WO2017060965A1 - 光制御装置、制御方法、プログラム及び記憶媒体 - Google Patents

光制御装置、制御方法、プログラム及び記憶媒体 Download PDF

Info

Publication number
WO2017060965A1
WO2017060965A1 PCT/JP2015/078279 JP2015078279W WO2017060965A1 WO 2017060965 A1 WO2017060965 A1 WO 2017060965A1 JP 2015078279 W JP2015078279 W JP 2015078279W WO 2017060965 A1 WO2017060965 A1 WO 2017060965A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
landmark
emission
information
Prior art date
Application number
PCT/JP2015/078279
Other languages
English (en)
French (fr)
Inventor
和俊 北野
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to CN202211251156.8A priority Critical patent/CN115685149A/zh
Priority to JP2017544095A priority patent/JPWO2017060965A1/ja
Priority to EP15905785.0A priority patent/EP3361281A4/en
Priority to US15/759,823 priority patent/US10965099B2/en
Priority to PCT/JP2015/078279 priority patent/WO2017060965A1/ja
Priority to CN201580083052.2A priority patent/CN108351402A/zh
Publication of WO2017060965A1 publication Critical patent/WO2017060965A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/489Gain of receiver varied automatically during pulse-recurrence period
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates to an emission control technique of a light pulse for measurement.
  • Patent Document 1 discloses an in-vehicle system equipped with a lidar that scans in the horizontal direction while intermittently emitting laser light and receives reflected light to detect a point cloud on the surface of the object. Yes.
  • the present invention has been made to solve the above-described problems, and has as its main object to provide a light control device capable of measuring a landmark existing in a measurement range with high accuracy. To do.
  • the invention according to claim 1 is a light control device, comprising: a light transmitting / receiving unit having a light emitting unit that emits light while changing a light emitting direction; and a light receiving unit that receives the light; and a position of at least a predetermined object And a control unit that controls the emission unit, and the control unit is estimated based on the current position information of the moving body and the first information.
  • the first direction in which the predetermined object exists is controlled differently from the other directions.
  • the invention according to claim 6 is a light control device, wherein the light transmission / reception unit includes a light emitting unit that emits light and a light receiving unit that receives the light, and first information indicating a position of at least a predetermined object. And a determination unit that determines an emission range of the emission unit based on the first information and the current position information of the moving body.
  • the invention according to claim 7 is a control method executed by a light control device that controls a light transmitting and receiving unit including an emitting unit that emits light while changing an emitting direction and a light receiving unit that receives the light, A first acquisition step of acquiring first information indicating a position of a predetermined object; and a control step of controlling the emission unit, wherein the control step includes the current position information of the moving body and the first step.
  • the first direction in which the predetermined object estimated based on the information is present is controlled differently from the other directions.
  • the invention according to claim 8 is a program executed by a computer that controls a light transmitting / receiving unit including an emitting unit that emits light while changing an emitting direction and a light receiving unit that receives the light, and at least a predetermined target
  • a computer that functions as a control unit that controls the emission unit, wherein the control unit includes the current position information of the moving object, the first information, and The first direction in which the predetermined object estimated based on is present is controlled differently from the other directions.
  • the invention according to claim 10 acquires the first information indicating the position of at least a predetermined object, and a light transmitting / receiving part having an emitting part that emits light while changing the emitting direction and a light receiving part that receives the light.
  • a first emission mode for emitting the light at a first emission frequency based on the first acquisition unit, the current position information of the moving body, and the first information, and the light from the first emission frequency.
  • a control unit that controls the emission unit by switching to a second emission mode with a low frequency.
  • the block structure of an optical transmission / reception part is shown.
  • the waveforms of a variable pulse trigger signal and a segment extraction signal are shown.
  • the waveform of the variable pulse trigger signal of the segment corresponding to the scan angle which does not belong to a prediction angle range is shown.
  • the waveform of the variable pulse trigger signal of the segment corresponding to the scanning angle which belongs to a prediction angle range is shown.
  • the optical path of the optical pulse when the pulse rate is fixed to about 13.7 kHz, which is the same as outside the predicted angle range, and the optical pulse is emitted is shown.
  • the optical path of the optical pulse when the pulse rate is increased to about 68.5 kHz and the optical pulse is emitted is shown. It is a flowchart which shows the process sequence of a present Example.
  • the light control device includes: a light transmitting / receiving unit having a light emitting unit that emits light while changing a light emitting direction; and a light receiving unit that receives the light; and a position of at least a predetermined object And a control unit that controls the emission unit, and the control unit is estimated based on the current position information of the moving body and the first information.
  • the first direction in which the predetermined object is present is controlled differently from the other directions.
  • the light control device includes a light transmission / reception unit having an emission unit and a light reception unit, a first acquisition unit, and a control unit.
  • the first acquisition unit acquires first information indicating at least a position of a predetermined object.
  • the control unit controls the emission unit, and performs a control different from the other directions for the first direction in which the predetermined object estimated based on the current position information of the moving body and the first information is present.
  • the light control device can perform light emission control different from the other directions for the direction in which the predetermined object is estimated to exist.
  • the control unit controls the emission unit so that the light emission frequency is higher in the first direction than in the other directions.
  • control unit performs control to lower the intensity of the light in the first direction than in the other direction.
  • the light control device can realize the eye safe by suitably suppressing the increase in the average power of the emitted light even when the emission frequency is increased.
  • the light control device further includes a second acquisition unit that acquires second information related to light reflectance of the predetermined object, and the control unit includes the light
  • the reflectance of the light is greater than or equal to a predetermined rate
  • the light intensity is controlled to be lower than in the other directions.
  • the light control device can weaken the light emission intensity only when there is no problem even if the light emission intensity is weakened, and can reliably receive the light reflected by the predetermined object.
  • control unit controls the emitting unit in the first direction so that the scanning speed is slower than that in the other direction. Also according to this aspect, the light control device can irradiate the predetermined target with light with high density.
  • the light control device includes a light transmitting / receiving unit having an emitting unit that emits light and a light receiving unit that receives the light, and a first unit that indicates at least a position of a predetermined object.
  • a first acquisition unit configured to acquire one information; a determination unit configured to determine an emission range of the emission unit based on the first information and current position information of the moving object.
  • the light control device can accurately determine the light emission range within a range in which the presence of the predetermined object is predicted.
  • a control method executed by a light control device that controls a light transmitting / receiving unit having a light emitting unit that emits light while changing a light emitting direction and a light receiving unit that receives the light.
  • the first direction in which the predetermined object estimated based on the first information exists is controlled differently from the other directions.
  • a program executed by a computer that controls a light transmitting / receiving unit including an emitting unit that emits light while changing an emitting direction and a light receiving unit that receives the light The computer is caused to function as a first acquisition unit that acquires at least first information indicating a position of a predetermined object, and a control unit that controls the emission unit, and the control unit includes the current position information of the moving object and the The first direction in which the predetermined object estimated based on the first information is present is controlled differently from the other directions.
  • the computer can perform light emission control different from the other directions for the direction in which the predetermined object is estimated to exist.
  • the program is stored in a storage medium.
  • the light control device includes at least a predetermined object, a light transmission / reception unit including an emission unit that emits light while changing an emission direction, and a light reception unit that receives the light.
  • a first acquisition mode for acquiring first information indicating the position of the mobile body, a first emission mode for emitting the light at a first emission frequency based on the current position information of the mobile object and the first information;
  • a control unit that controls the emission unit by switching to a second emission mode in which the light is emitted at a frequency lower than the first emission frequency.
  • the light control device can switch the light emission frequency according to the position of the predetermined object, and therefore can irradiate the predetermined object with light efficiently and with high density.
  • FIG. 1 is a block configuration diagram of a rider unit 100 according to the present embodiment.
  • the lidar unit 100 shown in FIG. 1 is a TOF (Time Of Flight) type lidar (Lida: Light Detection and Ranging or Laser Illuminated Detection And Ranging), and measures an object in all horizontal directions. Thus, the current position necessary for automatic driving or the like is estimated with high accuracy.
  • the lidar unit 100 mainly includes an optical transmission / reception unit 1, a landmark position prediction unit 2, a landmark map acquisition unit 3, a signal processing unit 4, a landmark position measurement unit 5, and a self-position estimation unit 6.
  • the vehicle speed sensor 8 and the gyro sensor 9 are provided.
  • the current time serving as a processing reference is expressed as “time t”
  • the execution time of the processing frame immediately before time t is expressed as “time t ⁇ 1”.
  • the optical transmission / reception unit 1 emits a pulse laser for 360 ° in all directions in the horizontal direction while gradually changing the emission direction. At this time, the optical transmission / reception unit 1 emits a pulse laser for each segment (900 to 4500 segments in the present embodiment) that divides all 360 ° directions in the horizontal direction. In this case, as will be described later, the optical transmission / reception unit 1 emits light pulses with a smaller angle difference between the segments for the predetermined emission range notified from the landmark position prediction unit 2 than for other ranges. Increase the rate.
  • the optical transmission / reception unit 1 then generates a signal (also referred to as “segment signal Sseg”) relating to the light reception intensity for each segment generated by receiving the reflected light of the pulse laser within a predetermined period after emission of the pulse laser. Output to the processing unit 4.
  • a signal also referred to as “segment signal Sseg” relating to the light reception intensity for each segment generated by receiving the reflected light of the pulse laser within a predetermined period after emission of the pulse laser.
  • the landmark position prediction unit 2 predicts the position (also referred to as “self position”) of the rider unit 100 at time t, and serves as a mark for estimating the self position from the predicted self position at time t.
  • a direction in which a predetermined object (also referred to as “landmark”) is detected is predicted.
  • the self-position at time t predicted by the landmark position prediction unit 2 is a provisional position with lower accuracy than the self-position estimated by the self-position estimation unit 6 described later.
  • the landmark is a predetermined feature such as a kilometer post, a 100 m post, a delineator, a traffic infrastructure facility (for example, a sign, a direction signboard, a signal), a utility pole, a streetlight, etc. periodically arranged along the road.
  • a landmark is an example of a “predetermined object” in the present invention.
  • the landmark position prediction unit 2 outputs the estimated value of the self-position at time t-1 estimated by the self-position estimation unit 6 described later, the moving speed output by the vehicle speed sensor 8, and the gyro sensor 9. Based on the angular velocity to be calculated, the predicted value of the self-position at time t is calculated by a known calculation method. In this case, the landmark position prediction unit 2 calculates, for example, each predicted value of latitude, longitude, and direction of travel as the predicted value of the self position. Note that the landmark position prediction unit 2 may calculate only the predicted values of latitude and longitude when the lidar unit 100 has a sensor for detecting an orientation such as a geomagnetic sensor.
  • the landmark position predicting unit 2 acquires information (hereinafter also referred to as “landmark information IL”) regarding landmarks within the distance measurement possible distance from the calculated predicted value of the self position to the landmark map acquiring unit 3.
  • the landmark information IL includes position information for each landmark and information on the reflectance of the laser (reflectance information).
  • the landmark position prediction unit 2 uses the position information included in the landmark information IL acquired by the landmark map acquisition unit 3 to predict the prediction range of the scan angle of the optical transmission / reception unit 1 where the landmark exists (“prediction angle range”). Rtag ”) is set.
  • the landmark position prediction unit 2 is an example of the “determination unit” in the present invention, and the position information of the landmark information IL referred to by the landmark position prediction unit 2 is an example of the “first information” in the present invention.
  • the predicted angle range Rtag is an example of the “first direction” in the present invention.
  • the landmark map acquisition unit 3 acquires landmark information IL of landmarks existing in the range specified by the landmark position prediction unit 2.
  • the landmark map acquisition unit 3 may extract the landmark information IL from the map information stored in advance in a storage unit (not shown).
  • the landmark information IL is obtained by communication from a server device (not shown) having the map information. You may get it.
  • the landmark position prediction unit 2 and the landmark map acquisition unit 3 are examples of the “first acquisition unit” in the present invention.
  • the signal processing unit 4 detects the peak position from the waveform of the segment signal Sseg for each segment received from the optical transmission / reception unit 1, and calculates the distance to the laser irradiation object based on the detected peak position. Then, the signal processing unit 4 uses the landmark position measurement unit 5 as information on measurement points (also referred to as “measurement data Dm”), which is a combination of the distance calculated for each segment and the scan angle corresponding to the segment. To supply.
  • the landmark position measurement unit 5 uses the measurement position indicated by the measurement data Dm as a reference for setting the prediction angle range Rtag. Extract measurement points corresponding to landmarks.
  • the landmark position measurement unit 5 calculates the absolute position of the target landmark based on the extracted measurement points and the predicted value of the self position calculated by the landmark position prediction unit 2, and calculates the calculated land.
  • the mark position (also referred to as “landmark measurement position P LM ”) is supplied to the self-position estimation unit 6.
  • the self-position estimation unit 6 is based on the landmark measurement position PLM supplied from the landmark position measurement unit 5 and the position on the map of the landmark indicated by the landmark information IL acquired by the landmark map acquisition unit 3. Then, an estimated value of the self position at the current time t (also referred to as “estimated self position Pe”) is calculated. In this case, for example, the self-position estimation unit 6 calculates the predicted value of the self-position calculated by the landmark position prediction unit 2 based on the difference between the landmark measurement position PLM and the position on the map based on the landmark information IL. Is corrected to calculate the estimated self-position Pe.
  • the self-position estimation unit 6 calculates the estimated self-position Pe with higher accuracy than the predicted value of the self-position calculated by the landmark position prediction unit 2 to set the prediction angle range Rtag.
  • the self-position estimation unit 6 includes, for example, each estimated value of latitude, longitude, and direction of travel as the estimated self-position Pe, and the lidar unit 100 has a sensor for detecting the direction, such as a geomagnetic sensor. If so, only the estimated values of latitude and longitude are calculated.
  • the self-position estimation unit 6 supplies the calculated estimated self-position Pe to the landmark position prediction unit 2 and also supplies the estimated self-position Pe to an external unit (for example, a unit that controls automatic operation).
  • FIG. 2 shows a schematic configuration example of the optical transceiver 1.
  • the optical transceiver 1 mainly includes a crystal oscillator 10, a synchronization controller 11, an LD driver 12, a laser diode 13, a scanner 14, a motor controller 15, and a light receiving element 16.
  • a current-voltage conversion circuit (transimpedance amplifier) 17 an A / D converter 18, and a variable segmentator 19.
  • the crystal oscillator 10 outputs a pulsed clock signal “S1” to the synchronization control unit 11 and the A / D converter 18.
  • the clock frequency is assumed to be 1.8 GHz.
  • the clock indicated by the clock signal S1 is also referred to as a “sample clock”.
  • the synchronization control unit 11 outputs a pulse-like trigger signal (also referred to as “variable pulse trigger signal S ⁇ b> 2”) to the LD driver 12.
  • the synchronization control unit 11 determines a cycle for asserting the variable pulse trigger signal S ⁇ b> 2 based on the predicted angle range Rtag supplied from the landmark position prediction unit 2.
  • the pulse rate “fseg” of the variable pulse trigger signal S2 is “fsmp / 131072” or “fsmp / 26214”.
  • a period from when the variable pulse trigger signal S2 is asserted to when it is asserted next is also referred to as a “segment period”.
  • the synchronization control unit 11 generates the variable pulse trigger signal S2 so that the segment corresponding to the scan angle within the predicted angle range Rtag has a shorter segment period than the other segments.
  • the synchronization control unit 11 outputs a signal (also referred to as “segment extraction signal S3”) that determines the timing at which the variable segmenter 19 described later extracts the output of the A / D converter 18 to the variable segmenter 19.
  • the variable pulse trigger signal S2 and the segment extraction signal S3 are logic signals and are synchronized as shown in FIG.
  • the synchronization control unit 11 asserts the segment extraction signal S3 by a time width corresponding to 2048 sample clocks (also referred to as “gate width Wg”).
  • the synchronization control unit 11 is an example of the “control unit” in the present invention.
  • the synchronization control unit 11 and the landmark position prediction unit 2 are examples of a computer that executes a program according to the present invention.
  • the LD driver 12 causes a pulse current to flow to the laser diode 13 in synchronization with the variable pulse trigger signal S2 input from the synchronization control unit 11.
  • the laser diode 13 is, for example, an infrared (905 nm) pulse laser, and emits an optical pulse based on a pulse current supplied from the LD driver 12. In this embodiment, the laser diode 13 emits a light pulse of about 5 nsec.
  • the scanner 14 includes a configuration of a transmission and reception optical system, scans the light pulse emitted from the laser diode 13 by 360 ° on a horizontal plane, and receives the return light reflected by the object irradiated with the emitted light pulse. Lead to 16.
  • the scanning surface of the scanner 14 is preferably a plane rather than an umbrella, and when the lidar unit 100 is mounted on a moving body, it is parallel to the ground surface on which the moving body travels (that is, Horizontal) is desirable.
  • the LD driver 12, the laser diode 13, and the scanner 14 are examples of the “emitter” in the present invention.
  • the light receiving element 16 is, for example, an avalanche photodiode, and generates a weak current corresponding to the amount of reflected light guided by the scanner 14.
  • the light receiving element 16 supplies the generated weak current to the current-voltage conversion circuit 17.
  • the current-voltage conversion circuit 17 amplifies the weak current supplied from the light receiving element 16 and converts it into a voltage signal, and inputs the converted voltage signal to the A / D converter 18.
  • the A / D converter 18 converts the voltage signal supplied from the current-voltage conversion circuit 17 into a digital signal based on the clock signal S 1 supplied from the crystal oscillator 10, and supplies the converted digital signal to the variable segmenter 19. .
  • the digital signal generated by the A / D converter 18 every clock is also referred to as “sample”.
  • the light receiving element 16, the current-voltage conversion circuit 17, and the A / D converter 18 are examples of the “light receiving unit” in the present invention.
  • the variable segmenter 19 generates, as a segment signal Sseg, a digital signal that is an output of the A / D converter 18 for 2048 sample clocks in a period corresponding to the gate width Wg in which the segment extraction signal S3 is asserted.
  • the variable segmenter 19 supplies the generated segment signal Sseg to the signal processing unit 4.
  • FIG. 3 shows time-series waveforms of the variable pulse trigger signal S2 and the segment extraction signal S3.
  • the segment period which is a period for one cycle in which the variable pulse trigger signal S2 is asserted, is a length corresponding to 26214 sample clocks (denoted as “smpclk” in the drawing), or 131072 sample clock length
  • the pulse width of the variable pulse trigger signal S2 is set to 64 sample clock length
  • the gate width Wg is set to 2048 sample clock length.
  • variable segmentator 19 is equivalent to 2048 for which the variable pulse trigger signal S2 is being asserted.
  • the sample output from the A / D converter 18 is extracted. The longer the gate width Wg, the longer the maximum distance measurement distance (range measurement limit distance) from the lidar unit 100.
  • the maximum distance measurement distance when simply calculated, is 170.55 m ( ⁇ ⁇ 2048 / 1.8 GHz ⁇ ⁇ c / 2 corresponding to the distance that light travels back and forth in a time width corresponding to the gate width Wg. “C” is the speed of light). Note that the maximum distance measurement distance is slightly shorter than 170.55 m because an offset is set in consideration of electrical and optical delays.
  • the synchronization control unit 11 sets the variable pulse trigger signal S2 and the segment so that the pulse rate fseg of the segment corresponding to the scan angle belonging to the predicted angle range Rtag is higher than the pulse rate fseg of the other segments.
  • An extraction signal S3 is generated.
  • FIG. 4 shows the waveform of the variable pulse trigger signal S2 of the segment corresponding to the scan angle that does not belong to the predicted angle range Rtag.
  • FIG. 5 shows the waveform of the variable pulse trigger signal S2 of the segment corresponding to the scan angle belonging to the predicted angle range Rtag.
  • the synchronization control unit 11 sets the pulse rate fseg to about 13.7 kHz for the segment corresponding to the scan angle that does not belong to the predicted angle range Rtag.
  • the synchronization control unit 11 sets the pulse rate fseg to about 68.5 kHz (that is, 5 times 13.7 kHz) for the segment corresponding to the scan angle not belonging to the predicted angle range Rtag.
  • the synchronization control unit 11 increases the scanning density by relatively increasing the pulse rate fseg within the predicted angle range Rtag. Thereby, the synchronous control part 11 can acquire the measurement point of the landmark used as object with high density.
  • FIG. 6 shows an example in which the pulse rate fseg is fixed to about 13.7 kHz (see FIG. 4) which is the same as that outside the predicted angle range Rtag within the predicted angle range Rtag where the presence of the landmark 70 ahead of 50 m is estimated.
  • An optical path of an optical pulse when a pulse is emitted is shown.
  • FIG. 7 shows that within the predicted angle range Rtag where the presence of the landmark 70 is estimated, the pulse rate fseg is increased to about 68.5 kHz (see FIG. 5), which is five times that of the example of FIG.
  • the optical path of the optical pulse in the case of the above is shown.
  • the width of the landmark 70 is assumed to be 0.4 m.
  • the light pulse irradiated to the landmark 70 is one. Therefore, in this case, only one measurement point for the landmark 70 can be obtained.
  • the landmark 70 is irradiated with eight light pulses, and the measurement points Will be obtained.
  • the landmark position measurement unit 5 recognizes the shape, structure, orientation, and the like of the landmark 70 from the obtained eight measurement points, and calculates the landmark measurement position PLM for the landmark 70 with high accuracy. It becomes possible to do.
  • the synchronization control unit 11 may perform control so that the peak power of the pulsed light is lower than normal.
  • an eye-safe standard that is safe even if pulsed light enters the human eye is determined by the average power of the pulsed light per unit area at any location in space.
  • the average power of pulsed light per unit area increases as the pulsed light emission rate increases, and decreases as the peak power of pulsed light decreases.
  • the synchronization control unit 11 reduces the peak power of the emitted pulsed light when increasing the pulse rate fseg. In the example of FIG.
  • the pulse height corresponding to the peak power of the pulsed light is set lower as the pulse rate fseg is higher than in the example of FIG. 4.
  • the synchronization control unit 11 refers to the reflectance information included in the landmark information IL, and only within the predicted angle range Rtag when the reflectance of the target landmark is equal to or higher than a predetermined rate.
  • the peak power of the pulsed light may be controlled to be lower than usual.
  • the predetermined rate in this case is, for example, set to a lower limit value of the reflectance at which the lidar unit 100 can generate a measurement point based on the reflected light even when the peak power of the pulsed light is lower than usual, and so on. Is set in advance. By doing in this way, the synchronous control part 11 can suppress suitably that it becomes impossible to produce
  • FIG. 8 is a flowchart illustrating a processing procedure executed by the rider unit 100 in the present embodiment.
  • the landmark position prediction unit 2 determines whether or not the estimated self-position Pe at the time t ⁇ 1 estimated in the previous processing frame exists (step S101). If the estimated self-position Pe at time t-1 estimated in the previous processing frame exists (step S101; Yes), the landmark position prediction unit 2 determines the estimated self-position Pe at time t-1 and Based on the vehicle speed and the angular velocity obtained from the vehicle speed sensor 8 and the gyro sensor 9, a predicted value of the self position corresponding to the time t is calculated (step S102).
  • the landmark position prediction unit 2 outputs the output of a positioning device such as a GPS receiver (not shown). Based on this, the self-position at the time t is predicted (step S103).
  • the current position information predicted in step S102 or S103 is an example of “current position information” in the present invention.
  • the landmark position prediction unit 2 determines a predicted angle range Rtag for detecting a landmark serving as a mark for estimating the self position based on the map information (step S104). In this case, the landmark position prediction unit 2 supplies the predicted value of the self position to the landmark map acquisition unit 3, so that the position information is registered within the distance measurement possible distance from the predicted value of the self position.
  • the landmark map acquisition unit 3 acquires landmark information IL of the landmark.
  • the optical transceiver 1 starts scanning with an optical pulse (step S105).
  • the optical transmission / reception unit 1 determines whether or not the scan angle of the segment corresponding to the emitted optical pulse is within the predicted angle range Rtag (step S106).
  • the optical transceiver 1 performs scanning of the optical pulse with high resolution (step S107). That is, in this case, as described with reference to FIGS. 5 and 7, the optical transceiver 1 increases the scanning density by the optical pulses by increasing the pulse rate fseg from the normal level.
  • the optical transceiver 1 may perform control to reduce the peak power of the pulsed light.
  • the reflectance information is an example of “second information” in the present invention
  • the landmark position prediction unit 2 and the landmark map acquisition unit 3 are examples of “second acquisition unit” in the present invention.
  • the optical transceiver 1 performs scanning of the optical pulse with normal resolution (step S108). That is, in this case, the optical transmission / reception unit 1 emits optical pulses at a normal pulse rate fseg as in the examples of FIGS.
  • the light pulse emission control in step S107 is an example of the “first emission mode” in the present invention
  • the light pulse emission control in step S108 is an example of the “second emission mode” in the present invention. is there.
  • the optical transmitter / receiver 1 determines whether or not the scanning of the optical pulse for all the directions to be scanned is completed (Step S109). And the optical transmission / reception part 1 performs step S106 again, when the scanning of the optical pulse with respect to all the directions of a scanning object is not complete
  • the landmark position measurement unit 5 extracts the measurement points corresponding to the landmarks from the measurement points output by the signal processing unit 4. Then, the landmark measurement position PLM is calculated from the extracted measurement points (step S110). In this case, the landmark position measurement unit 5 extracts, for example, measurement points corresponding to the scan angle within the predicted angle range Rtag, and specifies the shape, structure, and orientation of the landmarks from the extracted measurement points. A mark measurement position PLM is calculated. For example, the landmark position measuring unit 5 calculates the latitude and longitude of the landmark based on the distance and scan angle representing the plurality of extracted measurement points and the self position predicted in step S102 or step S103. It is determined as a mark measurement position PLM .
  • the self-position estimation unit 6 calculates the estimated self-position Pe based on the landmark measurement position PLM calculated by the landmark position measurement unit 5 (step S111).
  • the self-position estimation unit 6 refers to, for example, a predetermined formula or map, and based on the difference between the landmark measurement position PLM and the position indicated by the landmark information IL acquired by the landmark map acquisition unit 3.
  • the estimated self-position Pe is calculated by correcting the predicted value of the self-position predicted in step S102 or step S103.
  • the lidar unit 100 includes the LD driver 12, the laser diode 13, and the scanner 14 that correspond to the emitting unit, the light receiving element 16 that corresponds to the light receiving unit, the current-voltage conversion circuit 17, and the A / A.
  • the landmark position prediction unit 2 sets a predicted angle range Rtag in which the presence of the landmark is predicted based on the predicted value of the current position of the vehicle and the position of the landmark on the map.
  • the synchronization control unit 11 For the predicted angle range Rtag, the synchronization control unit 11 generates the variable pulse trigger signal S2 and the segment extraction signal S3 so that the scanning density of the optical pulses is higher than the other ranges. Thereby, the lidar unit 100 can detect the landmark necessary for estimating the self position with high accuracy and can estimate the self position with high accuracy.
  • the synchronization control unit 11 may generate the variable pulse trigger signal S2 so as not to emit an optical pulse for a segment corresponding to a scan angle outside the predicted angle range Rtag.
  • the synchronization control unit 11 has a pulse rate fseg sufficient to obtain a landmark measurement point, as in step S107 of FIG.
  • the variable pulse trigger signal S2 is asserted so as to set to.
  • the synchronization control unit 11 does not assert the variable pulse trigger signal S2 for the segment corresponding to the scan angle outside the predicted angle range Rtag. Thereby, the lidar unit 100 does not scan the optical pulse outside the predicted angle range Rtag.
  • the lidar unit 100 can prevent unnecessary generation of measurement points corresponding to the scan direction in which no landmark to be detected exists, and can appropriately reduce the processing load.
  • the optical transceiver 1 may slow down the scanning speed of the optical pulse within the predicted angle range Rtag.
  • the synchronization control unit 11 generates a fixed pulse trigger signal in which the pulse rate fseg is fixed irrespective of the predicted angle range Rtag, and supplies it to the LD driver 12.
  • the motor control unit 15 receives the predicted angle range Rtag from the landmark position prediction unit 2, and sets the scanning speed when operating the scanner 14 at the scan angle within the predicted angle range Rtag to the scan within the predicted angle range Rtag. It is slower than the scanning speed when operating the scanner 14 at an angle.
  • the motor control unit 15 is an example of the “control unit” in the present invention.
  • the optical transmission / reception unit 1 preferably increases the scanning density within the predicted angle range Rtag where the presence of the landmark is expected, and increases the measurement points of the landmark as a reference for self-position estimation. Can be acquired.
  • the synchronization control unit 11 may divide the set value of the pulse rate fseg within the predicted angle range Rtag into a plurality of stages. For example, the synchronization control unit 11 divides the predicted angle range Rtag into a range that is within a predetermined angle from the center angle of the predicted angle range Rtag and another range, and the former range pulse rate fseg is set to the pulse rate of the latter range. Set higher than fseg. In this way, by dividing the set value of the pulse rate fseg within the predicted angle range Rtag into a plurality of stages, the scan density within the predicted angle range Rtag where the possibility of the presence of the landmark is high is increased, and the landmark measurement point Can be obtained efficiently and with high accuracy.
  • the rider unit 100 may calculate the landmark measurement position PLM for two or more landmarks, and determine the estimated self-position Pe.
  • the optical transmission / reception unit 1 sets a predicted angle range Rtag for each landmark, and the landmark position measurement unit 5 performs measurement corresponding to each landmark from the set predicted angle range Rtag. A point is extracted and a landmark measurement position PLM is calculated. Then, for each landmark, the self-position estimation unit 6 calculates a difference between the landmark measurement position PLM and the position on the map, and applies a known interpolation process or the like based on these differences to determine the self-position. The correction amount of the predicted value is determined.
  • the lidar unit 100 may be configured to repeat horizontal scanning by the scanner 14 for a plurality of columns (layers) in the vertical direction (that is, a multilayer lidar). In this case, for example, the rider unit 100 calculates the estimated self-position Pe by executing the processing of the embodiment for any one layer.
  • the landmark position measurement unit 5 may extract landmark measurement points in each layer within the predicted angle range Rtag and use them for matching processing such as the shape of each landmark at its height.
  • the configuration of the optical transceiver 1 shown in FIG. 2 is an example, and the configuration to which the present invention can be applied is not limited to the configuration shown in FIG.
  • the laser diode 13 and the motor control unit 15 may be configured to rotate together with the scanner 14.
  • the lidar unit 100 changes the pulse rate fseg according to the predicted angle range Rtag for each processing frame when performing the surrounding environment recognition process in addition to the self-position estimation process described in the embodiment, and the pulse rate fseg. May be executed by alternately switching between the case of setting a fixed value regardless of the predicted angle range Rtag.
  • the pulse rate fseg is increased and the peak power of the optical pulse is decreased, it is possible to prevent the low-reflectance object from becoming difficult to find.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

ライダユニット100は、出射部に相当するLDドライバ12及びレーザダイオード13及びスキャナ14と、受光部に相当する受光素子16及び電流電圧変換回路17及びA/Dコンバータ18と、地図上でのランドマークの位置を示す位置情報を取得するランドマーク位置予測部2及びランドマーク地図取得部3と、可変パルストリガ信号S2及びセグメント抽出信号S3を生成する同期制御部11とを有する。ランドマーク位置予測部2は、車両の現在位置の予測値と地図上でのランドマークの位置とに基づき、ランドマークの存在が予測される予測角度範囲Rtagを設定する。同期制御部11は、予測角度範囲Rtagについては、他の範囲よりも光パルスの走査密度が高くなるように可変パルストリガ信号S2及びセグメント抽出信号S3を生成する。

Description

光制御装置、制御方法、プログラム及び記憶媒体
 本発明は、測定用の光パルスの出射制御技術に関する。
 従来から、周辺に存在する物体との距離を測定する技術が知られている。例えば、特許文献1には、レーザ光を間欠的に発光させつつ水平方向を走査し、その反射光を受信することで、物体表面の点群を検出するライダを搭載した車載システムが開示されている。
特開2014-89691号公報
 ライダを利用して、周囲環境にあるランドマークを捕捉するとき、当該ランドマークが遠方にある場合など、走査角度分解能に対して走査面内に含まれるランドマークが相対的に小さい場合には、当該ランドマークに対応する計測点が過度に少なくなり、ランドマークの形状等が正しく認識できないことがある。
 本発明は、上記のような課題を解決するためになされたものであり、測定範囲内に存在するランドマークを高精度に測定することが可能な光制御装置を提供することを主な目的とする。
 請求項1に記載の発明は、光制御装置であって、出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部と、少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、前記出射部を制御する制御部と、を備え、前記制御部は、前記移動体の現在位置情報と前記第1情報とに基づいて推定された前記所定の対象物が存在する第1方向については、他の方向とは異なる制御を行うことを特徴とする。
 請求項6に記載の発明は、光制御装置であって、光を出射する出射部と前記光を受光する受光部とを有する送受光部と、少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、前記第1情報と、移動体の現在位置情報と、に基づいて、前記出射部の出射範囲を決定する決定部と、を備えることを特徴とする。
 請求項7に記載の発明は、出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部を制御する光制御装置が実行する制御方法であって、少なくとも所定の対象物の位置を示す第1情報を取得する第1取得工程と、前記出射部を制御する制御工程と、を有し、前記制御工程は、前記移動体の現在位置情報と前記第1情報とに基づいて推定された前記所定の対象物が存在する第1方向については、他の方向とは異なる制御を行うことを特徴とする。
 請求項8に記載の発明は、出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部を制御するコンピュータが実行するプログラムであって、少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、前記出射部を制御する制御部として前記コンピュータを機能させ、前記制御部は、前記移動体の現在位置情報と前記第1情報とに基づいて推定された前記所定の対象物が存在する第1方向については、他の方向とは異なる制御を行うことを特徴とする。
 請求項10に記載の発明は、出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部と、少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、前記移動体の現在位置情報と前記第1情報とに基づいて、前記光を第1の出射頻度で出射する第1出射モードと、前記光を第1の出射頻度よりも低い頻度である第2出射モードと、を切り換えて前記出射部を制御する制御部と、を備えることを特徴とする。
ライダユニットの概略構成である。 光送受信部のブロック構成を示す。 可変パルストリガ信号及びセグメント抽出信号の波形を示す。 予測角度範囲に属しないスキャン角度に対応するセグメントの可変パルストリガ信号の波形を示す。 予測角度範囲に属するスキャン角度に対応するセグメントの可変パルストリガ信号の波形を示す。 パルスレートを予測角度範囲外と同一である約13.7kHzに固定して光パルスを出射した場合の光パルスの光路を示す。 パルスレートを約68.5kHzに上げて光パルスを出射した場合の光パルスの光路を示す。 本実施例の処理手順を示すフローチャートである。
 本発明の好適な実施形態によれば、光制御装置は、出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部と、少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、前記出射部を制御する制御部と、を備え、前記制御部は、前記移動体の現在位置情報と前記第1情報とに基づいて推定された前記所定の対象物が存在する第1方向については、他の方向とは異なる制御を行う。
 上記光制御装置は、出射部と受光部とを有する送受光部と、第1取得部と、制御部とを備える。第1取得部は、少なくとも所定の対象物の位置を示す第1情報を取得する。制御部は、出射部を制御し、移動体の現在位置情報と第1情報とに基づいて推定された所定の対象物が存在する第1方向については、他の方向とは異なる制御を行う。この態様により、光制御装置は、所定の対象物が存在すると推定された方向について、他の方向とは異なる光の出射制御を行うことができる。
 上記光制御装置の一態様では、前記制御部は、前記第1方向については、前記他の方向よりも前記光の出射頻度を上げるように前記出射部を制御する。このようにすることで、光制御装置は、所定の対象物に対し、効率的かつ高密度に光を照射することができる。
 上記光制御装置の他の一態様では、前記制御部は、前記第1方向については、前記他の方向よりも、前記光の強度を低くする制御を行う。この態様により、光制御装置は、出射頻度を上げた場合であっても、出射光の平均パワーの増加を好適に抑制してアイセーフを実現することができる。
 上記光制御装置の他の一態様では、光制御装置は、前記所定の対象物の光の反射率に関連する第2情報を取得する第2取得部を更に備え、前記制御部は、前記光の反射率が所定率以上の場合に、前記他の方向よりも、前記光の強度を低くする制御を行う。この態様により、光制御装置は、光の出射強度を弱めても支障がない場合に限り光の出射強度を弱め、所定の対象物で反射された光を確実に受信することができる。
 上記光制御装置の他の一態様では、前記制御部は、前記第1方向については、前記他の方向よりも走査速度を遅くするように前記出射部を制御する。この態様によっても、光制御装置は、所定の対象物に対して高密度に光を照射することができる。
 本発明の他の好適な実施形態によれば、光制御装置は、光を出射する出射部と前記光を受光する受光部とを有する送受光部と、少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、前記第1情報と、移動体の現在位置情報と、に基づいて、前記出射部の出射範囲を決定する決定部と、を備える。この態様によれば、光制御装置は、光の出射範囲を、所定の対象物の存在が予測される範囲に的確に定めることができる。
 本発明の他の好適な実施形態によれば、出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部を制御する光制御装置が実行する制御方法であって、少なくとも所定の対象物の位置を示す第1情報を取得する第1取得工程と、前記出射部を制御する制御工程と、を有し、前記制御工程は、前記移動体の現在位置情報と前記第1情報とに基づいて推定された前記所定の対象物が存在する第1方向については、他の方向とは異なる制御を行う。光制御装置は、この制御方法を実行することで、所定の対象物が存在すると推定された方向について、他の方向とは異なる光の出射制御を行うことができる。
 本発明の他の好適な実施形態によれば、出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部を制御するコンピュータが実行するプログラムであって、少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、前記出射部を制御する制御部として前記コンピュータを機能させ、前記制御部は、前記移動体の現在位置情報と前記第1情報とに基づいて推定された前記所定の対象物が存在する第1方向については、他の方向とは異なる制御を行う。コンピュータは、このプログラムを実行することで、所定の対象物が存在すると推定された方向について、他の方向とは異なる光の出射制御を行うことができる。好適には、上記プログラムは、記憶媒体に記憶される。
 本発明の他の好適な実施形態によれば、光制御装置は、出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部と、少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、前記移動体の現在位置情報と前記第1情報とに基づいて、前記光を第1の出射頻度で出射する第1出射モードと、前記光を第1の出射頻度よりも低い頻度である第2出射モードと、を切り換えて前記出射部を制御する制御部と、を備える。この態様により、光制御装置は、所定の対象物の位置に応じて光の出射頻度を切り替えることができるため、所定の対象物に対して効率的かつ高密度に光を照射させることができる。
 以下、図面を参照して本発明の好適な実施例について説明する。
 [全体構成]
 図1は、本実施例に係るライダユニット100のブロック構成図である。図1に示すライダユニット100は、TOF(Time Of Flight)方式のライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)であって、水平方向の全方位における物体の測距を行うことで、自動運転等に必要な現在位置の高精度な推定を行う。ライダユニット100は、主に、光送受信部1と、ランドマーク位置予測部2と、ランドマーク地図取得部3と、信号処理部4と、ランドマーク位置計測部5と、自己位置推定部6と、車速センサ8と、ジャイロセンサ9とを有する。以後では、処理基準となる現在時刻を「時刻t」、時刻tの一つ前の処理フレームの実行時刻を「時刻t-1」と表記する。
 光送受信部1は、出射方向を徐変させながら水平方向の360°の全方位を対象にパルスレーザを出射する。このとき、光送受信部1は、水平方向の360°の全方位を区切ったセグメント(本実施例では900~4500セグメント)ごとにパルスレーザを出射する。この場合、後述するように、光送受信部1は、ランドマーク位置予測部2から通知された所定の出射範囲については、他の範囲よりも、セグメント間の角度差を小さくして光パルスの出射レートを高くする。そして、光送受信部1は、パルスレーザ出射後の所定期間内に当該パルスレーザの反射光を受光することで生成したセグメントごとの受光強度に関する信号(「セグメント信号Sseg」とも呼ぶ。)を、信号処理部4へ出力する。
 ランドマーク位置予測部2は、時刻tでのライダユニット100の位置(「自己位置」とも呼ぶ。)を予測し、予測した時刻tでの自己位置から、自己位置を推定するための目印となる所定の対象物(「ランドマーク」とも呼ぶ。)が検出される方向を予測する。なお、ランドマーク位置予測部2が予測する時刻tの自己位置は、後述する自己位置推定部6が推定する自己位置よりも精度が低い暫定的な位置である。ランドマークは、例えば、道路脇に周期的に並んでいるキロポスト、100mポスト、デリニエータ、交通インフラ設備(例えば標識、方面看板、信号)、電柱、街灯などの所定の地物である。ランドマークは、本発明における「所定の対象物」の一例である。
 この場合、まず、ランドマーク位置予測部2は、後述する自己位置推定部6が推定した時刻t-1での自己位置の推定値と、車速センサ8が出力する移動速度及びジャイロセンサ9が出力する角速度とに基づき、時刻tでの自己位置の予測値を公知の算出方法により算出する。この場合、ランドマーク位置予測部2は、自己位置の予測値として、例えば緯度、経度、進行方向の方位の各予測値をそれぞれ算出する。なお、ランドマーク位置予測部2は、地磁気センサなどの方位を検出するセンサをライダユニット100が有している場合には、緯度及び経度の各予測値のみを算出してもよい。次に、ランドマーク位置予測部2は、算出した自己位置の予測値から測距可能距離内にあるランドマークに関する情報(「ランドマーク情報IL」とも呼ぶ。)をランドマーク地図取得部3に取得させる。ランドマーク情報ILは、ランドマークごとの位置情報及びレーザの反射率に関する情報(反射率情報)が含まれている。そして、ランドマーク位置予測部2は、ランドマーク地図取得部3が取得したランドマーク情報ILに含まれる位置情報から、ランドマークが存在する光送受信部1のスキャン角度の予測範囲(「予測角度範囲Rtag」とも呼ぶ。)を設定する。ランドマーク位置予測部2は、本発明における「決定部」の一例であり、ランドマーク位置予測部2が参照するランドマーク情報ILの位置情報は、本発明における「第1情報」の一例であり、予測角度範囲Rtagは、本発明における「第1方向」の一例である。
 ランドマーク地図取得部3は、ランドマーク位置予測部2から指定された範囲に存在するランドマークのランドマーク情報ILを取得する。この場合、ランドマーク地図取得部3は、図示しない記憶部に予め記憶された地図情報からランドマーク情報ILを抽出してもよく、地図情報を有する図示しないサーバ装置から通信によりランドマーク情報ILを取得してもよい。ランドマーク位置予測部2及びランドマーク地図取得部3は、本発明における「第1取得部」の一例である。
 信号処理部4は、光送受信部1から受信したセグメントごとのセグメント信号Ssegの波形からピーク位置をそれぞれ検出し、検出したピーク位置に基づきレーザの照射物までの距離を算出する。そして、信号処理部4は、セグメントごとに算出した距離と、当該セグメントに対応するスキャン角度との組み合わせである計測点の情報(「計測データDm」とも呼ぶ。)を、ランドマーク位置計測部5へ供給する。
 ランドマーク位置計測部5は、計測データDmを信号処理部4から受信した場合に、計測データDmが示す全ての計測点から、ランドマーク位置予測部2が予測角度範囲Rtagを設定する基準としたランドマークに対応する計測点を抽出する。そして、ランドマーク位置計測部5は、抽出した計測点と、ランドマーク位置予測部2が算出した自己位置の予測値とに基づき、対象のランドマークの絶対的な位置を算出し、算出したランドマークの位置(「ランドマーク計測位置PLM」とも呼ぶ。)を自己位置推定部6へ供給する。
 自己位置推定部6は、ランドマーク位置計測部5から供給されるランドマーク計測位置PLMと、ランドマーク地図取得部3が取得したランドマーク情報ILが示すランドマークの地図上の位置とに基づき、現時刻tにおける自己位置の推定値(「推定自己位置Pe」とも呼ぶ。)を算出する。この場合、自己位置推定部6は、例えば、ランドマーク計測位置PLMと、ランドマーク情報ILに基づく地図上の位置との差異に基づき、ランドマーク位置予測部2が算出した自己位置の予測値を補正することで、推定自己位置Peを算出する。これにより、自己位置推定部6は、ランドマーク位置予測部2が予測角度範囲Rtagを設定するために算出した自己位置の予測値よりも高精度な推定自己位置Peを算出する。ここで、自己位置推定部6は、推定自己位置Peとして、例えば緯度、経度、進行方向の方位の各推定値をそれぞれ算出し、地磁気センサなどの方位を検出するセンサをライダユニット100が有している場合には、緯度及び経度の各推定値のみを算出する。自己位置推定部6は、算出した推定自己位置Peを、ランドマーク位置予測部2に供給すると共に、外部ユニット(例えば自動運転を制御するユニット等)に推定自己位置Peを供給する。
 [光送受信部の構成]
 図2は、光送受信部1の概略的な構成例を示す。図2に示すように、光送受信部1は、主に、水晶発振器10と、同期制御部11と、LDドライバ12と、レーザダイオード13と、スキャナ14と、モータ制御部15と、受光素子16と、電流電圧変換回路(トランスインピーダンスアンプ)17と、A/Dコンバータ18と、可変セグメンテータ19とを有する。
 水晶発振器10は、同期制御部11及びA/Dコンバータ18にパルス状のクロック信号「S1」を出力する。本実施例では、一例として、クロック周波数は、1.8GHzであるものとする。また、以後では、クロック信号S1が示すクロックを「サンプルクロック」とも呼ぶ。
 同期制御部11は、パルス状のトリガ信号(「可変パルストリガ信号S2」とも呼ぶ。)をLDドライバ12に出力する。ここで、同期制御部11は、ランドマーク位置予測部2から供給される予測角度範囲Rtagに基づき、可変パルストリガ信号S2をアサートする周期を決定する。本実施例では、同期制御部11は、可変パルストリガ信号S2を周期的にアサートする時間間隔を、131072(=217)サンプルクロック分の時間幅、又は、26214サンプルクロック分の時間幅のいずれかに設定する。この場合、クロック周波数を「fsmp」(=1.8GHz)とすると、可変パルストリガ信号S2のパルスレート「fseg」は、「fsmp/131072」又は「fsmp/26214」となる。以後では、可変パルストリガ信号S2がアサートされてから次にアサートされるまでの期間を「セグメント期間」とも呼ぶ。後述するように、同期制御部11は、予測角度範囲Rtag内のスキャン角度に相当するセグメントについては、他のセグメントよりもセグメント期間が短くなるように、可変パルストリガ信号S2を生成する。
 また、同期制御部11は、後述する可変セグメンテータ19がA/Dコンバータ18の出力を抽出するタイミングを定める信号(「セグメント抽出信号S3」とも呼ぶ。)を可変セグメンテータ19に出力する。可変パルストリガ信号S2及びセグメント抽出信号S3は、論理信号であり、後述する図3に示すように同期している。本実施例では、同期制御部11は、セグメント抽出信号S3を、2048サンプルクロック分の時間幅(「ゲート幅Wg」とも呼ぶ。)だけアサートする。同期制御部11は、本発明における「制御部」の一例である。また、同期制御部11及びランドマーク位置予測部2等は、本発明におけるプログラムを実行するコンピュータの一例である。
 LDドライバ12は、同期制御部11から入力される可変パルストリガ信号S2に同期してパルス電流をレーザダイオード13へ流す。レーザダイオード13は、例えば赤外(905nm)パルスレーザであって、LDドライバ12から供給されるパルス電流に基づき光パルスを出射する。本実施例では、レーザダイオード13は、5nsec程度の光パルスを出射する。
 スキャナ14は、送出及び受信光学系の構成を含み、レーザダイオード13が出射する光パルスを水平面で360°走査すると共に、出射された光パルスが照射された物体で反射された戻り光を受光素子16に導く。本実施例では、スキャナ14は、回転するためのモータを含み、モータは、900~4500セグメントで一回転するように、モータ制御部15により制御される。この場合の角度分解能は、セグメント数が900の場合には、1セグメントあたり0.4°(=360°/900)となり、セグメント数が4500の場合には、1セグメントあたり0.08°(=360°/4500)となる。
 好適には、スキャナ14のスキャン面は、傘状ではなく平面であることが望ましく、かつ、ライダユニット100が移動体に搭載される場合には、移動体が走行する地表に対して平行(即ち水平)であることが望ましい。LDドライバ12及びレーザダイオード13及びスキャナ14は、本発明における「出射部」の一例である。
 受光素子16は、例えば、アバランシェフォトダイオードであり、スキャナ14により導かれた反射光の光量に応じた微弱電流を生成する。受光素子16は、生成した微弱電流を、電流電圧変換回路17へ供給する。電流電圧変換回路17は、受光素子16から供給された微弱電流を増幅して電圧信号に変換し、変換した電圧信号をA/Dコンバータ18へ入力する。
 A/Dコンバータ18は、水晶発振器10から供給されるクロック信号S1に基づき、電流電圧変換回路17から供給される電圧信号をデジタル信号に変換し、変換したデジタル信号を可変セグメンテータ19に供給する。以後では、A/Dコンバータ18が1クロックごとに生成するデジタル信号を「サンプル」とも呼ぶ。受光素子16、電流電圧変換回路17及びA/Dコンバータ18は、本発明における「受光部」の一例である。
 可変セグメンテータ19は、セグメント抽出信号S3がアサートされているゲート幅Wg分の期間における2048サンプルクロック分のA/Dコンバータ18の出力であるデジタル信号を、セグメント信号Ssegとして生成する。可変セグメンテータ19は、生成したセグメント信号Ssegを信号処理部4へ供給する。
 図3は、可変パルストリガ信号S2及びセグメント抽出信号S3の時系列での波形を示す。図3に示すように、本実施例では、可変パルストリガ信号S2がアサートされる1周期分の期間であるセグメント期間は、26214サンプルクロック(図面では「smpclk」と表記)分の長さ、又は、131072サンプルクロック分の長さに設定され、可変パルストリガ信号S2のパルス幅は64サンプルクロック分の長さ、ゲート幅Wgは2048サンプルクロック分の長さに設定されている。
 この場合、可変パルストリガ信号S2がアサートされた後のゲート幅Wgの期間だけセグメント抽出信号S3がアサートされているため、可変セグメンテータ19は、可変パルストリガ信号S2がアサート中の2048個分のA/Dコンバータ18が出力するサンプルを抽出することになる。そして、ゲート幅Wgが長いほど、ライダユニット100からの最大測距距離(測距限界距離)が長くなる。
 本実施例では、最大測距距離は、単純計算した場合、ゲート幅Wgに相当する時間幅で光が往復する距離に相当する170.55m(≒{2048/1.8GHz}・c/2、「c」は光速)となる。なお、最大測距距離は、電気的及び光学的な遅れを考慮したオフセットを設定するため、170.55mよりも若干短くなる。
 [パルスレートの設定]
 次に、パルスレートfsegの設定方法について説明する。概略的には、同期制御部11は、予測角度範囲Rtagに属するスキャン角度に対応するセグメントのパルスレートfsegを、他のセグメントのパルスレートfsegよりも高くなるように、可変パルストリガ信号S2及びセグメント抽出信号S3を生成する。
 図4は、予測角度範囲Rtagに属しないスキャン角度に対応するセグメントの可変パルストリガ信号S2の波形を示す。また、図5は、予測角度範囲Rtagに属するスキャン角度に対応するセグメントの可変パルストリガ信号S2の波形を示す。
 図4及び図5の例では、同期制御部11は、予測角度範囲Rtagに属しないスキャン角度に対応するセグメントについては、パルスレートfsegを約13.7kHzに設定している。一方、同期制御部11は、予測角度範囲Rtagに属しないスキャン角度に対応するセグメントについては、パルスレートfsegを約68.5kHz(即ち13.7kHzの5倍)に設定している。このように、同期制御部11は、予測角度範囲Rtag内については、パルスレートfsegを相対的に高くすることで、走査密度を高くする。これにより、同期制御部11は、対象となるランドマークの計測点を高密度に取得することができる。
 図6は、50m先のランドマーク70の存在が推定される予測角度範囲Rtag内において、パルスレートfsegを予測角度範囲Rtag外と同一である約13.7kHz(図4参照)に固定して光パルスを出射した場合の光パルスの光路を示す。また、図7は、ランドマーク70の存在が推定される予測角度範囲Rtag内において、パルスレートfsegを図6の例の5倍の約68.5kHz(図5参照)に上げて光パルスを出射した場合の光パルスの光路を示す。ここでは、ランドマーク70の横幅は、0.4mであるものとする。
 図6に示すように、パルスレートfsegを予測角度範囲Rtag外と同一である約13.7kHzに仮に設定した場合、ランドマーク70に照射される光パルスは1つとなる。よって、この場合、ランドマーク70に対する計測点は1個しか得られない。これに対し、図7に示すように、パルスレートfsegを約68.5kHz(図5参照)に上げて光パルスを出射した場合、ランドマーク70に照射される光パルスは8つとなり、計測点が8個得られることになる。この場合、ランドマーク位置計測部5は、得られた8個の計測点から、ランドマーク70の形状、構造、向き等を認識し、高精度にランドマーク70に対するランドマーク計測位置PLMを算出することが可能となる。
 好適には、同期制御部11は、予測角度範囲Rtag内でのパルスレートfsegを上げる場合には、パルス光のピークパワーを通常よりも下げるように制御するとよい。一般に、パルス光が人間の目に入っても安全なアイセーフの基準は、空間中の任意の場所での単位面積あたりのパルス光の平均パワーによって決まる。また、一般に、単位面積あたりのパルス光の平均パワーは、パルス光の出射レートが高いほど高くなり、パルス光のピークパワーが低いほど低くなる。以上を勘案し、同期制御部11は、パルスレートfsegを上げる場合には、出射させるパルス光のピークパワーを低下させる。図5の例では、図4の例と比較して、パルスレートfsegが高い分、パルス光のピークパワーに相当するパルスの高さが低く設定されている。このようにすることで、予測角度範囲Rtag内でパルスレートfsegを上げた場合であっても、空間中の任意の場所での単位面積あたりのパルス光の平均パワーの上昇を抑制して好適にアイセーフを実現することができる。
 この場合、さらに好適には、同期制御部11は、ランドマーク情報ILに含まれる反射率情報を参照し、対象のランドマークの反射率が所定率以上の場合にのみ、予測角度範囲Rtag内において、パルス光のピークパワーを通常よりも下げるように制御するとよい。この場合の所定率は、例えば、パルス光のピークパワーを通常よりも下げた場合であってもその反射光に基づきライダユニット100が計測点を生成可能な反射率の下限値等に、実験等に基づき予め設定される。このようにすることで、同期制御部11は、パルス光のピークパワーを通常よりも下げることによってランドマークの計測点が生成できなくなるのを好適に抑制することができる。
 [処理フロー]
 図8は、本実施例においてライダユニット100が実行する処理手順を示すフローチャートである。
 まず、ランドマーク位置予測部2は、前回の処理フレームで推定した時刻t-1での推定自己位置Peが存在するか否か判定する(ステップS101)。そして、前回の処理フレームで推定した時刻t-1での推定自己位置Peが存在する場合(ステップS101;Yes)、ランドマーク位置予測部2は、時刻t-1での推定自己位置Peと、車速センサ8及びジャイロセンサ9から得られた車速及び角速度とに基づき、時刻tに対応する自己位置の予測値を算出する(ステップS102)。一方、前回の処理フレームで推定した時刻t-1での推定自己位置Peが存在しない場合(ステップS101;No)、ランドマーク位置予測部2は、図示しないGPS受信機等の測位装置の出力に基づき、時刻tでの自己位置を予測する(ステップS103)。ステップS102又はS103で予測される現在位置の情報は、本発明における「現在位置情報」の一例である。
 次に、ランドマーク位置予測部2は、地図情報に基づき、自己位置を推定する目印となるランドマークを検出するための予測角度範囲Rtagを決定する(ステップS104)。この場合、ランドマーク位置予測部2は、ランドマーク地図取得部3に対して自己位置の予測値を供給することで、自己位置の予測値から測距可能距離以内に位置情報が登録されているランドマークのランドマーク情報ILを、ランドマーク地図取得部3により取得する。
 そして、光送受信部1は、光パルスによる走査を開始する(ステップS105)。このとき、光送受信部1は、出射する光パルスに対応するセグメントのスキャン角度が予測角度範囲Rtag内であるか否か判定する(ステップS106)。そして、光送受信部1は、出射する光パルスに対応するセグメントのスキャン角度が予測角度範囲Rtag内の場合(ステップS106;Yes)、高分解能による光パルスの走査を実行する(ステップS107)。即ち、この場合、光送受信部1は、図5及び図7で説明したように、パルスレートfsegを通常よりも上げて光パルスによる走査密度を高める。なお、このとき、好適には、光送受信部1は、ランドマーク情報ILが示す反射率情報が所定率以上である場合には、パルス光のピークパワーを下げる制御を行うとよい。この場合、反射率情報は、本発明における「第2情報」の一例であり、ランドマーク位置予測部2及びランドマーク地図取得部3は、本発明における「第2取得部」の一例である。
 一方、光送受信部1は、出射する光パルスに対応するセグメントのスキャン角度が予測角度範囲Rtag外の場合(ステップS106;No)、通常分解能による光パルスの走査を実行する(ステップS108)。即ち、この場合、光送受信部1は、図4及び図6の例のように、通常のパルスレートfsegにより光パルスを出射する。なお、ステップS107での光パルスの出射制御は、本発明における「第1出射モード」の一例であり、ステップS108での光パルスの出射制御は、本発明における「第2出射モード」の一例である。
 そして、光送受信部1は、走査対象の全方位に対する光パルスの走査が終了したか否か判定する(ステップS109)。そして、光送受信部1は、走査対象の全方位に対する光パルスの走査が終了していない場合(ステップS109;No)、ステップS106を再び実行する。
 一方、走査対象の全方位に対する光パルスの走査が終了した場合(ステップS109;Yes)、ランドマーク位置計測部5は、信号処理部4が出力する計測点からランドマークに対応する計測点を抽出し、抽出した計測点からランドマーク計測位置PLMを算出する(ステップS110)。この場合、ランドマーク位置計測部5は、例えば、予測角度範囲Rtag内のスキャン角度に対応する計測点を抽出し、抽出した計測点からランドマークの形状、構造、向きを特定することで、ランドマーク計測位置PLMを算出する。例えば、ランドマーク位置計測部5は、抽出した複数の計測点を代表する距離及びスキャン角度と、ステップS102又はステップS103で予測した自己位置とに基づき、ランドマークの緯度及び経度を算出し、ランドマーク計測位置PLMとして定める。
 そして、自己位置推定部6は、ランドマーク位置計測部5が算出したランドマーク計測位置PLMに基づき、推定自己位置Peを算出する(ステップS111)。この場合、自己位置推定部6は、例えば、所定の式又はマップを参照し、ランドマーク計測位置PLMと、ランドマーク地図取得部3が取得したランドマーク情報ILが示す位置との差異に基づき、ステップS102又はステップS103で予測した自己位置の予測値を補正することで、推定自己位置Peを算出する。
 以上説明したように、本実施例に係るライダユニット100は、出射部に相当するLDドライバ12及びレーザダイオード13及びスキャナ14と、受光部に相当する受光素子16及び電流電圧変換回路17及びA/Dコンバータ18と、地図上でのランドマークの位置を示す位置情報を取得するランドマーク位置予測部2及びランドマーク地図取得部3と、可変パルストリガ信号S2及びセグメント抽出信号S3を生成する同期制御部11とを有する。ランドマーク位置予測部2は、車両の現在位置の予測値と地図上でのランドマークの位置とに基づき、ランドマークの存在が予測される予測角度範囲Rtagを設定する。同期制御部11は、予測角度範囲Rtagについては、他の範囲よりも光パルスの走査密度が高くなるように可変パルストリガ信号S2及びセグメント抽出信号S3を生成する。これにより、ライダユニット100は、自己位置を推定するのに必要なランドマークを高精度に検出し、自己位置を高精度に推定することができる。
 [変形例]
 次に、実施例に好適な変形例について説明する。以下の変形例は、任意に組み合わせて上述の実施例に適用してもよい。
 (変形例1)
 図8のステップS108において、同期制御部11は、予測角度範囲Rtag外のスキャン角度に対応するセグメントについては光パルスを出射しないように可変パルストリガ信号S2を生成してもよい。この場合、同期制御部11は、予測角度範囲Rtag内のスキャン角度に対応するセグメントについては、実施例の図8のステップS107と同様に、ランドマークの計測点を得るのに十分なパルスレートfsegに設定するように可変パルストリガ信号S2をアサートさせる。一方、同期制御部11は、予測角度範囲Rtag外のスキャン角度に対応するセグメントについては、可変パルストリガ信号S2をアサートさせない。これにより、ライダユニット100は、予測角度範囲Rtag以外については光パルスを走査しない。
 この態様によれば、ライダユニット100は、検出対象であるランドマークが存在しないスキャン方向に対応する計測点を不要に生成するのを防ぎ、処理負荷を好適に低減させることができる。
 (変形例2)
 光送受信部1は、予測角度範囲Rtag内でのパルスレートfsegを上げる代わりに、予測角度範囲Rtag内での光パルスの走査速度を遅くしてもよい。
 この場合、同期制御部11は、予測角度範囲Rtagによらずにパルスレートfsegを固定にした固定パルストリガ信号を生成し、LDドライバ12へ供給する。一方、モータ制御部15は、ランドマーク位置予測部2から予測角度範囲Rtagを受信し、予測角度範囲Rtag内のスキャン角度でスキャナ14を動作させる際の走査速度を、予測角度範囲Rtag内のスキャン角度でスキャナ14を動作させる際の走査速度よりも遅くする。この場合、モータ制御部15は、本発明における「制御部」の一例である。これによっても、光送受信部1は、好適に、ランドマークの存在が予想される予測角度範囲Rtag内での走査密度を高くし、自己位置推定の基準とするランドマークの計測点を高密度に取得することができる。
 (変形例3)
 同期制御部11は、予測角度範囲Rtag内でのパルスレートfsegの設定値を、複数段階に分けてもよい。例えば、同期制御部11は、予測角度範囲Rtagのうち、予測角度範囲Rtagの中心角度から所定角度以内となる範囲とその他の範囲とに分け、前者の範囲パルスレートfsegを後者の範囲のパルスレートfsegよりも高く設定する。このように、予測角度範囲Rtag内でパルスレートfsegの設定値を複数段階に分けることで、ランドマークの存在可能性が高い予測角度範囲Rtag内での走査密度を高くし、ランドマークの計測点を効率的かつ高精度に取得することができる。
 (変形例4)
 ライダユニット100は、2以上のランドマークを対象にランドマーク計測位置PLMをそれぞれ算出し、推定自己位置Peを決定してもよい。
 この場合、光送受信部1は、例えば、それぞれのランドマークに対して予測角度範囲Rtagを設定し、ランドマーク位置計測部5は、設定された予測角度範囲Rtagからそれぞれのランドマークに対応する計測点を抽出し、ランドマーク計測位置PLMをそれぞれ算出する。そして、自己位置推定部6は、ランドマークごとに、ランドマーク計測位置PLMと地図上の位置との差異を算出し、これらの差異に基づき公知の補間処理などを適用して、自己位置の予測値の補正量を決定する。
 (変形例5)
 ライダユニット100は、スキャナ14による水平方向の走査を鉛直方向の複数列(レイヤ)について繰り返す形態(即ち多層ライダ)であってもよい。この場合、例えば、ライダユニット100は、任意のひとつのレイヤに対して実施例の処理を実行して推定自己位置Peを算出する。なお、ランドマーク位置計測部5は、予測角度範囲Rtag内での各レイヤにおけるランドマークの計測点を抽出し、ランドマークの各高さでの形状等のマッチング処理に用いてもよい。
 (変形例6)
 図2に示す光送受信部1の構成は一例であり、本発明が適用可能な構成は、図2に示す構成に限定されない。例えば、レーザダイオード13及びモータ制御部15は、スキャナ14と共に回転する構成であってもよい。
 (変形例7)
 ライダユニット100は、実施例で説明した自己位置推定処理に加えて周辺環境の認識処理を行う場合、処理フレームごとに、予測角度範囲Rtagに応じてパルスレートfsegを変化させる場合と、パルスレートfsegを予測角度範囲Rtagによらずに固定値にする場合とを交互に切り替えて実行してもよい。これにより、パルスレートfsegを上げると共に光パルスのピークパワーを下げた際に、低反射率物体が見つけにくくなるのを防ぐことができる。
 1 光送受信部
 2 ランドマーク位置予測部
 3 ランドマーク地図取得部
 4 信号処理部
 5 ランドマーク位置計測部
 6 自己位置推定部
 8 車速センサ
 9 ジャイロセンサ
 100 ライダユニット

Claims (10)

  1.  出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部と、
     少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、
     前記出射部を制御する制御部と、を備え、
     前記制御部は、前記移動体の現在位置情報と前記第1情報とに基づいて推定された前記所定の対象物が存在する第1方向については、他の方向とは異なる制御を行う光制御装置。
  2.  前記制御部は、前記第1方向については、前記他の方向よりも前記光の出射頻度を上げるように前記出射部を制御する請求項1に記載の光制御装置。
  3.  前記制御部は、前記第1方向については、前記他の方向よりも、前記光の強度を低くする制御を行う請求項1に記載の光制御装置。
  4.  前記所定の対象物の光の反射率に関連する第2情報を取得する第2取得部を更に備え、
     前記制御部は、前記光の反射率が所定率以上の場合に、前記他の方向よりも、前記光の強度を低くする制御を行う請求項3に記載の光制御装置。
  5.  前記制御部は、前記第1方向については、前記他の方向よりも走査速度を遅くするように前記出射部を制御する請求項1に記載の光制御装置。
  6.  光を出射する出射部と前記光を受光する受光部とを有する送受光部と、
     少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、
     前記第1情報と、移動体の現在位置情報と、に基づいて、前記出射部の出射範囲を決定する決定部と、を備える光制御装置。
  7.  出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部を制御する光制御装置が実行する制御方法であって、
     少なくとも所定の対象物の位置を示す第1情報を取得する第1取得工程と、
     前記出射部を制御する制御工程と、を有し、
     前記制御工程は、前記移動体の現在位置情報と前記第1情報とに基づいて推定された前記所定の対象物が存在する第1方向については、他の方向とは異なる制御を行う制御方法。
  8.  出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部を制御するコンピュータが実行するプログラムであって、
     少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、
     前記出射部を制御する制御部
    として前記コンピュータを機能させ、
     前記制御部は、前記移動体の現在位置情報と前記第1情報とに基づいて推定された前記所定の対象物が存在する第1方向については、他の方向とは異なる制御を行うプログラム。
  9.  請求項8に記載のプログラムを記憶した記憶媒体。
  10.  出射方向を変えながら光を出射する出射部と前記光を受光する受光部とを有する送受光部と、
     少なくとも所定の対象物の位置を示す第1情報を取得する第1取得部と、
     前記移動体の現在位置情報と前記第1情報とに基づいて、前記光を第1の出射頻度で出射する第1出射モードと、前記光を第1の出射頻度よりも低い頻度である第2出射モードと、を切り換えて前記出射部を制御する制御部と、を備える光制御装置。
PCT/JP2015/078279 2015-10-06 2015-10-06 光制御装置、制御方法、プログラム及び記憶媒体 WO2017060965A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202211251156.8A CN115685149A (zh) 2015-10-06 2015-10-06 光控制装置、控制方法和存储介质
JP2017544095A JPWO2017060965A1 (ja) 2015-10-06 2015-10-06 光制御装置、制御方法、プログラム及び記憶媒体
EP15905785.0A EP3361281A4 (en) 2015-10-06 2015-10-06 LIGHT CONTROL DEVICE, CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
US15/759,823 US10965099B2 (en) 2015-10-06 2015-10-06 Light control device, control method, program and storage medium
PCT/JP2015/078279 WO2017060965A1 (ja) 2015-10-06 2015-10-06 光制御装置、制御方法、プログラム及び記憶媒体
CN201580083052.2A CN108351402A (zh) 2015-10-06 2015-10-06 光控制装置、控制方法、程序和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078279 WO2017060965A1 (ja) 2015-10-06 2015-10-06 光制御装置、制御方法、プログラム及び記憶媒体

Publications (1)

Publication Number Publication Date
WO2017060965A1 true WO2017060965A1 (ja) 2017-04-13

Family

ID=58488258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078279 WO2017060965A1 (ja) 2015-10-06 2015-10-06 光制御装置、制御方法、プログラム及び記憶媒体

Country Status (5)

Country Link
US (1) US10965099B2 (ja)
EP (1) EP3361281A4 (ja)
JP (1) JPWO2017060965A1 (ja)
CN (2) CN108351402A (ja)
WO (1) WO2017060965A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031372A1 (ja) * 2017-08-09 2019-02-14 パイオニア株式会社 センサ制御装置
WO2019064742A1 (ja) * 2017-09-27 2019-04-04 日本電産株式会社 距離測定装置、および移動体
WO2019064741A1 (ja) * 2017-09-27 2019-04-04 日本電産株式会社 距離測定装置、および移動体
WO2019064750A1 (ja) * 2017-09-27 2019-04-04 日本電産株式会社 距離測定装置、および移動体
JP2020034454A (ja) * 2018-08-30 2020-03-05 パイオニア株式会社 信号処理装置
JP2020516854A (ja) * 2016-12-13 2020-06-11 ウェイモ エルエルシー 回転光検出および測距(ライダ)デバイスの電力変調
JP2021024521A (ja) * 2019-08-08 2021-02-22 独立行政法人自動車技術総合機構 列車位置検出装置
JP2021103148A (ja) * 2019-12-25 2021-07-15 株式会社デンソー 推定装置、推定方法、推定プログラム
JP2021103149A (ja) * 2019-12-25 2021-07-15 株式会社デンソー 推定装置、推定方法、推定プログラム
JP2021530716A (ja) * 2018-06-27 2021-11-11 ベロダイン ライダー ユーエスエー,インコーポレイテッド レーザーレーダー
JP2022528644A (ja) * 2019-03-28 2022-06-15 華為技術有限公司 レーダ電力制御方法および装置
US11740333B2 (en) 2019-12-04 2023-08-29 Waymo Llc Pulse energy plan for light detection and ranging (lidar) devices based on areas of interest and thermal budgets

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9720412B1 (en) 2012-09-27 2017-08-01 Waymo Llc Modifying the behavior of an autonomous vehicle using context based parameter switching
WO2017141414A1 (ja) * 2016-02-19 2017-08-24 パイオニア株式会社 地物データ構造、制御装置、記憶装置、制御方法、プログラム及び記憶媒体
KR102541560B1 (ko) * 2017-09-14 2023-06-08 삼성전자주식회사 객체 인식 방법 및 장치
JP6984737B2 (ja) * 2018-03-28 2021-12-22 日本電気株式会社 測距センサ、制御装置、制御方法及びプログラム
CN111670384A (zh) * 2019-01-09 2020-09-15 深圳市大疆创新科技有限公司 一种光发射方法、装置及扫描系统
JP7275636B2 (ja) * 2019-02-22 2023-05-18 セイコーエプソン株式会社 無人搬送システム及び無人搬送車の自己位置推定方法
JP7038694B2 (ja) * 2019-12-20 2022-03-18 パイオニア株式会社 車載機、サーバ装置、及び制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329971A (ja) * 2005-04-27 2006-12-07 Sanyo Electric Co Ltd 検出装置
JP2011017666A (ja) * 2009-07-10 2011-01-27 Nippon Signal Co Ltd:The 光測距装置
JP2014089691A (ja) * 2012-10-30 2014-05-15 Google Inc 車両横方向レーン位置決め制御

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077379A (ja) 2003-09-03 2005-03-24 Denso Corp レーダ装置
JP2005156261A (ja) 2003-11-21 2005-06-16 Matsushita Electric Works Ltd レーザ測距装置
US7566861B2 (en) * 2005-04-27 2009-07-28 Sanyo Electric Co., Ltd. Detection device controlled by driving speed and driving direction
JP5029436B2 (ja) 2008-03-12 2012-09-19 オムロン株式会社 横断物体検知装置および横断物体検知方法、並びにプログラム
PL2490092T3 (pl) * 2011-02-16 2014-02-28 Siemens Ag Sposób niezależnej lokalizacji niemającego kierowcy, zmotoryzowanego pojazdu
US9235988B2 (en) * 2012-03-02 2016-01-12 Leddartech Inc. System and method for multipurpose traffic detection and characterization
WO2014043461A1 (en) 2012-09-14 2014-03-20 Faro Technologies, Inc. Laser scanner with dynamical adjustment of angular scan velocity
US9121703B1 (en) * 2013-06-13 2015-09-01 Google Inc. Methods and systems for controlling operation of a laser device
JP2015059858A (ja) * 2013-09-19 2015-03-30 株式会社東芝 半導体の抵抗率検査装置および半導体の抵抗率検査方法
US10203399B2 (en) * 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
JP6482427B2 (ja) * 2015-07-30 2019-03-13 三菱電機株式会社 レーザレーダ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329971A (ja) * 2005-04-27 2006-12-07 Sanyo Electric Co Ltd 検出装置
JP2011017666A (ja) * 2009-07-10 2011-01-27 Nippon Signal Co Ltd:The 光測距装置
JP2014089691A (ja) * 2012-10-30 2014-05-15 Google Inc 車両横方向レーン位置決め制御

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3361281A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020516854A (ja) * 2016-12-13 2020-06-11 ウェイモ エルエルシー 回転光検出および測距(ライダ)デバイスの電力変調
US10942272B2 (en) 2016-12-13 2021-03-09 Waymo Llc Power modulation for a rotary light detection and ranging (LIDAR) device
JP2023111952A (ja) * 2017-08-09 2023-08-10 パイオニア株式会社 センサ制御装置
US11585656B2 (en) 2017-08-09 2023-02-21 Pioneer Corporation Sensor control device
EP3667368A4 (en) * 2017-08-09 2021-05-05 Pioneer Corporation SENSOR CONTROL DEVICE
JPWO2019031372A1 (ja) * 2017-08-09 2020-07-27 パイオニア株式会社 センサ制御装置
WO2019031372A1 (ja) * 2017-08-09 2019-02-14 パイオニア株式会社 センサ制御装置
CN111033303A (zh) * 2017-09-27 2020-04-17 日本电产株式会社 距离测定装置、以及移动体
CN111033302A (zh) * 2017-09-27 2020-04-17 日本电产株式会社 距离测量装置及移动体
JPWO2019064750A1 (ja) * 2017-09-27 2020-11-05 日本電産株式会社 距離測定装置、および移動体
WO2019064742A1 (ja) * 2017-09-27 2019-04-04 日本電産株式会社 距離測定装置、および移動体
CN111033304A (zh) * 2017-09-27 2020-04-17 日本电产株式会社 距离测量装置及移动体
WO2019064750A1 (ja) * 2017-09-27 2019-04-04 日本電産株式会社 距離測定装置、および移動体
WO2019064741A1 (ja) * 2017-09-27 2019-04-04 日本電産株式会社 距離測定装置、および移動体
JP2021530716A (ja) * 2018-06-27 2021-11-11 ベロダイン ライダー ユーエスエー,インコーポレイテッド レーザーレーダー
JP2020034454A (ja) * 2018-08-30 2020-03-05 パイオニア株式会社 信号処理装置
JP2022528644A (ja) * 2019-03-28 2022-06-15 華為技術有限公司 レーダ電力制御方法および装置
JP7214888B2 (ja) 2019-03-28 2023-01-30 華為技術有限公司 レーダ電力制御方法および装置
US12105188B2 (en) 2019-03-28 2024-10-01 Huawei Technologies Co., Ltd. Radar power control method and apparatus
JP2021024521A (ja) * 2019-08-08 2021-02-22 独立行政法人自動車技術総合機構 列車位置検出装置
JP7343153B2 (ja) 2019-08-08 2023-09-12 独立行政法人自動車技術総合機構 列車位置検出装置
US11740333B2 (en) 2019-12-04 2023-08-29 Waymo Llc Pulse energy plan for light detection and ranging (lidar) devices based on areas of interest and thermal budgets
JP2021103149A (ja) * 2019-12-25 2021-07-15 株式会社デンソー 推定装置、推定方法、推定プログラム
JP2021103148A (ja) * 2019-12-25 2021-07-15 株式会社デンソー 推定装置、推定方法、推定プログラム
JP7318521B2 (ja) 2019-12-25 2023-08-01 株式会社デンソー 推定装置、推定方法、推定プログラム
JP7318522B2 (ja) 2019-12-25 2023-08-01 株式会社デンソー 推定装置、推定方法、推定プログラム

Also Published As

Publication number Publication date
JPWO2017060965A1 (ja) 2018-06-21
CN115685149A (zh) 2023-02-03
US20180254607A1 (en) 2018-09-06
EP3361281A4 (en) 2019-05-01
EP3361281A1 (en) 2018-08-15
US10965099B2 (en) 2021-03-30
CN108351402A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2017060965A1 (ja) 光制御装置、制御方法、プログラム及び記憶媒体
JP2021182009A (ja) 光制御装置、制御方法、プログラム及び記憶媒体
WO2017141414A1 (ja) 地物データ構造、制御装置、記憶装置、制御方法、プログラム及び記憶媒体
WO2019082700A1 (ja) 制御装置、制御方法、プログラム及び記憶媒体
US10684121B2 (en) Distance-measuring apparatus which uses different calculations depending on whether the object is dynamically changing
CN108474854B (zh) 信息处理装置、信息处理方法和程序
JP2024105703A (ja) 検出装置、制御方法及びプログラム
WO2017138155A1 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
JP2023101818A (ja) 制御装置、検知装置、制御方法、プログラム及び記憶媒体
US11448756B2 (en) Application specific integrated circuits for LIDAR sensor and multi-type sensor systems
US11016290B2 (en) Light control device, light control method and program
JP2024101053A (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
JP7324925B2 (ja) 光制御装置、制御方法、プログラム及び記憶媒体
JP2019100855A (ja) 制御装置、検知装置、制御方法、プログラム及び記憶媒体
WO2019107550A1 (ja) 制御装置、検知装置、制御方法、プログラム及び記憶媒体
JP2019100856A (ja) 制御装置、検知装置、制御方法、プログラム及び記憶媒体
WO2017037834A1 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
JP2016057176A (ja) レーザ測距装置
JP7038694B2 (ja) 車載機、サーバ装置、及び制御方法
JP2019100854A (ja) 制御装置、検知装置、制御方法、プログラム及び記憶媒体
JPWO2019177088A1 (ja) センサ制御装置
JP2019078688A (ja) 地物データ構造、記憶装置、制御装置、制御方法、プログラム及び記憶媒体
WO2023149335A1 (ja) 測距装置及び測距方法
JP2021183981A (ja) 光制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544095

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15759823

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE