WO2017067251A1 - 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法 - Google Patents

电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法 Download PDF

Info

Publication number
WO2017067251A1
WO2017067251A1 PCT/CN2016/090623 CN2016090623W WO2017067251A1 WO 2017067251 A1 WO2017067251 A1 WO 2017067251A1 CN 2016090623 W CN2016090623 W CN 2016090623W WO 2017067251 A1 WO2017067251 A1 WO 2017067251A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
rare earth
electrodeposition
heavy rare
bistrifluoromethanesulfonimide
Prior art date
Application number
PCT/CN2016/090623
Other languages
English (en)
French (fr)
Inventor
陈鹏
姜兵
宁红
Original Assignee
北京中科三环高技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中科三环高技术股份有限公司 filed Critical 北京中科三环高技术股份有限公司
Priority to US15/522,676 priority Critical patent/US20170335478A1/en
Priority to DE112016000145.2T priority patent/DE112016000145B4/de
Priority to JP2017510888A priority patent/JP6467499B2/ja
Publication of WO2017067251A1 publication Critical patent/WO2017067251A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the invention belongs to the technical field of production methods of rare earth permanent magnet materials, in particular to electric deposition liquids, and a production method of sintered R-T-B type magnets by attaching heavy rare earth elements by electrodeposition.
  • the rare earth iron-based permanent magnet material represented by neodymium iron boron is the new generation of permanent magnet material with the highest magnetic properties (energy density), the most widely used and the fastest development speed.
  • Adding a certain amount of heavy rare earth elements such as Tb, Dy, etc. to the sintered NdFeB master alloy can effectively increase the intrinsic coercive force (Hcj, hereinafter also referred to as coercive force) of the magnet.
  • the heavy rare earth elements such as Dy and Tb replace the Nd in the Nd 2 Fe 14 B crystal grains of the sintered NdFeB main phase, forming Dy 2 Fe 14 B and Tb 2 Fe 14 B phases, which will increase the anisotropy of the main phase magnetite.
  • the electrochemical method has been one of the research focuses in the field because it can control the thickness of the coating, the amount of heavy rare earth is small, and can handle many shapes and sizes of magnet materials.
  • Electrodeposition methods There are currently two types of electrodeposition methods.
  • One type is a molten salt as a deposition liquid, such as Chinese Patent Application Publication No. CN102103916A.
  • the method has high electrodeposition temperature and high production energy consumption, and is not suitable for industrial production.
  • the other type is a solution in which various types of organic acids are added in an organic solvent as a deposition liquid.
  • a method can be carried out at a normal temperature, such as the method disclosed in Chinese Patent Application Publication No. CN103617884A and CN1480564A.
  • the deposition solution used in these methods is acidic or weakly acidic, and more or less corrosive to the NdFeB master alloy, and the equipment requirements are also high.
  • the deposition liquid is an organic solvent, such electrodeposition is usually carried out at a normal temperature, and certain requirements are imposed on the effective control of the solution and the reaction conditions. Therefore, it is also not suitable for industrial production.
  • a first object of the present invention is to provide an electrodeposition method.
  • a second object of the present invention is to provide an electrodeposition liquid.
  • a third object of the present invention is to provide a method of preparing a sintered R 1 R 2 -TB type permanent magnet material.
  • the present invention provides an electrodeposition method for depositing a heavy rare earth element on a surface of an R 2 -TB type sintered mother alloy, the method comprising the steps of:
  • Step 1 providing an electrodeposition liquid;
  • the electrodeposition liquid comprises a main salt containing a heavy rare earth element, an inducing salt for inducing deposition of a heavy rare earth element, and an organic ionic liquid as a solvent;
  • the main salt is a tetrafluoroboron of a heavy rare earth element Acid salt
  • step 2 the R 2 -TB type sintered mother alloy is electroplated in an electrodeposition bath, and the temperature of the plating process is 0 to 200 °C.
  • the heavy rare earth element is at least one selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and is preferably selected from the group consisting of Dy, Tb, and Ho. At least one of them.
  • the inducing salt is Fe(BF 4 ) 2 and/or Co(BF 4 ) 2 .
  • the inducing salt is Fe(BF 4 ) 2 and Co(BF 4 ) 2
  • the molar concentration of the main salt in the electrodeposition liquid is 0.1 to 2 mol/L.
  • Fe(BF 4 ) 2 is 0.1 to 2 mol/L
  • Co(BF 4 ) 2 is 0.1 to 1 mol/L.
  • the molar concentration ratio of Fe(BF 4 ) 2 : Co(BF 4 ) 2 in the electrodeposition bath is from 1 to 2.5:1.
  • the organic ionic liquid is at least one selected from the group consisting of tetrafluoroborate, bistrifluoromethanesulfonimide salt and bisfluorosulfonimide salt;
  • the tetrafluoroborate is selected from the group consisting of N-methoxyethyl-N-methyldiethylammonium tetrafluoroborate or N-methylethylpyrrolidine tetrafluoroborate;
  • the bistrifluoromethanesulfonimide salt is selected from the group consisting of 1-ethyl-3methylimidazolium bistrifluoromethanesulfonimide salt, N-methoxyethyl-N-methyldiethylammonium double Fluoromethanesulfonimide salt, trimethylpropylammonium bistrifluoromethanesulfonimide salt, trimethylbutylammonium bistrifluoromethanesulfonimide salt, N-methylbutylpyrrolidine double three Fluoromethanesulfonimide salt, N-methyl, propyl pyrrolidine bistrifluoromethanesulfonimide salt, N-methylethylpyrrolidine bistrifluoromethanesulfonimide salt, N-methyl group Oxyethylpyrrolidine bistrifluoromethanesulfonimide salt, N-methylpropylpiperidine bistrifluoromethanesulfonimi
  • the bisfluorosulfonimide salt is selected from the group consisting of 1-ethyl-3-methylimidazolium bisfluorosulfonimide salt, N-methylpropylpyrrolidine bisfluorosulfonimide salt and N-methylpropyl Piperidine difluorosulfonimide salt.
  • the electrodeposition liquid further includes a conductive salt. More preferably, the conductive salt is selected from at least one of LiClO 4 , LiCl, LiBF 4 , KCl, and NaCl.
  • the cathode is the R 2 -TB type sintered mother alloy; the anode may be one of graphite, platinum, silver and gold.
  • R 2 is at least one of rare earth elements, preferably at least one of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. More preferably, it contains at least Nd or Pr, and the R 2 content may be 17 to 38% by weight based on the weight of the master alloy;
  • T includes iron (Fe) in an amount of 55 to 81% by weight based on the weight of the master alloy; and 0 to 6 wt% in terms of the weight of the mother alloy, which is selected from the group consisting of Al, Cu, Zn, In, Si, P, S, Ti, V, At least one element of Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, and W;
  • B is elemental boron in an amount of 0.5 to 1.5% by weight based on the weight of the master alloy; and an impurity element.
  • the electroplating is carried out at a constant voltage of 0.5 to 2 V, preferably 0.8 to 1.6 V; preferably, the temperature is 0 to 100 ° C, preferably 30 to 40 ° C. Within the range; electroplating is carried out for a period of 20 to 500 min, preferably 50 to 300 min.
  • the heavy rare earth element plating layer on the surface of the R 2 -TB type sintered mother alloy has an average thickness of 10 to 40 ⁇ m.
  • the present invention provides an electrodeposition liquid for depositing a heavy rare earth element on a surface of an R 2 -TB type sintered mother alloy, the electrodeposition liquid comprising a main salt containing a heavy rare earth element, and inducing heavy rare earth An inducing salt for elemental deposition and an organic ionic liquid as a solvent; the main salt is a heavy rare earth element tetrafluoroborate.
  • the electrodeposition liquid of the present invention as described above, preferably,
  • the heavy rare earth element is at least one selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and is preferably at least one selected from the group consisting of Dy, Tb, and Ho;
  • the induced salt is Fe(BF 4 ) 2 and/or Co(BF 4 ) 2 ;
  • the organic ionic liquid is selected from at least one salt of a tetrafluoroborate, a bistrifluoromethanesulfonimide salt, and a bisfluorosulfonimide salt;
  • the tetrafluoroborate is selected from the group consisting of N-methoxyethyl-N-methyldiethylammonium tetrafluoroborate or N-methylethylpyrrolidine tetrafluoroborate;
  • the bistrifluoromethanesulfonimide salt is selected from the group consisting of 1-ethyl-3methylimidazolium bistrifluoromethanesulfonimide salt, N-methoxyethyl-N-methyldiethylammonium double Fluoromethanesulfonimide salt, trimethylpropylammonium bistrifluoromethanesulfonimide salt, trimethylbutylammonium bistrifluoromethanesulfonimide salt, N-methylbutylpyrrolidine double three Fluoromethanesulfonimide salt, N-methyl, propyl pyrrolidine bistrifluoromethanesulfonimide salt, N-methylethylpyrrolidine bistrifluoromethanesulfonimide salt, N-methyl group Oxyethylpyrrolidine bistrifluoromethanesulfonimide salt, N-methylpropylpiperidine bistrifluoromethanesulfonimi
  • the bisfluorosulfonimide salt is selected from the group consisting of 1-ethyl-3-methylimidazolium bisfluorosulfonimide salt, N-methylpropylpyrrolidine bisfluorosulfonimide salt and N-methylpropyl Piperidine difluorosulfonimide salt;
  • the molar concentration ratio of the main salt to the inducing salt in the electrodeposition liquid is Tb(BF 4 ) 3 0.1 to 2 mol/L; Fe(BF 4 ) 2 0 to 2 mol/L; Co(BF 4 ) 2 is 0 to 1 mol/L;
  • the molar concentration ratio of Fe(BF 4 ) 2 : Co(BF 4 ) 2 in the electrodeposition bath is 2:1.
  • the electrodeposition liquid of the present invention further comprises a conductive salt; preferably, the conductive salt is at least one selected from the group consisting of LiClO 4 , LiCl, LiBF 4 , KCl and NaCl.
  • the present invention provides a method of preparing a sintered R 1 R 2 -TB type permanent magnet material, characterized in that the method comprises the following steps:
  • Step 1 providing a sintered R 2 -TB type master alloy
  • Step 2 depositing a heavy rare earth element R 1 on a surface of the R 2 -TB type master alloy according to the electrodeposition method according to any one of claims 1 to 12;
  • Step 3 heat-treating a mother alloy having a surface coated with a heavy rare-earth element R 1 to obtain an R 1 R 2 -TB type permanent magnet material;
  • the heat treatment comprises performing a first-stage high-temperature heat treatment at 820 to 920 ° C for 1 to 24 hours under vacuum or under Ar gas; and tempering at 480 to 540 ° C for 1 to 10 hours.
  • the heavy rare earth element has a fast deposition rate on the surface of the R 2 -TB type sintered mother alloy, which can save the electrodeposition process time and improve the production efficiency.
  • the coating is thicker and can reach 10-40 ⁇ m.
  • the method of the invention uses the organic ionic liquid as the solvent of the electrodeposition liquid, and has the advantages of stable solution, wide electrochemical window, high ionic conductivity, low vapor pressure, low volatilization, non-flammability and explosiveness. Therefore, electrodeposition can be performed in the range of 0 to 200 °C. Moreover, the pH of the organic ionic liquid is close to neutral, and has no corrosive effect on the mother alloy material.
  • Figure 1 is a 100X SEM photograph of a test piece according to an embodiment of the present invention.
  • Figure 3 is a 500X SEM photograph of a test piece according to an embodiment of the present invention.
  • the main salts used in the following examples were obtained by reacting cerium oxide, metallic iron, and cobalt carbonate with HBF 4 , respectively.
  • Fe(BF 4 ) 2 was prepared by displacement reaction, and excess HBF 4 was added to the reduced iron powder, heated until the reduced iron powder disappeared and most of the H 2 O and HBF 4 were distilled off, and then cooled to the reaction. After heating in a vacuum drying oven at 100 ° C for 15 h, Fe(BF 4 ) 2 was obtained .
  • the experimentally prepared Fe(BF 4 ) 2 is easily oxidized, so the prepared Fe(BF 4 ) 2 should be stored in an inert gas. Fe(BF 4 ) 2 is used as soon as possible after preparation, otherwise oxidation to Fe(BF 4 ) 3 will cause the experiment to fail.
  • Co (BF 4) 2 by metathesis resultant preparation of the reaction an excess of HBF in CoCO 3 4 and heated to CoCO 3 disappears and evaporated much of H 2 O and HBF 4, After the reaction was cooled to room temperature, Co(BF 4 ) 2 was obtained by heating in a vacuum oven at 100 ° C for 15 h.
  • Tb(BF 4 ) 3 was prepared by metathesis reaction, and excess HBF 4 was added to Tb 2 O 3 , and after cooling to room temperature, it was placed in a vacuum drying oven and heated at 100 ° C for 15 h to obtain Tb ( BF 4 ) 3 .
  • the cathode material of this embodiment is: D7x3mm R 2 FeMB (NdFeB) magnetic material, and the anode is made of 10x10x1mm platinum sheet.
  • the electrodeposition liquid includes a main salt containing a heavy rare earth element, an inducing salt which induces deposition of a heavy rare earth element, and an organic ionic liquid as a solvent; the main salt is a tetrafluoroborate of a heavy rare earth element; and an electrodeposition liquid, Tb ( BF 4 ) 3 is 1 mol/L, Fe(BF 4 ) 2 is 1.2 mol/L, Co(BF 4 ) 2 is 0.6 mol/L, and ionic liquid is 1-butyl-3-methylimidazolium tetrafluoroborate.
  • the plating conditions were as follows: temperature 50 ° C, 1.9 V constant voltage, plating time 300 min, Fe-Co-Tb coating, as shown in Figure 1; EDS analysis of the surface, the results are shown in Table 1.1.
  • the heat treatment process is 900 ° C, after 150 min of heat preservation, then tempering at 480 ° C, cooling after 150 min of heat preservation, the same heat treatment process for the unplated black sheet (black flakes without heavy rare earth in the experiment), the performance of the two magnets The results are shown in Table 1.2.
  • the cathode material of this embodiment is: D7x3mm R 2 FeMB (NdFeB) magnetic material, and the anode is made of 10x10x1mm platinum sheet.
  • the electrodeposition liquid includes a main salt containing a heavy rare earth element, an inducing salt which induces deposition of a heavy rare earth element, and an organic ionic liquid as a solvent; the main salt is a tetrafluoroborate of a heavy rare earth element; and an electrodeposition liquid, Tb ( BF 4 ) 3 is 0.5 mol/L, Fe(BF 4 ) 2 is 1 mol/L, and Co(BF 4 ) 2 is 0.5 mol/L.
  • the ionic liquid is N-methylethylpyrrolidine tetrafluoroborate.
  • the plating conditions were as follows: temperature 0 ° C, 0.5 V constant voltage, plating time 500 min, to obtain Fe-Co-Tb coating.
  • the heat treatment process is 820 ° C, after 24 hours of heat preservation, and then tempered at 540 ° C, after 1 hour of heat preservation, and then deposited by electrode deposition on the surface of R 2 FeMB by the method of the present embodiment to form a mesh type granular crystal coating layer having a thickness of about 10-30 ⁇ m.
  • An R 1 R 2 FeMB magnetic material was obtained.
  • the same heat treatment process was used to treat unplated black sheets (black sheets with no heavy rare earth added in the experiment). The performance comparison results of the two magnets are shown in Table 2.
  • the cathode material of this embodiment is: D7x3mm R 2 FeMB (NdFeB) magnetic material, and the anode is made of 10x10x1mm platinum sheet.
  • the electrodeposition liquid includes a main salt containing a heavy rare earth element, an inducing salt which induces deposition of a heavy rare earth element, and an organic ionic liquid as a solvent; the main salt is a tetrafluoroborate of a heavy rare earth element; and an electrodeposition liquid, Tb ( BF 4 ) 3 is 0.2 mol/L, Fe(BF 4 ) 2 is 0.5 mol/L, Co(BF 4 ) 2 is 0.1 mol/L, and ionic liquid is 1-ethyl-3 methylimidazolium trifluoromethyl.
  • the plating conditions were as follows: a temperature of 200 ° C, a constant voltage of 2 V, and a plating time of 350 min to obtain a Fe-Co-Tb coating.
  • the heat treatment process is 920 ° C, after 1 h of heat preservation, and then tempered at 480 ° C, and after 10 h of heat preservation, it is cooled by the method of the present embodiment to form a layer of granular crystallized crystal layer having a thickness of about 10-30 ⁇ m by electrodeposition on the surface of R 2 FeMB.
  • An R 1 R 2 FeMB magnetic material was obtained.
  • the same heat treatment process was used to treat the unplated black sheet (the black sheet with no heavy rare earth added in the experiment). The performance comparison between the two magnets is shown in Table 3.
  • the cathode material of this embodiment is: D7x3mm R 2 FeMB (NdFeB) magnetic material, and the anode is made of 10x10x1mm platinum sheet.
  • the electrodeposition liquid includes a main salt containing a heavy rare earth element, an inducing salt which induces deposition of a heavy rare earth element, and an organic ionic liquid as a solvent; the main salt is a tetrafluoroborate of a heavy rare earth element; and an electrodeposition liquid, Tb ( BF 4 ) 3 is 0.5 mol/L, Co(BF 4 ) 2 is 0.3 mol/L, and Fe(BF 4 ) 2 is 0.8 mol/L.
  • the ionic liquid is trimethylbutylammonium bistrifluoromethanesulfonimide. salt.
  • the plating conditions were as follows: a temperature of 80 ° C, a constant voltage of 0.8 V, and a plating time of 200 min to obtain a Fe-Co-Tb plating layer.
  • the heat treatment process is 900 ° C, after 5 hours of heat preservation, then cooled, then tempered at 500 ° C, cooled after 6 hours of heat preservation, and electrodeposited to the surface of R 2 FeMB by the method of the present embodiment to form a mesh type granular crystal coating layer having a thickness of about 10-30 ⁇ m.
  • An R 1 R 2 FeMB magnetic material was obtained.
  • the same heat treatment process was used to treat the unplated black sheet (the black sheet with no heavy rare earth added in the experiment). The performance comparison between the two magnets is shown in Table 4.
  • the cathode material of this embodiment is: D7x3mm R 2 FeMB (NdFeB) magnetic material, and the anode is made of 10x10x1mm platinum sheet.
  • the electrodeposition liquid includes a main salt containing a heavy rare earth element, an inducing salt which induces deposition of a heavy rare earth element, and an organic ionic liquid as a solvent; the main salt is a tetrafluoroborate of a heavy rare earth element; and an electrodeposition liquid, Tb ( BF 4 ) 3 is 1 mol/L, Co(BF 4 ) 2 is 1 mol/L, and Fe(BF 4 ) 2 is 1.2 mol/L.
  • the ionic liquid is 1-ethyl-3-methylimidazolium bisfluorosulfonimide. salt.
  • the plating conditions were as follows: a temperature of 120 ° C, a constant voltage of 1.6 V, and a plating time of 500 min to obtain a Fe-Co-Tb plating layer.
  • the heat treatment process is 890 ° C, after 20 h of heat preservation, then tempering at 490 ° C, and after 8 h of heat preservation, cooling, and electrodepositing to the surface of R 2 FeMB by the method of the present embodiment to form a mesh type granular crystal coating layer having a thickness of about 10-30 ⁇ m.
  • An R 1 R 2 FeMB magnetic material was obtained.
  • the same heat treatment process was used to treat the unplated black sheet (black sheet with no heavy rare earth added in the experiment). The performance comparison between the two magnets is shown in Table 5.
  • the cathode material of this embodiment is: D7x3mm R 2 FeMB (NdFeB) magnetic material, and the anode is made of 10x10x1mm platinum sheet.
  • the electrodeposition liquid includes a main salt containing a heavy rare earth element, an induced salt which induces deposition of a heavy rare earth element, an organic ionic liquid and a conductive salt as a solvent; the main salt is a tetrafluoroborate of a heavy rare earth element; and an electrodeposition liquid , Tb(BF 4 ) 3 is 1 mol/L, Fe(BF 4 ) 2 is 2 mol/L, Co(BF 4 ) 2 is 1 mol/L, and ionic liquid is N-methylethylpyrrolidine bistrifluoromethanesulfonate.
  • the imide salt; the concentration of the conductive salt NaCl is 0.5 mol/L.
  • the plating conditions were as follows: a temperature of 150 ° C, a constant voltage of 1.5 V, and a plating time of 300 min to obtain a Fe-Co-Tb plating layer.
  • the heat treatment process is 900 ° C, after 3 hours of heat preservation, then tempering at 480 ° C, and after 2 hours of heat preservation, cooling, and electrodepositing to the surface of R 2 FeMB by the method of the present embodiment to form a mesh type granular crystal coating layer having a thickness of about 10-30 ⁇ m.
  • An R 1 R 2 FeMB magnetic material was obtained.
  • the same heat treatment process was used to treat the unplated black sheet (black sheet with no heavy rare earth added in the experiment). The performance comparison of the two magnets is shown in Table 6.
  • the solubility of heavy rare earth element tetrafluoroborate (such as Tb(BF 4 ) 3 ) is about the solubility of other kinds of heavy rare earth salts (such as TbCl 3 ).
  • Tb(BF 4 ) 3 is generally about 1 mol/L
  • TbCl 3 is about 0.1 mol/L.
  • the system with Tb(BF 4 ) 3 as the main salt can be formed.
  • a plating layer having a thickness of about 10 ⁇ m, and a system of TbCl 3 as a main salt can only form a plating layer having a thickness of about 1 ⁇ m. Even if the former is an alloy, the heavy rare earth content is about 15% to 20%, and the speed is about 1 time faster than the latter. Moreover, considering the increase of solubility, the main salt supplementation time period in the production process can be increased, which is more in line with the actual demand of mass production.

Abstract

电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法,该电沉积方法用于在R 2-T-B型烧结母合金表面沉积重稀土元素,所述方法包括以下步骤:步骤1,提供电沉积液;所述电沉积液包括含重稀土元素的主盐、诱导重稀土元素沉积的诱导盐和作为溶剂的有机离子液体;所述主盐为重稀土元素的四氟硼酸盐;步骤2,将R 2-T-B型烧结母合金在电沉积液内进行电镀,所述电镀过程的温度为0~200℃。有益效果为:重稀土元素在R 2-T-B型烧结母合金表面沉积速度快,能够节省电沉积工艺时间,提高生产效率。镀层厚度更厚,能够达到10-40μm。

Description

电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法 技术领域
本发明属于稀土永磁材料的生产方法技术领域,特别是涉电沉积液,及通过电沉积附着重稀土元素的烧结R-T-B型磁体的生产方法。
背景技术
由于汽车和电子应用领域对节能电动机的需求,在VCM、电动机、信号发生器、手机和MRI等领域中得到广泛应用的烧结钕铁硼在电动机市场的应用得到进一步扩展。剩磁和矫顽力等磁性能的提高推动烧结磁体在电动机市场快速增长。
以钕铁硼为代表的稀土铁系永磁材料是目前磁性能(能量密度)最高、应用最广、发展速度最快的新一代永磁材料。在烧结NdFeB母合金中添加一定量的重稀土元素如Tb、Dy等可有效提高磁体的内禀矫顽力(Hcj,以下也简称为矫顽力)。其中Dy、Tb等重稀土元素取代烧结钕铁硼主相Nd2Fe14B晶粒内的Nd,形成Dy2Fe14B和Tb2Fe14B相,将提高主相磁晶的各向异性场,使磁体矫顽力大幅度增加。但由于重稀土离子与铁离子直接的反铁磁耦合造成烧结钕铁硼磁体的剩磁及磁能积大幅度下降,因此利用重稀土元素提高矫顽力的同时避免剩磁大幅度下降是当今制备烧结钕铁硼磁体的又一重点研究方向。
近年来已有不少通过物理方法如磁控溅射法、气相沉积法、真空蒸镀法及电化学方法在磁体材料表面沉积重稀土元素,然后通过热处理使重稀土元素通过晶界扩散到磁体内部,从而形成从外至内重稀土元素密度快速降低的 结构。这样获得的磁体内禀矫顽力有显著改善而剩磁下降不大。
其中电化学方法因为能够控制镀层厚度,重稀土的用量少,而且可对任何形状、尺寸的磁体材料进行处理等诸多优点,一直是本领域研究的重点之一。
目前电沉积方法大致有两类。一类以熔盐为沉积液,如中国专利申请公开No.CN102103916A。该方法电沉积温度较高,生产能耗大,不适合工业化生产。
另一类是以在有机溶剂中需添加各类有机酸的溶液作为沉积液。这类方法可在常温下进行电镀,如中国专利申请公开No.CN103617884A和CN1480564A所公开的方法。这些方法所用的沉积液为酸性或弱酸性,或多或少地会对钕铁硼母合金产生腐蚀,对设备要求也较高。而且由于沉积液为有机溶剂,因此此类电沉积通常需在常温下进行,且对溶液的有效控制及反应条件提出了一定的要求。因而同样不适合于工业化生产。
因此,在用重稀土处理钕铁硼母合金的工艺中,仍然需开发安全、方便、适于工业化生产的电沉积方法。
发明内容
本发明的第一目的是提供一种电沉积方法。
本发明的第二目的是提供一种电沉积液。
本发明的第三目的是提供一种制备烧结R1R2-T-B型永磁材料的方法。
为了实现上述第一目的,本发明提供一种电沉积方法,用于在R2-T-B型烧结母合金表面沉积重稀土元素,所述方法包括以下步骤:
步骤1,提供电沉积液;所述电沉积液包括含重稀土元素的主盐、诱导重稀土元素沉积的诱导盐和作为溶剂的有机离子液体;所述主盐为重稀土元素的四氟硼酸盐;
步骤2,将R2-T-B型烧结母合金在电沉积液内进行电镀,所述电镀过程的温度为0~200℃。
本发明如上所述的电沉积方法,优选地,所述重稀土元素选自Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种,优选选自Dy、Tb和Ho中的至少一种。
本发明如上所述的电沉积方法,优选地,所述诱导盐为Fe(BF4)2和/或Co(BF4)2
本发明如上所述的电沉积方法,优选地,所述诱导盐为Fe(BF4)2和Co(BF4)2时,所述电沉积液中主盐的摩尔浓度为0.1~2mol/L;Fe(BF4)2为0.1~2mol/L;Co(BF4)2为0.1~1mol/L。更优选地,所述电沉积液中Fe(BF4)2∶Co(BF4)2的摩尔浓度比为1~2.5∶1。
本发明如上所述的电沉积方法,优选地,所述有机离子液体选自四氟硼酸盐、双三氟甲磺酰亚胺盐和双氟磺酰亚胺盐中的至少一种盐;
优选地,所述四氟硼酸盐选自N-甲氧基乙基-N-甲基二乙基铵四氟硼酸盐或N-甲基乙基吡咯烷四氟硼酸盐;
所述双三氟甲磺酰亚胺盐选自1-乙基-3甲基咪唑双三氟甲磺酰亚胺盐、N-甲氧基乙基-N-甲基二乙基铵双三氟甲磺酰亚胺盐、三甲基丙基铵双三氟甲磺酰亚胺盐、三甲基丁基铵双三氟甲磺酰亚胺盐、N-甲基丁基吡咯烷双三氟甲磺酰亚胺盐、N-甲基,丙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基乙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基甲氧基乙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基丙基哌啶双三氟甲磺酰亚胺盐、N-甲基丁基哌啶双三氟甲磺酰亚胺盐和1,2-二甲基-3-丙基咪唑双三氟甲基磺酰亚胺盐;和
所述双氟磺酰亚胺盐选自1-乙基-3-甲基咪唑双氟磺酰亚胺盐、N-甲基丙基吡咯烷双氟磺酰亚胺盐和N-甲基丙基哌啶双氟磺酰亚胺盐。
本发明如上所述的电沉积方法,优选地,所述电沉积液还包括导电盐。 更优选地,所述导电盐选自LiClO4、LiCl、LiBF4、KCl和NaCl中的至少一种。
本发明如上所述的电沉积方法,优选地,该方法中阴极为所述R2-T-B型烧结母合金;阳极可为石墨、铂、银和金中的一种,
优选地,所述R2-T-B型烧结母合金中,其中
R2是稀土元素中的至少一种,优选为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种;更优选至少包含Nd或Pr,R2含量以母合金重量计可为17~38wt%;
T包括以母合金重量计含量为55~81wt%的铁(Fe);和以母合金重量计0~6wt%的选自Al、Cu、Zn、In、Si、P、S、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta和W中的至少一种元素;
B为单质硼,含量为以母合金重量计0.5~1.5wt%;和杂质元素。
本发明如上所述的电沉积方法,优选地,所述电镀在0.5~2V,优选0.8~1.6V的恒定电压下进行;优选地,所述温度在0~100℃,优选30~40℃的范围内;电镀进行的时间在20~500min,优选50~300min。
本发明如上所述的电沉积方法,优选地,步骤2完成后,R2-T-B型烧结母合金表面的重稀土元素镀层平均厚度为10-40μm。
为了实现上述第二目的,本发明提供一种电沉积液,用于在R2-T-B型烧结母合金表面沉积重稀土元素,所述电沉积液包括含重稀土元素的主盐、诱导重稀土元素沉积的诱导盐和作为溶剂的有机离子液体;所述主盐为重稀土元素的四氟硼酸盐。
本发明如上所述的电沉积液,优选地,
所述重稀土元素选自Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种,优选选自Dy、Tb和Ho中的至少一种;
所述诱导盐为Fe(BF4)2和/或Co(BF4)2
所述有机离子液体选自四氟硼酸盐、双三氟甲磺酰亚胺盐和双氟磺酰亚胺盐中的至少一种盐;
优选地,所述四氟硼酸盐选自N-甲氧基乙基-N-甲基二乙基铵四氟硼酸盐或N-甲基乙基吡咯烷四氟硼酸盐;
所述双三氟甲磺酰亚胺盐选自1-乙基-3甲基咪唑双三氟甲磺酰亚胺盐、N-甲氧基乙基-N-甲基二乙基铵双三氟甲磺酰亚胺盐、三甲基丙基铵双三氟甲磺酰亚胺盐、三甲基丁基铵双三氟甲磺酰亚胺盐、N-甲基丁基吡咯烷双三氟甲磺酰亚胺盐、N-甲基,丙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基乙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基甲氧基乙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基丙基哌啶双三氟甲磺酰亚胺盐、N-甲基丁基哌啶双三氟甲磺酰亚胺盐和1,2-二甲基-3-丙基咪唑双三氟甲基磺酰亚胺盐;和
所述双氟磺酰亚胺盐选自1-乙基-3-甲基咪唑双氟磺酰亚胺盐、N-甲基丙基吡咯烷双氟磺酰亚胺盐和N-甲基丙基哌啶双氟磺酰亚胺盐;
更优选地,所述电沉积液中主盐与诱导盐的摩尔浓度配比为Tb(BF4)30.1~2mol/L;Fe(BF4)20~2mol/L;Co(BF4)2为0~1mol/L;
更优选地,所述电沉积液中Fe(BF4)2∶Co(BF4)2的摩尔浓度比为2∶1。
本发明如上所述的电沉积液,优选地,所述电沉积液还包括导电盐更;优选地,所述导电盐选自LiClO4、LiCl、LiBF4、KCl和NaCl中的至少一种。
为了实现上述第三目的,本发明提供一种制备烧结R1R2-T-B型永磁材料的方法,其特征在于,所述方法包括以下步骤:
步骤1,提供烧结R2-T-B型母合金;
步骤2,根据权利要求1-12任意一项所述的电沉积方法在所述R2-T-B型母合金的表面沉积重稀土元素R1;和
步骤3,对表面镀有重稀土元素R1的母合金进行热处理以获得R1R2-T-B型永磁材料;
优选地,所述热处理包括在真空或充Ar气条件下,在820~920℃下进行一级高温热处理1~24小时;和在480~540℃下低温回火保温1~10小时。
本发明的有益效果是:
重稀土元素在R2-T-B型烧结母合金表面沉积速度快,能够节省电沉积工艺时间,提高生产效率。镀层厚度更厚,能够达到10-40μm。
此外本发明的方法以有机离子液体作为电沉积液的溶剂,具有溶液稳定,电化学窗口宽、离子电导率高、蒸汽压极低、不易挥发、不易燃易爆的优点。因此,可在0~200℃的范围内进行电沉积。而且有机离子液体的pH值接近中性,对母合金材料无腐蚀作用。
附图说明
图1为本发明一种实施例的试片的100倍SEM照片;
图2为本发明一种实施例的试片的300倍SEM照片;
图3为本发明一种实施例的试片的500倍SEM照片;
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
下述实施例所用主盐是氧化铽、金属铁、碳酸钴分别与HBF4反应获得。
具体配置过程:
制备Fe(BF4)2的化学反应式:Fe+2HBF4=Fe(BF4)2+H2
实验中,Fe(BF4)2通过置换反应制备所得,在还原铁粉中加入过量的HBF4,加热至还原铁粉消失且蒸去大部分的H2O和HBF4,待反应后冷却至 温,放入真空干燥箱中在100℃下加热15h后得到Fe(BF4)2。实验配制的Fe(BF4)2易氧化,所以应将所制备的Fe(BF4)2储存于惰性气体中。Fe(BF4)2配制完成后尽快使用,否则氧化成Fe(BF4)3会导致实验失败。
制备Co(BF4)2的化学反应式:CoCO3+2HBF4=Co(BF4)2+H2O+CO2
实验中,Co(BF4)2通过复分解反应制备所得,在CoCO3中加入过量的HBF4,加热至CoCO3消失且蒸去大部分的H2O和HBF4,待反应后冷却至室温,放入真空干燥箱中在100℃下加热15h后得到Co(BF4)2
制备Tb(BF4)3的化学反应式:Tb2O3+3HBF4=2Tb(BF4)3+3H2O
实验中,Tb(BF4)3通过复分解反应制备所得,在Tb2O3中加入过量的HBF4,待反应后冷却至室温,将其置于真空干燥箱内在100℃下加热15h得到Tb(BF4)3
下述实验过程需在手套箱中进行,所有实验过程均需在无氧无水蒸气较苛刻的环境下实现,所使用的离子液体也必须经过活化后的4A分子筛干燥处理2h以上。
实施例1
本实施例阴极材料为:D7x3mm R2FeMB(钕铁硼)磁性材料,阳极用10x10x1mm铂片。电沉积液包括含重稀土元素的主盐、诱导重稀土元素沉积的诱导盐和作为溶剂的有机离子液体;所述主盐为重稀土元素的四氟硼酸盐;电沉积液中,Tb(BF4)3为1mol/L,Fe(BF4)2为1.2mol/L,Co(BF4)2为0.6mol/L,离子液体为1-丁基-3-甲基咪唑四氟硼酸盐[EMIM]BF4。电镀条件为:温度50℃,1.9V恒电压条件下,电镀时间300min,得到Fe-Co-Tb镀层,如图1所示;对其表面进行EDS分析,结果如表1.1所示。热处理工艺为900℃,保温150min后冷却,然后480℃回火处理,保温150min后冷却,相同热处理工艺处理未经电镀的黑片(实验中未添加重稀土的黑片)材料,两磁体性能对比结果见表1.2。
表1.1能谱分析结果
Figure PCTCN2016090623-appb-000001
能谱分析结果表明,重稀土(Tb等)的含量比例,含量越高越有利于后续热处理完成后提高磁体的矫顽力。
表1.2磁性材料磁性能分析
磁性能 Hcj(kA/m) (BH)max(kJ/m3) Br(T) Hk(kA/m)
黑片 1275 357.3 1.355 1234
本发明磁体 1355 353.6 1.351 1324
实施例2
本实施例阴极材料为:D7x3mm R2FeMB(钕铁硼)磁性材料,阳极用10x10x1mm铂片。电沉积液包括含重稀土元素的主盐、诱导重稀土元素沉积的诱导盐和作为溶剂的有机离子液体;所述主盐为重稀土元素的四氟硼酸盐;电沉积液中,Tb(BF4)3为0.5mol/L,Fe(BF4)2为1mol/L,Co(BF4)2为0.5mol/L离子液体为N-甲基乙基吡咯烷四氟硼酸盐。电镀条件为:温度0℃,0.5V恒电压条件下,电镀时间500min,得到Fe-Co-Tb镀层。热处理工艺为820℃,保温24h后冷却,然后540℃回火处理,保温1h后冷却,通过本实施例方法电沉积至R2FeMB表面形成一层厚度约10-30μm的网型颗粒状结晶镀层获得R1R2FeMB磁性材料。相同热处理工艺处理未经电镀的黑片(实验中未添 加重稀土的黑片)材料,两磁体性能对比结果见表2。
表2磁性材料磁性能分析
磁性能 Hcj(kA/m) (BH)max(kJ/m3) Br(T) Hk(kA/m)
黑片 1291 356.4 1.352 1259
本发明磁体 1435 351.6 1.348 1396
实施例3
本实施例阴极材料为:D7x3mm R2FeMB(钕铁硼)磁性材料,阳极用10x10x1mm铂片。电沉积液包括含重稀土元素的主盐、诱导重稀土元素沉积的诱导盐和作为溶剂的有机离子液体;所述主盐为重稀土元素的四氟硼酸盐;电沉积液中,Tb(BF4)3为0.2mol/L,Fe(BF4)2为0.5mol/L,Co(BF4)2为0.1mol/L,离子液体为1-乙基-3甲基咪唑双三氟甲磺酰亚胺盐。电镀条件为:温度200℃,2V恒电压条件下,电镀时间350min,得到Fe-Co-Tb镀层。热处理工艺为920℃,保温1h后冷却,然后480℃回火处理,保温10h后冷却,通过本实施例方法电沉积至R2FeMB表面形成一层厚度约10-30μm的网型颗粒状结晶镀层获得R1R2FeMB磁性材料。相同热处理工艺处理未经电镀的黑片(实验中未添加重稀土的黑片)材料,两磁体性能对比结果见表3。
表3磁性材料磁性能分析
磁性能 Hcj(kA/m) (BH)max(kJ/m3) Br(T) Hk(kA/m)
黑片 1370 353.8 1.352 1331
本发明磁体 1515 350.4 1.349 1460
实施例4
本实施例阴极材料为:D7x3mm R2FeMB(钕铁硼)磁性材料,阳极用10x10x1mm铂片。电沉积液包括含重稀土元素的主盐、诱导重稀土元素沉积 的诱导盐和作为溶剂的有机离子液体;所述主盐为重稀土元素的四氟硼酸盐;电沉积液中,Tb(BF4)3为0.5mol/L,Co(BF4)2为0.3mol/L,Fe(BF4)2为0.8mol/L离子液体为三甲基丁基铵双三氟甲磺酰亚胺盐。电镀条件为:温度80℃,0.8V恒电压条件下,电镀时间200min,得到Fe-Co-Tb镀层。热处理工艺为900℃,保温5h后冷却,然后500℃回火处理,保温6h后冷却,通过本实施例方法电沉积至R2FeMB表面形成一层厚度约10-30μm的网型颗粒状结晶镀层获得R1R2FeMB磁性材料。相同热处理工艺处理未经电镀的黑片(实验中未添加重稀土的黑片)材料,两磁体性能对比结果见表4。
表4磁性材料磁性能分析
磁性能 Hcj(kA/m) (BH)max(kJ/m3) Br(T) Hk(kA/m)
黑片 1285 354.7 1.359 1250
本发明磁体 1435 351.1 1.351 1379
实施例5
本实施例阴极材料为:D7x3mm R2FeMB(钕铁硼)磁性材料,阳极用10x10x1mm铂片。电沉积液包括含重稀土元素的主盐、诱导重稀土元素沉积的诱导盐和作为溶剂的有机离子液体;所述主盐为重稀土元素的四氟硼酸盐;电沉积液中,Tb(BF4)3为1mol/L,Co(BF4)2为1mol/L,Fe(BF4)2为1.2mol/L离子液体为1-乙基-3-甲基咪唑双氟磺酰亚胺盐。电镀条件为:温度120℃,1.6V恒电压条件下,电镀时间500min,得到Fe-Co-Tb镀层。热处理工艺为890℃,保温20h后冷却,然后490℃回火处理,保温8h后冷却,通过本实施例方法电沉积至R2FeMB表面形成一层厚度约10-30μm的网型颗粒状结晶镀层获得R1R2FeMB磁性材料。相同热处理工艺处理未经电镀的黑片(实验中未添加重稀土的黑片)材料,两磁体性能对比结果见表5。
表5磁性材料磁性能分析
磁性能 Hcj(kA/m) (BH)max(kJ/m3) Br(T) Hk(kA/m)
黑片 1272 357.6 1.352 1196
本发明磁体 1435 350.1 1.347 1365
实施例6
本实施例阴极材料为:D7x3mm R2FeMB(钕铁硼)磁性材料,阳极用10x10x1mm铂片。电沉积液包括含重稀土元素的主盐、诱导重稀土元素沉积的诱导盐、作为溶剂的有机离子液体和导电盐;所述主盐为重稀土元素的四氟硼酸盐;电沉积液中,Tb(BF4)3为1mol/L,Fe(BF4)2为2mol/L,Co(BF4)2为1mol/L,离子液体为N-甲基乙基吡咯烷双三氟甲磺酰亚胺盐;导电盐NaCl的浓度为0.5mol/L。电镀条件为:温度150℃,1.5V恒电压条件下,电镀时间300min,得到Fe-Co-Tb镀层。热处理工艺为900℃,保温3h后冷却,然后480℃回火处理,保温2h后冷却,通过本实施例方法电沉积至R2FeMB表面形成一层厚度约10-30μm的网型颗粒状结晶镀层获得R1R2FeMB磁性材料。相同热处理工艺处理未经电镀的黑片(实验中未添加重稀土的黑片)材料,两磁体性能对比结果见表6。
表6磁性材料磁性能分析
磁性能 Hcj(kA/m) (BH)max(kJ/m3) Br(T) Hk(kA/m)
黑片 1410 344.8 1.341 1334
本发明磁体 1595 339.4 1.335 1516
在上述实施例中,实验结果表明本电沉积工艺制备的磁体矫顽力Hcj都得到了提高,且对剩磁Br影响较小。
此外,需要说明的是,在相同温度,相同有机溶剂条件下,重稀土元素的四氟硼酸盐(如Tb(BF4)3)溶解度约为其他种类重稀土盐(如TbCl3)溶解度的十倍,前者Tb(BF4)3一般约1mol/L,后者TbCl3约0.1mol/L,相同时间下(如电沉积60min),以Tb(BF4)3为主盐的体系能形成约10μm厚度的镀层,而TbCl3为主盐的体系只能形成约1μm厚度的镀层,即使考虑到前者 为合金,重稀土含量约15%-20%,速度也比后者快约1倍。而且考虑到溶解度提高,生产过程主盐补加时间周期可增大,更符合批量生产的实际需求。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (15)

  1. 一种电沉积方法,用于在R2-T-B型烧结母合金表面沉积重稀土元素,其特征在于,所述方法包括以下步骤:
    步骤1,提供电沉积液;所述电沉积液包括含重稀土元素的主盐、诱导重稀土元素沉积的诱导盐和作为溶剂的有机离子液体;所述主盐为重稀土元素的四氟硼酸盐;
    步骤2,将R2-T-B型烧结母合金在电沉积液内进行电镀,所述电镀过程的温度为0~200℃。
  2. 根据权利要求1所述的电沉积方法,其特征在于,所述重稀土元素选自Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种,优选选自Dy、Tb和Ho中的至少一种。
  3. 根据权利要求1所述的电沉积方法,其特征在于,所述诱导盐为Fe(BF4)2和/或Co(BF4)2
  4. 根据权利要求1所述的电沉积方法,其特征在于,所述诱导盐为Fe(BF4)2和Co(BF4)2时,所述电沉积液中主盐的摩尔浓度为0.1~2mol/L;Fe(BF4)2为0.1~2mol/L;Co(BF4)2为0.1~1mol/L。
  5. 根据权利要求4所述的电沉积方法,其特征在于,所述电沉积液中Fe(BF4)2∶Co(BF4)2的摩尔浓度比为1~2.5∶1。
  6. 根据权利要求1所述的电沉积方法,其特征在于,所述有机离子液体选自四氟硼酸盐、双三氟甲磺酰亚胺盐和双氟磺酰亚胺盐中的至少一种盐;
    优选地,所述四氟硼酸盐选自N-甲氧基乙基-N-甲基二乙基铵四氟硼酸盐或N-甲基乙基吡咯烷四氟硼酸盐;
    所述双三氟甲磺酰亚胺盐选自1-乙基-3甲基咪唑双三氟甲磺酰亚胺盐、N-甲氧基乙基-N-甲基二乙基铵双三氟甲磺酰亚胺盐、三甲基丙基铵双三氟 甲磺酰亚胺盐、三甲基丁基铵双三氟甲磺酰亚胺盐、N-甲基丁基吡咯烷双三氟甲磺酰亚胺盐、N-甲基,丙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基乙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基甲氧基乙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基丙基哌啶双三氟甲磺酰亚胺盐、N-甲基丁基哌啶双三氟甲磺酰亚胺盐和1,2-二甲基-3-丙基咪唑双三氟甲基磺酰亚胺盐;和
    所述双氟磺酰亚胺盐选自1-乙基-3-甲基咪唑双氟磺酰亚胺盐、N-甲基丙基吡咯烷双氟磺酰亚胺盐和N-甲基丙基哌啶双氟磺酰亚胺盐。
  7. 根据权利要求1所述的电沉积方法,其特征在于,所述电沉积液还包括导电盐。
  8. 根据权利要求7所述的电沉积方法,其特征在于,所述导电盐选自LiClO4、LiCl、LiBF4、KCl和NaCl中的至少一种。
  9. 根据权利要求1所述的电沉积方法,其特征在于,该方法中阴极为所述R2-T-B型烧结母合金;阳极可为石墨、铂、银和金中的一种,
    优选地,所述R2-T-B型烧结母合金中,其中
    R2是稀土元素中的至少一种,优选为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种;更优选至少包含Nd或Pr,R2含量以母合金重量计可为17~38wt%;
    T包括以母合金重量计含量为55~81wt%的铁(Fe);和以母合金重量计0~6wt%的选自Al、Cu、Zn、In、Si、P、S、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta和W中的至少一种元素;
    B为单质硼,含量为以母合金重量计0.5~1.5wt%;和
    杂质元素。
  10. 根据权利要求1所述的电沉积方法,其特征在于,所述电镀在0.5~2V,优选0.8~1.6V的恒定电压下进行;优选地,所述温度在0~100℃,优选30~40℃的范围内;电镀进行的时间在20~500min,优选50~300min。
  11. 根据权利要求1所述的电沉积方法,其特征在于,步骤2完成后,R2-T-B型烧结母合金表面的重稀土元素镀层平均厚度为10-40μm。
  12. 一种电沉积液,用于在R2-T-B型烧结母合金表面沉积重稀土元素,所述电沉积液包括含重稀土元素的主盐、诱导重稀土元素沉积的诱导盐和作为溶剂的有机离子液体;所述主盐为重稀土元素的四氟硼酸盐。
  13. 根据权利要求12所述的电沉积液,其特征在于,
    所述重稀土元素选自Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu中的至少一种,优选选自Dy、Tb和Ho中的至少一种;
    所述诱导盐为Fe(BF4)2和/或Co(BF4)2
    所述有机离子液体选自四氟硼酸盐、双三氟甲磺酰亚胺盐和双氟磺酰亚胺盐中的至少一种盐;
    优选地,所述四氟硼酸盐选自N-甲氧基乙基-N-甲基二乙基铵四氟硼酸盐或N-甲基乙基吡咯烷四氟硼酸盐;
    所述双三氟甲磺酰亚胺盐选自1-乙基-3甲基咪唑双三氟甲磺酰亚胺盐、N-甲氧基乙基-N-甲基二乙基铵双三氟甲磺酰亚胺盐、三甲基丙基铵双三氟甲磺酰亚胺盐、三甲基丁基铵双三氟甲磺酰亚胺盐、N-甲基丁基吡咯烷双三氟甲磺酰亚胺盐、N-甲基,丙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基乙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基甲氧基乙基吡咯烷双三氟甲磺酰亚胺盐、N-甲基丙基哌啶双三氟甲磺酰亚胺盐、N-甲基丁基哌啶双三氟甲磺酰亚胺盐和1,2-二甲基-3-丙基咪唑双三氟甲基磺酰亚胺盐;和
    所述双氟磺酰亚胺盐选自1-乙基-3-甲基咪唑双氟磺酰亚胺盐、N-甲基丙基吡咯烷双氟磺酰亚胺盐和N-甲基丙基哌啶双氟磺酰亚胺盐;
    更优选地,所述电沉积液中主盐与诱导盐的摩尔浓度配比为Tb(BF4)30.1~2mol/L;Fe(BF4)20~2mol/L;Co(BF4)20~1mol/L;
    更优选地,所述电沉积液中Fe(BF4)2∶Co(BF4)2的摩尔浓度比为2∶1。
  14. 根据权利要求13所述的电沉积液,其特征在于,所述电沉积液还包括导电盐;优选地,所述导电盐选自LiClO4、LiCl、LiBF4、KCl和NaCl中的至少一种。
  15. 一种制备烧结R1R2-T-B型永磁材料的方法,其特征在于,所述方法包括以下步骤:
    步骤1,提供烧结R2-T-B型母合金;
    步骤2,根据权利要求1-12任意一项所述的电沉积方法在所述R2-T-B型母合金的表面沉积重稀土元素R1;和
    步骤3,对表面镀有重稀土元素R1的母合金进行热处理以获得R1R2-T-B型永磁材料;
    优选地,所述热处理包括在真空或充Ar气条件下,在820~920℃下进行一级高温热处理1~24小时;和在480~540℃下低温回火保温1~10小时。
PCT/CN2016/090623 2015-10-21 2016-07-20 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法 WO2017067251A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/522,676 US20170335478A1 (en) 2015-10-21 2016-07-20 Electro-deposition process, electro-deposition bath, and method for preparing rare earth permanent magnetic material through electro-deposition
DE112016000145.2T DE112016000145B4 (de) 2015-10-21 2016-07-20 Elektroabscheidungsverfahren, Elektroabscheidungsbad und Verfahren zur Herstellung eines Seltenerdendauermagnetmaterials durch Elektroabscheidung
JP2017510888A JP6467499B2 (ja) 2015-10-21 2016-07-20 電着による希土類永久磁石材料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510694823.3 2015-10-21
CN201510694823.3A CN105839152A (zh) 2015-10-21 2015-10-21 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法

Publications (1)

Publication Number Publication Date
WO2017067251A1 true WO2017067251A1 (zh) 2017-04-27

Family

ID=56580495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090623 WO2017067251A1 (zh) 2015-10-21 2016-07-20 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法

Country Status (5)

Country Link
US (1) US20170335478A1 (zh)
JP (1) JP6467499B2 (zh)
CN (1) CN105839152A (zh)
DE (1) DE112016000145B4 (zh)
WO (1) WO2017067251A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699729A (zh) * 2019-09-10 2020-01-17 桂林理工大学 一种稀土四氟化物NalnF4薄膜及其制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782980B (zh) 2017-02-08 2018-11-13 包头天和磁材技术有限责任公司 永磁材料的制造方法
US20220262529A9 (en) 2018-01-02 2022-08-18 Cerner Innovation, Inc. Clinical Notifications
CN109576560A (zh) * 2018-10-08 2019-04-05 柳州凯通新材料科技有限公司 一种电沉积法制备高速电机电芯材料的工艺
CN109208043B (zh) * 2018-10-12 2020-04-21 东北大学 一种电沉积制备稀土金属钆薄膜的方法
CN109112590B (zh) * 2018-10-12 2020-04-21 东北大学 一种低温电化学沉积制备金属铥薄膜的方法
CN109136990B (zh) * 2018-10-12 2020-04-28 东北大学 一种以氯化镧为原料低温电沉积制备金属镧的方法
CN109208034B (zh) * 2018-10-12 2020-04-28 东北大学 一种低温电解氯化钕制备稀土金属钕的方法
CN109338423B (zh) * 2018-10-12 2020-04-28 东北大学 一种低成本电化学沉积制备稀土金属铽薄膜的方法
CN109208033B (zh) * 2018-10-12 2020-04-28 东北大学 一种低成本电解氯化镨生产金属镨的方法
CN110373591A (zh) * 2019-08-01 2019-10-25 苏州航大新材料科技有限公司 一种磁性材料用钐钴铁铜锆合金及其制备方法
CN110923747A (zh) * 2019-12-09 2020-03-27 中国石油大学(华东) 一种铁酸铋光催化薄膜电沉积的制备方法
CN111893526B (zh) * 2020-08-06 2022-05-13 中国科学技术大学 一种纳米银合金修饰基底及其制备方法和应用
CN111826691B (zh) * 2020-08-21 2021-09-21 东北大学 一种溶剂化离子液体制备锌钽合金的方法
CN112992461B (zh) * 2021-03-17 2023-05-30 福建省长汀金龙稀土有限公司 一种r-t-b磁体及其制备方法
CN113881997B (zh) * 2021-12-01 2022-03-11 天津三环乐喜新材料有限公司 一种用于烧结钕铁硼的镍钴基纳米复合镀层的制备方法
CN115798908B (zh) * 2022-11-14 2023-11-10 中磁科技股份有限公司 一种超薄层稀土包覆钕铁硼合金粉末的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509142A (zh) * 2009-03-31 2009-08-19 哈尔滨工业大学 一种利用离子液体脉冲电沉积技术制备TbFeCo合金薄膜的方法
CN101538725A (zh) * 2009-03-31 2009-09-23 哈尔滨工业大学 一种利用离子液体电沉积技术制备Tb-Co合金层的方法
CN103617884A (zh) * 2013-12-11 2014-03-05 北京科技大学 一种烧结NdFeB磁体的重稀土附着方法
CN103839670A (zh) * 2014-03-18 2014-06-04 安徽大地熊新材料股份有限公司 一种制备高矫顽力的烧结钕铁硼永磁体的方法
DE102013202254A1 (de) * 2013-02-12 2014-08-14 Siemens Aktiengesellschaft Verfahren zur Herstellung von Hochenergiemagneten

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2750902B2 (ja) * 1989-06-21 1998-05-18 株式会社トーキン 希土類金属―遷移金属系合金めっき方法
JPH05217744A (ja) * 1992-02-06 1993-08-27 Tdk Corp めっき磁性薄膜およびその製造方法
CN1206391C (zh) 2003-07-18 2005-06-15 中山大学 扫描电位沉积法制备稀土合金的方法
JP4765747B2 (ja) * 2006-04-19 2011-09-07 日立金属株式会社 R−Fe−B系希土類焼結磁石の製造方法
CN102103916B (zh) 2009-12-17 2012-12-19 北京有色金属研究总院 一种钕铁硼磁体的制备方法
CN102776547B (zh) * 2012-08-23 2015-01-21 安泰科技股份有限公司 稀土永磁材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509142A (zh) * 2009-03-31 2009-08-19 哈尔滨工业大学 一种利用离子液体脉冲电沉积技术制备TbFeCo合金薄膜的方法
CN101538725A (zh) * 2009-03-31 2009-09-23 哈尔滨工业大学 一种利用离子液体电沉积技术制备Tb-Co合金层的方法
DE102013202254A1 (de) * 2013-02-12 2014-08-14 Siemens Aktiengesellschaft Verfahren zur Herstellung von Hochenergiemagneten
CN103617884A (zh) * 2013-12-11 2014-03-05 北京科技大学 一种烧结NdFeB磁体的重稀土附着方法
CN103839670A (zh) * 2014-03-18 2014-06-04 安徽大地熊新材料股份有限公司 一种制备高矫顽力的烧结钕铁硼永磁体的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699729A (zh) * 2019-09-10 2020-01-17 桂林理工大学 一种稀土四氟化物NalnF4薄膜及其制备方法
CN110699729B (zh) * 2019-09-10 2021-11-30 桂林理工大学 一种稀土四氟化物NalnF4薄膜及其制备方法

Also Published As

Publication number Publication date
JP6467499B2 (ja) 2019-02-13
DE112016000145B4 (de) 2023-06-22
JP2018502212A (ja) 2018-01-25
DE112016000145T5 (de) 2017-06-29
CN105839152A (zh) 2016-08-10
US20170335478A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
WO2017067251A1 (zh) 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法
CN106782980B (zh) 永磁材料的制造方法
CN105185497B (zh) 一种永磁材料的制备方法
EP3121823B1 (en) Method for preparing grain boundary diffused rare earth permanent magnetic material by vapor deposition using composite target
EP3239363B1 (en) Fe-ni alloy metal foil having excellent heat resilience and method for manufacturing same
WO2015085687A1 (zh) 一种烧结NdFeB磁体的重稀土附着方法
JP6470816B2 (ja) 高保磁力Nd−Fe−B希土類永久磁石及びその製造プロセス
CN105648487A (zh) 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法
CN104575903A (zh) 一种添加Dy粉末的钕铁硼磁体及其制备方法
CN100554530C (zh) 稀土类磁铁的制造方法及电镀液
CN104505247A (zh) 一种改善钕铁硼磁体性能的固体扩散工艺
Suppan et al. Electroplating dysprosium from IL-based solutions: a promising electrochemical step to produce stronger high performance Nd (Dy)-Fe-B sintered magnets
CN108597710B (zh) 一种钐铁氮磁纳米阵列的制备方法
CN109903944B (zh) 一种NdFeB磁体
CN106356187B (zh) 一种钕铁硼表面渗镝工艺
CN109473247A (zh) 一种钕铁硼晶界渗透合金铸片的制备方法
CN108565088B (zh) 一种带涂层的钕铁硼烧结磁体及其制备方法
CN117542645A (zh) 一种提高稀土永磁体磁性能的方法
EP3933859A1 (en) Magnetic stabilization method for permanent magnet, magnetically stabilized permanent magnet, and permanent magnet motor
Wang et al. Dy Electrodeposition on Sintered Nd-Fe-B
Heng et al. Microstructure and magnetic properties of electrodeposited Gd-Co alloy films
Wei et al. DC aqueous electrodeposition of Sm-Co permanent magnets
Bernasconi et al. Electrodeposition of Equiatomic FePt Permanent Magnets from Non-Aqueous Electrolytes Based on Ethylene Glycol
JPH05226125A (ja) 高耐食性希土類磁石の製造方法
CN110277211A (zh) 一种钐铁氮磁纳米管的制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017510888

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016000145

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856686

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16856686

Country of ref document: EP

Kind code of ref document: A1