WO2017195496A1 - 電極組立体の製造方法 - Google Patents

電極組立体の製造方法 Download PDF

Info

Publication number
WO2017195496A1
WO2017195496A1 PCT/JP2017/013583 JP2017013583W WO2017195496A1 WO 2017195496 A1 WO2017195496 A1 WO 2017195496A1 JP 2017013583 W JP2017013583 W JP 2017013583W WO 2017195496 A1 WO2017195496 A1 WO 2017195496A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
tab
gas
electrode
electrode assembly
Prior art date
Application number
PCT/JP2017/013583
Other languages
English (en)
French (fr)
Inventor
真也 奥田
木下 恭一
雅人 小笠原
晃嵩 山田
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2018516889A priority Critical patent/JP6874763B2/ja
Publication of WO2017195496A1 publication Critical patent/WO2017195496A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an electrode assembly.
  • a power storage device such as a lithium ion battery includes an electrode assembly in which a plurality of electrodes are stacked. Each electrode has a main body and a tab protruding from one end of the main body.
  • the electrode assembly includes an electrode body having a laminated body and a tab laminate having laminated tabs. When manufacturing the electrode assembly, the tab laminate is welded (see, for example, Patent Document 1).
  • During welding, foreign matter such as sputtered particles may be generated. When the generated foreign matter scatters and adheres to the electrode body, the performance of the electrode assembly may change. For example, if a foreign substance enters between the stacked electrodes, the electrodes may be short-circuited.
  • An object of one aspect of the present invention is to provide a method for manufacturing an electrode assembly capable of suppressing adhesion of foreign matter to an electrode body.
  • An electrode assembly manufacturing method is a method for manufacturing an electrode assembly having an electrode including a main body and a tab protruding from at least one end of the main body, the electrode main body having a stacked main body, And a step of preparing a tab laminate that has laminated tabs and protrudes from the side surface of the electrode body, and a step of providing a cover that covers the electrode body, while the electrode body is disposed in the cover while the tab laminate Including a step of providing a cover so that a portion where the welded portion is formed is disposed outside the cover, and a step of forming a welded portion on the tab laminate, and allowing the cover to flow gas into the cover.
  • gas is supplied to the inlet so that the pressure inside the cover is higher than the pressure outside the cover.
  • the cover is provided so that the electrode body is disposed in the cover while the portion of the tab laminate in which the welded portion is formed (welded portion) is disposed outside the cover. It is done.
  • the cover is provided with an inlet for allowing gas to flow into the cover.
  • gas is supplied to the inflow port so that the pressure inside the cover is higher than the pressure outside the cover (that is, positive pressure). Since the pressure in the cover is positive, foreign matter such as sputter particles generated during welding is less likely to enter the cover through the cover gap. Therefore, the adhesion of foreign matter to the electrode body can be suppressed.
  • the cover may be provided with at least one discharge port for discharging gas from the cover toward the portion of the tab laminate where the weld is formed.
  • gas is blown from the cover toward the welded portion of the tab laminate, so that foreign matter generated at the welded portion can be suppressed from scattering toward the inside of the cover (that is, the electrode body).
  • the at least one outlet may be a plurality of outlets. In this way, by providing a plurality of discharge ports for the welding location, it is possible to further suppress the scattering of foreign matters toward the electrode body.
  • the gas discharged from at least one discharge port may be sucked. Thereby, the foreign material generated at the time of welding can be removed together with the gas.
  • gas may be supplied to the inlet in pulses. Thereby, the supply amount of gas can be reduced.
  • An electrode assembly manufacturing method is a method for manufacturing an electrode assembly having an electrode including a main body and a tab protruding from at least one end of the main body, the electrode main body having a stacked main body, And a step of preparing a tab laminate that has laminated tabs and protrudes from the side surface of the electrode body, and a step of providing a cover that covers the electrode body, while the electrode body is disposed in the cover while the tab laminate
  • the cover is provided with a blowout port that blows out gas toward a portion of the tab laminated body where the welded portion is formed, and a gas supply pipe that supplies gas to the blowout port.
  • the cover is provided so that the electrode body is disposed in the cover while the portion of the tab laminate in which the welded portion is formed (welded portion) is disposed outside the cover. As a result, gas is blown onto the welded portion, and a welded portion is formed in the tab laminate.
  • the cover is provided with a blowout port for blowing gas toward the welded portion and a gas supply pipe for supplying gas to the blowout port.
  • tube can be provided so that a blower outlet may be arrange
  • a portion on the outlet side of the gas supply pipe may be provided in the cover.
  • the cover may have a portion that covers the side surface of the electrode body, and the air outlet may be provided in a portion that covers the side surface of the electrode body of the cover. Thereby, a blower outlet can be provided near the welding location of a tab laminated body.
  • a part of the side wall of the gas supply pipe may be constituted by a part of the cover.
  • the gas supply pipe and the cover may be integrally formed. If the gas supply pipe and the cover are separated, misalignment may occur due to the arrangement of them separately. However, since the gas supply pipe and the cover are integrally formed, such a position is lost. Misalignment does not occur and handling is easy.
  • the cover is further provided with an inlet for allowing gas to flow into the cover.
  • the pressure in the cover is reduced. Gas may be supplied to the inlet so as to be higher than the pressure outside the cover.
  • the pressure in the cover is a positive pressure, foreign matter such as sputter particles generated during welding hardly enters the cover through the gap of the cover. Therefore, the adhesion of foreign matter to the electrode body can be further suppressed.
  • the type of gas supplied to the outlet through the gas supply pipe described above and the type of gas supplied to the inlet may be the same or different.
  • An electrode assembly manufacturing method is a method for manufacturing an electrode assembly having an electrode including a main body and a tab protruding from at least one end of the main body, the electrode main body having a stacked main body, And a step of preparing a tab laminated body that has laminated tabs and protrudes from the side surface of the electrode body, and a partition portion that partitions the side surface of the electrode body and a portion of the tab laminated body where the welded portion is formed. And a step of blowing a gas to a portion of the tab laminated body where the welded portion is formed and forming a welded portion on the tab laminated body, and the partition portion includes a welded portion of the tab laminated body.
  • a gas outlet that blows out gas toward a portion where the gas is formed and a gas supply pipe that supplies gas to the air outlet are provided.
  • a partition portion is provided to partition the side surface of the electrode main body from the portion of the tab laminate in which the welded portion is formed, and a gas is blown to the welding location and welded to the tab laminate. Part is formed.
  • the partition part is provided with the gas supply pipe which supplies the gas to a blower outlet which blows off gas toward a welding location, and a blower outlet.
  • tube can be provided so that a blower outlet may be arrange
  • the portion on the outlet side of the gas supply pipe may be provided on the electrode main body side of the partition portion.
  • an electrode assembly capable of suppressing adhesion of foreign matter to the electrode body.
  • FIG. 3 It is a disassembled perspective view of an electrical storage apparatus provided with the electrode assembly which concerns on embodiment. It is sectional drawing of the electrical storage apparatus along the II-II line
  • FIG. 1 is an exploded perspective view of a power storage device including the electrode assembly according to the embodiment.
  • FIG. 2 is a cross-sectional view of the power storage device taken along line II-II in FIG.
  • the power storage device 1 shown in FIGS. 1 and 2 is a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery or an electric double layer capacitor.
  • the power storage device 1 includes a hollow case 2 having a substantially rectangular parallelepiped shape, for example, and an electrode assembly 3 accommodated in the case 2.
  • the case 2 is made of a metal such as aluminum.
  • the case 2 has a main body 2a that is open on one side and a lid 2b that closes the opening of the main body 2a.
  • an insulating film (not shown) is provided on the inner wall surface of the case 2.
  • a non-aqueous (organic solvent) electrolyte is injected into the case 2.
  • the positive electrode active material layer 15 of the positive electrode 11, the negative electrode active material layer 18 of the negative electrode 12, and the separator 13 described later are porous, and the pores are impregnated with the electrolytic solution. .
  • a positive electrode terminal 5 and a negative electrode terminal 6 are spaced apart from each other on the lid 2 b of the case 2.
  • the positive electrode terminal 5 is fixed to the case 2 via an insulating ring 7, and the negative electrode terminal 6 is fixed to the case 2 via an insulating ring 8.
  • the electrode assembly 3 is a stacked electrode assembly.
  • the electrode assembly 3 includes a plurality of positive electrodes 11 (electrodes), a plurality of negative electrodes 12 (electrodes), and a bag-shaped separator 13 disposed between the positive electrodes 11 and the negative electrodes 12.
  • the positive electrode 11 is accommodated in the separator 13.
  • the plurality of positive electrodes 11 and the plurality of negative electrodes 12 are alternately stacked via the separators 13.
  • the positive electrode 11 has a metal foil 14 made of, for example, an aluminum foil, and a positive electrode active material layer 15 formed on both surfaces of the metal foil 14.
  • the metal foil 14 of the positive electrode 11 includes a rectangular main body 14a and a rectangular tab 14b protruding from one end of the main body 14a.
  • the positive electrode active material layer 15 is a porous layer formed including a positive electrode active material and a binder.
  • the positive electrode active material layer 15 is formed by supporting a positive electrode active material on at least the central portion of the main body 14a on both surfaces of the main body 14a.
  • the positive electrode active material examples include composite oxide, metallic lithium, and sulfur.
  • the composite oxide includes, for example, at least one of manganese, nickel, cobalt, and aluminum and lithium.
  • the tab 14b does not carry a positive electrode active material.
  • an active material may be carried on the base end portion of the tab 14b on the main body 14a side.
  • the tab 14b extends upward from the upper edge of the main body 14a, and is connected to the positive electrode terminal 5 via the current collector plate 16.
  • the current collector plate 16 is disposed between the tab 14 b and the positive electrode terminal 5.
  • the current collector plate 16 is formed in a rectangular flat plate shape from the same material as the metal foil 14 of the positive electrode 11.
  • the plurality of stacked tabs 14b are disposed between the current collector plate 16 and the protective plate 23 thinner than the current collector plate 16 (see FIG. 3).
  • the negative electrode 12 includes a metal foil 17 made of, for example, copper foil, and a negative electrode active material layer 18 formed on both surfaces of the metal foil 17. Similar to the metal foil 14 of the positive electrode 11, the metal foil 17 of the negative electrode 12 includes a rectangular main body 17a and a rectangular tab 17b protruding from one end of the main body 17a.
  • the negative electrode active material layer 18 is formed by supporting a negative electrode active material on at least a central portion of the main body 17a on both surfaces of the main body 17a.
  • the negative electrode active material layer 18 is a porous layer formed including a negative electrode active material and a binder.
  • the negative electrode active material examples include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, SiOx (0.5 ⁇ x ⁇ 1.5 ) And the like, and boron-added carbon.
  • the tab 17b does not carry a negative electrode active material.
  • an active material may be carried on the base end portion of the tab 17b on the main body 17a side.
  • the tab 17b extends upward from the upper edge of the main body 17a and is connected to the negative electrode terminal 6 via the current collector plate 19.
  • the current collector plate 19 is disposed between the tab 17 b and the negative electrode terminal 6.
  • the current collector plate 19 is formed in a rectangular flat plate shape from the same material as the metal foil 17 of the negative electrode 12.
  • the plurality of stacked tabs 17b are disposed between the current collector plate 19 and the protective plate 27 thinner than the current collector plate 19 (see FIG. 3).
  • the separator 13 accommodates the positive electrode 11.
  • the separator 13 has a rectangular shape when viewed from the stacking direction of the positive electrode 11 and the negative electrode 12.
  • the separator 13 is formed in a bag shape by welding a pair of long sheet-like separator members to each other.
  • the material of the separator 13 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like.
  • FIG. 3 is a perspective view of the electrode assembly according to the embodiment.
  • FIG. 4 is a cross-sectional view of the electrode assembly taken along line IV-IV in FIG.
  • the electrode assembly 3 shown in FIG. 3 includes a plurality of positive electrodes 11 and a plurality of negative electrodes 12 that are stacked on each other via a separator 13.
  • Each of the plurality of positive electrodes 11 includes a main body 14a extending in the XY plane and a tab 14b protruding in at least one end of the main body 14a in the X-axis direction.
  • the tab 14b protrudes in the X axis positive direction.
  • Each of the negative electrodes 12 includes a main body 17a extending in the XY plane and a tab 17b protruding from at least one end of the main body 17a.
  • the tab 17b protrudes in the positive direction of the X axis similarly to the tab 14b.
  • the main bodies 14a and 17a are laminated with each other to constitute the electrode main body 20 as a whole.
  • the electrode body 20 has a side surface S.
  • the tab 14b and the tab 17b protrude in the same direction (X-axis positive direction) from one end of the main body 14a and the main body 17a, respectively, so that the side surface S is constituted by one end of the stacked main body 14a and tab 14b.
  • the electrode assembly 3 includes a tab laminate 21 having a plurality of tabs 14b laminated in the Z-axis direction and a tab laminate 25 having a plurality of tabs 17b laminated in the Z-axis direction.
  • the tab laminates 21 and 25 are arranged apart from each other in the Y-axis direction.
  • the tab laminated body 21 includes end surfaces 21a, 21b, and 21c of the tab laminated body 21 extending along the lamination direction (Z-axis direction) of the tab laminated body 21.
  • the end surfaces 21a and 21b are surfaces that sandwich the tab laminate 21, and the end surface 21c is a surface that connects the end surfaces 21a and 21b. That is, the end faces 21 a and 21 b are arranged on opposite sides of the tab laminate 21.
  • the end faces 21a and 21b are faces along the XZ plane.
  • the end surface 21 c is a surface that is inclined with respect to the XY plane so that the thickness of the tab laminated body 21 decreases toward the tip of the tab laminated body 21.
  • the tab laminated body 21 has a welded portion W that connects the plurality of tabs 14b.
  • the welded portion W is located on each of the end surfaces 21a and 21b of the tab laminate 21.
  • the welding part W is provided inside from the end surfaces 21a and 21b.
  • the welding part W may be located only in one of the end surfaces 21a and 21b.
  • the welded portion W extends to the inside of the current collector plate 16 and the protective plate 23 adjacent to the end surfaces 21a and 21b.
  • the length of the welded portion W in the X-axis direction is preferably substantially equal to the length of the protective plate 23 in the X-axis direction or shorter than the length of the protective plate 23 in the X-axis direction.
  • the welded portion W can be stably formed. If the length of the welded portion W in the X-axis direction is substantially equal to the length of the protective plate 23 in the X-axis direction, the welded portion W may protrude outside the protective plate 23 in the X-axis direction due to positional displacement. Further, when the length of the welded portion W in the X-axis direction is longer than the length of the protective plate 23 in the X-axis direction, the welded portion W protrudes outside the protective plate 23 in the X-axis direction. Even in those cases, the welded portion W can be formed.
  • the tab laminate 21 is disposed between the current collector plate 16 and the protective plate 23 in the Z-axis direction. That is, the current collector plate 16, the tab laminate 21, and the protective plate 23 are arranged in the Z-axis direction.
  • the current collector plate 16 and the protective plate 23 are, for example, metal plates.
  • the protective plate 23 is not in contact with the current collector plate 16, and the protective plate 23 and the current collector plate 16 are separated from each other with the tab laminate 21 sandwiched in the stacking direction.
  • the tab laminate 21 is thicker than the protective plate 23, and the current collector plate 16 is thicker than the tab laminate 21.
  • the tab laminate 25 includes end surfaces 25a, 25b, and 25c of the tab laminate 25 that extend along the lamination direction (Z-axis direction) of the tab laminate 25.
  • the end surfaces 25a and 25b are surfaces that sandwich the tab laminate 25, and the end surface 25c is a surface that connects the end surfaces 25a and 25b. That is, the end faces 25a and 25b are disposed on the opposite sides of the tab laminate 25.
  • the end surfaces 25a and 25b are surfaces along the XZ plane.
  • the end surface 25c is a surface that is inclined with respect to the XY plane so that the thickness of the tab laminated body 25 becomes smaller toward the tip of the tab laminated body 25.
  • the tab laminated body 25 has a welded portion W that connects a plurality of tabs 17b.
  • the welded portion W is located on each of the end faces 25a and 25b of the tab laminate 25.
  • the welded portion W is provided on the inner side from the end surfaces 25a and 25b.
  • the welded portion W may be located only on one of the end surfaces 25a and 25b.
  • the welded portion W extends to the inside of the current collector plate 19 and the protection plate 27 adjacent to the end surfaces 25a and 25b.
  • the length of the welded portion W in the X-axis direction is preferably substantially equal to the length of the protective plate 27 in the X-axis direction or shorter than the length of the protective plate 27 in the X-axis direction.
  • the welded portion W in the X-axis direction When the length of the welded portion W in the X-axis direction is longer than the length of the protective plate 27 in the X-axis direction, the welded portion W protrudes outside the protective plate 27 in the X-axis direction. Even in those cases, the welded portion W can be formed.
  • the tab laminate 25 is disposed between the current collector plate 19 and the protective plate 27 in the Z-axis direction. That is, the current collector plate 19, the tab laminate 25, and the protection plate 27 are arranged in the Z-axis direction.
  • the current collector plate 19 and the protection plate 27 are, for example, metal plates.
  • the protective plate 27 is not in contact with the current collector plate 19, and the protective plate 27 and the current collector plate 19 are separated with the tab laminate 25 sandwiched in the stacking direction.
  • the tab laminate 25 is thicker than the protective plate 27, and the current collector plate 19 is thicker than the tab laminate 25.
  • the manufacturing process of the electrode assembly 3 includes a process of forming the welded portion W in the tab laminates 21 and 25.
  • foreign matter such as sputtered particles may be generated.
  • the sputtered particles are, for example, metal particles. If the generated foreign matter scatters and adheres to the electrode body 20, the performance of the electrode assembly 3 may change. For example, if a foreign substance enters between the laminated main body 14a and the main body 17a, the main body 14a and the main body 17a (that is, the positive electrode 11 and the negative electrode 12) may be short-circuited. Therefore, in each embodiment, it is possible to suppress adhesion of foreign matter to the electrode body 20 by a method described later.
  • (First embodiment) 5 to 7 are views showing one process of the method for manufacturing the electrode assembly according to the first embodiment.
  • the electrode assembly 3 shown in FIG. 3 is manufactured by the following method, for example.
  • Step of preparing the tab laminate First, as shown in FIG. 5, an electrode body 20 having stacked bodies 14a and 17a, and a plurality of tab laminates 21 having stacked tabs 14b and 17b and protruding from the side surface S of the electrode body 20. , 25 are prepared.
  • tab laminates 21 and 25 are formed by laminating tabs 14b and 17b on current collector plates 16 and 19, respectively. Thereafter, the protection plates 23 and 27 are placed on the tab laminates 21 and 25, respectively.
  • the electrode body 20 and the tab laminates 21 and 25 are arranged on the mounting table 50.
  • a surface on which the electrode main body 20 and the tab laminates 21 and 25 are mounted on the mounting table 50 is illustrated as a mounting surface 50a.
  • a mounting surface 50a For convenience of explanation, of the two surfaces orthogonal to the stacking direction of the main bodies 14a and 17a in the electrode main body 20, a surface located on the opposite side of the electrode main body 20 with respect to the surface facing the mounting surface 50a is the main surface 20a. And illustrated.
  • a cover 60 is provided so as to cover the electrode body 20.
  • the electrode main body 20 is disposed in the cover 60, while the portion (welded portion) where the welded portion W (FIG.
  • the cover 60 includes side wall portions 61 to 64 and a ceiling portion 65 that connects the four side wall portions 61 to 64.
  • the side wall portion 61 is a portion that covers the side surface S of the electrode body 20.
  • the side wall part 62 is a part that covers the side surface opposite to the side surface S of the electrode body 20. In a state in which the cover 60 is provided, the side wall portions 61 and 62 extend along the surface direction (YZ plane) of the side surface S of the electrode body 20.
  • the side wall part 63 is a part that covers one side surface of the two side surfaces that extend in the direction perpendicular to the side surface S in the electrode body 20 and extends in the stacking direction of the main bodies 14a and 17a.
  • the side wall portion 64 is a portion that covers the other side surface of the two side surfaces. In the state in which the cover 60 is provided, the side walls 63 and 64 extend along the XZ plane.
  • the ceiling portion 65 is a portion that covers the main surface 20 a of the electrode body 20. In the state in which the cover 60 is provided, the ceiling 65 extends along the surface direction (XY plane) of the main surface 20a of the electrode body 20.
  • the cover 60 has an opening at a position opposite to the ceiling 65 with the side walls 61 to 64 interposed therebetween.
  • the cover 60 is mounted on the mounting table 50 so that the opening of the cover 60 faces the mounting surface 50a.
  • the side wall part 61 has openings 61a and 61b for allowing the tab laminates 21 and 25 protruding from the side surface S of the electrode body 20 to pass therethrough.
  • the cover 60 can be provided so that the welded portions of the tab laminates 21 and 25 are disposed outside the cover 60 by having the opening portions 61 a and 61 b in the side wall portion 61 of the cover 60.
  • the cover 60 is provided with an inlet 71 for allowing gas to flow into the cover 60.
  • the inflow port 71 is provided in the ceiling portion 65 of the cover 60. Details of the gas supplied to the inlet 71 will be described later with reference to FIG.
  • the cover 60 is provided with discharge ports 72 a, 72 b, 73 a, 73 b, 74 a, 74 b, 75 a, 75 b for discharging gas from the cover 60 toward the welded portions of the tab laminates 21, 25.
  • the discharge ports 72a and 72b discharge gas from the cover 60 toward the welded portion of the end face 25a of the tab laminate 25.
  • the discharge ports 73a and 73b are directed toward the welded portion of the end surface 25b of the tab laminated body 25, the discharge ports 74a and 74b are directed toward the welded portion of the end surface 21b of the tab laminated body 21, and the discharge ports 75a and 75b are formed of the tab laminated body 21.
  • the gas is discharged from the cover 60 toward the welded portion of the end face 21a.
  • the discharge ports 72a and 72b are arranged side by side with a space in the positive direction of the Z axis. As shown in FIG.
  • the discharge ports 72a and 72b have a pipe shape having a length in the gas discharge direction. By having this length, it is possible to guide the gas to the vicinity of the welding location and to discharge the gas more reliably toward the welding location.
  • Such discharge ports 72a and 72b may be configured using nozzles, for example. Note that only one of the two discharge ports 72a and 72b may be provided.
  • the discharge ports 73a and 73b, the discharge ports 74a and 74b, and the discharge ports 75a and 75b can be arranged and configured in the same manner as the discharge ports 72a and 72b.
  • the welded portion W is formed in the tab laminates 21 and 25.
  • the welding technique for forming the welded portion W is not particularly limited, here, a welding technique using an energy beam will be described as an example.
  • the energy beam B is applied to the end face 25 a of the tab laminate 25.
  • 6A is a diagram showing the tab laminates 21 and 25 viewed from the X-axis direction
  • FIG. 6B is a diagram showing the tab laminate 25 viewed from the Y-axis direction.
  • the tab laminate 21 is pressed through the protective plate 23 by the jig 42, for example, but may not be pressed.
  • the tab laminate 25 is pressed through the protective plate 27 by the jig 44, for example, but may not be pressed.
  • the energy beam B is irradiated from the irradiation device 30 toward the end surface 25a of the tab laminate 25.
  • the irradiation device 30 is a scanner head including a lens and a galvanometer mirror, for example.
  • a beam generator is connected to the scanner head via a fiber.
  • the irradiation device 30 may be composed of a refractive optical system such as a prism, for example.
  • the energy beam B is a high energy beam that can be welded.
  • the energy beam B is, for example, a laser beam or an electron beam.
  • the irradiation with the energy beam B is performed in an inert gas atmosphere.
  • the inert gas can be supplied from, for example, the discharge ports 72a and 72b (FIG. 5) described above.
  • the energy beam B is applied to the end surface 25a of the tab laminate 25 in a state where the tab laminate 25 is pressed in the Z-axis direction by the jig 44 via the current collector plate 19 and the protection plate 27, for example.
  • the energy beam B is scanned along the direction (X-axis direction) intersecting the Z-axis direction on the end surface 25a of the tab laminate 25.
  • the energy beam B may be scanned along the X-axis direction while being displaced in the Z-axis direction.
  • the energy beam B is scanned along the X-axis direction while being reciprocally displaced (wobbled) in the Z-axis direction.
  • the amount of displacement of the irradiation spot of the energy beam B in the Z-axis direction is larger than the thickness of the tab laminate 25.
  • the irradiation spot of the energy beam B moves from the position P1 on the axis H1 along the X-axis direction to the position P2 on the end face 25a of the tab laminate 25.
  • the positions P1 and P2 are located at the center of the end face 25a of the tab laminate 25 in the Z-axis direction.
  • the energy beam B is scanned while moving the center point along the X-axis direction on the end face 25a of the tab laminate 25 and rotating the irradiation spot of the energy beam B around the center point on the XZ plane.
  • the diameter of rotation is larger than the thickness of the tab laminate 25 because the end face 25a, the current collector plate 19 and the protective plate 27 of the tab laminate 25 can be welded as a whole.
  • the welded portion W is formed on the end surface 25a of the tab laminate 25 as shown in FIG. 4 described above.
  • FIG. 7 is a diagram conceptually showing the flow of gas (shown as gas G) inside and outside the cover 60 as viewed from the Y-axis direction.
  • FIG. 7 shows the portions of the discharge ports 72a and 72b among the discharge ports 72a, 72b, 73a, 73b, 74a, 74b, 75a, and 75b provided in the side wall portion 61 of the cover 60.
  • the gas G flows into the cover 60 through the inflow port 71.
  • the gas G is supplied from a gas supply source 76.
  • the type of gas G is not particularly limited, but when welding is performed by irradiating energy beam B, an inert gas such as nitrogen gas or argon gas may be used.
  • the amount of gas G supplied by the gas supply source 76, the supply timing, and the like are controlled by the control device 77.
  • the gas G can be continuously supplied to the inflow port 71 or can be supplied in pulses (intermittent supply). By supplying the gas G in a pulse shape, the supply amount of the gas G can be reduced as compared with the case of continuous supply.
  • the pressure in the cover 60 is higher than the pressure outside the cover 60 (that is, a positive pressure) by the amount of gas G flowing into the cover 60.
  • the pressure outside the cover 60 may be substantially atmospheric pressure. In this case, the pressure inside the cover 60 can be made positive by making the pressure inside the cover 60 larger than the atmospheric pressure.
  • the gas G supplied into the cover 60 passes through the discharge ports 72a and 72b and the end face 25a of the tab laminate 25. It is discharged toward the welding point.
  • the welding location here is a portion to which the above-mentioned energy beam B is irradiated.
  • the gas G is discharged from the discharge port 72b located on the lower side (Z-axis negative direction side) in the lateral direction (the direction in which the height in the Z-axis direction does not change). Is done.
  • the gas G is discharged obliquely downward from the discharge port 72a located on the upper side (Z-axis positive direction side).
  • the gas G discharged to the outside of the cover 60 through the discharge ports 72a and 72b is sprayed onto the welding location.
  • the generated foreign matter is carried away from the electrode body 20 by the gas G blown to the welding location.
  • the foreign matter carried by the gas G is sucked together with the gas G and removed.
  • the gas G reaches the guide 90 disposed on the opposite side of the cover 60 with the tab laminate 25 interposed therebetween.
  • the guide 90 has, for example, a half-pipe shape that opens to the tab laminate 25 side and extends in the Z-axis direction so as to collect the gas G and guide it upward (Z-axis positive direction).
  • the gas G guided upward by the guide 90 reaches the suction port 91 of the suction pipe 92 and is sucked.
  • the welded portion W is formed by irradiating the end face 25a of the tab laminate 25 with the energy beam B while supplying the gas G to the inlet 71 of the cover 60.
  • the end surface 21b of the tab laminated body 21 is irradiated with the energy beam B, whereby the welded portion W is formed on the end surface 21b of the tab laminated body 21.
  • the gas G is supplied to the inflow port 71 so that the inside of the cover 60 becomes a positive pressure.
  • the gas in the cover 60 is discharged toward the end surface 21b of the tab laminate 21 through the discharge ports 74a and 74b.
  • the end face 25b of the tab laminated body 25 is similarly irradiated with the energy beam B, thereby forming a welded portion W on the end face 25b of the tab laminated body 25 (see FIG. 4).
  • the gas G is supplied to the inflow port 71 so that the inside of the cover 60 becomes a positive pressure.
  • the gas G in the cover 60 is discharged toward the welded portion of the end surface 25b of the tab laminate 25 through the discharge ports 73a and 73b.
  • the end surface 21a of the tab laminate 21 is similarly irradiated with the energy beam B, thereby forming a welded portion W on the end surface 21a of the tab laminate 21 (see FIG. 4).
  • the gas G is supplied to the inflow port 71 so that the inside of the cover 60 becomes a positive pressure.
  • the gas G in the cover 60 is discharged toward the welded portion of the end surface 21a of the tab laminated body 21 through the discharge ports 75a and 75b.
  • the electrode assembly 3 is manufactured through the above steps. Thereafter, the electrode assembly 3 obtained by bending the tab laminates 21 and 25 is accommodated in the case 2, and the power storage device 1 can be manufactured.
  • the cover is so arranged that the electrode body 20 is disposed in the cover 60 while the welded portions of the tab laminates 21 and 25 are disposed outside the cover 60. 60 is provided.
  • a gap may be generated between the cover 60 and the mounting table 50.
  • a gap may be generated between the tab laminates 21 and 25 and the side wall portion 61 of the cover 60.
  • the cover 60 is provided with an inlet 71 for allowing the gas G to flow into the cover 60.
  • the gas G is supplied to the inlet 71 so that the pressure inside the cover 60 is higher than the pressure outside the cover 60 (that is, positive pressure). . Since the pressure in the cover 60 is positive, foreign matter such as sputter particles generated during welding is less likely to enter the cover 60 through the gap of the cover 60. Therefore, even if there is a gap in the cover 60, it is possible to suppress the adhesion of foreign matter to the electrode body 20.
  • the cover 60 is provided with discharge ports 72a, 72b, 73a, 73b, 74a, 74b, 75a, 75b for discharging the gas G from the cover 60 toward the welded portions of the tab laminates 21, 25. .
  • the gas G is blown from the cover 60 toward the welded portions of the tab laminates 21 and 25, so that foreign matters generated at the welded portions are scattered toward the cover 60 (that is, the electrode body 20).
  • This effect can be obtained by providing at least one discharge port for one welding location.
  • at least one of the discharge port 72a and the discharge port 72b may be provided for the welded portion of the end surface 25a of the tab laminate 25. If both the discharge ports 72a and 72b are provided, it is possible to further suppress the scattering of foreign matters toward the electrode body 20 by blowing gas from the plurality of discharge ports.
  • the gas G discharged from the discharge ports 72a, 72b, 73a, 73b, 74a, 74b, 75a, 75b may be sucked. Thereby, the foreign material generated at the time of welding can be sucked and removed together with the gas G.
  • the gas G may be supplied to the inlet 71 in a pulsed manner. Thereby, the supply amount of gas G can be reduced rather than the case where gas G is supplied continuously.
  • the gas G By using an inert gas such as nitrogen gas or argon gas as the gas G blown to the welding location through the discharge ports 72a, 72b, 73a, 73b, 74a, 74b, 75a, 75b, oxidation and the like during welding are performed. It can also be prevented. That is, the gas G can be used as a shielding gas (also referred to as assist gas).
  • an inert gas such as nitrogen gas or argon gas
  • the welded portion is formed on the tab laminate by irradiating the energy beam
  • the welded portion may be formed on the tab laminate by, for example, resistance welding or ultrasonic welding.
  • inflow port is provided in the cover.
  • a plurality of inflow ports may be provided in the cover.
  • the position where the inflow port is provided is not particularly limited as long as it is a position where gas can flow into the cover.
  • the said embodiment demonstrated the example which forms a welding part in a tab laminated body in a laminated type electrode assembly, it will be in a lamination
  • the two tabs 14b and the tabs 17b protrude in the same direction from one end of each of the main body 14a and the main body 17a has been described.
  • the two tabs 14b and 17b protrude in different directions. Also good.
  • one end of the one main body 14a protruding the tab 14b and one end of the other main body 17a protruding the tab 17b are opposed to the side surface S and the side surface S of the electrode main body 20. It may be located on each of the two side surfaces.
  • one tab laminated body 21 protrudes from one side surface S of the electrode body 20, and the other tab laminated body 25 is one tab laminated body from the other side surface (opposite side surface S) of the electrode body 20. It protrudes in a direction opposite to the direction in which the body 25 protrudes.
  • the width of each tab 14b, 17b may be the same as the width of the main bodies 14a, 17a.
  • the portion of the metal foil on which the positive electrode active material layer is formed serves as the main body 14a, and the positive electrode active material layer is not formed.
  • the remaining portion can be a tab 14b.
  • the portion of the metal foil where the negative electrode active material layer is formed is the main body 17a, and the remaining portion where the negative electrode active material layer is not formed This portion can be a tab 17b.
  • FIG. 8 and FIG. 9 are views showing one process of the method for manufacturing the electrode assembly according to the second embodiment.
  • the electrode assembly 3 shown in FIG. 3 is manufactured by the following method, for example.
  • tab laminates 21 and 25 are prepared.
  • the preparation of the tab laminates 21 and 25 is the same as the example described above with reference to FIG. 5, and thus description thereof will not be repeated here.
  • the electrode body 20 and the tab laminates 21 and 25 are arranged on the mounting table 50. Since the arrangement of the tab laminates 21 and 25 on the mounting table 50 is the same as the example described with reference to FIG. 5, the description thereof will not be repeated here. Subsequently, a cover 60 ⁇ / b> A is provided so as to cover the electrode body 20.
  • the cover 60A like the cover 60 (FIG. 5), has side wall portions 61 to 64 and a ceiling portion 65, and is provided so as to cover the electrode body 20.
  • the cover 60A is not provided with the discharge ports 72a, 72b, 73a, 73b, 74a, 74b, 75a, 75b, but is provided with the nozzles 81 to 84 and the supply pipes 86 to 89. Is different.
  • the nozzles 81 to 84 are provided on the side wall portion 61 so that the base ends are in contact with the inner wall surface of the side wall portion 61 and the tip ends are disposed outside the cover 60A.
  • the nozzles 81 to 84 have air outlets 81a, 82a, 83a, and 84a at the tips, respectively, for blowing gas toward the portions (welding locations) where the welded portions W of the tab laminates 21 and 25 are formed.
  • the supply pipes 86 to 89 are gas supply pipes that supply gas to the base ends of the corresponding nozzles 81 to 84.
  • the supply pipes 86 to 89 have a longitudinal direction in the direction along the side wall portion 61 (Z-axis direction).
  • the cross-sectional shape orthogonal to the longitudinal direction of each of the supply pipes 86 to 89 is, for example, a substantially rectangular shape.
  • the nozzle 81 blows the gas supplied from the supply pipe 86 to the welded portion of the end face 25a of the tab laminate 25 from the blowout port 81a.
  • the nozzle 82 supplies the gas supplied from the supply pipe 87 to the welded portion of the end surface 25b of the tab laminated body 25 from the blower outlet 82a
  • the nozzle 83 supplies the gas supplied from the supply pipe 88 to the tab laminated body from the blower outlet 83a.
  • the nozzle 84 sprays the gas supplied from the supply pipe 89 to the welded portion of the end surface 21a of the tab laminated body 21 from the outlet 84a to the welded portion of the end surface 21b.
  • Each nozzle 81 to 84 has a pipe shape having a length in the gas discharge direction, as shown in FIG. 9 described later. Because of this length, the outlets 81a, 82a, 83a, 84a of the nozzles 81 to 84 approach the welding location, so that the gas is guided to the vicinity of the welding location and the gas is blown more reliably toward the welding location. Can do. Details of the supply pipes 86 to 89 will be described later with reference to FIG.
  • the welded portion W is formed in the tab laminates 21 and 25.
  • the formation of the welded portion W by irradiation with the energy beam is the same as the example described above with reference to FIG. 6, and thus description thereof will not be repeated here.
  • the inert gas can be supplied via the supply pipe 86 and the nozzle 81 (FIG. 8) described above.
  • FIG. 9 is a diagram conceptually showing the flow of gas (shown as gas G) viewed from the Y-axis direction.
  • gas G gas
  • FIG. 9 shows the nozzle 81 and the supply pipe 86 among the nozzles 81 to 84 and the supply pipes 86 to 89 provided in the cover 60A.
  • the gas G is supplied from the supply pipe 86 to the nozzle 81.
  • an inert gas such as nitrogen gas or argon gas may be used.
  • the supply pipe 86 includes a first portion 861 and a second portion 862.
  • the first portion 861 is a portion located on the outlet 81 a side of the supply pipe 86.
  • the first portion 861 is located in the cover 60A.
  • the first portion 861 extends from above to below (in the negative Z-axis direction) along the side wall portion 61 of the cover 60A.
  • a part of the supply pipe 86 may be constituted by a part of the cover 60A.
  • the first portion 861 has a side wall portion 861a as a part thereof.
  • the side wall portion 861a is configured using a part of the side wall portion 61 of the cover 60A.
  • the first portion 861 has an opening 861 b connected to the proximal end of the nozzle 81.
  • the gas G is supplied from the first portion 861 to the nozzle 81 through the opening 861b.
  • the second portion 862 is a portion located on the opposite side of the nozzle 81 with the first portion 861 interposed therebetween.
  • the second portion 862 is located outside the cover 60A.
  • the gas G is supplied to the second portion 862 from the side opposite to the first portion 861.
  • the gas G is supplied from, for example, a gas supply source (not shown).
  • the nozzle 81 is provided on the side wall 61 of the cover 60A. More specifically, the nozzle 81 is provided in a portion of the side wall portion 61 that faces the side surface S (see FIG. 7) of the electrode body 20. By providing the nozzle 81 at this position, the gas G is blown from the nozzle 81 in the lateral direction (direction in which the height in the Z-axis direction does not change).
  • the nozzles 82 to 84 and the supply pipes 87 to 89 can have the same arrangement and configuration as the nozzle 81 and the supply pipe 86.
  • the gas supplied from the supply pipe 86 to the nozzle 81 is sprayed to the welding location via the nozzle 81.
  • the gas G which is an inert gas as described above, onto the welding site, oxidation or the like during welding can be prevented. That is, the gas G can be used as a shielding gas (also referred to as assist gas).
  • the gas G can be used as a shielding gas (also referred to as assist gas).
  • the guide 90 has, for example, a half-pipe shape that opens to the tab laminate 25 side and extends in the Z-axis direction so as to collect the gas G and guide it upward (Z-axis positive direction).
  • the gas G guided upward by the guide 90 reaches the suction port 91 of the suction pipe 92 and is sucked.
  • the gas G is blown to the welding portion via the supply pipe 86 and the nozzle 81 provided in the cover 60, and the energy beam B is applied to the end surface 25a of the tab laminated body 25 to weld the welded portion. W is formed.
  • the supply pipe 86 and the cover 60A described above may be integrally formed.
  • the material of the supply pipe 86 and the cover 60A can be the same.
  • An example of the material is resin.
  • resin By adopting resin as the material of the supply pipe 86 and the cover 60A, it is possible to prevent foreign matters such as metal particles from being generated from the surfaces of the supply pipe 86 and the cover 60A during welding.
  • resin By adopting resin as the material of the supply pipe 86 and the cover 60, the supply pipe 86 and the cover 60A can be integrally formed.
  • the end surface 21 b of the tab laminated body 21 is irradiated with the energy beam B, thereby forming a welded portion W on the end surface 21 b of the tab laminated body 21 ( (See FIG. 4).
  • the gas supplied from the supply pipe 88 is blown by the nozzle 83 onto the end surface 21 b of the tab laminate 21.
  • the end face 25b of the tab laminated body 25 is similarly irradiated with the energy beam B, thereby forming a welded portion W on the end face 25b of the tab laminated body 25 (see FIG. 4).
  • the gas supplied from the supply pipe 87 is blown by the nozzle 82 onto the welded portion of the end face 25 b of the tab laminate 25.
  • the end surface 21a of the tab laminate 21 is similarly irradiated with the energy beam B, thereby forming a welded portion W on the end surface 21a of the tab laminate 21 (see FIG. 4).
  • the gas supplied from the supply pipe 89 is sprayed by the nozzle 84 onto the welded portion of the end surface 21 a of the tab laminated body 21.
  • the electrode assembly 3 is manufactured through the above steps. Thereafter, the electrode assembly 3 obtained by bending the tab laminates 21 and 25 is accommodated in the case 2, and the power storage device 1 can be manufactured.
  • the cover is so arranged that the electrode body 20 is disposed in the cover 60A while the welded portions of the tab laminates 21 and 25 are disposed outside the cover 60A.
  • 60A is provided.
  • the space (clearance) between the electrode main body 20 and the welded portions of the tab laminates 21 and 25 is narrowed.
  • this space it becomes difficult to provide the supply pipe so that the nozzle outlet is disposed closer to the electrode body 20 than the welded portion of the tab laminates 21 and 25, and the above-described effect of preventing oxidation and the like There is a possibility that the effect of moving the foreign matter away from the electrode body 20 cannot be obtained.
  • the cover 60A is provided with the nozzles 81 to 84 having the outlets 81a, 82a, 83a, and 84a and the supply pipes 86 to 89. Portions on the outlets 81a, 82a, 83a, 84a side of the supply pipes 86 to 89 (for example, the first portion 861 of the supply pipe 86) may be provided in the cover 60A. As a result, just by covering the electrode body 20 with the cover 60A, the air outlets 81a, 82a, 83a, 84a of the nozzles 81 to 84 are arranged closer to the electrode body 20 than the welded portions of the tab laminates 21, 25. Supply tubes 86-89 can be provided.
  • the cover 60A has a side wall portion 61 that covers the side surface S of the electrode body 20, and the outlets 81a, 82a, 83a, 84a of the nozzles 81 to 84 are provided on the side wall portion 61. Thereby, the nozzles 81 to 84 can be provided near the welded portions of the tab laminates 21 and 25. If the nozzles 81 to 84 are provided in the portion of the side wall portion 61 that is located at the same height as the welding location, the air outlets 81a, 82a, 83a, 84a can be more easily brought closer to the welding location.
  • the side wall part 861a of the supply pipe 86 may be configured by the side wall part 61 of the cover 60A.
  • the supply pipes 86 to 89 and the cover 60A may be integrally formed. If the supply pipes 86 to 89 and the cover 60A are separated, misalignment may occur due to the separate arrangement, but the supply pipes 86 to 89 and the cover 60A are integrally formed. Therefore, such a problem of misalignment does not occur, and handling becomes easy. Further, it is possible to reduce labor or cost for manufacturing the supply pipes 86 to 89 and the cover 60A.
  • the cover provided with the nozzles 81 to 84 and the supply pipes 86 to 89 may be provided with an inflow port 71 to which gas is supplied, similarly to the cover 60 described above (see FIG. 5 and the like).
  • the cover 60B is provided not only with nozzles 81 to 84 and supply pipes 86 to 89, but also with an inflow port 71. Since the role of the gas supplied to the inflow port 71 is as described above, description thereof will not be repeated here.
  • the type of gas supplied to the nozzles 81 to 84 by the supply pipes 86 to 89 and the type of gas supplied to the inlet 71 may be the same or different.
  • a portion on the outlet side of the supply pipe (for example, the first portion 861 of the supply pipe 86) is provided in the cover has been described.
  • the entire supply pipe may be provided outside the cover.
  • a supply pipe 86 ⁇ / b> A is provided outside the cover 60 ⁇ / b> C instead of the supply pipe 86.
  • the supply pipe 86A has the same function as the supply pipe 86.
  • another supply pipe having the same function as the supply pipes 87 to 89 is provided outside the cover 60C.
  • a recess may be formed in a portion of the cover 60C where the supply pipe 86A is provided so that a part of the supply pipe 86A is embedded.
  • the supply pipe 86A can be easily attached to the cover 60C.
  • the space occupied by the supply pipe 86A outside the cover 60C can be reduced.
  • a part of the supply pipe 86A may be configured by the side wall portion 61 of the cover 60C. Also by this, the space occupied by the supply pipe 86A outside the cover 60C can be reduced, so that the supply pipe 86A can be easily provided on the cover 60C.
  • the cover 60C may be provided with the inflow port 71.
  • the number of nozzles and the number of supply pipes are the same. Not necessarily.
  • the number of supply pipes may be smaller than the number of nozzles. In that case, for example, a configuration in which two or more nozzles share a gas supplied from one supply pipe may be employed.
  • the said embodiment demonstrated the example in which one nozzle was provided with respect to one welding location, several nozzles may be provided with respect to one welding location.
  • gas is blown from the nozzle outlet to the welding location.
  • the gas may be blown to the welding location without using the nozzle.
  • gas can also be sprayed from the said blower outlet to a welding location by providing a blower outlet directly in the side wall part of a cover.
  • the said embodiment demonstrated the example which forms a welding part in a tab laminated body in a laminated type electrode assembly, it will be in a lamination
  • the two tabs 14b and the tabs 17b protrude in the same direction from one end of each of the main body 14a and the main body 17a has been described.
  • the two tabs 14b and 17b protrude in different directions. Also good.
  • one end of the one main body 14a protruding the tab 14b and one end of the other main body 17a protruding the tab 17b are opposed to the side surface S and the side surface S of the electrode main body 20. It may be located on each of the two side surfaces.
  • one tab laminated body 21 protrudes from one side surface S of the electrode body 20, and the other tab laminated body 25 is one tab laminated body from the other side surface (opposite side surface S) of the electrode body 20. It protrudes in a direction opposite to the direction in which the body 25 protrudes.
  • the width of each tab 14b, 17b may be the same as the width of the main bodies 14a, 17a.
  • the portion of the metal foil on which the positive electrode active material layer is formed serves as the main body 14a, and the positive electrode active material layer is not formed.
  • the remaining portion can be a tab 14b.
  • the portion of the metal foil where the negative electrode active material layer is formed is the main body 17a, and the remaining portion where the negative electrode active material layer is not formed This portion can be a tab 17b.
  • FIG. 12 is a diagram showing one step (a step of providing a partitioning portion) of the method of manufacturing an electrode assembly according to a modification for realizing such a technique.
  • the step of providing the partition portion replaces the partition portion 100 with the electrode body 20 and the tab laminates 21, 25 instead of providing the cover 60 ⁇ / b> A.
  • the step of providing the partition portion replaces the partition portion 100 with the electrode body 20 and the tab laminates 21, 25 instead of providing the cover 60 ⁇ / b> A.
  • the partition portion 100 provided as described above may be a plate that partitions the electrode body 20 and the welded portions of the tab laminates 21 and 25.
  • the material of the partition part 100 may be the same as the material of the cover 60A described above.
  • the structure of the partition part 100 may be the same as that of the side wall part 61 of the cover 60 ⁇ / b> A described above with reference to FIGS. 8 and 9. That is, the partition part 100 is a part which covers the side surface S of the electrode main body 20, and extends along the surface direction (YZ plane) of the side surface S.
  • the partition portion 100 has openings 61 a and 61 b for passing the tab laminates 21 and 25 protruding from the side surface S of the electrode body 20, similarly to the side wall portion 61 (FIG. 8).
  • the partition portion 100 is provided with nozzles 81 to 84 and supply pipes 86 to 89.
  • FIG. 12 shows the nozzle 81 and the supply pipe 86 among the nozzles 81 to 84 and the supply pipes 86 to 89 provided in the partition 100.
  • the positions of the nozzles 81 to 84 provided in the partition part 100 may be the same as the positions of the nozzles 81 to 84 provided in the side wall part 61 of the cover 60A.
  • the nozzles 81 to 84 side portions of the supply pipes 86 to 89 are provided along the electrode body 20 side portion of the partition portion 100, and the Z-axis direction is the longitudinal direction.
  • the side wall part 861 a included in the first portion 861 of the supply pipe 86 is configured using a part of the partition part 100.
  • the gas G supplied from the supply pipe 86 to the nozzle 81 is blown to the welding location through the nozzle 81 and then sucked by the suction port 91.
  • the partition portion 100 that partitions the side surface S of the electrode body 20 and the welded portions of the tab laminates 21 and 25 is provided. Thereby, adhesion of foreign matter such as sputtered particles generated during welding to the electrode body 20 can be suppressed.
  • the partition portion 100 is provided with nozzles 81 to 84 having outlets 81a, 82a, 83a, and 84a and supply pipes 86 to 89, similarly to the side wall portion 61 of the cover 60A described above. Therefore, by providing the partition portion 100, as in the case of providing the cover 60A, the gas is effectively supplied to the welded portions of the tab laminates 21 and 25 while suppressing the adhesion of foreign matter to the electrode body 20.
  • each supply pipe may be provided on the welding location side of the partition portion 100.
  • the nozzle side portion of the supply pipe is provided along the welded portion side portion of the partition 100, and the Z-axis direction is the longitudinal direction.
  • a recess may be formed in a portion of the partition 100 where the supply pipe is provided so that a part of the supply pipe is embedded.
  • the irradiation position of the energy beam is not limited to the end face of the tab laminate.
  • the protective plate 23 ⁇ / b> A that presses the tab laminate 21 has, for example, a hole 23 a at the center thereof. The energy beam is applied to the upper surface of the tab laminate 21 from the upper side to the lower side (from the Z-axis positive direction side to the Z-axis negative direction side) through the hole 23a of the protective plate 23A.
  • a welding part is formed in the part corresponding to the hole 23a of 23 A of protection plates from the upper surface of the tab laminated body 21 to a lower surface.
  • the welded portion is formed such that the edge of the welded portion is separated from the end surfaces 21a, 21b, 21c of the tab laminate 21 when viewed from the Z-axis direction. Accordingly, no welds are formed on the end faces 21a, 21b, and 21c.
  • the protective plate 27A that presses the tab laminate 25 has, for example, a hole 27a in the central portion thereof. The energy beam irradiates the upper surface of the tab laminate 25 from the upper side to the lower side through the hole 27a of the protective plate 27A.
  • a welded portion is formed at a portion corresponding to the hole 27a of the protective plate 27A from the upper surface to the lower surface of the tab laminate 25.
  • the welded portion is formed such that the edge of the welded portion is separated from the end surfaces 25a, 25b, and 25c of the tab laminate 25 when viewed from the Z-axis direction. Accordingly, no welds are formed on the end faces 25a, 25b, and 25c.
  • the cover 60D is used instead of the cover 60.
  • the cover 60D is different from the cover 60 in that discharge ports 72c, 73c, 74c, and 75c are provided instead of the discharge ports 72a, 72b, 73a, 73b, 74a, 74b, 75a, and 75b.
  • the discharge ports 72c and 73c are provided at a position higher than the upper surface of the tab laminated body 25 or the upper surface of the protective plate 27A in the side wall portion 61 of the cover 60D. Is discharged.
  • the discharge ports 72c and 73c are arranged side by side with a space in the Y-axis direction.
  • the discharge ports 74c and 75c are provided at a position higher than the upper surface of the tab laminated body 21 or the upper surface of the protective plate 23A in the side wall portion 61 of the cover 60D, and gas flows from the position toward the welded portion of the tab laminated body 21. Is discharged.
  • the discharge ports 74c and 75c are arranged side by side with a space in the Y-axis direction.
  • the number of the discharge ports provided with respect to each tab laminated body 21 and 25 is not limited to the example shown by FIG.
  • the protective plate may be removed from the tab laminate after the welding is completed without forming the welded portion on the protective plate.
  • the protective plate may be used as a jig, for example, similar to the jigs 42 and 44 described above with reference to FIG.
  • a technique for suppressing the adhesion of foreign matter to the electrode body As a technique for suppressing the adhesion of foreign matter to the electrode body, a technique may be used in which an airflow toward the opposite side of the electrode body is generated at the welding location during welding.
  • an air flow is generated from the electrode body 20 toward the welded portions of the tab laminates 21 and 25.
  • an air flow is generated from at least the back of the electrode body 20 toward the front.
  • the direction of the airflow at the welding location may be a direction inclined with respect to the horizontal direction so as to go from the top to the bottom.
  • the air flow can be generated by providing nozzles for blowing out gas at various places.
  • FIG. 15 is a diagram showing an example of nozzle arrangement.
  • a plurality of nozzles 110 that blow out the gas G are arranged.
  • each nozzle is also given another symbol of nozzles 111-114.
  • the tab laminates 21 and 25 side viewed from the electrode body 20 will be referred to as the front, and the opposite side will be referred to as the rear.
  • the three nozzles 111 are arranged behind the electrode body 20 and blow out the gas G toward the front.
  • the nozzle 111 is disposed obliquely above the electrode body, for example. As a result, an air flow is generated from the rear to the front along the upper surface of the electrode body 20.
  • the two nozzles 112 are respectively arranged obliquely behind the electrode body and blow out the gas G toward the front. As a result, an airflow is generated from the rear to the front along the side surface of the electrode body 20.
  • the two nozzles 113 are respectively arranged obliquely in front of the electrode body and blow out the gas G toward the tab laminates 21 and 25. Thereby, an air flow is generated along the side surface S of the electrode body 20 toward the end surface 21a of the tab stacked body 21 and the end surface 25a of the tab stacked body 25.
  • three nozzles 114 may be used.
  • the three nozzles 114 are arranged in an arc shape above the electrode body 20 in the vicinity of the tab laminate 25.
  • a nozzle similar to the nozzle 114 may be provided with respect to the other end surface, or the nozzle 114 is movable, and the gas G from the nozzle 114 is blown onto the end surface irradiated with the energy beam. As such, the nozzle 114 may be moved.
  • a plurality of nozzles 110 may not be provided as shown in FIG. 15, but a single blower having a large air outlet may be provided behind the electrode body 20.
  • Electrode assembly 14a, 17a ... Main body, 14b, 17b ... Tab, 20 ... Electrode main body, 21, 25 ... Tab laminated body, 60, 60A, 60B, 60C, 60D ... Cover, 71 ... Inlet, 72a, 72b, 73a, 73b, 74a, 74b, 75a, 75b ... discharge port, 81-84 ... nozzle, 81a, 82a, 83a, 84a ... outlet, 86-89 ... supply pipe (gas supply pipe), 100 ... partition , S ... side, W ... welded part.
  • gas supply pipe gas supply pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

電極組立体の製造方法は、積層された本体を有する電極本体、及び、積層されたタブを有し電極本体の側面から突出するタブ積層体を準備する工程と、電極本体を覆うカバーを設ける工程であり、電極本体がカバー内に配置される一方でタブ積層体のうちの溶接部が形成される部分がカバー外に配置されるようにカバーを設ける工程と、タブ積層体に溶接部を形成する工程と、を含み、カバーには、カバー内にガスを流入させるための流入口が設けられており、タブ積層体に溶接部を形成する工程では、カバー内の圧力がカバー外の圧力よりも高くなるように、流入口にガスを供給する。

Description

電極組立体の製造方法
 本発明は、電極組立体の製造方法に関する。
 リチウムイオン電池等の蓄電装置は、複数の電極が積層された電極組立体を備える。各電極は、本体と、本体の一端から突出したタブとを有している。電極組立体は、積層された本体を有する電極本体と、積層されたタブを有するタブ積層体とを備える。電極組立体を製造する際には、タブ積層体が溶接される(例えば特許文献1参照)。
特開2012-204304号公報
 溶接時には、例えばスパッタ粒子等の異物が発生し得る。発生した異物が飛散して電極本体に付着すると、電極組立体の性能が変化してしまう可能性がある。例えば積層された電極間に異物が侵入すると、電極同士が短絡するおそれがある。
 本発明の一側面は、電極本体への異物の付着を抑制することが可能な電極組立体の製造方法を提供することを目的とする。
 本発明の一側面に係る電極組立体の製造方法は、本体と本体の少なくとも一端から突出するタブとを含む電極を有する電極組立体の製造方法であって、積層された本体を有する電極本体、及び、積層されたタブを有し電極本体の側面から突出するタブ積層体を準備する工程と、電極本体を覆うカバーを設ける工程であり、電極本体がカバー内に配置される一方でタブ積層体のうちの溶接部が形成される部分がカバー外に配置されるようにカバーを設ける工程と、タブ積層体に溶接部を形成する工程とを含み、カバーには、カバー内にガスを流入させるための流入口が設けられており、タブ積層体に溶接部を形成する工程では、カバー内の圧力がカバー外の圧力よりも高くなるように、流入口にガスを供給する。
 上記の電極組立体の製造方法では、電極本体がカバー内に配置される一方でタブ積層体のうちの溶接部が形成される部分(溶接箇所)がカバー外に配置されるようにカバーが設けられる。カバーには、カバー内にガスを流入させるための流入口が設けられている。タブ積層体に溶接部を形成する工程では、カバー内の圧力がカバー外の圧力よりも高く(つまり陽圧と)なるように、流入口にガスが供給される。カバー内の圧力が陽圧となっているので、溶接時に発生したスパッタ粒子等の異物は、カバーの隙間を通ってカバー内に侵入しにくくなる。よって、電極本体への異物の付着を抑制することができる。
 カバーには、タブ積層体のうちの溶接部が形成される部分に向かってカバー内からガスを排出するための少なくとも一つの排出口が設けられていてもよい。この場合、溶接時には、タブ積層体の溶接箇所に向かってカバー内からガスが吹き付けられるので、溶接箇所において発生した異物がカバー内(つまり電極本体)に向かって飛散することを抑制できる。
 少なくとも一つの排出口は、複数の排出口であってもよい。このように溶接箇所に対して複数の排出口を設けることによって、異物が電極本体に向かって飛散することをさらに抑制することができる。
 溶接部を形成する工程では、少なくとも一つの排出口から排出されたガスを吸引してもよい。これにより、溶接時に発生した異物をガスとともに吸引して取り除くことができる。
 溶接部を形成する工程では、流入口にガスをパルス状に供給してもよい。これにより、ガスの供給量を低減することができる。
 本発明の一側面に係る電極組立体の製造方法は、本体と本体の少なくとも一端から突出するタブとを含む電極を有する電極組立体の製造方法であって、積層された本体を有する電極本体、及び、積層されたタブを有し電極本体の側面から突出するタブ積層体を準備する工程と、電極本体を覆うカバーを設ける工程であり、電極本体がカバー内に配置される一方でタブ積層体のうちの溶接部が形成される部分がカバー外に配置されるようにカバーを設ける工程と、タブ積層体のうちの溶接部が形成される部分にガスを吹き付けるとともにタブ積層体に溶接部を形成する工程と、を含み、カバーには、タブ積層体のうちの溶接部が形成される部分に向かってガスを吹き出す吹出口、及び、吹出口にガスを供給するガス供給管が設けられている。
 上記の電極組立体の製造方法では、電極本体がカバー内に配置される一方でタブ積層体のうちの溶接部が形成される部分(溶接箇所)がカバー外に配置されるようにカバーが設けられ、溶接箇所にガスを吹き付けるとともにタブ積層体に溶接部が形成される。電極本体をカバーで覆うことにより、アシストガス等のガスを溶接箇所に供給しつつ、溶接時に発生した異物が飛散して電極本体に付着することを抑制することができる。また、カバーには、溶接箇所に向かってガスを吹き出す吹出口、及び、吹出口にガスを供給するガス供給管が設けられている。これにより、電極本体をカバーで覆うだけで、タブ積層体の溶接箇所よりも電極本体側に吹出口が配置されるようにガス供給管を設けることができる。よって、電極本体への異物の付着を抑制しつつ、タブ積層体の溶接箇所にガスを効果的に供給することができる。ガス供給管の吹出口側の部分は、カバー内に設けられていてもよい。
 カバーは電極本体の側面を覆う部分を有し、吹出口は、カバーの電極本体の側面を覆う部分に設けられていてもよい。これにより、吹出口をタブ積層体の溶接箇所の近くに設けることができる。
 ガス供給管の吹出口側の部分において、ガス供給管の側壁の一部がカバーの一部で構成されていてもよい。これにより、カバー内に占めるガス供給管のスペースを低減することができるので、ガス供給管をカバー内に設け易くなる。
 ガス供給管とカバーとが一体形成されていてもよい。ガス供給管とカバーとが分離していると、それらを別々に配置することによる位置ずれが生じる可能性があるが、ガス供給管とカバーとが一体形成されていることにより、そのような位置ずれの問題が生じず、取扱いも容易となる。
 上記の電極組立体の製造方法においても、カバーには、カバー内にガスを流入させるための流入口がさらに設けられており、タブ積層体に溶接部を形成する工程では、カバー内の圧力がカバー外の圧力よりも高くなるように、流入口にガスを供給してもよい。この場合、先に説明したように、カバー内の圧力が陽圧となっているので、溶接時に発生したスパッタ粒子等の異物は、カバーの隙間を通ってカバー内に侵入しにくくなる。よって、電極本体への異物の付着をさらに抑制することができる。上述のガス供給管によって吹き出し口に供給されるガスの種類と、流入口に供給されるガスの種類とは同じであってもよいし異なっていてもよい。
 本発明の一側面に係る電極組立体の製造方法は、本体と本体の少なくとも一端から突出するタブとを含む電極を有する電極組立体の製造方法であって、積層された本体を有する電極本体、及び、積層されたタブを有し電極本体の側面から突出するタブ積層体を準備する工程と、電極本体の側面と、タブ積層体のうちの溶接部が形成される部分とを仕切る仕切部を設ける工程と、タブ積層体のうちの溶接部が形成される部分にガスを吹き付けるとともにタブ積層体に溶接部を形成する工程と、を含み、仕切部には、タブ積層体のうちの溶接部が形成される部分に向かってガスを吹き出す吹出口、及び、吹出口にガスを供給するガス供給管が設けられている。
 上記の電極組立体の製造方法では、電極本体の側面と、タブ積層体のうちの溶接部が形成される部分とを仕切る仕切部が設けられ、溶接箇所にガスを吹き付けるとともにタブ積層体に溶接部が形成される。このような仕切部を設けることによっても、アシストガス等のガスを溶接箇所に供給しつつ、溶接時に発生した異物が飛散して電極本体に付着することを抑制することができる。また、仕切部には、溶接箇所に向かってガスを吹き出す吹出口、及び、吹出口にガスを供給するガス供給管が設けられている。これにより、仕切部を設けるだけで、タブ積層体の溶接箇所よりも電極本体側に吹出口が配置されるようにガス供給管を設けることができる。よって、電極本体への異物の付着を抑制しつつ、タブ積層体の溶接箇所にガスを効果的に供給することができる。ガス供給管の吹出口側の部分は、仕切部の電極本体側に設けられていてもよい。
 本発明の一側面によると、電極本体への異物の付着を抑制することが可能な電極組立体の製造方法が提供される。
実施形態に係る電極組立体を備える蓄電装置の分解斜視図である。 図1のII―II線に沿った蓄電装置の断面図である。 実施形態に係る電極組立体の斜視図である。 X軸方向から見た図3の電極組立体の一部を示す図である。 第1実施形態に係る電極組立体の製造方法の一工程を示す図である。 各実施形態に係る電極組立体の製造方法の一工程を示す図である。 第1実施形態に係る電極組立体の製造方法の一工程を示す図である。 第2実施形態に係る電極組立体の製造方法の一工程を示す図である。 第2実施形態に係る電極組立体の製造方法の一工程を示す図である。 第2実施形態に係る電極組立体の製造方法の一工程を示す図である。 変形例に係る電極組立体の製造方法の一工程を示す図である。 変形例に係る電極組立体の製造方法の一工程を示す図である。 変形例に係る電極組立体の製造方法の一工程を示す図である。 第3実施形態に係る電極組立体の製造方法の一工程を示す図である。 第3実施形態に係る電極組立体の製造方法の一工程を示す図である。
 以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図面には、必要に応じてXYZ直交座標系が示されている。Z軸方向は例えば鉛直方向、X軸方向及びY方向は例えば水平方向である。
(電極組立体の構成)
 図1は、実施形態に係る電極組立体を備える蓄電装置の分解斜視図である。図2は、図1のII-II線に沿った蓄電装置の断面図である。図1及び図2に示される蓄電装置1は、例えばリチウムイオン二次電池といった非水電解質二次電池又は電気二重層キャパシタである。
 図1及び図2に示されるように、蓄電装置1は、例えば略直方体形状をなす中空のケース2と、ケース2内に収容された電極組立体3とを備えている。ケース2は、例えばアルミニウム等の金属によって形成されている。ケース2は、一方側において開口した本体部2aと、本体部2aの開口を塞ぐ蓋部2bとを有している。ケース2の内壁面上には、絶縁フィルム(図示せず)が設けられる。ケース2の内部には、例えば非水系(有機溶媒系)の電解液が注液されている。電極組立体3では、後述する正極11の正極活物質層15、負極12の負極活物質層18、及びセパレータ13が多孔質をなしており、その空孔内に、電解液が含浸されている。ケース2の蓋部2bには、正極端子5と負極端子6とが互いに離間して配置されている。正極端子5は、絶縁リング7を介してケース2に固定され、負極端子6は、絶縁リング8を介してケース2に固定されている。
 電極組立体3は、積層型の電極組立体である。電極組立体3は、複数の正極11(電極)と、複数の負極12(電極)と、正極11と負極12との間に配置された袋状のセパレータ13とによって構成されている。セパレータ13内には、例えば正極11が収容されている。セパレータ13内に正極11が収容された状態で、複数の正極11と複数の負極12とがセパレータ13を介して交互に積層されている。
 正極11は、例えばアルミニウム箔からなる金属箔14と、金属箔14の両面に形成された正極活物質層15と、を有している。正極11の金属箔14は、矩形状の本体14aと、本体14aの一端から突出する矩形状のタブ14bと、を含む。正極活物質層15は、正極活物質とバインダとを含んで形成されている多孔質の層である。正極活物質層15は、本体14aの両面において、少なくとも本体14aの中央部分に正極活物質が担持されて形成されている。
 正極活物質としては、例えば複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物には、例えばマンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つと、リチウムとが含まれる。ここでは、一例として、タブ14bには、正極活物質が担持されていない。ただし、タブ14bにおける本体14a側の基端部分には、活物質が担持されている場合もある。
 タブ14bは、本体14aの上縁部から上方に延び、集電板16を介して正極端子5に接続されている。集電板16はタブ14bと正極端子5との間に配置されている。集電板16は、例えば、正極11の金属箔14と同一の材料から矩形平板状に構成される。積層された複数のタブ14bは、集電板16と、集電板16よりも薄い保護板23との間に配置される(図3参照)。
 負極12は、例えば銅箔からなる金属箔17と、金属箔17の両面に形成された負極活物質層18と、を有している。負極12の金属箔17は、正極11の金属箔14と同様に、矩形状の本体17aと、本体17aの一端部から突出する矩形状のタブ17bと、を含む。負極活物質層18は、本体17aの両面において、少なくとも本体17aの中央部分に負極活物質が担持されて形成されている。負極活物質層18は、負極活物質とバインダとを含んで形成されている多孔質の層である。
 負極活物質としては、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素等が挙げられる。ここでは、一例として、タブ17bには、負極活物質が担持されていない。ただし、タブ17bにおける本体17a側の基端部分には、活物質が担持されている場合もある。
 タブ17bは、本体17aの上縁部から上方に延び、集電板19を介して負極端子6に接続されている。集電板19はタブ17bと負極端子6との間に配置されている。集電板19は、例えば、負極12の金属箔17と同一の材料から矩形平板状に構成される。積層された複数のタブ17bは、集電板19と、集電板19よりも薄い保護板27との間に配置される(図3参照)。
 セパレータ13は、正極11を収容している。セパレータ13は、正極11及び負極12の積層方向からみて矩形状である。セパレータ13は、例えば、一対の長尺シート状のセパレータ部材を互いに溶着して袋状に形成される。セパレータ13の材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。
 図3は、実施形態に係る電極組立体の斜視図である。図4は、図3のIV-IV線に沿った電極組立体の断面図である。図3に示される電極組立体3は、セパレータ13を介して互いに積層された複数の正極11及び複数の負極12を含む。複数の正極11のそれぞれは、XY平面に延在する本体14aと、本体14aの少なくとも一端からX軸方向に突出するタブ14bとを含む。タブ14bはX軸正方向に突出している。複数の負極12のそれぞれは、XY平面に延在する本体17aと、本体17aの少なくとも一端から突出するタブ17bとを含む。本実施形態では、タブ17bは、タブ14bと同様にX軸正方向に突出している。本体14a,17aは、互いに積層され、全体として電極本体20を構成する。電極本体20は側面Sを有する。本実施形態ではタブ14b及びタブ17bは本体14a及び本体17aの一端からそれぞれ同じ方向(X軸正方向)に突出しているので、側面Sは、積層された本体14a及びタブ14bの一端によって構成される。つまり、積層方向(Z軸方向)から見たときに、本体14aにおけるタブ14bが突出している一端と、本体17aにおけるタブ17bが突出している一端とは、いずれも電極本体20の側面Sに位置している。タブ14b,17bは、互いに積層されてタブ積層体21,25をそれぞれ構成する。すなわち、電極組立体3は、Z軸方向に積層された複数のタブ14bを有するタブ積層体21と、Z軸方向に積層された複数のタブ17bを有するタブ積層体25とを備える。タブ積層体21,25は、Y軸方向において、互いに離間して配列される。
 タブ積層体21は、タブ積層体21の積層方向(Z軸方向)に沿って延在するタブ積層体21の端面21a,21b,21cを備える。端面21a,21bは、タブ積層体21を挟む面であり、端面21cは端面21a,21bを繋ぐ面である。すなわち、端面21a,21bは、タブ積層体21を挟んで互いに反対側に配置されている。また、端面21a,21bは、XZ平面に沿う面である。また、端面21cは、タブ積層体21の先端に向かうに連れてタブ積層体21の厚みが小さくなるようにXY平面に対して傾斜した面である。
 タブ積層体21は、複数のタブ14b同士を接続する溶接部Wを有する。溶接部Wは、例えばタブ積層体21の端面21a,21bにそれぞれ位置する。溶接部Wは、端面21a,21bから内側に設けられる。溶接部Wは、端面21a,21bのうち一方にのみ位置してもよい。溶接部Wは、端面21a,21bに隣接する集電板16及び保護板23の内部まで延びている。端面21a,21bにおいて、溶接部WのX軸方向における長さは、保護板23のX軸方向における長さと略等しいか、又は保護板23のX軸方向における長さよりも短いことが好ましい。これにより、タブ積層体21のタブ14bがX軸方向において位置ずれした場合(例えば公差による位置ずれがある場合)であっても安定して溶接部Wを形成することができる。なお、溶接部WのX軸方向における長さが保護板23のX軸方向における長さと略等しい場合、位置ずれにより溶接部WがX軸方向において保護板23の外側にはみ出す可能性がある。また、溶接部WのX軸方向における長さが保護板23のX軸方向における長さよりも長い場合、溶接部WがX軸方向において保護板23の外側にはみ出す。それらの場合であっても、溶接部Wを形成することは可能である。
 タブ積層体21は、Z軸方向において、集電板16と保護板23との間に配置される。すなわち、集電板16、タブ積層体21及び保護板23は、Z軸方向において配列される。集電板16及び保護板23は例えば金属板である。保護板23は、集電板16と接触しておらず、保護板23と集電板16とは、タブ積層体21を積層方向に挟んで離間している。タブ積層体21は保護板23よりも厚く、集電板16はタブ積層体21よりも厚い。
 同様に、タブ積層体25は、タブ積層体25の積層方向(Z軸方向)に沿って延在するタブ積層体25の端面25a,25b,25cを備える。端面25a,25bは、タブ積層体25を挟む面であり、端面25cは端面25a,25bを繋ぐ面である。すなわち、端面25a,25bは、タブ積層体25を挟んで互いに反対側に配置されている。また、端面25a,25bは、XZ平面に沿う面である。また、端面25cは、タブ積層体25の先端に向かうに連れてタブ積層体25の厚みが小さくなるようにXY平面に対して傾斜した面である。
 タブ積層体25は、複数のタブ17b同士を接続する溶接部Wを有する。溶接部Wは、例えばタブ積層体25の端面25a,25bにそれぞれ位置する。溶接部Wは、端面25a,25bから内側に設けられる。溶接部Wは、端面25a,25bのうち一方にのみ位置してもよい。溶接部Wは、端面25a,25bに隣接する集電板19及び保護板27の内部まで延びている。端面25a,25bにおいて、溶接部WのX軸方向における長さは、保護板27のX軸方向における長さと略等しいか、又は保護板27のX軸方向における長さよりも短いことが好ましい。これにより、タブ積層体25のタブ17bがX軸方向において位置ずれした場合(例えば公差による位置ずれがある場合)であっても安定して溶接部Wを形成することができる。なお、溶接部WのX軸方向における長さが保護板27のX軸方向における長さと略等しい場合、位置ずれにより溶接部WがX軸方向において保護板27の外側にはみ出す可能性がある。また、溶接部WのX軸方向における長さが保護板27のX軸方向における長さよりも長い場合、溶接部WがX軸方向において保護板27の外側にはみ出す。それらの場合であっても、溶接部Wを形成することは可能である。
 タブ積層体25は、Z軸方向において、集電板19と保護板27との間に配置される。すなわち、集電板19、タブ積層体25及び保護板27は、Z軸方向において配列される。集電板19及び保護板27は例えば金属板である。保護板27は、集電板19と接触しておらず、保護板27と集電板19とは、タブ積層体25を積層方向に挟んで離間している。タブ積層体25は保護板27よりも厚く、集電板19はタブ積層体25よりも厚い。
 上述のとおり、タブ積層体21,25はそれぞれ溶接部Wを有する。そのため、電極組立体3の製造工程には、タブ積層体21,25に溶接部Wを形成する工程が含まれる。溶接部Wを形成する時(溶接時)には、スパッタ粒子等の異物が発生し得る。スパッタ粒子は例えば金属粒子である。発生した異物が飛散して電極本体20に付着すると、電極組立体3の性能が変化してしまう可能性がある。例えば積層された本体14aと本体17aとの間に異物が侵入すると、本体14a及び本体17aが(つまり正極11及び負極12が)短絡するおそれがある。そこで、各実施形態では、後述の手法により、電極本体20への異物の付着の抑制を可能とする。
(第1実施形態)
 図5~図7は、第1実施形態に係る電極組立体の製造方法の一工程を示す図である。この実施形態では、図3に示される電極組立体3は、例えば以下の方法により製造される。
(タブ積層体を準備する工程)
 まず、図5に示されるように、積層された本体14a,17aを有する電極本体20、及び、積層されたタブ14b,17bを有し電極本体20の側面Sから突出する複数のタブ積層体21,25を準備する。例えば、まず、集電板16,19上にそれぞれタブ14b,17bを積層することによりタブ積層体21,25を形成する。その後、タブ積層体21,25上にそれぞれ保護板23,27を載置する。
(カバーを設ける工程)
 次に、電極本体20及びタブ積層体21,25を、載置台50上に配置する。載置台50において電極本体20及びタブ積層体21,25が載置される面が、載置面50aとして図示される。説明の便宜上、電極本体20において本体14a,17aの積層方向に直交する2つの面のうち、載置面50aに対向する面とは電極本体20を挟んで反対側に位置する面を主面20aと称し図示する。続いて、電極本体20を覆うように、カバー60を設ける。カバー60は、電極本体20がカバー60内に配置される一方で、タブ積層体21,25のうちの溶接部W(図3)が形成される部分(溶接箇所)がカバー60外に配置されるように設けられる。カバー60は、側壁部61~64と、それら4つの側壁部61~64を繋ぐ天井部65とを有する。側壁部61は、電極本体20の側面Sを覆う部分である。側壁部62は、電極本体20の側面Sとは反対側の側面を覆う部分である。カバー60が設けられた状態で、側壁部61,62は、電極本体20の側面Sの面方向(YZ平面)に沿って延在する。側壁部63は、電極本体20において側面Sに直交する方向に延在するとともに本体14a,17aの積層方向に延在する2つの側面のうちの一方の側面を覆う部分である。側壁部64は、それら2つの側面のうちの他方の側面を覆う部分である。カバー60が設けられた状態で、側壁部63,64は、XZ平面に沿って延在する。天井部65は、電極本体20の主面20aを覆う部分である。カバー60が設けられた状態で、天井部65は、電極本体20の主面20aの面方向(XY平面)に沿って延在する。カバー60は、天井部65とは側壁部61~64を挟んで反対側の位置に開口部を有する。カバー60は、カバー60の開口部が載置面50aに対向するように、載置台50上に載置される。
 側壁部61は、電極本体20の側面Sから突出するタブ積層体21,25をそれぞれ通すための開口部61a,61bを有する。このような開口部61a,61bをカバー60の側壁部61が有することによって、タブ積層体21,25の溶接箇所がカバー60外に配置されるように、カバー60を設けることができる。
 カバー60には、カバー60内にガスを流入させるための流入口71が設けられている。本実施形態では、流入口71は、カバー60のうちの天井部65に設けられている。この流入口71に供給するガスの詳細については、後に図7を参照してあらためて説明する。カバー60には、タブ積層体21,25の溶接箇所に向かってカバー60内からガスを排出するための排出口72a,72b,73a,73b,74a,74b,75a,75bが設けられている。
 具体的に、排出口72a,72bは、タブ積層体25の端面25aの溶接箇所に向かって、カバー60内からガスを排出する。排出口73a,73bはタブ積層体25の端面25bの溶接箇所向かって、排出口74a,74bはタブ積層体21の端面21bの溶接箇所に向かって、排出口75a,75bはタブ積層体21の端面21aの溶接箇所に向かって、それぞれカバー60内からガスを排出する。排出口72a,72bは、Z軸正方向に間隔をあけて並んで配置されている。排出口72a,72bは、後述の図7に示されるように、ガスの排出方向に向かって長さを有するパイプ形状を有している。この長さがあることで、ガスを溶接箇所の近くまで導き、溶接箇所に向けてより確実にガスを排出することができる。このような排出口72a,72bは、例えばノズルを用いて構成してもよい。なお、2つの排出口72a,72bのうち一方の排出口のみが設けられていてもよい。排出口73a,73b、排出口74a,74b、排出口75a,75bについても、排出口72a,72bと同様の配置及び構成とすることができる。
(溶接部の形成工程)
 次に、タブ積層体21,25に溶接部Wを形成する。溶接部Wを形成するための溶接の手法はとくに限定されないが、ここでは、エネルギービームを用いた溶接の手法を例に挙げて説明する。図6に示されるように、タブ積層体25の端面25aにエネルギービームBを照射する。図6(A)はX軸方向から見たタブ積層体21,25を示す図であり、図6(B)はY軸方向から見たタブ積層体25を示す図である。タブ積層体21は、例えば治具42により保護板23を介して押圧されるが、押圧されなくてもよい。同様に、タブ積層体25は、例えば治具44により保護板27を介して押圧されるが、押圧されなくてもよい。
 エネルギービームBは、照射装置30からタブ積層体25の端面25aに向けて照射される。照射装置30は、例えばレンズ及びガルバノミラーを含むスキャナヘッドである。スキャナヘッドにはファイバを介してビーム発生装置が接続される。照射装置30は、例えばプリズム等の屈折式の光学系から構成されてもよい。エネルギービームBは、溶接を行うことができる高エネルギービームである。エネルギービームBは、例えばレーザービーム又は電子ビームである。エネルギービームBの照射は、不活性ガスの雰囲気中で行われる。不活性ガスは、例えば先に説明した排出口72a,72b(図5)から供給することができる。
 エネルギービームBは、例えば治具44により集電板19及び保護板27を介してタブ積層体25をZ軸方向に押圧した状態でタブ積層体25の端面25aに照射される。
 エネルギービームBは、タブ積層体25の端面25aにおいて、Z軸方向に交差する方向(X軸方向)に沿って走査される。エネルギービームBをZ軸方向に変位させながらX軸方向に沿って走査してもよい。例えば、エネルギービームBをZ軸方向に往復変位(ウォブリング)させながらX軸方向に沿って走査する。エネルギービームBの照射スポットのZ軸方向における変位量は、タブ積層体25の厚みよりも大きい。エネルギービームBの照射スポットは、タブ積層体25の端面25aにおいて、X軸方向に沿った軸線H1上の位置P1から位置P2まで移動する。例えば、位置P1,P2は、Z軸方向においてタブ積層体25の端面25aの中心に位置する。エネルギービームBは、例えば、タブ積層体25の端面25aにおいてX軸方向に沿って中心点を移動させ、当該中心点を中心にXZ平面においてエネルギービームBの照射スポットを回転させながら走査される。回転の直径がタブ積層体25の厚みよりも大きいと、タブ積層体25の端面25a、集電板19及び保護板27を全体的に溶接できるため好ましい。
 上述のようにエネルギービームBを照射することによって、先に説明した図4に示されるように、タブ積層体25の端面25aに溶接部Wが形成される。
 本実施形態では、タブ積層体25の端面25aにエネルギービームBを照射して溶接部Wを形成する際、カバー60の流入口71にガスが供給される。このように流入口71に供給されるガスの役割について、図7を参照して説明する。図7は、Y軸方向から見たカバー60内及びカバー60外でのガス(ガスGとして図示)の流れを概念的に示す図である。図7には、カバー60の側壁部61に設けられた排出口72a,72b,73a,73b,74a,74b,75a,75bのうち、排出口72a,72bの部分が示される。ガスGは、流入口71を介してカバー60に流入する。ガスGは、ガス供給源76から供給される。ガスGの種類はとくに限定されないが、エネルギービームBを照射して溶接を行う場合には、窒素ガス又はアルゴンガス等の不活性ガスを用いるとよい。ガス供給源76によるガスGの供給の量及び供給のタイミング等は、制御装置77によって制御される。例えば、ガスGを流入口71に連続供給することもできるし、パルス状に供給(間欠供給)することもできる。パルス状にガスGを供給することによって、連続供給する場合よりも、ガスGの供給量を減らすことができる。
 ガス供給源76から流入口71に供給されたガスGは、流入口71からカバー60内に流入する。ガスGがカバー60内に流入した分だけカバー60内の圧力がカバー60外の圧力よりも高くなる(つまり陽圧となる)。カバー60外の圧力は略大気圧であってもよく、その場合には、カバー60内の圧力を大気圧よりも大きくすることで、カバー60内の圧力を陽圧とすることができる。
 カバー60内の圧力が陽圧となるので、カバー60内に供給されたガスG(或いはもともとカバー60内にあった気体)は、排出口72a,72bを介して、タブ積層体25の端面25aの溶接箇所に向かって排出される。ここでの溶接箇所は、上述のエネルギービームBが照射される部分である。排出口72a,72bのうち、下側(Z軸負方向側)に位置している排出口72bからは、横方向(Z軸方向の高さが変わらないように進む方向)にガスGが排出される。排出口72a,72bのうち、上側(Z軸正方向側)に位置している排出口72aからは、斜め下方向に向かってガスGが排出される。
 排出口72a,72bを介してカバー60外に排出されたガスGは、溶接箇所に吹き付けられる。この時、溶接箇所でスパッタ粒子等の異物が発生していれば、発生した異物は、溶接箇所に吹き付けられたガスGによって、電極本体20から遠ざかるように運ばれる。ガスGによって運ばれた異物は、ガスGとともに吸引されて取り除かれる。図7に示す例では、ガスGは、カバー60とはタブ積層体25を挟んで反対側に配置されたガイド90に到達する。ガイド90は、ガスGを収集して上方(Z軸正方向)に案内するように、例えば、タブ積層体25側に開口しZ軸方向に延在する半パイプ形状を有する。ガイド90によって上方に案内されたガスGは、吸引管92の吸引口91に到達し、吸引される。
 このように、本実施形態では、カバー60の流入口71にガスGを供給しつつ、タブ積層体25の端面25aにエネルギービームBを照射して溶接部Wを形成する。
 再び図6に戻り、次に、タブ積層体25の端面25aと同様に、タブ積層体21の端面21bにもエネルギービームBを照射することにより、タブ積層体21の端面21bに溶接部Wを形成する(図4参照)。このときにも、カバー60内が陽圧となるように、流入口71にガスGを供給する。カバー60内のガスは、排出口74a,74bを介して、タブ積層体21の端面21bに向かって排出される。次に、タブ積層体25の端面25bにも同様にエネルギービームBを照射することにより、タブ積層体25の端面25bに溶接部Wを形成する(図4参照)。このときにも、カバー60内が陽圧となるように、流入口71にガスGを供給する。カバー60内のガスGは、排出口73a,73bを介して、タブ積層体25の端面25bの溶接箇所に向かって排出される。次に、タブ積層体21の端面21aにも同様にエネルギービームBを照射することにより、タブ積層体21の端面21aに溶接部Wを形成する(図4参照)。このときにも、カバー60内が陽圧となるように、流入口71にガスGを供給する。カバー60内のガスGは、排出口75a,75bを介して、タブ積層体21の端面21aの溶接箇所に向かって排出される。
 上記工程を経ることによって、電極組立体3が製造される。その後、タブ積層体21,25を折り曲げた電極組立体3をケース2内に収容し、蓄電装置1を製造することができる。
 以上説明したように、上記の電極組立体3の製造方法では、電極本体20がカバー60内に配置される一方でタブ積層体21,25の溶接箇所がカバー60外に配置されるようにカバー60が設けられる。このように電極本体20を覆うカバー60を設けることによって、溶接時に発生したスパッタ粒子等の異物の電極本体20への付着を抑制することができる。
 ここで、溶接箇所で発生した異物が、カバー60の隙間を通ってカバー60内に侵入してしまう可能性もある。例えば、先に説明した図5の例では、カバー60と載置台50との間に隙間が生じる可能性がある。また、カバー60の側壁部61における開口部61a,61bにおいて、タブ積層体21,25とカバー60の側壁部61との間に隙間が生じる可能性がある。
 そこで、上記の電極組立体3の製造方法では、カバー60には、カバー60内にガスGを流入させるための流入口71が設けられている。タブ積層体21,25に溶接部Wを形成する工程では、カバー60内の圧力がカバー60外の圧力よりも高く(つまり陽圧と)なるように、流入口71にガスGが供給される。カバー60内の圧力が陽圧となっているので、溶接時に発生したスパッタ粒子等の異物は、カバー60の隙間を通ってカバー60内に侵入しにくくなる。よって、カバー60に隙間が生じていたとしても、電極本体20への異物の付着を抑制することができる。
 カバー60には、タブ積層体21,25の溶接箇所に向かってカバー60内からガスGを排出するための排出口72a,72b,73a,73b,74a,74b,75a,75bが設けられている。この場合、溶接時には、タブ積層体21,25の溶接箇所に向かってカバー60内からガスGが吹き付けられるので、溶接箇所において発生した異物がカバー60内(つまり電極本体20)に向かって飛散することを抑制できる。この効果は、一つの溶接箇所に対して少なくとも一つの排出口が設けられていることにより得ることができる。例えばタブ積層体25の端面25aの溶接箇所に対しては、排出口72a及び排出口72bの少なくとも一方が設けられていればよい。両方の排出口72a,72bが設けられていれば、それら複数の排出口からガスを吹き付けることによって、異物が電極本体20に向かって飛散することをさらに抑制することができる。
 溶接部Wを形成する工程では、排出口72a,72b、73a、73b,74a,74b,75a,75bから排出されたガスGを吸引してもよい。これにより、溶接時に発生した異物をガスGとともに吸引して取り除くことができる。
 溶接部Wを形成する工程では、流入口71にガスGをパルス状に供給してもよい。これにより、ガスGを連続供給する場合よりも、ガスGの供給量を減らすことができる。
 排出口72a,72b、73a、73b,74a,74b,75a,75bを介して溶接箇所に吹き付けられるガスGとして、窒素ガス及びアルゴンガス等の不活性ガスを用いることにより、溶接時の酸化等を防止することもできる。つまり、ガスGをシールドガス(アシストガス等とも称される)として用いることができる。
 カバー60の材質として樹脂を採用すれば、溶接時にカバー60の表面から金属性の異物が発生することを防ぐこともできる。
 以上、本発明の第1実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 上記実施形態では、エネルギービームを照射することでタブ積層体に溶接部を形成する例について説明したが、例えば抵抗溶接、超音波溶接等によってタブ積層体に溶接部を形成してもよい。
 また、上記実施形態では、一つの流入口がカバーに設けられている例について説明したが、複数の流入口がカバーに設けられていてもよい。また、流入口を設ける位置は、カバー内にガスを流入させることができる位置であればよく、とくに限定されるものではない。
 また、上記実施形態では、積層型の電極組立体においてタブ積層体に溶接部を形成する例について説明したが、例えば巻回型の電極組立体において巻回されたタブのうち積層状態となっている部分に溶接部を形成する場合でも、同様の手法により溶接時に電極本体への異物の付着を抑制できる。
 また、上記実施形態では、2つのタブ14b及びタブ17bがそれぞれの本体14a及び本体17aの一端から同じ方向に突出している例について説明したが、2つのタブ14b,17bが異なる方向に突出していてもよい。例えば、積層方向から見たときに、一方の本体14aにおけるタブ14bが突出している一端と、他方の本体17aにおけるタブ17bが突出している一端とが、電極本体20の側面S及び側面Sに対向する側面の2つの側面にそれぞれ位置していてもよい。この場合、一方のタブ積層体21は電極本体20の一方の側面Sから突出し、他方のタブ積層体25は電極本体20の他方の(側面Sとは反対側の)側面から、一方のタブ積層体25の突出方向とは反対の方向に突出する。このような構成においては、さらに、各タブ14b,17bの幅(図3に示される例ではY軸方向の長さ)が、本体14a,17aの幅と同じであってもよい。この場合、例えば矩形状の金属箔の一部に正極活物質層を形成することによって、金属箔のうちの正極活物質層を形成した部分を本体14aとし、正極活物質層が形成されていない残りの部分をタブ14bとすることができる。同様に、矩形状の金属箔の一部に負極活物質層を形成することによって、金属箔のうちの負極活物質層を形成した部分を本体17aとし、負極活物質層が形成されていない残りの部分をタブ17bとすることができる。
(第2実施形態)
 図8及び図9は、第2実施形態に係る電極組立体の製造方法の一工程を示す図である。この実施形態では、図3に示される電極組立体3は、例えば以下の方法により製造される。
(タブ積層体を準備する工程)
 まず、図8に示されるように、タブ積層体21,25を準備する。タブ積層体21,25の準備については、先に図5を参照して説明した例と同様であるので、ここでは説明を繰り返さない。
(カバーを設ける工程)
 次に、電極本体20及びタブ積層体21,25を、載置台50上に配置する。タブ積層体21,25の載置台50上への配置については、先に図5を参照して説明した例と同様であるので、ここでは説明を繰り返さない。続いて、電極本体20を覆うように、カバー60Aを設ける。カバー60Aは、カバー60(図5)と同様に、側壁部61~64と、天井部65とを有しており、電極本体20を覆うように設けられる。カバー60Aは、カバー60と比較して、排出口72a,72b,73a,73b,74a,74b,75a,75bが設けられていない一方で、ノズル81~84及び供給管86~89が設けられている点で相違する。
 ノズル81~84は、基端が側壁部61の内壁面に接し、先端がカバー60A外に配置されるように、側壁部61に設けられる。ノズル81~84は、タブ積層体21,25のうちの溶接部Wが形成される部分(溶接箇所)に向かってガスを吹き出す吹出口81a,82a,83a,84aをそれぞれ先端に有する。供給管86~89は、対応するノズル81~84の基端にガスを供給するガス供給管である。図8に示される例では、各供給管86~89は、側壁部61に沿う方向(Z軸方向)を長手方向とする。各供給管86~89の長手方向に直交する断面形状は、例えば略矩形状である。
 具体的に、ノズル81は、供給管86から供給されるガスを、吹出口81aからタブ積層体25の端面25aの溶接箇所に吹き付ける。同様に、ノズル82は供給管87から供給されるガスを吹出口82aからタブ積層体25の端面25bの溶接箇所に、ノズル83は供給管88から供給されるガスを吹出口83aからタブ積層体21の端面21bの溶接箇所に、ノズル84は供給管89から供給されるガスを吹出口84aからタブ積層体21の端面21aの溶接箇所に、それぞれ吹き付ける。各ノズル81~84は、後述の図9に示されるように、ガスの排出方向に向かって長さを有するパイプ形状を有している。この長さがあることで各ノズル81~84の吹出口81a,82a,83a,84aが溶接箇所に近づくので、ガスを溶接箇所の近くまで導き、溶接箇所に向けてより確実にガスを吹き付けることができる。供給管86~89の詳細については、後に図9を参照して改めて説明する。
(溶接部の形成工程)
 次に、タブ積層体21,25に溶接部Wを形成する。エネルギービームの照射による溶接部Wの形成については、先に図6を参照して説明した例と同様であるので、ここでは説明を繰り返さない。なお、不活性ガスは、先に説明した供給管86及びノズル81(図8)を介して供給することができる。
 本実施形態では、タブ積層体25の端面25aにエネルギービームBを照射して溶接部Wを形成する際、供給管86を介してノズル81にガスが供給される。このように供給管86に供給されるガスの役割について、図9を参照して説明する。図9は、Y軸方向から見たガス(ガスGとして図示)の流れを概念的に示す図である。図9には、カバー60Aに設けられたノズル81~84及び供給管86~89のうち、ノズル81及び供給管86の部分が示される。ガスGは、供給管86からノズル81に供給される。ガスGには、窒素ガス又はアルゴンガス等の不活性ガスを用いるとよい。
 供給管86は、第1の部分861と第2の部分862とを含む。第1の部分861は、供給管86のうちの吹出口81a側に位置する部分である。第1の部分861は、カバー60A内に位置している。第1の部分861は、カバー60Aの側壁部61に沿って上方から下方に向かって(Z軸負方向に)延在している。第1の部分861において、供給管86の一部がカバー60Aの一部で構成されてもよい。本実施形態では、第1の部分861は、その一部として側壁部861aを有している。この側壁部861aは、カバー60Aの側壁部61の一部を用いて構成されている。第1の部分861は、ノズル81の基端に接続される開口部861bを有している。この開口部861bを介して、第1の部分861からノズル81にガスGが供給される。
 第2の部分862は、第1の部分861を挟んでノズル81とは反対側に位置する部分である。第2の部分862は、カバー60A外に位置している。第2の部分862には、第1の部分861とは反対側から、ガスGが供給される。ガスGは、例えばガス供給源(図示せず)から供給される。
 ノズル81は、カバー60Aの側壁部61に設けられている。より具体的には、ノズル81は、側壁部61のうちの、電極本体20の側面S(図7参照)と対向する部分に設けられている。この位置にノズル81が設けられることによって、ノズル81から横方向(Z軸方向の高さが変わらないように進む方向)にガスGが吹き付けられる。
 ノズル82~84、供給管87~89(図8参照)についても、ノズル81、供給管86と同様の配置及び構成とすることができる。
 供給管86からノズル81に供給されたガスは、ノズル81を介して溶接箇所に吹き付けられる。上述のような不活性ガスであるガスGが溶接箇所に吹き付けられることによって、溶接時の酸化等を防止することができる。つまり、ガスGをシールドガス(アシストガス等とも称される)として用いることができる。また、溶接時に、溶接箇所でスパッタ粒子等の異物が発生していれば、発生した異物は、溶接箇所に吹き付けられたガスGによって、電極本体20から遠ざかるように運ばれる。ガスGによって運ばれた異物は、ガスGとともに吸引されて取り除かれる。図9に示す例では、ガスGは、カバー60とはタブ積層体25を挟んで反対側に配置されたガイド90に到達する。ガイド90は、ガスGを収集して上方(Z軸正方向)に案内するように、例えば、タブ積層体25側に開口しZ軸方向に延在する半パイプ形状を有する。ガイド90によって上方に案内されたガスGは、吸引管92の吸引口91に到達し、吸引される。
 このように、本実施形態では、カバー60に設けられた供給管86及びノズル81を介して溶接箇所にガスGを吹き付けるとともに、タブ積層体25の端面25aにエネルギービームBを照射して溶接部Wを形成する。
 以上説明した供給管86とカバー60Aとは一体形成されていてもよい。その場合、供給管86及びカバー60Aの材質は同じものとすることができる。材質の例は樹脂である。供給管86及びカバー60Aの材質として樹脂を採用することにより、溶接時に供給管86及びカバー60Aの表面から金属粒子等の異物が発生することを防ぐこともできる。供給管86及びカバー60の材質として樹脂を採用することにより、供給管86及びカバー60Aを一体成形することもできる。
 図6を参照し、タブ積層体25の端面25aと同様に、タブ積層体21の端面21bにもエネルギービームBを照射することにより、タブ積層体21の端面21bに溶接部Wを形成する(図4参照)。このときには、供給管88から供給されるガスを、ノズル83がタブ積層体21の端面21bに吹き付ける。次に、タブ積層体25の端面25bにも同様にエネルギービームBを照射することにより、タブ積層体25の端面25bに溶接部Wを形成する(図4参照)。このときには、供給管87から供給されるガスを、ノズル82がタブ積層体25の端面25bの溶接箇所に吹き付ける。次に、タブ積層体21の端面21aにも同様にエネルギービームBを照射することにより、タブ積層体21の端面21aに溶接部Wを形成する(図4参照)。このときには、供給管89から供給されるガスを、ノズル84がタブ積層体21の端面21aの溶接箇所に吹き付ける。
 上記工程を経ることによって、電極組立体3が製造される。その後、タブ積層体21,25を折り曲げた電極組立体3をケース2内に収容し、蓄電装置1を製造することができる。
 以上説明したように、上記の電極組立体3の製造方法では、電極本体20がカバー60A内に配置される一方でタブ積層体21,25の溶接箇所がカバー60A外に配置されるようにカバー60Aが設けられる。このように電極本体20を覆うカバー60Aを設けることによって、溶接時に発生したスパッタ粒子等の異物の電極本体20への付着を抑制することができる。
 ここで、電極本体20を覆うカバー60Aを設けると、電極本体20とタブ積層体21,25の溶接箇所との間のスペース(クリアランス)が狭くなる。このスペースが狭くなると、タブ積層体21,25の溶接箇所よりも電極本体20側にノズルの吹出口が配置されるように供給管を設けることが困難になり、上述の酸化等の防止効果及び異物を電極本体20から遠ざける効果が得られなくなるおそれがある。
 そこで、上記の電極組立体3の製造方法では、カバー60Aに、吹出口81a,82a,83a,84aを有するノズル81~84、及び供給管86~89が設けられている。供給管86~89の吹出口81a,82a,83a,84a側の部分(例えば供給管86の第1の部分861)は、カバー60A内に設けられていてもよい。これにより、電極本体20をカバー60Aで覆うだけで、タブ積層体21,25の溶接箇所よりも電極本体20側にノズル81~84の吹出口81a,82a,83a,84aが配置されるように供給管86~89を設けることができる。よって、電極本体20への異物の付着を抑制しつつ、タブ積層体21,25の溶接箇所にガスを効果的に(例えば、アシストガスとしての機能を発揮し、発生した異物を電極本体20から遠ざけるように)供給することができる。また、ノズル81~84を設けるスペースが確保されているので、例えばノズルの向きを調整することも容易となる。
 カバー60Aは、電極本体20の側面Sを覆う側壁部61を有し、ノズル81~84の吹出口81a,82a,83a,84aは、側壁部61に設けられている。これにより、ノズル81~84をタブ積層体21,25の溶接箇所の近くに設けることができる。側壁部61のうち溶接箇所と同じ高さに位置する部分にノズル81~84を設ければ、吹出口81a,82a,83a,84aをさらに溶接箇所に近づけやすくなる。
 供給管86の第1の部分861において、供給管86の側壁部861aがカバー60Aの側壁部61で構成されていてもよい。これにより、カバー60A内に占める供給管86のスペースを低減することができるので、供給管86をカバー60A内に設け易くなる。供給管87~89についても同様である。
 供給管86~89とカバー60Aとが一体形成されていてもよい。供給管86~89とカバー60Aとが分離していると、それらを別々に配置することによる位置ずれが生じる可能性があるが、供給管86~89とカバー60Aとが一体形成されていることにより、そのような位置ずれの問題が生じず、取扱いも容易となる。また、供給管86~89及びカバー60Aの製作に掛かる手間又はコストを低減することができる。
 ノズル81~84、及び供給管86~89が設けられているカバーにも、先に説明したカバー60(図5等参照)と同様に、ガスが供給される流入口71が設けられてよい。図10に示される例では、カバー60Bには、ノズル81~84、供給管86~89が設けられているだけでなく、流入口71も設けられている。流入口71に供給されるガスの役割については前述のとおりであるのでここでは説明を繰り返さない。供給管86~89によってノズル81~84に供給されるガスの種類と、流入口71に供給されるガスの種類とは同じであってもよいし異なっていてもよい。
 以上、本発明の第2実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 上記実施形態では、供給管の吹出口側の部分(例えば供給管86の第1の部分861)が、カバー内に設けられている例について説明した。ただし、供給管全体が、カバー外に設けられていてもよい。図11に示される例では、供給管86に代えて、供給管86Aがカバー60C外に設けられている。供給管86Aは、供給管86と同様の機能を有する。図11には示されないが、供給管86A以外にも、供給管87~89と同様の機能を有する他の供給管がカバー60C外に設けられている。カバー60Cにおいて供給管86Aが設けられる部分には、供給管86Aの一部が埋め込まれるように、凹部が形成されていてよい。これにより、供給管86Aのカバー60Cへの取り付けを容易にできる。また、カバー60C外において供給管86Aの占めるスペースを削減することができる。なお、供給管86Aの一部が、カバー60Cの側壁部61で構成されていてもよい。これによっても、カバー60C外における供給管86Aの占めるスペースを低減することができるので、供給管86Aをカバー60Cに設け易くなる。他の供給管についても同様である。カバー60Cにも、カバー60Bと同様に、流入口71が設けられてもよい。
 また、上記実施形態では、ノズルの数と同じ数の供給管が設けられ、各ノズルに、対応する供給管からガスが供給される例について説明したが、ノズルの数と供給管の数は同じでなくてもよい。供給管の数は、ノズルの数よりも少なくてもよい。その場合には、例えば、2つ以上のノズルが一つの供給管から供給されるガスを共用する構成を採用することもできる。また、上記実施形態では、一つの溶接箇所に対して一つのノズルが設けられている例について説明したが、一つの溶接箇所に対して複数のノズルが設けられてもよい。
 また、上記実施形態では、ノズルの吹出口から溶接箇所にガスを吹き付ける例について説明したが、ノズルを用いることなく溶接箇所にガスを吹き付けてもよい。例えば、カバーの側壁部に吹出口を直接設けることによって、当該吹出口から溶接箇所にガスを吹き付けることもできる。
 また、上記実施形態では、積層型の電極組立体においてタブ積層体に溶接部を形成する例について説明したが、例えば巻回型の電極組立体において巻回されたタブのうち積層状態となっている部分に溶接部を形成する場合でも、同様の手法により溶接時にガスを供給することができる。
 また、上記実施形態では、2つのタブ14b及びタブ17bがそれぞれの本体14a及び本体17aの一端から同じ方向に突出している例について説明したが、2つのタブ14b,17bが異なる方向に突出していてもよい。例えば、積層方向から見たときに、一方の本体14aにおけるタブ14bが突出している一端と、他方の本体17aにおけるタブ17bが突出している一端とが、電極本体20の側面S及び側面Sに対向する側面の2つの側面にそれぞれ位置していてもよい。この場合、一方のタブ積層体21は電極本体20の一方の側面Sから突出し、他方のタブ積層体25は電極本体20の他方の(側面Sとは反対側の)側面から、一方のタブ積層体25の突出方向とは反対の方向に突出する。このような構成においては、さらに、各タブ14b,17bの幅(図3に示される例ではY軸方向の長さ)が、本体14a,17aの幅と同じであってもよい。この場合、例えば矩形状の金属箔の一部に正極活物質層を形成することによって、金属箔のうちの正極活物質層を形成した部分を本体14aとし、正極活物質層が形成されていない残りの部分をタブ14bとすることができる。同様に、矩形状の金属箔の一部に負極活物質層を形成することによって、金属箔のうちの負極活物質層を形成した部分を本体17aとし、負極活物質層が形成されていない残りの部分をタブ17bとすることができる。
 また、上記実施形態では、電極本体20をカバー60Aで覆う手法について説明したが、これに代えて、電極本体20の側面Sと、タブ積層体21,25の溶接箇所とを仕切る仕切部を設ける手法が用いられてもよい。図12は、そのような手法を実現するための変形例に係る電極組立体の製造方法の一工程(仕切部を設ける工程)を示す図である。この仕切部を設ける工程は、先に説明したカバーを設ける工程(図9)と比較して、カバー60Aを設ける代わりに、仕切部100を、電極本体20とタブ積層体21,25の溶接箇所とが仕切部100を挟んで反対側に位置するように設ける点において相違する。
 上述のように設けられた仕切部100は、電極本体20と、タブ積層体21,25の溶接箇所とを仕切る板であってもよい。仕切部100の材質は、上述のカバー60Aの材質と同様であってよい。仕切部100の構成は、先に図8及び図9を参照して説明したカバー60Aの側壁部61と同様であってよい。すなわち、仕切部100は、電極本体20の側面Sを覆う部分であり、側面Sの面方向(YZ平面)に沿って延在する。図12には図示されないが、仕切部100は、側壁部61(図8)と同様に、電極本体20の側面Sから突出するタブ積層体21,25をそれぞれ通すための開口部61a,61bを有する。また、仕切部100には、側壁部61と同様にノズル81~84及び供給管86~89が設けられている。なお、図12には、仕切部100に設けられたノズル81~84及び供給管86~89のうち、ノズル81及び供給管86の部分が示される。仕切部100に設けられるノズル81~84の位置は、カバー60Aの側壁部61に設けられるノズル81~84の位置と同様であってよい。供給管86~89のノズル81~84側の部分は、仕切部100の電極本体20側の部分に沿って設けられ、Z軸方向を長手方向とする。具体的に、供給管86の場合、供給管86の第1の部分861の有する側壁部861aが、仕切部100の一部を用いて構成されている。供給管87~89についても同様であってよい。供給管86からノズル81に供給されたガスGは、ノズル81を介して溶接箇所に吹き付けられ、その後、吸引口91によって吸引される。
 上記の変形例に係る電極組立体3の製造方法では、電極本体20の側面Sと、タブ積層体21,25の溶接箇所とを仕切る仕切部100が設けられる。これにより、溶接時に発生したスパッタ粒子等の異物の電極本体20への付着を抑制することができる。そして、仕切部100には、先に説明したカバー60Aの側壁部61と同様に、吹出口81a,82a,83a,84aを有するノズル81~84、及び供給管86~89が設けられている。よって、仕切部100を設けることによっても、カバー60Aを設ける場合と同様に、電極本体20への異物の付着を抑制しつつ、タブ積層体21,25の溶接箇所にガスを効果的に供給することができる。なお、各供給管のノズル側の部分は、仕切部100の溶接箇所側に設けられてもよい。この場合、供給管のノズル側の部分は、仕切部100の溶接箇所側の部分に沿って設けられ、Z軸方向を長手方向とする。仕切部100において供給管が設けられる部分には、供給管の一部が埋め込まれるように、凹部が形成されていてもよい。
 上記各実施形態では、タブ積層体の端面にエネルギービームを照射して溶接箇所を形成する例について説明した。ただし、エネルギービームの照射位置は、タブ積層体の端面に限定されない。図13に示される例では、タブ積層体21を押圧する保護板23Aが、例えばその中央部分に孔23aを有している。エネルギービームは、保護板23Aの孔23aを通り、上方から下方(Z軸正方向側からZ軸負方向側)に向けて、タブ積層体21の上面に照射される。これにより、タブ積層体21の上面から下面に向かって、保護板23Aの孔23aに対応する部分に溶接部が形成される。溶接部は、Z軸方向から見たときに、溶接部の縁がタブ積層体21の端面21a,21b,21cから離間するように形成される。従って、端面21a,21b,21cには溶接部が形成されない。同様に、タブ積層体25を押圧する保護板27Aが、例えばその中央部分に孔27aを有している。エネルギービームは、保護板27Aの有する孔27aを通り、上方から下方に向けて、タブ積層体25の上面に照射される。タブ積層体25の上面から下面に向かって、保護板27Aの孔27aに対応する部分に溶接部が形成される。溶接部は、Z軸方向から見たときに、溶接部の縁がタブ積層体25の端面25a,25b,25cから離間するように形成される。従って、端面25a,25b,25cには溶接部が形成されない。以上のようにタブ積層体21,25に溶接部を形成する場合には、例えばカバー60に代えて、カバー60Dが用いられる。カバー60Dは、カバー60と比較して、排出口72a,72b,73a,73b,74a,74b,75a,75bに代えて排出口72c,73c,74c,75cが設けられている点で相違する。排出口72c,73cは、カバー60Dの側壁部61におけるタブ積層体25の上面または保護板27Aの上面よりも高い位置に設けられており、その位置からタブ積層体25の溶接箇所に向かってガスを排出する。排出口72c,73cは、Y軸方向に間隔をあけて並んで配置されている。排出口74c,75cは、カバー60Dの側壁部61におけるタブ積層体21の上面または保護板23Aの上面よりも高い位置に設けられており、その位置からタブ積層体21の溶接箇所に向かってガスを排出する。排出口74c,75cは、Y軸方向に間隔をあけて並んで配置されている。なお、各タブ積層体21,25に対して設けられる排出口の数は、図13に示される例に限定されない。
 また、上記各実施形態では、タブ積層体を抑える保護板にも溶接部が形成される例について説明した。ただし、保護板に溶接部を形成せず、溶接完了後に、保護板をタブ積層体から取り外すようにしてもよい。保護板は、例えば先に図6を参照して説明した治具42,44と同様に、治具として用いられてもよい。
(第3実施形態)
 電極本体への異物の付着を抑制する手法として、溶接時に、溶接箇所において電極本体とは反対側に向かう気流を生じさせるという手法を用いてもよい。図14に示される例では、電極本体20から、タブ積層体21,25の溶接箇所に向かって気流が生じている。溶接時には、少なくとも電極本体20の後方から前方に向かう気流が生じている。溶接箇所(タブ積層体21,25)における気流の向きは、上方から下方に向かうように、水平方向に対して傾斜した向きであってよい。気流は、ガスを吹き出すノズルをさまざまな場所に設けることによって生じさせることができる。
 図15は、ノズルの配置の例を示す図である。図15に示される例では、ガスGを吹き出す複数のノズル110が配置されている。各ノズル110を区別し得るよう、各ノズルには、ノズル111~114の別の符号も付している。以下、電極本体20から見てタブ積層体21,25側を前方と称し、反対側を後方と称して説明する。
 3つのノズル111は、電極本体20の後方に配置され、前方に向かってガスGを吹き出す。ノズル111は、例えば電極本体の斜め上に配置される。これにより、電極本体20の上面に沿って後方から前方に向かう気流が生じる。
 2つのノズル112は、電極本体の斜め後方にそれぞれ配置され、前方に向かってガスGを吹き出す。これにより、電極本体20の側面に沿って後方から前方に向かう気流が生じる。
 2つのノズル113は、電極本体の斜め前方にそれぞれ配置され、タブ積層体21,25に向かってガスGを吹き出す。これにより、電極本体20の側面Sに沿ってタブ積層体21の端面21a及びタブ積層体25の端面25aに向かう気流が生じる。
 さらに、タブ積層体25の端面25aにエネルギービームを照射して溶接部を形成する際には、3つのノズル114が用いられてもよい。3つのノズル114は、タブ積層体25の付近において、電極本体20の上方に円弧状に並んで配置される。ノズル114と同様のノズルが、他の端面に対して設けられていてもよいし、ノズル114が移動可能となっており、エネルギービームが照射される端面にノズル114からのガスGが吹きつけられるように、ノズル114を移動させてもよい。
 溶接箇所において発生し得るスパッタ粒子等の異物は、ガスGによって運ばれ、吸引管92によって吸引される。
 なお、図15に示すように複数のノズル110を設けるのではなく、大きな風口を有する単一の送風機を、電極本体20の後方に設けてもよい。
 なお、先に説明したようにカバーを設けるか仕切部を設けるとともに、上述のように気流を生じさせてもよい。これにより、異物が電極本体に向かって飛散することをさらに抑制することができる。
 3…電極組立体、14a,17a…本体、14b,17b…タブ、20…電極本体、21,25…タブ積層体、60,60A,60B,60C,60D…カバー、71…流入口、72a,72b,73a,73b,74a,74b,75a,75b…排出口、81~84…ノズル、81a,82a,83a,84a…吹出口、86~89…供給管(ガス供給管)、100…仕切部、S…側面、W…溶接部。

Claims (12)

  1.  本体と前記本体の少なくとも一端から突出するタブとを含む電極を有する電極組立体の製造方法であって、
     積層された前記本体を有する電極本体、及び、積層された前記タブを有し前記電極本体の側面から突出するタブ積層体を準備する工程と、
     前記電極本体を覆うカバーを設ける工程であり、前記電極本体が前記カバー内に配置される一方で前記タブ積層体のうちの溶接部が形成される部分が前記カバー外に配置されるように前記カバーを設ける工程と、
     前記タブ積層体に前記溶接部を形成する工程と、
     を含み、
     前記カバーには、前記カバー内にガスを流入させるための流入口が設けられており、
     前記タブ積層体に前記溶接部を形成する工程では、前記カバー内の圧力が前記カバー外の圧力よりも高くなるように、前記流入口に前記ガスを供給する、
     電極組立体の製造方法。
  2.  前記カバーには、前記タブ積層体のうちの前記溶接部が形成される前記部分に向かって前記カバー内から前記ガスを排出するための少なくとも一つの排出口が設けられている、
     請求項1に記載の電極組立体の製造方法。
  3.  前記少なくとも一つの排出口は、複数の排出口である、
     請求項2に記載の電極組立体の製造方法。
  4.  前記溶接部を形成する工程では、前記少なくとも一つの排出口から排出された前記ガスを吸引する、
     請求項2又は3に記載の電極組立体の製造方法。
  5.  前記溶接部を形成する工程では、前記流入口に前記ガスをパルス状に供給する、
     請求項1~4のいずれか1項に記載の電極組立体の製造方法。
  6.  本体と前記本体の少なくとも一端から突出するタブとを含む電極を有する電極組立体の製造方法であって、
     積層された前記本体を有する電極本体、及び、積層された前記タブを有し前記電極本体の側面から突出するタブ積層体を準備する工程と、
     前記電極本体を覆うカバーを設ける工程であり、前記電極本体が前記カバー内に配置される一方で前記タブ積層体のうちの溶接部が形成される部分が前記カバー外に配置されるように前記カバーを設ける工程と、
     前記タブ積層体のうちの前記溶接部が形成される前記部分にガスを吹き付けるとともに前記タブ積層体に前記溶接部を形成する工程と、
     を含み、
     前記カバーには、前記タブ積層体のうちの前記溶接部が形成される前記部分に向かって前記ガスを吹き出す吹出口、及び、前記吹出口に前記ガスを供給するガス供給管が設けられている、
     電極組立体の製造方法。
  7.  前記ガス供給管の前記吹出口側の部分は、前記カバー内に設けられている、請求項6に記載の電極組立体の製造方法。
  8.  前記カバーは前記電極本体の前記側面を覆う部分を有し、
     前記吹出口は、前記カバーの前記電極本体の前記側面を覆う前記部分に設けられている、請求項6又は7に記載の電極組立体の製造方法。
  9.  前記ガス供給管の前記吹出口側の前記部分において、前記ガス供給管の側壁の一部が前記カバーの一部で構成されている、
     請求項6~8のいずれか1項に記載の電極組立体の製造方法。
  10.  前記ガス供給管と前記カバーとが一体形成されている、
     請求項6~9のいずれか1項に記載の電極組立体の製造方法。
  11.  前記カバーには、前記カバー内にガスを流入させるための流入口がさらに設けられており、
     前記タブ積層体に前記溶接部を形成する工程では、前記カバー内の圧力が前記カバー外の圧力よりも高くなるように、前記流入口に前記ガスを供給する、
     請求項6~10のいずれか1項に記載の電極組立体の製造方法。
  12.  本体と前記本体の少なくとも一端から突出するタブとを含む電極を有する電極組立体の製造方法であって、
     積層された前記本体を有する電極本体、及び、積層された前記タブを有し前記電極本体の側面から突出するタブ積層体を準備する工程と、
     前記電極本体の前記側面と、前記タブ積層体のうちの溶接部が形成される部分とを仕切る仕切部を設ける工程と、
     前記タブ積層体のうちの前記溶接部が形成される前記部分にガスを吹き付けるとともに前記タブ積層体に前記溶接部を形成する工程と、
     を含み、
     前記仕切部には、前記タブ積層体のうちの前記溶接部が形成される前記部分に向かって前記ガスを吹き出す吹出口、及び、前記吹出口に前記ガスを供給するガス供給管が設けられている、
     電極組立体の製造方法。
PCT/JP2017/013583 2016-05-09 2017-03-31 電極組立体の製造方法 WO2017195496A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018516889A JP6874763B2 (ja) 2016-05-09 2017-03-31 電極組立体の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-093814 2016-05-09
JP2016093814 2016-05-09
JP2016-103966 2016-05-25
JP2016103966 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017195496A1 true WO2017195496A1 (ja) 2017-11-16

Family

ID=60267182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013583 WO2017195496A1 (ja) 2016-05-09 2017-03-31 電極組立体の製造方法

Country Status (2)

Country Link
JP (1) JP6874763B2 (ja)
WO (1) WO2017195496A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018592A (ja) * 2016-07-25 2018-02-01 株式会社豊田自動織機 電極組立体の製造方法
JP2020057570A (ja) * 2018-10-04 2020-04-09 大日本印刷株式会社 電極タブ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292989A (ja) * 1993-04-12 1994-10-21 Fanuc Ltd レーザ加工装置
JP2012204304A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 溶接装置
JP2015222634A (ja) * 2014-05-22 2015-12-10 株式会社Gsユアサ 蓄電素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9770786B2 (en) * 2010-06-01 2017-09-26 Senju Metal Industry Co., Ltd. Lead-free solder paste
JP2015077601A (ja) * 2013-04-02 2015-04-23 千住金属工業株式会社 鉛フリーはんだ合金

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292989A (ja) * 1993-04-12 1994-10-21 Fanuc Ltd レーザ加工装置
JP2012204304A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 溶接装置
JP2015222634A (ja) * 2014-05-22 2015-12-10 株式会社Gsユアサ 蓄電素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018592A (ja) * 2016-07-25 2018-02-01 株式会社豊田自動織機 電極組立体の製造方法
JP2020057570A (ja) * 2018-10-04 2020-04-09 大日本印刷株式会社 電極タブ
JP7225653B2 (ja) 2018-10-04 2023-02-21 大日本印刷株式会社 電極タブ

Also Published As

Publication number Publication date
JP6874763B2 (ja) 2021-05-19
JPWO2017195496A1 (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6725351B2 (ja) 蓄電素子及び蓄電素子の製造方法
JP6753416B2 (ja) 電極組立体及び蓄電装置の製造方法
JP6693419B2 (ja) 電極ユニット、及び電極ユニットの製造方法
WO2017195496A1 (ja) 電極組立体の製造方法
JP6613813B2 (ja) 電極組立体の製造方法および電極組立体
JP6295861B2 (ja) 電極体製造方法
JP6965587B2 (ja) 電極組立体
JP6834982B2 (ja) 電極組立体の製造方法
JP6582877B2 (ja) 電極組立体の製造方法および電極組立体
JP6520210B2 (ja) セパレータ付き電極の製造装置、及び、セパレータ付き電極の製造方法
JP6780372B2 (ja) 電極溶接装置
JP6841227B2 (ja) 電極組立体の製造方法及び電極組立体
JP6668994B2 (ja) 電極組立体の製造方法
JP6904206B2 (ja) レーザ溶接装置
JP6641978B2 (ja) 電極組立体の製造方法及び電極組立体
WO2017073745A1 (ja) 電極組立体
JP2017204384A (ja) 電極組立体の製造方法及び電極組立体の製造装置
JP6834973B2 (ja) 電極組立体の製造方法
JP6586868B2 (ja) 電極組立体の製造方法
JP6601157B2 (ja) 電極組立体
JP6763134B2 (ja) 電極組立体の製造方法及び電極組立体
JP6683066B2 (ja) 電極溶接方法
JP2018170097A (ja) 電極組立体の製造方法
JP2017201581A (ja) 電極組立体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795857

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795857

Country of ref document: EP

Kind code of ref document: A1