smaller angle among the angles formed by the boundary line Wa in the current collector plate 16 and the direction H is ⁇
  • the boundary line Wa in the tab laminated body 21 and the direction H are Of the angles formed
  • is the smaller angle
  • is the smaller angle among the angles formed by the direction J and the direction H in which the irradiation direction of the energy beam B is projected on the YZ plane, so that ⁇ ⁇ ⁇ .
  • the boundary line Wa of the welded portion W may be parallel to the Z-axis direction in the YZ section.
  • the tab laminate 25 includes end surfaces 25a, 25b, and 25c of the tab laminate 25 that extend along the lamination direction (Z-axis direction) of the tab laminate 25.
  • the end surfaces 25a and 25b are surfaces that sandwich the tab laminate 25, and the end surface 25c is a surface that connects the end surfaces 25a and 25b. That is, the end faces 25a and 25b are disposed on the opposite sides of the tab laminate 25.
  • the end surfaces 25a and 25b are surfaces along the XZ plane.
  • the end surface 25c is a surface that is inclined with respect to the XY plane so that the thickness of the tab laminated body 25 becomes smaller toward the tip of the tab laminated body 25.
  • the tab laminate 25 is disposed between the current collector plate 19 and the protective plate 27 in the Z-axis direction. That is, the tab laminate 25 is disposed on the current collector plate 19 in the Z-axis direction.
  • the protection plate 27 is disposed on the tab laminate 25 in the Z-axis direction.
  • the protective plate 27 is not in contact with the current collector plate 19, and the protective plate 27 and the current collector plate 19 are separated with the tab laminate 25 sandwiched in the stacking direction.
  • the tab laminate 25 is thicker than the protective plate 27, and the current collector plate 19 is thicker than the tab laminate 25.
  • the thickness of the protection plate 27 is larger than the thickness of the tab 17 b and smaller than the thickness of the current collector plate 19.
  • the electrode assembly 3 may not include the protection plate 27 and the current collector plate 19.
  • the length of the current collector plate 19 in the Y-axis direction is larger than the length of the tab laminate 25 in the Y-axis direction (the distance between the end faces 25a and 25b).
  • the position of the outer end portion of the current collector plate 19 in the Y-axis direction matches the position of the end portion of the main body 17a in the Y-axis direction.
  • the length of the protection plate 27 in the Y-axis direction is substantially the same as the length of the tab laminate 25 in the Y-axis direction.
  • the tab laminated body 25 has welded portions W located on the inner sides from the end faces 25a and 25b of the tab laminated body 25, respectively.
  • the end surface 25 b of the tab laminated body 25 faces the end surface 21 b of the tab laminated body 21. Therefore, the end faces 21a, 21b, 25a, and 25b of the tab laminates 21 and 25 are arranged along the Y-axis direction.
  • the maximum length W2 of the welded portion W in the direction (eg, the X-axis direction) orthogonal to the lamination direction of the tab laminate 25 at the end faces 25a, 25b of the tab laminate 25 is the lamination direction (eg, the Z-axis direction) of the tab laminate 25 )
  • a direction (for example, the Y-axis direction) orthogonal to both the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab-layered structure 25, the stacking direction (for example, the Z-axis direction) of the tab stacked body 25 ) Is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 25 overlap (see FIG. 3).
  • the welded portion W extends to the inside of the current collector plate 19 and the protection plate 27 adjacent to the end surfaces 25a and 25b.
  • the length of the welded portion W in the X-axis direction is preferably substantially equal to the length of the protective plate 27 in the X-axis direction or shorter than the length of the protective plate 27 in the X-axis direction.
  • the welded portion W When the length of the welded portion W in the X-axis direction is substantially equal to the length of the protective plate 27 in the X-axis direction, the welded portion W may protrude outside the protective plate 27 in the X-axis direction due to positional displacement. When the length of the welded portion W in the X-axis direction is longer than the length of the protective plate 27 in the X-axis direction, the welded portion W protrudes outside the protective plate 27 in the X-axis direction. Even in those cases, the welded portion W can be formed.
  • the boundary line Wa of the welded portion W is Extending in a direction inclined with respect to both the direction H (for example, the Y-axis direction) orthogonal to the direction of the tab and the stacking direction of the tab laminate 25 (Z-axis direction).
  • the welded portion W has two boundary lines Wa, and depending on the shape of the molten pool formed around the energy beam B by irradiation of the energy beam B described later, the welded portion W is inward from the outer surface.
  • the distance between the two boundary lines Wa becomes narrower as it goes.
  • the welding pool is formed so as to taper inward from the surface of the irradiation object of the energy beam B in the irradiation direction of the energy beam B.
  • the welded portion W is also formed on the current collector plate 19, the density of the current collector plate 19 is different from the density of the tab laminate 25, so the depth of the weld pool formed on the current collector plate 19 and the tab laminate 25 The depth of the weld pool formed is different.
  • the distance between the two boundary lines Wa becomes narrower from the outer surface of the welded portion W toward the inside.
  • the smaller one of the angles formed by one boundary line Wa of the welded portion W and the direction H is ⁇
  • the other boundary line Wa of the welded portion W and the direction H are Is the smaller angle of ⁇
  • is the smaller angle of the angles formed by the direction J and the direction H projected from the irradiation direction of the energy beam B on the YZ plane. It becomes a value between ⁇ .
  • the smaller one of the angles formed by the boundary line Wa in the current collector plate 19 and the direction H is ⁇
  • the boundary line Wa in the tab laminate 25 and the direction H are Of the angles formed
  • is the smaller angle
  • is the smaller angle among the angles formed by the direction J and the direction H in which the irradiation direction of the energy beam B is projected on the YZ plane, so that ⁇ ⁇ ⁇ .
  • the boundary line Wa of the welded portion W may be parallel to the Z-axis direction in the YZ section.
  • the welded portion W in the direction orthogonal to the laminating direction of the tab laminated body 21 may be less than 2 mm, may be 1.5 mm or less, may be 1.2 mm or less, may be greater than 0.1 mm, It may be 3 mm or more.
  • the maximum welding depth Wd of the part W may be less than 2 mm, 1.5 mm or less, 1.2 mm or less, or more than 0.1 mm. 0.3 mm or more.
  • the maximum welding depth Wd is less than 2 mm, for example, the generation of sputtered particles due to the irradiation with the energy beam B can be suppressed.
  • the maximum welding depth Wd is 1.2 mm or less, the generation of sputtered particles is significantly suppressed (see FIG. 17).
  • the maximum area of the welded portion W is, for example, 4 to 40 mm 2 .
  • the maximum area of the welded portion W is, for example, 4 to 40 mm 2 .
  • the maximum length W2 of the welded portion W in the direction (eg, the X-axis direction) orthogonal to the stacking direction of the tab stacked body 21 on the end faces 21a and 21b of the tab stacked body 21 is When viewed from a direction (for example, the Y-axis direction) orthogonal to both the stacking direction (for example, the Z-axis direction) of the stacked body 21 and the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stacked body 21 It is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 21 overlap in the lamination direction of the laminate 21 (for example, the Z-axis direction) (see FIG. 3).
  • the welded portion W spreads in a direction intersecting with the lamination direction of the tab laminated body 21. As a result, when current flows in the welding direction at the welded portion W, the electrical resistance value between the plurality of tabs 14b can be reduced.
  • the maximum length W2 of the welded portion W in the direction (for example, the X-axis direction) orthogonal to the stacking direction of the tab stacked body 25 on the end surfaces 25a and 25b of the tab stacked body 25 is the stacking direction of the tab stacked body 25 (for example, When viewed from a direction (for example, the Y-axis direction) orthogonal to both the Z-axis direction) and a direction (for example, the X-axis direction) orthogonal to the stack direction of the tab stack 25, the stack direction of the tab stack 25 (for example, It is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 25 overlap in the Z-axis direction).
  • the welded portion W spreads in a direction intersecting with the lamination direction of the tab laminated body 25. As a result, when the current flows in the stacking direction in the welded portion W, the electrical resistance value between the plurality of tabs 17b can be reduced.
  • the tab laminated body 21 is disposed between the protective plate 23 and the current collector plate 16 in the lamination direction of the tab laminated body 21, and the thickness of the protective plate 23 in the lamination direction of the tab laminated body 21 is the lamination of the tab laminated body 21. It may be smaller than the thickness of the current collector plate 16 in the direction. In this case, since the thickness of the protective plate 23 is relatively small, the difference between the heat capacity of the protective plate 23 and the heat capacity of the tab 14b can be reduced. Therefore, the quality of the welding part W in the contact location of the protection plate 23 and the tab 14b improves.
  • the thickness of the protective plate 23 in the stacking direction of the tab laminate 21 may be larger than the thickness of the tab 14 b in the stacking direction of the tab laminate 21.
  • the thickness of the protective plate 23 may be 0.1 to 0.5 mm or 0.1 to 0.2 mm. If the thickness of the protective plate 23 is less than 0.1 mm, the force with which the protective plate 23 presses the tab 14b becomes small, and thus the tab 14b tends to move during welding. If the thickness of the protective plate 23 is more than 0.5 mm, the energy for melting the protective plate 23 during welding tends to increase. When the output of the energy beam B is increased to increase the energy, sputtered particles due to the irradiation of the energy beam B are likely to be generated.
  • the thickness of the tab 14b is, for example, 5 to 30 ⁇ m.
  • the thickness of the tab laminate 21 may be, for example, 0.3 to 2.4 mm, or 0.6 to 1.0 mm.
  • the tab laminated body 25 is disposed between the protective plate 27 and the current collector plate 19 in the laminating direction of the tab laminated body 25, and the thickness of the protective plate 27 in the laminating direction of the tab laminated body 25 is determined by the tab laminated body. It may be smaller than the thickness of the current collector plate 19 in the 25 stacking direction. In this case, since the thickness of the protection plate 27 is relatively small, the difference between the heat capacity of the protection plate 27 and the heat capacity of the tab 17b can be reduced. Therefore, the quality of the welding part W in the contact location of the protection board 27 and the tab 17b improves.
  • the thickness of the protection plate 27 in the stacking direction of the tab laminate 25 may be larger than the thickness of the tab 17b in the stacking direction of the tab stack 25.
  • the thickness of the protective plate 27 may be, for example, 0.1 to 0.5 mm or 0.1 to 0.2 mm. When the thickness of the protection plate 27 is less than 0.1 mm, the force with which the protection plate 27 presses the tab 17b is reduced, and thus the tab 17b tends to move during welding. If the thickness of the protective plate 27 is more than 0.5 mm, the energy for melting the protective plate 27 during welding tends to increase. When the output of the energy beam B is increased to increase the energy, sputtered particles due to the irradiation of the energy beam B are likely to be generated. The thickness of the tab 17b is, for example, 5 to 30 ⁇ m. The thickness of the tab laminate 25 may be, for example, 0.3 to 2.4 mm, or 0.6 to 1.0 mm.
  • FIG. 5 to FIG. 11 are views showing one process of the manufacturing method of the electrode assembly according to the first embodiment.
  • the electrode assembly 3 shown in FIG. 3 is manufactured, for example, by the following method.
  • FIG. 5A is a diagram showing the tab laminates 21 and 25 viewed from the X-axis direction
  • FIG. 5B is a diagram showing the tab laminate 25 viewed from the Y-axis direction.
  • tab laminates 21 and 25 are formed by laminating tabs 14b and 17b on current collector plates 16 and 19, respectively.
  • the protection plates 23 and 27 are placed on the tab laminates 21 and 25, respectively.
  • the tab laminates 21 and 25 are pressed through the protective plates 23 and 27 by a jig, for example, but may not be pressed.
  • FIG. 6A is a diagram showing the tab laminates 21 and 25 viewed from the X-axis direction
  • FIG. 6B is a diagram showing the tab laminate 25 viewed from the Y-axis direction.
  • the energy beam B is irradiated from the irradiation device 30 toward the end surface 25a of the tab laminate 25.
  • the irradiation device 30 is a scanner head including a lens and a galvanometer mirror, for example.
  • a beam generator is connected to the scanner head via a fiber.
  • the irradiation device 30 may be composed of a refractive optical system such as a prism, for example.
  • a direction J in which the irradiation direction of the energy beam B is projected onto a plane (for example, YZ plane) orthogonal to the end surface 25a of the tab stack 25 and including the stacking direction of the tab stack 25 is Z in the plane (for example, YZ plane). It is inclined with respect to both the direction H (for example, the Y-axis direction) orthogonal to the axial direction and the stacking direction of the tab stacked body 25.
  • the direction J is also inclined with respect to the end face 25 a of the tab laminate 25.
  • the direction J may be parallel to the direction H. In the YZ plane, the smaller angle ⁇ among the angles formed by the direction H and the direction J may be 5 to 85 °, 10 to 80 °, or 45 to 75 °.
  • the energy beam B is a high energy beam that can be welded.
  • the energy beam B is, for example, a laser beam or an electron beam.
  • the irradiation with the energy beam B is performed in an atmosphere of an inert gas G supplied from the nozzle 32.
  • the energy beam B is irradiated to the end surface 25a of the tab laminated body 25 in a state where the tab laminated body 25 is pressed in the Z-axis direction via the current collector plate 19 and the protective plate 27 by a jig, for example.
  • the work including the current collecting plates 16 and 19, the tab laminates 21 and 25, and the protection plates 23 and 27 is placed on a transfer stage 40 such as a belt conveyor, and is transferred in the Y-axis direction to the irradiation position of the energy beam B. Is done.
  • the energy beam B is scanned along the direction (X-axis direction) intersecting the Z-axis direction on the end surface 25a of the tab laminate 25.
  • scanning is performed along the X-axis direction while displacing the energy beam B in the Z-axis direction.
  • the energy beam B is scanned along the X-axis direction while being reciprocally displaced (wobbled) in the Z-axis direction.
  • the amount of displacement of the irradiation spot of the energy beam B in the Z-axis direction is larger than the thickness of the tab laminate 25.
  • the irradiation spot of the energy beam B moves from the position P1 on the axis H1 along the X-axis direction to the position P2 on the end face 25a of the tab laminate 25.
  • the positions P1 and P2 are located at the center of the end face 25a of the tab laminate 25 in the Z-axis direction.
  • the energy beam B is scanned while moving the center point along the X-axis direction on the end face 25a of the tab laminate 25 and rotating the irradiation spot of the energy beam B around the center point on the XZ plane.
  • the diameter of rotation is larger than the thickness of the tab laminate 25 because the end face 25a, the current collector plate 19 and the protective plate 27 of the tab laminate 25 can be welded as a whole. Moreover, the energy beam B does not need to be irradiated to the part by the side of the protective plate 27 among the end surfaces 25a of the tab laminated body 25, and the energy beam B does not have to be irradiated to the remaining part by the side of the current collecting plate 19. In this case, the welding part W is not formed in the remaining part by the side of the current collecting plate 19 among the end surfaces 25a of the tab laminated body 25.
  • the welded portion W extends in the irradiation direction of the energy beam B on the inner side of the end surface 25 a of the tab laminated body 25, so that the welded portion W extends in the thickness direction of the tab laminated body 25 inside the tab laminated body 25. It will be.
  • the welded portion W By causing the welded portion W to reach the current collector plate 19, the plurality of tabs 17 b and the current collector plate 19 can be welded.
  • the irradiation spot of the energy beam B moves from the position P1 on the axis H1 to the position P3 on the end surface 25a of the tab laminate 25, and then moves from the position P2 on the axis H1 to the position P3.
  • the position P3 is located between the position P1 and the position P2 in the X-axis direction. In this case, variation in distortion in the X-axis direction is reduced in the welded portion W formed by irradiation with the energy beam B.
  • the irradiation spot of the energy beam B may move linearly from the position P1 on the axis H1 to the position P2 on the end face 25a of the tab laminate 25.
  • the energy beam B is scanned a plurality of times along the X-axis direction while shifting the irradiation spot of the energy beam B in the Z-axis direction.
  • FIG. 9A is a diagram showing the tab laminates 21 and 25 viewed from the X-axis direction
  • FIG. 9B is a diagram showing the tab laminate 25 viewed from the Y-axis direction.
  • the welded portion W spreads in the X-axis direction on the end surface 25a of the tab laminate 25.
  • the maximum length W2 of the welded portion W in the end surface 25a of the tab laminated body 25 in a direction orthogonal to the lamination direction of the tab laminated body 25 is equal to the lamination direction of the tab laminated body 25 (for example, the Z-axis direction).
  • the tab layered body 25 in the stacking direction (for example, the Z-axis direction) It is larger than the maximum length W1 of the portion where the welded portion W and the tab laminate 25 overlap.
  • the maximum length W1 is smaller than the maximum length of the welded portion W in the Z-axis direction.
  • the energy beam B is similarly applied to the end face 21 b of the tab laminated body 21.
  • the welded portion W is also formed from the end surface 21 b of the tab laminated body 21 to the inside.
  • the welded portion W extends in the X-axis direction.
  • the energy beam B is applied to the end face 21b in a state where the end face 25b of the tab laminated body 25 and the end face 21b of the tab laminated body 21 are arranged to face each other.
  • the welded portion W is formed on the inner side from the end face 25b of the tab laminated body 25 by irradiating the end surface 25b of the tab laminated body 25 with the energy beam B (FIG. 4). reference).
  • the energy beam B is applied to the end face 25b in a state where the end face 25b of the tab laminated body 25 and the end face 21b of the tab laminated body 21 are arranged to face each other.
  • the end surface 21a of the tab laminated body 21 is irradiated with the energy beam B, thereby forming a welded portion W from the end surface 21a of the tab laminated body 21 (see FIG. 4). ).
  • the work including the tab laminates 21 and 25 is transported in the Y-axis direction by the transport stage 40 to the irradiation position of the energy beam B.
  • the end surfaces 21 a and 25 b of the tab laminates 21 and 25 are irradiated with the energy beam B using the first irradiation device 30, and the end surfaces 21 b and 25 b of the tab laminates 21 and 25 are used using the second irradiation device 30. May be irradiated with the energy beam B.
  • end surfaces 25a, 21b, 25b, and 21a may be sequentially irradiated with the energy beam B by moving one irradiation device 30 with a driving device such as a motor to change the irradiation direction of the energy beam B.
  • the electrode assembly 3 is manufactured through the above steps. Thereafter, the electrode assembly 3 obtained by bending the tab laminates 21 and 25 is accommodated in the case 2, and the power storage device 1 can be manufactured.
  • the welded portion W spreads in the X-axis direction on the end faces 21a, 21b, 25a, and 25b of the tab laminates 21 and 25.
  • the electrical resistance value between the plurality of tabs 14b and 17b can be reduced. Therefore, a large current can flow between the plurality of tabs 14b and 17b.
  • the welded portion W may be formed along the contact location between the tab laminates 21 and 25 and the current collector plates 16 and 19. In this case, the tab laminates 21 and 25 and the current collector plates 16 and 19 can be firmly connected by the welded portion W.
  • the protection plate 23, the plurality of protection plates 23, and the like are used without using a member (for example, a member connecting the protection plate 23 and the current collector plate 16) positioned across the tab laminate 21 in the stacking direction of the tab laminate 21.
  • the tab 14b and the current collector plate 16 are connected to each other by the welded portion W.
  • a member for example, a member connecting the protection plate 27 and the current collector plate 19
  • the current collector plate 19 are connected to each other by the welded portion W.
  • the maximum length W2 of the welded portion W in the direction orthogonal to the laminating direction of the tab laminated body 21 on the end surfaces 21a and 21b of the tab laminated body 21 is determined by the laminating direction (for example, the Z-axis direction) of the tab laminated body 21 and the tab laminated body 21.
  • the maximum length W2 of the welded portion W in the direction orthogonal to the stacking direction of the tab stacked body 25 on the end faces 25a and 25b of the tab stacked body 25 is equal to the stacking direction of the tab stacked body 25 (for example, the Z-axis direction). Welding in the stacking direction (for example, the Z-axis direction) of the tab stack 25 when viewed from the direction (for example, the Y-axis direction) orthogonal to both the direction (for example, the X-axis direction) orthogonal to the stacking direction of the stacked body 25. It is larger than the maximum length W1 of the portion where the portion W and the tab laminate 25 overlap.
  • the welded portion W since the mechanical strength of the welded portion W is increased, the welded portion W is not easily destroyed even if stress is generated in the electrode assembly 3 due to, for example, assembly work or external force.
  • the welded portion W can be enlarged in the direction orthogonal to the stacking direction of the tab stacked body 21 on the end surfaces 21 a and 21 b of the tab stacked body 21.
  • the welded portion W can be enlarged in the direction orthogonal to the stacking direction of the tab laminate 25 on the end faces 25a and 25b of the tab laminate 25.
  • the area of the welded portion W in the XY cross section of the tab laminate 25 including the tab 17b made of copper varies depending on the rated input / output of the battery, but is preferably 3.5 mm 2 or more for a 20A battery, for example.
  • the area of the welded portion W in the XY cross section of the tab laminate 21 including the tab 14b made of aluminum varies depending on the rated input / output of the battery, but is preferably 5.5 mm 2 or more for a 20A battery, for example.
  • FIG. 12 to FIG. 13 are views showing one process of the manufacturing method of the electrode assembly according to the second embodiment.
  • 12A and 13A are views showing the tab laminates 21 and 25 as seen from the X-axis direction.
  • FIGS. 12B and 13B are views showing the tab laminate 25 viewed from the Y-axis direction.
  • the electrode assembly 3 can be manufactured similarly to 1st Embodiment except the welding part W being formed in the end surfaces 21c and 25c of the tab laminated bodies 21 and 25, respectively.
  • the end surface 25c of the tab laminated body 25 is located at the tip of the tab laminated body 25 and is a surface along the YZ plane.
  • the end face 25c may be formed by cutting the tip end of the tab laminate 25, or may be formed by laminating the tab 17b using tabs 17b having different lengths.
  • the energy beam B is scanned along the Y-axis direction while being displaced (wobbling) in the Z-axis direction on the end face 25c.
  • the irradiation spot of the energy beam B moves from the position P4 on the axis H1 along the Y-axis direction to the position P5 on the end face 25c.
  • the positions P4 and P5 are located at the center of the end face 25c in the Z-axis direction.
  • the energy beam B is scanned while moving the center point along the Y-axis direction on the end face 25c and rotating the irradiation spot of the energy beam B around the center point on the YZ plane.
  • the welded portion W is formed on the inner side from the end surface 25 c of the tab laminated body 25 by the irradiation of the energy beam B.
  • the welded portion W extends in the Y-axis direction on the end surface 25c of the tab laminate 25.
  • the welded portion W is also formed on the end surface 21c of the tab laminated body 21.
  • the energy beam B is scanned along the Y-axis direction on the end surface 21 c of the tab laminate 21.
  • the same effects as those in the first embodiment can be obtained.
  • the welding part W is formed also in the end surface 25c in addition to the end surfaces 25a and 25b of the tab laminated body 25, the electrical resistance value between the tabs 17b can be reduced.
  • the welded portion W may not be formed on the end surfaces 21a, 21b, 25a, and 25b of the tab laminates 21 and 25, and the welded portion W may be formed only on the end surfaces 21c and 25c of the tab laminates 21 and 25.
  • FIG. 14 to FIG. 15 are diagrams showing one process of the method for manufacturing the electrode assembly according to the third embodiment. 14 and 15 are views showing the tab laminate 25 viewed from the X-axis direction.
  • the electrode assembly 3 can be manufactured in the same manner as in the first embodiment, except that the wound electrode assembly 3 is manufactured instead of the stacked electrode assembly 3.
  • the wound electrode assembly 3 includes tab laminates 21 and 25, similar to the stacked electrode assembly 3.
  • the tab laminates 21 and 25 are disposed on opposite sides in the X-axis direction.
  • the tab laminate 25 is wound around the axis in the X-axis direction and then compressed in the Z-axis direction. Therefore, the tab laminate 25 includes tabs 17b that are laminated in the Z-axis direction. Specifically, a plurality of portions in the tab 17b are stacked in the Z-axis direction.
  • the welded portion W connects the stacked tabs 17b. Specifically, a plurality of portions in the tab 17b are connected by the welded portion W.
  • the tab laminate 25 does not include the end surfaces 25a and 25b, but includes only the end surface 25c located at the tip.
  • the tab laminate 21 does not include the end surfaces 21a and 21b, but includes only the end surface 21c located at the tip.
  • the energy beam B is scanned along the Y-axis direction while being displaced (wobbling) in the Z-axis direction on the end face 25c.
  • the irradiation spot of the energy beam B moves from the position P4 on the axis H1 along the Y-axis direction to the position P5 on the end face 25c.
  • the positions P4 and P5 are located at the center of the end face 25c in the Z-axis direction.
  • the energy beam B is scanned while moving the center point along the Y-axis direction on the end face 25c and rotating the irradiation spot of the energy beam B around the center point on the YZ plane.
  • the welded portion W is formed on the inner side from the end surface 25 c of the tab laminated body 25 by the irradiation of the energy beam B.
  • the welded portion W extends in the Y-axis direction on the end surface 25c of the tab laminate 25.
  • the welded portion W is also formed on the end surface 21c of the tab laminated body 21.
  • the energy beam B is scanned along the Y-axis direction on the end surface 21 c of the tab laminate 21.
  • FIG. 16 is a view showing a part of an electrode assembly having a weld according to a modification.
  • FIG. 16A is a diagram showing a tab laminate 25 as viewed from the Y-axis direction, which has a welded portion W according to a first modification.
  • FIG. 16B is a view showing the tab laminate 25 having the welded portion W according to the second modified example as seen from the Y-axis direction.
  • the welded portion W when viewed from the normal direction of the end face 25a of the tab laminate 25, the welded portion W has an outer shape including a curve. For this reason, the stress is difficult to concentrate on the curved portion of the outer shape of the welded portion W, so that the welded portion W is difficult to peel off.
  • the welded portion W may have an outer shape surrounded by a curve, or may have an outer shape surrounded by a curve and a straight line.
  • the outer shape of the welded portion W does not include a corner portion (a portion where straight lines intersect) where stress is likely to concentrate.
  • the outer shape of the welded portion W according to the first modification includes, for example, a part of an ellipse.
  • the maximum length W2 of the welded portion W in the direction (X-axis direction) orthogonal to the stacking direction of the tab stacked body 25 on the end surface 25a of the tab stacked body 25 is the tab stacked body 25.
  • the outer shape of the welded portion W according to the second modification includes, for example, a part of a circle.
  • the maximum length W2 of the welded portion W in the direction (X-axis direction) orthogonal to the stacking direction of the tab stack 25 on the end surface 25a of the tab stack 25 is the tab stack 25.
  • the maximum length W2 may be equal to or less than the maximum length W1.
  • the welded portion W has the same shape as the welded portion W according to the first modified example or the second modified example. May be.
  • Example 1 The welded portion W was formed so that the maximum weld depth Wd of the welded portion W was 0.1 mm.
  • Example 2 A weld W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the weld W was 0.3 mm.
  • Example 3 A weld W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the weld W was 1.2 mm.
  • the power of the laser used for forming the weld W was 1500 W, and the scanning speed was 24.9 mm / sec.
  • Example 4 A weld W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the weld W was 1.5 mm.
  • the output of the laser used for forming the weld W was 1500 W, and the scanning speed was 8.3 mm / sec.
  • Example 5 A welded portion W was formed in the same manner as in Example 1 except that the maximum weld depth Wd of the welded portion W was 2 mm.
  • Electrode assembly 11 ... Positive electrode (electrode), 12 ... Negative electrode (electrode), 14b, 17b ... Tab, 16, 19 ... Current collecting plate (current collector), 21, 25 ... Tab laminated body, 21a, 21b 25a, 25b, 25c ... end face, 23, 27 ... protective plate (pressing member), B ... energy beam, W ... weld.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

タブを含む電極を有する電極組立体の製造方法は、積層されたタブを有するタブ積層体を準備する工程と、タブ積層体の積層方向に沿って延在するタブ積層体の端面にエネルギービームを照射することによって、タブ積層体の端面から内側に溶接部を形成する工程と、を含む。溶接部を形成する工程では、タブ積層体の端面において、タブ積層体の積層方向に交差する方向に沿ってエネルギービームを走査する。

Description

電極組立体の製造方法及び電極組立体
 本発明の一側面は、電極組立体の製造方法及び電極組立体に関する。
 リチウム二次電池を製造する際に、YAGレーザー又は電子ビームを用いて、積層された複数の短冊状集電タブ同士を溶接する方法が知られている(特許文献1参照)。
特開2002-313309号公報
 上記方法では、集電タブの側面において、集電タブの積層方向に長軸を有する楕円形状の溶接部が形成されている。そのため、集電タブの側面において、集電タブの積層方向に直交する方向における溶接部の長さは十分ではない。また、上記方法では、鉤部材が集電タブを電極端子に固定しているので、電流は、集電タブから鉤部材を通って電極端子に流れる。そのため、溶接部の電気抵抗をそれ程低減する必要はない。
 本発明の一側面は、積層されたタブ間の電気抵抗値を低減できる電極組立体の製造方法及び電極組立体を提供することを目的とする。
 本発明の一側面に係る電極組立体の製造方法は、タブを含む電極を有する電極組立体の製造方法であって、積層された前記タブを有するタブ積層体を準備する工程と、前記タブ積層体の積層方向に沿って延在する前記タブ積層体の端面にエネルギービームを照射することによって、前記タブ積層体の端面から内側に溶接部を形成する工程と、を含み、前記溶接部を形成する工程では、前記タブ積層体の端面において、前記タブ積層体の積層方向に交差する方向に沿って前記エネルギービームを走査する。
 この電極組立体の製造方法によれば、タブ積層体の端面において、タブ積層体の積層方向に交差する方向に溶接部が広がる。その結果、溶接部において電流が積層方向に流れる際に、積層されたタブ間の電気抵抗値を低減できる。
 前記タブ積層体は、前記タブ積層体の積層方向において前記集電体上に配置され、前記溶接部は、前記タブ積層体と前記集電体との接触箇所に沿って形成されてもよい。
 この場合、溶接部によってタブ積層体と集電体とを強固に接続することができる。
 前記タブ積層体が、前記タブ積層体の積層方向において押圧部材と集電体との間に配置され、前記押圧部材及び前記集電体を介して前記タブ積層体を前記タブ積層体の積層方向に押圧した状態で前記タブ積層体の端面に前記エネルギービームを照射してもよい。
 この場合、積層されたタブ間に隙間が生じ難くなるので、タブ積層体の端面に形成される溶接部にボイドが発生し難い。
 前記タブ積層体の積層方向における前記押圧部材の厚みは、前記タブ積層体の積層方向における前記集電体の厚みよりも小さくてもよい。
 この場合、押圧部材の厚みが比較的小さくなるので、押圧部材の熱容量とタブの熱容量との差を小さくできる。
 前記タブ積層体の端面において、前記エネルギービームを前記タブ積層体の積層方向に変位させながら走査してもよい。
 この場合、タブ積層体の端面の広い面積にエネルギービームを照射できるので、タブ積層体の端面において広い面積の溶接部が形成される。
 前記タブ積層体が、前記タブ積層体を挟んで前記タブ積層体の端面とは反対側に配置される別の端面を有してもよい。
 前記タブ積層体の積層方向において前記タブ積層体を跨いで位置する部材を用いることなく、積層された前記タブが前記溶接部によって互いに接続されてもよい。
 前記タブ積層体の端面において前記タブ積層体の積層方向に直交する方向における前記溶接部の最大長さが、前記タブ積層体の積層方向と前記タブ積層体の積層方向に直交する前記方向との両方に直交する方向から見たときに、前記タブ積層体の積層方向における前記溶接部と前記タブ積層体とが重なる部分の最大長さよりも大きくてもよい。
 この場合、溶接部の機械的強度が高まるので、例えば組立作業又は外力により電極組立体に応力が生じても溶接部が破壊され難い。また、タブ積層体の端面において、タブ積層体の積層方向に直交する方向に溶接部を大きくすることができる。その結果、溶接部の熱拡散性が向上するので、エネルギービームの照射に起因するスパッタ粒子の発生を抑制できる。
 前記タブ積層体の積層方向を含み前記タブ積層体の端面に直交する前記タブ積層体の断面において、前記タブ積層体の積層方向に直交する方向における前記溶接部の最大溶接深さが2mm未満であってもよい。
 この場合、エネルギービームの照射に起因するスパッタ粒子の発生を抑制できる。
 前記タブ積層体の端面の法線方向から見て、前記溶接部が、曲線を含む外形形状を有してもよい。
 この場合、溶接部の外形形状の曲線部分において応力が集中し難いので、溶接部が剥離し難い。
 本発明の一側面に係る電極組立体は、タブを含む電極を備える電極組立体であって、積層された前記タブを有するタブ積層体を備え、前記タブ積層体が、前記タブ積層体の積層方向に沿って延在する前記タブ積層体の端面から内側に位置する溶接部を有し、前記タブ積層体の端面において前記タブ積層体の積層方向に直交する方向における前記溶接部の最大長さが、前記タブ積層体の積層方向と前記タブ積層体の積層方向に直交する前記方向との両方に直交する方向から見たときに、前記タブ積層体の積層方向における前記溶接部と前記タブ積層体とが重なる部分の最大長さよりも大きい。
 この電極組立体によれば、タブ積層体の端面において、タブ積層体の積層方向に交差する方向に溶接部が広がる。その結果、溶接部において電流が積層方向に流れる際に、積層されたタブ間の電気抵抗値を低減できる。
 前記タブ積層体の積層方向を含み前記タブ積層体の端面に直交する前記タブ積層体の断面において、前記タブ積層体の積層方向に直交する方向における前記溶接部の最大溶接深さが2mm未満であってもよい。
 前記タブ積層体が、前記タブ積層体の積層方向において押圧部材と集電体との間に配置され、前記タブ積層体の積層方向における前記押圧部材の厚みは、前記タブ積層体の積層方向における前記集電体の厚みよりも小さくてもよい。
 この場合、押圧部材の厚みが比較的小さくなるので、押圧部材の熱容量とタブの熱容量との差を小さくできる。
 前記タブ積層体の端面の法線方向から見て、前記溶接部が、曲線を含む外形形状を有してもよい。
 この場合、溶接部の外形形状の曲線部分において応力が集中し難いので、溶接部が剥離し難い。
 本発明の一側面によれば、積層されたタブ間の電気抵抗値を低減できる電極組立体の製造方法が提供され得る。
図1は、第1実施形態に係る電極組立体を備える蓄電装置の分解斜視図である。 図2は、図1のII-II線に沿った蓄電装置の断面図である。 図3は、第1実施形態に係る電極組立体の斜視図である。 図4は、X軸方向から見た図3の電極組立体の一部を示す図である。 図5は、第1実施形態に係る電極組立体の製造方法の一工程を示す図である。 図6は、第1実施形態に係る電極組立体の製造方法の一工程を示す図である。 図7は、第1実施形態に係る電極組立体の製造方法の一工程を示す図である。 図8は、第1実施形態に係る電極組立体の製造方法の一工程を示す図である。 図9は、第1実施形態に係る電極組立体の製造方法の一工程を示す図である。 図10は、第1実施形態に係る電極組立体の製造方法の一工程を示す図である。 図11は、第1実施形態に係る電極組立体の製造方法の一工程を示す図である。 図12は、第2実施形態に係る電極組立体の製造方法の一工程を示す図である。 図13は、第2実施形態に係る電極組立体の製造方法の一工程を示す図である。 図14は、第3実施形態に係る電極組立体の製造方法の一工程を示す図である。 図15は、第3実施形態に係る電極組立体の製造方法の一工程を示す図である。 図16は、変形例に係る溶接部を有する電極組立体の一部を示す図である。 図17は、実施例の評価結果を示す図である。
 以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図面には、必要に応じてXYZ直交座標系が示されている。Z軸方向は例えば鉛直方向、X軸方向及びY方向は例えば水平方向である。
 図1は、第1実施形態に係る電極組立体を備える蓄電装置の分解斜視図である。図2は、図1のII-II線に沿った蓄電装置の断面図である。図1及び図2に示される蓄電装置1は、例えばリチウムイオン二次電池といった非水電解質二次電池又は電気二重層キャパシタである。
 図1及び図2に示されるように、蓄電装置1は、例えば略直方体形状をなす中空のケース2と、ケース2内に収容された電極組立体3とを備えている。ケース2は、例えばアルミニウム等の金属によって形成されている。ケース2は、一方側において開口した本体部2aと、本体部2aの開口を塞ぐ蓋部2bとを有している。ケース2の内壁面上には、絶縁フィルム(図示せず)が設けられる。ケース2の内部には、例えば非水系(有機溶媒系)の電解液が注液されている。電極組立体3では、後述する正極11の正極活物質層15、負極12の負極活物質層18、及びセパレータ13が多孔質をなしており、その空孔内に、電解液が含浸されている。ケース2の蓋部2bには、正極端子5と負極端子6とが互いに離間して配置されている。正極端子5は、絶縁リング7を介してケース2に固定され、負極端子6は、絶縁リング8を介してケース2に固定されている。
 電極組立体3は、積層型の電極組立体である。電極組立体3は、複数の正極11(電極)と、複数の負極12(電極)と、正極11と負極12との間に配置された袋状のセパレータ13とによって構成されている。セパレータ13内には、例えば正極11が収容されている。セパレータ13内に正極11が収容された状態で、複数の正極11と複数の負極12とがセパレータ13を介して交互に積層されている。
 正極11は、例えばアルミニウム箔からなる金属箔14と、金属箔14の両面に形成された正極活物質層15と、を有している。正極11の金属箔14は、矩形状の本体14aと、本体14aの一端から突出する矩形状のタブ14bと、を含む。正極活物質層15は、正極活物質とバインダとを含んで形成されている多孔質の層である。正極活物質層15は、本体14aの両面において、少なくとも本体14aの中央部分に正極活物質が担持されて形成されている。
 正極活物質としては、例えば複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物には、例えばマンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つと、リチウムとが含まれる。ここでは、一例として、タブ14bには、正極活物質が担持されていない。ただし、タブ14bにおける本体14a側の基端部分には、活物質が担持されている場合もある。
 タブ14bは、本体14aの上縁部から上方に延び、集電板16(集電体)を介して正極端子5に接続されている。集電板16はタブ14bと正極端子5との間に配置されている。集電板16は、例えば、正極11の金属箔14と同一の材料から矩形平板状に構成される。積層された複数のタブ14bは、集電板16と、集電板16よりも薄い保護板23(押圧部材)との間に配置される(図3参照)。保護板23は、例えば、正極11の金属箔14と同一の材料から矩形平板状に構成される。
 負極12は、例えば銅箔からなる金属箔17と、金属箔17の両面に形成された負極活物質層18と、を有している。負極12の金属箔17は、正極11の金属箔14と同様に、矩形状の本体17aと、本体17aの一端部から突出する矩形状のタブ17bと、を含む。負極活物質層18は、本体17aの両面において、少なくとも本体17aの中央部分に負極活物質が担持されて形成されている。負極活物質層18は、負極活物質とバインダとを含んで形成されている多孔質の層である。
 負極活物質としては、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素等が挙げられる。ここでは、一例として、タブ17bには、負極活物質が担持されていない。ただし、タブ17bにおける本体17a側の基端部分には、活物質が担持されている場合もある。
 タブ17bは、本体17aの上縁部から上方に延び、集電板19(集電体)を介して負極端子6に接続されている。集電板19はタブ17bと負極端子6との間に配置されている。集電板19は、例えば、負極12の金属箔17と同一の材料から矩形平板状に構成される。積層された複数のタブ17bは、集電板19と、集電板19よりも薄い保護板27(押圧部材)との間に配置される(図3参照)。保護板27は、例えば、負極12の金属箔17と同一の材料から矩形平板状に構成される。
 セパレータ13は、正極11を収容している。セパレータ13は、正極11及び負極12の積層方向からみて矩形状である。セパレータ13は、例えば、一対の長尺シート状のセパレータ部材を互いに溶着して袋状に形成される。セパレータ13の材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。
 図3は、第1実施形態に係る電極組立体の斜視図である。図4は、X軸方向から見た図3の電極組立体の一部を示す図である。図3に示される電極組立体3は、セパレータ13を介して互いに積層された複数の正極11及び複数の負極12を含む。複数の正極11のそれぞれは、XY平面に延在する本体14aと、本体14aの一端からX軸方向に突出するタブ14bとを含む。複数の負極12のそれぞれは、XY平面に延在する本体17aと、本体17aの一端からX軸方向に突出するタブ17bとを含む。タブ14b,17bは、互いに積層されてタブ積層体21,25をそれぞれ構成する。すなわち、電極組立体3は、Z軸方向に積層された複数のタブ14bを有するタブ積層体21と、Z軸方向に積層された複数のタブ17bを有するタブ積層体25とを備える。タブ積層体21,25は、Y軸方向において、互いに離間して配列される。
 タブ積層体21は、タブ積層体21の積層方向(Z軸方向)に沿って延在するタブ積層体21の端面21a,21b,21cを備える。端面21a,21bは、タブ積層体21を挟む面であり、端面21cは端面21a,21bを繋ぐ面である。すなわち、端面21a,21bは、タブ積層体21を挟んで互いに反対側に配置されている。端面21a,21bは、XZ平面に沿う面である。端面21cは、タブ積層体21の先端に向かうに連れてタブ積層体21の厚みが小さくなるようにXY平面に対して傾斜した面である。
 タブ積層体21は、Z軸方向において、集電板16と保護板23との間に配置される。すなわち、タブ積層体21は、Z軸方向において集電板16上に配置される。保護板23は、Z軸方向においてタブ積層体21上に配置される。保護板23は、集電板16と接触しておらず、保護板23と集電板16とは、タブ積層体21を積層方向に挟んで離間している。タブ積層体21は保護板23よりも厚く、集電板16はタブ積層体21よりも厚い。保護板23の厚みは、タブ14bの厚みよりも大きく、集電板16の厚みよりも小さい。電極組立体3は、保護板23及び集電板16を備えなくてもよい。
 集電板16のY軸方向における長さは、タブ積層体21のY軸方向における長さ(端面21a,21b間の距離)よりも大きくなっている。Y軸方向において、集電板16のY軸方向における外側端部の位置は、本体14aのY軸方向における端部の位置と一致している。保護板23のY軸方向における長さは、タブ積層体21のY軸方向における長さと略同じである。
 タブ積層体21は、タブ積層体21の端面21a,21bからそれぞれ内側に位置する溶接部Wを有する。タブ積層体21の端面21a,21bにおいてタブ積層体21の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体21の積層方向(例えばZ軸方向)とタブ積層体21の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体21の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体21とが重なる部分の最大長さW1よりも大きい(図3参照)。溶接部Wは、端面21a,21bに隣接する集電板16及び保護板23の内部まで延びている。端面21a,21bにおいて、溶接部WのX軸方向における長さは、保護板23のX軸方向における長さと略等しいか、又は保護板23のX軸方向における長さよりも短いことが好ましい。これにより、タブ積層体21のタブ14bがX軸方向において位置ずれした場合(例えば公差による位置ずれがある場合)であっても安定して溶接部Wを形成することができる。なお、溶接部WのX軸方向における長さが保護板23のX軸方向における長さと略等しい場合、位置ずれにより溶接部WがX軸方向において保護板23の外側にはみ出す可能性がある。また、溶接部WのX軸方向における長さが保護板23のX軸方向における長さよりも長い場合、溶接部WがX軸方向において保護板23の外側にはみ出す。それらの場合であっても、溶接部Wを形成することは可能である。
 図4に示されるように、Z軸方向を含みタブ積層体21の端面21a,21bに直交するタブ積層体21の断面(例えばYZ断面)において、溶接部Wの境界線Waは、Z軸方向に直交する方向H(例えばY軸方向)及びタブ積層体21の積層方向(Z軸方向)の両方に対して傾斜した方向に延びている。例えば、溶接部Wは2つの境界線Waを有しており、後述するエネルギービームB(図6参照)の照射によりエネルギービームBの周囲に形成される溶融池の形状に応じて、溶接部Wの外面から内側に向かうに連れて2つの境界線Waの間隔が狭くなっている。溶接池は、エネルギービームBの照射方向において、エネルギービームBの照射対象物の表面から内側に向けて先細るように形成される。溶接部Wは集電板16にも形成されるが、集電板16の密度はタブ積層体21の密度と異なるため、集電板16に形成される溶接池の深さとタブ積層体21に形成される溶接池の深さは異なる。その結果、上述のように、溶接部Wの外面から内側に向かうに連れて2つの境界線Waの間隔は狭くなる。すなわち、タブ積層体21のYZ断面において、溶接部Wの1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をα、溶接部Wのもう1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合に、θはαとβとの間の値となる。例えば、タブ積層体21のYZ断面において、集電板16内の境界線Waと方向Hとのなす角度のうち小さい方の角度をα、タブ積層体21内の境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合、α<θ<βとなる。溶接部Wの境界線Waは、YZ断面においてZ軸方向に平行でもよい。
 同様に、タブ積層体25は、タブ積層体25の積層方向(Z軸方向)に沿って延在するタブ積層体25の端面25a,25b,25cを備える。端面25a,25bは、タブ積層体25を挟む面であり、端面25cは端面25a,25bを繋ぐ面である。すなわち、端面25a,25bは、タブ積層体25を挟んで互いに反対側に配置されている。また、端面25a,25bは、XZ平面に沿う面である。また、端面25cは、タブ積層体25の先端に向かうに連れてタブ積層体25の厚みが小さくなるようにXY平面に対して傾斜した面である。
 タブ積層体25は、Z軸方向において、集電板19と保護板27との間に配置される。すなわち、タブ積層体25は、Z軸方向において集電板19上に配置される。保護板27は、Z軸方向においてタブ積層体25上に配置される。保護板27は、集電板19と接触しておらず、保護板27と集電板19とは、タブ積層体25を積層方向に挟んで離間している。タブ積層体25は保護板27よりも厚く、集電板19はタブ積層体25よりも厚い。保護板27の厚みは、タブ17bの厚みよりも大きく、集電板19の厚みよりも小さい。電極組立体3は、保護板27及び集電板19を備えなくてもよい。
 集電板19のY軸方向における長さは、タブ積層体25のY軸方向における長さ(端面25a,25b間の距離)よりも大きくなっている。Y軸方向において、集電板19のY軸方向における外側端部の位置は、本体17aのY軸方向における端部の位置と一致している。保護板27のY軸方向における長さは、タブ積層体25のY軸方向における長さと略同じである。
 タブ積層体25は、タブ積層体25の端面25a,25bからそれぞれ内側に位置する溶接部Wを有する。タブ積層体25の端面25bは、タブ積層体21の端面21bと対向している。よって、タブ積層体21,25の端面21a,21b,25a,25bは、Y軸方向に沿って配列される。タブ積層体25の端面25a,25bにおいてタブ積層体25の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(例えばZ軸方向)とタブ積層体25の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体25の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい(図3参照)。溶接部Wは、端面25a,25bに隣接する集電板19及び保護板27の内部まで延びている。端面25a,25bにおいて、溶接部WのX軸方向における長さは、保護板27のX軸方向における長さと略等しいか、又は保護板27のX軸方向における長さよりも短いことが好ましい。これにより、タブ積層体25のタブ17bがX軸方向において位置ずれした場合(例えば公差による位置ずれがある場合)であっても安定して溶接部Wを形成することができる。なお、溶接部WのX軸方向における長さが保護板27のX軸方向における長さと略等しい場合、位置ずれにより溶接部WがX軸方向において保護板27の外側にはみ出す可能性がある。また、溶接部WのX軸方向における長さが保護板27のX軸方向における長さよりも長い場合、溶接部WがX軸方向において保護板27の外側にはみ出す。それらの場合であっても、溶接部Wを形成することは可能である。
 図4に示されるように、Z軸方向を含みタブ積層体25の端面25a,25bに直交するタブ積層体25の断面(例えばYZ断面)において、溶接部Wの境界線Waは、Z軸方向に直交する方向H(例えばY軸方向)及びタブ積層体25の積層方向(Z軸方向)の両方に対して傾斜した方向に延びている。例えば、溶接部Wは2つの境界線Waを有しており、後述するエネルギービームBの照射によりエネルギービームBの周囲に形成される溶融池の形状に応じて、溶接部Wの外面から内側に向かうに連れて2つの境界線Waの間隔が狭くなっている。溶接池は、エネルギービームBの照射方向において、エネルギービームBの照射対象物の表面から内側に向けて先細るように形成される。溶接部Wは集電板19にも形成されるが、集電板19の密度はタブ積層体25の密度と異なるため、集電板19に形成される溶接池の深さとタブ積層体25に形成される溶接池の深さは異なる。その結果、上述のように、溶接部Wの外面から内側に向かうに連れて2つの境界線Waの間隔は狭くなる。すなわち、タブ積層体25のYZ断面において、溶接部Wの1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をα、溶接部Wのもう1つの境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合に、θはαとβとの間の値となる。例えば、タブ積層体25のYZ断面において、集電板19内の境界線Waと方向Hとのなす角度のうち小さい方の角度をα、タブ積層体25内の境界線Waと方向Hとのなす角度のうち小さい方の角度をβ、エネルギービームBの照射方向をYZ平面に投影した方向Jと方向Hとのなす角度のうち小さい方の角度をθとした場合、α<θ<βとなる。溶接部Wの境界線Waは、YZ断面においてZ軸方向に平行でもよい。
 タブ積層体21の積層方向を含みタブ積層体21の端面21a,21bに直交するタブ積層体21の断面(例えばYZ断面)において、タブ積層体21の積層方向に直交する方向における溶接部Wの最大溶接深さWdは、2mm未満であってもよいし、1.5mm以下であってもよいし、1.2mm以下であってもよいし、0.1mm超であってもよいし、0.3mm以上であってもよい。同様に、タブ積層体25の積層方向を含みタブ積層体25の端面25a,25bに直交するタブ積層体25の断面(例えばYZ断面)において、タブ積層体25の積層方向に直交する方向における溶接部Wの最大溶接深さWdは2mm未満であってもよいし、1.5mm以下であってもよいし、1.2mm以下であってもよいし、0.1mm超であってもよいし、0.3mm以上であってもよい。最大溶接深さWdを2mm未満とすると、例えばエネルギービームBの照射に起因するスパッタ粒子の発生を抑制できる。特に、最大溶接深さWdを1.2mm以下とすると、スパッタ粒子の発生が顕著に抑制される(図17参照)。
 タブ積層体21の積層方向に直交するタブ積層体21の断面(例えばXY断面)において、溶接部Wの最大面積は、例えば4~40mmである。同様に、タブ積層体25の積層方向に直交するタブ積層体25の断面(例えばXY断面)において、溶接部Wの最大面積は、例えば4~40mmである。溶接部Wの最大面積を4mm以上とすると、溶接部Wの電気抵抗値を十分に低減できる。
 上述のように、電極組立体3において、タブ積層体21の端面21a,21bにおいてタブ積層体21の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体21の積層方向(例えばZ軸方向)とタブ積層体21の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体21の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体21とが重なる部分の最大長さW1よりも大きい(図3参照)。よって、タブ積層体21の端面21a,21bにおいて、タブ積層体21の積層方向に交差する方向に溶接部Wが広がる。その結果、溶接部Wにおいて電流が積層方向に流れる際に、複数のタブ14b間の電気抵抗値を低減できる。同様に、タブ積層体25の端面25a,25bにおいてタブ積層体25の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(例えばZ軸方向)とタブ積層体25の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体25の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい。よって、タブ積層体25の端面25a,25bにおいて、タブ積層体25の積層方向に交差する方向に溶接部Wが広がる。その結果、溶接部Wにおいて電流が積層方向に流れる際に、複数のタブ17b間の電気抵抗値を低減できる。
 タブ積層体21が、タブ積層体21の積層方向において保護板23と集電板16との間に配置され、タブ積層体21の積層方向における保護板23の厚みは、タブ積層体21の積層方向における集電板16の厚みよりも小さくてもよい。この場合、保護板23の厚みが比較的小さくなるので、保護板23の熱容量とタブ14bの熱容量との差を小さくできる。よって、保護板23とタブ14bとの接触箇所における溶接部Wの品質が向上する。タブ積層体21の積層方向における保護板23の厚みは、タブ積層体21の積層方向におけるタブ14bの厚みよりも大きくてもよい。
 保護板23の厚みは、0.1~0.5mmであってもよいし、0.1~0.2mmであってもよい。保護板23の厚みが0.1mm未満であると、保護板23がタブ14bを押圧する力が小さくなるので、溶接時にタブ14bが動き易くなる傾向にある。保護板23の厚みが0.5mm超であると、溶接時に保護板23を溶融させるためのエネルギーが大きくなる傾向にある。エネルギーを大きくするためにエネルギービームBの出力を上げると、エネルギービームBの照射に起因するスパッタ粒子が発生し易くなる。タブ14bの厚みは、例えば5~30μmである。タブ積層体21の厚みは例えば0.3~2.4mmであってもよいし、0.6~1.0mmであってもよい。
 同様に、タブ積層体25が、タブ積層体25の積層方向において保護板27と集電板19との間に配置され、タブ積層体25の積層方向における保護板27の厚みは、タブ積層体25の積層方向における集電板19の厚みよりも小さくてもよい。この場合、保護板27の厚みが比較的小さくなるので、保護板27の熱容量とタブ17bの熱容量との差を小さくできる。よって、保護板27とタブ17bとの接触箇所における溶接部Wの品質が向上する。タブ積層体25の積層方向における保護板27の厚みは、タブ積層体25の積層方向におけるタブ17bの厚みよりも大きくてもよい。
 保護板27の厚みは、例えば0.1~0.5mmであってもよいし、0.1~0.2mmであってもよい。保護板27の厚みが0.1mm未満であると、保護板27がタブ17bを押圧する力が小さくなるので、溶接時にタブ17bが動き易くなる傾向にある。保護板27の厚みが0.5mm超であると、溶接時に保護板27を溶融させるためのエネルギーが大きくなる傾向にある。エネルギーを大きくするためにエネルギービームBの出力を上げると、エネルギービームBの照射に起因するスパッタ粒子が発生し易くなる。タブ17bの厚みは、例えば5~30μmである。タブ積層体25の厚みは例えば0.3~2.4mmであってもよいし、0.6~1.0mmであってもよい。
 図5~図11は、第1実施形態に係る電極組立体の製造方法の一工程を示す図である。図3に示される電極組立体3は、例えば以下の方法により製造される。
(タブ積層体の準備工程)
 まず、図5に示されるように、複数のタブ積層体21,25を準備する。図5(A)はX軸方向から見たタブ積層体21,25を示す図であり、図5(B)はY軸方向から見たタブ積層体25を示す図である。例えば、まず、集電板16,19上にそれぞれタブ14b,17bを積層することによりタブ積層体21,25を形成する。その後、タブ積層体21,25上にそれぞれ保護板23,27を載置する。タブ積層体21,25は、例えば治具により保護板23,27を介して押圧されるが、押圧されなくてもよい。
(溶接部の形成工程)
 次に、図6に示されるように、タブ積層体25の端面25aにエネルギービームBを照射する。図6(A)はX軸方向から見たタブ積層体21,25を示す図であり、図6(B)はY軸方向から見たタブ積層体25を示す図である。エネルギービームBは、照射装置30からタブ積層体25の端面25aに向けて照射される。照射装置30は、例えばレンズ及びガルバノミラーを含むスキャナヘッドである。スキャナヘッドにはファイバを介してビーム発生装置が接続される。照射装置30は、例えばプリズム等の屈折式の光学系から構成されてもよい。
 タブ積層体25の端面25aに直交すると共にタブ積層体25の積層方向を含む平面(例えばYZ平面)にエネルギービームBの照射方向を投影した方向Jは、当該平面(例えばYZ平面)において、Z軸方向に直交する方向H(例えばY軸方向)及びタブ積層体25の積層方向の両方に対して傾斜している。方向Jはタブ積層体25の端面25aに対しても傾斜している。方向Jは、方向Hに平行でもよい。YZ平面において、方向Hと方向Jとのなす角度のうち小さい方の角度θは、5~85°であってもよく、10~80°であってもよく、45~75°であってもよい。エネルギービームBは、溶接を行うことができる高エネルギービームである。エネルギービームBは、例えばレーザービーム又は電子ビームである。エネルギービームBの照射は、ノズル32から供給される不活性ガスGの雰囲気中で行われる。
 エネルギービームBは、例えば治具により集電板19及び保護板27を介してタブ積層体25をZ軸方向に押圧した状態でタブ積層体25の端面25aに照射される。
 集電板16,19、タブ積層体21,25及び保護板23,27を含むワークは、例えばベルトコンベア等の搬送ステージ40上に載置され、エネルギービームBの照射位置までY軸方向に搬送される。
 エネルギービームBは、タブ積層体25の端面25aにおいて、Z軸方向に交差する方向(X軸方向)に沿って走査される。第1実施形態では、エネルギービームBをZ軸方向に変位させながらX軸方向に沿って走査する。例えば、エネルギービームBをZ軸方向に往復変位(ウォブリング)させながらX軸方向に沿って走査する。エネルギービームBの照射スポットのZ軸方向における変位量は、タブ積層体25の厚みよりも大きい。エネルギービームBの照射スポットは、タブ積層体25の端面25aにおいて、X軸方向に沿った軸線H1上の位置P1から位置P2まで移動する。例えば、位置P1,P2は、Z軸方向においてタブ積層体25の端面25aの中心に位置する。エネルギービームBは、例えば、タブ積層体25の端面25aにおいてX軸方向に沿って中心点を移動させ、当該中心点を中心にXZ平面においてエネルギービームBの照射スポットを回転させながら走査される。回転の直径がタブ積層体25の厚みよりも大きいと、タブ積層体25の端面25a、集電板19及び保護板27を全体的に溶接できるため好ましい。また、タブ積層体25の端面25aのうちの保護板27側の部分にエネルギービームBを照射し、集電板19側の残部にはエネルギービームBを照射しなくてもよい。この場合、タブ積層体25の端面25aのうちの集電板19側の残部には溶接部Wが形成されない。しかし、タブ積層体25の端面25aの内側において溶接部WがエネルギービームBの照射方向に延びることによって、タブ積層体25の内部において、溶接部Wがタブ積層体25の厚み方向に延在することになる。溶接部Wを集電板19まで到達させることによって、複数のタブ17b及び集電板19を溶接することができる。
 図7に示されるように、エネルギービームBの照射スポットは、タブ積層体25の端面25aにおいて、軸線H1上の位置P1から位置P3まで移動した後、軸線H1上の位置P2から位置P3まで移動してもよい。位置P3は、X軸方向において位置P1と位置P2との間に位置する。この場合、エネルギービームBの照射によって形成される溶接部Wにおいて、X軸方向における歪みのバラつきが低減される。
 図8に示されるように、エネルギービームBの照射スポットは、タブ積層体25の端面25aにおいて、軸線H1上の位置P1から位置P2まで直線的に移動してもよい。この場合、エネルギービームBの照射スポットをZ軸方向にずらしながら、エネルギービームBをX軸方向に沿って複数回走査する。
 上述のようにエネルギービームBを照射することによって、図9に示されるように、タブ積層体25の端面25aから内側に溶接部Wが形成される。図9(A)はX軸方向から見たタブ積層体21,25を示す図であり、図9(B)はY軸方向から見たタブ積層体25を示す図である。図9(B)に示されるように、タブ積層体25の端面25aにおいて、溶接部WはX軸方向に広がっている。タブ積層体25の端面25aにおいてタブ積層体25の積層方向に直交する方向(例えばX軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(例えばZ軸方向)とタブ積層体25の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体25の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい。なお、最大長さW1はZ軸方向における溶接部Wの最大長さより小さい。
 続いて、図10に示されるように、タブ積層体21の端面21bにも同様にエネルギービームBを照射する。これにより、図11に示されるように、タブ積層体21の端面21bから内側にも溶接部Wが形成される。タブ積層体21の端面21bにおいて、溶接部WはX軸方向に広がっている。
 エネルギービームBは、タブ積層体25の端面25bとタブ積層体21の端面21bとが互いに対向配置された状態で、端面21bに照射される。
 続いて、タブ積層体21の端面21bと同様に、タブ積層体25の端面25bにエネルギービームBを照射することにより、タブ積層体25の端面25bから内側に溶接部Wを形成する(図4参照)。エネルギービームBは、タブ積層体25の端面25bとタブ積層体21の端面21bとが互いに対向配置された状態で、端面25bに照射される。その後、タブ積層体25の端面25bと同様に、タブ積層体21の端面21aにエネルギービームBを照射することにより、タブ積層体21の端面21aから内側に溶接部Wを形成する(図4参照)。
 エネルギービームBの照射の際、タブ積層体21,25を含むワークは、搬送ステージ40によって、エネルギービームBの照射位置までY軸方向に搬送される。第1の照射装置30を用いて、タブ積層体21,25の端面21a,25bにエネルギービームBを照射し、第2の照射装置30を用いて、タブ積層体21,25の端面21b,25bにエネルギービームBを照射してもよい。また、1つの照射装置30をモータ等の駆動装置により移動させてエネルギービームBの照射方向を変えることによって、端面25a,21b,25b,21aにエネルギービームBを順に照射してもよい。
 上記工程を経ることによって、電極組立体3が製造される。その後、タブ積層体21,25を折り曲げた電極組立体3をケース2内に収容し、蓄電装置1を製造することができる。
 以上説明したように、第1実施形態の電極組立体の製造方法では、タブ積層体21,25の端面21a,21b,25a,25bにおいて、X軸方向に溶接部Wが広がる。その結果、溶接部Wにおいて電流がZ軸方向に流れる際に、複数のタブ14b,17b間の電気抵抗値を低減できる。よって、複数のタブ14b,17b間に大電流を流すことができる。溶接部Wは、タブ積層体21,25と集電板16,19との接触箇所に沿って形成されてもよい。この場合、溶接部Wによってタブ積層体21,25と集電板16,19とを強固に接続することができる。電極組立体3では、タブ積層体21の積層方向においてタブ積層体21を跨いで位置する部材(例えば保護板23と集電板16とを接続する部材)を用いることなく、保護板23、複数のタブ14b及び集電板16が溶接部Wによって互いに接続される。同様に、タブ積層体25の積層方向においてタブ積層体25を跨いで位置する部材(例えば保護板27と集電板19とを接続する部材)を用いることなく、保護板27、複数のタブ17b及び集電板19が溶接部Wによって互いに接続される。
 また、例えば治具により集電板19及び保護板27を介してタブ積層体25をZ軸方向に押圧した状態でタブ積層体25の端面25a,25bにエネルギービームBを照射する場合、複数のタブ17b間に隙間が生じ難くなるので、タブ積層体25の端面25a,25bに形成される溶接部Wにボイドが発生し難い。同様に、例えば治具により集電板16及び保護板23を介してタブ積層体21をZ軸方向に押圧した状態でタブ積層体21の端面21a,21bにエネルギービームBを照射する場合、複数のタブ14b間に隙間が生じ難くなるので、タブ積層体21の端面21a,21bに形成される溶接部Wにボイドが発生し難い。
 タブ積層体21の端面21a,21bにおいてタブ積層体21の積層方向に直交する方向における溶接部Wの最大長さW2が、タブ積層体21の積層方向(例えばZ軸方向)とタブ積層体21の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体21の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体21とが重なる部分の最大長さW1よりも大きい。同様に、タブ積層体25の端面25a,25bにおいてタブ積層体25の積層方向に直交する方向における溶接部Wの最大長さW2が、タブ積層体25の積層方向(例えばZ軸方向)とタブ積層体25の積層方向に直交する方向(例えばX軸方向)との両方に直交する方向(例えばY軸方向)から見たときに、タブ積層体25の積層方向(例えばZ軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい。このような場合、溶接部Wの機械的強度が高まるので、例えば組立作業又は外力により電極組立体3に応力が生じても溶接部Wが破壊され難い。また、タブ積層体21の端面21a,21bにおいて、タブ積層体21の積層方向に直交する方向に溶接部Wを大きくすることができる。同様に、タブ積層体25の端面25a,25bにおいて、タブ積層体25の積層方向に直交する方向に溶接部Wを大きくすることができる。その結果、溶接部Wの熱拡散性が向上するので、エネルギービームBの照射に起因するスパッタ粒子の発生を抑制できる。
 また、タブ積層体21,25の端面21a,21b,25a,25bにおいて、エネルギービームBをZ軸方向に変位(ウォブリング)させながら走査する場合、タブ積層体21,25の端面21a,21b,25a,25bの広い面積にエネルギービームBを照射できるので、広い面積の溶接部Wが形成される。
 銅からなるタブ17bを含むタブ積層体25のXY断面における溶接部Wの面積は、電池の定格入出力により異なるが、例えば20Aの電池の場合、3.5mm以上であることが好ましい。アルミニウムからなるタブ14bを含むタブ積層体21のXY断面における溶接部Wの面積は、電池の定格入出力により異なるが、例えば20Aの電池の場合、5.5mm以上であることが好ましい。溶接部Wの面積を上記範囲にすると、通電中の電気抵抗を下げることができ、発熱を抑制することができる。
 図12~図13は、第2実施形態に係る電極組立体の製造方法の一工程を示す図である。図12(A)及び図13(A)はX軸方向から見たタブ積層体21,25を示す図である。図12(B)及び図13(B)はY軸方向から見たタブ積層体25を示す図である。第2実施形態では、タブ積層体21,25の端面21c,25cにそれぞれ溶接部Wが形成されること以外は第1実施形態と同様に電極組立体3を製造することができる。
 タブ積層体25の端面25cは、タブ積層体25の先端に位置しており、YZ平面に沿う面である。端面25cは、タブ積層体25の先端を切断することによって形成されてもよいし、異なる長さのタブ17bを用いてタブ17bを積層することによって形成されてもよい。
 図12に示されるように、エネルギービームBは、端面25cにおいて、Z軸方向に変位(ウォブリング)させながらY軸方向に沿って走査される。エネルギービームBの照射スポットは、端面25cにおいて、Y軸方向に沿った軸線H1上の位置P4から位置P5まで移動する。例えば、位置P4,P5は、Z軸方向において端面25cの中心に位置する。エネルギービームBは、例えば、端面25cにおいてY軸方向に沿って中心点を移動させ、当該中心点を中心にYZ平面においてエネルギービームBの照射スポットを回転させながら走査される。
 図13に示されるように、エネルギービームBの照射により、タブ積層体25の端面25cから内側に溶接部Wが形成される。溶接部Wは、タブ積層体25の端面25cにおいて、Y軸方向に広がっている。
 同様に、エネルギービームBをタブ積層体21の端面21cに照射することによって、タブ積層体21の端面21cにも溶接部Wが形成される。エネルギービームBは、タブ積層体21の端面21cにおいて、Y軸方向に沿って走査される。
 第2実施形態では、第1実施形態と同様の作用効果が得られる。また、第2実施形態では、タブ積層体25の端面25a,25bに加えて端面25cにも溶接部Wが形成されるので、タブ17b間の電気抵抗値を低減することができる。タブ積層体21,25の端面21a,21b,25a,25bに溶接部Wが形成されず、タブ積層体21,25の端面21c,25cにのみ溶接部Wが形成されてもよい。
 図14~図15は、第3実施形態に係る電極組立体の製造方法の一工程を示す図である。図14及び図15はX軸方向から見たタブ積層体25を示す図である。第3実施形態では、積層型の電極組立体3に代えて巻回型の電極組立体3を製造すること以外は第1実施形態と同様に電極組立体3を製造することができる。
 巻回型の電極組立体3は、積層型の電極組立体3と同様に、タブ積層体21,25を備える。タブ積層体21,25はX軸方向において互いに反対側に配置される。タブ積層体25では、タブ17bが、X軸方向の軸を中心に巻回された後、Z軸方向に圧縮されている。そのため、タブ積層体25は、Z軸方向に積層されたタブ17bを有する。具体的には、タブ17bにおける複数の部分がZ軸方向に積層される。溶接部Wは、積層されたタブ17b同士を接続する。具体的には、溶接部Wによって、タブ17bにおける複数の部分同士が接続される。巻回型の電極組立体3において、タブ積層体25は端面25a,25bを備えておらず、先端に位置する端面25cのみを備えている。同様に、タブ積層体21は端面21a,21bを備えておらず、先端に位置する端面21cのみを備えている。
 図14に示されるように、エネルギービームBは、端面25cにおいて、Z軸方向に変位(ウォブリング)させながらY軸方向に沿って走査される。エネルギービームBの照射スポットは、端面25cにおいて、Y軸方向に沿った軸線H1上の位置P4から位置P5まで移動する。例えば、位置P4,P5は、Z軸方向において端面25cの中心に位置する。エネルギービームBは、例えば、端面25cにおいてY軸方向に沿って中心点を移動させ、当該中心点を中心にYZ平面においてエネルギービームBの照射スポットを回転させながら走査される。
 図15に示されるように、エネルギービームBの照射により、タブ積層体25の端面25cから内側に溶接部Wが形成される。溶接部Wは、タブ積層体25の端面25cにおいて、Y軸方向に広がっている。
 同様に、エネルギービームBをタブ積層体21の端面21cに照射することによって、タブ積層体21の端面21cにも溶接部Wが形成される。エネルギービームBは、タブ積層体21の端面21cにおいて、Y軸方向に沿って走査される。
 第3実施形態では、第2実施形態と同様の作用効果が得られる。
 図16は、変形例に係る溶接部を有する電極組立体の一部を示す図である。図16(A)は、第1変形例に係る溶接部Wを有する、Y軸方向から見たタブ積層体25を示す図である。図16(B)は、第2変形例に係る溶接部Wを有する、Y軸方向から見たタブ積層体25を示す図である。第1及び第2変形例では、タブ積層体25の端面25aの法線方向から見て、溶接部Wが、曲線を含む外形形状を有している。そのため、溶接部Wの外形形状の曲線部分において応力が集中し難いので、溶接部Wが剥離し難い。溶接部Wは、曲線によって囲まれる外形形状を有してもよいし、曲線及び直線によって囲まれる外形形状を有してもよい。溶接部Wの外形形状は、応力が集中し易い角部(直線同士が交差する部分)を含んでいない。
 第1変形例に係る溶接部Wの外形形状は例えば楕円形の一部を含む。図16(A)に示されるように、タブ積層体25の端面25aにおいてタブ積層体25の積層方向に直交する方向(X軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(Z軸方向)とタブ積層体25の積層方向に直交する方向(X軸方向)との両方に直交する方向(Y軸方向)から見たときに、タブ積層体25の積層方向(Z軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい。
 第2変形例に係る溶接部Wの外形形状は例えば円形の一部を含む。図16(B)に示されるように、タブ積層体25の端面25aにおいてタブ積層体25の積層方向に直交する方向(X軸方向)における溶接部Wの最大長さW2は、タブ積層体25の積層方向(Z軸方向)とタブ積層体25の積層方向に直交する方向(X軸方向)との両方に直交する方向(Y軸方向)から見たときに、タブ積層体25の積層方向(Z軸方向)における溶接部Wとタブ積層体25とが重なる部分の最大長さW1よりも大きい。最大長さW2は、最大長さW1以下であってもよい。
 タブ積層体25の端面25b及びタブ積層体21の端面21a,21bのうち少なくとも1つにおいても、溶接部Wが、第1変形例又は第2変形例に係る溶接部Wと同じ形状を有してもよい。
 以上、本発明の好適な実施形態について詳細に説明されたが、本発明は上記実施形態に限定されない。上記各実施形態の構成要素は任意に組み合わされ得る。
 以下、実施例に基づいて本発明がより具体的に説明されるが、本発明は以下の実施例に限定されない。
(実施例1)
 溶接部Wの最大溶接深さWdが0.1mmとなるように溶接部Wを形成した。
(実施例2)
 溶接部Wの最大溶接深さWdを0.3mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。
(実施例3)
 溶接部Wの最大溶接深さWdを1.2mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。溶接部Wの形成に用いたレーザーの出力は1500W、走査速度は24.9mm/secであった。
(実施例4)
 溶接部Wの最大溶接深さWdを1.5mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。溶接部Wの形成に用いたレーザーの出力は1500W、走査速度は8.3mm/secであった。
(実施例5)
 溶接部Wの最大溶接深さWdを2mmとしたこと以外は実施例1と同様にして溶接部Wを形成した。
(評価結果)
 実施例1~5の評価結果を図17に示す。レーザービームをタブ積層体の端面に照射している様子を撮像し、得られた映像からレーザービームの照射に起因するスパッタ粒子の数をカウントした。実施例4~5では、スパッタ粒子の数が、実施例1~3に比べて顕著に増えた。また、溶接部Wの電気抵抗値を測定した。図17に示される表中のAは良好な結果が得られたことを示し、BはAよりは良好でない結果が得られたことを示す。実施例2~4では、実施例1及び5に比べて良好な結果が得られた。図17の評価結果によれば、溶接部Wの最大溶接深さWdが0.3~1.5mmであると、スパッタ粒子の数が少なくなった。さらに最大溶接深さWdが0.3~1.2mmであると、スパッタ粒子の数が顕著に少なくなり、かつ、溶接部Wの電気抵抗値が良好な値となった。
 3…電極組立体、11…正極(電極)、12…負極(電極)、14b,17b…タブ、16,19…集電板(集電体)、21,25…タブ積層体、21a,21b,25a,25b,25c…端面、23,27…保護板(押圧部材)、B…エネルギービーム、W…溶接部。

Claims (14)

  1.  タブを含む電極を有する電極組立体の製造方法であって、
     積層された前記タブを有するタブ積層体を準備する工程と、
     前記タブ積層体の積層方向に沿って延在する前記タブ積層体の端面にエネルギービームを照射することによって、前記タブ積層体の端面から内側に溶接部を形成する工程と、
    を含み、
     前記溶接部を形成する工程では、前記タブ積層体の端面において、前記タブ積層体の積層方向に交差する方向に沿って前記エネルギービームを走査する、電極組立体の製造方法。
  2.  前記タブ積層体は、前記タブ積層体の積層方向において集電体上に配置され、
     前記溶接部は、前記タブ積層体と前記集電体との接触箇所に沿って形成される、請求項1に記載の電極組立体の製造方法。
  3.  前記タブ積層体が、前記タブ積層体の積層方向において押圧部材と集電体との間に配置され、
     前記押圧部材及び前記集電体を介して前記タブ積層体を前記タブ積層体の積層方向に押圧した状態で前記タブ積層体の端面に前記エネルギービームを照射する、請求項1又は2に記載の電極組立体の製造方法。
  4.  前記タブ積層体の積層方向における前記押圧部材の厚みは、前記タブ積層体の積層方向における前記集電体の厚みよりも小さい、請求項3に記載の電極組立体の製造方法。
  5.  前記タブ積層体の端面において、前記エネルギービームを前記タブ積層体の積層方向に変位させながら走査する、請求項1~4のいずれか一項に記載の電極組立体の製造方法。
  6.  前記タブ積層体が、前記タブ積層体を挟んで前記タブ積層体の端面とは反対側に配置される別の端面を有する、請求項1~5のいずれか一項に記載の電極組立体の製造方法。
  7.  前記タブ積層体の積層方向において前記タブ積層体を跨いで位置する部材を用いることなく、積層された前記タブが前記溶接部によって互いに接続される、請求項1~6のいずれか一項に記載の電極組立体の製造方法。
  8.  前記タブ積層体の端面において前記タブ積層体の積層方向に直交する方向における前記溶接部の最大長さが、前記タブ積層体の積層方向と前記タブ積層体の積層方向に直交する前記方向との両方に直交する方向から見たときに、前記タブ積層体の積層方向における前記溶接部と前記タブ積層体とが重なる部分の最大長さよりも大きい、請求項1~7のいずれか一項に記載の電極組立体の製造方法。
  9.  前記タブ積層体の積層方向を含み前記タブ積層体の端面に直交する前記タブ積層体の断面において、前記タブ積層体の積層方向に直交する方向における前記溶接部の最大溶接深さが2mm未満である、請求項1~8のいずれか一項に記載の電極組立体の製造方法。
  10.  前記タブ積層体の端面の法線方向から見て、前記溶接部が、曲線を含む外形形状を有する、請求項1~9のいずれか一項に記載の電極組立体の製造方法。
  11.  タブを含む電極を備える電極組立体であって、
     積層された前記タブを有するタブ積層体を備え、
     前記タブ積層体が、前記タブ積層体の積層方向に沿って延在する前記タブ積層体の端面から内側に位置する溶接部を有し、
     前記タブ積層体の端面において前記タブ積層体の積層方向に直交する方向における前記溶接部の最大長さが、前記タブ積層体の積層方向と前記タブ積層体の積層方向に直交する前記方向との両方に直交する方向から見たときに、前記タブ積層体の積層方向における前記溶接部と前記タブ積層体とが重なる部分の最大長さよりも大きい、電極組立体。
  12.  前記タブ積層体の積層方向を含み前記タブ積層体の端面に直交する前記タブ積層体の断面において、前記タブ積層体の積層方向に直交する方向における前記溶接部の最大溶接深さが2mm未満である、請求項11に記載の電極組立体。
  13.  前記タブ積層体が、前記タブ積層体の積層方向において押圧部材と集電体との間に配置され、
     前記タブ積層体の積層方向における前記押圧部材の厚みは、前記タブ積層体の積層方向における前記集電体の厚みよりも小さい、請求項11又は12に記載の電極組立体。
  14.  前記タブ積層体の端面の法線方向から見て、前記溶接部が、曲線を含む外形形状を有する、請求項11~13のいずれか一項に記載の電極組立体。
PCT/JP2016/082106 2015-10-29 2016-10-28 電極組立体の製造方法及び電極組立体 WO2017073746A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017547899A JP6834973B2 (ja) 2015-10-29 2016-10-28 電極組立体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-212998 2015-10-29
JP2015212998 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017073746A1 true WO2017073746A1 (ja) 2017-05-04

Family

ID=58631559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082106 WO2017073746A1 (ja) 2015-10-29 2016-10-28 電極組立体の製造方法及び電極組立体

Country Status (2)

Country Link
JP (1) JP6834973B2 (ja)
WO (1) WO2017073746A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135651A (ja) * 2008-12-05 2010-06-17 Chiba Inst Of Technology 金属箔の接続構造及びその接続方法及びコンデンサ
JP2011076776A (ja) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd 電極体の芯体露出部と集電用部材との溶接方法
JP2013122973A (ja) * 2011-12-09 2013-06-20 Chiba Inst Of Technology 金属箔の接続構造及びその接続方法及びコンデンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135651A (ja) * 2008-12-05 2010-06-17 Chiba Inst Of Technology 金属箔の接続構造及びその接続方法及びコンデンサ
JP2011076776A (ja) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd 電極体の芯体露出部と集電用部材との溶接方法
JP2013122973A (ja) * 2011-12-09 2013-06-20 Chiba Inst Of Technology 金属箔の接続構造及びその接続方法及びコンデンサ

Also Published As

Publication number Publication date
JP6834973B2 (ja) 2021-02-24
JPWO2017073746A1 (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6753416B2 (ja) 電極組立体及び蓄電装置の製造方法
JP5080199B2 (ja) 二次電池および二次電池の製造方法
JP2017063044A (ja) 蓄電デバイス
US20180131030A1 (en) Electric power storage device and method of manufacturing the same
JP2016029627A (ja) 蓄電装置及び蓄電装置の製造方法
JP6965587B2 (ja) 電極組立体
JP6613813B2 (ja) 電極組立体の製造方法および電極組立体
JP2016219274A (ja) 電極組立体の製造方法及び電極積層体
JP6834982B2 (ja) 電極組立体の製造方法
JP2020013733A (ja) 蓄電装置、及び蓄電装置の製造方法
JP6841227B2 (ja) 電極組立体の製造方法及び電極組立体
JP7178633B2 (ja) 全固体電池およびその製造方法
JP6582877B2 (ja) 電極組立体の製造方法および電極組立体
JP6834972B2 (ja) 電極組立体
WO2012090600A1 (ja) 角形二次電池及びその製造方法
JP6834973B2 (ja) 電極組立体の製造方法
JP6641978B2 (ja) 電極組立体の製造方法及び電極組立体
WO2017195496A1 (ja) 電極組立体の製造方法
JP6586868B2 (ja) 電極組立体の製造方法
JP6763134B2 (ja) 電極組立体の製造方法及び電極組立体
JP6601157B2 (ja) 電極組立体
JP6922328B2 (ja) 電極組立体の製造方法
JP6648630B2 (ja) 電極組立体
JP6631214B2 (ja) 電極組立体
JP6683066B2 (ja) 電極溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547899

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859974

Country of ref document: EP

Kind code of ref document: A1