WO2017061328A1 - 被覆切削工具 - Google Patents

被覆切削工具 Download PDF

Info

Publication number
WO2017061328A1
WO2017061328A1 PCT/JP2016/078947 JP2016078947W WO2017061328A1 WO 2017061328 A1 WO2017061328 A1 WO 2017061328A1 JP 2016078947 W JP2016078947 W JP 2016078947W WO 2017061328 A1 WO2017061328 A1 WO 2017061328A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
region
cutting tool
coated cutting
less
Prior art date
Application number
PCT/JP2016/078947
Other languages
English (en)
French (fr)
Inventor
茂揮 田中
Original Assignee
株式会社タンガロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タンガロイ filed Critical 株式会社タンガロイ
Priority to EP16853482.4A priority Critical patent/EP3360632B1/en
Priority to JP2017504843A priority patent/JP6406592B2/ja
Priority to CN201680057164.5A priority patent/CN108136509B/zh
Priority to US15/765,701 priority patent/US10654109B2/en
Publication of WO2017061328A1 publication Critical patent/WO2017061328A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/24Titanium aluminium nitride

Definitions

  • the present invention relates to a coated cutting tool.
  • a coated cutting tool including one or more coating layers such as a TiN layer and a TiAlN layer on a substrate surface made of cemented carbide, cermet, cBN or the like is widely used. .
  • Patent Document 1 the content ratio of Ti in the total amount of Al and Ti on the surface of a tool base made of tungsten carbide base cemented carbide is 0.15 to 0.45 (however, atomic ratio).
  • a hard coating layer is formed, and the average particle size on the surface of the hard coating layer is 0.2 ⁇ m to 0.5 ⁇ m.
  • the average particle size of the granular crystal grains at the interface between the tool base and the hard coating layer is the same as that of the surface of the hard coating layer. What is claimed is: 1.
  • the cutting conditions tend to be stricter than before, and it is required to extend the tool life longer than before.
  • the coating on the cutting edge tends to decompose and oxidize due to heat generated during cutting. As a result, the hardness of the coating is lowered and wear tends to progress. Further, the coating tends to be broken due to the brittleness of the coating.
  • the Al content of the hard coating layer is uniform, so that the oxidation resistance is insufficient. Moreover, since the average particle diameter of the hard coating layer at the interface between the tool base and the hard coating layer is 0.1 ⁇ m or more and the adhesion between them is insufficient, the fracture resistance is insufficient.
  • the present invention has been made in order to solve these problems, and particularly in the processing of difficult-to-cut materials with low thermal conductivity, without reducing the wear resistance and improving the fracture resistance, and as a result.
  • the present invention provides a coated cutting tool that can be processed over a long period of time.
  • the present inventor conducted research on extending the tool life of the coated cutting tool. As a result, when the coated cutting tool has the following configuration, it is possible to improve the fracture resistance without reducing the wear resistance, and to extend the tool life of the coated cutting tool, thereby completing the present invention. It came to.
  • a coated cutting tool including a substrate and a coating layer formed on the surface of the substrate, wherein the coating layer includes at least one predetermined layer, and the predetermined layer has the following formula: : (Al x Ti y M 1- x-y) N [Wherein, M represents at least one element selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Si, and x is represented by Al element, Ti element, and M.
  • the average thickness of the predetermined layer is 1.4 ⁇ m or more and 15 ⁇ m or less, and the predetermined layer has the following conditions (1) and (2): And a coated cutting tool having an upper region and a lower region satisfying (3).
  • Condition (1) The upper region has an average thickness of 0.5 ⁇ m or more and 2.5 ⁇ m or less from the interface on the surface side of the coated cutting tool toward the base material, and an average thickness of the predetermined layer
  • the lower region has an average thickness of 0.5 ⁇ m or more and 2.5 ⁇ m or less from the interface on the substrate side toward the surface of the coated cutting tool, and the predetermined region Having an average thickness less than the average thickness of the layers.
  • Condition (3) The average particle size in the upper region is larger than the average particle size in the lower region.
  • the predetermined layer has an intermediate region between the upper region and the lower region, and an atomic ratio of Al element in the intermediate region is lower than that of the upper region and lower than that of the lower region.
  • the average particle size in the intermediate region is 60 nm or more and 475 nm or less, which is smaller than the average particle size in the upper region and larger than the average particle size in the lower region, any one of [1] to [3]
  • the coated cutting tool as described in any one.
  • the predetermined layer is a layer located closest to the substrate in the coating layer.
  • the coating layer is selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y on the opposite side of the predetermined layer from the base material.
  • an outer layer containing a compound composed of at least one element selected from the group consisting of C, N, O and B, and the average thickness of the outer layer is 0.1 ⁇ m
  • the coated cutting tool according to any one of [1] to [6] which is not less than 3.5 ⁇ m.
  • the coated cutting tool of the present invention can improve the fracture resistance without deteriorating the wear resistance, and has the effect of extending the tool life of the coated cutting tool.
  • the coated cutting tool of this embodiment includes a base material and a coating layer formed on the surface of the base material.
  • the base material in this embodiment is not particularly limited as long as it can be used as a base material for a coated cutting tool.
  • the substrate include cemented carbide, cermet, ceramics, cubic boron nitride sintered body, diamond sintered body, and high speed steel.
  • the base material is any one of cemented carbide, cermet, ceramics, and cubic boron nitride sintered body because the wear resistance and fracture resistance are further improved.
  • the average thickness of the entire coating layer when the average thickness of the entire coating layer is 1.5 ⁇ m or more, the wear resistance tends to be further improved. On the other hand, when the average thickness of the entire coating layer is 15.0 ⁇ m or less, the fracture resistance tends to be further improved. For this reason, the average thickness of the entire coating layer is preferably 1.5 ⁇ m or more and 15 ⁇ m or less. Among these, from the same viewpoint as described above, the average thickness of the entire coating layer is more preferably 2.0 ⁇ m or more and 10 ⁇ m or less.
  • the coating layer of the present embodiment may be a single layer or a multilayer of two or more layers, at least one of the coating layers is referred to as a specific layer described below (hereinafter referred to as “hard layer”). )including.
  • the hard layer according to this embodiment has the following formula: (Al x Ti y M 1- x-y) N Since the compound which has the composition represented by this is contained, it is excellent in oxidation resistance.
  • the compound having the composition represented by the above formula in the hard layer of the present embodiment preferably contains cubic crystals, or cubic crystals and hexagonal crystals.
  • x represents the atomic ratio of the Al element to the sum of the Al element, the Ti element, and the element represented by M, and satisfies 0.60 ⁇ x ⁇ 0.85.
  • the atomic ratio x of the Al element is 0.60 or more, a decrease in oxidation resistance can be further suppressed by increasing the Al content, and when it is 0.85 or less, the abundance ratio of hexagonal crystals is reduced. By keeping it lower, it is possible to further suppress a decrease in wear resistance.
  • x it is preferable that x is 0.60 or more and 0.75 or less because the balance between oxidation resistance and wear resistance is excellent.
  • y represents the atomic ratio of the Ti element to the total of the Al element, the Ti element, and the element represented by M, and satisfies 0 ⁇ y ⁇ 0.40.
  • the atomic ratio y of the Ti element is 0.40 or less, the atomic ratio of the Al element becomes relatively high, so that a decrease in oxidation resistance can be further suppressed.
  • the atomic ratios x and y satisfy 0.60 ⁇ x + y ⁇ 1.00.
  • the element represented by M is at least one element selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Si, wear resistance and fracture resistance are further improved. Therefore, it is preferable.
  • the element represented by M is more preferably at least one element selected from the group consisting of Zr, Hf, V, Nb, Cr, Mo, W and Si.
  • the composition of the hard layer is expressed as (Al 0.6 Ti 0.4 ) N
  • the atomic ratio of the Al element to the total of the Al element and the Ti element is 0.6
  • the atomic ratio of Ti element to the total with Ti element is 0.4. That is, it means that the amount of Al element with respect to the sum of Al element and Ti element is 60 atomic%, and the amount of Ti element with respect to the sum of Al element and Ti element is 40 atomic%.
  • the average thickness of the hard layer when the average thickness of the hard layer is 1.3 ⁇ m or more, a decrease in wear resistance can be further suppressed, and when it is 15.0 ⁇ m or less, a decrease in fracture resistance can be further suppressed. Therefore, the average thickness of the hard layer is 1.3 ⁇ m or more and 15.0 ⁇ m or less. Among these, from the same viewpoint as described above, the average thickness of the hard layer is preferably 2.0 ⁇ m or more and 8.0 ⁇ m or less.
  • the hard layer according to the present embodiment has an upper region and a lower region that satisfy the following conditions (1), (2), and (3).
  • Condition (1) The upper region has an average thickness of 0.5 ⁇ m or more and 2.5 ⁇ m or less from the interface on the surface side of the coated cutting tool of the hard layer and less than the average thickness of the hard layer.
  • the lower region has an average thickness of 0.5 ⁇ m or more and 2.5 ⁇ m or less from the interface on the substrate side of the hard layer toward the surface of the coated cutting tool, and the average of the hard layer Having an average thickness less than the thickness.
  • Condition (2) The atomic ratio of Al element contained in the upper region is 3 atomic% to 10 atomic% higher than the atomic ratio of Al element contained in the lower region.
  • the atomic ratio of the Al element contained in the upper region is preferably 3 atomic% to 8 atomic% higher than the atomic ratio of the Al element contained in the lower region.
  • the hard layer is the layer (lowermost layer) located closest to the base material in the coating layer, since the peeled area in the cutting process tends to be small.
  • the average particle size in the upper region is more preferably 20 nm or more and more preferably 30 nm or more than the average particle size in the lower region.
  • the upper limit of the difference between the average particle sizes is not particularly limited, and the average particle size in the upper region may be 400 nm or less larger than the average particle size in the lower region.
  • the oxidation resistance can be improved.
  • the average thickness of the upper region satisfying the above conditions (2) and (3) is 2.5 ⁇ m or less, deterioration of chipping resistance and chipping resistance is suppressed.
  • the adhesiveness with respect to the base material of a hard layer can be improved as the average thickness of the lower area
  • the average thickness of the lower region satisfying the above conditions (2) and (3) is 2.5 ⁇ m or less, a decrease in wear resistance can be suppressed.
  • the average particle size in the upper region is 100 nm or more and 500 nm or less, and the average particle size in the lower region is 10 nm or more and 100 nm or less.
  • the hard layer of the present embodiment preferably has an intermediate region between the upper region and the lower region, and the atomic ratio of Al element in the intermediate region is preferably lower than the upper region and higher than the lower region.
  • the average thickness is preferably 0.1 ⁇ m or more and 2.5 ⁇ m or less.
  • the average particle size is preferably 60 nm or more and 475 nm or less, and is preferably smaller than the average particle size in the upper region and larger than the average particle size in the lower region. Thereby, it is further excellent in the balance between the wear resistance and the fracture resistance of the coated cutting tool.
  • the average particle size is 10 nm or more and 80 nm or less because the adhesion between the base material and the hard layer tends to be further improved.
  • the hard layer has at least a lower region and an upper region. And the atomic ratio and average particle diameter of Al element are larger in the upper region than in the lower region.
  • the hard layer according to the present embodiment is simply different from a layer in which the atomic ratio and average particle diameter of Al are uniform throughout the layer.
  • the coating layer according to the present embodiment may include an external layer on the side opposite to the base of the hard layer (that is, the upper layer of the hard layer), preferably on the surface of the hard layer.
  • the outer layer includes at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si and Y, and a group consisting of C, N, O and B It is more preferable to include a compound composed of at least one element selected from the above (however, the composition is different from that of the hard layer) since it tends to be more excellent in wear resistance.
  • the outer layer has at least one element selected from the group consisting of Ti, Nb, Cr, Al, and Si and at least one selected from the group consisting of C, N, O, and B. More preferably, a compound comprising a seed element is included, and at least one element selected from the group consisting of Ti, Nb, Cr, Al and Si, and at least one element selected from the group consisting of C and N; More preferably, a compound comprising
  • the composition of the upper layer is different from that of the hard layer.
  • the upper layer may be a single layer or a multilayer of two or more layers.
  • the average layer thickness of the outer layer of the present invention is preferably 0.1 ⁇ m or more and 3.5 ⁇ m or less because it tends to be excellent in wear resistance.
  • FIG. 1 is a schematic partial sectional view showing an example of the coated cutting tool of the present embodiment.
  • the coated cutting tool 10 includes a base material 1 and a coating layer 4 formed on the surface of the base material 1.
  • the coating layer 4 includes a hard layer 2, and the hard layer 2 is a lower region from the base material 1 side. 2A and upper region 2B in this order.
  • FIG. 2 is a schematic partial sectional view showing another example of the coated cutting tool of the present embodiment.
  • the coated cutting tool 20 includes a substrate 1 and a coating layer 4 formed on the surface of the substrate 1, and the coating layer 4 is formed on the surfaces of the hard layer 2 and the hard layer 2 from the substrate 1 side.
  • the hard layer 2 has a lower region 2A, an intermediate region 2C, and an upper region 2B in this order from the base material side.
  • the method for producing the coating layer in the coated cutting tool of the present embodiment is not particularly limited, but for example, physical vapor deposition methods such as ion plating method, arc ion plating method, sputtering method, and ion mixing method can be used. Can be mentioned. It is preferable to form the coating layer using a physical vapor deposition method because a sharp edge can be formed. Among these, the arc ion plating method is more preferable because it is more excellent in the adhesion between the coating layer and the substrate.
  • the manufacturing method of the coated cutting tool of this embodiment will be described using a specific example.
  • the manufacturing method of the coated cutting tool of this embodiment is not specifically limited as long as the configuration of the coated cutting tool can be achieved.
  • the base material processed into a tool shape is accommodated in a reaction container of a physical vapor deposition apparatus, and a metal evaporation source is installed in the reaction container.
  • a metal evaporation source is installed in the reaction container.
  • two kinds of metal evaporation sources having a difference in atomic ratio of Al element of 3 atomic% to 8 atomic% are installed in the reaction vessel.
  • the inside of the reaction vessel is evacuated until the pressure becomes 1.0 ⁇ 10 ⁇ 2 Pa or less, and the substrate is heated by the heater in the reaction vessel until the temperature becomes 600 ° C. to 700 ° C.
  • Ar gas is introduced into the reaction vessel, and the pressure is adjusted to 0.5 Pa to 5.0 Pa.
  • the substrate is heated so that its temperature is in the range of 500 ° C. to 600 ° C., and a mixed gas of nitrogen gas (N 2 ) and argon gas (Ar) is supplied at a partial pressure ratio of 2: 8 to 3: 7 ( N 2 : Ar) is introduced into the reaction vessel, and the pressure in the reaction vessel is adjusted to 0.5 to 5.0 Pa. Thereafter, a bias voltage of ⁇ 80 V to ⁇ 100 V is applied to the base material, and the base material is evaporated by arc discharge with a metal evaporation source having a low atomic ratio of Al element of 100 A to 200 A of the two types of metal evaporation sources. A lower region of the hard layer is formed on the surface of the substrate.
  • a mixed gas of nitrogen gas (N 2 ) and argon gas (Ar) is supplied at a partial pressure ratio of 2: 8 to 3: 7 ( N 2 : Ar) is introduced into the reaction vessel, and the pressure in the reaction vessel is adjusted to 0.5 to 5.0 Pa.
  • the lower region is formed while changing the temperature of the base material to a low temperature.
  • the speed at which the particles are formed becomes slow.
  • the base material After forming the lower region, the base material is cooled until the temperature reaches 400 ° C. to 500 ° C., and the mixed gas of N 2 gas and Ar gas has a partial pressure ratio (N 2 : Ar) of 4: 6 to 5: 5. ), And the pressure in the reaction vessel is adjusted to 0.5 to 5.0 Pa. Thereafter, a bias voltage of ⁇ 60 V to ⁇ 80 V is applied to the substrate, and the two metal evaporation sources are evaporated by arc discharge with 100 to 200 A to form an intermediate region. After starting the film formation, the intermediate region is formed while changing the temperature of the base material to a low temperature. When the intermediate region is formed while changing the temperature of the substrate to a low temperature, the particle growth becomes more remarkable.
  • the cooling rate of the temperature of the substrate is 10 ° C./hour or more, the particle growth becomes more sufficient.
  • the cooling rate of the temperature of the base material is 50 ° C./hour or less, the time during which the film is substantially formed becomes longer, and the intermediate region can be made thicker. Therefore, it is preferable that the cooling rate of the temperature of the base material is 10 ° C./hour or more and 50 ° C./hour or less.
  • the substrate After forming the intermediate region, the substrate is cooled until the temperature reaches 300 ° C. to 400 ° C., and the mixed gas of N 2 gas and Ar gas is divided into 6: 4 to 7: 3 partial pressure ratio (N 2 : Ar ), And the pressure in the reaction vessel is adjusted to 0.5 to 5.0 Pa. Thereafter, a bias voltage of ⁇ 40 V to ⁇ 60 V is applied to the base material, and the upper region is evaporated by arc discharge with a metal evaporation source having a high Al element atomic ratio of two types of metal evaporation sources of 100 to 200 A. Is deposited. After starting the film formation, the upper region is formed while changing the temperature of the base material to a low temperature.
  • the cooling rate of the temperature of the substrate is 10 ° C./hour or more, the particle growth becomes more sufficient.
  • the cooling rate of the temperature of the base material is 50 ° C./hour or less, the time during which the film is substantially formed becomes longer and the upper region can be made thicker. Therefore, it is preferable that the cooling rate of the temperature of the base material is 10 ° C./hour or more and 50 ° C./hour or less.
  • the temperature of the substrate during film formation may be lowered.
  • the generation of nuclei in each region in the hard layer is suppressed.
  • the intermediate region and the upper region are preferably formed while changing the temperature of the base material to a low temperature.
  • the bias voltage applied to the substrate is lowered, the particle size of each region in the hard layer tends to increase.
  • the particle diameter of the coating layer decreases as the atomic ratio of Al element increases. Therefore, it is preferable to control the temperature and bias voltage of the substrate when forming the hard layer of the present embodiment.
  • N 2 gas introduced into the reaction vessel, and for a gas mixture of Ar gas, it is preferable to further increase the partial pressure of N 2 gas.
  • the thickness of each layer and each region constituting the coating layer in the coated cutting tool of the present embodiment is determined from the cross-sectional structure of the coated cutting tool by using an optical microscope, a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. Can be measured.
  • the average thickness of each layer and each region in the coated cutting tool of the present embodiment is three or more in the vicinity of the position of 50 ⁇ m from the edge of the edge of the surface facing the metal evaporation source toward the center of the surface. It can be obtained by measuring the thickness of each layer and each region from the cross section and calculating the average value (arithmetic average value).
  • composition of each layer and each region constituting the coating layer in the coated cutting tool of the present embodiment is determined from the cross-sectional structure of the coated cutting tool of the present embodiment by using an energy dispersive X-ray analyzer (EDS) or a wavelength dispersive X It can be measured using a line analyzer (WDS) or the like.
  • EDS energy dispersive X-ray analyzer
  • WDS line analyzer
  • the average particle diameter of each region of the hard layer can be obtained by observing the cross-sectional structure of the hard layer.
  • a cross section in a direction orthogonal to the surface of the base material in the coated cutting tool that is, a cross section viewed from the direction shown in FIG. 1 is mirror-polished, and the obtained mirror-polished surface is a cross-sectional structure.
  • Examples of the method of mirror polishing the hard layer include a method of polishing using diamond paste or colloidal silica and ion milling.
  • the cross-sectional structure of each region is observed at a magnification of 5000 to 20000 times using FE-SEM or TEM.
  • the particle diameter of each region of the hard layer is the distance between the particles in the direction parallel to the surface of the substrate. At this time, the distance between the particles is the distance at the longest position between the particles.
  • the measurement range is a range surrounded by a rectangle of 10 ⁇ m in a direction parallel to the substrate surface and 0.5 ⁇ m in a direction orthogonal to the surface of the substrate in each region. The particle diameters of all particles existing within this measurement range are obtained.
  • the measurement location is set near the position of 50 ⁇ m from the edge of the edge of the surface facing the metal evaporation source toward the center of the surface. In three or more cross-sectional structures, the particle diameter is measured, and the average value (arithmetic average value) of the obtained particle diameters is defined as the average particle diameter.
  • the coated cutting tool of the present embodiment can improve the chipping resistance without lowering the wear resistance, particularly in the processing of difficult-to-cut materials with low thermal conductivity, and as a result, can be processed over a long period of time. It is considered that the defect resistance is improved because of its excellent oxidation resistance.
  • Specific examples of the coated cutting tool of the present embodiment include milling or turning cutting edge exchangeable cutting inserts, drills, and end mills.
  • a cemented carbide having a composition of 93.2WC-6.5Co-0.3Cr 3 C 2 (mass%) was prepared by processing into an ISO standard CNMG120408-shaped insert.
  • a metal evaporation source in which the composition of the lower region and the upper region of the hard layer has the composition shown in Table 1 was disposed in the reaction vessel of the arc ion plating apparatus.
  • a metal evaporation source in which the composition of the hard layer and the outer layer in the inventive product was the composition shown in Table 2, and the composition of each layer in the comparative product was the composition shown in Table 3, was disposed.
  • the prepared base material was fixed to the fixture of the turntable in the reaction vessel.
  • the inside of the reaction vessel was evacuated until the pressure became a vacuum of 5.0 ⁇ 10 ⁇ 3 Pa or less.
  • the substrate was heated with a heater in the reaction vessel until the temperature reached 600 ° C. After heating, Ar gas was introduced into the reaction vessel so that the pressure was 5.0 Pa.
  • Ion bombardment treatment with Ar gas on the surface of the substrate by applying a bias voltage of -400 V to the substrate in an Ar gas atmosphere at a pressure of 5.0 Pa, causing a 40 A current to flow through the tungsten filament in the reaction vessel. For 30 minutes. After completion of the ion bombardment treatment, the reaction vessel was evacuated until the pressure became 5.0 ⁇ 10 ⁇ 3 Pa or less.
  • the substrate After evacuation, in order to form the lower region in the hard layer, the substrate is heated until the temperature reaches the temperature shown in Table 4, and the mixed gas is reacted at the partial pressure ratio of N 2 gas and Ar gas shown in Table 4
  • the mixture was introduced into a container to create a mixed gas atmosphere having a pressure of 3.0 Pa.
  • the voltage (bias voltage) shown in Table 4 was applied to the substrate and evaporated by arc discharge with an arc current of 120 A to form a lower region in the hard layer.
  • the substrate After forming the lower region, in order to form an intermediate region in the hard layer, the substrate is cooled until the temperature reaches the temperature shown in Table 4, and introduced while maintaining the pressure in the reaction vessel at 3.0 Pa.
  • the partial pressure ratio in the mixed gas of N 2 gas and Ar gas was changed to the conditions shown in Table 4.
  • the voltage (bias voltage) shown in Table 4 was applied to the substrate and evaporated by arc discharge with an arc current of 120 A, and formation of an intermediate region in the hard layer was started. After starting the formation of the intermediate region, particles were formed while changing the temperature of the substrate to a low temperature at the cooling rate shown in Table 4.
  • the substrate After forming the intermediate region, in order to form the upper region in the hard layer, the substrate is cooled until the temperature reaches the temperature shown in Table 4 and introduced while maintaining the pressure in the reaction vessel at 3.0 Pa.
  • the partial pressure ratio in the mixed gas of N 2 gas and Ar gas was changed to the conditions shown in Table 4.
  • the voltage (bias voltage) shown in Table 4 was applied to the substrate and evaporated by arc discharge with an arc current of 120 A, and the formation of the upper region in the hard layer was started. After the formation of the upper region was started, particles were formed while changing the temperature of the base material to a low temperature at the cooling rate shown in Table 4.
  • the substrate was heated until the temperature reached 600 ° C., a bias voltage of ⁇ 50 V was applied to the substrate, and arc discharge with an arc current of 120 A was performed.
  • the metal evaporation source shown in 1 was evaporated to form an outer layer on the surface of the hard layer.
  • the substrate was heated until the temperature reached 600 ° C., and evacuated until the pressure in the reaction vessel became 5.0 ⁇ 10 ⁇ 3 Pa or less. .
  • a mixed gas atmosphere was established.
  • a bias voltage of ⁇ 50 V was applied to the substrate, and an outer layer made of TiCN was formed on the surface of the hard layer by arc discharge with an arc current of 120 A.
  • the first layer was formed on the surface of the substrate under the conditions shown in Table 5. At this time, the arc current was set to 120A. Except for those conditions, the first layer was formed by the same operation as the formation of the hard layer in the invention. For convenience, each region in the first layer is a lower region, an intermediate region, and an upper region in order from the substrate side.
  • composition of the hard layer was the composition at the position where the thickness was 50% of the average thickness of the hard layer.
  • means that an outer layer is not formed.
  • composition of the first layer was the composition at the position where the thickness was 50% of the average thickness of the first layer.
  • means that the second layer is not formed.
  • the average thickness of each layer of the obtained sample is SEM observation of three cross-sections in the vicinity of a position of 50 ⁇ m from the edge of the edge of the surface facing the metal evaporation source of the coated cutting tool toward the center of the surface. Then, the thickness of each layer was measured, and the average value was calculated.
  • the composition of each layer of the obtained sample was measured using EDS in a cross section in the vicinity of the position from the edge of the edge of the surface of the coated cutting tool facing the metal evaporation source to the center part up to 50 ⁇ m. The results are also shown in Table 2 and Table 3.
  • the composition of the hard layer and the first layer of the comparative product was a composition at a position where the thickness was 50% of each average thickness.
  • composition ratio of the metal element of each layer of Table 2 and Table 3 was shown by the atomic ratio of each metal element with respect to the whole metal element in the metal compound which comprises each layer.
  • Tables 6 and 7 show the results of the atomic ratio of Al element in each region of the hard layer and the first layer of the comparative product.
  • the thickness of the first layer was divided into three equal parts, and the lower region, the middle region, and the upper region were sequentially formed from the base material side.
  • the average particle size of each region in the hard layer of the obtained sample was obtained by observing the cross-sectional structure of the hard layer. Specifically, a cross section in a direction perpendicular to the surface of the substrate was mirror-polished, and the obtained mirror-polished surface was taken as a cross-sectional structure. When the hard layer was mirror-polished, it was polished using colloidal silica. The cross-sectional structure of each region was observed using a FE-SEM at a magnification of 20000 times. The particle size of each particle of the hard layer was the distance between each particle in a direction parallel to the surface of the substrate. At this time, the distance between each particle
  • Table 10 shows the results of the cutting test.
  • the coated cutting tool of the present invention is excellent in chipping resistance and can extend the tool life as compared with the prior art, and therefore has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

基材と前記基材の表面に形成された被覆層とを含む被覆切削工具であって、前記被覆層は、少なくとも1層の所定の層を含み、前記所定の層は、下記式: (AlTi1-x―y)N [式中、MはZr、Hf、V、Nb、Ta、Cr、Mo、WおよびSiからなる群より選ばれる少なくとも1種の元素を表し、xはAl元素とTi元素とMで表される元素との合計に対するAl元素の原子比を表し、yはAl元素とTi元素とMで表される元素との合計に対するTi元素の原子比を表し、0.60≦x≦0.85、0≦y≦0.40、0.60≦x+y≦1.00を満足する。] で表される組成を有する化合物を含有する層であり、前記所定の層の平均厚さは、1.4μm以上15μm以下であり、前記所定の層は、下記の条件(1)、(2)および(3)を満たす上部領域と下部領域とを有する、被覆切削工具。 条件(1):前記上部領域は、前記被覆切削工具の表面側の界面から前記基材に向かって0.5μm以上2.5μm以下の平均厚さであって、かつ前記所定の層の平均厚さ未満の平均厚さを有し、前記下部領域は、前記基材側の界面から前記被覆切削工具の表面に向かって0.5μm以上2.5μm以下の平均厚さであって、かつ前記所定の層の平均厚さ未満の平均厚さを有する。 条件(2):前記上部領域に含まれるAl元素の原子比は、前記下部領域に含まれるAl元素の原子比よりも、3原子%~10原子%高い。 条件(3):前記上部領域における平均粒径が、前記下部領域における平均粒径よりも大きい。

Description

被覆切削工具
 本発明は、被覆切削工具に関するものである。
 近年、切削加工の高能率化に対する需要の高まりに伴い、従来よりも工具寿命の長い切削工具が求められている。このため、工具材料の要求特性として、切削工具の寿命に関係する耐摩耗性の向上および耐欠損性の向上が一段と重要になっている。そこで、これらの特性を向上させるため、超硬合金、サーメット、cBNなどからなる基材表面にTiN層、TiAlN層などの被覆層を1層または2層以上含む被覆切削工具が広く用いられている。
 このような被覆層の特性を改善するための様々な技術が提案されている。たとえば特許文献1には、炭化タングステン基超硬合金で構成された工具基体の表面に、AlとTiの合量に占めるTiの含有割合が0.15~0.45(但し、原子比)である硬質被覆層を形成し、硬質被覆層表面における平均粒径は0.2μm~0.5μmであり、工具基体と硬質被覆層の界面における粒状結晶粒の平均粒径は、硬質被覆層表面の粒状結晶粒の平均粒径より0.02μm~0.1μm小さく、粒径が0.15μm以下の結晶粒が占める結晶粒径長割合は20%以下であることを特徴とする表面被覆切削工具が提案されている。
特開2014-166672号公報
 加工能率を上げるために従来よりも切削条件が厳しくなる傾向の中で、これまでよりも工具寿命を長くすることが求められている。しかしながら、ニッケル基耐熱合金やコバルト基耐熱合金等の熱伝導率が低い難削材の加工においては、切削加工時の発熱によって切れ刃における被膜が分解および酸化しやすい。その結果、被膜の硬度が低下し、摩耗が進行する傾向にある。また、被膜が脆化することにより、工具の欠損が生じる傾向にある。
 このような背景により、上記特許文献1の被覆切削工具においては、硬質被覆層のAlの含有割合が均一であるため、耐酸化性が不十分である。また、工具基体と硬質被覆層との界面における硬質被覆層の平均粒径は、0.1μm以上であり、それらの間の密着性が不十分であるため、耐欠損性が不十分である。
 本発明は、これらの問題を解決するためになされたものであり、特に熱伝導率が低い難削材の加工において、耐摩耗性を低下させずに、かつ耐欠損性を向上させ、その結果、長期間にわたって加工できる被覆切削工具を提供するものである。
 本発明者は被覆切削工具の工具寿命の延長について研究を重ねた。その結果、被覆切削工具を以下の構成にすると、耐摩耗性を低下させずに、耐欠損性を向上させることが可能となり、被覆切削工具の工具寿命を延長できることを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨は以下の通りである。
[1]基材と前記基材の表面に形成された被覆層とを含む被覆切削工具であって、前記被覆層は、少なくとも1層の所定の層を含み、前記所定の層は、下記式:
 (AlTi1-x―y)N
[式中、MはZr、Hf、V、Nb、Ta、Cr、Mo、WおよびSiからなる群より選ばれる少なくとも1種の元素を表し、xはAl元素とTi元素とMで表される元素との合計に対するAl元素の原子比を表し、yはAl元素とTi元素とMで表される元素との合計に対するTi元素の原子比を表し、0.60≦x≦0.85、0≦y≦0.40、0.60≦x+y≦1.00を満足する。]
で表される組成を有する化合物を含有する層であり、前記所定の層の平均厚さは、1.4μm以上15μm以下であり、前記所定の層は、下記の条件(1)、(2)および(3)を満たす上部領域と下部領域とを有する、被覆切削工具。
 条件(1):前記上部領域は、前記被覆切削工具の表面側の界面から前記基材に向かって0.5μm以上2.5μm以下の平均厚さであって、かつ前記所定の層の平均厚さ未満の平均厚さを有し、前記下部領域は、前記基材側の界面から前記被覆切削工具の表面に向かって0.5μm以上2.5μm以下の平均厚さであって、かつ前記所定の層の平均厚さ未満の平均厚さを有する。
 条件(2):前記上部領域に含まれるAl元素の原子比は、前記下部領域に含まれるAl元素の原子比よりも、3原子%~10原子%高い。
 条件(3):前記上部領域における平均粒径が、前記下部領域における平均粒径よりも大きい。
[2]前記上部領域における平均粒径は、100nm以上500nm以下であり、前記下部領域における平均粒径は、10nm以上100nm以下である、[1]に記載の被覆切削工具。
[3]前記所定の層は、前記上部領域と前記下部領域との間に中間領域を有し、前記中間領域におけるAl元素の原子比は、前記上部領域よりも低く、かつ前記下部領域よりも高い、[1]または[2]に記載の被覆切削工具。
[4]前記中間領域における平均粒径は、60nm以上475nm以下であり、前記上部領域における平均粒径よりも小さく、かつ前記下部領域における平均粒径より大きい、[1]~[3]のいずれか1つに記載の被覆切削工具。
[5]前記下部領域における平均粒径は、10nm以上80nm以下である、[1]~[4]のいずれか1つに記載の被覆切削工具。
[6]前記所定の層は、前記被覆層において最も前記基材側に位置する層である、[1]~[5]のいずれか1つに記載の被覆切削工具。
[7]前記被覆層は、前記所定の層の前記基材とは反対側に、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、OおよびBからなる群より選ばれる少なくとも1種の元素とからなる化合物を含む外部層を有し、前記外部層の平均厚さは、0.1μm以上3.5μm以下である、[1]~[6]のいずれか1つに記載の被覆切削工具。
[8]前記被覆層の平均厚さは、1.5μm以上15μm以下である、[1]~[7]のいずれか1つに記載の被覆切削工具。
[9]前記基材は、超硬合金、サーメット、セラミックスまたは立方晶窒化硼素焼結体のいずれかである、[1]~[8]のいずれか1つに記載の被覆切削工具。
 本発明の被覆切削工具は、耐摩耗性を低下させずに、耐欠損性を向上させることが可能となり、被覆切削工具の工具寿命を延長できるという効果を奏する。
本発明の被覆切削工具の一例を示す断面模式図である。 本発明の被覆切削工具の別の一例を示す断面模式図である。
 以下、必要に応じて図面を参照しつつ、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明するが、本発明は下記本実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。本実施形態の被覆切削工具は、基材とその基材の表面に形成された被覆層とを含む。本実施形態における基材は、被覆切削工具の基材として用いられ得るものであれば、特に限定はされない。基材の例として、超硬合金、サーメット、セラミックス、立方晶窒化硼素焼結体、ダイヤモンド焼結体、および高速度鋼を挙げることができる。それらの中でも、基材が、超硬合金、サーメット、セラミックスおよび立方晶窒化硼素焼結体のいずれかであると、耐摩耗性および耐欠損性に一層優れるので、さらに好ましい。
 本実施形態の被覆切削工具において、被覆層の全体の平均厚さが1.5μm以上であると耐摩耗性が更に向上する傾向がみられる。一方、被覆層の全体の平均厚さが15.0μm以下であると、耐欠損性が更に向上する傾向がみられる。そのため、被覆層の全体の平均厚さは、1.5μm以上15μm以下であることが好ましい。その中でも、上記と同様の観点から、被覆層の全体の平均厚さは2.0μm以上10μm以下であるとさらに好ましい。
 本実施形態の被覆層は1層であってもよく、2層以上の多層であってもよいが、被覆層の少なくとも1層は以下に説明する特定の層(以下、「硬質層」という。)を含む。本実施形態に係る硬質層は、下記式:
 (AlTi1-x―y)N
で表される組成を有する化合物を含有するため、耐酸化性に優れる。本実施形態の硬質層において上記式で表される組成を有する化合物は、立方晶、または立方晶と六方晶とを含むと好ましい。なお、上記式において、xはAl元素とTi元素とMで表される元素との合計に対するAl元素の原子比を表し、0.60≦x≦0.85を満足する。Al元素の原子比xは、0.60以上であると、Alの含有量が多くなることにより、耐酸化性の低下をさらに抑制でき、0.85以下であると、六方晶の存在比率をより低く抑えることにより、耐摩耗性の低下をさらに抑制できる。その中でも、xが0.60以上0.75以下であると、耐酸化性と耐摩耗性とのバランスにより優れるため、好ましい。yはAl元素とTi元素とMで表される元素との合計に対するTi元素の原子比を表し、0≦y≦0.40を満足する。Ti元素の原子比yは、0.40以下であると、相対的にAl元素の原子比が高くなることにより、耐酸化性の低下をさらに抑制できる。さらには、原子比xおよびyは、0.60≦x+y≦1.00を満足するものである。Mで表される元素は、Zr、Hf、V、Nb、Ta、Cr、Mo、WおよびSiからなる群より選ばれる少なくとも1種の元素であると、耐摩耗性や耐欠損性がさらに向上するため、好ましい。同様の観点から、Mで表される元素は、Zr、Hf、V、Nb、Cr、Mo、WおよびSiからなる群より選ばれる少なくとも1種の元素であるとより好ましい。
 なお、本実施形態において硬質層の組成を(Al0.6Ti0.4)Nと表記する場合は、Al元素とTi元素との合計に対するAl元素の原子比が0.6、Al元素とTi元素との合計に対するTi元素の原子比が0.4であることを表す。すなわち、Al元素とTi元素との合計に対するAl元素の量が60原子%、Al元素とTi元素との合計に対するTi元素の量が40原子%であることを意味する。
 本実施形態において、硬質層の平均厚さが1.3μm以上であると耐摩耗性の低下をより抑制でき、15.0μm以下であると耐欠損性の低下をさらに抑制できる。そのため、硬質層の平均厚さは1.3μm以上15.0μm以下である。その中でも、上記と同様の観点から、硬質層の平均厚さは2.0μm以上8.0μm以下であると好ましい。
 本実施形態に係る硬質層は、下記の条件(1)、(2)および(3)を満たす上部領域と下部領域とを有する。
 条件(1):上部領域は、硬質層の被覆切削工具の表面側の界面から基材に向かって0.5μm以上2.5μm以下の平均厚さであって、かつ硬質層の平均厚さ未満の平均厚さを有し、下部領域は、硬質層の基材側の界面から被覆切削工具の表面に向かって0.5μm以上2.5μm以下の平均厚さであって、かつ硬質層の平均厚さ未満の平均厚さを有する。
 条件(2):上部領域に含まれるAl元素の原子比は、下部領域に含まれるAl元素の原子比よりも、3原子%~10原子%高い。これにより、被覆切削工具の耐酸化性が向上するので、その結果、耐欠損性が向上する。同様の観点から、上部領域に含まれるAl元素の原子比は、下部領域に含まれるAl元素の原子比よりも、3原子%~8原子%高いと好ましい。
 条件(3):上部領域における平均粒径が、下部領域における平均粒径よりも大きい。これにより、被覆切削工具の耐摩耗性が向上する。また、下部領域の平均粒径が上部領域の平均粒径よりも小さいため、チッピングの面積をより小さくすることができる。特に、硬質層が、被覆層において最も基材側に位置する層(最下層)であると、切削加工における剥離面積が小さくなる傾向があるため、好ましい。同様の観点から、上部領域における平均粒径が、下部領域における平均粒径よりも、20nm以上大きいとより好ましく、30nm以上大きいと更に好ましい。それらの平均粒径の差の上限は特に限定されず、上部領域における平均粒径が、下部領域における平均粒径よりも、400nm以下大きくてもよい。
 上記条件(2)および(3)を満たす上部領域の平均厚さが0.5μm以上であると、耐酸化性を向上させることができる。一方、上記条件(2)および(3)を満たす上部領域の平均厚さが2.5μm以下であると、耐チッピング性および耐欠損性の低下を抑制する。また、上記条件(2)および(3)を満たす下部領域の平均厚さが0.5μm以上であると、硬質層の基材に対する密着性を向上させることができるため、耐チッピング性および耐欠損性の低下を抑制する。一方、上記条件(2)および(3)を満たす下部領域の平均厚さが2.5μm以下であると、耐摩耗性の低下を抑制できる。
 本実施形態に係る硬質層は、上部領域における平均粒径が、100nm以上500nm以下であり、下部領域における平均粒径が、10nm以上100nm以下であると、さらに好ましい。これにより、被覆切削工具の耐摩耗性を更に向上でき、チッピングの面積をさらに小さくすることができる。
 本実施形態の硬質層は、上部領域と下部領域との間に中間領域を有し、その中間領域におけるAl元素の原子比が、上部領域よりも低く、かつ下部領域よりも高いと好ましい。これにより、被覆切削工具の内部への酸化の進行が抑制される傾向を示す。
 本実施形態の硬質層の中間領域において、その平均厚さが0.1μm以上2.5μm以下であると好ましい。これにより、中間領域を有することによる上記の効果をより有効かつ確実に奏することができる。
 本実施形態の硬質層の中間領域において、その平均粒径が60nm以上475nm以下であり、しかも、上部領域における平均粒径よりも小さく、かつ下部領域における平均粒径よりも大きいと好ましい。これにより、被覆切削工具の耐摩耗性と耐欠損性とのバランスに一層優れる。
 本発明の硬質層の下部領域において、その平均粒径が10nm以上80nm以下であると、基材と硬質層との密着性に更に優れる傾向を示すため、好ましい。
 本実施形態において、硬質層は、少なくとも下部領域と上部領域とを有する。そして、Al元素の原子比および平均粒径が、上部領域におけるものの方が、下部領域におけるものよりも大きい。このように、本実施形態に係る硬質層は、単に、Alの原子比および平均粒径が層の全体に亘って均一である層とは異なるものである。
 本実施形態に係る被覆層は、硬質層の基材とは反対側(すなわち、硬質層の上層)、好ましくは硬質層の表面、に外部層を備えてもよい。外部層は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、OおよびBからなる群より選ばれる少なくとも1種の元素とからなる化合物(ただし、硬質層と組成が異なる。)を含むと、耐摩耗性に一層優れる傾向を示すので、さらに好ましい。また、上記と同様の観点から、外部層は、Ti、Nb、Cr、AlおよびSiからなる群より選ばれる少なくとも1種の元素と、C、N、OおよびBからなる群より選ばれる少なくとも1種の元素とからなる化合物を含むとより好ましく、Ti、Nb、Cr、AlおよびSiからなる群より選ばれる少なくとも1種の元素と、CおよびNからなる群より選ばれる少なくとも1種の元素とからなる化合物を含むとさらに好ましい。ただし、上部層は、硬質層と組成が異なる。また、上部層は単層であってもよく2層以上の多層であってもよい。
 本発明の外層の平均層厚は、0.1μm以上3.5μm以下であると耐摩耗性に優れる傾向を示すため、好ましい。
 図1は、本実施形態の被覆切削工具の一例を示す模式的な部分断面図である。この被覆切削工具10は、基材1と、基材1の表面に形成された被覆層4とを備え、被覆層4は硬質層2からなり、硬質層2は、基材1側から下部領域2Aと上部領域2Bとをこの順で有する。また、図2は、本実施形態の被覆切削工具の別の一例を示す模式的な部分断面図である。この被覆切削工具20は、基材1と、基材1の表面に形成された被覆層4とを備え、被覆層4は、基材1側から硬質層2と硬質層2の表面に形成された外部層3とをこの順に備え、硬質層2は、基材側から下部領域2Aと中間領域2Cと上部領域2Bとをこの順で有する。
 本実施形態の被覆切削工具における被覆層の製造方法は、特に限定されるものではないが、例えば、イオンプレーティング法、アークイオンプレーティング法、スパッタ法、およびイオンミキシング法などの物理蒸着法が挙げられる。物理蒸着法を用いて、被覆層を形成すると、シャープエッジを形成することができるので好ましい。その中でも、アークイオンプレーティング法は、被覆層と基材との密着性に一層優れるので、より好ましい。
 本実施形態の被覆切削工具の製造方法について、具体例を用いて説明する。なお、本実施形態の被覆切削工具の製造方法は、当該被覆切削工具の構成を達成し得る限り、特に制限されるものではない。
 まず、工具形状に加工した基材を物理蒸着装置の反応容器内に収容し、金属蒸発源を反応容器内に設置する。このとき、反応容器内に、Al元素の原子比の差が3原子%~8原子%である2種類の金属蒸発源を設置する。その後、反応容器内をその圧力が1.0×10-2Pa以下の真空になるまで真空引きし、反応容器内のヒーターにより基材をその温度が600℃~700℃になるまで加熱する。加熱後、反応容器内にArガスを導入して、圧力を0.5Pa~5.0Paとする。圧力0.5Pa~5.0PaのArガス雰囲気にて、基材に-350V~-500Vのバイアス電圧を印加し、反応容器内のタングステンフィラメントに40A~50Aの電流を流して、基材の表面にArガスによるイオンボンバードメント処理を施す。基材の表面にイオンボンバードメント処理を施した後、反応容器内をその圧力が1.0×10-2Pa以下の真空になるまで真空引きする。
 次いで、基材をその温度が500℃~600℃の範囲になるように加熱し、窒素ガス(N)とアルゴンガス(Ar)との混合ガスを2:8~3:7の分圧比(N:Ar)で反応容器内に導入し、反応容器内の圧力を0.5~5.0Paに調整する。その後、基材に-80V~-100Vのバイアス電圧を印加し、2種類の金属蒸発源のうち、Al元素の原子比が低い金属蒸発源を100A~200Aとするアーク放電により蒸発させて基材の表面に硬質層の下部領域を成膜する。成膜を開始した後、基材の温度を低温に変化させながら下部領域を形成する。基材の温度を低温に変化させながら下部領域を形成すると、粒子が形成される速度が遅くなる。粒子が形成される速度を急激に遅くすることにより、より均一な粒子径および粒子形状の粒子を有する下部領域を形成することができる。
 下部領域を形成した後、基材をその温度が400℃~500℃になるまで冷却し、NガスとArガスとの混合ガスを4:6~5:5の分圧比(N:Ar)で反応容器内に導入し、反応容器内の圧力を0.5~5.0Paに調整する。その後、基材に-60V~-80Vのバイアス電圧を印加し、2種類の金属蒸発源を100~200Aとするアーク放電により蒸発させて中間領域を成膜する。成膜を開始した後、基材の温度を低温に変化させながら中間領域を形成する。基材の温度を低温に変化させながら中間領域を形成すると、粒子の成長がより顕著になる。基材の温度の冷却速度を、10℃/時間以上にすると、粒子の成長がより十分となる。一方、基材の温度の冷却速度を、50℃/時間以下にすると、実質的に成膜される時間がより長くなり、中間領域を一層厚くすることができる。そのため、基材の温度の冷却速度を、10℃/時間以上50℃/時間以下にすることが好ましい。
 中間領域を形成した後、基材をその温度が300℃~400℃になるまで冷却し、NガスとArガスとの混合ガスを6:4~7:3の分圧比(N:Ar)で反応容器内に導入し、反応容器内の圧力を0.5~5.0Paに調整する。その後、基材に-40V~-60Vのバイアス電圧を印加し、2種類の金属蒸発源のうち、Al元素の原子比が高い金属蒸発源を100~200Aとするアーク放電により蒸発させて上部領域を成膜する。成膜を開始した後、基材の温度を低温に変化させながら上部領域を形成する。基材の温度を低温に変化させながら上部領域を形成すると、粒子の成長がより顕著になる。基材の温度の冷却速度を、10℃/時間以上にすると、粒子の成長がより十分となる。一方、基材の温度の冷却速度を、50℃/時間以下にすると、実質的に成膜される時間がより長くなり、上部領域を一層厚くすることができる。そのため、基材の温度の冷却速度を、10℃/時間以上50℃/時間以下にすることが好ましい。
 本実施形態の硬質層における各領域の平均粒径を大きくするためには、成膜時の基材の温度を低くするとよい。基材の温度を低くすることにより、硬質層における各領域の核の発生が抑制される。これにより、核同士の接触が抑制され、粒子は大きくなる。なお、中間領域および上部領域は、基材の温度を低温に変化させながら形成することが好ましい。これにより、硬質層における各領域の核の発生がさらに抑制されるため、粒子の成長が顕著になる。また、基材に印加するバイアス電圧を低くすると、硬質層における各領域の粒径が、大きくなる傾向がある。通常、被覆層は、Al元素の原子比を大きくすると、粒径が小さくなる。したがって、本実施形態の硬質層を形成する時に、基材の温度やバイアス電圧を制御することが好ましい。
 本実施形態の硬質層における上部領域のAl元素の原子比を大きくするためには、Al元素の原子比が異なる2種類の金属蒸発源を使用すること、反応容器内に導入するNガスとArガスとの混合ガスについて、Nガスの分圧をより高くすることが好ましい。
 本実施形態の被覆切削工具における被覆層を構成する各層および各領域の厚さは、被覆切削工具の断面組織から、光学顕微鏡、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)などを用いて測定することができる。なお、本実施形態の被覆切削工具における各層および各領域の平均厚さは、金属蒸発源に対向する面の刃先稜線部から、当該面の中心部に向かって50μmの位置の近傍における3箇所以上の断面から各層および各領域の厚さを測定して、その平均値(相加平均値)を計算することで求めることができる。
 また、本実施形態の被覆切削工具における被覆層を構成する各層および各領域の組成は、本実施形態の被覆切削工具の断面組織から、エネルギー分散型X線分析装置(EDS)や波長分散型X線分析装置(WDS)などを用いて測定することができる。
 本実施形態において、硬質層の各領域の平均粒径は硬質層の断面組織を観察して求めることができる。具体的には、被覆切削工具における基材の表面に対して直交する方向の断面(すなわち、図1に示すような方向から見た断面)を鏡面研磨し、得られた鏡面研磨面を断面組織とする。硬質層を鏡面研磨する方法としては、ダイヤモンドペーストまたはコロイダルシリカを用いて研磨する方法およびイオンミリングを挙げることができる。各領域の断面組織をFE-SEM又はTEMを用いて、5000倍~20000倍の倍率で観察する。硬質層の各領域の粒径は、基材の表面に平行な方向の各粒子間の距離とする。このとき、各粒子間の距離は、各粒子間の最長となる位置での距離とする。測定範囲は、各領域において、基材表面に平行な方向に10μm、基材の表面に直交する方向に0.5μmの範囲の矩形で囲まれた範囲とする。この測定範囲内に存在する全ての粒子の粒径を求める。測定箇所は、金属蒸発源に対向する面の刃先稜線部から、当該面の中心部に向かって50μmの位置の近傍とする。3箇所以上の断面組織において、粒径を測定し、求めた全ての粒子の粒径の平均値(相加平均値)を平均粒径とする。
 本実施形態の被覆切削工具は、特に熱伝導率が低い難削材の加工において、耐摩耗性を低下させずに、かつ耐欠損性を向上させ、その結果、長期間にわたって加工できる。耐欠損性が向上するのは、その耐酸化性に優れていることに起因すると考えられる。本実施形態の被覆切削工具の種類として具体的には、フライス加工用または旋削加工用刃先交換型切削インサート、ドリル、およびエンドミルなどを挙げることができる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 基材として、ISO規格CNMG120408形状のインサートに加工し、93.2WC-6.5Co-0.3Cr(以上質量%)の組成を有する超硬合金を用意した。アークイオンプレーティング装置の反応容器内に硬質層の下部領域および上部領域の組成が表1示す組成になる金属蒸発源を配置した。また、発明品における硬質層および外部層の組成が表2に示す組成となり、比較品における各層の組成が表3に示す組成となる金属蒸発源を配置した。用意した基材を反応容器内の回転テーブルの固定金具に固定した。
 その後、反応容器内をその圧力が5.0×10-3Pa以下の真空になるまで真空引きした。真空引き後、反応容器内のヒーターにより、基材をその温度が600℃になるまで加熱した。加熱後、反応容器内にその圧力が5.0PaになるようにArガスを導入した。
 圧力5.0PaのArガス雰囲気にて、基材に-400Vのバイアス電圧を印加して、反応容器内のタングステンフィラメントに40Aの電流を流して、基材の表面にArガスによるイオンボンバードメント処理を30分間施した。イオンボンバードメント処理終了後、反応容器内をその圧力が5.0×10-3Pa以下の真空になるまで真空引きした。
 真空引き後、硬質層における下部領域を形成するため、基材をその温度が表4に示す温度になるまで加熱し、表4に示すNガスとArガスとの分圧比で混合ガスを反応容器内に導入し、圧力3.0Paの混合ガス雰囲気にした。
 さらに、表4に示す電圧(バイアス電圧)を基材に印加して、アーク電流120Aのアーク放電により蒸発させて、硬質層における下部領域を形成した。
 下部領域を形成した後、硬質層における中間領域を形成するため、基材をその温度が表4に示す温度になるまで冷却し、反応容器内の圧力を3.0Paに維持しながら、導入するNガスおよびArガスの混合ガスにおける分圧比を表4に示す条件に変更した。
 さらに、表4に示す電圧(バイアス電圧)を基材に印加して、アーク電流120Aのアーク放電により蒸発させて、硬質層における中間領域の形成を開始した。中間領域の形成を開始した後、基材の温度を表4に示す冷却速度で低温に変化させながら粒子を形成した。
 中間領域を形成した後、硬質層における上部領域を形成するため、基材をその温度が表4に示す温度になるまで冷却し、反応容器内の圧力を3.0Paに維持しながら、導入するNガスおよびArガスの混合ガスにおける分圧比を表4に示す条件に変更した。
 さらに、表4に示す電圧(バイアス電圧)を基材に印加して、アーク電流120Aのアーク放電により蒸発させて、硬質層における上部領域の形成を開始した。上部領域の形成を開始した後、基材の温度を表4に示す冷却速度で低温に変化させながら粒子を形成した。
 発明品5~13については、硬質層を形成した後、基材をその温度が600℃になるまで加熱し、基材に-50Vのバイアス電圧を印加して、アーク電流120Aのアーク放電により表1に示す金属蒸発源を蒸発させて、硬質層の表面に外部層を形成した。
 発明品14については、硬質層を形成した後、基材をその温度が600℃になるまで加熱し、反応容器内の圧力が5.0×10-3Pa以下の真空になるまで真空引きした。次に、NガスとCHガスとの分圧比がN:CH=1:1となるように混合した混合ガスを反応容器内に導入して、反応容器内を圧力3.0Paの混合ガス雰囲気にした。次いで、基材に-50Vのバイアス電圧を印加して、アーク電流120Aのアーク放電により、硬質層の表面にTiCNからなる外部層を形成した。
 比較品1~7については、表5に示す条件で、基材の表面に第1層を形成した。このとき、アーク電流は、120Aにした。それらの条件以外は、発明品における硬質層の形成と同様の操作により、第1層を形成した。便宜上、第1層における各領域は、基材側から順に、下部領域、中間領域、および上部領域とした。
 比較品1~7について、第1層を形成した後、600℃になるまで加熱し、基材に-50Vのバイアス電圧を印加して、アーク電流120Aのアーク放電により表3に示す金属蒸発源を蒸発させて、第1層の表面に第2層を形成した。
 基材の表面に表2および表3に示す所定の厚さまで各層を形成した後に、ヒーターの電源を切り、試料温度が100℃以下になった後で、反応容器内から試料を取り出した。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 *硬質層の「組成」は、硬質層の平均厚さの50%となる厚さの位置における組成とした。
  「組成」および「平均厚さ」の欄における、「-」とは、外部層が形成されていないことを意味する。
 
Figure JPOXMLDOC01-appb-T000003
 *第1層の「組成」は、第1層の平均厚さの50%となる厚さの位置における組成とした。
  「組成」および「平均厚さ」の欄における、「-」とは、第2層が形成されていないことを意味する。
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
 得られた試料の各層の平均厚さは、被覆切削工具の金属蒸発源に対向する面の刃先稜線部から当該面の中心部に向かって50μmの位置の近傍において、3箇所の断面をSEM観察し、各層の厚さを測定し、その平均値を計算することで求めた。得られた試料の各層の組成は、被覆切削工具の金属蒸発源に対向する面の刃先稜線部から中心部に向かって50μmまでの位置の近傍の断面において、EDSを用いて測定した。それらの結果も、表2および表3に示す。なお、硬質層および比較品の第1層の組成は、各平均厚さの50%となる厚さの位置における組成とした。表2および表3の各層の金属元素の組成比は、各層を構成する金属化合物における金属元素全体に対する各金属元素の原子比で示した。また、硬質層および比較品の第1層の各領域におけるAl元素の原子比を求めた結果を表6および表7に示す。比較品7については、第1層の厚さを3等分にし、基材側から順に、下部領域、中間領域、上部領域とした。
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
 得られた試料の硬質層における各領域の平均粒径は、硬質層の断面組織を観察して求めた。具体的には、基材の表面に対して直交する方向の断面を鏡面研磨し、得られた鏡面研磨面を断面組織とした。硬質層を鏡面研磨する際には、コロイダルシリカを用いて研磨した。各領域の断面組織をFE-SEMを用いて、20000倍の倍率で観察した。硬質層の各粒子の粒径は、基材の表面に平行な方向の各粒子間の距離とした。このとき、各粒子間の距離は、各粒子間の最長となる位置での距離とした。各領域において、基材表面に平行な方向に10μm、基材表面に直交する方向に0.5μmの範囲の矩形で囲まれた範囲を測定した。また、金属蒸発源に対向する面の刃先稜線部から、当該面の中心部に向かって50μmの位置の近傍を測定した。3箇所以上の断面組織において、粒径を測定し、求めた全ての粒子の粒径の平均値(相加平均値)を平均粒径とした。各試料の平均粒径の結果を表8および表9に示す。
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
 得られた試料を用いて、以下の切削試験を行い、評価した。
[切削試験]
被削材:インコネル718、
被削材形状:φ120mm×400mmの円柱、
切削速度:60m/min、
送り:0.2mm/rev、
切り込み:1.0mm、
クーラント:有り、
評価項目:試料が欠損したとき、または試料の逃げ面摩耗幅または境界摩耗幅が0.3mmに至ったときを工具寿命とし、工具寿命に至るまでの加工時間を測定した。
 切削試験の結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 
 比較品1、3および7では、切削試験の途中で試料が欠損した。試料にクレーター摩耗が認められたことから、その欠損の要因は、酸化の進行により、刃先の強度が低下したことにあると考えられる。
 表10の結果より、発明品の加工時間は全ての比較品の加工時間よりも長いことがわかった。したがって、発明品は、耐欠損性に優れ、工具寿命が長くなっていることが分かった。
 本発明の被覆切削工具は、耐欠損性に優れ、従来よりも工具寿命を延長できるので、産業上の利用可能性が高い。
 1…基材、2…硬質層、2A…下部領域、2B…上部領域、2C…中間領域、3…外部層、4…被覆層、10、20…被覆切削工具。

Claims (9)

  1.  基材と前記基材の表面に形成された被覆層とを含む被覆切削工具であって、
     前記被覆層は、少なくとも1層の所定の層を含み、
     前記所定の層は、下記式:
     (AlTi1-x―y)N
    [式中、MはZr、Hf、V、Nb、Ta、Cr、Mo、WおよびSiからなる群より選ばれる少なくとも1種の元素を表し、xはAl元素とTi元素とMで表される元素との合計に対するAl元素の原子比を表し、yはAl元素とTi元素とMで表される元素との合計に対するTi元素の原子比を表し、0.60≦x≦0.85、0≦y≦0.40、0.60≦x+y≦1.00を満足する。]
    で表される組成を有する化合物を含有する層であり、
     前記所定の層の平均厚さは、1.4μm以上15μm以下であり、
     前記所定の層は、下記の条件(1)、(2)および(3)を満たす上部領域と下部領域とを有する、被覆切削工具。
     条件(1):前記上部領域は、前記被覆切削工具の表面側の界面から前記基材に向かって0.5μm以上2.5μm以下の平均厚さであって、かつ前記所定の層の平均厚さ未満の平均厚さを有し、前記下部領域は、前記基材側の界面から前記被覆切削工具の表面に向かって0.5μm以上2.5μm以下の平均厚さであって、かつ前記所定の層の平均厚さ未満の平均厚さを有する。
     条件(2):前記上部領域に含まれるAl元素の原子比は、前記下部領域に含まれるAl元素の原子比よりも、3原子%~10原子%高い。
     条件(3):前記上部領域における平均粒径が、前記下部領域における平均粒径よりも大きい。
  2.  前記上部領域における平均粒径は、100nm以上500nm以下であり、
     前記下部領域における平均粒径は、10nm以上100nm以下である、請求項1に記載の被覆切削工具。
  3.  前記所定の層は、前記上部領域と前記下部領域との間に中間領域を有し、
     前記中間領域におけるAl元素の原子比は、前記上部領域よりも低く、かつ前記下部領域よりも高い、請求項1または2に記載の被覆切削工具。
  4.  前記中間領域における平均粒径は、60nm以上475nm以下であり、前記上部領域における平均粒径よりも小さく、かつ前記下部領域における平均粒径より大きい、請求項1~3のいずれか1項に記載の被覆切削工具。
  5.  前記下部領域における平均粒径は、10nm以上80nm以下である、請求項1~4のいずれか1項に記載の被覆切削工具。
  6.  前記所定の層は、前記被覆層において最も前記基材側に位置する層である、請求項1~5のいずれか1項に記載の被覆切削工具。
  7.  前記被覆層は、前記所定の層の前記基材とは反対側に、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、OおよびBからなる群より選ばれる少なくとも1種の元素とからなる化合物を含む外部層を有し、
     前記外部層の平均厚さは、0.1μm以上3.5μm以下である、請求項1~6のいずれか1項に記載の被覆切削工具。
  8.  前記被覆層の平均厚さは、1.5μm以上15μm以下である、請求項1~7のいずれか1項に記載の被覆切削工具。
  9.  前記基材は、超硬合金、サーメット、セラミックスまたは立方晶窒化硼素焼結体のいずれかである、請求項1~8のいずれか1項に記載の被覆切削工具。
PCT/JP2016/078947 2015-10-07 2016-09-29 被覆切削工具 WO2017061328A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16853482.4A EP3360632B1 (en) 2015-10-07 2016-09-29 Coated cutting tool
JP2017504843A JP6406592B2 (ja) 2015-10-07 2016-09-29 被覆切削工具
CN201680057164.5A CN108136509B (zh) 2015-10-07 2016-09-29 被覆切削工具
US15/765,701 US10654109B2 (en) 2015-10-07 2016-09-29 Coated cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015199018 2015-10-07
JP2015-199018 2015-10-07

Publications (1)

Publication Number Publication Date
WO2017061328A1 true WO2017061328A1 (ja) 2017-04-13

Family

ID=58487660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078947 WO2017061328A1 (ja) 2015-10-07 2016-09-29 被覆切削工具

Country Status (5)

Country Link
US (1) US10654109B2 (ja)
EP (1) EP3360632B1 (ja)
JP (1) JP6406592B2 (ja)
CN (1) CN108136509B (ja)
WO (1) WO2017061328A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102610954B1 (ko) * 2017-08-31 2023-12-06 발터 악티엔게젤샤프트 TiAlN 나노층 필름들을 포함하는 내마모성 PVD 공구 코팅
JP7093149B2 (ja) * 2018-12-27 2022-06-29 日本特殊陶業株式会社 表面被覆切削工具
JP2022518955A (ja) * 2019-02-01 2022-03-17 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン コーティングされた及びコーティングされていない超高強度鋼板のプレス硬化用の高性能工具コーティング
WO2021006739A1 (en) * 2019-07-11 2021-01-14 Knight Acquisition B.V. Saw blade or other cutting tool comprising a coating
US11358226B2 (en) * 2019-10-10 2022-06-14 Sumitomo Electric Hardmetal Corp. Cutting tool
JP7418714B2 (ja) * 2021-07-19 2024-01-22 株式会社タンガロイ 被覆切削工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316756A (ja) * 1993-04-28 1994-11-15 Sumitomo Metal Mining Co Ltd 耐食・耐摩耗性被膜
JP2010094761A (ja) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
JP2010094763A (ja) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐欠損性、耐摩耗性を発揮する表面被覆切削工具
JP2011218542A (ja) * 2010-03-23 2011-11-04 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
JP2014140928A (ja) * 2013-01-24 2014-08-07 Mitsubishi Materials Corp 高速連続切削加工においてすぐれた耐摩耗性を発揮する表面被覆切削工具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60336453D1 (de) * 2002-01-21 2011-05-05 Mitsubishi Materials Corp "oberflächenbeschichtetes schneidwerkzeugglied mit harter beschichtungsschicht, die einen hervorragenden reibwiderstand beim hochgeschwindigkeitsschneiden aufweist, und verfahren zur bildung der harten beschichtungsschicht auf der fläche des schneidwerkzeugs"
WO2007111301A1 (ja) * 2006-03-28 2007-10-04 Kyocera Corporation 表面被覆工具
JP5005262B2 (ja) * 2006-05-26 2012-08-22 三菱マテリアル株式会社 高硬度鋼の高速切削加工できわめて優れた仕上げ面精度を長期にわたって発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具
SE530861C2 (sv) * 2006-12-15 2008-09-30 Sandvik Intellectual Property Belagd hårdmetallpinnfräs för medel- och finbearbetning av härdade stål och förfarande för dess framställning
US7636649B2 (en) * 2007-09-21 2009-12-22 Tokyo Electron Limited Automated process control of a fabrication tool using a dispersion function relating process parameter to dispersion
JP5036470B2 (ja) * 2007-09-27 2012-09-26 京セラ株式会社 表面被覆工具
JP5093530B2 (ja) * 2010-03-31 2012-12-12 住友電工ハードメタル株式会社 表面被覆切削工具
JP5315533B2 (ja) * 2011-02-16 2013-10-16 住友電工ハードメタル株式会社 表面被覆切削工具
JP6024981B2 (ja) * 2012-03-09 2016-11-16 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP6217216B2 (ja) 2013-01-31 2017-10-25 三菱マテリアル株式会社 表面被覆切削工具とその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316756A (ja) * 1993-04-28 1994-11-15 Sumitomo Metal Mining Co Ltd 耐食・耐摩耗性被膜
JP2010094761A (ja) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
JP2010094763A (ja) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐欠損性、耐摩耗性を発揮する表面被覆切削工具
JP2011218542A (ja) * 2010-03-23 2011-11-04 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
JP2014140928A (ja) * 2013-01-24 2014-08-07 Mitsubishi Materials Corp 高速連続切削加工においてすぐれた耐摩耗性を発揮する表面被覆切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3360632A4 *

Also Published As

Publication number Publication date
EP3360632A4 (en) 2019-04-10
EP3360632B1 (en) 2021-12-22
US20180281077A1 (en) 2018-10-04
JP6406592B2 (ja) 2018-10-17
US10654109B2 (en) 2020-05-19
CN108136509B (zh) 2020-02-14
JPWO2017061328A1 (ja) 2017-10-05
CN108136509A (zh) 2018-06-08
EP3360632A1 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6004366B1 (ja) 被覆切削工具
JP6406592B2 (ja) 被覆切削工具
JP5817932B2 (ja) 被覆工具
CN108655429B (zh) 被覆切削工具
CN108286047B (zh) 被覆切削工具
JP6071100B1 (ja) 被覆切削工具
JP6390706B2 (ja) 被覆切削工具
JPWO2017061325A1 (ja) 被覆切削工具
WO2017170603A1 (ja) 被覆切削工具
JP2019038097A (ja) 被覆切削工具
JP6635347B2 (ja) 被覆切削工具
CN109513972B (zh) 被覆钻头
WO2014034923A1 (ja) 被覆切削工具
US10751805B2 (en) Coated cutting tool
JP2016221672A (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5983878B2 (ja) 被覆切削工具
JP2019181586A (ja) 被覆切削工具
JP7310340B2 (ja) 被覆切削工具
JP6759536B2 (ja) 被覆切削工具
JP7108966B2 (ja) 被覆切削工具
JP7463948B2 (ja) 被覆切削工具
JP7140163B2 (ja) 被覆切削工具
CN113714526B (zh) 被覆切削工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017504843

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853482

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15765701

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE