WO2017057964A1 - 비수성 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

비수성 전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2017057964A1
WO2017057964A1 PCT/KR2016/011001 KR2016011001W WO2017057964A1 WO 2017057964 A1 WO2017057964 A1 WO 2017057964A1 KR 2016011001 W KR2016011001 W KR 2016011001W WO 2017057964 A1 WO2017057964 A1 WO 2017057964A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
carbonate
aqueous electrolyte
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2016/011001
Other languages
English (en)
French (fr)
Inventor
김광연
임영민
이철행
김민정
김하은
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160125914A external-priority patent/KR102035247B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2017057964A1 publication Critical patent/WO2017057964A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous organic solvent containing a non-aqueous organic solvent, lithium bis (fluorosulfonyl) imide (LiFSI) and a terphenyl compound, and a lithium secondary battery comprising the same.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • Lithium metal oxide is used as a positive electrode active material of a lithium secondary battery, and lithium metal, a lithium alloy, crystalline or amorphous carbon or a carbon composite material is used as a negative electrode active material.
  • the active material is applied to a current collector with a suitable thickness and length, or the active material itself is coated in a film shape to be wound or laminated with a separator, which is an insulator, to form an electrode group, and then placed in a can or a similar container, and then injected with an electrolyte solution.
  • a secondary battery is manufactured.
  • lithium secondary battery In such a lithium secondary battery, charging and discharging progress while repeating a process of intercalating and deintercalating lithium ions from a lithium metal oxide of a positive electrode to a graphite electrode of a negative electrode.
  • lithium is highly reactive and reacts with the carbon electrode to generate Li 2 CO 3 , LiO, LiOH and the like to form a film on the surface of the negative electrode.
  • a film is called a solid electrolyte interface (SEI) film, and the SEI film formed at the beginning of charging prevents a reaction between lithium ions and a carbon anode or other material during charge and discharge. It also acts as an ion tunnel, allowing only lithium ions to pass through.
  • the ion tunnel serves to prevent organic solvents of a large molecular weight electrolyte that solvate lithium ions and move together to co-intercalate the carbon anode to decay the structure of the carbon anode. do.
  • a solid SEI film must be formed on the negative electrode of the lithium secondary battery. Once formed, the SEI membrane prevents the reaction between lithium ions and the negative electrode or other materials during repeated charge / discharge cycles, and serves as an ion tunnel that passes only lithium ions between the electrolyte and the negative electrode. Will be performed.
  • non-aqueous organic solvents have been used in the electrolyte solution.
  • propylene carbonate is mainly used as a non-aqueous organic solvent, but this has a problem of causing an irreversible decomposition reaction with graphite materials.
  • two- and three-component non-aqueous organic solvents including ethylene carbonate (EC) as a base have been used.
  • ethylene carbonate has a high melting point, which limits the use temperature, and has a problem that can lead to a significant decrease in battery performance at low temperatures.
  • the problem to be solved of the present invention is not only to improve the low temperature and room temperature output characteristics, but also to improve the room temperature and high temperature cycle characteristics, and the capacity characteristics after high temperature storage, non-aqueous electrolyte that can exhibit an overcharge short circuit effect, And to provide a lithium secondary battery comprising the same.
  • the present invention provides a non-aqueous electrolyte, including a non-aqueous organic solvent, lithium bis (fluorosulfonyl) imide (LiFSI) and terphenyl compound .
  • LiFSI lithium bis (fluorosulfonyl) imide
  • the present invention is a positive electrode comprising a positive electrode active material; A negative electrode including a negative electrode active material; A separator interposed between the positive electrode and the negative electrode; And a non-aqueous electrolyte according to the present invention, wherein the cathode active material is a manganese spinel-based active material, a lithium metal oxide, or a mixture thereof.
  • the non-aqueous electrolyte of the present invention forms a solid SEI film at the negative electrode during initial charging of the lithium secondary battery including the same, thereby improving the low temperature and room temperature output characteristics, as well as the high temperature and room temperature cycle characteristics, and the capacity after high temperature storage. Can improve.
  • a film capable of protecting the positive electrode is formed at around 4.45 V to exhibit an overcharge short circuit effect in a low SOC region.
  • Example 1 is a graph showing the results of overcharge performance evaluation of the lithium secondary batteries prepared in Example 1 and Comparative Example 5, respectively.
  • Figure 2 is a graph showing the results of the overcharge performance of the lithium secondary battery prepared in Example 8 and Comparative Example 10, respectively.
  • the nonaqueous electrolyte of the present invention includes a nonaqueous organic solvent, lithium bis (fluorosulfonyl) imide (LiFSI), and a terphenyl compound.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • the non-aqueous electrolyte includes lithium bisfluorosulfonylimide in the non-aqueous organic solvent, by forming a solid SEI film at the cathode during initial charging, the low temperature and room temperature output characteristics are improved, as well as during high temperature cycle operation of 45 ° C. or more. It is possible to simultaneously improve the capacity characteristics of the lithium secondary battery by inhibiting decomposition of the surface of the positive electrode and preventing oxidation of the electrolyte.
  • the non-aqueous electrolyte solution contains a terphenyl compound
  • the terphenyl compound remains in the electrolyte solution, and during overcharging, oxidatively decomposes at about 4.45 V to form a film protecting the anode, thereby overcharging a short circuit in a low SOC region.
  • the effect and the improvement effect of a normal temperature cycling characteristic can be exhibited.
  • the terphenyl compound is specifically selected from the group consisting of ortho-terphenyl, meta-terphenyl, and para-terphenyl It may be one or more, and more specifically ortho-terphenyl.
  • the content of the terphenyl compound may be 0.5 to 10% by weight, specifically 1 to 7% by weight, and more specifically 3 to 5% by weight, based on the total weight of the nonaqueous electrolyte.
  • the content of the terphenyl compound is 0.5% by weight or more, an appropriate effect may be expected due to the addition of the terphenyl compound, and when the content of the terphenyl compound is 10% by weight or less, formation of the anode / membrane film at about 4.45 V It is possible to improve the overcharge short-circuit effect and room temperature cycle characteristics in the low SOC region due to this, while preventing problems such as increasing the irreversible capacity of the battery or increasing the resistance of the negative electrode.
  • non-aqueous organic solvent decomposition may be minimized by an oxidation reaction or the like during the charging and discharging process of the battery, and may be used without limitation as long as the non-aqueous organic solvent may exhibit desired properties with an additive, such as a nitrile solvent, a cyclic carbonate, Linear carbonates, esters, ethers or ketones. These may be used alone, or two or more thereof may be used in combination.
  • an additive such as a nitrile solvent, a cyclic carbonate, Linear carbonates, esters, ethers or ketones.
  • the cyclic carbonate may be any one selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • Mixtures of two or more kinds include linear carbonates, such as dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and ethyl propyl carbonate.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • EMC ethyl methyl carbonate
  • MPC methyl propyl carbonate
  • EPC ethyl propyl carbonate
  • the nitrile solvents include acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile and 4-fluorobenzonitrile It may be one or more selected from the group consisting of, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, 4-fluorophenylacetonitrile.
  • the ester may be ethyl propionate (EP), methyl propionate (MP), and mixtures thereof.
  • the non-aqueous electrolyte according to an example of the present invention may include propylene carbonate (PC) and ethylene carbonate (EC) as the non-aqueous organic solvent.
  • PC propylene carbonate
  • EC ethylene carbonate
  • the ethylene carbonate (EC) has been mainly used as a non-aqueous organic solvent used for non-aqueous electrolyte in lithium secondary batteries due to its excellent affinity with carbon materials.
  • EC ethylene carbonate
  • CO 2 gas is generated due to EC decomposition, which may adversely affect the performance of the secondary battery, and low temperature characteristics are poor due to high melting point characteristics and low conductivity. As a result, there is a problem that the high output characteristics are low.
  • the non-aqueous electrolyte containing propylene carbonate has a characteristic of having high output characteristics due to excellent low temperature characteristics and high conductivity.
  • propylene carbonate has a problem in that its use with graphite is limited because it causes an irreversible decomposition reaction with the graphite material.
  • a capacity decrease of the lithium secondary battery occurs due to electrode exfoliation due to propylene carbonate during high temperature cycles depending on the electrode thickness.
  • propylene carbonate when propylene carbonate is used together with a lithium salt such as LiPF 6 as a non-aqueous organic solvent, propylene carbonate is a process of forming an SEI film in a lithium secondary battery using a carbon electrode, and lithium ions solvated by propylene carbonate. Enormous capacity of irreversible reactions can occur in the intercalation between these carbon layers. This may cause a problem that the performance of the battery, such as cycle characteristics is degraded.
  • a lithium salt such as LiPF 6 as a non-aqueous organic solvent
  • the conductivity characteristics of the non-aqueous electrolyte solution may be improved to improve the output characteristics of the lithium secondary battery and to improve the low temperature characteristics. It is possible to provide a non-aqueous electrolyte having excellent electrochemical affinity with the carbon layer.
  • the non-aqueous electrolyte may include the propylene carbonate and the ethylene carbonate (EC), such as 1: 0.1 to 1: 2. It may be included in a weight ratio, in particular a weight ratio of 1: 0.3 to 1: 1, more specifically 1: 0.4 to 1: 0.9 weight ratio.
  • EC ethylene carbonate
  • the non-aqueous organic solvent includes the propylene carbonate (PC) and ethylene carbonate (EC) in the mixing ratio, it solves the problems that occur when using propylene carbonate (PC) and ethylene carbonate (EC), respectively, Taking advantage of the solvent, synergistic effects due to the mixing of the non-aqueous organic solvent can be expressed.
  • the mixing ratio of the propylene carbonate and the ethylene carbonate (EC) solvent as the non-aqueous organic solvent may have a significant influence on improving both low temperature and room temperature output and capacity characteristics after high temperature storage.
  • the non-aqueous electrolyte solution of the present invention can be solved by combining the above problems when using a lithium salt such as propylene carbonate and LiPF 6 together using lithium bisfluorosulfonyl imide.
  • the lithium bisfluorosulfonylimide is added to the non-aqueous electrolyte as a lithium salt to form a solid and stable SEI film on the cathode, thereby improving low temperature output characteristics, and of the surface of the anode which may occur during high temperature cycle operation. Decomposition can be suppressed and oxidation reaction of electrolyte solution can be prevented.
  • the propylene carbonate may include 5 parts by weight to 60 parts by weight, specifically 10 parts by weight to 40 parts by weight based on 100 parts by weight of the total non-aqueous organic solvent.
  • the content of the propylene carbonate is less than 5 parts by weight, a swelling phenomenon may occur in which a gas is continuously generated due to decomposition of the surface of the positive electrode during high temperature cycles, and when the content of the propylene carbonate exceeds 60 parts by weight, the initial rechargeable battery negative electrode It is difficult to form a solid SEI film at, and high temperature properties may be degraded.
  • the optimum effect can be achieved not only in the low temperature and room temperature output characteristics of the lithium secondary battery of the present invention, but also in the capacity characteristics after high temperature storage. have.
  • the non-aqueous organic solvent may further include a non-aqueous organic solvent other than propylene carbonate (PC) and ethylene carbonate (EC), the decomposition by the oxidation reaction, etc. in the charge and discharge of the battery can be minimized, with an additive There is no limit as long as it can exhibit the desired characteristics.
  • a non-aqueous organic solvent other than propylene carbonate (PC) and ethylene carbonate (EC) the decomposition by the oxidation reaction, etc. in the charge and discharge of the battery can be minimized, with an additive
  • PC propylene carbonate
  • EC ethylene carbonate
  • non-aqueous organic solvent which may be further included in the non-aqueous electrolyte, for example, ethyl propionate (EP), methyl propionate (MP), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate ( DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and ethyl propyl carbonate (EPC), any one selected from the group consisting of, or a mixture of two or more thereof.
  • EP ethyl propionate
  • MP methyl propionate
  • BC butylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DEC dipropyl carbonate
  • EMC ethyl methyl carbonate
  • MPC methyl propyl carbonate
  • EPC ethyl propyl carbonate
  • the lithium bisfluorosulfonyl imide may have a concentration in the non-aqueous electrolyte solution of 0.01 mol / L to 2 mol / L.
  • the non-aqueous electrolyte according to an example of the present invention comprises propylene carbonate (PC) and ethylene carbonate (EC) as the non-aqueous organic solvent
  • the concentration of lithium bisfluorosulfonylimide in the non-aqueous electrolyte 0.1 mol / L to 2 mol / L, and more specifically 0.5 mol / L to 1.5 mol / L.
  • the concentration of the lithium bisfluorosulfonylimide is less than 0.1 mol / L, the effect of improving the low temperature output and the high temperature cycle characteristics of the battery may be insignificant, and the concentration of the lithium bisfluorosulfonylimide is 2
  • the mol / L is exceeded, side reactions in the electrolyte may be excessively generated during charging and discharging of the battery, and a swelling phenomenon may occur, and corrosion of the positive electrode or the negative electrode current collector made of metal in the electrolyte may occur.
  • the non-aqueous electrolyte of the present invention may further include lithium salts other than the lithium bisfluorosulfonylimide.
  • the lithium salt may be used a lithium salt commonly used in the art, for example LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 And LiC 4 BO 8 It may be any one selected from the group consisting of or a mixture of two or more thereof.
  • the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide may be 1: 0.01 to 1: 9 in a molar ratio.
  • the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is The molar ratio may be 1: 1 to 1: 9.
  • the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is out of the range of the molar ratio, side reactions in the electrolyte may be excessively generated during charging and discharging of the battery, and a swelling phenomenon may occur.
  • the non-aqueous electrolyte according to an example of the present invention contains propylene carbonate (PC) and ethylene carbonate (EC) as the non-aqueous organic solvent
  • the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide May be from 1: 6 to 1: 9 in molar ratio.
  • the mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is 1: 6 or more in a molar ratio
  • a process of forming an SEI film in a lithium ion battery, and lithium ions solvated by propylene carbonate and ethylene carbonate It can prevent the irreversible reaction of enormous capacity in the process of being inserted between the negative electrodes, suppress the peeling of the negative electrode surface layer (for example, carbon surface layer) and decomposition of the electrolyte solution, thereby improving the low-temperature output of the secondary battery, high temperature storage After that, the effect of improving cycle characteristics and capacity characteristics can be exerted.
  • the content of the terphenyl compound may be adjusted according to the amount of lithium bisfluoro sulfonyl imide added, and the lithium bisfluoro sulfonyl imide and terphenyl compound may be used in a weight ratio of 1: 0.01 to 1:10. have.
  • the lithium bisfluoro sulfonyl imide and terphenyl compound is 1 It may be used in a weight ratio of 1: 0.01 to 1: 1, specifically, may be used in a weight ratio of 1: 0.02 to 1: 0.95, and more specifically, may be used in a weight ratio of 1: 0.04 to 1: 0.91.
  • the lithium bisfluoro sulfonyl imide and the terphenyl compound are used in a weight ratio of 1: 0.01 to 1: 1, at room temperature of a lithium secondary battery that may be generated by the addition of the lithium bisfluoro sulfonyl imide.
  • the terphenyl compound can appropriately suppress side reactions in the electrolytic solution during battery charge / discharge.
  • the present invention is a positive electrode comprising a positive electrode active material; A negative electrode including a negative electrode active material; A separator interposed between the positive electrode and the negative electrode; And the non-aqueous electrolyte solution, wherein the cathode active material includes a manganese spinel-based active material, a lithium metal oxide, or a mixture thereof.
  • the lithium metal oxide may be selected from the group consisting of lithium-manganese oxide, lithium-nickel-manganese oxide, lithium-manganese-cobalt oxide, and lithium-nickel-manganese-cobalt oxide.
  • the lithium metal oxide may be a lithium-nickel-manganese-cobalt-based oxide, and specifically, the lithium-nickel-manganese-cobalt-based oxide may include an oxide represented by Formula 1 below. Can be.
  • the lithium-nickel-manganese-cobalt-based oxide When used for the positive electrode as the positive electrode active material, it may have a synergistic effect in combination with lithium bisfluoro sulfonyl imide included in the non-aqueous electrolyte.
  • the lithium-nickel-manganese-cobalt-based oxide positive electrode active material Li + 1 ions and Ni + 2 ions in the layered structure of the cathode active material are changed in the charge and discharge process as the content of Ni in the transition metal increases. cation mixing occurs and the structure collapses, and the positive electrode active material causes side reactions with the electrolyte, or dissolution of transition metals. This occurs because Li +1 ions and Ni +2 ions have similar sizes. As a result, the performance of the battery is easily degraded due to electrolyte depletion and structural collapse of the positive electrode active material inside the secondary battery.
  • the lithium secondary battery according to an embodiment of the present invention uses a non-aqueous electrolyte solution containing LiFSI together with the positive electrode active material of Formula 1 to form a layer (La) with a component derived from LiFSI on the surface of the positive electrode Li + 1 While suppressing cation mixing of the valent ions and the Ni +2 ions, a sufficient amount of nickel transition metal for securing the capacity of the positive electrode active material can be obtained. Since the lithium secondary battery according to an example of the present invention includes a non-aqueous electrolyte solution containing LiFSI together with the oxide represented by Chemical Formula 1, side reaction between the electrolyte solution and the positive electrode, metal dissolution phenomenon, and the like can be effectively suppressed. .
  • the excess Ni is included in the positive electrode active material, so that Li + 1 may be formed by a layer formed of a component derived from LiFSI on the electrode surface.
  • the ions and Ni +2 may not inhibit the cation mixing of ions.
  • the nickel transition metal having a d-orbit should have an octahedral structure in coordination bond in an environment such as a high temperature according to the variation in the oxidation number of Ni, but the energy level is supplied by external energy supply. The order of is reversed, or the oxidation number is varied (disproportionation reaction) to form a distorted octahedron. As a result, the crystal structure of the positive electrode active material including the nickel transition metal is deformed to increase the probability of eluting nickel metal in the positive electrode active material.
  • the present inventors have confirmed that while producing a high output when the positive electrode active material including the oxide according to the formula (1) range and the LiFSI salt combination, it shows excellent efficiency in high temperature stability and capacity characteristics.
  • the electrolyte When the positive electrode active material including the oxide of Formula 1 and LiFSI lithium salt combination has a high output and stability, the electrolyte may be decomposed in a high power environment, may cause the collapse of the negative electrode. In the case where the additives are included in the nonaqueous electrolyte, the secondary battery may be stable at high temperatures.
  • the concentration of the lithium bisfluorosulfonylimide in the non-aqueous electrolyte is 0.01 mol / L to 2 mol / L. It may be, specifically, may be 0.01 mol / L to 1 mol / L.
  • the concentration of the lithium bisfluorosulfonylimide is less than 0.1 mol / L, the effect of improving the low temperature output and the high temperature cycle characteristics of the lithium secondary battery is insignificant, and the concentration of the lithium bisfluorosulfonylimide is When the amount exceeds 2 mol / L, side reactions in the electrolyte may be excessively generated during charging and discharging of the battery, and a swelling phenomenon may occur, and corrosion of the positive electrode or the negative electrode current collector made of metal in the electrolyte may occur.
  • the non-aqueous electrolyte of the present invention may further include lithium salts other than the lithium bisfluorosulfonylimide.
  • the lithium salt may be used a lithium salt commonly used in the art, for example LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 And LiC 4 BO 8 It may be any one selected from the group consisting of or a mixture of two or more thereof.
  • a mixing ratio of the lithium salt and lithium bisfluorosulfonylimide is 1: 0.01 to 1: 1 day as molar ratio Can be.
  • the mixing ratio of the lithium salt and lithium bisfluoro sulfonyl imide is greater than or equal to the molar ratio, side reactions in the electrolyte may occur excessively during charging and discharging of the battery, and a swelling phenomenon may occur. In this case, output improvement of the generated secondary battery may be reduced.
  • the mixing ratio of the lithium salt and lithium bisfluoro sulfonyl imide is less than 1: 0.01
  • a process of forming an SEI film in a lithium ion battery, and lithium ions solvated by a carbonate solvent In the process of being inserted between the negative electrode, a large number of irreversible reactions may occur, and by the peeling of the negative electrode surface layer (for example, the carbon surface layer) and the decomposition of the electrolyte, the low temperature output of the secondary battery may be improved, the high temperature storage may be performed, The effect of improving the dose characteristics may be insignificant.
  • the mixing ratio of the lithium salt and the lithium bisfluoro sulfonyl imide is a molar ratio
  • the ratio is greater than 1: 1
  • lithium bisfluoro sulfonyl imide of excessive capacity is included in the electrolyte to prevent corrosion of the electrode current collector during charging and discharging. This may affect the stability of the secondary battery.
  • the lithium Bisfluoro sulfonyl imide and terphenyl compound may be used in a weight ratio of 1: 0.02 to 1:10, specifically, may be used in a weight ratio of 1: 0.03 to 1: 9, and more specifically 1: 0.05 to 1 Can be used in a weight ratio of 7.5.
  • the lithium bisfluoro sulfonyl imide and the terphenyl compound are used in a weight ratio of 1: 0.02 to 1:10, at room temperature of a lithium secondary battery that may be generated by the addition of the lithium bisfluoro sulfonyl imide.
  • the terphenyl compound can appropriately suppress side reactions in the electrolytic solution during battery charge / discharge.
  • the non-aqueous solvent may minimize decomposition by an oxidation reaction or the like during charging and discharging of the battery, and with an additive.
  • Anything capable of exhibiting the desired properties can be used without limitation, for example, nitrile solvents, cyclic carbonates, linear carbonates, esters, ethers or ketones and the like can be used. These may be used alone, or two or more thereof may be used in combination.
  • the lithium secondary battery according to an example of the present invention includes an oxide represented by Formula 1 as a cathode active material
  • acetonitrile may be used as the non-aqueous solvent
  • the lithium-nickel-manganese-cobalt oxide When the phosphorus positive electrode active material is used for the positive electrode, by using the acetonitrile-based solvent, it is possible to effectively prevent side effects due to deterioration in stability of the high output battery due to the combination with lithium bisfluoro sulfonyl imide.
  • a carbon-based negative electrode active material such as crystalline carbon, amorphous carbon, or a carbon composite may be used alone or in combination of two or more thereof.
  • the crystalline carbon is graphite such as natural graphite and artificial graphite. (graphite) carbon.
  • the positive electrode or the negative electrode for example, a mixture of a positive electrode or negative electrode active material, a conductive material and a binder on a positive electrode or negative electrode collector with a predetermined solvent to prepare a slurry, and then The slurry may be prepared by applying it on a current collector and then drying it.
  • the positive electrode current collector is generally made of a thickness of 3 ⁇ m to 500 ⁇ m.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like can be used.
  • the positive electrode current collector may increase the adhesion of the positive electrode active material by forming fine irregularities on its surface, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode current collector is generally made to a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material used in the positive electrode or negative electrode slurry is typically added in an amount of 1% to 20% by weight based on the total weight of the mixture including the positive electrode or the negative electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the positive electrode or the negative electrode active material and the conductive material to the current collector, and is generally added in an amount of 1% to 20% by weight based on the total weight of the mixture including the positive electrode or the negative electrode active material.
  • binders include polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, and polymethylmethacrylate.
  • Polyvinyl alcohol Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM ), Various types of binder polymers such as sulfonated EPDM, styrene butyrene rubber (SBR), fluorine rubber, and various copolymers may be used.
  • CMC carboxymethyl cellulose
  • SBR styrene butyrene rubber
  • fluorine rubber various copolymers
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone or water and the like, and are removed in a drying process.
  • the separator may be a conventional porous polymer film conventionally used as a separator, for example, a polyolefin type such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
  • a polyolefin type such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
  • the porous polymer film made of a polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. no.
  • the battery case used in the present invention may be adopted that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, cylindrical, square, pouch (coin) or coin (can) using a can ( coin).
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium and large devices include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, power storage systems, and the like.
  • PC Propylene carbonate
  • EC Ethylene carbonate
  • EMC Ethyl methyl carbonate
  • LiPF 6 LiPF 6 based on the total amount of non-aqueous electrolyte as a lithium salt and a non-aqueous organic solvent having a composition of 3: 3: 4 (volume ratio).
  • 0.1 mol / L was added, and 0.9 mol / L of lithium bisfluorosulfonylimide and 5% by weight of ortho-terphenyl were added to prepare a non-aqueous electrolyte solution.
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive material at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of about 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
  • Cu copper
  • the positive electrode and the negative electrode prepared as described above were manufactured with a polymer battery by a conventional method with a separator composed of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), followed by pouring the prepared non-aqueous electrolyte solution into a lithium secondary battery. The manufacture of the battery was completed.
  • LiPF 6 A non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1, except that the amounts were changed to 0.14 mol / L and 0.86 mol / L of lithium bisfluorosulfonylimide (about 1: 6 molar ratio). Was prepared.
  • LiPF 6 A non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1, except that the amounts were changed to 0.17 mol / L and 0.83 mol / L of lithium bisfluorosulfonylimide (about 1: 5 molar ratio). Was prepared.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1, except that 3% by weight of ortho-terphenyl was used.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 2, except that 3% by weight of ortho-terphenyl was used.
  • a nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 2, except that 10% by weight of ortho-terphenyl was used.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 2, except that 0.5% by weight of ortho-terphenyl was used.
  • Example 2 In the same manner as in Example 1, except that ethylene carbonate (EC) was not used and a non-aqueous organic solvent having a composition of propylene carbonate (PC): ethylmethyl carbonate (DMC) 3: 7 (volume ratio) was used. An aqueous electrolyte solution and a lithium secondary battery were prepared.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC ethylmethyl carbonate
  • PC propylene carbonate
  • DMC ethyl methyl carbonate
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1, except that LiFSI and ortho-terphenyl were not used.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1 except that LiFSI was not used.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1, except that ortho-terphenyl was not used.
  • the lithium secondary batteries of Examples 1 to 7, and Comparative Examples 1 to 5 were charged at 1 C up to 4.2 V / 38 mA under constant current / constant voltage (CC / CV) conditions at room temperature, and then 2.5 V under constant current (CC) conditions. It discharged at 2 C until the discharge capacity was measured, and it was set as the capacity of 0 weeks. Then, the lithium secondary batteries of Examples 1 to 7, and Comparative Examples 1 to 5 were stored at 60 ° C. for 18 weeks, and then charged at 1 C to 4.2 V / 38 mA under constant current / constant voltage (CC / CV) conditions at room temperature. Then, the battery was discharged at 2 C up to 2.5 V under constant current (CC) conditions, and the discharge capacity thereof was measured to be 18 weeks later.
  • CC constant current / constant voltage
  • the capacity after high temperature storage was calculated as (capacity after 18 weeks / capacity at week 0) ⁇ 100 and is shown in Table 1 as a% value.
  • the low-temperature output is calculated from the voltage difference generated by discharging the lithium secondary batteries of Examples 1 to 7, and Comparative Examples 1 to 5 from SOC (charge depth) of 50 to 5 C at room temperature for 10 seconds, and outputs the output to the output of week 0. It was. Then, after storing the lithium secondary batteries of Examples 1 to 7, and Comparative Examples 1 to 5 for 18 weeks at 60 °C, low-temperature output with a voltage difference generated by discharging at 50C for 10 seconds at 50% SOC (depth of charge) at room temperature The output was calculated after 18 weeks.
  • the output after high temperature storage was calculated as (output after 18 weeks / output at week 0) ⁇ 100, and is shown in Table 1 as% values.
  • the thicknesses of the lithium secondary batteries of Examples 1 to 7, and Comparative Examples 1 to 5 were measured, and the thickness after storage at 60 ° C. for 18 weeks was measured, and the rate of increase in battery thickness was obtained (thickness of 100 weeks / thickness 0 at week # 100). It is shown in Table 1 below as a% value calculated as -100.
  • the lithium secondary batteries of Examples 1 to 7, and Comparative Examples 1 to 5 were charged at 1 ° C. up to 4.2 V / 38 mA at 25 ° C. under constant current / constant voltage (CC / CV) conditions, and then 2.5 at constant current (CC) conditions. It discharged at 2 C to V, and the discharge capacity was measured. This was repeated 1 to 1000 cycles, and the value calculated as (capacity after 1000 cycles / capacity after cycle 1) ⁇ 100 is shown in Table 1 below as a normal temperature life characteristic.
  • the lithium secondary batteries of Examples 1 to 7, and Comparative Examples 1 to 5 were charged at 1 C up to 4.2 V / 38 mA under constant current / constant voltage (CC / CV) conditions at 45 ° C., followed by 2.5 under constant current (CC) conditions. It discharged at 2 C to V, and the discharge capacity was measured. This was repeated 1 to 1000 cycles, and the value calculated as (capacity after 1000 cycles / capacity after cycle 1) ⁇ 100 is shown in Table 1 below as a high temperature life characteristic.
  • the additive represents ortho-terphenyl.
  • the lithium secondary batteries of Examples 1 to 7 together with a non-aqueous organic solvent containing propylene carbonate (PC) and ethylene carbonate (EC), lithium bisfluorosulfonylimide And a terphenyl compound Comparative Example 1, which does not include ethylene carbonate (EC) as a non-aqueous organic solvent
  • Comparative Example 2 which does not include propylene carbonate (PC) as a non-aqueous organic solvent
  • lithium bisfluorosul Compared with the lithium secondary battery of Comparative Example 3, which does not contain a ponylimide and terphenyl compound, and Comparative Example 4, which does not contain lithium bisfluorosulfonylimide, exhibits high capacity and output even after high temperature storage, and has a battery thickness.
  • the increase rate also shows a small value, showing excellent high temperature storage characteristics, and also maintaining high capacity even after 1000 cycles at room temperature and high temperature. The property was found to represent.
  • the lithium secondary battery of Example 2 having a LiPF 6 : LiFSI ratio of 1: 6 was also compared with the lithium secondary battery of Example 3, except that the shelf life characteristic value was slightly lower than that of the lithium secondary battery of Example 3, In general, it was confirmed that exhibited excellent high temperature storage characteristics and life characteristics.
  • the lithium of Examples 1 and 4 when comparing the lithium secondary battery of Examples 1 and 4 and Comparative Example 5, which differ only in the addition of the terphenyl-based compound, the lithium of Examples 1 and 4 As the secondary battery was added with ortho-terphenyl, the secondary battery showed more excellent high temperature storage characteristics and lifetime characteristics, and the rate of increase in battery thickness was also significantly lower.
  • the lithium secondary batteries of Example 1 and Comparative Example 5 were overcharged to 8.3 V under constant current / constant voltage (CC / CV) conditions at 1 C (775 mAh) / 12 V from a charged state at 25 ° C., and the temperature of the battery at that time And the voltage change is measured and shown in FIG.
  • CC / CV constant current / constant voltage
  • the lithium secondary battery of Example 1 which includes a non-aqueous electrolyte solution containing an ortho-terphenyl additive, is overcharged compared to the lithium secondary battery of Comparative Example 5, which does not include the ortho-terphenyl additive. It was confirmed that the SOC at the time of short circuit was lower and the temperature of the battery was low.
  • Ethylene carbonate (EC): Non-aqueous organic solvent and lithium salt having a composition of ethyl methyl carbonate (EMC) 3: 7 (volume ratio) LiPF 6 based on the total amount of the non-aqueous electrolyte solution. 0.9 mol / L was added, and 0.1 mol / L of lithium bisfluorosulfonylimide and 3% by weight of ortho-terphenyl were added to prepare a non-aqueous electrolyte solution.
  • EMC ethyl methyl carbonate
  • Li (Ni 0.6 Co 0.2 Mn 0.2 ) O 2 as a positive electrode active material
  • carbon black as a conductive material
  • PVdF polyvinylidene fluoride
  • NMP 2-pyrrolidone
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive material at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a thin film of copper (Cu), which is a negative electrode current collector having a thickness of 10 ⁇ m, and dried to prepare a negative electrode, followed by a roll press to prepare a negative electrode.
  • Cu copper
  • the positive electrode and the negative electrode prepared as described above were manufactured with a polymer battery by a conventional method with a separator composed of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), followed by pouring the prepared non-aqueous electrolyte solution into a lithium secondary battery. The manufacture of the battery was completed.
  • LiPF 6 A non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 8 except that the amounts thereof were changed to 0.7 mol / L and 0.3 mol / L of lithium bisfluorosulfonylimide.
  • LiPF 6 A non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 8 except that the amount was changed to 0.5 mol / L and 0.5 mol / L of lithium bisfluorosulfonylimide.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 9, except that 5% by weight of ortho-terphenyl was used.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 9, except that 10% by weight of ortho-terphenyl was used.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 9, except that 1% by weight of ortho-terphenyl was used.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 9 except that Li (Ni 0.5 Co 0.3 Mn 0.2 ) O 2 was used as the cathode active material.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 9 except that Li (Ni 0.8 Co 0.1 Mn 0.1 ) O 2 was used as the cathode active material.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 9 except that LiCoO 2 was used as the cathode active material.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 9 except that Li (Ni 0.5 Co 0.3 Mn 0.2 ) O 2 was used as the cathode active material, and LiFSI and ortho-terphenyl were not used. It was.
  • a non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 9 except that LiFSI and ortho-terphenyl were not used.
  • LiPF 6 A non-aqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 8 except that the amount thereof was changed to 0.3 mol / L and 0.7 mol / L of lithium bisfluorosulfonylimide.
  • the secondary batteries prepared in Examples 8 to 13 and Comparative Examples 6 to 11 were charged at 1 C up to 4.2 V / 38 mA under constant current / constant voltage (CC / CV) conditions, and then up to 2.5 V under constant current (CC) conditions. It discharged in C and the discharge capacity was measured. Then, after storing the secondary batteries prepared in Examples 8 to 13 and Comparative Examples 6 to 11 for 16 weeks at 60 ° C., the secondary batteries were again subjected to 4.2 V / 38 mA under constant current / constant voltage (CC / CV) conditions at room temperature, respectively. After charging to 1 C until, and discharged at 2 C to 2.5 V under constant current (CC) conditions, the discharge capacity was measured. The results obtained by calculating the discharge capacity after 16 weeks as a percentage (discharge capacity after 16 weeks / initial discharge capacity ⁇ 100 (%)) based on the initial discharge capacity are shown in Table 2 below.
  • the secondary battery prepared in Examples 8 to 13 and Comparative Examples 6 to 11 was stored for 16 weeks at 60 ° C., and then the output was calculated using the voltage difference generated when charging and discharging at room temperature for 10 seconds at 5 C.
  • the results measured by calculating the output amount after 16 weeks as a percentage based on the initial output (16 weeks output (W) / initial output (W) x 100 (%)) are shown in Table 2 below. The test was performed at 50% SOC (state of charge).
  • NMC622 is Li (Ni 0.6 Co 0.2 Mn 0.2 ) O 2
  • NMC532 is Li (Ni 0.5 Co 0.3 Mn 0.2 ) O 2
  • NMC811 is Li (Ni 0.8 Co 0.1 Mn 0.1 ) O 2
  • the additive represents ortho-terphenyl.
  • the lithium secondary batteries of Examples 7 to 13 include a non-aqueous electrolyte containing lithium bisfluoro sulfonyl imide and ortho-terphenyl compound together, even after high temperature storage. It can be seen that it shows high capacity and output.
  • the lithium secondary batteries of Examples 8 to 11 include a non-aqueous electrolyte containing lithium bisfluoro sulfonyl imide and an ortho-terphenyl compound together, and thus a comparative example containing no ortho-terphenyl compound. It showed excellent high temperature storage characteristics compared to the lithium secondary batteries of 9 and 10.
  • Example 9 when Example 9 is compared with Comparative Examples 6 to 8, Example 9 including Li (Ni 0.6 Co 0.2 Mn 0.2 ) O 2 as the cathode active material is Li (Ni 0.5 Co 0.3 Mn 0.2 ) O as the cathode active material, respectively. 2 , Li (Ni 0.8 Co 0.1 Mn 0.1 ) O 2 , and LiCoO 2 and compared to Comparative Examples 6 to 8, including more excellent high temperature storage properties were shown.
  • lithium as the anode active material-nickel-manganese-case comprise a cobalt-based oxide, Li (Ni 0.6 Co 0.2 Mn 0.2 ) O 2, in case of LiPF 6 LiFSI
  • LiPF 6 LiFSI LiFSI
  • the lithium secondary batteries of Example 8 and Comparative Example 10 were overcharged to 8.3 V under constant current / constant voltage (CC / CV) conditions at 1 C (775 mAh) / 12 V from a charged state at 25 ° C., and the temperature of the battery at that time And the voltage change is measured and shown in FIG.
  • CC / CV constant current / constant voltage
  • the lithium secondary battery of Example 8 including a non-aqueous electrolyte solution containing an ortho-terphenyl additive is overcharged compared to the lithium secondary battery of Comparative Example 10 that does not include the ortho-terphenyl additive. It was confirmed that the SOC at the time of short circuit was lower and the temperature at the battery center was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 비수성 유기 용매, 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI) 및 터페닐 화합물을 포함하는 비수성 전해액, 및 이를 포함하는 리튬 이차전지에 관한 것이다. 본 발명의 비수성 전해액을 포함하는 본 발명의 리튬 이차전지는 우수한 저온 및 상온 출력 특성, 고온 및 상온 사이클 특성, 고온 저장 후 용량 특성 및 낮은 SOC 영역에서의 과충전 단락 특성을 발휘할 수 있다.

Description

비수성 전해액 및 이를 포함하는 리튬 이차전지
[관련출원과의 상호 인용]
본 출원은 2015년 09월 30일자 한국 특허 출원 제10-2015-0138037호 및 제10-2015-0138038호, 및 2016년 09월 29일자 한국 특허 출원 제10-2016-0125914호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 비수성 유기 용매, 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI) 및 터페닐 화합물을 포함하는 비수성 전해액, 및 이를 포함하는 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지는 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 금속 산화물이 사용되고, 음극 활물질로는 리튬 금속, 리튬 합금, 결정질 또는 비정질 탄소 또는 탄소 복합체가 사용되고 있다. 상기 활물질을 적당한 두께와 길이로 집전체에 도포하거나 또는 활물질 자체를 필름 형상으로 도포하여 절연체인 세퍼레이터와 함께 감거나 적층하여 전극군을 만든 다음, 캔 또는 이와 유사한 용기에 넣은 후, 전해액을 주입하여 이차전지를 제조한다.
이러한 리튬 이차전지는 양극의 리튬 금속 산화물로부터 리튬 이온이 음극의 흑연 전극으로 삽입(intercadlation)되고 탈리(deintercalation)되는 과정을 반복하면서 충방전이 진행된다. 이때 리튬은 반응성이 강하므로 탄소 전극과 반응하여 Li2CO3, LiO, LiOH 등을 생성시켜 음극의 표면에 피막을 형성한다. 이러한 피막을 고체 전해질(Solid Electrolyte Interface; SEI) 막이라고 하는데, 충전 초기에 형성된 SEI 막은 충방전 중 리튬 이온과 탄소 음극 또는 다른 물질과의 반응을 막아준다. 또한 이온 터널(Ion Tunnel)의 역할을 수행하여 리튬 이온만을 통과시킨다. 상기 이온 터널은 리튬 이온을 용매화(solvation)시켜 함께 이동하는 분자량이 큰 전해액의 유기 용매들이 탄소 음극에 함께 코인터컬레이션(co-intercalation)되어 탄소 음극의 구조를 붕괴시키는 것을 막아 주는 역할을 한다.
따라서, 리튬 이차전지의 고온 사이클 특성 및 저온 출력을 향상시키기 위해서는, 반드시 리튬 이차전지의 음극에 견고한 SEI 막을 형성하여야만 한다. SEI 막은 최초 충전시 일단 형성되고 나면 이후 전지 사용에 의한 충방전 반복시 리튬 이온과 음극 또는 다른 물질과의 반응을 막아주며, 전해액과 음극 사이에서 리튬 이온만을 통과시키는 이온 터널(Ion Tunnel)로서의 역할을 수행하게 된다.
한편, 전해액에는 다양한 비수성 유기 용매가 사용되어 왔다. 예를 들면, 비수성 유기 용매로서 프로필렌 카보네이트가 주로 사용되고 있으나, 이는 흑연 재료와 비가역적인 분해 반응을 일으킬 수 있는 문제점이 있었다. 이를 대체하기 위해 에틸렌 카보네이트(Ethylene Carbonate; EC)를 기본으로 포함하여 이/삼 성분계 비수성 유기 용매가 사용되어 왔다. 그러나, 에틸렌 카보네이트는 녹는점이 높아서 사용 온도가 제한되어 있고, 저온에 있어서 상당한 전지 성능 저하를 가져올 수 있는 문제가 있다.
본 발명의 해결하고자 하는 과제는 저온 및 상온 출력 특성을 개선할 수 있을 뿐 아니라, 상온 및 고온 사이클 특성, 및 고온 저장 후 용량 특성을 향상시킬 수 있고, 과충전 단락 효과를 발휘할 수 있는 비수성 전해액, 및 이를 포함하는 리튬 이차전지를 제공하는 것이다.
상기 해결하고자 하는 과제를 해결하기 위하여, 본 발명은 비수성 유기 용매, 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI) 및 터페닐 화합물을 포함하는, 비수성 전해액을 제공한다.
또한, 본 발명은 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 양극과 상기 음극 사이에 개재된 세퍼레이터; 및 상기 본 발명에 따른 비수성 전해액을 포함하고, 상기 양극 활물질이 망간 스피넬(spinel)계 활물질, 리튬 금속 산화물 또는 이들의 혼합물인, 리튬 이차전지를 제공한다.
본 발명의 비수성 전해액은 이를 포함하는 리튬 이차전지의 초기 충전시 음극에서 견고한 SEI 막을 형성시킴으로써, 저온 및 상온 출력 특성을 개선할 수 있을 뿐 아니라, 고온 및 상온 사이클 특성, 및 고온 저장 후 용량 특성을 향상시킬 수 있다. 또한, 본 발명의 비수성 전해액을 포함하는 리튬 이차전지의 경우, 4.45 V 부근에서 양극을 보호할 수 있는 피막을 형성하여 낮은 SOC 영역에서의 과충전 단락 효과를 발휘할 수 있다.
도 1은 실시예 1 및 비교예 5에서 각각 제조된 리튬 이차전지의 과충전 성능 평가 결과를 나타낸 그래프이다.
도 2는 실시예 8 및 비교예 10에서 각각 제조된 리튬 이차전지의 과충전 성능 평가 결과를 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 비수성 전해액은 비수성 유기 용매, 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI) 및 터페닐 화합물을 포함한다.
상기 비수성 전해액은 비수성 유기 용매 내에 리튬비스플루오로설포닐이미드를 포함하므로, 초기 충전시 음극에서 견고한 SEI 막을 형성시킴으로써 저온 및 상온 출력 특성은 개선함은 물론, 45℃ 이상의 고온 사이클 작동시 발생할 수 있는 양극 표면의 분해를 억제하고 전해액의 산화 반응을 방지하여 리튬 이차전지의 용량 특성을 동시에 향상시킬 수 있다.
또한, 상기 비수성 전해액은 터페닐 화합물을 포함하므로, 상기 터페닐 화합물이 전해액 내에서 잔류하다가 과충전시에는 대략 4.45 V 부근에서 산화 분해되어 양극을 보호하는 피막을 형성하여 낮은 SOC 영역에서의 과충전 단락 효과 및 상온 사이클 특성 향상 효과를 발휘할 수 있다.
본 발명의 일례에 있어서, 상기 터페닐 화합물은 구체적으로 오르소-터페닐(ortho-terphenyl), 메타-터페닐(meta-terphenyl), 및 파라-터페닐(para-terphenyl)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 더욱 구체적으로 오르소-터페닐일 수 있다.
상기 터페닐 화합물의 함량은 상기 비수 전해액 총 중량을 기준으로 0.5 내지 10 중량%일 수 있고, 구체적으로 1 내지 7 중량%일 수 있으며, 더욱 구체적으로 3 내지 5 중량%일 수 있다.
상기 터페닐 화합물의 함량이 0.5 중량% 이상일 경우, 터페닐 화합물의 첨가로 인한 적절한 효과를 기대할 수 있으며, 상기 터페닐 화합물의 함량이 10 중량% 이하일 경우, 4.45 V 부근에서의 양극/분리막 피막 형성으로 인한 낮은 SOC 영역에서의 과충전 단락 효과 및 상온 사이클 특성을 향상시킬 수 있으면서도 전지의 비가역 용량을 증가시거나 음극의 저항을 증가시키는 등의 문제를 방지할 수 있다.
상기 비수성 유기 용매로는, 전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한 없이 사용될 수 있고, 예컨대 니트릴계 용매, 환형 카보네이트, 선형 카보네이트, 에스테르, 에테르 또는 케톤 등일 수 있다. 이들은 단독으로 사용될 수 있고, 2종 이상이 조합하여 사용될 수 있다.
상기 유기 용매들 중 카보네이트계 유기 용매가 용이하게 이용될 수 있는데, 상기 환형 카보네이트로는 에틸렌 카보네이트(EC), 프로필렌카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있고, 선형 카보네이트로는 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있다.
상기 니트릴계 용매는 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 1종 이상인 것일 수 있다.
상기 에스테르는 에틸 프로피오네이트(Ethyl propionate; EP), 메틸프로피오네이트(Methyl propionate; MP), 및 이들의 혼합물일 수 있다.
본 발명의 일례에 따른 비수성 전해액은 상기 비수성 유기 용매로서 프로필렌 카보네이트(PC) 및 에틸렌 카보네이트(EC)를 포함하는 것일 수 있다.
상기 에틸렌 카보네이트(EC)는 탄소 재료와의 친화성이 우수한 특성으로 리튬 이차전지에 비수성 전해액에 사용되는 비수성 유기 용매로서 주로 사용되어 왔다. 그러나, EC를 너무 많이 사용하는 경우, EC 분해로 인해 CO2가스(gas)가 발생하므로 이차전지의 성능에 악영향을 줄 수 있을 뿐 아니라, 고융점 특성으로 인하여 저온 특성이 좋지 못하고, 전도도가 낮은 관계로 고출력 특성이 낮은 문제점이 있다.
이에 반해, 프로필렌 카보네이트를 포함하는 비수성 전해액은 우수한 저온 특성과 고전도도로 인한 고출력 특성을 갖는 특징이 있다. 그러나, 프로필렌 카보네이트는 흑연 재료와 비가역적인 분해 반응을 일으키는 관계로 흑연과의 사용이 제한되는 문제점이 있다. 또한, 전극 두께에 따라 고온 사이클 시에 프로필렌 카보네이트에 의한 전극 탈리(exforiation) 현상으로 리튬 이차전지의 용량 저하가 발생하는 문제가 있었다.
특히, 비수성 유기 용매로서 프로필렌 카보네이트를 LiPF6 등의 리튬염과 함께 사용할 경우, 프로필렌 카보네이트는 탄소 전극을 사용하는 리튬 이차전지에서 SEI 피막을 형성하는 과정, 및 프로필렌 카보네이트에 의하여 용매화된 리튬 이온이 탄소층 사이에 삽입되는 과정에서 막대한 용량의 비가역 반응이 발생할 수 있다. 이는 사이클 특성 등 전지의 성능이 저하되는 문제를 야기할 수 있다.
또한, 프로필렌 카보네이트에 의하여 용매화된 리튬 이온이 음극을 구성하는 탄소층에 삽입될 때, 탄소 표면층의 박리(exfoliation)가 진행될 수 있다. 이러한 박리는 탄소층 사이에서 용매가 분해될 때 발생하는 기체가 탄소층 사이에 큰 뒤틀림을 유발함으로써 발생될 수 있다. 이와 같은 표면층의 박리와 전해액의 분해는 계속적으로 진행될 수 있으며, 이로 인하여 프로필렌 카보네이트 전해액을 탄소계 음극재와 병용하는 경우 효과적인 SEI 막이 생성되지 않아 리튬 이온이 삽입되지 않을 수 있다.
따라서, 비수성 유기 용매로서 상기 에틸렌 카보네이트 및 상기 프로필렌 카보네이트의 양을 적정 조성이 되도록 혼용하여 사용할 경우, 비수성 전해액의 전도도 특성을 향상하여 리튬 이차전지의 출력 특성을 개선하고, 저온 특성을 개선할 수 있으며, 탄소층과의 전기 화학적 친화성도 우수한 비수성 전해액을 제공할 수 있다.
본 발명의 일례에 따른 비수성 전해액은, 에틸렌 카보네이트와 프로필렌 카보네이트의 문제점을 극복하고, 상기 장점을 최대한 살리도록 하기 위해, 상기 프로필렌 카보네이트 및 에틸렌 카보네이트(EC)를 예컨대 1:0.1 내지 1:2의 중량비, 구체적으로 1:0.3 내지 1:1의 중량비, 더욱 구체적으로 1:0.4 내지 1:0.9의 중량비로 포함할 수 있다.
상기 비수성 유기 용매가 상기 프로필렌 카보네이트(PC) 및 에틸렌 카보네이트(EC)를 상기 혼합비로 포함할 경우 프로필렌 카보네이트(PC) 및 에틸렌 카보네이트(EC) 각각을 사용할 때 발생하는 문제점을 해결하고, 이들 각각의 용매의 장점을 살려 비수성 유기 용매의 혼용에 의한 시너지 효과를 발현할 수 있다. 본 발명의 일례에 따르면, 비수성 유기 용매로서 상기 프로필렌 카보네이트와 에틸렌 카보네이트(EC) 용매의 혼합비는 저온 및 상온 출력, 및 고온 저장 후 용량 특성을 모두 향상시키는데 중요한 영향을 미칠 수 있다.
한편, 본 발명의 비수성 전해액은 상기 프로필렌 카보네이트와 LiPF6 등의 리튬염을 함께 사용할 경우의 전술한 바와 같은 문제점을 리튬비스플루오로설포닐이미드를 사용하여 이들을 조합함으로써 해결할 수 있다.
구체적으로, 상기 리튬비스플루오로설포닐이미드는 리튬염으로서 비수성 전해액에 첨가되어, 음극에 견고하고 안정한 SEI 막을 형성함으로써 저온 출력 특성을 개선시킴은 물론, 고온 사이클 작동시 발생할 수 있는 양극 표면의 분해를 억제하고 전해액의 산화 반응을 방지할 수 있다.
상기 프로필렌 카보네이트는 상기 전체 비수성 유기 용매 100 중량부를 기준으로 5 중량부 내지 60 중량부, 구체적으로는 10 중량부 내지 40 중량부 포함될 수 있다. 상기 프로필렌 카보네이트의 함량이 5 중량부 보다 적으면 고온 사이클 시 양극 표면의 분해로 인해 가스가 지속적으로 발생되어 전지의 두께가 증가되는 스웰링 현상이 발생할 수 있고, 60 중량부를 초과할 경우 초기 충전지 음극에서 견고한 SEI 막을 형성시키기 어려우며, 고온 특성이 저하될 수 있다.
상기 프로필렌 카보네이트의 사용량 내에서 에틸렌 카보네이트를 상기 혼합비의 범위 이내가 되도록 적절히 조절할 경우, 본 발명의 리튬 이차전지의 저온 및 상온 출력 특성뿐 아니라, 고온 저장 후 용량 특성 등에 있어 최적의 효과를 달성할 수 있다.
상기 비수성 유기 용매는 프로필렌 카보네이트(PC) 및 에틸렌 카보네이트(EC) 이외의 비수성 유기 용매를 더 포함할 수 있으며, 전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없다.
상기 비수성 전해액에 더 포함될 수 있는 비수성 유기 용매로는, 예컨대 에틸 프로피오네이트(EP), 메틸프로피오네이트(MP), 부틸렌 카보네이트(BC), 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택되는 어느 하나, 또는 이들 중 2종 이상의 혼합물을 들 수 있다.
한편, 상기 리튬비스플루오로설포닐이미드는 비수성 전해액 중의 농도가 0.01 mol/L 내지 2 mol/L일 수 있다.
구체적으로, 본 발명의 일례에 따른 비수성 전해액이 상기 비수성 유기 용매로서 프로필렌 카보네이트(PC) 및 에틸렌 카보네이트(EC)를 포함할 때, 상기 리튬비스플루오로설포닐이미드는 비수성 전해액 중의 농도는 0.1 mol/L 내지 2 mol/L일 수 있고, 더욱 구체적으로 0.5 mol/L 내지 1.5 mol/L일 수 있다. 상기 리튬비스플루오로설포닐이미드의 농도가 0.1 mol/L보다 적으면 전지의 저온 출력 개선 및 고온 사이클 특성의 개선의 효과가 미미할 수 있고, 상기 리튬비스플루오로설포닐이미드의 농도가 2 mol/L를 초과하면 전지의 충방전시 전해액 내의 부반응이 과도하게 발생하여 스웰링(swelling) 현상이 일어날 수 있고, 전해액 중에서 금속으로 이루어진 양극, 또는 음극 집전체의 부식을 유발할 수 있다.
이러한 부반응을 더욱 방지하기 위해, 본 발명의 비수성 전해액은 상기 리튬비스플루오로설포닐이미드 이외의 리튬염을 더 포함할 수 있다. 상기 리튬염은 당 분야에서 통상적으로 사용되는 리튬염을 사용할 수 있으며, 예를 들어 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3 및 LiC4BO8으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로 1:0.01 내지 1:9일 수 있다.
구체적으로, 본 발명의 일례에 따른 비수성 전해액이 상기 비수성 유기 용매로서 프로필렌 카보네이트(PC) 및 에틸렌 카보네이트(EC)를 포함할 때, 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로 1:1 내지 1:9일 수 있다. 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비가 상기 몰비의 범위를 벗어날 경우, 전지의 충방전시 전해액 내의 부반응이 과도하게 발생하여 스웰링(swelling) 현상이 일어날 수 있다.
더욱 구체적으로, 본 발명의 일례에 따른 비수성 전해액이 상기 비수성 유기 용매로서 프로필렌 카보네이트(PC) 및 에틸렌 카보네이트(EC)를 포함할 때, 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로 1:6 내지 1:9일 수 있다. 예컨대, 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비가 몰비로 1:6 이상일 경우, 리튬 이온 전지에서 SEI 피막을 형성하는 과정, 및 프로필렌 카보네이트 및 에틸렌 카보네이트에 의하여 용매화된 리튬 이온이 음극 사이에 삽입되는 과정에서 막대한 용량의 비가역 반응이 발생하는 것을 방지할 수 있으며, 음극 표면층(예를 들어, 탄소 표면층)의 박리와 전해액의 분해를 억제하여, 이차전지의 저온 출력 개선, 고온 저장 후, 사이클 특성 및 용량 특성의 개선 효과를 발휘할 수 있다.
상기 터페닐 화합물의 함량은 리튬 비스플루오로 설포닐 이미드의 첨가량에 따라 조절될 수 있으며, 상기 리튬 비스플루오로 설포닐 이미드 및 터페닐 화합물은 1:0.01 내지 1:10의 중량비로 사용될 수 있다.
구체적으로, 본 발명의 일례에 따른 비수성 전해액이 상기 비수성 유기 용매로서 프로필렌 카보네이트(PC) 및 에틸렌 카보네이트(EC)를 포함할 때, 상기 리튬 비스플루오로 설포닐 이미드 및 터페닐 화합물은 1:0.01 내지 1:1의 중량비로 사용될 수 있고, 구체적으로 1:0.02 내지 1:0.95의 중량비로 사용될 수 있으며, 더욱 구체적으로 1:0.04 내지 1:0.91의 중량비로 사용될 수 있다. 상기 리튬 비스플루오로 설포닐 이미드와 상기 터페닐 화합물이 1:0.01 내지 1:1의 중량비로 사용될 경우, 상기 리튬 비스플루오로 설포닐 이미드 첨가에 따라 발생될 수 있는 리튬 이차전지의 상온에서의 전지 충방전시 전해액 내의 부반응을 상기 터페닐 화합물이 적절히 억제할 수 있다.
또한, 본 발명은 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 양극과 상기 음극 사이에 개재된 세퍼레이터; 및 상기 비수성 전해액을 포함하고, 상기 양극 활물질은 망간 스피넬(spinel)계 활물질, 리튬 금속 산화물 또는 이들의 혼합물을 포함하는, 리튬 이차전지를 제공한다.
상기 리튬 금속 산화물은 리튬-망간계 산화물, 리튬-니켈-망간계 산화물, 리튬-망간-코발트계 산화물 및 리튬-니켈-망간-코발트계 산화물로 이루어진 군에서 선택될 수 있다. 구체적으로, 상기 양극활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li1+x(NiaCobMnc)O2(여기서, 0.55≤a≤0.65, 0.18≤b≤0.22, 0.18≤c≤0.22, -0.2≤x≤0.2, x+a+b+c=1), Li(Nia'Cob'Mnc')O2(여기서, 0<a'<1, 0<b'<1, 0<c'<1, a'+b'+c'=1), LiNi1 - YCoYO2(여기서, 0≤Y<1), LiCo1 - Y'MnY'O2(여기서, 0≤Y'<1), LiNi1-Y"MnY"O2(여기서, 0≤Y"<1), Li(NidCoeMnf)O4(0<d<2, 0<e<2, 0<f<2, d+e+f=2), LiMn2 - zNizO4(여기서, 0<Z<2), LiMn2 - z'Coz'O4(여기서, 0<Z'<2)일 수 있다.
한편, 본 발명의 일례에 있어서, 상기 리튬 금속 산화물은 리튬-니켈-망간-코발트계 산화물일 수 있고, 구체적으로 상기 리튬-니켈-망간-코발트계 산화물은 하기 화학식 1로 표시되는 산화물을 포함할 수 있다.
[화학식 1]
Li1+x(NiaCobMnc)O2
(상기 화학식 1에서, 0.55≤a≤0.65, 0.18≤b≤0.22, 0.18≤c≤0.22, -0.2≤x≤0.2, 및 x+a+b+c=1이다.)
상기 리튬-니켈-망간-코발트계 산화물을 양극 활물질로서 양극에 이용할 경우, 상기 비수성 전해액이 포함하는 리튬 비스 플로오로 설포닐 이미드와 조합되어 상승 작용을 가질 수 있다. 상기 리튬-니켈-망간-코발트계 산화물 양극 활물질은 전이 금속 중 Ni의 함량이 증가할수록 충방전 과정에서 상기 양극활물질의 층상 구조내의 Li +1가 이온과 Ni +2가 이온의 자리가 바뀌는 현상(cation mixing)이 발생하여 그 구조가 붕괴되고, 이에 상기 양극활물질은 전해액과 부반응을 일으키거나, 전이금속의 용출현상 등이 나타난다. 이는 Li +1가 이온과 Ni +2가 이온의 크기가 유사하기 때문에 발생되는 것이다. 결국 상기 부반응을 통하여 이차 전지 내부의 전해액 고갈과 양극활물질의 구조 붕괴로 전지의 성능이 쉽게 저하된다.
이에, 본 발명의 일례에 따른 리튬 이차전지는 상기 화학식 1의 양극활물질과 함께 LiFSI를 포함하는 비수성 전해액을 사용하여, 양극 표면에 LiFSI로부터 기인한 성분으로 층(layer)을 형성하여 Li +1가 이온과 Ni +2가 이온의 양이온 혼합(cation mixing) 현상을 억제하면서도, 양극 활물질의 용량 확보를 위한 충분한 니켈 전이금속량을 확보할 수 있다. 본 발명의 일례에 따른 리튬 이차전지는 상기 화학식 1로 표시되는 산화물과 함께, LiFSI를 포함하는 비수성 전해액을 포함하므로, 전해액과 양극 간의 부반응, 금속(metal) 용출현상 등을 효과적으로 억제할 수 있다.
상기 화학식 1로 표시되는 산화물에서 Ni 전이금속의 비가 0.65를 초과(a>0.65)하는 경우에는 과량의 Ni이 양극 활물질 내에 포함되므로 상기 전극 표면에 LiFSI로부터 기인한 성분으로 형성된 층에 의해서도 Li +1가 이온과 Ni +2가 이온의 양이온 혼합 현상을 억제하지 못할 수 있다.
또한, 과량의 Ni 전이금속이 양극 활물질 내에 포함될 경우, Ni의 산화수 변동에 따라 고온 등의 환경에서 d 궤도를 가지는 니켈 전이금속이 배위 결합시 정팔면체 구조를 가져야 하나 외부의 에너지 공급에 의하여, 에너지 레벨의 순서가 뒤바뀌거나, 산화수가 변동되어(불균일화 반응) 뒤틀어진 팔면체를 형성하게 된다. 결과적으로 니켈 전이 금속을 포함하는 양극 활물질의 결정 구조가 변형되어 양극 활물질 내의 니켈 금속이 용출될 확률이 높아진다.
결과적으로, 본 발명자들은 상기 화학식 1의 범위에 따른 산화물을 포함하는 양극 활물질과 LiFSI 염 조합시에 높은 출력을 생성하면서도, 고온 안정성 및 용량 특성에서 우수한 효율을 나타내는 것을 확인하였다.
상기 화학식 1의 산화물을 포함하는 양극 활물질과 LiFSI 리튬염 조합시 높은 출력과 안정성을 가지지만 전해액은 고출력의 환경에서 분해될 수 있고, 음극의 붕괴가 유발될 수 도 있다. 이에 상기 첨가제들을 조합하여 비수전해액에 포함하는 경우, 생성되는 이차전지의 고온에서의 안정성을 확보할 수 있다.
본 발명의 일례에 따른 리튬 이차전지가 양극 활물질로서 상기 화학식 1로 표시되는 산화물을 포함할 경우, 상기 리튬비스플루오로설포닐이미드의 비수성 전해액 중의 농도는 0.01 mol/L 내지 2 mol/L일 수 있고, 구체적으로 0.01 mol/L 내지 1 mol/L일 수 있다. 상기 리튬비스플루오로설포닐이미드의 농도가 0.1 mol/L보다 적으면 리튬 이차 전지의 저온 출력 개선 및 고온 사이클 특성의 개선의 효과가 미미하고, 상기 리튬비스플루오로설포닐이미드의 농도가 2 mol/L를 초과하면 전지의 충방전시 전해액 내의 부반응이 과도하게 발생하여 스웰링(swelling) 현상이 일어날 수 있고, 전해액 중에서 금속으로 이루어진 양극, 또는 음극 집전체의 부식을 유발할 수 있다.
이러한 부반응을 더욱 방지하기 위해, 본 발명의 비수성 전해액은 상기 리튬비스플루오로설포닐이미드 이외의 리튬염을 더 포함할 수 있다. 상기 리튬염은 당 분야에서 통상적으로 사용되는 리튬염을 사용할 수 있으며, 예를 들어 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3 및 LiC4BO8으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
본 발명의 일례에 따른 리튬 이차전지가 양극 활물질로서 상기 화학식 1로 표시되는 산화물을 포함할 경우, 상기 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로서 1:0.01 내지 1:1일 수 있다. 상기 리튬염과 리튬 비스플루오로 설포닐 이미드의 혼합비가 상기 몰비의 범위 이상인 경우, 전지의 충방전시 전해액 내의 부반응이 과도하게 발생하여 스웰링(swelling) 현상이 일어날 수 있고, 상기 몰비 범위 이하인 경우, 생성되는 이차전지의 출력 향상이 저하될 수 있다. 구체적으로, 상기 리튬염과 리튬 비스플루오로 설포닐 이미드의 혼합비가 몰비로서, 1:0.01 미만인 경우, 리튬 이온 전지에서 SEI 피막을 형성하는 과정, 및 카보네이트계 용매에 의하여 용매화된 리튬 이온이 음극 사이에 삽입되는 과정에서 다수 용량의 비가역 반응이 발생할 수 있으며, 음극 표면층(예를 들어, 탄소 표면층)의 박리와 전해액의 분해에 의해, 이차 전지의 저온 출력 개선, 고온 저장 후, 사이클 특성 및 용량 특성의 개선의 효과가 미비할 수 있다. 상기 리튬염과 리튬 비스플루오로 설포닐 이미드의 혼합비가 몰비로서, 1:1 초과인 경우 과도한 용량의 리튬 비스플루오로 설포닐 이미드가 전해액에 포함되어 충 방전 진행시에 전극 집전체의 부식을 일으켜 이차전지의 안정성에 영향을 줄 수 있다.
상기 터페닐 화합물의 함량은 리튬 비스플루오로 설포닐 이미드의 첨가량에 따라 조절 가능하므로, 본 발명의 일례에 따른 리튬 이차전지가 양극 활물질로서 상기 화학식 1로 표시되는 산화물을 포함할 경우, 상기 리튬 비스플루오로 설포닐 이미드 및 터페닐 화합물은 1:0.02 내지 1:10의 중량비로 사용될 수 있고, 구체적으로 1:0.03 내지 1:9의 중량비로 사용될 수 있으며, 더욱 구체적으로 1:0.05 내지 1:7.5의 중량비로 사용될 수 있다.
상기 리튬 비스플루오로 설포닐 이미드와 상기 터페닐 화합물이 1:0.02 내지 1:10의 중량비로 사용될 경우, 상기 리튬 비스플루오로 설포닐 이미드 첨가에 따라 발생될 수 있는 리튬 이차전지의 상온에서의 전지 충방전시 전해액 내의 부반응을 상기 터페닐 화합물이 적절히 억제할 수 있다.
본 발명의 일례에 따른 리튬 이차전지가 양극 활물질로서 상기 화학식 1로 표시되는 산화물을 포함할 경우, 상기 비수성 용매로서는 전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한 없이 사용될 수 있고, 예컨대 니트릴계 용매, 환형 카보네이트, 선형 카보네이트, 에스테르, 에테르 또는 케톤 등이 사용될 수 있다. 이들은 단독으로 사용될 수 있고, 2종 이상이 조합되어 사용될 수 있다.
구체적으로, 본 발명의 일례에 따른 리튬 이차전지가 양극 활물질로서 상기 화학식 1로 표시되는 산화물을 포함할 경우, 상기 비수성 용매로서 아세토 니트릴을 이용할 수 있는데, 상기 리튬-니켈-망간-코발트계 산화물인 양극 활물질을 양극에 이용할 경우, 상기 아세토 니트릴계 용매를 이용함으로써, 리튬 비스 플로오로 설포닐 이미드와 조합으로 인한 고출력 전지의 안정성 저하에 따른 부작용을 효과적으로 방지할 수 있다.
한편, 상기 음극 활물질로는 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있으며, 바람직하게는 결정질 탄소로 천연흑연과 인조흑연과 같은 흑연질(graphite) 탄소일 수 있다.
구체적으로, 리튬 이차전지에 있어서, 상기 양극 또는 음극은, 예를 들어 양극 또는 음극 집전체 상에 양극 또는 음극 활물질, 도전재 및 바인더의 혼합물을 소정의 용매와 혼합하여 슬러리를 제조한 후, 이 슬러리를 집전체 상에 도포한 후 건조하여 제조될 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 또는 음극 슬러리에 사용되는 상기 도전재는 통상적으로 양극 또는 음극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 중량% 내지 20 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 양극 또는 음극 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 또는 음극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 중량% 내지 20 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR), 불소 고무, 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
또한, 상기 용매의 바람직한 예로는 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 알코올, N-메틸피롤리돈(NMP), 아세톤 또는 물 등을 들 수 있으며, 건조 과정에서 제거된다.
상기 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 전지 케이스는 당분야에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. 상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
실시예 1
[비수성 전해액의 제조]
프로필렌 카보네이트(PC):에틸렌 카보네이트(EC):에틸메틸 카보네이트(EMC) 3:3:4(부피비)의 조성을 갖는 비수성 유기 용매 및 리튬염으로서 비수성 전해액 총량을 기준으로 LiPF6 0.1 mol/L를 첨가하고, 리튬비스플루오로설포닐이미드 0.9 mol/L 및 오르소-터페닐 5 중량%를 첨가하여 비수성 전해액을 제조하였다.
[리튬 이차전지의 제조]
양극 활물질로서 LiMn2O4 및 Li(Ni0.33Co0.33Mn0.33)O2의 혼합물 96 중량%, 도전재로 카본 블랙(carbon black) 2 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 2 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20 ㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
또한, 음극 활물질로 탄소 분말, 바인더로 PVdF, 도전재로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10 ㎛ 정도의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
이와 같이 제조된 양극과 음극을 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막과 함께 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 리튬 이차전지의 제조를 완성하였다.
실시예 2
LiPF6 0.14 mol/L 및 리튬비스플루오로설포닐이미드 0.86 mol/L(약 1:6 몰비율)로 그 양을 달리한 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실시예 3
LiPF6 0.17 mol/L 및 리튬비스플루오로설포닐이미드 0.83 mol/L(약 1:5 몰비율)로 그 양을 달리한 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실시예 4
상기 오르소-터페닐을 3 중량%로 사용한 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실시예 5
상기 오르소-터페닐을 3 중량%로 사용한 것을 제외하고는, 실시예 2와 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실시예 6
상기 오르소-터페닐을 10 중량%로 사용한 것을 제외하고는, 실시예 2와 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실시예 7
상기 오르소-터페닐을 0.5 중량%로 사용한 것을 제외하고는, 실시예 2와 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
비교예 1
에틸렌 카보네이트(EC)를 사용하지 않고, 프로필렌 카보네이트(PC) : 에틸메틸 카보네이트(DMC) 3:7 (부피비)의 조성을 갖는 비수성 유기 용매를 사용한 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
비교예 2
프로필렌 카보네이트(PC)를 사용하지 않고, 에틸렌 카보네이트(EC) : 에틸메틸 카보네이트(DMC)=3:7(부피비)의 조성을 갖는 비수성 유기 용매를 사용한 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
비교예 3
LiFSI 및 오르소-터페닐을 사용하지 않은 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
비교예 4
LiFSI를 사용하지 않은 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
비교예 5
오르소-터페닐을 사용하지 않은 것을 제외하고는, 실시예 1과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실험예 1
<고온 저장 후 용량 측정>
실시예 1 내지 7, 및 비교예 1 내지 5의 리튬 이차전지를 상온에서 정전류/정전압(CC/CV) 조건에서 4.2 V/38 mA까지 1 C으로 충전한 다음, 정전류(CC) 조건에서 2.5 V까지 2 C으로 방전하고, 그 방전 용량을 측정하여 0주차의 용량으로 하였다. 그 다음, 실시예 1 내지 7, 및 비교예 1 내지 5의 리튬 이차전지를 60℃에서 18주간 보관 후, 상온에서 정전류/정전압(CC/CV) 조건에서 4.2 V/38 mA까지 1 C으로 충전한 다음, 정전류(CC) 조건에서 2.5 V까지 2 C으로 방전하고, 그 방전 용량을 측정하여 18주 후의 용량으로 하였다.
고온 저장 후의 용량을 (18주 후의 용량/0주차의 용량)×100으로 계산하여 % 값으로 하기 표 1에 나타내었다.
실험예 2
<고온 저장 후 출력 측정>
실시예 1 내지 7, 및 비교예 1 내지 5의 리튬 이차전지를 상온에서 SOC(충전 심도) 50에서 5 C으로 10초간 방전하여 발생하는 전압차로 저온 출력을 계산하여 그 출력을 0주차의 출력으로 하였다. 그 다음, 실시예 1 내지 7, 및 비교예 1 내지 5의 리튬 이차전지를 60℃에서 18주간 보관 후, 상온에서 SOC(충전 심도) 50%에서 5C으로 10초간 방전하여 발생하는 전압차로 저온 출력을 계산하여 그 출력을 18주 후의 출력으로 하였다.
고온 저장 후의 출력을 (18주 후의 출력/0주차의 출력)×100으로 계산하여 % 값으로 하기 표 1에 나타내었다.
실험예 3
<전지 두께 증가율 측정>
실시예 1 내지 7, 및 비교예 1 내지 5의 리튬 이차전지의 두께를 측정하고, 60℃에서 18주간 보관 후의 두께를 측정해서, 전지 두께 증가율을 (18주 후의 두께/0주차의 두께Ⅹ100)-100으로 계산하여 % 값으로 하기 표 1에 나타내었다.
실험예 4
<상온 수명 측정>
실시예 1 내지 7, 및 비교예 1 내지 5의 리튬 이차전지를 25℃에서 정전류/정전압(CC/CV) 조건으로 4.2 V/38 mA까지 1 C으로 충전한 다음, 정전류(CC) 조건으로 2.5 V까지 2 C으로 방전하고, 그 방전 용량을 측정하였다. 이를 1 내지 1000 사이클로 반복 실시하였고, (1000 사이클 후의 용량/1 사이클 후의 용량)×100으로 계산된 값을 상온 수명 특성으로 하기 표 1에 나타내었다.
실험예 5
<고온 수명 측정>
실시예 1 내지 7, 및 비교예 1 내지 5의 리튬 이차전지를 45℃에서 정전류/정전압(CC/CV) 조건으로 4.2 V/38 mA까지 1 C으로 충전한 다음, 정전류(CC) 조건으로 2.5 V까지 2 C으로 방전하고, 그 방전 용량을 측정하였다. 이를 1 내지 1000 사이클로 반복 실시하였고, (1000 사이클 후의 용량/1 사이클 후의 용량)×100으로 계산된 값을 고온 수명 특성으로 하기 표 1에 나타내었다.
LiPF6:LiFSI 첨가제(중량%) 고온저장특성(%) 수명특성(%)
용량 출력 전지두께 증가 상온 고온
실시예 1 1:9 5 88.4 92.2 9.3 86.2 86.2
실시예 2 1:6 5 88.2 91.3 10.5 85.2 85.4
실시예 3 1:5 5 86.4 90.2 10.8 86.5 84.2
실시예 4 1:9 3 90.1 92.9 8.4 90.2 88.4
실시예 5 1:6 3 98.4 90.2 8.3 91.1 88.1
실시예 6 1:6 10 82.1 91.3 14.2 83.1 80.2
실시예 7 1:6 0.5 85.3 88.1 15.1 84.2 82.6
비교예 1 1:9 5 80.2 83.6 20.3 48.5 39.2
비교예 2 1:9 5 79.1 81.4 31.7 75.3 70.2
비교예 3 1:0 0 76.2 80.1 20.3 77.1 73.2
비교예 4 1:0 5 75.1 78.3 21.5 80.1 72.3
비교예 5 1:9 0 84.4 87.3 15.5 82.2 81.5
상기 표 1에서 첨가제는 오르소-터페닐을 나타낸다.
상기 표 1을 통하여 확인할 수 있는 바와 같이, 실시예 1 내지 7의 리튬 이차전지는 프로필렌 카보네이트(PC) 및 에틸렌 카보네이트(EC)를 포함하는 비수성 유기 용매와 함께, 리튬비스플루오로설포닐이미드 및 터페닐계 화합물을 포함하므로, 비수성 유기 용매로 에틸렌 카보네이트(EC)를 포함하지 않는 비교예 1, 비수성 유기 용매로 프로필렌 카보네이트(PC)를 포함하지 않는 비교예 2, 리튬비스플루오로설포닐이미드 및 터페닐 화합물을 포함하지 않는 비교예 3, 및 리튬비스플루오로설포닐이미드를 포함하지 않는 비교예 4의 리튬 이차전지에 비하여, 고온 저장 후에도 높은 용량 및 출력을 나타내고, 전지 두께 증가율도 작은 값을 나타내어 우수한 고온 저장 특성을 나타내며, 또한 상온 및 고온에서 1000 사이클 이후에도 높은 용량을 유지하여 우수한 수명 특성을 나타냄을 확인할 수 있었다.
한편, 리튬비스플루오로설포닐이미드의 첨가에 따른 효과를 살펴보면, 리튬비스플루오로설포닐이미드의 첨가 여부에만 차이가 있는 실시예 1 및 비교예 4의 리튬 이차전지를 비교했을 때, 실시예 1의 리튬 이차전지가 리튬비스플루오로설포닐이미드의 첨가에 따라 월등히 우수한 고온 저장 특성 및 수명 특성을 나타냄을 확인할 수 있었다. 또한, 리튬비스플루오로설포닐이미드의 첨가량에 따른 효과를 살펴보면, LiPF6:LiFSI가 1:9의 비율을 가지는 실시예 1의 리튬 이차전지의 경우, 1:5의 비율을 가지는 실시예 3의 리튬 이차전지에 비해 우수한 고온 저장 특성 및 수명 특성을 나타내었다. 또한, LiPF6:LiFSI가 1:6의 비율을 가지는 실시예 2의 리튬 이차전지의 경우도 실시예 3의 리튬 이차전지에 비해 상온 수명 특성 값이 근소한 차이로 낮은 값을 나타낸 것을 제외하고는, 전반적으로 우수한 고온 저장 특성 및 수명 특성을 나타내었음을 확인할 수 있었다.
또한, 터페닐계 화합물의 첨가에 따른 효과를 살펴보면, 터페닐계 화합물의 첨가 여부에만 차이가 있는 실시예 1 및 4와 비교예 5의 리튬 이차전지를 비교했을 때, 실시예 1 및 4의 리튬 이차전지가 오르소-터페닐의 첨가에 따라 더욱 우수한 고온 저장 특성 및 수명 특성을 나타내었으며, 전지 두께 증가 비율도 현저히 낮음을 확인할 수 있었다.
한편, 터페닐계 화합물의 첨가량에 따른 효과를 살펴보면, 오르소-터페닐이 비수성 전해액 총 중량에 대해 3 내지 5 중량% 포함된 실시예 1 내지 5의 경우가 오르소-터페닐이 10 중량% 포함된 실시예 6 및 오르소-터페닐이 0.5 중량% 포함된 실시예 7에 비해 우수한 효과를 나타내었다. 또한, 실시예 1 내지 3 간의 비교, 및 실시예 4 및 5 간의 비교를 통하여, 터페닐계 화합물의 함량이 비수성 전해액 총 중량에 대해 3 중량% 이상일 경우에는 리튬비스플루오로설포닐이미드에 대한 터페닐계 화합물의 함량비가 줄어들수록 대체적으로 우수한 효과를 나타냄을 확인할 수 있었다.
실험예 5
<과충전 평가>
실시예 1 및 비교예 5의 리튬 이차전지를 25℃에서 충전 상태로부터 1 C(775 mAh)/12 V로 정전류/정전압(CC/CV) 조건으로 8.3 V까지 과충전을 하고, 그때의 전지의 온도 및 전압 변화를 측정하여 도 1에 나타내었다.
도 1을 참조하면, 오르소-터페닐 첨가제를 포함하는 비수성 전해액을 포함하는 실시예 1의 리튬 이차전지가 상기 오르소-터페닐 첨가제를 포함하지 않는 비교예 5의 리튬 이차전지에 비해 과충전 단락시점의 SOC가 더 낮고, 전지의 온도가 낮은 것을 확인할 수 있었다.
실시예 8
[전해액의 제조]
에틸렌 카보네이트(EC): 에틸 메틸 카보네이트(EMC)=3:7(부피비)의 조성을 갖는 비수성 유기 용매 및 리튬염으로서 비수성 전해액 총량을 기준으로 LiPF6 0.9 mol/L를 첨가하고, 리튬비스플루오로설포닐이미드 0.1 mol/L 및 오르소-터페닐 3 중량%를 첨가하여 비수성 전해액을 제조하였다.
[리튬 이차 전지의 제조]
양극 활물질로서 Li(Ni0.6Co0.2Mn0.2)O2 92 중량%, 도전재로 카본 블랙(carbon black) 4 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 4 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께 20 ㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
또한, 음극 활물질로 탄소 분말, 바인더로 PVdF, 도전재로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께 10 ㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
이와 같이 제조된 양극과 음극을 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막과 함께 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 리튬 이차 전지의 제조를 완성하였다.
실시예 9
LiPF6 0.7 mol/L 및 리튬비스플루오로설포닐이미드 0.3 mol/L로 그 양을 달리한 것을 제외하고는, 실시예 8과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실시예 10
LiPF6 0.5 mol/L 및 리튬비스플루오로설포닐이미드 0.5 mol/L로 그 양을 달리한 것을 제외하고는, 실시예 8과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실시예 11
상기 오르소-터페닐을 5 중량%로 사용한 것을 제외하고는, 실시예 9와 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실시예 12
상기 오르소-터페닐을 10 중량%로 사용한 것을 제외하고는, 실시예 9와 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실시예 13
상기 오르소-터페닐을 1 중량%로 사용한 것을 제외하고는, 실시예 9와 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
비교예 6
상기 양극활물질로서 Li(Ni0.5Co0.3Mn0.2)O2를 이용한 것을 제외하고는 실시예 9와 동일하게 하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 7
상기 양극활물질로서 Li(Ni0.8Co0.1Mn0.1)O2를 이용한 것을 제외하고는 실시예 9와 동일하게 하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 8
상기 양극활물질로서 LiCoO2를 이용한 것을 제외하고는 실시예 9와 동일하게 하여 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 9
상기 양극활물질로서 Li(Ni0.5Co0.3Mn0.2)O2를 이용하고, LiFSI 및 오르소-터페닐을 사용하지 않은 것을 제외하고는, 실시예 9와 동일하게 비수성 전해액 및 리튬 이차 전지를 제조하였다.
비교예 10
LiFSI 및 오르소-터페닐을 사용하지 않은 것을 제외하고는, 실시예 9와 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
비교예 11
LiPF6 0.3 mol/L 및 리튬비스플루오로설포닐이미드 0.7 mol/L로 그 양을 달리한 것을 제외하고는, 실시예 8과 동일하게 하여 비수성 전해액 및 리튬 이차전지를 제조하였다.
실험예 6
<고온 저장 후 용량 특성>
실시예 8 내지 13 및 비교예 6 내지 11에서 제조된 이차전지를 정전류/정전압(CC/CV) 조건에서 4.2 V/38 mA까지 1 C으로 충전한 다음, 정전류(CC) 조건에서 2.5 V까지 2 C으로 방전하고, 그 방전 용량을 측정하였다. 그 다음 실시예 8 내지 13 및 비교예 6 내지 11에서 제조된 이차전지를 60℃에서 16주 저장 후, 다시 상기 이차전지들을 각각 상온에서 정전류/정전압(CC/CV) 조건으로 4.2 V/38 mA까지 1 C으로 충전한 다음, 정전류(CC) 조건으로 2.5 V까지 2 C으로 방전하고, 그 방전 용량을 측정하였다. 최초 방전 용량을 기준으로 16주 후의 방전 용량을 백분율로 계산(16주 후 방전용량/최초 방전 용량×100(%))하여 측정한 결과를 하기 표 2에 기재하였다.
실험예 7
<고온 저장 후 출력 특성>
실시예 8 내지 13 및 비교예 6 내지 11에서 제조된 이차전지를 60℃에서 16주 저장 후 상온에서 5 C으로 10초간 충전 및 방전하는 경우 발생하는 전압차를 이용하여 출력을 계산하였다. 최초 출력을 기준으로 16주 후의 출력량을 백분율로 계산(16주 출력(W)/최초 출력(W)×100(%))하여 측정한 결과를 하기 표 2에 기재하였다. 시험은 SOC(충전 상태, state of charge) 50%에서 수행하였다.
양극 활물질 LiPF6:LiFSI 첨가제(중량%) 고온 저장특성(%)
용량 출력
실시예 8 NMC622 9:1 3 92.5 93.5
실시예 9 NMC622 7:3 3 94.2 96.1
실시예 10 NMC622 5:5 3 91.3 93.5
실시예 11 NMC622 7:3 5 91.7 92.5
실시예 12 NMC622 7:3 10 88.5 90.2
실시예 13 NMC622 7:3 1 90.3 91.2
비교예 6 NMC532 7:3 3 87.2 89.2
비교예 7 NMC811 7:3 3 80.2 85.1
비교예 8 LiCoO2 7:3 3 91.2 91.5
비교예 9 NMC532 7:3 0 85.2 87.1
비교예 10 NMC622 7:3 0 87.2 91.0
비교예 11 NMC622 3:7 3 86.1 87.3
상기 표 2에서 NMC622는 Li(Ni0.6Co0.2Mn0.2)O2를, NMC532는 Li(Ni0.5Co0.3Mn0.2)O2를, NMC811은 Li(Ni0.8Co0.1Mn0.1)O2 나타내고, 첨가제는 오르소-터페닐을 나타낸다.
상기 표 2를 통하여 확인할 수 있는 바와 같이, 실시예 7 내지 13의 리튬 이차전지는 리튬 비스플루오로 설포닐 이미드 및 오르소-터페닐 화합물을 함께 포함하는 비수성 전해액을 포함하므로, 고온 저장 후에도 높은 용량 및 출력을 나타냄을 알 수 있다. 또한, 실시예 8 내지 11의 리튬 이차전지는 리튬 비스플루오로 설포닐 이미드 및 오르소-터페닐 화합물을 함께 포함하는 비수성 전해액을 포함하므로, 오르소-터페닐 화합물을 포함하지 않는 비교예 9 및 10의 리튬 이차전지에 비해 우수한 고온 저장 특성을 나타내었다.
한편, 실시예 9와 비교예 6 내지 8을 비교하면, 양극 활물질로서 Li(Ni0.6Co0.2Mn0.2)O2를 포함하는 실시예 9가 각각 양극 활물질로서 Li(Ni0.5Co0.3Mn0.2)O2, Li(Ni0.8Co0.1Mn0.1)O2, 및 LiCoO2를 포함하는 비교예 6 내지 8에 비해 더욱 우수한 고온 저장 특성을 나타내었다.
또한, 실시예 8 내지 10과 비교예 11을 비교하면, 양극 활물질로서 리튬-니켈-망간-코발트계 산화물인 Li(Ni0.6Co0.2Mn0.2)O2를 포함할 경우, LiPF6에 대비하여 LiFSI의 함량이 많아지게 되면 리튬 이차전지의 고온 저장 특성이 나빠지게 됨을 확인할 수 있었다.
실험예 8
<과충전 평가>
실시예 8 및 비교예 10의 리튬 이차전지를 25℃에서 충전 상태로부터 1 C(775 mAh)/12 V로 정전류/정전압(CC/CV) 조건으로 8.3 V까지 과충전을 하고, 그때의 전지의 온도 및 전압 변화를 측정하여 도 1에 나타내었다.
도 2을 참조하면, 오르소-터페닐 첨가제를 포함하는 비수성 전해액을 포함하는 실시예 8의 리튬 이차전지가 상기 오르소-터페닐 첨가제를 포함하지 않는 비교예 10의 리튬 이차전지에 비해 과충전 단락시점의 SOC가 더 낮고, 전지 중심부의 온도가 낮은 것을 확인할 수 있었다.

Claims (20)

  1. 비수성 유기 용매, 리튬비스플루오로설포닐이미드(Lithium bis(fluorosulfonyl)imide; LiFSI) 및 터페닐 화합물을 포함하는, 비수성 전해액.
  2. 제 1 항에 있어서,
    상기 터페닐 화합물이 오르소-터페닐, 메타-터페닐, 및 파라-터페닐로 이루어진 군으로부터 선택된 1종 이상인, 비수성 전해액.
  3. 제 1 항에 있어서,
    상기 터페닐 화합물의 함량은 상기 비수 전해액 총 중량을 기준으로 0.5 중량% 내지 10 중량%인, 비수성 전해액.
  4. 제 1 항에 있어서,
    상기 비수성 유기 용매는 프로필렌 카보네이트(PC) 및 에틸렌 카보네이트(EC)를 포함하고,
    상기 프로필렌 카보네이트와 에틸렌 카보네이트의 혼합비는 1:0.1 내지 2 중량비인, 비수성 전해액.
  5. 제 4 항에 있어서,
    상기 비수성 유기 용매는 에틸 프로피오네이트(Ethyl propionate; EP), 메틸프로피오네이트(Methyl propionate; MP), 부틸렌 카보네이트(BC), 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택되는 어느 하나, 또는 이들 중 2종 이상의 혼합물을 더 포함하는 비수성 전해액.
  6. 제 4 항에 있어서,
    상기 비수성 전해액은 상기 리튬비스플루오로설포닐이미드 이외의 리튬염을 더 포함하고,
    상기 리튬비스플루오로설포닐이미드 이외의 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로서 1:1 내지 1:9인, 비수성 전해액.
  7. 제 6 항에 있어서,
    상기 리튬비스플루오로설포닐이미드 이외의 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3 및 LiC4BO8으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인, 비수성 전해액.
  8. 제 4 항에 있어서,
    상기 프로필렌 카보네이트의 함량은 전체 비수성 유기용매 100 중량부를 기준으로 5 중량부 내지 60 중량부인, 비수성 전해액.
  9. 제 4 항에 있어서,
    상기 리튬비스플루오로설포닐이미드는 비수성 전해액 중의 농도가 0.1 mol/L 내지 2 mol/L인, 비수성 전해액.
  10. 제 4 항에 있어서,
    상기 리튬 비스 플루오로 설포닐 이미드 및 터페닐 화합물은 1:0.02 내지 1:1의 중량비인, 비수성 전해액.
  11. 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 양극과 상기 음극 사이에 개재된 세퍼레이터; 및
    제 1 항의 비수성 전해액을 포함하고,
    상기 양극 활물질은 망간 스피넬(spinel)계 활물질, 리튬 금속 산화물 또는 이들의 혼합물을 포함하는, 리튬 이차전지.
  12. 제 11 항에 있어서,
    상기 리튬 금속 산화물은 리튬-망간계 산화물, 리튬-니켈-망간계 산화물, 리튬-망간-코발트계 산화물 및 리튬-니켈-망간-코발트계 산화물로 이루어진 군에서 선택되는, 리튬 이차전지.
  13. 제 11 항에 있어서,
    상기 리튬 금속 산화물은 리튬-니켈-망간-코발트계 산화물이고,
    상기 리튬-니켈-망간-코발트계 산화물은 하기 화학식 1로 표시되는 산화물을 포함하는, 리튬 이차전지:
    [화학식 1]
    Li1+x(NiaCobMnc)O2
    (상기 화학식 1에서, 0.55≤a≤0.65, 0.18≤b≤0.22, 0.18≤c≤0.22, -0.2≤x≤0.2, 및 x+a+b+c=1이다.)
  14. 제 13 항에 있어서,
    상기 비수성 전해액은 상기 리튬비스플루오로설포닐이미드 이외의 리튬염을 더 포함하고,
    상기 리튬비스플루오로설포닐이미드 이외의 리튬염과 리튬비스플루오로설포닐이미드의 혼합비는 몰비로서 1:0.01 내지 1:1인, 리튬 이차전지.
  15. 제 14 항에 있어서,
    상기 리튬비스플루오로설포닐이미드 이외의 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3 및 LiC4BO8으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인, 리튬 이차전지.
  16. 제 13 항에 있어서,
    상기 리튬 비스 플루오로 설포닐 이미드 및 터페닐 화합물은 1:0.02 내지 1:10의 중량비인, 리튬 이차전지.
  17. 제 13 항에 있어서,
    상기 리튬비스플루오로설포닐이미드는 비수성 전해액 중의 농도가 0.01 mol/L 내지 2 mol/L인, 리튬 이차전지.
  18. 제 13 항에 있어서,
    상기 비수성 유기 용매는 니트릴계 용매, 선형 카보네이트, 환형 카보네이트, 에스테르, 에테르, 케톤 또는 이들의 조합을 포함하는, 리튬 이차전지.
  19. 제 18 항에 있어서,
    상기 환형 카보네이트는 에틸렌 카보네이트(EC), 프로필렌카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물이고, 상기 선형 카보네이트는 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC) 및 에틸프로필 카보네이트(EPC)로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인, 리튬 이차전지.
  20. 제 18 항에 있어서,
    상기 니트릴계 용매는 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 1종 이상인 리튬 이차전지.
PCT/KR2016/011001 2015-09-30 2016-09-30 비수성 전해액 및 이를 포함하는 리튬 이차전지 WO2017057964A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20150138038 2015-09-30
KR20150138037 2015-09-30
KR10-2015-0138037 2015-09-30
KR10-2015-0138038 2015-09-30
KR1020160125914A KR102035247B1 (ko) 2015-09-30 2016-09-29 비수성 전해액 및 이를 포함하는 리튬 이차전지
KR10-2016-0125914 2016-09-29

Publications (1)

Publication Number Publication Date
WO2017057964A1 true WO2017057964A1 (ko) 2017-04-06

Family

ID=58423877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011001 WO2017057964A1 (ko) 2015-09-30 2016-09-30 비수성 전해액 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2017057964A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203673A (ja) * 2001-12-28 2003-07-18 Mitsui Chemicals Inc 非水電解液およびそれを含むリチウム二次電池
US20050042521A1 (en) * 1998-09-03 2005-02-24 Toshikazu Hamamoto Non-aqueous secondary battery having increased discharge capacity retention
KR20080034393A (ko) * 2006-10-16 2008-04-21 주식회사 엘지화학 고온 특성 및 과충전 방지 특성의 이차전지용 전해액과이를 포함하는 이차전지
KR20120090969A (ko) * 2009-09-29 2012-08-17 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 전지 및 비수계 전해액
KR20140009397A (ko) * 2011-03-28 2014-01-22 다우 글로벌 테크놀로지스 엘엘씨 향상된 용융 강도의 에틸렌/알파-올레핀 공중합체의 제조 방법 및 그 물품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050042521A1 (en) * 1998-09-03 2005-02-24 Toshikazu Hamamoto Non-aqueous secondary battery having increased discharge capacity retention
JP2003203673A (ja) * 2001-12-28 2003-07-18 Mitsui Chemicals Inc 非水電解液およびそれを含むリチウム二次電池
KR20080034393A (ko) * 2006-10-16 2008-04-21 주식회사 엘지화학 고온 특성 및 과충전 방지 특성의 이차전지용 전해액과이를 포함하는 이차전지
KR20120090969A (ko) * 2009-09-29 2012-08-17 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 전지 및 비수계 전해액
KR20140009397A (ko) * 2011-03-28 2014-01-22 다우 글로벌 테크놀로지스 엘엘씨 향상된 용융 강도의 에틸렌/알파-올레핀 공중합체의 제조 방법 및 그 물품

Similar Documents

Publication Publication Date Title
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2018135889A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019156539A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2018143733A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2019143047A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2022154309A1 (ko) 이차전지의 충방전 방법
WO2019045399A2 (ko) 리튬 이차전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2019151724A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2021060811A1 (ko) 이차전지의 제조방법
WO2018135890A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020213962A1 (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2017057968A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2017204599A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022050712A1 (ko) 리튬 이차 전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2021025382A1 (ko) 사이클 특성이 향상된 리튬 이차전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2020180125A1 (ko) 리튬 이차전지
WO2021049872A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16852110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16852110

Country of ref document: EP

Kind code of ref document: A1