WO2017073176A1 - 電子写真感光体 - Google Patents

電子写真感光体 Download PDF

Info

Publication number
WO2017073176A1
WO2017073176A1 PCT/JP2016/076478 JP2016076478W WO2017073176A1 WO 2017073176 A1 WO2017073176 A1 WO 2017073176A1 JP 2016076478 W JP2016076478 W JP 2016076478W WO 2017073176 A1 WO2017073176 A1 WO 2017073176A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
carbon atoms
general formula
group
alkyl group
Prior art date
Application number
PCT/JP2016/076478
Other languages
English (en)
French (fr)
Inventor
東 潤
貴広 大木
賢輔 大川
Original Assignee
京セラドキュメントソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラドキュメントソリューションズ株式会社 filed Critical 京セラドキュメントソリューションズ株式会社
Priority to CN201680061866.0A priority Critical patent/CN108139699B/zh
Priority to JP2017547664A priority patent/JP6500996B2/ja
Publication of WO2017073176A1 publication Critical patent/WO2017073176A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers

Definitions

  • the present invention relates to an electrophotographic photoreceptor.
  • the electrophotographic photoreceptor is used as an image carrier in an electrophotographic image forming apparatus (for example, a printer or a multifunction machine).
  • the electrophotographic photoreceptor includes a photosensitive layer.
  • the electrophotographic photosensitive member for example, a single layer type electrophotographic photosensitive member or a laminated type electrophotographic photosensitive member is used.
  • the photosensitive layer has a function of generating charges and a function of transporting charges.
  • the photosensitive layer includes a charge generation layer having a charge generation function and a charge transport layer having a charge transport function.
  • Patent Document 1 describes a polyarylate resin having a repeating unit represented by the chemical formula (E-1). Further, an electrophotographic photoreceptor containing the polyarylate resin is described.
  • Patent Document 2 describes a polyarylate resin having a repeating unit represented by the chemical formula (E-2). Further, an electrophotographic photoreceptor containing the polyarylate resin is described.
  • the polyarylate resin described in Patent Document 1 has low solubility in a solvent, and it is difficult to prepare a coating solution for forming a photosensitive layer.
  • the polyarylate resin described in Patent Document 2 is soluble in a non-halogen solvent, the entanglement between molecular chains in the polyarylate resin is reduced, the packing property of the polyarylate resin is reduced, and the wear resistance is reduced. Cannot be improved sufficiently.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an electrophotographic photoreceptor provided with a photosensitive layer having excellent wear resistance.
  • the electrophotographic photoreceptor of the present invention comprises a conductive substrate and a photosensitive layer.
  • the photosensitive layer contains a charge generating agent, a charge transporting agent, and a binder resin.
  • the binder resin includes a polyarylate resin.
  • the polyarylate resin has a repeating unit represented by the general formula (1).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • R 2 and R 3 are different from each other.
  • Y represents a single bond or an oxygen atom.
  • the electrophotographic photoreceptor of the present invention is excellent in wear resistance.
  • (A) And (b) is a schematic sectional drawing which respectively shows an example of the structure of the electrophotographic photoreceptor which concerns on embodiment of this invention.
  • acryl and methacryl may be collectively referred to as “(meth) acryl”.
  • a compound and a derivative thereof may be generically named by adding “system” after the compound name. When the name of a polymer is expressed by adding “system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof.
  • an alkyl group having 1 to 8 carbon atoms an alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 3 carbon atoms, and 1 carbon atom
  • the alkoxy group having 8 or less and a cycloalkane having 5 to 7 carbon atoms has the following meanings.
  • alkyl group having 1 to 8 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, and neopentyl group. Hexyl group, heptyl group, or octyl group.
  • alkyl group having 1 to 6 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, t-butyl, pentyl, isopentyl, and neopentyl groups. Or a hexyl group.
  • An alkyl group having 1 to 4 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a s-butyl group, and a t-butyl group.
  • An alkyl group having 1 to 3 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • An alkoxy group having 1 to 8 carbon atoms is linear or branched and unsubstituted.
  • Examples of the alkoxy group having 1 to 8 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, s-butoxy, t-butoxy, pentyloxy, iso Examples include a pentyloxy group, a neopentyloxy group, a hexyloxy group, a heptyloxy group, and an octyloxy group.
  • a cycloalkane having 5 to 7 carbon atoms is, for example, unsubstituted.
  • Examples of the cycloalkane having 5 to 7 carbon atoms include cyclopentane, cyclohexane, and cycloheptane.
  • An electrophotographic photoreceptor (hereinafter sometimes referred to as a photoreceptor) according to an embodiment of the present invention includes a conductive substrate and a photosensitive layer.
  • the photoreceptor include a multilayer electrophotographic photoreceptor (hereinafter sometimes referred to as a multilayer photoreceptor) or a single layer electrophotographic photoreceptor (hereinafter referred to as a single layer photoreceptor). ).
  • the multilayer photoreceptor includes a charge generation layer and a charge transport layer.
  • FIG. 1 is a schematic cross-sectional view showing the structure of the multilayer photoreceptor 10.
  • the multilayer photoreceptor 10 includes, for example, a conductive substrate 11 and a photosensitive layer 12.
  • the photosensitive layer 12 includes a charge generation layer 13 and a charge transport layer 14.
  • the charge transport layer 14 may be disposed as the outermost surface layer of the multilayer photoreceptor 10.
  • the charge transport layer 14 may be a single layer (single layer).
  • the photosensitive layer 12 may be disposed directly on the conductive substrate 11.
  • the multilayer photoreceptor 10 includes, for example, a conductive substrate 11, an intermediate layer 15 (undercoat layer), and a photosensitive layer 12.
  • the photosensitive layer 12 may be indirectly disposed on the conductive substrate 11.
  • the intermediate layer 15 may be provided between the conductive substrate 11 and the charge generation layer 13.
  • the intermediate layer 15 may be provided between the charge generation layer 13 and the charge transport layer 14.
  • the charge generation layer 13 may be a single layer or a plurality of layers.
  • Single layer type photoreceptors are provided with a single photosensitive layer.
  • the single layer type photoreceptor includes, for example, a conductive substrate and a photosensitive layer, similarly to the multilayer type photoreceptor.
  • the single layer type photoreceptor may include an intermediate layer.
  • the photosensitive layer may be disposed as the outermost surface layer of the single layer type photoreceptor.
  • the photoreceptor according to this embodiment is excellent in wear resistance.
  • the reason is presumed as follows.
  • the photoreceptor according to this embodiment includes a polyarylate resin as a binder resin.
  • the polyarylate resin has a repeating unit represented by the general formula (1) (hereinafter, such a polyarylate resin is referred to as a polyarylate resin (1)).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • the polyarylate resin (1) having such a structure has such a structure, the entanglement between the binder resin and the binder resin is hardly reduced, and the packing property of the binder resin is hardly reduced. Further, since R 2 and R 3 are different from each other, the polyarylate resin (1) has an asymmetric structure. For this reason, the solubility of the polyarylate resin (1) in the solvent is high, and it is easy to prepare a coating solution for forming the photosensitive layer. As a result, it is easy to obtain a photosensitive layer having a high layer density. Therefore, the photoreceptor according to this embodiment is excellent in wear resistance.
  • the conductive substrate is not particularly limited as long as it can be used as the conductive substrate of the photoreceptor.
  • the conductive substrate can be made of a material having conductivity at least on the surface portion.
  • Examples of the conductive substrate include a conductive substrate made of a material having conductivity, or a conductive substrate coated with a conductive material.
  • Examples of the conductive material include aluminum, iron, copper, tin, platinum, silver, vanadium, molybdenum, chromium, cadmium, titanium, nickel, palladium, and indium.
  • these materials having conductivity one kind may be used alone, or two or more kinds may be used in combination. Examples of the combination of two or more include alloys (more specifically, aluminum alloy, stainless steel, brass, etc.).
  • aluminum or an aluminum alloy is preferable because charge transfer from the photosensitive layer to the conductive substrate is good.
  • the shape of the conductive substrate can be appropriately selected according to the structure of the image forming apparatus to be used.
  • Examples of the shape of the conductive substrate include a sheet shape or a drum shape.
  • the thickness of the conductive substrate can be appropriately selected according to the shape of the conductive substrate.
  • the photosensitive layer contains a charge generating agent, a charge transporting agent, and a binder resin.
  • the photosensitive layer may further contain an additive.
  • the photosensitive layer of the single-layer type photoreceptor contains a charge generator, a charge transport agent, and a binder resin.
  • the thickness of the photosensitive layer is not particularly limited as long as the function as the photosensitive layer can be sufficiently expressed. Specifically, the thickness of the photosensitive layer may be 5 ⁇ m or more and 100 ⁇ m or less, and is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the photosensitive layer of the multilayer photoreceptor includes a charge generation layer and a charge transport layer.
  • the charge generation layer contains a charge generation agent.
  • the charge transport layer contains a charge transport agent and a binder resin.
  • the thickness of the charge generation layer is not particularly limited as long as it can sufficiently function as the charge generation layer. Specifically, the thickness of the charge generation layer is preferably 0.01 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the charge transport layer is not particularly limited as long as it can sufficiently function as the charge transport layer. Specifically, the thickness of the charge transport layer is preferably 25.0 ⁇ m or less, and more preferably 15.0 ⁇ m or more and 25.0 ⁇ m or less.
  • the charge generator is not particularly limited as long as it is a charge generator for a photoreceptor.
  • the charge generator include phthalocyanine pigments, perylene pigments, bisazo pigments, dithioketopyrrolopyrrole pigments, metal-free naphthalocyanine pigments, metal naphthalocyanine pigments, squaraine pigments, trisazo pigments, indigo pigments, azurenium pigments, cyanine Pigments, powders of inorganic photoconductive materials such as selenium, selenium-tellurium, selenium-arsenic, cadmium sulfide, amorphous silicon, pyrylium salts, ansanthrone pigments, triphenylmethane pigments, selenium pigments, toluidine pigments, pyrazolines Pigments or quinacridone pigments.
  • phthalocyanine pigment examples include phthalocyanine or phthalocyanine derivatives.
  • phthalocyanines include metal-free phthalocyanine pigments (more specifically, X-type metal-free phthalocyanine (xH 2 Pc) and the like).
  • phthalocyanine derivative examples include metal phthalocyanine pigments (more specifically, titanyl phthalocyanine or V-type hydroxygallium phthalocyanine).
  • the crystal shape of the phthalocyanine pigment is not particularly limited, and phthalocyanine pigments having various crystal shapes are used. Examples of the crystal shape of the phthalocyanine pigment include ⁇ -type, ⁇ -type, and Y-type.
  • a charge generating agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a charge generator having an absorption wavelength in a desired region may be used alone, or two or more charge generators may be used in combination. Further, for example, in a digital optical image forming apparatus, it is preferable to use a photoconductor having sensitivity in a wavelength region of 700 nm or more.
  • the digital optical image forming apparatus include a laser beam printer using a light source such as a semiconductor laser, or a facsimile. Therefore, for example, phthalocyanine pigments are preferable, and X-type metal-free phthalocyanine (xH 2 Pc) or Y-type titanyl phthalocyanine (Y-TiOPc) is more preferable.
  • an ansanthrone pigment or a perylene pigment is preferably used as a charge generating agent.
  • the short wavelength laser light source has a wavelength of about 350 nm to 550 nm, for example.
  • the charge generator is, for example, a phthalocyanine pigment represented by chemical formulas (CGM-1) to (CGM-4) (hereinafter referred to as charge generators (CGM-1) to (CGM-4)). is there).
  • the content of the charge generating agent is preferably 5 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the binder resin for charge generation layer (hereinafter sometimes referred to as a base resin), and 30 parts by mass.
  • the amount is more preferably 500 parts by mass or less.
  • Examples of the charge transport agent include compounds represented by general formula (2), general formula (3), or general formula (4).
  • the charge transfer agent preferably contains a compound represented by General Formula (2), General Formula (3), or General Formula (4).
  • the charge transport layer contains the compounds represented by the general formulas (2) to (4), the wear resistance of the photoreceptor can be improved.
  • the hole transfer agent is a compound represented by the general formula (2) or (4) from the viewpoint of further improving the wear resistance of the photoreceptor. It is preferable to include, and it is more preferable to include the compound represented by General formula (4).
  • the hole transporting agent is a compound represented by the general formula (2) or the general formula (3). It is preferable to include, and it is more preferable to include the compound represented by the general formula (3).
  • Q 1 has a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkyl group having 1 to 8 carbon atoms. Represents an optionally substituted phenyl group.
  • Two Q 1 may be the same or different.
  • Q 2 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group.
  • Q 3 , Q 4 , Q 5 , Q 6 and Q 7 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group.
  • a represents an integer of 0 or more and 5 or less.
  • a represents an integer of 2 or more and 5 or less, a plurality of Q 2 bonded to the same phenyl group may be the same or different from each other.
  • Q 8 , Q 10 , Q 11 , Q 12 , Q 13 , and Q 14 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or 1 or more carbon atoms. It represents an alkoxy group of 8 or less or a phenyl group.
  • Q 9 and Q 15 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or a phenyl group.
  • b represents an integer of 0 or more and 5 or less. When b represents an integer of 2 or more and 5 or less, a plurality of Q 9 bonded to the same phenyl group may be the same as or different from each other.
  • c represents an integer of 0 or more and 4 or less.
  • the plurality of Q 15 bonded to the same phenyl group may be the same as or different from each other.
  • k represents 0 or 1.
  • R a , R b and R c each independently represents an alkyl group having 1 to 8 carbon atoms, a phenyl group, or an alkoxy group having 1 to 8 carbon atoms.
  • q represents an integer of 0 or more and 4 or less.
  • a plurality of R c bonded to the same phenyl group may be the same or different from each other.
  • m and n each independently represent an integer of 0 or more and 5 or less.
  • m represents an integer of 2 or more and 5 or less
  • a plurality of R b bonded to the same phenyl group may be the same or different from each other.
  • n represents an integer of 2 or more and 5 or less
  • a plurality of R a bonded to the same phenyl group may be the same or different from each other.
  • the phenyl group represented by Q 1 is preferably a phenyl group having an alkyl group having 1 to 8 carbon atoms, more preferably a phenyl group having a methyl group.
  • the alkyl group having 1 to 8 carbon atoms represented by Q 2 is preferably an alkyl group having 1 to 6 carbon atoms, and is an alkyl group having 1 to 4 carbon atoms. More preferably, it is more preferably a methyl group. It is preferable that a represents 0 or 1.
  • the alkyl group having 1 to 8 carbon atoms represented by Q 3 to Q 7 is preferably an alkyl group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, or n More preferred is a butyl group.
  • the alkoxy group having 1 to 8 carbon atoms represented by Q 3 to Q 7 is preferably a methoxy group.
  • Q 3 to Q 7 each independently preferably represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, More preferably, it represents an atom, an alkyl group having 1 to 4 carbon atoms, or a methoxy group.
  • two adjacent Q 3 to Q 7 are bonded to each other to form a ring (more specifically, a benzene ring or a cycloalkane having 5 to 7 carbon atoms). May be.
  • adjacent Q 6 and Q 7 of Q 3 to Q 7 may be bonded to each other to form a benzene ring or a cycloalkane having 5 to 7 carbon atoms.
  • this benzene ring is condensed with a phenyl group to which Q 3 to Q 7 are bonded to form a bicyclic condensed ring group (naphthyl group).
  • Q 3 to Q 7 are bonded to the cycloalkane having 5 to 7 carbon atoms.
  • the condensation site between the cycloalkane having 5 to 7 carbon atoms and the phenyl group may contain a double bond.
  • Two adjacent Q 3 to Q 7 are preferably bonded to each other to form a cycloalkane having 5 to 7 carbon atoms, more preferably cyclohexane.
  • Q 1 preferably represents a phenyl group or a hydrogen atom having an alkyl group having 1 to 8 carbon atoms.
  • Q 2 preferably represents an alkyl group having 1 to 8 carbon atoms.
  • Q 3 to Q 7 each independently preferably represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms. Two of Q 3 to Q 7 are preferably bonded to each other to form a ring. It is preferable that a represents 0 or 1.
  • the alkyl group having 1 to 8 carbon atoms represented by Q 8 and Q 10 to Q 14 is preferably an alkyl group having 1 to 4 carbon atoms, and may be a methyl group or an ethyl group. It is more preferable that In general formula (3), Q 8 and Q 10 to Q 14 preferably each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group. In general formula (3), b and c preferably represent 0.
  • the alkyl group having 1 to 8 carbon atoms represented by R a and R b is preferably an alkyl group having 1 to 4 carbon atoms, and represents a methyl group or an ethyl group. Is more preferable. It is preferable that m and n each independently represent an integer of 0 or more and 2 or less. q preferably represents 0.
  • the hole transport agent include charge transport agents represented by chemical formulas (CTM-1) to (CTM-9) (hereinafter referred to as charge transport agents (CTM-1) to (CTM-9). )).
  • the charge transport agent includes chemical formula (CTM-1), chemical formula (CTM-2), chemical formula (CTM-3), chemical formula (CTM-4), chemical formula (CTM-5), chemical formula (CTM-6), chemical formula (CTM -7), a compound represented by the chemical formula (CTM-8) or (CTM-9) is preferably included.
  • the charge transfer agents (CTM-1) to (CTM-4) are specific examples of the compound represented by the general formula (2).
  • the charge transfer agents (CTM-5) to (CTM-7) are specific examples of the compound represented by the general formula (3).
  • the charge transport agent (CTM-8) and the charge transport agent (CTM-9) are specific examples of the compound represented by the general formula (4).
  • the hole transport agent may be a compound other than the compounds represented by the general formulas (2) to (4).
  • a hole transport agent for example, a nitrogen-containing cyclic compound or a condensed polycyclic compound can be used.
  • the nitrogen-containing cyclic compound and the condensed polycyclic compound include diamine derivatives (for example, N, N, N ′, N′-tetraphenylphenylenediamine derivatives, N, N, N ′, N′-tetraphenylnaphthyl).
  • oxadiazole compounds for example, 2,5-di (4-methylaminophenyl) -1,3,4 -Oxadiazole
  • the content of the hole transport agent is preferably 10 parts by mass or more and 200 parts by mass or less, and more preferably 20 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the binder resin. More preferred.
  • the binder resin is used for a charge transport layer of a multilayer photoreceptor or a photosensitive layer of a single-layer photoreceptor.
  • the binder resin includes a polyarylate resin (1).
  • the polyarylate resin (1) has a repeating unit represented by the general formula (1). When the photoconductor contains the polyarylate resin (1), the wear resistance of the photoconductor can be improved.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • R 2 and R 3 are different from each other.
  • Y represents a single bond or an oxygen atom.
  • R 1 preferably represents a hydrogen atom or a methyl group, and more preferably represents a hydrogen atom from the viewpoint of further improving the wear resistance of the photoreceptor.
  • R 2 preferably represents a methyl group from the viewpoint of improving the wear resistance of the photoreceptor.
  • R 3 preferably represents an alkyl group having 2 to 3 carbon atoms, and more preferably an ethyl group. When the number of carbon atoms of the alkyl group represented by R 3 is 4 or more, the wear resistance of the photoreceptor is liable to decrease.
  • R 2 and R 3 represent the same alkyl group having 1 to 3 carbon atoms, the solubility of the polyarylate resin in the solvent is likely to decrease, and it is difficult to prepare a coating solution for forming the photosensitive layer. .
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a methyl group
  • R 3 preferably represents an alkyl group having 2 to 3 carbon atoms.
  • the polyarylate resin (1) has a repeating unit represented by the general formula (1).
  • the polyarylate resin (1) may have a repeating unit other than the repeating unit represented by the general formula (1).
  • the ratio of the repeating unit represented by the general formula (1) is preferably 80 mol% or more, and 90 mol% or more with respect to the total amount of substances of all repeating units in the polyarylate resin (1). It is more preferable that it is 100 mol%.
  • the viscosity average molecular weight of the binder resin is preferably 49,000 or more, more preferably greater than 49,000, and further preferably greater than 49,000 and 51,200 or less.
  • the viscosity average molecular weight of the binder resin is 49,000 or more, the wear resistance of the binder resin can be improved, and the charge transport layer is hardly worn.
  • the viscosity average molecular weight of the binder resin is larger than 49,000, it becomes easier to further improve the abrasion resistance of the photoreceptor.
  • the viscosity average molecular weight of the binder resin is 51,200 or less, the binder resin tends to be dissolved in a solvent when the charge transport layer is formed, and the charge transport layer tends to be easily formed.
  • the method for producing the binder resin is not particularly limited as long as the polyarylate resin (1) can be produced.
  • Examples of these production methods include a method of polycondensing an aromatic diol and an aromatic dicarboxylic acid for constituting a repeating unit of a polyarylate resin.
  • the synthesis method of the polyarylate resin (1) is not particularly limited, and a known synthesis method (more specifically, solution polymerization, melt polymerization, interfacial polymerization, or the like) can be employed.
  • the aromatic dicarboxylic acid has two carboxyl groups and is represented by the general formula (1-1).
  • Y in the general formula (1-1) has the same meaning as Y in the general formula (1).
  • aromatic dicarboxylic acid examples include an aromatic dicarboxylic acid having two carboxyl groups bonded on an aromatic ring (more specifically, 4,4′-dicarboxydiphenyl ether or 4,4′-dicarboxybiphenyl). Etc.).
  • the aromatic dicarboxylic acid represented by the general formula (1-1) can be used as a derivative such as diacid chloride, dimethyl ester, or diethyl ester.
  • the aromatic dicarboxylic acid may contain other aromatic dicarboxylic acid (for example, terephthalic acid, isophthalic acid, or 2,6-naphthalenedicarboxylic acid) in addition to the aromatic dicarboxylic acid represented by the general formula (1-1). Good.
  • aromatic dicarboxylic acid for example, terephthalic acid, isophthalic acid, or 2,6-naphthalenedicarboxylic acid
  • the aromatic diol has two phenolic hydroxyl groups and is represented by the general formula (1-2).
  • R 1 in the general formula (1-2), R 2 and R 3 have the same meaning as R 1, R 2 and R 3 each general formula (1).
  • aromatic diol examples include bisphenols (more specifically, bisphenol B and the like).
  • the aromatic diol can be used as a derivative such as diacetate.
  • the aromatic diol may contain other aromatic diols (for example, bisphenol A, bisphenol S, bisphenol E, or bisphenol F) in addition to the aromatic diol represented by the general formula (1-2).
  • polyarylate resin (1) examples include polyarylate resins having repeating units represented by chemical formulas (Resin-1) to (Resin-6) (hereinafter referred to as polyarylate resins (Resin-1) to (Resin-6). ) May be described.
  • the polyarylate resin (1) has a chemical formula (Resin-1), a chemical formula (Resin-2), a chemical formula (Resin-3), a chemical formula (Resin-4), a chemical formula (Resin-5), or a chemical formula (Resin-6). It is preferable to have a repeating unit represented by
  • polyarylate resin (1) may be used independently, and other resin other than polyarylate resin (1) is included in the range which does not impair the effect of this invention. May be.
  • a thermoplastic resin, a thermosetting resin, or a photocurable resin is mentioned, for example.
  • the thermoplastic resin include polyarylate resins other than the polyarylate resin (1), polycarbonate resins, styrene resins, styrene-butadiene copolymers, styrene-acrylonitrile copolymers, styrene-maleic acid copolymers, styrene.
  • thermosetting resin examples include silicone resins, epoxy resins, phenol resins, urea resins, melamine resins, and other crosslinkable thermosetting resins.
  • the photocurable resin examples include an epoxy-acrylic acid resin and a urethane-acrylic acid copolymer. These may be used alone or in combination of two or more.
  • the content of the polyarylate resin (1) is preferably 80 parts by mass or more, more preferably 90 parts by mass or more, and still more preferably 100 parts by mass with respect to 100 parts by mass of the binder resin.
  • the content ratio of the binder resin is preferably 40% by mass or more with respect to the total mass of all the components (for example, the charge transfer agent or the binder resin) included in the charge transport layer, and 80 The mass% or more is more preferable.
  • additives examples include a deterioration inhibitor (more specifically, an antioxidant, a radical scavenger, a quencher, or an ultraviolet absorber), a softener, a surface modifier, a bulking agent, a thickener, A dispersion stabilizer, a wax, an electron acceptor compound, a donor, a surfactant, or a leveling agent can be used.
  • a deterioration inhibitor more specifically, an antioxidant, a radical scavenger, a quencher, or an ultraviolet absorber
  • a softener a surface modifier
  • a bulking agent e.g., a bulking agent
  • a thickener e.g., a thickener
  • a dispersion stabilizer e.g., a wax, an electron acceptor compound, a donor, a surfactant, or a leveling agent.
  • the antioxidant will be described below.
  • antioxidants examples include hindered phenol compounds, hindered amine compounds, thioether compounds, and phosphite compounds. Among these antioxidants, hindered phenol compounds and hindered amine compounds are preferred.
  • the addition amount of the antioxidant in the charge transport layer is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the binder resin.
  • the addition amount of the antioxidant is within such a range, it is easy to suppress deterioration of electrical characteristics due to oxidation of the photoreceptor.
  • the charge generation layer may contain a charge generation layer binder resin (hereinafter sometimes referred to as a base resin).
  • the base resin is not particularly limited as long as it can be applied to the photoreceptor.
  • the base resin include a thermoplastic resin, a thermosetting resin, and a photocurable resin.
  • thermoplastic resin examples include a styrene resin, a styrene-butadiene copolymer, a styrene-acrylonitrile copolymer, a styrene-maleic acid copolymer, a styrene-acrylic acid copolymer, an acrylic copolymer, and a polyethylene resin.
  • Ethylene-vinyl acetate copolymer chlorinated polyethylene resin, polyvinyl chloride resin, polypropylene resin, ionomer, vinyl chloride-vinyl acetate copolymer, alkyd resin, polyamide resin, urethane resin, polycarbonate resin, polyarylate resin, polysulfone
  • the resin include diallyl phthalate resin, ketone resin, polyvinyl butyral resin, polyether resin, and polyester resin.
  • the thermosetting resin include silicone resins, epoxy resins, phenol resins, urea resins, melamine resins, and other crosslinkable thermosetting resins.
  • the photocurable resin include an epoxy acrylic resin or a urethane-acrylic resin. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the same resin as the above-described binder resin is also exemplified, but a resin different from the binder resin is usually selected for the same laminated photoreceptor. This is based on the following reasons.
  • a charge generation layer and a charge transport layer are formed in this order, and therefore a charge transport layer coating solution is applied to the charge generation layer.
  • the charge generation layer is preferably not dissolved in the solvent of the charge transport layer coating solution. Therefore, as the base resin, a resin different from the binder resin is usually selected in the same laminated photoreceptor.
  • the intermediate layer contains, for example, inorganic particles and a resin.
  • an increase in electrical resistance can be suppressed by smoothing the flow of current generated when the photosensitive member is exposed while maintaining an insulating state capable of suppressing the occurrence of leakage.
  • the inorganic particles include metal (more specifically, aluminum, iron, copper, etc.) particles, metal oxide (more specifically, titanium oxide, alumina, zirconium oxide, tin oxide, or zinc oxide). Etc.) or non-metal oxide (more specifically, silica etc.) particles. These inorganic particles may be used individually by 1 type, and may use 2 or more types together.
  • the intermediate layer resin is not particularly limited as long as it can be used as a resin for forming the intermediate layer.
  • Photoconductor manufacturing method A method for manufacturing the photoreceptor will be described.
  • the method for producing a photoreceptor includes, for example, a photosensitive layer forming step.
  • the photosensitive layer forming step includes a charge generation layer forming step and a charge transport layer forming step.
  • a coating liquid for forming the charge generation layer (hereinafter, sometimes referred to as a charge generation layer coating liquid) is prepared.
  • a charge generation layer coating solution is applied onto the conductive substrate.
  • at least a part of the solvent contained in the applied charge generation layer coating solution is removed to form a charge generation layer.
  • the charge generation layer coating solution includes, for example, a charge generation agent, a base resin, and a solvent.
  • Such a coating solution for charge generation layer is prepared by dissolving or dispersing a charge generation agent in a solvent.
  • Various additives may be added to the charge generation layer coating solution as necessary.
  • a coating liquid for forming the charge transport layer (hereinafter, sometimes referred to as a charge transport layer coating liquid) is prepared.
  • a charge transport layer coating solution is applied onto the charge generation layer.
  • the coating liquid for charge transport layer contains a charge transport agent, polyarylate resin (1), and a solvent.
  • the charge transport layer coating solution is prepared by dissolving or dispersing the charge transport agent and the polyarylate resin (1) in a solvent.
  • Various additives may be added to the charge transport layer forming coating solution as necessary.
  • a coating solution for forming a photosensitive layer (hereinafter sometimes referred to as a photosensitive layer coating solution) is prepared.
  • a photosensitive layer coating solution is applied onto the conductive substrate.
  • at least a part of the solvent contained in the applied photosensitive layer coating solution is removed to form a photosensitive layer.
  • the photosensitive layer coating solution includes, for example, a charge generating agent, a charge transporting agent, a binder resin, and a solvent.
  • Such a coating solution for a photosensitive layer is prepared by dissolving or dispersing a charge generator, a charge transport agent, and a binder resin in a solvent.
  • Various additives may be added to the photosensitive layer coating solution as necessary.
  • Solvents contained in the coating solution for charge generation layer, the coating solution for charge transport layer, and the coating solution for photosensitive layer are the components contained in the coating solution. If it can melt
  • the solvent include alcohols (more specifically, methanol, ethanol, isopropanol, butanol, etc.), aliphatic hydrocarbons (more specifically, n-hexane, octane, cyclohexane, etc.), aromatics, and the like.
  • Hydrocarbons (more specifically, benzene, toluene, xylene, etc.), halogenated hydrocarbons (more specifically, dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene, etc.), ethers (more specifically, , Dimethyl ether, diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, or diethylene glycol dimethyl ether), ketones (more specifically, acetone, methyl ethyl ketone, cyclohexanone, etc.), esters (more specifically, ethyl acetate, or acetic acid) Me Le etc.), dimethylformamide, dimethyl formamide, or dimethyl sulfoxide and the like.
  • solvents may be used alone or in combination of two or more. Of these solvents, non-halogen solvents are preferably used.
  • the solvent contained in the charge transport layer coating solution is preferably different from the solvent contained in the charge generation layer coating solution.
  • a charge generation layer and a charge transport layer are formed in this order, and therefore a charge transport layer coating solution is applied on the charge generation layer. This is because the charge generation layer is required not to be dissolved in the solvent of the charge transport layer coating solution when the charge transport layer is formed.
  • Coating solution is prepared by mixing each component and dispersing in a solvent.
  • a bead mill, a roll mill, a ball mill, an attritor, a paint shaker, or an ultrasonic disperser can be used.
  • the coating liquid may contain, for example, a surfactant or a leveling agent in order to improve the dispersibility of each component or the surface smoothness of each layer formed.
  • the method of applying the coating solution is not particularly limited as long as it is a method that can uniformly apply the coating solution.
  • Examples of the coating method include a dip coating method, a spray coating method, a spin coating method, and a bar coating method.
  • the method for removing (for example, evaporating) at least a part of the solvent contained in the coating solution is not particularly limited as long as it is a method capable of removing at least a part of the solvent in the coating solution.
  • the removal method include heating, reduced pressure, or combined use of heating and reduced pressure. More specifically, a method of performing heat treatment (hot air drying) using a high-temperature dryer or a vacuum dryer can be mentioned.
  • the heat treatment conditions are, for example, a temperature of 40 ° C. or higher and 150 ° C. or lower and a time of 3 minutes or longer and 120 minutes or shorter.
  • the method for manufacturing a photoreceptor may further include a step of forming an intermediate layer as necessary.
  • a known method can be selected as appropriate for the step of forming the intermediate layer.
  • the electrophotographic photoreceptor of the present invention described above is excellent in wear resistance and can be suitably used in various image forming apparatuses.
  • a surface-treated titanium oxide (“Prototype SMT-A” manufactured by Teika Co., Ltd., average primary particle size 10 nm) was prepared. Specifically, titanium oxide was surface-treated with alumina and silica, and further, surface-treated with methyl hydrogen polysiloxane was prepared while wet-dispersing the surface-treated titanium oxide. Next, the surface-treated titanium oxide (2 parts by mass) and the polyamide resin Amilan (registered trademark) (“CM8000” manufactured by Toray Industries, Inc.) (1 part by mass) were mixed with methanol (10 parts by mass), butanol ( (1 part by mass) and toluene (1 part by mass).
  • CM8000 polyamide resin Amilan
  • Amilan was a quaternary copolymerized polyamide resin of polyamide 6, polyamide 12, polyamide 66, and polyamide 610. These were mixed for 5 hours using a bead mill, and the material was dispersed in the solvent. This prepared the coating liquid for intermediate
  • the obtained intermediate layer coating solution was filtered using a filter having an opening of 5 ⁇ m. Then, the intermediate layer coating solution was applied to the surface of an aluminum drum-shaped support (diameter 30 mm, total length 246 mm) as a conductive substrate using a dip coating method. Subsequently, the applied intermediate layer coating solution was dried at 130 ° C. for 30 minutes to form an intermediate layer (film thickness: 2 ⁇ m) on the conductive substrate (drum-shaped support).
  • Formation of charge transport layer 50 parts by weight of a charge transporting agent (CTM-1) as a hole transporting agent, 2 parts by weight of a hindered phenol antioxidant (“Irganox (registered trademark) 1010” manufactured by BASF Corporation) as an additive, and a binder 100 parts by mass of polyarylate resin (Resin-1) (viscosity average molecular weight 50,500) as a resin was added to a solvent containing 350 parts by mass of tetrahydrofuran and 350 parts by mass of toluene. These were mixed for 12 hours, and the material was dispersed in a solvent to prepare a coating solution for a charge transport layer.
  • CTM-1 charge transporting agent
  • Irganox hindered phenol antioxidant
  • Resin-1 viscosity average molecular weight 50,500
  • the charge transport layer coating solution was applied onto the charge generation layer in the same manner as the charge generation layer coating solution. Then, it was dried at 120 ° C. for 40 minutes to form a charge transport layer (film thickness 20 ⁇ m) on the charge generation layer. As a result, a photoreceptor (A-1) was obtained.
  • the photoreceptor (A-1) had a configuration in which an intermediate layer, a charge generation layer, and a charge transport layer were laminated in this order on a conductive substrate.
  • the photoconductor (A-2) was prepared in the same manner as the photoconductor (A-1) except that the charge transport agent (CTM-2) was used instead of the charge transport agent (CTM-1) as the hole transport agent. ) was produced.
  • the photoconductor (A-3) was prepared in the same manner as the photoconductor (A-1) except that the charge transfer agent (CTM-3) was used instead of the charge transfer agent (CTM-1) as the hole transfer agent. ) was produced.
  • the photoconductor (A-4) was prepared in the same manner as the photoconductor (A-1) except that the charge transport agent (CTM-4) was used instead of the charge transport agent (CTM-1) as the hole transport agent. ) was produced.
  • the photoconductor (A-5) was prepared in the same manner as the photoconductor (A-1) except that the charge transport agent (CTM-5) was used instead of the charge transport agent (CTM-1) as the hole transport agent. ) was produced.
  • the photoconductor (A-6) was prepared in the same manner as the photoconductor (A-1) except that the charge transfer agent (CTM-6) was used instead of the charge transfer agent (CTM-1) as the hole transport agent. ) was produced.
  • the photoconductor (A-7) was prepared in the same manner as the photoconductor (A-1) except that the charge transport agent (CTM-7) was used instead of the charge transport agent (CTM-1) as the hole transport agent. ) was produced.
  • the photoconductor (A-8) was prepared in the same manner as the photoconductor (A-1) except that the charge transport agent (CTM-8) was used instead of the charge transport agent (CTM-1) as the hole transport agent. ) was produced.
  • the photoconductor (A-9) was prepared in the same manner as the photoconductor (A-1) except that the charge transport agent (CTM-9) was used instead of the charge transport agent (CTM-1) as the hole transport agent. ) was produced.
  • a photoconductor (A-1) was prepared in the same manner as the photoconductor (A-1) except that a polyarylate resin (Resin-2) (viscosity average molecular weight 50,000) was used instead of the polyarylate resin (Resin-1). ⁇ 10) was produced.
  • Photoreceptor (A-11) Except for using polyarylate resin (Resin-3) (viscosity average molecular weight 49,800) instead of polyarylate resin (Resin-1), a photoconductor (A-1) was prepared in the same manner as photoconductor (A-1). -11) was produced.
  • Polyarylate resin (Resin-3) viscosity average molecular weight 49,800
  • a photoconductor (A-1) was prepared in the same manner as the photoconductor (A-1) except that a polyarylate resin (Resin-4) (viscosity average molecular weight 49,000) was used instead of the polyarylate resin (Resin-1). -12) was produced.
  • the photoconductor (A-1) was prepared in the same manner as the photoconductor (A-1) except that the polyarylate resin (Resin-5) (viscosity average molecular weight 49,500) was used instead of the polyarylate resin (Resin-1). ⁇ 13) was produced.
  • the photoconductor (A-1) was prepared in the same manner as the photoconductor (A-1) except that the polyarylate resin (Resin-6) (viscosity average molecular weight 51,300) was used instead of the polyarylate resin (Resin-1). -14) was produced.
  • a photoconductor (A-15) was produced in the same manner as the photoconductor (A-1), except that the charge transport layer was thin.
  • the thickness of the charge transport layer of the photoreceptor (A-15) was 15.0 ⁇ m.
  • a photoconductor (A-16) was produced in the same manner as the photoconductor (A-1) except that the thickness of the charge transport layer was increased.
  • the film thickness of the charge transport layer of the photoreceptor (A-15) was 24.7 ⁇ m.
  • Photoconductor (B-1) A photoconductor (A) was used except that a polyarylate resin (viscosity average molecular weight 43,600) having a repeating unit represented by the chemical formula (Resin-7) was used as the binder resin instead of the polyarylate resin (Resin-1). Photoconductor (B-1) was produced in the same manner as in -1).
  • Photoreceptor (B-2) A photoconductor (A) except that a polyarylate resin (viscosity average molecular weight 46,800) having a repeating unit represented by the chemical formula (Resin-8) is used as the binder resin instead of the polyarylate resin (Resin-1).
  • a photoconductor (B-2) was produced by the same method as for -1).
  • Photoreceptor (B-3) A photoconductor (A--) except that a polycarbonate resin (viscosity average molecular weight 48,400) having a repeating unit represented by the chemical formula (Resin-9) was used as the binder resin instead of the polyarylate resin (Resin-1).
  • a photoconductor (B-3) was produced in the same manner as in 1).
  • Photoreceptor (B-4) A photoconductor (A--) except that a polycarbonate resin (viscosity average molecular weight 50,500) having a repeating unit represented by the chemical formula (Resin-10) was used as the binder resin instead of the polyarylate resin (Resin-1).
  • a photoconductor (B-4) was produced in the same manner as in 1).
  • Photoreceptor (B-5) A photoconductor (A--) except that a polycarbonate resin (viscosity average molecular weight 50,200) having a repeating unit represented by the chemical formula (Resin-11) was used as the binder resin instead of the polyarylate resin (Resin-1). A photoconductor (B-5) was produced in the same manner as in 1).
  • Photoreceptor (B-6) A photoconductor (A--) except that a polycarbonate resin (viscosity average molecular weight 50,000) having a repeating unit represented by the chemical formula (Resin-12) was used as the binder resin instead of the polyarylate resin (Resin-1). A photoreceptor (B-6) was produced in the same manner as in 1).
  • the coating solution for the charge transport layer prepared in the production of any one of the photoconductors (A-1) to (A-16) and the photoconductors (B-1) to (B-6) was prepared using an aluminum pipe (diameter: 78 mm). It was applied to a polypropylene sheet (thickness: 0.3 mm) wound around. This was dried at 120 ° C. for 40 minutes to produce a sheet for a wear evaluation test on which a charge transport layer having a thickness of 30 ⁇ m was formed.
  • the charge transport layer was peeled off from this polypropylene sheet and attached to a wheel S-36 (manufactured by Taber) to prepare a sample.
  • the prepared sample is set in a rotary abrasion tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), wear wheel CS-10 (manufactured by Taber), and rotated 1,000 times under conditions of a load of 500 gf and a rotational speed of 60 rpm, and a wear evaluation test. Carried out. Wear loss (mg / 1000 rotations), which is a change in mass of the sample before and after the wear evaluation test, was measured. The wear resistance of the photoreceptor was evaluated based on the obtained wear loss.
  • Table 1 shows the configurations and performance evaluation results of the photoreceptors (A-1) to (A-16) and the photoreceptors (B-1) to (B-6).
  • the molecular weight of the binder resin represents the viscosity average molecular weight.
  • the charge transport layer contains any of polyarylate resins (Resin-1) to (Resin-6) as binder resins.
  • the polycarbonate resins (Resin-1) to (Resin-6) had a repeating unit represented by the general formula (1).
  • the wear loss was 3.9 mg or more and 5.6 mg or less.
  • the charge transport layer contained polyarylate resins (Resin-7) to (Resin-12) as binder resins.
  • Polyarylate resins (Resin-7) to (Resin-12) did not have the repeating unit represented by the general formula (1).
  • polyarylate resins (Resin-7) to (Resin-9) are used as solvents for preparing a coating solution for a charge transport layer. It did not dissolve. For this reason, the photosensitive layer could not be formed and the wear loss could not be obtained.
  • the weight loss by abrasion was 8.2 mg to 17.2 mg.
  • the photoconductors (photoconductors (A-1) to (A-16)) according to the present invention were compared with the photoconductors (B-1) to (B-6).
  • the wear loss was small. Therefore, it is clear that the photoreceptor according to the present invention is excellent in wear resistance.
  • the charge transport layer contains any of the charge transport agents (CTM-1) to (CTM-4) as the hole transport agent.
  • the charge transfer agents (CTM-1) to (CTM-4) were compounds represented by the general formula (2).
  • the weight loss by abrasion was 4.9 mg to 5.2 mg, and the sensitivity potential V L was ⁇ 57 V to ⁇ 42 V.
  • the charge transport layer contains any one of the charge transport agents (CTM-5) to (CTM-7) as the hole transport agent.
  • the charge transfer agents (CTM-5) to (CTM-7) were compounds represented by the general formula (3).
  • the weight loss by abrasion was 4.9 mg to 5.6 mg, and the sensitivity potential V L was ⁇ 55 V to ⁇ 36 V.
  • the charge transport layer contains any of the charge transport agents (CTM-8) to (CTM-9) as the hole transport agent.
  • the charge transfer agents (CTM-8) to (CTM-9) were compounds represented by the general formula (4).
  • the weight loss by abrasion was 4.6 mg to 4.9 mg, and the sensitivity potential V L was ⁇ 67 V to ⁇ 62 V.
  • the photoreceptors (A-5) to (A-7) are the photoreceptors (A-1) to (A-4) and the photoreceptors (A-8) to (A-9).
  • the sensitivity potential V L was large and the sensitivity characteristics were excellent.
  • the photoreceptors (A-1) to (A-4) had a larger sensitivity potential V L and superior sensitivity characteristics than the photoreceptors (A-8) to (A-9).
  • the photoreceptors (A-8) to (A-9) are the photoreceptors (A-1) to (A-4) and the photoreceptors (A-5) to (A-7). Compared with, the weight loss was small and the wear resistance was excellent.
  • the photoconductors (A-1) to (A-4) were smaller in wear loss and superior in wear resistance than the photoconductors (A-5) to (A-7).
  • the binder resins are polyarylate resins (Resin-2), (Resin-3), and ( Any of Resin-5).
  • Polyarylate resins (Resin-2), (Resin-3), and (Resin-5) were polyarylate resins in which R 1 represents a hydrogen atom in general formula (1).
  • the wear loss was 3.9 mg to 4.4 mg.
  • the binder resins are polyarylate resins (Resin-1), (Resin-4), and ( Any of Resin-6).
  • the polyarylate resins (Resin-1), (Resin-4), and (Resin-6) were polyarylate resins in which R 1 represents a methyl group in the general formula (1).
  • the loss on wear was from 4.6 mg to 4.9 mg.
  • the photoreceptors (A-10), (A-11), and (A-13) are photoreceptors (A-1), (A-12), and (A-14). Compared with, the weight loss was small and the wear resistance was excellent.
  • the electrophotographic photosensitive member according to the present invention can be used in an image forming apparatus such as a multifunction machine.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

電子写真感光体は、導電性基体と、感光層とを備える。感光層は、電荷発生剤と、電荷輸送剤と、バインダー樹脂とを含有する。バインダー樹脂は、ポリアリレート樹脂を含む。ポリアリレート樹脂は、一般式(1)で表される繰返し単位を有する。一般式(1)中、R1は、水素原子、又は炭素原子数1以上4以下のアルキル基を表す。R2及びR3は、各々独立に、炭素原子数1以上3以下のアルキル基を表す。R2とR3とは互いに異なる。Yは、単結合、又は酸素原子を表す。

Description

電子写真感光体
 本発明は、電子写真感光体に関する。
 電子写真感光体は、像担持体として電子写真方式の画像形成装置(例えば、プリンター、又は複合機)において用いられる。電子写真感光体は、感光層を備える。電子写真感光体としては、例えば、単層型電子写真感光体、又は積層型電子写真感光体が用いられる。単層型電子写真感光体においては、感光層は電荷発生の機能と、電荷輸送の機能とを有する。積層型電子写真感光体においては、感光層は電荷発生の機能を有する電荷発生層と、電荷輸送の機能を有する電荷輸送層とを備える。
 特許文献1には、化学式(E-1)で表される繰返し単位を有するポリアリレート樹脂が記載されている。また、上記ポリアリレート樹脂を含有する電子写真感光体が記載されている。
Figure JPOXMLDOC01-appb-C000020
 特許文献2には、化学式(E-2)で表される繰返し単位を有するポリアリレート樹脂が記載されている。また、上記ポリアリレート樹脂を含有する電子写真感光体が記載されている。
Figure JPOXMLDOC01-appb-C000021
特開昭56-135844号公報 特開2005-189716号公報
 しかしながら、特許文献1に記載のポリアリレート樹脂は、溶剤に対する溶解性が低く、感光層形成用塗布液を調製することが困難であった。また、特許文献2に記載のポリアリレート樹脂は、非ハロゲン溶剤に対する溶解性があるものの、ポリアリレート樹脂中の分子鎖同士の絡み合いが低下し、ポリアリレート樹脂のパッキング性が低下し、耐摩耗性を十分に向上させることができない。
 本発明は上記課題に鑑みてなされたものであり、その目的は、耐摩耗性に優れる感光層を備えた電子写真感光体を提供することである。
 本発明の電子写真感光体は、導電性基体と、感光層とを備える。前記感光層は、電荷発生剤と、電荷輸送剤と、バインダー樹脂とを含有する。前記バインダー樹脂は、ポリアリレート樹脂を含む。前記ポリアリレート樹脂は、一般式(1)で表される繰返し単位を有する。
Figure JPOXMLDOC01-appb-C000022
 前記一般式(1)中、R1は、水素原子、又は炭素原子数1以上4以下のアルキル基を表す。R2及びR3は、各々独立に、炭素原子数1以上3以下のアルキル基を表す。R2とR3とは互いに異なる。Yは、単結合、又は酸素原子を表す。
 本発明の電子写真感光体は、耐摩耗性に優れる。
(a)及び(b)は、それぞれ、本発明の実施形態に係る電子写真感光体の構造の一例を示す概略断面図である。
 以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内で、適宜変更を加えて実施できる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨を限定するものではない。なお、本明細書において、アクリル及びメタクリルを包括的に「(メタ)アクリル」と総称する場合がある。また、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰返し単位が化合物又はその誘導体に由来することを意味する。
 以下、炭素原子数1以上8以下のアルキル基、炭素原子数1以上6以下のアルキル基、炭素原子数1以上4以下のアルキル基、炭素原子数1以上3以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、及び炭素原子数5以上7以下のシクロアルカンは、各々、次の意味である。
 炭素原子数1以上8以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上8以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、又はオクチル基が挙げられる。
 炭素原子数1以上6以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上6以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、又はヘキシル基が挙げられる。
 炭素原子数1以上4以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上4以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、又はt-ブチル基が挙げられる。
 炭素原子数1以上3以下のアルキル基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上3以下のアルキル基としては、例えば、メチル基、エチル基、プロピル基、又はイソプロピル基が挙げられる。
 炭素原子数1以上8以下のアルコキシ基は、直鎖状又は分枝鎖状で非置換である。炭素原子数1以上8以下のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、又はオクチルオキシ基が挙げられる。
 炭素原子数5以上7以下のシクロアルカンは、例えば、非置換である。炭素原子数5以上7以下のシクロアルカンとしては、例えば、シクロペンタン、シクロヘキサン、又はシクロヘプタンが挙げられる。
<感光体>
 本発明の実施形態に係る電子写真感光体(以下、感光体と記載することがある)は、導電性基体と、感光層とを備える。感光体としては、例えば、積層型電子写真感光体(以下、積層型感光体と記載することがある)、又は単層型電子写真感光体(以下、単層型感光体と記載することがある)が挙げられる。
 積層型感光体は、電荷発生層と、電荷輸送層とを備える。以下、図1を参照して、本実施形態に係る積層型感光体10の構造を説明する。図1は、積層型感光体10の構造を示す概略断面図である。図1(a)に示すように、積層型感光体10は、例えば、導電性基体11と、感光層12とを備える。感光層12は、電荷発生層13と電荷輸送層14とを備える。図1(a)に示すように、電荷輸送層14は積層型感光体10の最表面層として配置されてもよい。電荷輸送層14は、一層(単層)であってもよい。
 図1(a)に示すように、感光層12は導電性基体11上に直接的に配置されてもよい。また、図1(b)に示すように、積層型感光体10は、例えば、導電性基体11と、中間層15(下引層)と、感光層12とを備える。図1(b)に示すように、感光層12は導電性基体11上に間接的に配置されてもよい。図1(b)に示すように、中間層15は、導電性基体11と電荷発生層13との間に設けられてもよい。中間層15は、例えば、電荷発生層13と電荷輸送層14との間に設けられてもよい。電荷発生層13は、単層であってもよく、複数層であってもよい。
 単層型感光体は、単層の感光層を備える。単層型感光体も積層型感光体と同様に、例えば、導電性基体と感光層とを備える。単層型感光体は、中間層を備えてもよい。感光層は、単層型感光体の最表面層として配置されてもよい。
 本実施形態に係る感光体は、耐摩耗性に優れる。その理由は以下のように推測される。本実施形態に係る感光体は、バインダー樹脂としてポリアリレート樹脂を含む。ポリアリレート樹脂は、一般式(1)で表される繰返し単位を有する(以下、このようなポリアリレート樹脂をポリアリレート樹脂(1)と記載する)。ポリアリレート樹脂(1)では、R1は水素原子又は炭素原子数1以上4以下のアルキル基を表す。R2及びR3は、各々独立に、炭素原子数1以上3以下のアルキル基を表す。このような構造を有するポリアリレート樹脂(1)はこのような構造を有するため、バインダー樹脂とバインダー樹脂の絡み合いが低下しにくく、バインダー樹脂のパッキング性が低下しにくくなる。また、R2とR3とは互いに異なるため、ポリアリレート樹脂(1)は非対称構造を有する。このため、ポリアリレート樹脂(1)の溶剤への溶解性が高く、感光層を形成するための塗布液を調製し易い。その結果、層密度の高い感光層を得られ易い。よって、本実施形態に係る感光体は、耐摩耗性に優れる。
 以下、本実施形態に係る感光体の要素(導電性基体、感光層、及び中間層)を説明する。更に感光体の製造方法も説明する。
[1.導電性基体]
 導電性基体は、感光体の導電性基体として用いることができる限り、特に限定されない。導電性基体は、少なくとも表面部に導電性を有する材料で構成することができる。導電性基体としては、例えば、導電性を有する材料で構成される導電性基体、又は導電性材料で被覆される導電性基体が挙げられる。導電性を有する材料としては、例えば、アルミニウム、鉄、銅、錫、白金、銀、バナジウム、モリブデン、クロム、カドミウム、チタン、ニッケル、パラジウム、又はインジウムが挙げられる。これらの導電性を有する材料の中でも、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。2種以上の組合せとしては、例えば、合金(より具体的には、アルミニウム合金、ステンレス鋼、又は真鍮等)が挙げられる。
 これらの導電性を有する材料の中でも、感光層から導電性基体への電荷の移動が良好であることから、アルミニウム又はアルミニウム合金が好ましい。
 導電性基体の形状は、使用する画像形成装置の構造に合わせて適宜選択することができる。導電性基体の形状としては、例えば、シート状、又はドラム状が挙げられる。また、導電性基体の厚みは、導電性基体の形状に応じて、適宜選択することができる。
[2.感光層]
 感光層は、電荷発生剤と、電荷輸送剤と、バインダー樹脂とを含有する。感光層は添加剤を更に含有してもよい。単層型感光体の感光層は、電荷発生剤と、電荷輸送剤と、バインダー樹脂とを含有する。感光層の厚さは、感光層としての機能を十分に発現できれば、特に限定されない。具体的には、感光層の厚さは、5μm以上100μm以下であってもよく、10μm以上50μm以下であることが好ましい。
 積層型感光体の感光層は、電荷発生層と、電荷輸送層とを備える。電荷発生層は、電荷発生剤を含有する。電荷輸送層は、電荷輸送剤及びバインダー樹脂を含有する。電荷発生層の厚さは、電荷発生層として十分に作用することができれば、特に限定されない。電荷発生層の厚さは、具体的には、0.01μm以上5μm以下であることが好ましく、0.1μm以上3μm以下であることがより好ましい。電荷輸送層の厚さは、電荷輸送層として十分に作用することができれば、特に限定されない。電荷輸送層の厚さは、具体的には、25.0μm以下であることが好ましく、15.0μm以上25.0μm以下であることがより好ましい。
[2-1.共通の構成要素]
 以下、電荷発生剤、電荷輸送剤、及びバインダー樹脂を説明する。更に添加剤を説明する。
[2-1-1.電荷発生剤]
 電荷発生剤は、感光体用の電荷発生剤であれば、特に限定されない。電荷発生剤としては、例えば、フタロシアニン系顔料、ペリレン系顔料、ビスアゾ顔料、ジチオケトピロロピロール顔料、無金属ナフタロシアニン顔料、金属ナフタロシアニン顔料、スクアライン顔料、トリスアゾ顔料、インジゴ顔料、アズレニウム顔料、シアニン顔料、セレン、セレン-テルル、セレン-ヒ素、硫化カドミウム、アモルファスシリコンのような無機光導電材料の粉末、ピリリウム塩、アンサンスロン系顔料、トリフェニルメタン系顔料、スレン系顔料、トルイジン系顔料、ピラゾリン系顔料、又はキナクリドン系顔料が挙げられる。フタロシアニン系顔料としては、例えば、フタロシアニン、又はフタロシアニン誘導体が挙げられる。フタロシアニンとしては、例えば、無金属フタロシアニン顔料(より具体的には、X型無金属フタロシアニン(x-H2Pc)等)が挙げられる。フタロシアニン誘導体としては、例えば、金属フタロシアニン顔料(より具体的には、チタニルフタロシアニン、又はV型ヒドロキシガリウムフタロシアニン等)が挙げられる。フタロシアニン系顔料の結晶形状については特に限定されず、種々の結晶形状を有するフタロシアニン系顔料が使用される。フタロシアニン顔料の結晶形状としては、例えば、α型、β型、又はY型が挙げられる。電荷発生剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 所望の領域に吸収波長を有する電荷発生剤を単独で用いてもよいし、2種以上の電荷発生剤を組み合わせて用いてもよい。更に、例えば、デジタル光学式の画像形成装置には、700nm以上の波長領域に感度を有する感光体を用いることが好ましい。デジタル光学式の画像形成装置としては、例えば、半導体レーザーのような光源を使用したレーザービームプリンター、又はファクシミリが挙げられる。そのため、例えば、フタロシアニン系顔料が好ましく、X型無金属フタロシアニン(x-H2Pc)、又はY型チタニルフタロシアニン(Y-TiOPc)がより好ましい。なお、Y型チタニルフタロシアニンは、Cu-Kα特性X線回折スペクトルにおいて、ブラッグ角2θ±0.2°=27.2°に1つのピークを有してもよい。
 短波長レーザー光源を用いた画像形成装置に適用される感光体には、電荷発生剤として、アンサンスロン系顔料、又はペリレン系顔料が好適に用いられる。なお、短波長レーザー光源は、例えば、350nm以上550nm以下程度の波長を有する。
 電荷発生剤は、例えば、化学式(CGM-1)~(CGM-4)で表されるフタロシアニン系顔料である(以下、電荷発生剤(CGM-1)~(CGM-4)と記載することがある)。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 電荷発生剤の含有量は、電荷発生層用バインダー樹脂(以下、ベース樹脂と記載することがある)100質量部に対して、5質量部以上1000質量部以下であることが好ましく、30質量部以上500質量部以下であることがより好ましい。
[2-1-2.電荷輸送剤]
 電荷輸送剤(特に、正孔輸送剤)としては、例えば、一般式(2)、一般式(3)、又は一般式(4)で表される化合物が挙げられる。電荷輸送剤は、一般式(2)、一般式(3)、又は一般式(4)で表される化合物を含むことが好ましい。電荷輸送層が一般式(2)~(4)で表される化合物を含有することにより、感光体の耐摩耗性を向上させることができる。感光体の耐摩耗性を更に向上させる観点から、一般式(2)~(4)で表される化合物のうち、正孔輸送剤は一般式(2)又は(4)で表される化合物を含むことが好ましく、一般式(4)で表される化合物を含むことがより好ましい。感光体の電気的特性を向上させる観点から一般式(2)~(4)で表される化合物のうち、正孔輸送剤は一般式(2)又は一般式(3)で表される化合物を含むことが好ましく、一般式(3)で表される化合物を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000027
 一般式(2)中、Q1は、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又は炭素原子数1以上8以下のアルキル基を有してもよいフェニル基を表す。2つのQ1は、互いに同一であっても異なってもよい。Q2は、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表す。Q3、Q4、Q5、Q6、及びQ7は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基で表す。Q3、Q4、Q5、Q6、及びQ7のうちの隣接した二つが互いに結合して環を形成してもよい。aは、0以上5以下の整数を表す。aが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のQ2は、互いに同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000028
 一般式(3)中、Q8、Q10、Q11、Q12、Q13、及びQ14は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表す。Q9及びQ15は、各々独立に、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表す。bは、0以上5以下の整数を表す。bが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のQ9は、互いに同一でも異なっていてもよい。cは、0以上4以下の整数を表す。cが2以上4以下の整数を表す場合、同一のフェニル基に結合する複数のQ15は、互いに同一でも異なっていてもよい。kは、0又は1を表す。
Figure JPOXMLDOC01-appb-C000029
 一般式(4)中、Ra、Rb及びRcは、各々独立に、炭素原子数1以上8以下のアルキル基、フェニル基、又は炭素原子数1以上8以下のアルコキシ基を表す。qは、0以上4以下の整数を表す。qが2以上4以下の整数を表す場合、同一のフェニル基に結合する複数のRcは、互いに同一でも異なっていてもよい。m及びnは、各々独立に、0以上5以下の整数を表す。mが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のRbは、互いに同一でも異なっていてもよい。nが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のRaは、互いに同一でも異なっていてもよい。
 一般式(2)中、Q1の表すフェニル基は、炭素原子数1以上8以下のアルキル基を有するフェニル基であることが好ましく、メチル基を有するフェニル基であることがより好ましい。
 一般式(2)中、Q2の表す炭素原子数1以上8以下のアルキル基は、炭素原子数1以上6以下のアルキル基であることが好ましく、炭素原子数1以上4以下のアルキル基であることがより好ましく、メチル基であることが更に好ましい。aは、0又は1を表すことが好ましい。
 一般式(2)中、Q3~Q7の表す炭素原子数1以上8以下のアルキル基は、炭素原子数1以上4以下のアルキル基であることが好ましく、メチル基、エチル基、又はn-ブチル基であることがより好ましい。一般式(2)中、Q3~Q7の表す炭素原子数1以上8以下のアルコキシ基は、メトキシ基であることが好ましい。一般式(2)中、Q3~Q7は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、又は炭素原子数1以上8以下のアルコキシ基を表すことが好ましく、水素原子、炭素原子数1以上4以下のアルキル基、又はメトキシ基を表すことがより好ましい。
 一般式(2)中、Q3~Q7のうちの隣接した二つが互いに結合して、環(より具体的には、ベンゼン環、又は炭素原子数5以上7以下のシクロアルカン)を形成してもよい。例えば、Q3~Q7のうちの隣接したQ6とQ7とが互いに結合して、ベンゼン環、又は炭素原子数5以上7以下のシクロアルカンを形成してもよい。Q3~Q7のうちの隣接した二つが互いに結合してベンゼン環を形成する場合、このベンゼン環はQ3~Q7が結合するフェニル基と縮合して二環縮合環基(ナフチル基)を形成する。Q3~Q7のうちの隣接した二つが互いに結合して炭素原子数5以上7以下のシクロアルカンを形成する場合、この炭素原子数5以上7以下のシクロアルカンはQ3~Q7が結合するフェニル基と縮合して二環縮合環基を形成する。この場合、炭素原子数5以上7以下のシクロアルカンとフェニル基との縮合部位は、二重結合を含んでもよい。Q3~Q7のうちの隣接した二つが互いに結合して、炭素原子数5以上7以下のシクロアルカンを形成することが好ましく、シクロヘキサンを形成することがより好ましい。
 一般式(2)中、Q1は、炭素原子数1以上8以下のアルキル基を有するフェニル基又は水素原子を表すことが好ましい。Q2は、炭素原子数1以上8以下のアルキル基を表すことが好ましい。Q3~Q7は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、又は炭素原子数1以上8以下のアルコキシ基を表すことが好ましい。Q3~Q7のうち隣接した二つが互いに結合して環を形成することが好ましい。aは、0又は1を表すことが好ましい。
 一般式(3)中、Q8及びQ10~Q14の表す炭素原子数1以上8以下のアルキル基は、炭素原子数1以上4以下のアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましい。一般式(3)中、Q8及びQ10~Q14は、各々独立に、水素原子、炭素原子数1以上4以下のアルキル基、又はフェニル基を表すことが好ましい。一般式(3)中、b及びcは、0を表すことが好ましい。
 一般式(4)中、Ra及びRbの表す炭素原子数1以上8以下のアルキル基は、炭素原子数1以上4以下のアルキル基であることが好ましく、メチル基又はエチル基を表すことがより好ましい。m及びnは、各々独立に、0以上2以下の整数を表すことが好ましい。qは0を表すことが好ましい。
 正孔輸送剤としては、具体的には、化学式(CTM-1)~(CTM-9)で表される電荷輸送剤が挙げられる(以下、電荷輸送剤(CTM-1)~(CTM-9)と記載することがある)。電荷輸送剤は、化学式(CTM-1)、化学式(CTM-2)、化学式(CTM-3)、化学式(CTM-4)、化学式(CTM-5)、化学式(CTM-6)、化学式(CTM-7)、化学式(CTM-8)、又は(CTM-9)で表される化合物を含むことが好ましい。なお、電荷輸送剤(CTM-1)~(CTM-4)は、一般式(2)で表される化合物の具体例である。電荷輸送剤(CTM-5)~(CTM-7)は、一般式(3)で表される化合物の具体例である。電荷輸送剤(CTM-8)及び電荷輸送剤(CTM-9)は一般式(4)で表される化合物の具体例である。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 正孔輸送剤は、一般式(2)~(4)で表される化合物以外の化合物であってもよい。このような正孔輸送剤としては、例えば、含窒素環式化合物又は縮合多環式化合物を使用することができる。含窒素環式化合物及び縮合多環式化合物としては、例えば、ジアミン誘導体(例えば、N,N,N’,N’-テトラフェニルフェニレンジアミン誘導体、N,N,N’,N’-テトラフェニルナフチレンジアミン誘導体、又はN,N,N’,N’-テトラフェニルフェナントリレンジアミン誘導体);オキサジアゾール系化合物(例えば、2,5-ジ(4-メチルアミノフェニル)-1,3,4-オキサジアゾール);スチリル系化合物(例えば、9-(4-ジエチルアミノスチリル)アントラセン);カルバゾール系化合物(例えば、ポリビニルカルバゾール);有機ポリシラン化合物;ピラゾリン系化合物(例えば、1-フェニル-3-(p-ジメチルアミノフェニル)ピラゾリン);ヒドラゾン系化合物;インドール系化合物;オキサゾール系化合物;イソオキサゾール系化合物;チアゾール系化合物;チアジアゾール系化合物;イミダゾール系化合物;ピラゾール系化合物;トリアゾール系化合物が挙げられる。
 積層型感光体において、正孔輸送剤の含有量は、バインダー樹脂100質量部に対して、10質量部以上200質量部以下であることが好ましく、20質量部以上100質量部以下であることがより好ましい。
[2-1-3.バインダー樹脂]
 バインダー樹脂は、積層型感光体の電荷輸送層又は単層型感光体の感光層に用いられる。バインダー樹脂は、ポリアリレート樹脂(1)を含む。ポリアリレート樹脂(1)は、一般式(1)で表される繰返し単位を有する。感光体がポリアリレート樹脂(1)を含有することにより、感光体の耐摩耗性を向上させることができる。
Figure JPOXMLDOC01-appb-C000039
 一般式(1)中、R1は、水素原子、又は炭素原子数1以上4以下のアルキル基を表す。R2及びR3は、各々独立に、炭素原子数1以上3以下のアルキル基を表す。R2とR3とは互いに異なる。Yは、単結合、又は酸素原子を表す。
 一般式(1)中、2つのR1は、互いに同一であっても異なってもよい。一般式(1)中、R1は、水素原子又はメチル基を表すことが好ましく、感光体の耐摩耗性を更に向上させる観点から、水素原子を表すことがより好ましい。R2は、感光体の耐摩耗性を向上させる観点から、メチル基を表すことが好ましい。R2が水素原子を表す場合、感光体の耐摩耗性が低下し易い。R3は、炭素原子数2以上3以下のアルキル基を表すことが好ましく、エチル基を表すことがより好ましい。R3の表すアルキル基の炭素原子数が4以上である場合、感光体の耐摩耗性が低下し易い。R2とR3とが同一の炭素原子数1以上3以下のアルキル基を表す場合、ポリアリレート樹脂の溶剤への溶解性が低下し易く、感光層を形成するための塗布液を調製しにくい。
 一般式(1)中、R1は水素原子又はメチル基を表し、R2はメチル基を表し、R3は炭素原子数2以上3以下のアルキル基を表すことが好ましい。
 ポリアリレート樹脂(1)は、一般式(1)で表される繰返し単位を有する。ポリアリレート樹脂(1)は、一般式(1)で表される繰返し単位以外の繰返し単位を有してもよい。一般式(1)で表される繰返し単位の比率は、ポリアリレート樹脂(1)中の全ての繰返し単位の物質量の合計に対して、80モル%以上であることが好ましく、90モル%以上であることがより好ましく、100モル%であることが更に好ましい。
 バインダー樹脂の粘度平均分子量は、49,000以上であることが好ましく、49,000より大きいことがより好ましく、49,000より大きく51,200以下であることが更に好ましい。バインダー樹脂の粘度平均分子量が49,000以上である場合、バインダー樹脂の耐摩耗性を高めることができ、電荷輸送層が摩耗しにくくなる。また、バインダー樹脂の粘度平均分子量が49,000より大きい場合、感光体の耐摩耗性を更に高め易くなる。一方、バインダー樹脂の粘度平均分子量が51,200以下である場合、電荷輸送層の形成時に、バインダー樹脂が溶剤に溶解し易くなり、電荷輸送層の形成が容易になる傾向がある。
 バインダー樹脂の製造方法は、ポリアリレート樹脂(1)を製造できれば、特に限定されない。これらの製造方法として、例えば、ポリアリレート樹脂の繰返し単位を構成するための芳香族ジオールと芳香族ジカルボン酸とを縮重合させる方法挙げられる。ポリアリレート樹脂(1)の合成方法は特に限定されず、公知の合成方法(より具体的には、溶液重合、溶融重合、又は界面重合等)を採用することができる。
 芳香族ジカルボン酸は、2つのカルボキシル基を有し、一般式(1-1)で表される。一般式(1-1)中のYは、一般式(1)中のYと同義である。
Figure JPOXMLDOC01-appb-C000040
 芳香族ジカルボン酸としては、例えば、芳香環上に結合する2つのカルボキシル基を有する芳香族ジカルボン酸(より具体的には、4,4’-ジカルボキシジフェニルエーテル、又は4,4’-ジカルボキシビフェニル等)が挙げられる。なお、ポリアリレート樹脂を合成する際、一般式(1-1)で表される芳香族ジカルボン酸は、ジ酸クロライド、ジメチルエステル、又はジエチルエステルのような誘導体として用いることができる。芳香族ジカルボン酸は、一般式(1-1)で表される芳香族ジカルボン酸以外に他の芳香族ジカルボン酸(例えば、テレフタル酸、イソフタル酸、又は2,6-ナフタレンジカルボン酸)を含んでもよい。
 芳香族ジオールは、2つのフェノール性水酸基を有し、一般式(1-2)で表される。一般式(1-2)中のR1、R2及びR3は、各々一般式(1)中のR1、R2及びR3と同義である。
Figure JPOXMLDOC01-appb-C000041
 芳香族ジオールとしては、例えば、ビスフェノール類(より具体的には、ビスフェノールB等)が挙げられる。なお、ポリアリレート樹脂を合成する際、芳香族ジオールは、ジアセテートのような誘導体として用いることができる。芳香族ジオールは、一般式(1-2)で表される芳香族ジオール以外に他の芳香族ジオール(例えば、ビスフェノールA、ビスフェノールS、ビスフェノールE、又はビスフェノールF)を含んでもよい。
 ポリアリレート樹脂(1)としては、例えば、化学式(Resin-1)~(Resin-6)で表される繰返し単位を有するポリアリレート樹脂(以下、ポリアリレート樹脂(Resin-1)~(Resin-6)と記載することがある)が挙げられる。ポリアリレート樹脂(1)は、化学式(Resin-1)、化学式(Resin-2)、化学式(Resin-3)、化学式(Resin-4)、化学式(Resin-5)、又は化学式(Resin-6)で表される繰返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 本実施形態に用いられるバインダー樹脂としては、ポリアリレート樹脂(1)を単独で用いてもよいし、ポリアリレート樹脂(1)以外の他の樹脂を、本発明の効果を損なわない範囲で含んでいてもよい。他の樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂、又は光硬化性樹脂が挙げられる。熱可塑性樹脂としては、例えば、ポリアリレート樹脂(1)以外のポリアリレート樹脂、ポリカーボネート樹脂、スチレン系樹脂、スチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体、スチレン-マレイン酸共重合体、スチレン-アクリル酸共重合体、アクリル共重合体、ポリエチレン樹脂、エチレン-酢酸ビニル共重合体、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー、塩化ビニル-酢酸ビニル共重合体、ポリエステル樹脂、アルキド樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂、又はポリエステル樹脂が挙げられる。熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、又はその他架橋性の熱硬化性樹脂が挙げられる。光硬化性樹脂としては、例えば、エポキシ-アクリル酸系樹脂、又はウレタン-アクリル酸系共重合体が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。ポリアリレート樹脂(1)の含有量は、バインダー樹脂100質量部に対して80質量部以上であることが好ましく、90質量部以上であることがより好ましく、100質量部であることが更に好ましい。
 本実施形態において、バインダー樹脂の含有量の比率は、電荷輸送層に含まれるすべての構成要素(例えば、電荷輸送剤、又はバインダー樹脂)の質量の合計に対して40質量%以上が好ましく、80質量%以上がより好ましい。
[2-1-4.添加剤]
 添加剤としては、例えば、劣化防止剤(より具体的には、酸化防止剤、ラジカル捕捉剤、消光剤、又は紫外線吸収剤等)、軟化剤、表面改質剤、増量剤、増粘剤、分散安定剤、ワックス、電子アクセプター化合物、ドナー、界面活性剤、又はレベリング剤が挙げられる。これらの添加剤のうち、酸化防止剤を以下で説明する。
 酸化防止剤としては、例えば、ヒンダードフェノール化合物、ヒンダードアミン化合物、チオエーテル化合物、又はホスファイト化合物が挙げられる。これらの酸化防止剤の中でも、ヒンダードフェノール化合物及びヒンダードアミン化合物が好ましい。
 電荷輸送層中の酸化防止剤の添加量は、バインダー樹脂100質量部に対して、0.1質量部以上10質量部以下であることが好ましい。酸化防止剤の添加量がこのような範囲内であると、感光体が酸化されることによる電気特性の低下を抑制し易い。
[2-2.共通しない構成要素]
 積層型感光体では、電荷発生層は、電荷発生層用バインダー樹脂(以下、ベース樹脂と記載することある)を含有してもよい。ベース樹脂は、感光体に適用できる限り、特に限定されない。ベース樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂、又は光硬化性樹脂が挙げられる。熱可塑性樹脂としては、例えば、スチレン系樹脂、スチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体、スチレン-マレイン酸共重合体、スチレン-アクリル酸系共重合体、アクリル共重合体、ポリエチレン樹脂、エチレン-酢酸ビニル共重合体、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー、塩化ビニル-酢酸ビニル共重合体、アルキド樹脂、ポリアミド樹脂、ウレタン樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエーテル樹脂、又はポリエステル樹脂が挙げられる。熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、又はその他架橋性の熱硬化性樹脂が挙げられる。光硬化性樹脂としては、例えば、エポキシアクリル酸系樹脂、又はウレタン-アクリル酸系樹脂が挙げられる。これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ベース樹脂は、上述したバインダー樹脂と同様の樹脂も例示されているが、同一の積層型感光体においては、通常、バインダー樹脂とは異なる樹脂が選択される。これは以下の理由を根拠としている。積層型感光体を製造する際、通常、電荷発生層、電荷輸送層の順に形成するため、電荷発生層に、電荷輸送層用塗布液を塗布することになる。電荷輸送層の形成時に、電荷発生層は、電荷輸送層用塗布液の溶剤に溶解しないことが好ましい。そこで、ベース樹脂は、同一の積層型感光体においては、通常、バインダー樹脂とは異なる樹脂が選択される。
[3.中間層]
 中間層は、例えば、無機粒子、及び樹脂を含有する。中間層を介在させると、リーク発生を抑制し得る程度の絶縁状態を維持しつつ、感光体を露光した時に発生する電流の流れを円滑にして、電気抵抗の上昇を抑えることができる。
 無機粒子としては、例えば、金属(より具体的には、アルミニウム、鉄、又は銅等)の粒子、金属酸化物(より具体的には、酸化チタン、アルミナ、酸化ジルコニウム、酸化スズ、又は酸化亜鉛等)の粒子、又は非金属酸化物(より具体的には、シリカ等)の粒子が挙げられる。これらの無機粒子は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 中間層用樹脂としては、中間層を形成する樹脂として用いることができれば、特に限定されない。
[4.感光体の製造方法]
 感光体の製造方法について説明する。感光体の製造方法は、例えば、感光層形成工程を有する。
[4-1.積層型感光体の製造方法]
 積層型感光体の製造方法において、感光層形成工程は、電荷発生層形成工程と電荷輸送層形成工程とを有する。電荷発生層形成工程では、まず、電荷発生層を形成するための塗布液(以下、電荷発生層用塗布液と記載することがある)を調製する。電荷発生層用塗布液を導電性基体上に塗布する。次いで、適宜な方法で乾燥することによって、塗布した電荷発生層用塗布液に含まれる溶剤の少なくとも一部を除去して電荷発生層を形成する。電荷発生層用塗布液は、例えば、電荷発生剤と、ベース樹脂と、溶剤とを含む。このような電荷発生層用塗布液は、電荷発生剤を溶剤に溶解又は分散させることにより調製する。電荷発生層用塗布液は、必要に応じて各種添加剤を加えてもよい。
 電荷輸送層形成工程では、まず、電荷輸送層を形成するための塗布液(以下、電荷輸送層用塗布液と記載することがある)を調製する。電荷輸送層用塗布液を電荷発生層上に塗布する。次いで、適宜な方法で乾燥することによって、塗布した電荷輸送層用塗布液に含まれる溶剤の少なくとも一部を除去して電荷輸送層を形成する。電荷輸送層用塗布液は、電荷輸送剤と、ポリアリレート樹脂(1)と、溶剤とを含む。電荷輸送層用塗布液は、電荷輸送剤、及びポリアリレート樹脂(1)を溶剤に溶解又は分散させることにより調製する。電荷輸送層形成用塗布液には、必要に応じて各種添加剤を加えてもよい。
[4-2.単層型感光体の製造方法]
 単層型感光体の製造方法において、感光層形成工程では、感光層を形成するための塗布液(以下、感光層用塗布液と記載することがある)を調製する。感光層用塗布液を導電性基体上に塗布する。次いで、適宜な方法で乾燥することによって、塗布した感光層用塗布液に含まれる溶剤の少なくとも一部を除去して感光層を形成する。感光層用塗布液は、例えば、電荷発生剤と、電荷輸送剤と、バインダー樹脂と、溶剤とを含む。このような感光層用塗布液は、電荷発生剤、電荷輸送剤、及びバインダー樹脂を溶剤に溶解又は分散させることにより調製する。感光層用塗布液は、必要に応じて各種添加剤を加えてもよい。
 以下、感光層形成工程の詳細を説明する。電荷発生層用塗布液、電荷輸送層用塗布液、及び感光層用塗布液(以下、これら3つを塗布液と記載することがある)に含有される溶剤は、塗布液に含まれる各成分を溶解又は分散できれば、特に限定されない。溶剤としては、例えば、アルコール類(より具体的には、メタノール、エタノール、イソプロパノール、又はブタノール等)、脂肪族炭化水素(より具体的には、n-ヘキサン、オクタン、又はシクロヘキサン等)、芳香族炭化水素(より具体的には、ベンゼン、トルエン、又はキシレン等)、ハロゲン化炭化水素(より具体的には、ジクロロメタン、ジクロロエタン、四塩化炭素、又はクロロベンゼン等)、エーテル類(より具体的には、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、又はジエチレングリコールジメチルエーテル等)、ケトン類(より具体的には、アセトン、メチルエチルケトン、又はシクロヘキサノン等)、エステル類(より具体的には、酢酸エチル、又は酢酸メチル等)、ジメチルホルムアルデヒド、ジメチルホルムアミド、又はジメチルスルホキシドが挙げられる。これらの溶剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの溶剤のうち、非ハロゲン溶剤を用いることが好ましい。
 更に、電荷輸送層用塗布液に含有される溶剤は、電荷発生層用塗布液に含有される溶剤と異なることが好ましい。積層型感光体を製造する際、通常、電荷発生層、電荷輸送層の順に形成するため、電荷発生層上に電荷輸送層用塗布液を塗布することになる。電荷輸送層形成時に、電荷発生層は、電荷輸送層用塗布液の溶剤に溶解しないことが求められるからである。
 塗布液は、それぞれ各成分を混合し、溶剤に分散することにより調製される。混合又は分散には、例えば、ビーズミル、ロールミル、ボールミル、アトライター、ペイントシェーカー、又は超音波分散器を用いることができる。
 塗布液は、各成分の分散性、又は形成される各々の層の表面平滑性を向上させるために、例えば、界面活性剤又はレベリング剤を含有してもよい。
 塗布液を塗布する方法は、塗布液を均一に塗布できる方法であれば、特に限定されない。塗布方法としては、例えば、ディップコート法、スプレーコート法、スピンコート法、又はバーコート法が挙げられる。
 塗布液に含まれる溶剤の少なくとも一部を除去(例えば、蒸発)する方法としては、塗布液中の溶剤の少なくとも一部を除去させ得る方法であれば、特に限定されない。除去する方法としては、例えば、加熱、減圧、又は加熱と減圧との併用が挙げられる。より具体的には、高温乾燥機、又は減圧乾燥機を用いて、熱処理(熱風乾燥)する方法が挙げられる。熱処理条件は、例えば、40℃以上150℃以下の温度、かつ3分間以上120分間以下の時間である。
 なお、感光体の製造方法は、必要に応じて中間層を形成する工程を更に有してもよい。中間層を形成する工程は、公知の方法を適宜選択することができる。
 以上説明した本発明の電子写真感光体は、耐摩耗性に優れるため、種々の画像形成装置で好適に使用できる。
 以下、実施例を用いて本発明を更に具体的に説明する。なお、本発明は実施例の範囲に何ら限定されるものではない。
感光体の製造
[感光体(A-1)の製造]
 以下、実施例1に係る感光体(A-1)の製造について説明する。
(中間層の形成)
 はじめに、表面処理された酸化チタン(テイカ株式会社製「試作品SMT-A」、平均一次粒径10nm)を準備した。詳しくは、アルミナとシリカとを用いて酸化チタンを表面処理し、更に、表面処理された酸化チタンを湿式分散しながらメチルハイドロジェンポリシロキサンを用いて表面処理したものを準備した。次いで、表面処理された酸化チタン(2質量部)と、ポリアミド樹脂であるアミラン(登録商標)(東レ株式会社製「CM8000」)(1質量部)とを、メタノール(10質量部)、ブタノール(1質量部)及びトルエン(1質量部)を含む溶剤に対して添加した。アミランは、ポリアミド6,ポリアミド12,ポリアミド66,及びポリアミド610の四元共重合ポリアミド樹脂であった。これらをビーズミルを用いて5時間混合し、溶剤中に材料を分散させた。これにより、中間層用塗布液を調製した。
 得られた中間層用塗布液を、目開き5μmのフィルターを用いてろ過した。その後、導電性基体としてのアルミニウム製のドラム状支持体(直径30mm、全長246mm)の表面に、中間層用塗布液をディップコート法を用いて塗布した。続いて、塗布した中間層用塗布液を130℃で30分間乾燥させて、導電性基体(ドラム状支持体)上に中間層(膜厚2μm)を形成した。
(電荷発生層の形成)
 Y型チタニルフタロシアニン(1.5質量部)と、ベース樹脂としてのポリビニルアセタール樹脂(積水化学工業株式会社製「エスレックBX-5」)(1質量部)とを、プロピレングリコールモノメチルエーテル(40質量部)及びテトラヒドロフラン(40質量部)を含む溶剤に対して添加した。これらをビーズミルを用いて2時間混合し、溶剤中に材料を分散させて、電荷発生層用塗布液を作製した。得られた電荷発生層用塗布液を、目開き3μmのフィルターを用いてろ過した。次いで、得られたろ過液を、上述のようにして形成された中間層上にディップコート法を用いて塗布し、50℃で5分間乾燥させた。これにより、中間層上に電荷発生層(膜厚0.3μm)を形成した。
(電荷輸送層の形成)
 正孔輸送剤としての電荷輸送剤(CTM-1)50質量部と、添加剤としてのヒンダードフェノール酸化防止剤(BASF株式会社製「イルガノックス(登録商標)1010」)2質量部と、バインダー樹脂としてのポリアリレート樹脂(Resin-1)(粘度平均分子量50,500)100質量部とを、テトラヒドロフラン350質量部及びトルエン350質量部を含む溶剤に対して添加した。これらを12時間混合し、溶剤中に材料を分散させて、電荷輸送層用塗布液を調製した。
 電荷発生層用塗布液と同様の操作により、電荷輸送層用塗布液を電荷発生層上に塗布した。その後、120℃で40分間乾燥させて、電荷発生層上に電荷輸送層(膜厚20μm)を形成した。その結果、感光体(A-1)が得られた。感光体(A-1)は、導電性基体上に、中間層、電荷発生層、及び電荷輸送層が、この順で積層された構成を有していた。
[感光体(A-2)]
 正孔輸送剤として、電荷輸送剤(CTM-1)の代わりに電荷輸送剤(CTM-2)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-2)を作製した。
[感光体(A-3)]
 正孔輸送剤として、電荷輸送剤(CTM-1)の代わりに電荷輸送剤(CTM-3)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-3)を作製した。
[感光体(A-4)]
 正孔輸送剤として、電荷輸送剤(CTM-1)の代わりに電荷輸送剤(CTM-4)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-4)を作製した。
[感光体(A-5)]
 正孔輸送剤として、電荷輸送剤(CTM-1)の代わりに電荷輸送剤(CTM-5)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-5)を作製した。
[感光体(A-6)]
 正孔輸送剤として、電荷輸送剤(CTM-1)の代わりに電荷輸送剤(CTM-6)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-6)を作製した。
[感光体(A-7)]
 正孔輸送剤として、電荷輸送剤(CTM-1)の代わりに電荷輸送剤(CTM-7)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-7)を作製した。
[感光体(A-8)]
 正孔輸送剤として、電荷輸送剤(CTM-1)の代わりに電荷輸送剤(CTM-8)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-8)を作製した。
[感光体(A-9)]
 正孔輸送剤として、電荷輸送剤(CTM-1)の代わりに電荷輸送剤(CTM-9)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-9)を作製した。
[感光体(A-10)]
 ポリアリレート樹脂(Resin-1)の代わりにポリアリレート樹脂(Resin-2)(粘度平均分子量50,000)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-10)を作製した。
[感光体(A-11)]
 ポリアリレート樹脂(Resin-1)の代わりにポリアリレート樹脂(Resin-3)(粘度平均分子量49,800)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-11)を作製した。
[感光体(A-12)]
 ポリアリレート樹脂(Resin-1)の代わりにポリアリレート樹脂(Resin-4)(粘度平均分子量49,000)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-12)を作製した。
[感光体(A-13)]
 ポリアリレート樹脂(Resin-1)の代わりにポリアリレート樹脂(Resin-5)(粘度平均分子量49,500)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-13)を作製した。
[感光体(A-14)]
 ポリアリレート樹脂(Resin-1)の代わりにポリアリレート樹脂(Resin-6)(粘度平均分子量51,300)を用いた以外は、感光体(A-1)と同様の手法により、感光体(A-14)を作製した。
[感光体(A-15)]
 電荷輸送層の膜厚を薄くした以外は、感光体(A-1)と同様の手法により、感光体(A-15)を作製した。感光体(A-15)の電荷輸送層の膜厚は15.0μmであった。
[感光体(A-16)]
 電荷輸送層の膜厚を厚くした以外は、感光体(A-1)と同様の手法により、感光体(A-16)を作製した。感光体(A-15)の電荷輸送層の膜厚は24.7μmであった。
[感光体(B-1)]
 バインダー樹脂として、ポリアリレート樹脂(Resin-1)の代わりに化学式(Resin-7)で表される繰返し単位を有するポリアリレート樹脂(粘度平均分子量43,600)を用いた以外は、感光体(A-1)と同様の手法により、感光体(B-1)を作製した。
Figure JPOXMLDOC01-appb-C000048
[感光体(B-2)]
 バインダー樹脂として、ポリアリレート樹脂(Resin-1)の代わりに化学式(Resin-8)で表される繰返し単位を有するポリアリレート樹脂(粘度平均分子量46,800)を用いた以外は、感光体(A-1)と同様の手法により、感光体(B-2)を作製した。
Figure JPOXMLDOC01-appb-C000049
[感光体(B-3)]
 バインダー樹脂として、ポリアリレート樹脂(Resin-1)の代わりに化学式(Resin-9)で表される繰返し単位を有するポリカーボネート樹脂(粘度平均分子量48,400)を用いた以外は、感光体(A-1)と同様の手法により、感光体(B-3)を作製した。
Figure JPOXMLDOC01-appb-C000050
[感光体(B-4)]
 バインダー樹脂として、ポリアリレート樹脂(Resin-1)の代わりに化学式(Resin-10)で表される繰返し単位を有するポリカーボネート樹脂(粘度平均分子量50,500)を用いた以外は、感光体(A-1)と同様の手法により、感光体(B-4)を作製した。
Figure JPOXMLDOC01-appb-C000051
[感光体(B-5)]
 バインダー樹脂として、ポリアリレート樹脂(Resin-1)の代わりに化学式(Resin-11)で表される繰返し単位を有するポリカーボネート樹脂(粘度平均分子量50,200)を用いた以外は、感光体(A-1)と同様の手法により、感光体(B-5)を作製した。
Figure JPOXMLDOC01-appb-C000052
[感光体(B-6)]
 バインダー樹脂として、ポリアリレート樹脂(Resin-1)の代わりに化学式(Resin-12)で表される繰返し単位を有するポリカーボネート樹脂(粘度平均分子量50,000)を用いた以外は、感光体(A-1)と同様の手法により、感光体(B-6)を作製した。
Figure JPOXMLDOC01-appb-C000053
[感光体の性能評価]
(電気的特性評価)
(帯電電位V0の測定)
 感光体(A-1)~(A-16)及び感光体(B-1)~(B-6)の何れかを、ドラム感度試験機(ジュンテック株式会社製)を用いて、回転数31rpmとし、ドラム流れ込み電流が-10μmA時の表面電位を測定した。測定した表面電位を帯電電位(V0)とした。測定環境は、温度23℃、かつ湿度50%RHとした。
(感度電位VLの測定)
 感光体(A-1)~(A-16)及び感光体(B-1)~(B-6)の何れかを、ドラム感度試験機(ジェンテック株式会社製)を用いて、回転数を31rpmとし、-600Vになるように帯電させた。次いで、単色光(波長:780nm、露光量:0.8μJ/cm2)をハロゲンランプの光からバンドパスフィルターを用いて取り出し、感光体の表面に照射した。単色光の照射後、80ミリ秒が経過した後の表面電位を測定した。測定した表面電位を感度電位(VL)とした。測定環境は、温度23℃、かつ湿度50%RHとした。
(感光体の耐摩耗性評価)
 感光体(A-1)~(A-16)及び感光体(B-1)~(B-6)の何れかの製造において調製した電荷輸送層用塗布液を、アルミパイプ(直径:78mm)に巻きつけたポリプロピレンシート(厚さ0.3mm)に塗布した。これを、120℃で40分乾燥し、膜厚30μmの電荷輸送層が形成された摩耗評価試験用のシートを作製した。
 このポリプロピレンシートから電荷輸送層を剥離し、ウィールS-36(テーバー社製)に貼り付け、サンプルを作製した。作製したサンプルをロータリーアブレージョンテスター(株式会社東洋精機製作所製)にセットし、摩耗輪CS-10(テーバー社製)を用い、荷重500gfかつ回転速度60rpmの条件で1,000回転させ、摩耗評価試験を実施した。摩耗評価試験前後のサンプルの質量変化である摩耗減量(mg/1000回転)を測定した。得られた摩耗減量に基づいて、感光体の耐摩耗性を評価した。
 表1は、感光体(A-1)~(A-16)及び感光体(B-1)~(B-6)の構成及び性能評価結果を示す。表1中、バインダー樹脂の分子量は、粘度平均分子量を表す。
Figure JPOXMLDOC01-appb-T000054
 表1に示すように、感光体(A-1)~(A-16)では、電荷輸送層は、バインダー樹脂としてのポリアリレート樹脂(Resin-1)~(Resin-6)の何れかを含有していた。ポリカーボネート樹脂(Resin-1)~(Resin-6)は、一般式(1)で表される繰返し単位を有していた。表1に示すように、感光体(A-1)~(A-16)では、摩耗減量が3.9mg以上5.6mg以下であった。
 表1に示すように、感光体(B-1)~(B-6)では、電荷輸送層はバインダー樹脂としてのポリアリレート樹脂(Resin-7)~(Resin-12)を含有していた。ポリアリレート樹脂(Resin-7)~(Resin-12)は、一般式(1)で表される繰返し単位を有していなかった。表1に示すように、感光体(B-1)~(B-3)では、ポリアリレート樹脂(Resin-7)~(Resin-9)が電荷輸送層用塗布液を調製するための溶剤に溶解しなかった。そのため、感光層を形成できず摩耗減量を得られなかった。感光体(B-4)~(B-6)では、摩耗減量が8.2mg以上17.2mg以下であった。
 表1から明らかなように、本発明に係る感光体(感光体(A-1)~(A-16))は、感光体(B-1)~(B-6)に比べ、耐摩耗試験において摩耗減量が少なかった。従って、本発明に係る感光体は、耐摩耗性に優れることが明らかである。
 表1に示すように、感光体(A-1)~(A-4)では、電荷輸送層は正孔輸送剤として電荷輸送剤(CTM-1)~(CTM-4)の何れかを含有していた。電荷輸送剤(CTM-1)~(CTM-4)は、一般式(2)で表される化合物であった。感光体(A-1)~(A-4)では、摩耗減量は4.9mg以上5.2mg以下であり、感度電位VLは-57V以上-42V以下であった。
 表1に示すように、感光体(A-5)~(A-7)では、電荷輸送層は正孔輸送剤として電荷輸送剤(CTM-5)~(CTM-7)の何れかを含有していた。電荷輸送剤(CTM-5)~(CTM-7)は、一般式(3)で表される化合物であった。感光体(A-5)~(A-7)では、摩耗減量は4.9mg以上5.6mg以下であり、感度電位VLは-55V以上-36V以下であった。
 表1に示すように、感光体(A-8)~(A-9)では、電荷輸送層は正孔輸送剤として電荷輸送剤(CTM-8)~(CTM-9)の何れかを含有していた。電荷輸送剤(CTM-8)~(CTM-9)は、一般式(4)で表される化合物であった。感光体(A-8)~(A-9)では、摩耗減量は4.6mg以上4.9mg以下であり、感度電位VLは-67V以上-62V以下であった。
 表1から明らかなように、感光体(A-5)~(A-7)は、感光体(A-1)~(A-4)及び感光体(A-8)~(A-9)に比べ、感度電位VLが大きく感度特性に優れていた。感光体(A-1)~(A-4)は、感光体(A-8)~(A-9)に比べ、感度電位VLが大きく感度特性に優れていた。
 表1から明らかなように、感光体(A-8)~(A-9)は、感光体(A-1)~(A-4)及び感光体(A-5)~(A-7)に比べ、摩耗減量が小さく、耐摩耗性に優れていた。感光体(A-1)~(A-4)は、感光体(A-5)~(A-7)に比べ、摩耗減量が小さく耐摩耗性に優れていた。
 表1に示すように、感光体(A-10)、(A-11)、及び(A-13)では、バインダー樹脂は、ポリアリレート樹脂(Resin-2)、(Resin-3)、及び(Resin-5)の何れかを含有していた。ポリアリレート樹脂(Resin-2)、(Resin-3)、及び(Resin-5)は、一般式(1)中、R1が水素原子を表すポリアリレート樹脂であった。感光体(A-10)(A-11)、及び(A-13)では、摩耗減量が3.9mg以上4.4mg以下であった。
 表1に示すように、感光体(A-1)、(A-12)、及び(A-14)では、バインダー樹脂は、ポリアリレート樹脂(Resin-1)、(Resin-4)、及び(Resin-6)の何れかを含有していた。ポリアリレート樹脂(Resin-1)、(Resin-4)、及び(Resin-6)は、一般式(1)中、R1がメチル基を表すポリアリレート樹脂であった。感光体(A-1)、(A-12)、及び(A-14)では、摩耗減量が4.6mg以上4.9mg以下であった。
 表1から明らかなように、感光体(A-10)、(A-11)、及び(A-13)は、感光体(A-1)、(A-12)、及び(A-14)に比べ、摩耗減量が小さく、耐摩耗性に優れていた。
 本発明に係る電子写真感光体は、複合機のような画像形成装置に利用できる。

Claims (10)

  1.  導電性基体と、感光層とを備える電子写真感光体であって、
     前記感光層は、電荷発生剤と、電荷輸送剤と、バインダー樹脂とを含有し、
     前記バインダー樹脂は、ポリアリレート樹脂を含み、
     前記ポリアリレート樹脂は、一般式(1)で表される繰返し単位を有する、電子写真感光体。
    Figure JPOXMLDOC01-appb-C000001
     前記一般式(1)中、
     R1は、水素原子、又は炭素原子数1以上4以下のアルキル基を表し、
     R2及びR3は、各々独立に、炭素原子数1以上3以下のアルキル基を表し、R2とR3とは互いに異なり、
     Yは、単結合、又は酸素原子を表す。
  2.  前記一般式(1)中、
     R1は、水素原子又はメチル基を表し、
     R2は、メチル基を表し、
     R3は、炭素原子数2以上3以下のアルキル基を表す、請求項1に記載の電子写真感光体。
  3.  前記一般式(1)中、
     R3は、エチル基を表す、請求項1に記載の電子写真感光体。
  4.  前記一般式(1)中、
     R1は、水素原子を表す、請求項1に記載の電子写真感光体。
  5.  前記ポリアリレート樹脂は、化学式(Resin-1)、化学式(Resin-2)、化学式(Resin-3)、化学式(Resin-4)、化学式(Resin-5)、又は化学式(Resin-6)で表される繰り返し単位を有する、請求項1に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
  6.  前記電荷輸送剤が、一般式(2)、一般式(3)、又は一般式(4)で表される化合物を含む、請求項1に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000008
     前記一般式(2)中、
     Q1は、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又は炭素原子数1以上8以下のアルキル基を有してもよいフェニル基を表し、
     2つのQ1は、互いに同一であっても異なってもよく、
     Q2は、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表し、
     Q3、Q4、Q5、Q6、及びQ7は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基で表し、Q3、Q4、Q5、Q6、及びQ7のうちの隣接した二つが互いに結合して環を形成してもよく、
     aは、0以上5以下の整数を表し、aが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のQ2は、互いに同一でも異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000009
     前記一般式(3)中、
     Q8、Q10、Q11、Q12、Q13、及びQ14は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表し、
     Q9及びQ15は、各々独立に、炭素原子数1以上8以下のアルキル基、炭素原子数1以上8以下のアルコキシ基、又はフェニル基を表し、
     bは、0以上5以下の整数を表し、bが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のQ9は、互いに同一でも異なっていてもよく、
     cは、0以上4以下の整数を表し、cが2以上4以下の整数を表す場合、同一のフェニル基に結合する複数のQ15は、互いに同一でも異なっていてもよく、
     kは、0又は1を表す。
    Figure JPOXMLDOC01-appb-C000010
     前記一般式(4)中、
     Ra、Rb及びRcは、各々独立に、炭素原子数1以上8以下のアルキル基、フェニル基、又は炭素原子数1以上8以下のアルコキシ基を表し、
     qは、0以上4以下の整数を表し、qが2以上4以下の整数を表す場合、同一のフェニル基に結合する複数のRcは、互いに同一でも異なっていてもよく、
     m及びnは、各々独立に、0以上5以下の整数を表し、mが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のRbは、互いに同一でも異なっていてもよく、nが2以上5以下の整数を表す場合、同一のフェニル基に結合する複数のRaは、互いに同一でも異なっていてもよい。
  7.  前記一般式(2)中、
     Q1は、炭素原子数1以上8以下のアルキル基を有するフェニル基又は水素原子を表し、
     Q2は、炭素原子数1以上8以下のアルキル基を表し、
     Q3、Q4、Q5、Q6及びQ7は、各々独立に、水素原子、炭素原子数1以上8以下のアルキル基、又は炭素原子数1以上8以下のアルコキシ基を表し、Q3、Q4、Q5、Q6及びQ7のうち隣接した二つが互いに結合して環を形成してもよく、
     aは、0又は1を表し、
     前記一般式(3)中、
     Q8、Q10、Q11、Q12、Q13及びQ14は、各々独立に、水素原子、炭素原子数1以上4以下のアルキル基、又はフェニル基を表し、
     b及びcは、0を表し、
     前記一般式(4)中、
     Ra及びRbは、各々独立に、炭素原子数1以上8以下のアルキル基を表し、
     m及びnは、各々独立に、0以上2以下の整数を表し、
     qは0を表す、請求項6に記載の電子写真感光体。
  8.  前記電荷輸送剤は、化学式(CTM-1)、化学式(CTM-2)、化学式(CTM-3)、化学式(CTM-4)、化学式(CTM-5)、化学式(CTM-6)、化学式(CTM-7)、化学式(CTM-8)、又は化学式(CTM-9)で表される化合物を含む、請求項6に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
  9.  前記感光層は、前記電荷発生剤を含有する電荷発生層と、前記電荷輸送剤、及び前記バインダー樹脂を含有する電荷輸送層とを備え、
     前記電荷輸送層は一層であり、前記電荷輸送層は最表面層として配置される、請求項1に記載の電子写真感光体。
  10.  前記電荷輸送層の厚さは、25.0μm以下である、請求項9に記載の電子写真感光体。
PCT/JP2016/076478 2015-10-30 2016-09-08 電子写真感光体 WO2017073176A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680061866.0A CN108139699B (zh) 2015-10-30 2016-09-08 电子照相感光体
JP2017547664A JP6500996B2 (ja) 2015-10-30 2016-09-08 電子写真感光体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-214194 2015-10-30
JP2015214194 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017073176A1 true WO2017073176A1 (ja) 2017-05-04

Family

ID=58630139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076478 WO2017073176A1 (ja) 2015-10-30 2016-09-08 電子写真感光体

Country Status (3)

Country Link
JP (1) JP6500996B2 (ja)
CN (1) CN108139699B (ja)
WO (1) WO2017073176A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204214A1 (ja) * 2016-05-27 2017-11-30 ユニチカ株式会社 ポリアリレート樹脂、それからなるフィルムおよび積層体
JP2017215584A (ja) * 2016-05-27 2017-12-07 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
WO2019017336A1 (ja) * 2017-07-21 2019-01-24 京セラドキュメントソリューションズ株式会社 ターフェニル化合物、電子写真感光体、及びターフェニル化合物の製造方法
JP2019035900A (ja) * 2017-08-18 2019-03-07 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
EP4198632A1 (en) 2021-12-16 2023-06-21 FUJIFILM Business Innovation Corp. Electrophotographic photoreceptor, process cartridge, and image forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199629A (ja) * 2006-01-30 2007-08-09 Kyocera Mita Corp 電子写真感光体及び画像形成装置
JP2008033140A (ja) * 2006-07-31 2008-02-14 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2013011821A (ja) * 2011-06-30 2013-01-17 Kyocera Document Solutions Inc 電子写真感光体及び画像形成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323000B2 (ja) * 2010-05-28 2013-10-23 京セラドキュメントソリューションズ株式会社 画像形成装置
JP5990154B2 (ja) * 2013-10-30 2016-09-07 京セラドキュメントソリューションズ株式会社 積層型電子写真感光体
CN104914686B (zh) * 2014-03-13 2019-12-31 京瓷办公信息系统株式会社 电子照相感光体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199629A (ja) * 2006-01-30 2007-08-09 Kyocera Mita Corp 電子写真感光体及び画像形成装置
JP2008033140A (ja) * 2006-07-31 2008-02-14 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2013011821A (ja) * 2011-06-30 2013-01-17 Kyocera Document Solutions Inc 電子写真感光体及び画像形成装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204214A1 (ja) * 2016-05-27 2017-11-30 ユニチカ株式会社 ポリアリレート樹脂、それからなるフィルムおよび積層体
JP2017215584A (ja) * 2016-05-27 2017-12-07 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
JP6257871B1 (ja) * 2016-05-27 2018-01-10 ユニチカ株式会社 ポリアリレート樹脂、それからなるフィルムおよび積層体
WO2019017336A1 (ja) * 2017-07-21 2019-01-24 京セラドキュメントソリューションズ株式会社 ターフェニル化合物、電子写真感光体、及びターフェニル化合物の製造方法
JPWO2019017336A1 (ja) * 2017-07-21 2020-07-09 京セラドキュメントソリューションズ株式会社 ターフェニル化合物、電子写真感光体、及びターフェニル化合物の製造方法
US11067909B2 (en) 2017-07-21 2021-07-20 Kyocera Document Solutions Inc. Terphenyl compound, electrophotographic photosensitive member, and method for producing terphenyl compound
JP2019035900A (ja) * 2017-08-18 2019-03-07 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
EP4198632A1 (en) 2021-12-16 2023-06-21 FUJIFILM Business Innovation Corp. Electrophotographic photoreceptor, process cartridge, and image forming apparatus

Also Published As

Publication number Publication date
CN108139699A (zh) 2018-06-08
JPWO2017073176A1 (ja) 2018-08-02
CN108139699B (zh) 2021-06-29
JP6500996B2 (ja) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6493288B2 (ja) 電子写真感光体
JP6406181B2 (ja) 積層型電子写真感光体
WO2017073176A1 (ja) 電子写真感光体
JP6256111B2 (ja) 電子写真感光体
CN107015447B (zh) 电子照相感光体
JP2017223896A (ja) 電子写真感光体
JP6665811B2 (ja) 電子写真感光体
JP6658473B2 (ja) ポリアリレート樹脂及び電子写真感光体
JP6204230B2 (ja) 電子写真感光体
JP6023735B2 (ja) 電子写真感光体
WO2018092418A1 (ja) ポリアリレート樹脂及び電子写真感光体
JP6256123B2 (ja) 電子写真感光体
JP6583231B2 (ja) 電子写真感光体
JP2019077844A (ja) ポリアリレート樹脂及び電子写真感光体
JP6432530B2 (ja) 電子写真感光体
CN107728440B (zh) 聚芳酯树脂及电子照相感光体
CN110050011B (zh) 聚芳酯树脂和电子照相感光体
JP6597572B2 (ja) 電子写真感光体
JP2017049522A (ja) 積層型電子写真感光体
JP6481657B2 (ja) 電子写真感光体
JP6443273B2 (ja) 積層型電子写真感光体、及び積層型電子写真感光体の製造方法
JP6217510B2 (ja) 電子写真感光体
JP6447522B2 (ja) 電子写真感光体
CN107870526B (zh) 电子照相感光体
JP2015175948A (ja) 電子写真感光体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859413

Country of ref document: EP

Kind code of ref document: A1