WO2017061468A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2017061468A1
WO2017061468A1 PCT/JP2016/079618 JP2016079618W WO2017061468A1 WO 2017061468 A1 WO2017061468 A1 WO 2017061468A1 JP 2016079618 W JP2016079618 W JP 2016079618W WO 2017061468 A1 WO2017061468 A1 WO 2017061468A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
ion secondary
active material
secondary battery
Prior art date
Application number
PCT/JP2016/079618
Other languages
English (en)
French (fr)
Inventor
利絵 寺西
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2017544526A priority Critical patent/JP6925972B2/ja
Priority to US15/751,402 priority patent/US10566650B2/en
Priority to EP16853622.5A priority patent/EP3361544A4/en
Priority to CN201680051394.0A priority patent/CN108028418B/zh
Priority to KR1020187006191A priority patent/KR20180054589A/ko
Publication of WO2017061468A1 publication Critical patent/WO2017061468A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/388Halogens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • This application claims priority based on Japanese Patent Application No. 2015-198041 filed in Japan on October 5, 2015, the contents of which are incorporated herein by reference.
  • a lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolyte.
  • an electrode having an electrode active material layer is used as the positive electrode and the negative electrode.
  • the electrode active material layer is usually formed by applying a composition containing an electrode active material, a conductive additive and a binder to a current collector.
  • the electrode active material is an important factor related to the battery capacity, and as the negative electrode active material, for example, graphite (graphite), silicon, silicon oxide or the like is used.
  • negative electrode active materials have a function of occluding or releasing lithium ions during charge / discharge, but lithium ions react irreversibly with the negative electrode active material during initial charge, resulting in a decrease in battery capacity (discharge capacity).
  • discharge capacity battery capacity
  • a process (pre-doping process) of previously doping lithium ions into the negative electrode active material layer constituting the negative electrode is performed before the initial charge. If the irreversible reaction is caused in advance by performing a pre-doping process, the generation of the irreversible reaction and by-products can be suppressed during subsequent initial charging.
  • the pre-doping treatment is performed by a method in which lithium metal is brought into contact with the negative electrode active material layer.
  • an irreversible active material such as lithium silicate (Li 4 SiO 4 )
  • an electrode interface film SEI
  • SEI electrode interface film
  • An object of the present invention is to provide a lithium ion secondary battery having good SEI and excellent charge / discharge characteristics.
  • a lithium ion secondary battery including at least one cell in which a positive electrode, an electrolyte layer, and a negative electrode are stacked in this order, wherein the electrolyte layer contains a fluoride, and the negative electrode is a silicon compound Lithium ion, wherein the fluorine / silicon mass ratio (F / Si ratio) on the surface of the negative electrode active material layer is 1.0 or less in at least one of the negative electrodes Secondary battery.
  • the lithium ion secondary battery according to the present invention includes one or more positive electrodes, one or more electrolyte layers containing a fluoride, and one or more negative electrodes having a negative electrode active material layer containing a silicon compound. It is a lithium ion secondary battery.
  • This lithium ion secondary battery includes a cell in which a positive electrode, an electrolyte layer, and a negative electrode are stacked in this order.
  • the lithium ion secondary battery includes at least one negative electrode having a fluorine / silicon mass ratio (F / Si ratio) of 1.0 or less on the surface of the negative electrode active material layer.
  • FIG. 1 shows a lithium ion secondary battery 10A (10) according to the first embodiment of the present invention.
  • the lithium ion secondary battery 10 ⁇ / b> A includes a plurality of positive electrodes 1, a separator 2 that forms an electrolyte layer containing a fluoride, and a negative electrode 3 that has a negative electrode active material layer containing a silicon compound.
  • FIG. 1 shows, as an example of an electrode laminate, a cross section of an electrode laminate 9 provided with a plurality of cells in which a negative electrode 3 having a rectangular shape in plan view, a separator 2, and a positive electrode 1 are sequentially laminated.
  • the electrode laminate 9 has four cells in which the negative electrode 3 / the separator 2 / the positive electrode 1 are sequentially laminated, that is, the first cell U1 to the fourth cell U4.
  • a separator 2 is disposed between the cells stacked in the electrode stack 9. Further, a negative electrode 3e (3) is further laminated on the outer side of the fourth cell U4 via the separator 2.
  • Each positive electrode 1 has a structure in which a positive electrode current collector has an aluminum foil in which a large number of through holes are formed (punched), and a positive electrode active material layer made of a positive electrode material is formed on both surfaces of the positive electrode current collector
  • a positive electrode active material layer made of a positive electrode material is formed on both surfaces of the positive electrode current collector
  • Each separator 2 forms an electrolyte layer in which a porous resin sheet is impregnated with an electrolyte solution containing fluoride.
  • the thickness of the separator 2 is preferably 5 ⁇ m to 30 ⁇ m, for example.
  • Each negative electrode 3 has a copper foil having a large number of through-holes as a negative electrode current collector, and a negative electrode active material layer made of a negative electrode material containing a silicon compound was formed on both surfaces of the negative electrode current collector. It has a configuration.
  • the thickness of each negative electrode active material layer is preferably, for example, 5 ⁇ m to 50 ⁇ m.
  • the lithium metal foil 4 is placed so as to be in contact with the negative electrode 3a and the negative electrode 3e constituting the outermost layer of the electrode laminate 9.
  • the lithium metal foil 4 serves as a lithium supply source in the pre-doping process.
  • the thickness of each lithium metal foil 4 is preferably 10 ⁇ m to 500 ⁇ m, for example.
  • the metal plate (metal foil) constituting the positive electrode current collector and the negative electrode current collector is provided with a large number of through holes.
  • the through holes in the current collectors of the positive electrode 1 and the negative electrode 3 lithium can easily diffuse and move between the electrodes in a state where the positive electrode 1 and the negative electrode 3 are laminated.
  • the lithium doping process is performed uniformly on each electrode, the charge transfer resistance during battery use is reduced, and the battery capacity retention rate is improved.
  • Each positive electrode 1 has a lead wire, and each lead wire is connected and bundled to form a lead tab 1z.
  • Each negative electrode 3 has a lead wire, and each lead wire is connected and bundled to form a lead tab 3z.
  • the electrode laminate 9 is housed in an exterior body made of aluminum laminate (not shown) together with the electrolytic solution.
  • the lead tab 1z and the lead tab 3z are extended to the outside of the exterior body, and the exterior body is sealed so that the electrolyte solution inside does not leak.
  • lithium fluoride LiF
  • LiF lithium fluoride
  • a SEI Solid Electrolyte Interphase
  • this SEI prevents the entry of solvent molecules solvated with lithium ions into the negative electrode when charging and discharging are repeated during use, and suppresses the destruction of the negative electrode structure. This is considered to contribute to the improvement of the cycle characteristics of the battery.
  • SEI Solid Electrolyte Interphase
  • the fluorine / silicon mass ratio (F / Si ratio) on the surface of the negative electrode active material layer constituting at least one negative electrode 3 is 1. 0.0 or less.
  • the F / Si ratio is a value measured by a conventional method using SEM-EDX. When measuring with SEM-EDX, the poor electrolyte with respect to SEI is used, and the excess electrolyte adhering to the surface of a negative electrode active material layer is washed away beforehand.
  • the ratio of the mass of fluorine in SEI and the mass of silicon in the negative electrode active material directly under SEI (F / Si ratio) can be obtained.
  • F / Si ratio the ratio of the mass of fluorine in SEI and the mass of silicon in the negative electrode active material directly under SEI
  • the electrode laminate 9 of the lithium ion secondary battery 10A is provided with a first negative electrode 3a to a fifth negative electrode 3e.
  • the F / Si ratio of the first negative electrode 3a, the second negative electrode 3b, the third negative electrode 3c, the fourth negative electrode 3d, and the fifth negative electrode 3e is formed on both surfaces of a punched copper foil as a negative electrode current collector.
  • the F / Si ratio of the negative electrode active material layer is a value obtained by averaging (adding and dividing by 2) each F / Si ratio obtained by SEM-EDX.
  • the F / Si ratio of the negative electrode is determined by measuring the single-side negative electrode active material layer with SEM-EDX. F / Si ratio obtained in this way.
  • the F / Si ratio of the negative electrode active material layer is an arithmetic average of F / Si ratio values measured by SEM-EDX for any 10 points of each negative electrode active material layer.
  • the capacity retention rate of the lithium ion secondary battery 10A ( Cycle characteristics). Although the details of this mechanism are not yet elucidated, it is speculated that one reason is that excessive generation of SEI containing LiF and the like is suppressed.
  • the lower limit value of the F / Si ratio may be 0, but fluorine is inevitably taken into the surface of the negative electrode active material layer due to the formation of SEI. Can be.
  • the F / Si ratio is 0, the molecule F is 0.
  • a method for setting the F / Si ratio to 1.0 or less for example, a method in which lithium doping proceeds relatively slowly during production of the negative electrode is preferable. Specifically, a method of providing a spacer between the lithium supply source and the negative electrode active material at the time of lithium doping, a method of performing lithium doping at a low temperature, and the like can be mentioned.
  • the ratio of the number of negative electrodes having an F / Si ratio of 1.0 or less is preferably 20 to 100%, more preferably 40 to 100%, 60 to 100% is more preferable, and 80 to 100% is most preferable. As the number of negative electrodes having an F / Si ratio of 1.0 or less increases, the capacity retention rate of the lithium ion secondary battery 10A tends to be further improved.
  • the ratio between the maximum value and the minimum value (maximum / minimum ratio) of the F / Si ratio of each negative electrode 3 is 1. 0 to 3.0 are preferred, 1.0 to 2.0 are more preferred, and 1.0 to 1.5 are even more preferred.
  • the charge / discharge characteristics such as the capacity retention rate of the lithium ion secondary battery 10A are further improved.
  • the electrode laminate 9 of the lithium ion secondary battery 10A described above is provided with five negative electrodes 3, but the number of negative electrodes 3 is not particularly limited. For example, 1 to 20 negative electrodes 3 are laminated. The structure which was made is mentioned. Moreover, although the outermost layers at both ends of the electrode laminate 9 of the lithium ion secondary battery 10A are the negative electrode 3a and the negative electrode 3e, the outermost layers are not limited to the negative electrode 3 and may be the positive electrode 1.
  • the lithium metal foil 4 of the said lithium metal foil 4 is shown by the lithium doping process at the time of battery manufacture. Part or all may be dissolved.
  • a method for manufacturing the lithium ion secondary battery 10A will be exemplified.
  • a manufacturing method of the lithium ion secondary battery 10A for example, first, an electrode laminate 9 in which the negative electrode 3, the separator 2, and the positive electrode 1 are laminated is formed by a known method, and the lithium metal foil 4 is formed on the electrode laminate 9. Assemble the battery in contact or close proximity. Subsequently, a method in which the negative electrode active material layer constituting the negative electrode 3 is doped with lithium ions in a state where the electrode laminate 9 and the lithium metal foil 4 are impregnated with an electrolytic solution containing a fluoride can be mentioned.
  • a negative electrode material containing a silicon compound is applied to the first surface of a punched plate-shaped negative electrode current collector to provide a negative electrode active material layer, and the second surface is also necessary. Accordingly, a method of providing a negative electrode active material layer can be given.
  • a method of producing the positive electrode 1 for example, a method of providing a positive electrode active material layer by applying a positive electrode material to the first surface and / or the second surface of a punched plate-shaped positive electrode current collector can be mentioned. .
  • the electrode laminate 9 shown in FIG. 1 is obtained by laminating a separator 2 between a positive electrode 1 and a negative electrode 3.
  • the negative electrode active material layer is provided on the plate surface facing the outside of the negative electrode current collector plate constituting the outermost layer of the electrode laminate 9, the electrode is difficult to bend and the active material is peeled off. It becomes difficult.
  • FIG. 1 when the electrode laminate 9 is viewed in the laminating direction, lithium metal as a lithium supplier is located at a position in contact with or away from the surfaces facing the outside of the negative electrode 3a and the negative electrode 3e constituting the outermost layer.
  • the foil 4 is installed.
  • the lithium doping amount of the negative electrode active material layers inside the negative electrode 3a and the negative electrode 3e and the negative electrode active material layers of the other negative electrodes 3b to 3d is relatively Lower.
  • the amount of lithium dope in the negative electrode active material layer of each negative electrode 3 becomes non-uniform, the capacity retention rate during battery use may be reduced.
  • the lithium metal foil 4 is installed in the electrode laminate 9, as in the lithium ion secondary battery 10B (10) shown in FIG.
  • a method of laminating the lithium metal foil 4 via the spacer 5 can also be exemplified.
  • the lithium doping amount for each of the negative electrodes 3a to 3e can be made more uniform.
  • the spacer 5 examples include a metal plate having a through hole (punched), a porous resin sheet, and the like. In order for lithium to diffuse and move, the spacer 5 is preferably provided with a large number of through holes. Moreover, it is preferable that the lithium metal foil 4 and the negative electrode 3 are electrically connected from the viewpoint of increasing the doping rate of lithium. For this reason, when the spacer 5 is an insulator, it is preferable to provide wiring between the lithium metal foil 4 and the lead tab 3z of the negative electrode 3 for electrical connection.
  • the thickness of the spacer 5 is not particularly limited, and may be set appropriately between 10 ⁇ m and 1000 ⁇ m, for example.
  • the electrode laminate 9 and the entire lithium metal foil 4 are impregnated with the electrolytic solution. Lithium ions eluted from the lithium metal foil 4 diffuse and move to the negative electrodes 3 and are doped into the negative electrode active material layer.
  • the kind of electrolyte solution should just contain the solvent which can elute lithium ion, for example, the electrolyte solution containing well-known electrolytes, such as a fluoride, is preferable.
  • the lithium doping treatment is completed when the lithium ions eluted from the lithium metal foil 4 fill the irreversible capacity of the negative electrode active material.
  • An indication of completion of the dope process is set empirically. That is, by appropriately changing the time and temperature of the dope treatment and measuring the capacity retention rate of the experimentally manufactured battery, conditions for obtaining the best capacity retention rate are set. Usually, when the lithium doping process is completed, part or all of the lithium metal foil 4 is dissolved and disappears.
  • the temperature of the lithium doping treatment is preferably 20 ° C. or less, more preferably 15 ° C. or less, and further preferably 10 ° C. or less.
  • the lower limit is a temperature at which the electrolyte does not freeze, and is usually preferably 0 ° C. or higher.
  • a lithium ion secondary battery that can be manufactured by the manufacturing method described above, for example, it has a negative electrode active material layer formed using a negative electrode material in which silicon oxide, a conductive additive, and a binder are blended, In addition, a battery including a negative electrode pre-doped with lithium can be given.
  • the lithium ion secondary battery has a high capacity development rate and excellent charge / discharge characteristics by using a negative electrode pre-doped with lithium so as to have a predetermined F / Si ratio.
  • the negative electrode current collector and the positive electrode current collector are provided with a plurality of through holes, not only at the time of manufacturing the lithium ion secondary battery. Even during use, the electrolyte (electrolytic solution) diffuses efficiently. As a result, the battery performance of the lithium ion secondary battery can be improved.
  • Negative electrode material examples include those in which a silicon compound as the negative electrode active material, a particulate conductive additive, a fibrous conductive additive, and a binder are blended.
  • the silicon compound as the negative electrode active material is preferably silicon oxide.
  • silicon oxide examples include those represented by the general formula “SiO z (wherein z is any number from 0.5 to 1.5)”.
  • SiO z is any number from 0.5 to 1.5
  • SiO z is any number from 0.5 to 1.5
  • the shape of the silicon oxide is not particularly limited, and for example, powdered or particulate silicon oxide can be used.
  • the ratio of the amount of silicon oxide to the total amount of silicon oxide, particulate conductive auxiliary, fibrous conductive auxiliary and binder can be set to 40 to 85% by mass, for example.
  • the discharge capacity of a lithium ion secondary battery improves more because the ratio of the said compounding quantity of a silicon oxide is more than the said lower limit.
  • the proportion of the silicon oxide is less than or equal to the upper limit value, the negative electrode structure is easily maintained stably.
  • the particulate conductive aid is a particulate material that functions as a conductive aid, and can contribute to improving the conductivity of the negative electrode material by expanding the contact area between the conductive materials in the negative electrode material.
  • Preferable examples of the particulate conductive assistant include carbon black such as acetylene black and ketjen black; graphite (graphite); fullerene and the like.
  • the particulate conductive auxiliary may be used alone or in combination of two or more.
  • the ratio of the amount of the particulate conductive additive to the total amount of the silicon oxide, the particulate conductive additive, the fibrous conductive assistant and the binder is, for example, 3 to 30% by mass. it can.
  • the effect by using a particulate conductive support agent is more notably acquired because the ratio of the said compounding quantity of a particulate conductive support agent is more than the said lower limit.
  • the effect by combined use with a fibrous conductive support agent is more notably acquired because the ratio of the said compounding quantity of a particulate conductive support agent is below the said upper limit.
  • the fibrous conductive assistant is a fibrous substance that functions as a conductive assistant, and preferred examples include carbon nanotubes and carbon nanohorns.
  • the fibrous conductive auxiliary agent contributes to the structural stabilization of the negative electrode active material layer by forming a network structure in the entire negative electrode active material layer, preferably in the negative electrode active material layer described later, and the negative electrode active material layer. It is presumed that a conductive network is formed therein and contributes to improvement of conductivity.
  • the said fibrous conductive support agent may be used individually by 1 type, and may use 2 or more types together.
  • the ratio of the amount of fibrous conductive additive to the total amount of silicon oxide, particulate conductive additive, fibrous conductive additive and binder is, for example, 1 to 25% by mass. it can.
  • the effect by using a fibrous conductive support agent is more notably acquired because the ratio of the said compounding quantity of a fibrous conductive support agent is more than the said lower limit.
  • the proportion of the fibrous conductive additive is less than or equal to the upper limit, the effect of the combined use with the particulate conductive auxiliary, that is, both effects can be obtained more remarkably.
  • the mass ratio (mixing mass ratio) of the blending amount of “particulate conduction aid: fibrous conduction aid” can be, for example, 90:10 to 30:70.
  • the blending mass ratio of the particulate conductive assistant and the fibrous conductive assistant is in such a range, the effect of the combined use of the particulate conductive assistant and the fibrous conductive assistant can be obtained more remarkably.
  • the binder may be a known one, and preferable ones are polyacrylic acid (PAA), lithium polyacrylate (PAALi), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF- Examples thereof include HFP), styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyethylene glycol (PEG), carboxymethyl cellulose (CMC), polyacrylonitrile (PAN), and polyimide (PI).
  • PAA polyacrylic acid
  • PAALi lithium polyacrylate
  • PVDF polyvinylidene fluoride
  • HFP styrene butadiene rubber
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PEG polyethylene glycol
  • CMC carboxymethyl cellulose
  • PAN polyacrylonitrile
  • PI polyimi
  • the ratio of the blending amount of the binder with respect to the total blending amount of silicon oxide, particulate conductive auxiliary, fibrous conductive auxiliary and binder can be, for example, 3 to 30% by mass.
  • a negative electrode structure is more stably maintained because the ratio of the said compounding quantity of a binder is more than the said lower limit.
  • a discharge capacity improves more because the ratio of the said compounding quantity of a binder is below the said upper limit.
  • the negative electrode material may further contain other components not corresponding to these.
  • the other components can be arbitrarily selected according to the purpose, and a preferable solvent is a solvent for dissolving or dispersing the compounding components (silicon oxide, particulate conductive assistant, fibrous conductive assistant, binder). It can be illustrated.
  • a negative electrode material further mixed with a solvent is preferably a liquid composition having fluidity at the time of use.
  • the said solvent can be arbitrarily selected according to the kind of said mixing
  • the organic solvent include alcohols such as methanol, ethanol, 1-propanol and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone (NMP) and N, N-dimethylformamide (DMF); acetone And the like.
  • the solvents may be used alone or in combination of two or more, and when two or more are used in combination, the combination and ratio may be appropriately selected according to the purpose.
  • the amount of the solvent in the negative electrode material is not particularly limited, and may be adjusted as appropriate according to the purpose.
  • the solvent composition is adjusted so that the liquid composition has a viscosity suitable for coating. What is necessary is just to adjust a compounding quantity.
  • the blending of the solvent so that the ratio of the total amount of the blending components other than the solvent to the total amount of the blending components is preferably 5 to 60% by mass, more preferably 10 to 35% by mass. Adjust the amount.
  • the proportion of the blended amount of the other solid component with respect to the total amount of the blended component other than the solvent in the negative electrode material is 10% by mass. Or less, more preferably 5% by mass or less.
  • the negative electrode material can be produced by blending the silicon oxide, the particulate conductive auxiliary, the fibrous conductive auxiliary, the binder, and other components as required.
  • Examples of the material for the negative electrode current collector on which the negative electrode active material layer is formed include copper (Cu), aluminum (Al), titanium (Ti), nickel (Ni), and stainless steel.
  • the negative electrode current collector is preferably in the form of a sheet (plate), and the thickness is preferably 5 ⁇ m to 20 ⁇ m.
  • Positive electrode material examples include a positive electrode material in which a positive electrode active material, a binder, a solvent, and a conductive auxiliary agent are blended as necessary.
  • a lithium metal acid compound represented by the general formula “LiM x O y (wherein M is a metal; x and y are composition ratios of metal M and oxygen O)” can be illustrated.
  • metal acid lithium compound examples include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like, and olivine iron phosphate having a similar composition. Lithium (LiFePO 4 ) can also be used.
  • M may be a plurality of types of the lithium metal acid compound.
  • Examples of such a metal acid lithium compound include LiNi 0.33 Mn 0.33 Co 0.33 O 2 .
  • a positive electrode active material may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the conductive additive in the positive electrode include graphite (graphite); carbon black such as ketjen black and acetylene black; carbon nanotube; carbon nanohorn; graphene; fullerene.
  • the said conductive support agent in a positive electrode may be used individually by 1 type, and may use 2 or more types together.
  • the binder, solvent, and current collector in the positive electrode may all be the same as the binder, solvent, and current collector in the negative electrode.
  • the ratio of the amount of each of the positive electrode active material, the binder, the solvent, and the conductive additive to the total amount of the compounding components in the positive electrode material is the negative electrode active ratio to the total amount of the compounding components in the negative electrode material. It can be made to be the same as the ratio of the respective amounts of the substance, the binder, the solvent, and the conductive additive.
  • Electrode As the electrolytic solution, (A) lithium carboxylate, (B) boron trifluoride and / or boron trifluoride complex, and (C) an organic solvent (hereinafter referred to as “first electrolysis”). (It may be abbreviated as “liquid”).
  • the carboxylic acid lithium salt is an electrolyte, and an aliphatic carboxylic acid, an alicyclic carboxylic acid and an aromatic carboxylic acid as long as the carboxy group constitutes a lithium salt (—C ( ⁇ O) —OLi). Any lithium salt of a group carboxylic acid may be used, and any lithium salt of a monovalent carboxylic acid and a polyvalent carboxylic acid may be used.
  • the number of carboxy groups constituting the lithium salt is not particularly limited. For example, when the number of carboxy groups is 2 or more, all the carboxy groups may constitute a lithium salt, or only some of the carboxy groups may constitute a lithium salt.
  • (A) Preferred lithium carboxylate is lithium formate (HCOOLi), lithium acetate (CH 3 COOLi), lithium propionate (CH 3 CH 2 COOLi), lithium butyrate (CH 3 (CH 2 ) 2 COOLi) , Lithium isobutyrate ((CH 3 ) 2 CHCOOLi), lithium valerate (CH 3 (CH 2 ) 3 COOLi), lithium isovalerate ((CH 3 ) 2 CHCH 2 COOLi), lithium caproate (CH 3 (CH 2) 4 COOLi) 1 monovalent lithium salts of carboxylic acids such as, lithium oxalate ((COOLi) 2), lithium malonate (LiOOCCH 2 COOLi), lithium succinate ((CH 2 COOLi) 2) , lithium glutarate ( LiOOC (CH 2 ) 3 COOLi), adipine Lithium salt of a divalent carboxylic acid such as lithium acid ((CH 2 CH 2 COOLi) 2 ); lithium salt of a monovalent carboxylic acid having
  • the lithium carboxylate may be used alone or in combination of two or more. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose.
  • B Boron trifluoride and a boron trifluoride complex are compounds which perform a complex-forming reaction with (A) lithium carboxylate.
  • a boron trifluoride complex is a compound in which boron trifluoride (BF 3 ) is coordinated to another component.
  • boron trifluoride complex examples include boron trifluoride dimethyl ether complex (BF 3 .O (CH 3 ) 2 ), boron trifluoride diethyl ether complex (BF 3 .O (C 2 H 5 ) 2 ), three Boron fluoride di n-butyl ether complex (BF 3 .O (C 4 H 9 ) 2 ), boron trifluoride di tert-butyl ether complex (BF 3 .O ((CH 3 ) 3 C) 2 ), trifluoride Boron trifluoride alkyl ether complexes such as boron tert-butyl methyl ether complex (BF 3 .O ((CH 3 ) 3 C) (CH 3 )), boron trifluoride tetrahydrofuran complex (BF 3 .OC 4 H 8 ) Boron trifluoride methanol complex (BF 3 ⁇ HOCH 3 ), boron trifluoride propanol complex (BF 3
  • boron trifluoride and / or boron trifluoride complex may be used alone, or two or more types may be used in combination.
  • the blending amount of (B) boron trifluoride and / or boron trifluoride complex is not particularly limited, and (B) boron trifluoride and / or boron trifluoride complex or (A) lithium carboxylate type What is necessary is just to adjust suitably according to.
  • the molar ratio of [(B) Boron trifluoride and / or boron trifluoride complex (mole number)] / [Mixed (A) moles of lithium atoms in carboxylic acid lithium salt] Is preferably 0.5 or more, and more preferably 0.7 or more. By setting it as such a range, the solubility of (A) lithium carboxylic acid salt with respect to the (C) organic solvent improves more.
  • the upper limit of the molar ratio is not particularly limited, but is preferably 2.0, and more preferably 1.5.
  • organic solvent is not particularly limited, specific examples of preferable organic solvents include carbonate compounds such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and vinylene carbonate; ⁇ -butyrolactone, etc. Lactone compounds; carboxylic acid ester compounds such as methyl formate, methyl acetate, and methyl propionate; ether compounds such as tetrahydrofuran and dimethoxyethane; nitrile compounds such as acetonitrile; and sulfone compounds such as sulfolane.
  • An organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • the organic solvent is ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, vinylene carbonate, ⁇ -butyrolactone, tetrahydrofuran, dimethoxyethane, methyl formate, methyl acetate, methyl propionate, acetonitrile and It is preferably at least one selected from the group consisting of sulfolane.
  • the organic solvent used in combination of two or more types is a mixed solvent in which propylene carbonate and vinylene carbonate are blended, a mixed solvent in which propylene carbonate and ethylene carbonate are blended, and a mixed solvent in which ethylene carbonate and dimethyl carbonate are blended. Is preferred.
  • the blending amount of the (C) organic solvent in the electrolytic solution is not particularly limited, and may be appropriately adjusted according to, for example, the type of the electrolyte. Usually, the blending amount can be adjusted so that the concentration of lithium atoms (Li) is preferably 0.2 to 3.0 mol / kg, more preferably 0.4 to 2.0 mol / kg. preferable.
  • lithium hexafluorophosphate as an electrolyte (LiPF 6), boron tetrafluoride lithium (LiBF 4), lithium bisfluorosulfonylimide (LiFSI), bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 ) 2 , LiTFSI) or other known lithium salt other than (A) carboxylic acid lithium salt dissolved in an organic solvent (hereinafter abbreviated as “second electrolyte solution”) There are also examples).
  • the said electrolyte in a 2nd electrolyte solution may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the organic solvent in the second electrolytic solution include the same organic solvent as the (C) organic solvent in the first electrolytic solution.
  • the concentration of lithium atoms (Li) in the second electrolytic solution is the same as that in the first electrolytic solution.
  • first and second electrolyte solutions optional components used in the electrolyte solutions of known lithium ion secondary batteries may be blended within a range that does not impair the effects of the present invention.
  • Examples of the material for the separator include a porous resin film, a nonwoven fabric, and glass fiber. Further, as the separator, a porous insulating layer that is formed on the surface of the positive electrode active material layer or the surface of the negative electrode active material layer and that can insulate the positive electrode and the negative electrode and hold and transmit the electrolytic solution is also applicable. .
  • the porous insulating layer is formed, for example, by a known method in which a composition containing insulating inorganic particles and a binder resin is applied to the surface of the negative electrode or the positive electrode and dried.
  • the thickness of the porous insulating layer is preferably about 0.5 ⁇ m to 50 ⁇ m, for example.
  • Example 1 [Production of negative electrode] Silicon monoxide (SiO, average particle size 1.0 ⁇ m, 69 parts by mass), SBR (3 parts by mass), and polyacrylic acid (12 parts by mass) were placed in a reagent bottle, and distilled water was added to adjust the concentration. Then, it mixed for 2 minutes at 2000 rpm using the self-revolving mixer. Acetylene black (10 parts by mass) was added to this mixture and mixed for 2 minutes at 2000 rpm using a self-revolving mixer.
  • This mixture was subjected to a dispersion treatment with an ultrasonic homogenizer for 10 minutes, and then this dispersion was again mixed at 2000 rpm for 2 minutes using a self-revolving mixer to obtain a slurry of a negative electrode material.
  • Lithium cobaltate (LiCo 2 O) (93 parts by mass), polyvinylidene fluoride (PVDF) (4 parts by mass), and carbon black (3 parts by mass) as a conductive additive are mixed to prepare a positive electrode mixture.
  • PVDF polyvinylidene fluoride
  • carbon black 3 parts by mass
  • a lithium ion secondary battery 10A provided with the electrode laminate 9 shown in FIG. 1 was manufactured by the following method.
  • a separator 2 manufactured by Sekisui Chemical Co., Ltd.
  • a separator 2 having a thickness of 25 ⁇ m and a surface area of 42 cm ⁇ 57 cm was placed between the negative electrode 3 and the positive electrode 1 produced above to obtain a stacked cell (negative electrode / separator / positive electrode).
  • Four cells were prepared, the positive electrode 1 and the negative electrode 3 of adjacent units were faced to each other, and a separator 2 was disposed between them to stack the first to fourth cells U1 to U4.
  • the outermost layers of this laminate are the negative electrode 3a of the first unit U1 and the positive electrode 1 of the fourth unit U4.
  • Another negative electrode 3e was placed on the outer surface of the positive electrode 1 of the outermost fourth unit U4 via the separator 2 to obtain an electrode laminate 9.
  • a lithium metal foil 4 having a thickness of about 100 ⁇ m and approximately the same area as that of the punched copper foil is respectively mounted, and the electrode laminate 9 in which the lithium metal foil 4 is placed in the outermost layer is obtained. (See FIG. 1).
  • the electrode laminate 9 is made of an aluminum laminate with the lead tab 3z electrically connecting each negative electrode 3 constituting the electrode laminate 9 and the lead tab 1z electrically connecting each positive electrode 1 protruding outward. It accommodated in the exterior body (not shown), and the exterior body was temporarily sealed. After injecting the electrolytic solution into the exterior body, this was sealed to obtain the target lithium ion secondary battery 10A.
  • the lithium ion secondary battery 10A produced above was fixed in a state where it was pressurized with a pressure jig, and was left in a thermostatic bath at 25 ° C. for 72 hours to perform a lithium pre-doping treatment.
  • a lithium pre-doping treatment was performed at 25 ° C.
  • Example 3 A lithium ion secondary battery 10B was produced using the electrode laminate 11 produced in the same manner as in Example 2 (see FIG. 2). A lithium pre-doping treatment was performed in the same manner as in Example 2 except that the temperature was changed to 10 ° C.
  • Example 2 In the electrode laminate 9 produced in Example 1, one lithium metal foil 4 is arranged between each negative electrode 3 and each separator 2, and a total of five lithium metal foils 4 are installed.
  • a lithium ion secondary battery 100B was produced in the same manner as in Example 1 except that 13 was used (see FIG. 4). Similarly to Example 1, a lithium pre-doping treatment was performed at 25 ° C.
  • the capacity retention rate of the lithium ion secondary battery was improved as the proportion of the negative electrode having an F / Si ratio of 1.0 or less was increased. Further, when Examples 1 to 3 were compared, it was confirmed that the smaller the maximum value / minimum value of the F / Si ratio, the higher the capacity retention rate of the lithium ion secondary battery.
  • the reason why the capacity retention ratio is improved in this way is that when the lithium-doped state is made uniform among the negative electrodes, the generated SEI is also made uniform between the negative electrodes, and the bias of the electrode reaction between the negative electrodes is reduced. This is considered to be difficult to occur.

Abstract

正極1と、電解質層2と、負極3とがこの順で積層されたセルを少なくとも1つ備えたリチウムイオン二次電池10であって、電解質層2はフッ化物を含有し、負極3はシリコン化合物が含まれた負極活物質層を有し、負極3の少なくとも1つにおいて、 前記負極活物質層の表面におけるフッ素/ケイ素の質量比(F/Si比)が1.0以下である、リチウムイオン二次電池10。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池に関する。本願は、2015年10月5日に、日本に出願された特願2015-198041号に基づき優先権を主張し、その内容をここに援用する。
 一般に、リチウムイオン二次電池は、正極、負極及び電解質を備えて構成される。その正極及び負極としては、電極活物質層を有する電極が使用される。電極活物質層は、通常、電極活物質、導電助剤及びバインダーが配合された組成物が集電体に塗布されて形成される。リチウムイオン二次電池において電極活物質は電池容量に関わる重要な因子であり、負極活物質としては、例えば黒鉛(グラファイト)、ケイ素、酸化ケイ素等が使用される。
 これらの負極活物質は充放電時にリチウムイオンを吸蔵又は放出する機能を有するが、初期充電においてリチウムイオンが負極活物質と不可逆的に反応して、電池容量(放電容量)が低下してしまうという問題がある。これを回避するために初期充電以前に、負極を構成する負極活物質層にリチウムイオンを予めドープする処理(プレドープ処理)が行われる。プレドープ処理を行って前記不可逆反応を予め起こしておけば、その後の初期充電時には前記不可逆反応及び副生成物の発生を抑制することができる。
 プレドープ処理は、リチウム金属を負極活物質層に接触させる方法によって行われるが、このときリチウム金属と直接接している活物質層において、リチウムシリケート(Li4SiO4)などの不可逆活物質の他に電解液の分解による電極界面皮膜(SEI)が生成することが知られている。このSEIは適切な量であれば、リチウムイオンのやり取りをスムーズに行うことができるリチウム伝導体となるが、過剰に生成した場合には抵抗となり、電池特性に悪影響を与える。特許文献1には抵抗体を挟んで負極とLi源を対面させることでリチウムイオンの急速なドーピングによる過剰なSEIの生成を防ぐ方法が開示されている。
特開2009-188141号公報
 本発明は、良好なSEIを備え、充放電特性に優れたリチウムイオン二次電池の提供を課題とする。
 本発明者らは、リチウムイオン二次電池を構成する負極におけるF/Si比が1.0以下であることにより、前記リチウムイオン二次電池の容量維持率(サイクル特性)が向上することを見出し、本発明を完成させた。即ち、本発明は以下の通りである。
[1] 正極と、電解質層と、負極とがこの順で積層されたセルを少なくとも1つ備えたリチウムイオン二次電池であって、前記電解質層はフッ化物を含有し、前記負極はシリコン化合物が含まれた負極活物質層を有し、前記負極の少なくとも1つにおいて、 前記負極活物質層の表面におけるフッ素/ケイ素の質量比(F/Si比)が1.0以下である、リチウムイオン二次電池。
[2] 前記セルが複数備えられ、各セルが有する負極のF/Si比のうち、最大値を最小値で除した値が1.0~3.0である、上記[1]に記載のリチウムイオン二次電池。
[3] 前記セルが2つ以上積層されている、上記[1]又は[2]に記載のリチウムイオン二次電池。
[4] 初期充電前に、前記負極活物質層にリチウムがプレドープされている、上記[1]~[3]の何れか一項に記載のリチウムイオン二次電池。
 本発明によれば、良好なSEIを備え、充放電特性に優れたリチウムイオン二次電池を提供できる。
本発明に係るリチウムイオン二次電池10Aの電極積層体9にリチウム金属箔4が配置された様子を示す模式断面図である。 本発明に係るリチウムイオン二次電池10Bの電極積層体11にリチウム金属箔4が配置された様子を示す模式断面図である。 従来のリチウムイオン二次電池100Aの電極積層体12にリチウム金属箔4が配置された様子を示す模式断面図である。 従来のリチウムイオン二次電池100Bの電極積層体13にリチウム金属箔4が配置された様子を示す模式断面図である。
 本発明に係るリチウムイオン二次電池は、1以上の正極と、フッ化物が含まれた1以上の電解質層と、シリコン化合物を含有する負極活物質層を有する1以上の負極と、を備えたリチウムイオン二次電池である。このリチウムイオン二次電池は、正極と電解質層と負極とがこの順で積層されたセルを備えている。前記リチウムイオン二次電池には、前記負極活物質層の表面におけるフッ素/ケイ素の質量比(F/Si比)が1.0以下である負極が少なくとも1つ備えられている。
<リチウムイオン二次電池10>
 本発明の第一実施形態のリチウムイオン二次電池10A(10)を図1に示す。リチウムイオン二次電池10Aは、正極1と、フッ化物が含まれた電解質層を形成するセパレータ2と、シリコン化合物を含有する負極活物質層を有する負極3と、をそれぞれ複数備えている。
 図1は、電極積層体の一例として、平面視矩形状の負極3、セパレータ2、正極1が順に積層してなるセルが複数備えられた電極積層体9の断面を示している。電極積層体9は、負極3/セパレータ2/正極1が順に積層されてなるセルを4つ、即ち第一セルU1~第四セルU4、を有する。電極積層体9において積層された各セルの間にはセパレータ2が配置されている。また、第四セルU4の外部側にはセパレータ2を介してさらに負極3e(3)が積層されている。
 各正極1は、正極集電体として、貫通孔が多数形成された(パンチングされた)アルミ箔を有し、正極集電体の両面に、正極材からなる正極活物質層が形成された構成を有する。各正極活物質層の厚さは、例えば、5μm~80μmが好ましい。
 各セパレータ2は、多孔性樹脂シートにフッ化物を含有する電解質液が含浸されてなる電解質層を形成している。セパレータ2の厚さは、例えば、5μm~30μmが好ましい。
 各負極3は、負極集電体として、貫通孔が多数形成された銅箔を有し、負極集電体の両面に、シリコン化合物が含まれた負極材からなる負極活物質層が形成された構成を有する。各負極活物質層の厚さは、例えば、5μm~50μmが好ましい。
 リチウム金属箔4は、電極積層体9の最外層を構成する負極3a及び負極3eに対して接触するように設置されている。このリチウム金属箔4は、プレドープ処理におけるリチウムの供給源となる。各リチウム金属箔4の厚さは、例えば、10μm~500μmが好ましい。
 正極集電体及び負極集電体を構成する金属板(金属箔)には、多数の貫通孔が設けられている。正極1及び負極3の集電体に貫通孔が設けられていることにより、正極1及び負極3が積層された状態においてリチウムが電極間を容易に拡散し、移動することができる。これにより、リチウムドープ処理が各電極に対してムラなく行われると共に、電池使用時の電荷移動抵抗が低減され、電池容量維持率が向上する。
 各正極1は引出配線を有し、各引出配線は互いに接続されて束ねられて、リードタブ1zが形成されている。
 各負極3は引出配線を有し、各引出配線は互いに接続されて束ねられて、リードタブ3zが形成されている。
 電極積層体9は、電解液とともに、不図示のアルミラミネート製の外装体に収納されている。リードタブ1z及びリードタブ3zは外装体の外部へ延設されており、外装体は内部の電解液が漏出しないように封止されている。
 フッ化物が含まれる電解液の存在下でリチウムドープ処理又は初期充電が施されると、シリコン化合物が含まれる負極活物質層を構成する負極活物質の表面には、フッ化リチウム(LiF)を含むSEI(Solid Electrolyte Interphase) が形成される。一般に、このSEIは、使用時に充放電時が繰り返される際に、リチウムイオンに溶媒和された溶媒分子が負極中に進入するのを阻止し、負極構造の破壊を抑制して、リチウムイオン二次電池のサイクル特性の向上に寄与するとされる。しかし、上述したように、SEIが過剰に生成した場合には抵抗となり、電池特性に悪影響を与える。
 本実施形態のリチウムイオン二次電池10Aに備えられた複数の負極3のうち、少なくとも1つの負極3を構成する負極活物質層の表面におけるフッ素/ケイ素の質量比(F/Si比)が1.0以下である。ここで、F/Si比は、SEM-EDXを使用した常法により測定される値である。
 SEM-EDXで測定する際には、SEIに対する貧溶媒を使用して、負極活物質層の表面に付着している余分な電解質を予め洗い落とす。この負極活物質層の表面をSEM-EDXで測定することにより、SEI中のフッ素の質量と、SEI直下の負極活物質中のケイ素の質量の比(F/Si比)が得られる。
 例えば、走査電子顕微鏡(日立ハイテクノロジー社製 S-4800)にエネルギー分散型X線分析装置EMAXが装着された装置を用い、加速電圧6kV、測定エリア20μm角に設定し、元素分析や定量分析等を行ない、F/Si比を得ることができる。
 リチウムイオン二次電池10Aの電極積層体9には、第一の負極3a~第五の負極3eが備えられている。
 第一の負極3a、第二の負極3b、第三の負極3c、第四の負極3d及び第五の負極3eのF/Si比は、負極集電体としてのパンチング銅箔の両面に形成された負極活物質層のF/Si比を、それぞれSEM-EDXで測定して得られた各F/Si比を平均した(足して2で割った)値である。
 負極が、負極集電体としてのパンチング銅箔の片面にのみ形成された負極活物質層を有する場合、当該負極のF/Si比は、前記片面の負極活物質層をSEM-EDXで測定して得られたF/Si比である。
 前記負極活物質層のF/Si比は、各負極活物質層の任意の10点についてSEM-EDXで測定したF/Si比の値の算術平均とする。
 リチウムイオン二次電池10Aに備えられた複数の負極3a~3eのうち、少なくとも1つの負極3のF/Si比が1.0以下であることにより、リチウムイオン二次電池10Aの容量維持率(サイクル特性)が向上する。このメカニズムの詳細は未解明であるが、LiFなどを含むSEIの過剰生成が抑えられていることが一因であると推測される。
 F/Si比の下限値は0であってもよいが、SEIの形成によりフッ素が不可避的に負極活物質層の表面に取り込まれることが多いので、例えば0.1以上が現実的な下限値となり得る。ここで、F/Si比が0となる場合は、分子のFが0となる場合である。
 F/Si比を1.0以下にする方法としては、例えば、負極の製造時にリチウムドープを比較的ゆっくりと進行させる方法が好ましい。具体的には、リチウムドープ時のリチウム供給源と負極活物質との間にスペーサーを設ける方法、低温下でリチウムドープを行う方法等が挙げられる。
 リチウムイオン二次電池10Aに備えられた複数の負極3のうち、F/Si比が1.0以下である負極の個数の割合は、20~100%が好ましく、40~100%がより好ましく、60~100%がさらに好ましく、80~100%が最も好ましい。F/Si比が1.0以下である負極の個数が多いほど、リチウムイオン二次電池10Aの容量維持率がより一層向上する傾向がある。
 第一の負極3a~第五の負極3eのF/Si比が相違している場合、各負極3のF/Si比の最大値と最小値の比(最大/最小の比)は、1.0~3.0が好ましく、1.0~2.0がより好ましく、1.0~1.5がさらに好ましい。
 上記範囲であると、各負極間のF/Si比のばらつきが少なく、リチウムイオン二次電池10Aの容量維持率等の充放電特性がより一層向上する。このメカニズムの詳細は未解明であるが、各負極における電極反応のばらつきが抑えられることが一因であると推測される。
 以上で説明したリチウムイオン二次電池10Aの電極積層体9には、負極3が5つ備えられているが、負極3の積層数は特に限定されず、例えば1~20個の負極3が積層された構成が挙げられる。また、リチウムイオン二次電池10Aの電極積層体9の両端の最外層は負極3a及び負極3eであるが、最外層は負極3に限定されず、正極1であってもよい。
 また、図1において、電極積層体9の負極3a及び負極3eの外側にはリチウム金属箔4が設置された状態を図示しているが、電池製造時のリチウムドープ処理によって当該リチウム金属箔4の一部又は全部が溶解していても構わない。
<リチウムイオン二次電池の製造方法>
 以下、リチウムイオン二次電池10Aの製造方法を例示する。
 リチウムイオン二次電池10Aの製造方法として、例えば、まず、負極3、セパレータ2及び正極1が積層されてなる電極積層体9を公知の方法によって形成し、電極積層体9にリチウム金属箔4を接触又は近接させた状態で電池を組み立てる。続いて、電極積層体9及びリチウム金属箔4が、フッ化物を含有する電解液に含浸された状態で、負極3を構成する負極活物質層にリチウムイオンをドープする方法が挙げられる。
 負極3の作製方法としては、例えば、パンチングされた板状負極集電体の第一面にシリコン化合物を含有する負極材を塗工して負極活物質層を設け、第二面にも必要に応じて負極活物質層を設ける方法が挙げられる。同様に、正極1の作製方法としては、例えば、パンチングされた板状正極集電体の第一面及び/又は第二面に正極材を塗工して正極活物質層を設ける方法が挙げられる。図1に示す電極積層体9は、正極1と負極3の間にセパレータ2を介在させて積層することにより得られる。この際に、電極積層体9の最外層を構成する負極集電板の外部側に向く板面に負極活物質層が設けられていると、電極が湾曲し難くなり、活物質のはがれが生じ難くなる。
 図1においては、電極積層体9を積層方向に見て、最外層を構成する負極3a及び負極3eの外部側に向く面に接する又は離間して近接する位置に、リチウム供給体としてのリチウム金属箔4を設置している。
 電極積層体9の最外層の負極に過剰のリチウムがドープされた場合、負極3a及び負極3eの内部側の負極活物質層や他の負極3b~3dの負極活物質層のリチウムドープ量が相対的に低くなる。各負極3の負極活物質層におけるリチウムドープ量が不均一になると、電池使用時の容量維持率が低下する場合がある。
 電極積層体9にリチウム金属箔4を設置する別の実施形態として、図2に示すリチウムイオン二次電池10B(10)の様に、電極積層体9の最外層の負極3a及び3eに対して、スペーサー5を介してリチウム金属箔4を積層する方法も例示できる。このように電極積層体9の両端の負極3a及び負極3eからリチウム金属箔4を物理的に離間することにより、各負極3a~3eに対するリチウムドープ量をさらに均一化することができる。
 スペーサー5としては、例えば、貫通孔を有する(パンチングされた)金属板、多孔性樹脂シート等が挙げられる。リチウムが拡散及び移動するために、スペーサー5には多数の貫通孔が設けられていることが好ましい。また、リチウムのドープ速度を高める観点から、リチウム金属箔4と負極3とが電気的に導通していることが好ましい。このため、スペーサー5が絶縁体である場合には、リチウム金属箔4と負極3のリードタブ3zとの間に配線を設けて電気的に接続することが好ましい。スペーサー5の厚みは特に限定されず、例えば、10μm~1000μmの間で適宜設定すればよい。
 リチウムドープ処理において、電極積層体9及びリチウム金属箔4の全体が電解液に含浸されていることが好ましい。リチウム金属箔4から溶出したリチウムイオンは、各負極3へ拡散及び移動し、負極活物質層にドープされる。電解液の種類は、リチウムイオンが溶出可能な溶媒を含むものであればよく、例えば、フッ化物等の公知の電解質を含む電解液が好ましい。
 リチウムドープ処理は、リチウム金属箔4から溶出したリチウムイオンが負極活物質の不可逆容量分を埋めた時点で完了する。ドープ処理の完了の目安は経験的に設定される。すなわち、ドープ処理の時間や温度を適宜変更して、試験的に製造した電池の容量維持率を測定することによって、最良の容量維持率が得られる条件を設定する。通常、リチウムドープ処理の完了時において、リチウム金属箔4の一部又は全部が溶解して無くなる。
 リチウムドープ処理の温度は、20℃以下が好ましく、15℃以下がより好ましく、10℃以下がさらに好ましい。下限値は電解液が凍結しない温度であり、通常、0℃以上が好ましい。上記温度範囲でリチウムドープ処理を行うことにより、ドープ速度を穏やかにできるため、電極積層体9に備えられた複数の負極3a~負極3eに均一にリチウムがドープされる。均一にドープされたことは、各負極のF/Si比が1.0以下であり、好ましくはF/Si比が均一であることによって確認することができる。
 以上で説明した製造方法によって製造可能なリチウムイオン二次電池としては、例えば、酸化ケイ素、導電助剤、及びバインダーが配合されてなる負極材を用いて形成された負極活物質層を有し、且つリチウムがプレドープされている負極を備えた電池が挙げられる。
 前記リチウムイオン二次電池は、所定のF/Si比となるようにリチウムがプレドープされている負極を用いたことによって、高い容量発現率及び優れた充放電特性を有する。また、上記の製造方法によって製造されたリチウムイオン二次電池においては、負極集電体及び正極集電体に貫通孔が複数設けられているため、前記リチウムイオン二次電池の製造時だけでなく使用時においても、電解質(電解液)が効率的に拡散する。この結果、前記リチウムイオン二次電池の電池性能が向上し得る。
 以下、本発明に係るリチウムイオン二次電池及びその製造方法において使用可能な材料について例示するが、本発明はこれらの例示に限定されるものではない。
[負極材]
 前記負極材としては、例えば、前記負極活物質としてのシリコン化合物、粒子状導電助剤、繊維状導電助剤及びバインダーが配合されてなるものが挙げられる。
 前記負極活物質としてのシリコン化合物は、酸化ケイ素であることが好ましい。
(酸化ケイ素)
 前記酸化ケイ素としては、一般式「SiO(式中、zは0.5~1.5のいずれかの数である。)」で表されるものが例示できる。ここで酸化ケイ素を「SiO」単位で見た場合、このSiOは、アモルファス状のSiOであるか、又はSi:SiOのモル比が約1:1となるように、ナノクラスターのSiの周囲にSiOが存在する、Si及びSiOの複合物である。SiOは、充放電時におけるSiの膨張及び収縮に対して緩衝作用を有すると推測される。
 前記酸化ケイ素の形状は特に制限されず、例えば、粉末状、粒子状等の酸化ケイ素を使用することができる。
 前記負極材において、酸化ケイ素、粒子状導電助剤、繊維状導電助剤及びバインダーの総配合量に対する、酸化ケイ素の配合量の割合は、例えば、40~85質量%とすることができる。酸化ケイ素の前記配合量の割合が前記下限値以上であることで、リチウムイオン二次電池の放電容量がより向上する。酸化ケイ素の前記配合量の割合が前記上限値以下であることで、負極構造が安定に維持され易くなる。
(粒子状導電助剤)
 前記粒子状導電助剤は、導電助剤として機能する粒子状のものであり、負極材において各導電材同士の接触面積を拡げることにより、負極材の導電性の向上に寄与し得る。前記粒子状導電助剤の好ましいものとしては、例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック;黒鉛(グラファイト);フラーレン等が例示できる。
 前記粒子状導電助剤は、一種を単独で用いてもよいし、二種以上を併用してもよい。
 前記負極材において、酸化ケイ素、粒子状導電助剤、繊維状導電助剤及びバインダーの総配合量に対する、粒子状導電助剤の配合量の割合は、例えば、3~30質量%とすることができる。粒子状導電助剤の前記配合量の割合が前記下限値以上であることで、粒子状導電助剤を用いたことによる効果がより顕著に得られる。粒子状導電助剤の前記配合量の割合が前記上限値以下であることで、繊維状導電助剤との併用による効果がより顕著に得られる。
(繊維状導電助剤)
 前記繊維状導電助剤は、導電助剤として機能する繊維状のものであり、好ましいものとしては、カーボンナノチューブ、カーボンナノホーンが例示できる。
 繊維状導電助剤は、後述する負極活物質層中において、好ましくは負極活物質層全体に、網目構造を形成することで、負極活物質層の構造安定化に寄与すると共に、負極活物質層中に導電ネットワークを形成して、導電性の向上に寄与していると推測される。
 前記繊維状導電助剤は、一種を単独で用いてもよいし、二種以上を併用してもよい。
 前記負極材において、酸化ケイ素、粒子状導電助剤、繊維状導電助剤及びバインダーの総配合量に対する、繊維状導電助剤の配合量の割合は、例えば、1~25質量%とすることができる。繊維状導電助剤の前記配合量の割合が前記下限値以上であることで、繊維状導電助剤を用いたことによる効果がより顕著に得られる。繊維状導電助剤の前記配合量の割合が前記上限値以下であることで、粒子状導電助剤との併用による効果、すなわち両方の効果がより顕著に得られる。
 前記負極材において、「粒子状導電助剤:繊維状導電助剤」の配合量の質量比率(配合質量比)は、例えば、90:10~30:70とすることができる。粒子状導電助剤及び繊維状導電助剤の配合質量比がこのような範囲であることで、粒子状導電助剤及び繊維状導電助剤の併用による効果がより顕著に得られる。
(バインダー)
 前記バインダーは公知のものでよく、好ましいものとしては、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(PAALi)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-六フッ化プロピレン共重合体(PVDF-HFP)、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、カルボキシメチルセルロース(CMC)、ポリアクリルニトリル(PAN)、ポリイミド(PI)等が例示できる。
 前記バインダーは、一種を単独で用いてもよいし、二種以上を併用してもよく、二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すればよい。
 前記負極材において、酸化ケイ素、粒子状導電助剤、繊維状導電助剤及びバインダーの総配合量に対する、バインダーの配合量の割合は、例えば、3~30質量%とすることができる。バインダーの前記配合量の割合が前記下限値以上であることで、負極構造がより安定に維持される。バインダーの前記配合量の割合が前記上限値以下であることで、放電容量がより向上する。
(その他の成分)
 前記負極材には、酸化ケイ素、粒子状導電助剤、繊維状導電助剤及びバインダー以外に、これらに該当しないその他の成分がさらに配合されていてもよい。
 前記その他の成分は、目的に応じて任意に選択でき、好ましいものとしては、前記配合成分(酸化ケイ素、粒子状導電助剤、繊維状導電助剤、バインダー)を溶解又は分散させるための溶媒が例示できる。
 このような、さらに溶媒が配合されてなる負極材は、使用時において流動性を有する液状組成物であることが好ましい。
 前記溶媒は、前記配合成分の種類に応じて任意に選択でき、好ましいものとしては、水、有機溶媒が例示できる。
 前記有機溶媒で好ましいものとしては、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)等の鎖状又は環状アミド;アセトン等のケトンが例示できる。
 前記溶媒は、一種を単独で用いてもよいし、二種以上を併用してもよく、二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すればよい。
 負極材における前記溶媒の配合量は、特に限定されず、目的に応じて適宜調節すればよい。例えば、溶媒が配合された液状組成物である負極材を塗工及び乾燥させて負極活物質層を形成する場合には、この液状組成物が塗工に適した粘度となるように、溶媒の配合量を調節すればよい。具体的には、負極材において、配合成分の総量に対する、溶媒以外の配合成分の総量の割合が、好ましくは5~60質量%、より好ましくは10~35質量%となるように、溶媒の配合量を調節するとよい。
 前記その他の成分として、前記溶媒以外の成分(その他の固体成分)を配合する場合、前記負極材において、溶媒以外の配合成分の総量に対する、その他の固体成分の配合量の割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 前記負極材は、前記酸化ケイ素、前記粒子状導電助剤、前記繊維状導電助剤、前記バインダー、及び必要に応じてその他の成分を配合することで製造できる。
 負極活物質層が形成される負極集電体の材料として、例えば、銅(Cu)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)、ステンレス鋼等が挙げられる。
 負極集電体はシート状(板状)であることが好ましく、その厚さは、5μm~20μmであることが好ましい。
[正極材]
 前記正極材としては、例えば、正極活物質、バインダー及び溶媒、並びに必要に応じて導電助剤等が配合されてなる正極材が挙げられる。
 正極活物質としては、一般式「LiM(式中、Mは金属であり;x及びyは、金属Mと酸素Oとの組成比である。)」で表される金属酸リチウム化合物が例示できる。
 このような金属酸リチウム化合物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等が例示でき、類似の組成であるオリビン型リン酸鉄リチウム(LiFePO)を用いることもできる。
 前記金属酸リチウム化合物は、前記一般式において、Mが複数種のものであってもよく、このような金属酸リチウム化合物としては、一般式「LiM (式中、M、M及びMは互いに異なる種類の金属であり;p、q、r及びyは、金属M、M及びMと酸素Oとの組成比である。)」で表されるものが例示できる。ここで、p+q+r=xである。このような金属酸リチウム化合物としては、LiNi0.33Mn0.33Co0.33等が例示できる。
 正極活物質は、一種を単独で用いてもよいし、二種以上を併用してもよい。
 正極における導電助剤としては、例えば、黒鉛(グラファイト);ケッチェンブラック、アセチレンブラック等のカーボンブラック;カーボンナノチューブ;カーボンナノホーン;グラフェン;フラーレン等が挙げられる。
 正極における前記導電助剤は、一種を単独で用いてもよいし、二種以上を併用してもよい。
 正極におけるバインダー、溶媒及び集電体は、いずれも負極におけるバインダー、溶媒及び集電体と同様のものでよい。
 前記正極材における、配合成分の総量に対する、前記正極活物質、前記バインダー、前記溶媒、及び前記導電助剤のそれぞれの配合量の割合は、前記負極材における、配合成分の総量に対する、前記負極活物質、前記バインダー、前記溶媒、及び前記導電助剤のそれぞれの配合量の割合と同様とすることができる。
[電解液]
 前記電解液としては、(A)カルボン酸リチウム塩、(B)三フッ化ホウ素及び/又は三フッ化ホウ素錯体、並びに(C)有機溶媒が配合されてなるもの(以下、「第一の電解液」と略記することがある)が例示できる。
 (A)カルボン酸リチウム塩は、電解質であり、カルボキシ基がリチウム塩(-C(=O)-OLi)を構成しているものであれば、脂肪族カルボン酸、脂環式カルボン酸及び芳香族カルボン酸のいずれのリチウム塩でもよく、1価カルボン酸及び多価カルボン酸のいずれのリチウム塩でもよい。(A)カルボン酸リチウム塩において、リチウム塩を構成するカルボキシ基の数は、特に限定されない。例えば、カルボキシ基の数が2以上である場合には、すべてのカルボキシ基がリチウム塩を構成していてもよいし、一部のカルボキシ基のみがリチウム塩を構成していてもよい。
 (A)カルボン酸リチウム塩で好ましいものとしては、ギ酸リチウム(HCOOLi)、酢酸リチウム(CHCOOLi)、プロピオン酸リチウム(CHCHCOOLi)、酪酸リチウム(CH(CHCOOLi)、イソ酪酸リチウム((CHCHCOOLi)、吉草酸リチウム(CH(CHCOOLi)、イソ吉草酸リチウム((CHCHCHCOOLi)、カプロン酸リチウム(CH(CHCOOLi)等の1価カルボン酸のリチウム塩;シュウ酸リチウム((COOLi))、マロン酸リチウム(LiOOCCHCOOLi)、コハク酸リチウム((CHCOOLi))、グルタル酸リチウム(LiOOC(CHCOOLi)、アジピン酸リチウム((CHCHCOOLi))等の2価カルボン酸のリチウム塩;乳酸リチウム(CHCH(OH)COOLi)等の水酸基を有する1価カルボン酸のリチウム塩;酒石酸リチウム((CH(OH)COOLi))、リンゴ酸リチウム(LiOOCCHCH(OH)COOLi)等の水酸基を有する2価カルボン酸のリチウム塩;マレイン酸リチウム(LiOOCCH=CHCOOLi、cis体)、フマル酸リチウム(LiOOCCH=CHCOOLi、trans体)等の不飽和2価カルボン酸のリチウム塩;クエン酸リチウム(LiOOCCHC(COOLi)(OH)CHCOOLi)等の3価カルボン酸のリチウム塩(水酸基を有する3価カルボン酸のリチウム塩)が例示できる。これらのうち、ギ酸リチウム、酢酸リチウム、シュウ酸リチウム、コハク酸リチウムがより好ましく、シュウ酸リチウムが特に好ましい。
 (A)カルボン酸リチウム塩は、一種を単独で用いてもよいし、二種以上を併用してもよい。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すればよい。
 (B)三フッ化ホウ素及び三フッ化ホウ素錯体は、(A)カルボン酸リチウム塩と錯形成反応を行う化合物である。三フッ化ホウ素錯体は、三フッ化ホウ素(BF)が別の成分に配位結合した化合物である。
 好ましい前記三フッ化ホウ素錯体としては、三フッ化ホウ素ジメチルエーテル錯体(BF・O(CH)、三フッ化ホウ素ジエチルエーテル錯体(BF・O(C)、三フッ化ホウ素ジn-ブチルエーテル錯体(BF・O(C)、三フッ化ホウ素ジtert-ブチルエーテル錯体(BF・O((CHC))、三フッ化ホウ素tert-ブチルメチルエーテル錯体(BF・O((CHC)(CH))、三フッ化ホウ素テトラヒドロフラン錯体(BF・OC)等の三フッ化ホウ素アルキルエーテル錯体;三フッ化ホウ素メタノール錯体(BF・HOCH)、三フッ化ホウ素プロパノール錯体(BF・HOC)、三フッ化ホウ素フェノール錯体(BF・HOC)等の三フッ化ホウ素アルコール錯体が例示できる。
 (B)三フッ化ホウ素及び/又は三フッ化ホウ素錯体としては、取り扱いが容易で、錯形成反応がより円滑に進行する点から、前記三フッ化ホウ素錯体を用いることが好ましい。
 (B)三フッ化ホウ素及び/又は三フッ化ホウ素錯体としては、一種を単独で用いてもよいし、二種以上を併用してもよい。
 (B)三フッ化ホウ素及び/又は三フッ化ホウ素錯体の配合量は特に限定されず、(B)三フッ化ホウ素及び/又は三フッ化ホウ素錯体や(A)カルボン酸リチウム塩の種類に応じて適宜調節すればよい。通常は、[(B)三フッ化ホウ素及び/又は三フッ化ホウ素錯体の配合量(モル数)]/[配合された(A)カルボン酸リチウム塩中のリチウム原子のモル数]のモル比が0.5以上であることが好ましく、0.7以上であることがより好ましい。このような範囲とすることで、(C)有機溶媒に対する(A)カルボン酸リチウム塩の溶解度がより向上する。また、前記モル比の上限値は特に限定されないが、2.0であることが好ましく、1.5であることがより好ましい。
 (C)有機溶媒は特に限定されないが、好ましいものとして具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ビニレンカーボネート等の炭酸エステル化合物;γ-ブチロラクトン等のラクトン化合物;ギ酸メチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;アセトニトリル等のニトリル化合物;スルホラン等のスルホン化合物が例示できる。
 (C)有機溶媒は、一種を単独で用いてもよいし、二種以上を併用してもよい。
 (C)有機溶媒は、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ビニレンカーボネート、γ-ブチロラクトン、テトラヒドロフラン、ジメトキシエタン、ギ酸メチル、酢酸メチル、プロピオン酸メチル、アセトニトリル及びスルホランからなる群から選択される一種以上であることが好ましい。
 二種以上を併用した(C)有機溶媒としては、プロピレンカーボネート及びビニレンカーボネートが配合された混合溶媒、プロピレンカーボネート及びエチレンカーボネートが配合された混合溶媒、並びにエチレンカーボネート及びジメチルカーボネートが配合された混合溶媒が好ましい。
 前記電解液における(C)有機溶媒の配合量は特に限定されず、例えば、電解質の種類に応じて、適宜調節すればよい。通常は、リチウム原子(Li)の濃度が、好ましくは0.2~3.0モル/kg、より好ましくは0.4~2.0モル/kgとなるように、配合量を調節することが好ましい。
 また、前記電解液としては、電解質として六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、リチウムビスフルオロスルホニルイミド(LiFSI)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(SOCF、LiTFSI)等の、(A)カルボン酸リチウム塩以外の公知のリチウム塩が有機溶媒に溶解されてなるもの(以下、「第二の電解液」と略記することがある)も例示できる。
 第二の電解液における前記電解質は、一種を単独で用いてもよいし、二種以上を併用してもよい。
 第二の電解液における前記有機溶媒としては、第一の電解液における(C)有機溶媒と同じのものが例示できる。また、第二の電解液におけるリチウム原子(Li)の濃度も、第一の電解液の場合と同様である。
 第一及び第二の電解液には、本発明の効果を損なわない範囲内において、公知のリチウムイオン二次電池の電解液に使用される任意成分が配合されていてもよい。
[セパレータ]
 前記セパレータの材料としては、例えば、多孔性樹脂膜、不織布、ガラスファイバー等が挙げられる。
 また、前記セパレータとして、正極活物質層の表面又は負極活物質層の表面に形成され、正極と負極を絶縁し、電解液を保持及び透過させることが可能な多孔性絶縁層も適用可能である。多孔性絶縁層は、例えば、絶縁性無機粒子及びバインダー樹脂を含む組成物を負極又は正極の表面に塗工して乾燥させる公知方法によって形成される。多孔性絶縁層の厚みとしては、例えば0.5μm~50μm程度が好ましい。
 以下、実施例を示して本発明についてさらに詳しく説明する。ただし、本発明は以下に示す実施例に何ら限定されない。
<実施例1>
[負極の作製]
 一酸化ケイ素(SiO、平均粒子径1.0μm、69質量部)、SBR(3質量部)、及びポリアクリル酸(12質量部)を試薬瓶に入れ、さらに蒸留水を添加して濃度調整した後、自公転ミキサーを用いて2000rpmで2分間混合した。この混合物にアセチレンブラック(10質量部)を加え、自公転ミキサーを用いて2000rpmで2分間混合した。この混合物を超音波ホモジナイザーで10分間分散処理した後、再度、自公転ミキサーを用いてこの分散物を2000rpmで2分間混合することにより、負極材のスラリーを得た。
[正極材の調製]
 コバルト酸リチウム(LiCo2O)(93質量部)と、ポリフッ化ビニリデン(PVDF)(4質量部)と、導電助剤であるカーボンブラック(3質量部)とを混合して正極合材を調製し、これをN-メチルピロリドン(NMP)中に分散させて、正極材のスラリーを得た。
[負極の作製]
 パンチング銅箔として、縦×横=40mm×55mm,厚さ10μm,穴径0.35mm,空孔率17.2%、福田金属箔粉工業株式会社製を準備した。
 パンチング銅箔の両面に、塗工厚み30μmで負極材を塗布し、乾燥させた後、プレスして、パンチング銅箔とほぼ同面積の負極活物質層が形成された負極を得た。
[正極の作製]
 パンチングAl箔として、縦×横=40mm×55mm,厚さ15μm,穴径0.35mm,空孔率17.2%、福田金属箔粉工業株式会社製を準備した。
 パンチングAl箔の両面に、塗工厚み42.5μmで正極材を塗布し、乾燥させた後、プレスして、パンチングAl箔とほぼ同面積の正極活物質層が形成された正極を得た。
[電解液の作製]
 EC及びPCの混合溶媒(EC:PC=30:70(体積比))に、濃度1.0モル/kgとなるようにシュウ酸リチウム-三フッ化ホウ素錯体を加え、23℃で混合することにより、電解液を得た。
[電極積層体の作製]
 図1に示す電極積層体9を備えたリチウムイオン二次電池10Aを以下の方法で製造した。上記で作製した負極3及び正極1の間に厚さ25μm、表面積42cm×57cmのセパレータ2(積水化学工業株式会社製)を配置して積層したセル(負極/セパレータ/正極)を得た。このセルを4つ準備し、隣接するユニット同士の正極1と負極3とを向い合せて、その間にセパレータ2を配置して第一から第四セルU1~U4を積層した。この積層体の最外層は、第一ユニットU1の負極3aと第四ユニットU4の正極1である。最外層の第四ユニットU4の正極1の外部側の表面にセパレータ2を介して別の負極3eを設置し、電極積層体9を得た。
 電極積層体9の最外層の両面に、パンチング銅箔とほぼ同面積の厚み100μmのリチウム金属箔4をそれぞれ載置して、リチウム金属箔4が最外層に設置された電極積層体9を得た(図1参照)。
[電池の組み立て]
 電極積層体9を構成する各負極3を電気的に接続するリードタブ3zと、各正極1を電気的に接続するリードタブ1zとを外部へ突出させた状態で、電極積層体9をアルミラミネート製の外装体(不図示)へ収納し、外装体を仮封止した。この外装体内部に電解液を注入した後、本封止することによって、目的のリチウムイオン二次電池10Aを得た。
[リチウムのプレドープ工程]
 上記で製造したリチウムイオン二次電池10Aを加圧治具で加圧した状態で固定し、25℃の恒温槽中にて72時間静置することによりリチウムのプレドープ処理を行った。
<実施例2>
 実施例1で作製した電極積層体9の最外層において、負極3a,3eと、リチウム金属箔4の間に、スペーサー5としてパンチング銅箔(縦×横=40mm×55mm,厚さ15μm,穴径0.35mm,空孔率16.7%、福田金属箔粉工業株式会社製)を挟んで配置してなる電極積層体11を使用した以外は、実施例1と同様にリチウムイオン二次電池10Bを作製した(図2参照)。
 実施例1と同様に、25℃でリチウムのプレドープ処理を行った。
<実施例3>
 実施例2と同様に作製した電極積層体11を用いてリチウムイオン二次電池10Bを作製した(図2参照))。
 温度を10℃に変更した以外は実施例2と同様にリチウムのプレドープ処理を行った。
<比較例1>
 実施例1で作製した電極積層体9において、第二ユニットU2の負極3bとセパレータ2の間に、負極3bとほぼ同面積のリチウム金属箔4を配置し、第四ユニットU4の負極3dとセパレータ2の間に、負極3dとほぼ同面積のリチウム金属箔4を配置した電極積層体12を使用し、電極積層体12の最外層にはリチウム金属箔4を配置しない以外は、実施例1と同様にリチウムイオン二次電池100Aを作製した(図3参照)。
 実施例1と同様に、25℃でリチウムのプレドープ処理を行った。
<比較例2>
 実施例1で作製した電極積層体9において、各負極3と各セパレータ2の間に1枚ずつリチウム金属箔4を配置して、合計5枚のリチウム金属箔4を設置してなる電極積層体13を使用した以外は、実施例1と同様にリチウムイオン二次電池100Bを作製した(図4参照)。
 実施例1と同様に、25℃でリチウムのプレドープ処理を行った。
<比較例3>
 実施例2と同様に組み立てた電池を使用した(図2参照)。
 温度を45℃に変更した以外は実施例2と同様にリチウムのプレドープ処理を行った。
<評価方法>
[リチウムイオン二次電池の充放電特性の評価]
 上記の実施例及び比較例で作製したリチウムイオン二次電池について、25℃において0.1Cの定電流定電圧充電を、上限電圧4.35Vとして電流値が0.05Cに収束するまで行った後、0.1Cの定電流放電を2.5Vまで行った。次いで、充放電電流を0.5Cとして同様の方法で、充放電サイクルを3回繰り返し行い、リチウムイオン二次電池の状態を安定させた。次いで、充放電電流を0.2Cとして同様の方法で、充放電を行い、容量発現率({[1サイクル目の放電容量(mAh)]/[定格容量(mAh)]}×100)(%)、充放電電流を1Cとして同様の方法で、充放電サイクルを繰り返し行い、100サイクルでの容量維持率({[100サイクル目の放電容量(mAh)]/[1サイクル目の放電容量(mAh)]}×100)(%)を算出した。得られた容量維持率の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[負極に対するリチウムプレドープの評価]
 上記の実施例及び比較例で作製したリチウムイオン二次電池について、リチウムのプレドープ処理及び初期充電を行った後、外装体から電極積層体を取り出して分解し、全ての負極を取り出して、前記混合溶媒で各負極活物質層の表面に付着した電解質を洗浄した。
 続いて、SEM-EDXによって各負極の負極活物質層の表面におけるフッ素原子とケイ素原子の質量比(F/Si比)を測定した。負極を構成するパンチング銅箔の両面に形成されている各負極活物質層のF/Si比の平均値を各負極のF/Si比の値とした。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1におけるF/Si比の最大値/最小値=2.32、
 実施例2におけるF/Si比の最大値/最小値=1.28、
 実施例3におけるF/Si比の最大値/最小値=1.04、
 比較例1におけるF/Si比の最大値/最小値=1.51、
 比較例2におけるF/Si比の最大値/最小値=1.05、
 比較例3におけるF/Si比の最大値/最小値=1.75であった。
 以上の結果において、実施例1~3の容量維持率は比較例1~3よりも向上していた。
 これは、活物質として機能し得る負極範囲においてLiFなどのフッ素化合物を含むSEIの過剰生成を防ぐことができたため、活物質として利用可能な範囲が減少し難くなり(減少の程度が緩和され)、サイクル特性が向上したと考えられる。
 また、実施例1~3を比較すると、F/Si比が1.0以下である負極の個数の割合は、実施例1では1つ/5つ(20%)、実施例2では3つ/5つ(60%)、実施例3では5つ/5つ(100%)であった。この様に、F/Si比が1.0以下である負極の割合が多いほど、リチウムイオン二次電池の容量維持率が向上することが確認された。
 また、実施例1~3を比較すると、F/Si比の最大値/最小値が小さいほど、リチウムイオン二次電池の容量維持率が向上することが確認された。この様に容量維持率が向上する理由は、リチウムドープの状態が各負極間で均一化されていると、生成されるSEIも各負極間で均一化され、各負極間の電極反応の偏りが生じ難くなるためであると考えられる。
 以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、公知の構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはない。
10,10A,10B、100,100A,100B…リチウムイオン二次電池、1…正極、1z…リードタブ、2…セパレータ、3,3a~3e…負極、3z…リードタブ、4…リチウム金属箔、5…スペーサー、U1~U4…セル、9,11,12,13…電極積層体

Claims (4)

  1.  正極と、電解質層と、負極とがこの順で積層されたセルを少なくとも1つ備えたリチウムイオン二次電池であって、
     前記電解質層はフッ化物を含有し、前記負極はシリコン化合物が含まれた負極活物質層を有し、
     前記負極の少なくとも1つにおいて、 前記負極活物質層の表面におけるフッ素/ケイ素の質量比(F/Si比)が1.0以下である、リチウムイオン二次電池。
  2.  前記セルが複数備えられ、各セルが有する負極のF/Si比のうち、最大値を最小値で除した値が1.0~3.0である、請求項1に記載のリチウムイオン二次電池。
  3.  前記セルが2つ以上積層されている、請求項1又は2に記載のリチウムイオン二次電池。
  4.  初期充電前に、前記負極活物質層にリチウムがプレドープされている、請求項1~3の何れか一項に記載のリチウムイオン二次電池。
PCT/JP2016/079618 2015-10-05 2016-10-05 リチウムイオン二次電池 WO2017061468A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017544526A JP6925972B2 (ja) 2015-10-05 2016-10-05 リチウムイオン二次電池及びその製造方法
US15/751,402 US10566650B2 (en) 2015-10-05 2016-10-05 Lithium ion secondary battery
EP16853622.5A EP3361544A4 (en) 2015-10-05 2016-10-05 LITHIUM-ION SECONDARY BATTERY
CN201680051394.0A CN108028418B (zh) 2015-10-05 2016-10-05 锂离子二次电池
KR1020187006191A KR20180054589A (ko) 2015-10-05 2016-10-05 리튬 이온 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015198041 2015-10-05
JP2015-198041 2015-10-05

Publications (1)

Publication Number Publication Date
WO2017061468A1 true WO2017061468A1 (ja) 2017-04-13

Family

ID=58487694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079618 WO2017061468A1 (ja) 2015-10-05 2016-10-05 リチウムイオン二次電池

Country Status (7)

Country Link
US (1) US10566650B2 (ja)
EP (1) EP3361544A4 (ja)
JP (1) JP6925972B2 (ja)
KR (1) KR20180054589A (ja)
CN (1) CN108028418B (ja)
TW (1) TW201725778A (ja)
WO (1) WO2017061468A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010474A1 (en) * 2017-07-07 2019-01-10 University Of Pittsburgh-Of The Commonwealth System Of Higher Education ELECTROFILING PVDF-HFP: NEW COMPOSITE POLYMER ELECTROLYTES (CPES) HAVING INCREASED IONIC CONDUCTIVITIES FOR LITHIUM SULFUR BATTERIES
CN109037778A (zh) * 2018-08-01 2018-12-18 桑德集团有限公司 一种电解液添加剂和含有其的电解液、锂离子电池以及设备
KR20200053300A (ko) * 2018-11-08 2020-05-18 주식회사 포스코 리튬 이차 전지용 음극, 이의 제조 방법 및 이를 이용한 리튬 이차 전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011696A (ja) * 2003-06-19 2005-01-13 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極材料
JP2009188141A (ja) * 2008-02-06 2009-08-20 Fuji Heavy Ind Ltd 蓄電デバイス
WO2013115041A1 (ja) * 2012-01-30 2013-08-08 日本電気株式会社 非水電解液およびそれを用いた二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1823201B (zh) * 2003-07-14 2011-08-17 克拉克设备公司 用于小型装载机的手动控制器
JP5220510B2 (ja) * 2008-08-06 2013-06-26 富士重工業株式会社 蓄電デバイス
US20120321965A1 (en) * 2010-02-25 2012-12-20 Masato Fujikawa Lithium ion secondary battery
JP2012151395A (ja) * 2011-01-21 2012-08-09 Fuji Heavy Ind Ltd 蓄電デバイス
JP5686076B2 (ja) * 2011-09-08 2015-03-18 株式会社豊田自動織機 リチウムイオン二次電池の製造方法
JP2013197053A (ja) * 2012-03-22 2013-09-30 Fuji Heavy Ind Ltd リチウムイオン蓄電デバイス及びその製造方法
CN104364957B (zh) * 2012-06-04 2017-09-12 日本电气株式会社 锂离子二次电池
JP6097643B2 (ja) * 2012-08-21 2017-03-15 積水化学工業株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2014086222A (ja) * 2012-10-22 2014-05-12 Idemitsu Kosan Co Ltd 二次電池の製造方法
JP6302322B2 (ja) 2013-09-26 2018-03-28 積水化学工業株式会社 リチウムイオン二次電池
WO2015129257A1 (ja) * 2014-02-27 2015-09-03 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011696A (ja) * 2003-06-19 2005-01-13 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極材料
JP2009188141A (ja) * 2008-02-06 2009-08-20 Fuji Heavy Ind Ltd 蓄電デバイス
WO2013115041A1 (ja) * 2012-01-30 2013-08-08 日本電気株式会社 非水電解液およびそれを用いた二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3361544A4 *

Also Published As

Publication number Publication date
EP3361544A4 (en) 2019-07-03
CN108028418B (zh) 2022-07-12
CN108028418A (zh) 2018-05-11
JPWO2017061468A1 (ja) 2018-07-26
EP3361544A1 (en) 2018-08-15
TW201725778A (zh) 2017-07-16
JP6925972B2 (ja) 2021-08-25
US20180233773A1 (en) 2018-08-16
US10566650B2 (en) 2020-02-18
KR20180054589A (ko) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6316066B2 (ja) リチウムイオン二次電池の製造方法
US9048496B2 (en) Surface treatment of electrochemically active materials for rechargeable cells
WO2014010526A1 (ja) 非水電解質二次電池
KR102329654B1 (ko) 전극용 조성물, 전극, 그 제조 방법 및 전지
JP2011129352A (ja) 非水電解質二次電池
EP3605556A1 (en) Semisolid electrolyte layer, battery cell sheet and secondary battery
JP5445683B2 (ja) 負極材料、リチウム二次電池、および負極材料の製造方法
WO2017061468A1 (ja) リチウムイオン二次電池
JP5632246B2 (ja) リチウムイオン二次電池
JP6725261B2 (ja) リチウムイオン二次電池
JP6346733B2 (ja) 電極、非水系二次電池及び電極の製造方法
JP6698374B2 (ja) リチウムイオン二次電池
JP2015056311A (ja) 非水電解質二次電池の製造方法
JP6237777B2 (ja) 負極活物質、それを用いた負極、及びリチウムイオン二次電池
CN110235296A (zh) 半固体电解液、半固体电解质、半固体电解质层、电极、二次电池
JP2014072129A (ja) 蓄電デバイス用電極およびそれを用いた蓄電デバイス
JP2017152139A (ja) リチウムイオン二次電池
JP2014220074A (ja) 非水電解質二次電池用正極、非水電解質二次電池及び非水電解質二次電池用正極の製造方法
JP7267823B2 (ja) 不揮発性電解質、二次電池
JP5659994B2 (ja) 負極活物質、リチウム二次電池、負極活物質の製造方法
CN109119180A (zh) 导电材料、电极片及电化学储能装置
JP2016072031A (ja) 蓄電素子用正極とそれを用いた蓄電素子及び蓄電装置
JP2023159870A (ja) リチウムイオン電池
CN115411227A (zh) 锂离子二次电池
CN115411238A (zh) 锂离子二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853622

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15751402

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017544526

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006191

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE