WO2021025382A1 - 사이클 특성이 향상된 리튬 이차전지 - Google Patents

사이클 특성이 향상된 리튬 이차전지 Download PDF

Info

Publication number
WO2021025382A1
WO2021025382A1 PCT/KR2020/010117 KR2020010117W WO2021025382A1 WO 2021025382 A1 WO2021025382 A1 WO 2021025382A1 KR 2020010117 W KR2020010117 W KR 2020010117W WO 2021025382 A1 WO2021025382 A1 WO 2021025382A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
organic solvent
fluorine
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2020/010117
Other languages
English (en)
French (fr)
Inventor
김현승
이철행
오정우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/606,892 priority Critical patent/US20220209302A1/en
Priority to CN202080031833.8A priority patent/CN113748537A/zh
Priority to EP20850726.9A priority patent/EP3951991B1/en
Publication of WO2021025382A1 publication Critical patent/WO2021025382A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • H01M2300/0022Room temperature molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery with improved cycle characteristics.
  • Si silicon
  • Si-based compound with a theoretical maximum capacity of 4020 mAh/g instead of graphite (theoretical capacity: 372 mAh/g) as a new high-capacity anode active material.
  • the SEI membrane which is an electrolyte decomposition product formed on the surface of the silicon-based active material, also causes physical destruction due to a large volume change of the active material, and the continuous decomposition of the electrolyte and the increase in contact resistance between the active materials due to this intensify, deteriorating the life of the battery. There is a problem of being extreme.
  • the negative electrode includes a silicon-based compound
  • the non-aqueous electrolyte includes an organic solvent composed of a fluorine-based cyclic carbonate organic solvent and a fluorine-based linear carbonate as a non-aqueous solvent, and a combination of two specific materials as a lithium salt, thereby improving cycle characteristics.
  • a negative electrode including a carbon-based material and a silicon-based compound
  • LiPF 6 LiN (FSO 2 ) 2 and a non-aqueous electrolyte containing a non-aqueous organic solvent
  • It provides a lithium secondary battery comprising a fluorine-based cyclic carbonate organic solvent and a fluorine-based linear carbonate organic solvent as the non-aqueous organic solvent.
  • the present invention physical destruction on the surface of the negative electrode by mixing two kinds of lithium salts containing a fluorine component and a non-aqueous electrolyte containing a fluorine-based carbonate organic solvent when manufacturing a secondary battery having a negative electrode containing a silicon-based compound.
  • a solid SEI film capable of suppressing the reaction, it is possible to manufacture a lithium secondary battery with improved cycle characteristics even after charging and discharging.
  • Example 1 is a graph showing a result of evaluating a capacity retention rate of a lithium secondary battery according to Experimental Example 1 of the present invention.
  • FIG. 2 is a graph showing the result of evaluating the capacity retention rate of the lithium secondary battery according to Experimental Example 2 of the present invention.
  • FIG. 6 is a graph showing the result of evaluating the capacity retention rate of the lithium secondary battery according to Experimental Example 6 of the present invention.
  • a lithium secondary battery in which a non-aqueous electrolyte solution including two types of lithium salts containing a fluorine component and an organic solvent containing a fluorine component and a negative electrode including a silicon-based compound are mixed together.
  • a negative electrode comprising a carbon-based material and a silicon-based compound
  • LiPF 6 LiN (FSO 2 ) 2 and a non-aqueous electrolyte containing a non-aqueous organic solvent
  • It provides a lithium secondary battery comprising a fluorine-based cyclic carbonate organic solvent and a fluorine-based linear carbonate organic solvent as the non-aqueous organic solvent.
  • the lithium secondary battery of the present invention forms an electrode assembly in which a positive electrode, a negative electrode, and a separator are sequentially stacked between the positive electrode and the negative electrode, is stored in a battery case, and then is manufactured by introducing a non-aqueous electrolyte. It can be manufactured and applied according to the method, and in detail, each configuration is as described below.
  • the positive electrode may be prepared by coating a positive electrode slurry including a positive electrode active material, a binder, a conductive material, and a solvent on a positive electrode current collector, followed by drying and rolling.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , Nickel, titanium, silver, or the like may be used.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, may include at least one metal such as cobalt, manganese, nickel, or aluminum, and a lithium composite metal oxide containing lithium. have. More specifically, the lithium composite metal oxide is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), a lithium-cobalt oxide (eg, LiCoO 2, etc.), a lithium-nickel oxide (E.g., LiNiO 2 ), lithium-iron-phosphate-based oxide (e.g., LiFePO 4 ), lithium-nickel-manganese-based oxide (e.g., LiNi 1-Y Mn Y O 2 (0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (0 ⁇ Z ⁇ 2), lithium-nickel-cobalt-based oxide (eg, LiNi 1-Y1 Co Y1 O 2 (0 ⁇ Y1 ⁇ 1), lithium- Manganes
  • the lithium composite metal oxides include LiCoO 2 , LiMnO 2 , LiNiO 2 , and lithium nickel manganese cobalt oxides (for example, in that the capacity characteristics and stability of the battery can be improved.
  • the lithium composite metal oxide is Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2, Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2, etc., any one or a mixture of two or more of them may be used. have.
  • the positive electrode active material may be included in 80% to 99% by weight, specifically 90% to 99% by weight, based on the total weight of the solid content in the positive electrode slurry. In this case, when the content of the positive active material is 80% by weight or less, the energy density may be lowered and thus the capacity may be lowered.
  • the binder is a component that aids in bonding of an active material and a conductive material and bonding to a current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the solid content in the positive electrode slurry.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, Polyethylene, polypropylene, ethylene-propylene-diene terpolymer, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
  • the conductive material is a material that imparts conductivity without causing chemical changes to the battery, and may be added in an amount of 1 to 20% by weight based on the total weight of the solid content in the positive electrode slurry.
  • Typical examples of the conductive material include carbon powder such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, or thermal black; Graphite powders such as natural graphite, artificial graphite, or graphite having a very developed crystal structure; Conductive fibers such as carbon fibers and metal fibers; Conductive powders such as carbon fluoride powder, aluminum powder, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • carbon powder such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, or thermal black
  • Graphite powders such as natural graphite, artificial graphite, or graphite having a very developed crystal structure
  • Conductive fibers such as carbon fibers and metal fibers
  • Conductive powders such as carbon fluoride powder, aluminum powder, and nickel powder
  • Conductive whiskers such as zinc oxide and
  • the solvent may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount having a desirable viscosity when the positive electrode active material and optionally a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the solid content concentration in the positive electrode slurry including the positive electrode active material and optionally a binder and a conductive material is 10% by weight to 60% by weight, preferably 20% by weight to 50% by weight.
  • the negative electrode may be prepared by coating a negative electrode slurry including a negative electrode active material, a binder, a conductive material, and a solvent on the negative electrode current collector, followed by drying and rolling.
  • the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes to the battery, for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel. Surface-treated carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like may be used.
  • the positive electrode current collector it is possible to enhance the bonding strength of the negative electrode active material by forming fine irregularities on the surface thereof, and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the negative electrode preferably includes a carbon-based material capable of reversibly intercalating/deintercalating lithium ions, a carbon-based material, and a silicon-based compound capable of doping and undoping lithium. .
  • any carbon-based negative active material generally used in lithium-ion secondary batteries may be used without particular limitation, and a representative example thereof is Crystalline carbon, amorphous carbon, or they may be used together.
  • Examples of the crystalline carbon include graphite such as amorphous, plate-shaped, flake, spherical or fibrous natural graphite or artificial graphite.
  • Examples of the amorphous carbon include soft carbon (low temperature calcined carbon) or hard carbon, mesophase pitch carbide, calcined coke, and the like.
  • natural graphite or artificial graphite may be used as the carbon-based negative active material.
  • the silicon-based compounds capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2) and Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 element, except for Si. It may include at least one of an element selected from the group consisting of a group 14 element, a transition metal, a rare earth element, and a combination thereof. Further, SiO 2 and at least one of these may be mixed and used.
  • the element Y is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, It may be selected from the group consisting of Te, Po, and combinations thereof.
  • SiO x (0 ⁇ x ⁇ 2) may be applied.
  • the weight ratio of the carbon-based material and the silicon-based compound may be 1:1 to 1:10, specifically 1:1 to 1:8.
  • the mixing ratio of the carbon-based material and the silicon-based compound satisfies the above range, high capacity and high energy density of the secondary battery can be secured. If the content of the carbon-based material is contained in an excessive amount exceeding the weight ratio range, the energy density of the battery may be reduced, and if the silicon-based compound is contained in an excessive amount exceeding the weight ratio range, the durability of the battery decreases. Can be.
  • the negative active material includes a carbon-based material capable of reversibly intercalating/deintercalating lithium ions and a silicon-based compound capable of dope and de-doping lithium, as well as lithium metal, metal, or a combination of these metals and lithium as necessary. It may include at least one or more selected from the group consisting of alloys, metal composite oxides, and transition metal oxides.
  • the metal or an alloy of these metals and lithium is Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al And a metal selected from the group consisting of Sn or an alloy of these metals and lithium may be used.
  • the metal complex oxides include PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1) and Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, elements of groups 1, 2, and 3 of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) Any one selected from can be used.
  • the negative electrode active material is Sn, SnO 2 , Sn-Y1 (the Y is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element excluding Sn, a transition metal, a rare earth element, and a combination thereof.
  • the element Y1 examples include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, It may be selected from the group consisting of As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, and lithium vanadium oxide.
  • the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of the solid content in the negative electrode slurry.
  • the binder is a component that aids in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the solid content in the negative electrode slurry.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, Polyethylene, polypropylene, ethylene-propylene-diene monomer, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof.
  • the conductive material is a component for further improving the conductivity of the negative active material, and may be added in an amount of 1 to 20% by weight based on the total weight of the solid content in the negative electrode slurry.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, for example, carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, or thermal black.
  • Carbon powder such as natural graphite, artificial graphite, or graphite having a very developed crystal structure
  • Conductive fibers such as carbon fibers and metal fibers
  • Conductive powders such as carbon fluoride powder, aluminum powder, and nickel powder
  • Conductive whiskers such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the solvent may include water or an organic solvent such as NMP or alcohol, and may be used in an amount having a desirable viscosity when the negative active material and optionally a binder and a conductive material are included.
  • the solid content concentration in the slurry including the negative electrode active material and optionally a binder and a conductive material may be 50% to 75% by weight, preferably 50% to 65% by weight.
  • the non-aqueous electrolyte may include at least two lithium salts containing a fluorine component and an organic solvent containing a fluorine component.
  • the non-aqueous electrolyte of the present invention includes LiPF 6 and LiN(FSO 2 ) 2 as lithium salts.
  • the non-aqueous electrolyte may not contain lithium salts other than LiPF 6 and LiN(FSO 2 ) 2 . That is, the lithium salt of the non-aqueous electrolyte may be composed of LiPF 6 and LiN(FSO 2 ) 2 .
  • LiPF 6 is a lithium salt that can form high ionic conductivity by dissolving in an excessive amount in an organic solvent, so compared to other fluorine-containing lithium salts such as LiPO 2 F 2 and LiBF 4 When used together with LiN(FSO 2 ) 2 , there is an advantage in terms of output characteristics and initial capacity of a battery.
  • the molarity (M) ratio of LiPF 6 and LiN(FSO 2 ) 2 is 1:1 to 1:10, specifically 1:1 to 1:5, more specifically 1:1 to 1:2 Can be
  • the mixed concentration of the two fluorine-containing lithium salts can be appropriately changed within a range that can be used normally, and in order to obtain an optimum effect of forming a film for preventing corrosion on the electrode surface, a concentration of 0.8 M to 3.0 M in the electrolyte solution, specifically It may be included in a concentration of 1.0M to 3.0M.
  • the mixed concentration of the two lithium salts is less than 0.8M, the effect of improving the low-temperature output of the lithium secondary battery and improving the cycle characteristics during high-temperature storage is insignificant. If the concentration exceeds 3.0M, the electrolyte solution impregnated as the viscosity of the non-aqueous electrolyte increases. Sexuality may decrease.
  • a more robust F-rich SEI film is formed on the surface of the negative electrode containing the silicon-based compound by using a non-aqueous electrolyte containing a fluorine-containing lithium salt and an organic solvent containing a fluorine element to be described later instead of a non-fluorine-based lithium salt.
  • a non-aqueous electrolyte containing a fluorine-containing lithium salt and an organic solvent containing a fluorine element to be described later instead of a non-fluorine-based lithium salt. can do. Accordingly, by preventing physical destruction of the SEI film due to a change in the volume of the silicon-based negative active material occurring during charging and discharging, further electrolyte decomposition on the surface of the active material can be suppressed, and further, side reactions between the negative electrode and the electrolyte can be suppressed. Therefore, it is possible to improve the resistance increase of the battery due to the formation of SEI formed by the additional reaction of the electrolyte and the resulting deteriorati
  • the non-aqueous electrolyte preferably includes a fluorine-based carbonate solvent as the main non-aqueous solvent, and does not contain a non-fluorine-based carbonate-based solvent. That is, the non-aqueous organic solvent may be composed of a fluorine-based cyclic carbonate organic solvent and a fluorine-based linear carbonate.
  • a fluorine-based solvent having excellent electrochemical stability is included as the main solvent of the non-aqueous electrolyte instead of a non-fluorine-based carbonate solvent having unstable oxidation stability. That is, since the fluorine-based solvent has high oxidation stability, it is possible to form a solid SEI on the surface of the electrode, so that side reactions between the non-aqueous electrolyte and the electrode, especially the anode, can be prevented when driving (charging and discharging) under high voltage. Cycle characteristics of a secondary battery including a negative electrode including a silicon-based compound may be improved.
  • the fluorine-based carbonate solvent may include a fluorine-based cyclic carbonate organic solvent and a fluorine-based linear carbonate organic solvent,
  • the fluorine-based cyclic carbonate organic solvent is fluoroethylene carbonate (FEC), difluoroethylene carbonate (DFEC), trifluoroethylene carbonate, tetrafluoroethylene carbonate, 3,3,3-trifluoropropylene carbonate, and 1 -It may be at least one or more from the group consisting of fluoropropylene carbonate, specifically, fluoroethylene carbonate.
  • the fluorine-based linear carbonate organic solvent is fluoroethyl methyl carbonate (FEMC), fluorodimethyl carbonate (F-DMC), di(2,2,2-trifluoroethyl) carbonate, 2,2,2-tri Fluoroethylmethylcarbonate, difluoromethylmethylcarbonate, trifluoromethylcarbonate, difluoromethylethylcarbonate, 1-fluoroethylmethylcarbonate and methyl 2,2,2-trifluoroethyl carbonate (F3- EMC) may be at least one or more selected from the group consisting of, specifically fluoroethyl methyl carbonate (FEMC).
  • the volume ratio of the fluorine-based cyclic carbonate organic solvent and the fluorine-based linear carbonate organic solvent may be 0.5:9.5 to 4:6, specifically 1:9 to 4:6, and more specifically 1:9 to 3:7.
  • a fluorine-based cyclic carbonate organic solvent and the fluorine-based linear carbonate organic solvent as the main solvent of the non-aqueous electrolyte are mixed in the same ratio as described above.
  • the dielectric constant of the non-aqueous electrolyte is increased, and the degree of dissociation of the lithium salt is increased based on this, so that the ionic conductivity performance of the electrolyte can be secured.
  • the fluorine-based cyclic carbonate organic solvent is included in an amount of less than 0.5 weight ratio, that is, when the fluorine-based linear carbonate solvent is included in an amount exceeding 9.5 weight ratio, the dielectric constant of the non-aqueous electrolyte is lowered, and the degree of dissociation of the lithium salt may be reduced.
  • the content of the fluorine-based cyclic carbonate organic solvent exceeds 4 weight ratio, the physical properties of the non-aqueous electrolyte become high and the mobility of lithium ions decreases, and the impregnation property of the electrolyte solution decreases, so that cycle characteristics and capacity characteristics may deteriorate. .
  • the non-aqueous electrolyte according to the present specification is preferably a non-aqueous solvent and does not contain a non-fluorine-based carbonate-based solvent.
  • the non-fluorine-based carbonate-based solvent may be a cyclic carbonate-based organic solvent or a linear carbonate-based organic solvent.
  • the cyclic carbonate-based organic solvent is a high-viscosity organic solvent, and specific examples thereof are ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene Carbonate, 2,3-pentylene carbonate, or vinylene carbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • 1,2-butylene carbonate 2,3-butylene carbonate
  • 1,2-pentylene Carbonate 2,3-pentylene carbonate
  • vinylene carbonate vinylene carbonate
  • the linear carbonate-based organic solvent is an organic solvent having a low viscosity and a low dielectric constant, and representative examples thereof are dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate ( EMC), methylpropyl carbonate or ethylpropyl carbonate.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate or ethylpropyl carbonate methylpropyl carbonate or ethylpropyl carbonate.
  • non-fluorine-based carbonate-based solvent Since the non-fluorine-based carbonate-based solvent has low oxidation stability, gas is generated due to a side reaction with an electrode during storage at high temperature or driving at high voltage, thereby inhibiting the stability of the lithium secondary battery. Therefore, it is preferable not to include a non-fluorine-based carbonate-based solvent in the non-aqueous electrolyte in terms of improving the performance of the secondary battery.
  • the non-aqueous electrolyte of the present invention does not contain a fluorine-based ester solvent for the same reason.
  • the balance excluding LiPF 6 , LiN(FSO 2 ) 2 and additional additives described later may be a non-aqueous organic solvent.
  • the non-aqueous electrolyte contained in the lithium secondary battery of the present invention prevents the non-aqueous electrolyte from being decomposed in a high voltage environment and causing electrode collapse, or further enhances the effects of low-temperature high-rate discharge characteristics, high-temperature stability, prevention of overcharging, and inhibition of battery expansion at high temperatures.
  • additional additives may be further included in the non-aqueous electrolyte.
  • additional additives include cyclic carbonate compounds, halogen-substituted carbonate compounds, sultone compounds, sulfate compounds, phosphate compounds, borate compounds, nitrile compounds, amine compounds, silane compounds, and benzene compounds. It may contain at least one or more additional additives selected from the group consisting of compounds.
  • the cyclic carbonate-based compound may include vinylene carbonate (VC) or vinyl ethylene carbonate, and specifically, vinylene carbonate.
  • the non-aqueous electrolyte of the present invention does not contain a non-fluorine-based carbonate-based solvent. Therefore, when the cyclic carbonate-based compound is included as an additive, the cyclic carbonate-based compound may be included in the range of less than 4% by weight, preferably 0.1 to 3% by weight, based on the total weight of the non-aqueous electrolyte. If the content of the cyclic carbonate-based compound exceeds 4% by weight, stability of the lithium secondary battery may be impaired.
  • the halogen-substituted carbonate-based compound may include fluoroethylene carbonate (FEC).
  • FEC fluoroethylene carbonate
  • the sultone-based compound is a material capable of forming a stable SEI film by a reduction reaction on the surface of the negative electrode, and includes 1,3-propane sultone (PS), 1,4-butane sultone, ethenesultone, and 1,3-propene sultone ( PRS), at least one compound selected from the group consisting of 1,4-butene sultone and 1-methyl-1,3-propene sultone, specifically 1,3-propane sultone (PS) or 1,3 -Propene sultone (PRS) is mentioned.
  • PS 1,3-propane sultone
  • PRS 1,3-Propene sultone
  • the sulfate-based compound is a material capable of forming a stable SEI film that does not crack even when stored at high temperatures by being electrically decomposed on the surface of the negative electrode, and includes ethylene sulfate (Esa), trimethylene sulfate (TMS), or methyltriethylene sulfate. Methylene sulfate (MTMS).
  • Esa ethylene sulfate
  • TMS trimethylene sulfate
  • MTMS methyltriethylene sulfate
  • the phosphate-based compound is lithium difluoro(bisoxalato)phosphate, lithium difluorophosphate, tetramethyl trimethyl silyl phosphate, trimethyl silyl phosphite, tris(2,2,2-trifluoroethyl) phosphate And one or more compounds selected from the group consisting of tris(trifluoroethyl) phosphite, specifically lithium difluoro(bisoxalato)phosphate and lithium difluorophosphate (LiPO 2 F 2 ) At least one or more selected from the group consisting of may be mentioned.
  • the borate-based compound may include lithium tetraphenylborate and lithium difluoro(oxalato)borate (LiODFB).
  • the nitrile compounds are succinonitrile, adiponitrile, acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzo.
  • the amine-based compound may include triethanolamine or ethylene diamine, and the silane-based compound may be tetravinylsilane.
  • benzene-based compound examples include monofluorobenzene, difluorobenzene, trifluorobenzene, and tetrafluorobenzene.
  • the lithium salt-based compound is a compound different from the lithium salt contained in the non-aqueous electrolyte, LiPO 2 F 2 , LiODFB, LiBOB (lithium bisoxalatoborate (LiB (C 2 O 4 ) 2 )) and lithium tetrafluoroborate (LiBF 4 ) and one or more compounds selected from the group consisting of.
  • two or more of the additional additives may be mixed and used, and the mixed content of these additional additives may be included in an amount of less than 50% by weight, specifically 0.1 to 10% by weight, based on the total weight of the non-aqueous electrolyte. It may be included in 0.05 to 5% by weight. If the mixed content of the additional additives is less than 0.1% by weight, the effect of improving the low-temperature capacity and high-temperature storage characteristics and high-temperature life characteristics of the battery is insignificant. If the mixed content of the additional additives exceeds 50% by weight, the battery During charging and discharging, there is a possibility of excessive side reactions in the electrolyte.
  • the additives for forming the SEI film when added in an excessive amount, they may not be sufficiently decomposed at high temperatures, and thus may be present as unreacted or precipitated in the electrolyte at room temperature. Accordingly, a side reaction may occur in which the lifespan or resistance characteristics of the secondary battery are deteriorated.
  • the separator included in the lithium secondary battery of the present invention is a conventional porous polymer film generally used, for example, ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate.
  • a porous polymer film made of a polyolefin-based polymer such as a copolymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a nonwoven fabric made of a high melting point glass fiber, polyethylene terephthalate fiber, etc. can be used. However, it is not limited thereto.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a square shape, a pouch type, or a coin type.
  • FEC fluoroethylene carbonate
  • FEMC fluoroethyl methyl carbonate
  • LiFSI 1.0M LiN(FSO 2 ) 2
  • a positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 ; NCM
  • a conductive material carbon black
  • a binder polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • a positive electrode slurry solid content: 50% by weight
  • the positive electrode slurry was applied and dried on an aluminum (Al) thin film of a 12 ⁇ m-thick positive electrode current collector, and then roll press was performed to prepare a positive electrode.
  • the negative electrode slurry was coated and dried on a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 6 ⁇ m, and then roll pressed to prepare a negative electrode.
  • Cu copper
  • the positive electrode, inorganic particles (Al 2 O 3 ) coated polyolefin-based porous separator and a negative electrode were sequentially stacked to prepare an electrode assembly.
  • the assembled electrode assembly was accommodated in a pouch-type battery case, and the nonaqueous electrolyte for a lithium secondary battery was injected to prepare a pouch-type lithium secondary battery.
  • FEC fluoroethylene carbonate
  • FEMC fluoroethyl methyl carbonate
  • LiFSI 1.0M LiN(FSO 2 ) 2
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared non-aqueous electrolyte was used instead of the non-aqueous electrolyte prepared in Example 1.
  • FEC fluoroethylene carbonate
  • FEMC fluoroethyl methyl carbonate
  • LiFSI 1.0M LiN(FSO 2 ) 2
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared non-aqueous electrolyte was used instead of the non-aqueous electrolyte prepared in Example 1.
  • PS 1,3-propane sultone
  • EMC ethyl methyl carbonate
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared non-aqueous electrolyte was used instead of the non-aqueous electrolyte prepared in Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 1, except that the prepared non-aqueous electrolyte was used instead of the non-aqueous electrolyte prepared in Comparative Example 1.
  • FEC fluoroethylene carbonate
  • EMC ethylmethyl carbonate
  • PS 1,3-propane sultone
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 1, except that the prepared non-aqueous electrolyte was used instead of the non-aqueous electrolyte prepared in Comparative Example 1.
  • FEC fluoroethylene carbonate
  • DEC diethyl carbonate
  • PS 1,3-propane sultone
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 1, except that the prepared non-aqueous electrolyte was used instead of the non-aqueous electrolyte prepared in Comparative Example 1.
  • FEC fluoroethylene carbonate
  • FEMC fluoroethyl methyl carbonate
  • PS 1,3-propane sultone
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 1, except that the prepared non-aqueous electrolyte was used instead of the non-aqueous electrolyte prepared in Comparative Example 1.
  • Fluoroethylene carbonate (FEC) and diethyl carbonate (DEC) were mixed in a volume ratio of 1:9, and then 1.5M of LiPF 6 was dissolved to prepare a mixed organic solvent.
  • a non-aqueous electrolyte for a lithium secondary battery was prepared by mixing 0.5 g of 1,3-propane sultone (PS) and 3.0 g of vinylene carbonate to 96.5 g of the mixed organic solvent.
  • PS 1,3-propane sultone
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 1, except that the prepared non-aqueous electrolyte was used instead of the non-aqueous electrolyte prepared in Comparative Example 1.
  • FEC fluoroethylene carbonate
  • DEC diethyl carbonate
  • a non-aqueous electrolyte for a lithium secondary battery was prepared by mixing 0.5 g of 1,3-propane sultone (PS) and 3.0 g of vinylene carbonate to 96.5 g of the mixed organic solvent.
  • PS 1,3-propane sultone
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 1, except that the prepared non-aqueous electrolyte was used instead of the non-aqueous electrolyte prepared in Comparative Example 1.
  • a non-aqueous electrolyte for a lithium secondary battery was prepared by mixing 0.5 g of 1,3-propane sultone (PS) and 3.0 g of vinylene carbonate to 96.5 g of the mixed organic solvent.
  • PS 1,3-propane sultone
  • a lithium secondary battery was manufactured in the same manner as in Comparative Example 1, except that the prepared non-aqueous electrolyte was used instead of the non-aqueous electrolyte prepared in Comparative Example 1.
  • the lithium secondary battery prepared in Example 1 and each of the lithium secondary batteries prepared in Comparative Examples 3 and 5 were charged under CC-CV (constant current-constant voltage) conditions up to 4.2V at a rate of 1.0C at 25°C, and 0.5 It was discharged under CC conditions up to 3.0V at C speed. Initial charging and discharging of 3 cycles was performed with the charging/discharging as 1 cycle.
  • CC-CV constant current-constant voltage
  • each of the lithium secondary batteries initially charged and discharged was charged at a rate of 1.0C to 4.2V under CC-CV conditions, and discharged at a rate of 0.5C to 3.0V under CC conditions.
  • the charging and discharging was performed as 1 cycle, and 20 cycles were performed at 25°C.
  • Capacity retention rate (%) (discharge capacity every 5 cycles / discharge capacity after initial charge/discharge) ⁇ 100
  • the lithium secondary battery prepared in Example 2 and each of the lithium secondary batteries prepared in Comparative Examples 1 to 5 were charged under CC-CV (constant current-constant voltage) conditions to 4.2V at a rate of 1.0C at 25°C, and 0.5 It was discharged under CC conditions up to 3.0V at C rate. Initial charging and discharging of 3 cycles was performed with the charging/discharging as 1 cycle.
  • CC-CV constant current-constant voltage
  • each of the lithium secondary batteries initially charged and discharged was charged at a rate of 1.0C to 4.2V under CC-CV conditions, and discharged at a rate of 0.5C to 3.0V under CC conditions.
  • 150 cycles were performed at 25°C with the charge/discharge as 1 cycle.
  • Example 2 has a higher capacity retention rate (%) after 150 cycles compared to the secondary battery prepared in Comparative Examples 1 to 5.
  • the secondary battery prepared in Example 2 and the secondary battery prepared in Comparative Example 3 were charged under CC-CV conditions at a rate of 4.2V at 25°C and 1.0C, and discharged at a rate of 0.5C to 3.0V under CC conditions.
  • Initial charging and discharging of 3 cycles was performed with the charging/discharging as 1 cycle.
  • the initial voltage was measured using a PNE-0506 charger (manufacturer: PNE Solution, 5V, 6A), and a resistance value was calculated from this.
  • the initially charged and discharged lithium secondary batteries were charged under CC-CV conditions up to 4.2V at a rate of 1.0C, respectively, and discharged under CC conditions up to 3.0V at a rate of 0.5C. 200 cycles were performed with the above charging and discharging as 1 cycle.
  • Resistance increase rate (%) [(resistance value after 200 cycles/resistance value after initial charge/discharge) ⁇ 100)]-100
  • the secondary battery of Comparative Example 3 had a resistance increase rate (%) of 50% after 200 cycles, whereas the lithium secondary battery prepared in Example 2 had a resistance increase rate (%) after 200 cycles of 25%. You can see that it is improved.
  • the secondary battery of Example 2 does not contain a non-fluorine-based organic solvent as a non-aqueous solvent in the non-aqueous electrolyte, an additional electrolyte decomposition reaction is reduced during charging and discharging, thereby suppressing an increase in resistance.
  • the secondary battery prepared in Example 2 and each secondary battery prepared in Comparative Example 3 were charged under CC-CV conditions at a rate of 1.0 C at room temperature (25° C.) to 4.2 V, and at a rate of 0.5 C to 3.0 V. Discharged under CC conditions. 200 cycles were performed with the charging/discharging as 1 cycle, and then charged to 100% SOC at a rate of 0.05 C and then re-discharged to obtain a differential capacity curve, which is shown in FIG. 4.
  • the differential capacity curve is a graph showing the relationship between the differential capacity (dQ/dV) and voltage obtained by differentiating the charge/discharge capacity by a voltage, and the decrease in the peak of the voltage curve is expressed by reducing the charge/discharge response in the corresponding voltage region. It means that the discharge capacity being reduced.
  • the lithium secondary battery prepared according to Example 2 exhibits a high discharge capacity by silicon at a voltage of 3.5V at the time of low rate discharge, whereas the lithium secondary battery of Comparative Example 3 is expressed at a voltage of 3.5V. It can be seen that the said dose was lost, and the dose expression became impossible.
  • the secondary battery prepared in Example 2 and the secondary battery prepared in Comparative Example 3 were charged under CC-CV conditions at a rate of 4.2V at 25°C and 1.0C, and discharged under CC conditions up to 3.0V at a rate of 0.5C. Charging and discharging were performed for 200 cycles with 1 cycle of charging and discharging.
  • the QOCV value is high in the graph, it means that Li ions are trapped at the cathode and discharge does not normally occur. Conversely, when the QOCV value is low, it means that Li is normally desorbed from the cathode and reversibly inserted into the anode. Therefore, the change in the discharge reversibility of the battery can be estimated from these results.
  • the QOCV value of the secondary battery of Comparative Example 3 is 3.37 V, whereas the QOCV value of the secondary battery of Examples 1 and 2 is 3.29 V, not 3.20 V, respectively, compared to the secondary battery of Comparative Example 3. You can see that it is low.
  • the secondary battery of the present invention can prevent Li ions from being trapped in the negative electrode, thereby improving the irreversibility of the battery.
  • the charge/discharge was performed as one cycle to evaluate the life characteristics at 25°C.
  • Capacity retention rate (%) (Discharge capacity every cycle / Discharge capacity after initial charge/discharge) ⁇ 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)

Abstract

양극; 탄소계 물질 및 규소계 화합물을 포함하는 음극; LiPF6, LiN(FSO2)2 및 비수성 유기용매를 포함하는 비수전해액; 및 세퍼레이터를 포함하고, 상기 비수성 유기용매로 불소계 환형 카보네이트 유기용매 및 불소계 선형 카보네이트 유기용매를 포함하는 리튬 이차전지에 관한 것이다.

Description

사이클 특성이 향상된 리튬 이차전지
본 출원은 2019년 08월 02일 한국 특허청에 제출된 한국 특허 출원 제10-2019-0094377호의 출원일 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 사이클 특성이 향상된 리튬 이차전지에 관한 것이다.
정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용할 수 있는 이차전지 기반 기술에 대한 관심이 대두되고 있다.
특히, 휴대형 전자기기, 통신기기나 전기자동차의 현저한 발전에 따라, 경제성과 기기의 장수명화, 소형 경량화를 확보하는 동시에, 고용량, 고에너지 밀도를 가지는 이차전지에 대한 요구가 높아지고 있다.
이러한 요구를 해결하기 위한 방안으로 흑연 (이론적 용량: 372 mAh/g) 대신 이론적 최대용량이 4020 mAh/g인 규소(Si) 또는 규소계 화합물을 새로운 고용량 음극 활물질로 적용하기 위한 기술 개발이 대두되고 있다.
하지만, 음극 활물질로서 규소 (Si)계 물질을 단독으로 사용하면, 충전 및 방전시 리튬과의 반응에 의해서 큰 부피 팽창 및 수축이 일어나 규소계 활물질 분말의 미분화 및 충방전에 따른 규소계 활물질 분말과 집전체와의 전기적 단락이 발생하는 단점이 있다. 그 결과, 전지의 충전 및 방전 사이클이 진행되어 전지 용량이 급격하게 감소하고, 사이클 수명이 짧아지면서, 실용 레벨에 도달하지 못하게 된다.
특히, 규소계 활물질 표면에 형성된 전해질 분해산물인 SEI 막 또한 활물질의 큰 부피변화로 인하여 물리적 파괴가 야기하면서, 전해질의 지속적인 분해와 이로 인한 활물질간의 접촉 저항의 증가가 심화되면서, 전지의 수명 열화가 극심하다는 문제가 있다.
따라서, 규소계 활물질을 음극으로서 적용하기 위하여, 상술한 열화 거동을 방지하는 동시에, SEI 막의 파괴를 제어하여 활물질간 접촉 저항 증가를 억제할 수 있는 전해질에 관한 연구가 검토되고 있다.
본 발명에서는 음극은 규소계 화합물을 포함하고, 비수 전해액은 비수계 용매로서 불소계 환형 카보네이트 유기용매와 불소계 선형 카보네이트로 구성되는 유기용매를, 리튬염으로서 특정 두 물질의 조합을 포함함으로써 사이클 특성이 향상된 리튬 이차전지를 제공하고자 한다.
상기의 목적을 달성하기 위해 본 발명의 일 실시예에서는,
양극,
탄소계 물질 및 규소계 화합물을 포함하는 음극;
LiPF6, LiN(FSO2)2 및 비수성 유기용매를 포함하는 비수전해액; 및
세퍼레이터를 포함하고,
상기 비수성 유기용매로 불소계 환형 카보네이트 유기용매 및 불소계 선형 카보네이트 유기용매를 포함하는 리튬 이차전지를 제공한다.
본 발명에 따르면, 규소계 화합물을 포함하는 음극을 구비한 이차전지 제조 시에 불소 성분을 함유한 2종의 리튬염과 불소계 카보네이트 유기용매를 포함하는 비수전해액을 함께 혼용함으로써, 음극 표면에 물리적 파괴를 억제할 수 있는 견고한 SEI 막을 형성하여, 충방전 후에도 사이클 특성이 향상된 리튬 이차전지를 제조할 수 있다.
도 1은 본 발명의 실험예 1에 따른 리튬 이차전지의 용량 유지율 평가 결과를 나타낸 그래프이다.
도 2는 본 발명의 실험예 2에 따른 리튬 이차전지의 용량 유지율 평가 결과를 나타낸 그래프이다.
도 3은 본 발명의 실험예 3에 따른 리튬 이차전지의 저항 증가율 평가 결과를 나타낸 그래프이다.
도 4는 본 발명의 실험예 4에 따른 200 사이클에서 전압에 대한 미분 용량 (differential capacity)을 측정한 그래프이다.
도 5는 상온 200 사이클 진행 후 0.05C로 1 사이클 충 방전 후 1 시간 휴지(rest) 후 측정한 QOCV (Quasi-open-circuit Voltage)를 나타낸 그래프이다.
도 6은 본 발명의 실험예 6에 따른 리튬 이차전지의 용량 유지율 평가 결과를 나타낸 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
리튬 이차전지
본 명세서에 따르면, 불소 성분을 함유한 2종의 리튬염 및 불소 성분을 함유한 유기용매를 포함하는 비수전해액과 규소계 화합물을 포함하는 음극을 함께 혼용하는 리튬 이차전지를 제공한다.
구체적으로, 본 명세서에서는
양극,
탄소계 물질 및 규소계 화합물을 포함하는 음극,
LiPF6, LiN(FSO2)2 및 비수성 유기용매를 포함하는 비수전해액; 및
세퍼레이터를 포함하고,
상기 비수성 유기용매로 불소계 환형 카보네이트 유기용매 및 불소계 선형 카보네이트 유기용매를 포함하는 리튬 이차전지를 제공한다.
이러한 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 세퍼레이터가 순차적으로 적층되어 있는 전극 조립체를 형성하여 전지 케이스에 수납한 다음, 비수전해액을 투입하여 제조하는 당 기술 분야에 알려진 통상적인 방법에 따라 제조되어 적용될 수 있으며, 구체적으로 각각의 구성은 후술하는 바와 같다.
(1) 양극
상기 양극은 양극 집전체 상에 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 코팅한 다음, 건조 및 압연하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-철-포스페이트계 산화물 (예를 들면, LiFePO4), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(0<Y<1), LiMn2-zNizO4(0<Z<2), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(0<Y1<1), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(0<Y2<1), LiMn2-z1Coz1O4(0<Z1<2), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%, 구체적으로 90 중량% 내지 99 중량%로 포함될 수 있다. 이때, 상기 양극 활물질의 함량이 80 중량% 이하인 경우 에너지 밀도가 낮아져 용량이 저하될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 모노머, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
또한, 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 부여하는 물질로서, 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 
이러한 도전재는 그 대표적인 예로 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말, 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
또한, 상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질 및 선택적으로 바인더 및 도전재를 포함하는 양극 슬러리 중의 고형분 농도가 10 중량% 내지 60 중량%, 바람직하게 20 중량% 내지 50 중량%가 되도록 포함될 수 있다
(2) 음극
상기 음극은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 슬러리를 코팅한 다음, 건조 및 압연하여 제조할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 본 명세서에서 상기 음극은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소계 물질 및 탄소계 물질과 리튬을 도프 및 탈도프할 수 있는 규소계 화합물을 포함하는 것이 바람직하다.
먼저, 상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소계 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다.
상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있다. 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다. 구체적으로, 상기 탄소계 음극 활물질은 천연 흑연 또는 인조 흑연을 이용할 수 있다.
또한, 상기 리튬을 도프 및 탈도프할 수 있는 규소계 화합물로는 Si, SiOx(0<x≤2) 및 Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, Si를 제외한 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이다) 중 중 적어도 하나 이상을 포함할 수 있다. 또한 SiO2와 이들 중 적어도 하나를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 구체적으로, 상기 규소계 화합물은 SiOx(0<x≤2)을 적용할 수 있다.
상기 탄소계 물질 및 규소계 화합물의 중량비는 1:1 내지 1:10, 구체적으로 1:1 내지 1:8일 수 있다.
상기 탄소계 물질과 규소계 화합물의 혼합비가 상기 범위를 만족하는 경우, 이차전지의 고용량 및 고에너지 밀도를 확보할 수 있다. 만약, 상기 탄소계 물질의 함량이 상기 중량비 범위를 초과한 과량으로 함유되면, 전지의 에너지 밀도가 저하될 수 있고, 상기 규소계 화합물이 상기 중량비 범위를 초과한 과량으로 함유되면 전지의 내구성이 저하될 수 있다.
상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소계 물질과 리튬을 도프 및 탈도프할 수 있는 규소계 화합물 외에도 필요에 따라서 리튬 금속, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물 및 전이금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1) 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
또한, 상기 음극 활물질은 Sn, SnO2, Sn-Y1(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, Sn을 제외한 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이다) 등을 들 수 있고, 상기 원소 Y1으로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말, 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 75 중량%, 바람직하게 50 중량% 내지 65 중량%가 되도록 포함될 수 있다.
(3) 비수전해액
또한, 본 명세서에서 상기 비수전해액은 불소 성분을 함유한 2종 이상의 리튬염과 불소 성분을 함유한 유기용매를 포함할 수 있다.
(3-1) 불소 함유 2종의 리튬염
본 발명의 상기 비수전해액은 리튬염으로서 LiPF6 및 LiN(FSO2)2를 포함한다. 구체적으로, 상기 비수전해액은 LiPF6 및 LiN(FSO2)2 외 다른 리튬염을 포함하지 않을 수 있다. 즉, 상기 비수전해액의 리튬염은 LiPF6 및 LiN(FSO2)2로 구성될 수 있다.
LiPF6는 유기 용매에 과량 용해되어 이온 전도도를 높게 형성할 수 있는 리튬염이므로 LiPO2F2, LiBF4 등의 다른 불소 함유 리튬염에 비해 LiN(FSO2)2와 함께 사용하였을 때 전지의 출력 특성과 초기 용량 측면에서 유리한 장점이 있다.
또한, 상기 LiPF6 및 LiN(FSO2)2의 몰농도(molarity, M)비는 1:1 내지 1:10, 구체적으로 1:1 내지 1:5, 더욱 구체적으로 1:1 내지 1:2일 수 있다.
이때, 물에 대한 반응성이 낮은 LiN(FSO2)2의 LiPF6 대비 몰농도비가 상기 범위 미만이면 전해액 내부에서 완전히 해리된 리튬 이온 수가 감소하여 이온 전도도가 낮아지므로 출력 특성을 확보하는 것이 용이하지 않으며, 나아가 열에 의해 불산을 발생시키는 LiPF6의 농도가 상대적으로 증가하기 때문에, 음극 표면에 불안정한 SEI 가 형성될 수 있다. 반면에, LiN(FSO2)2의 LiPF6 대비 몰농도비가 상기 범위를 초과하는 경우, 전해액 내에 염의 농도가 과도하게 높아져, 비수전해액의 점도가 증가하고, 이에 따라 전극에 대한 전해액 함침성(wetting)이 낮아져 전지 구동이 불안정하거나 불가능해지는 단점이 있다.
또한, 상기 불소 함유 2종의 리튬염의 혼합 농도는 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으며, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해액 내에 0.8 M 내지 3.0 M의 농도, 구체적으로 1.0M 내지 3.0M 농도로 포함될 수 있다.
상기 2종의 리튬염의 혼합 농도가 0.8M 미만이면, 리튬 이차전지의 저온 출력 개선 및 고온 저장 시 사이클 특성 개선의 효과가 미미하고, 3.0M 농도를 초과하면 비수전해액의 점도가 증가함에 따라 전해액 함침성이 저하될 수 있다.
한편, 본 발명에서는 비불소계 리튬염 대신 불소 함유 리튬염과 후술하는 불소 원소 함유 유기용매를 포함하는 비수전해액을 함께 사용함으로써, 규소계 화합물을 포함하는 음극 표면에 더욱 견고한 F-rich한 SEI 막을 형성할 수 있다. 따라서, 충방전 시 발생하는 규소계 음극 활물질의 부피 변화에 따른 SEI 막의 물리적 파괴를 방지하여, 활물질 표면에서 추가적 전해질 분해를 억제할 수 있고, 나아가 음극과 전해액의 부반응을 억제할 수 있다. 따라서, 전해액의 추가적 반응에 의하여 형성되는 SEI 형성으로 인한 전지의 저항 증가 및 이로 인한 수명 열화를 개선할 수 있다.
(3-2) 비수성 유기용매
또한, 본 명세서에서 비수전해액은 주 비수용매로서 불소계 카보네이트 용매를 포함하며, 비불소계 카보네이트계 용매는 포함하지 않는 것이 바람직하다. 즉, 비수성 유기용매는 불소계 환형 카보네이트 유기용매 및 불소계 선형 카보네이트로 구성될 수 있다.
현재 대부분의 이차전지는 비수전해액의 주 용매로 비불소계 카보네이트 용매를 사용하고 있는데, 이들 용매는 일반적으로 고전압에서 분해가 일어나 기체를 발생시키고 피막으로 석출되어 전지의 저항을 증가시키는 문제가 존재한다. 특히, 규소가 과량 함유된 전지를 사용할 경우, 동일 전압 제한 조건에서 충방전을 진행하였을 시, 규소가 흑연에 비하여 작동전위가 높은 곳에 위치하기 때문에, 양극의 실질적인 충전 전위가 높아지고, 이로 인하여 비불소계 전해액의 부반응이 증가하게 된다. 이에, 본 발명에서는 산화안정성이 불안정한 비불소계 카보네이트 용매 대신 전기화학적 안정성이 우수한 불소계 용매를 비수전해액 주용매로 포함하는 것을 특징으로 한다. 즉, 상기 불소계 용매는 높은 산화 안정성을 가지기 때문에, 전극 표면에 견고한 SEI를 형성할 수 있으므로, 고전압하에서 구동(충방전) 시에 비수전해액과 전극, 특히 양극과의 부반응을 방지할 수 있으며, 특히 규소계 화합물을 포함하는 음극이 구비된 이차전지의 사이클 특성을 개선할 수 있다.
한편, 상기 불소계 카보네이트 용매는 불소계 환형 카보네이트 유기용매와 불소계 선형 카보네이트 유기용매를 포함할 수 있다,
상기 불소계 환형 카보네이트 유기용매는 플루오로에틸렌카보네이트(FEC), 디플루오로에틸렌카보네이트(DFEC), 트리플루오로에틸렌카보네이트, 테트라플루오로에틸렌카보네이트, 3,3,3-트리플루오로프로필렌카보네이트, 및 1-플루오로프로필렌카보네이트로 이루어진 군으로부터 적어도 하나 이상일 수 있으며, 구체적으로, 플루오로에틸렌 카보네이트를 들 수 있다.
또한, 상기 불소계 선형 카보네이트 유기용매는 플루오로에틸 메틸 카보네이트(FEMC), 플루오로디메틸 카보네이트(F-DMC), 디(2,2,2-트리플루오로에틸)카보네이트, 2,2,2-트리플루오로에틸메틸카보네이트, 디플루오로메틸메틸카보네이트, 트리플루오로메틸메틸카보네이트, 디플루오로메틸에틸카보네이트, 1-플루오로에틸메틸카보네이트 및 메틸 2,2,2-트리플루오로에틸 카보네이트(F3-EMC)로 이루어진 군으로부터 선택된 적어도 하나 이상일 수 있으며, 구체적으로 플루오로에틸 메틸 카보네이트(FEMC)일 수 있다.
또한, 상기 불소계 환형 카보네이트 유기용매 및 불소계 선형 카보네이트 유기용매의 부피비는 0.5:9.5 내지 4:6, 구체적으로 1:9 내지 4:6, 더욱 구체적으로 1:9 내지 3:7일 수 있다.
즉, 본 발명에서는 리튬 이차전지의 높은 이온전도도 확보 및 음극에서의 환원안정성을 확보하기 위해서 비수전해액 주용매로 불소계 환형 카보네이트 유기용매와 상기 불소계 선형 카보네이트 유기용매를 상기와 같은 비율 범위로 혼용하면 사용함으로써, 비수전해액의 유전 상수를 높이고, 이를 바탕으로 리튬 염의 해리도가 증가하여 전해액의 이온전도도 성능을 확보할 수 있다. 또한, 음극 표면에 견고한 SEI 막을 형성하여 사이클 특성을 개선할 수 있다.
이때, 상기 불소계 환형 카보네이트 유기용매가 0.5 중량비 미만으로 포함되면, 즉 불소계 선형 카보네이트 용매가 9.5 중량비를 초과하여 포함되면, 비수전해액의 유전상수가 낮아져 리튬염의 해리도가 저감될 수 있다. 또한, 불소계 환형 카보네이트 유기용매의 함량이 4 중량비를 초과하면, 비수전해액의 물성이 고점도화되어 리튬 이온의 이동도가 감소되고, 전해액 함침성이 저하되므로, 사이클 특성 및 용량 특성이 열화될 수 있다.
한편, 본 명세서에 따른 비수전해액은 비수용매로 비불소계 카보네이트계 용매는 포함하지 않는 것이 바람직하다. 구체적으로, 상기 비불소계 카보네이트계 용매는 환형 카보네이트계 유기용매 또는 선형 카보네이트계 유기용매를 들 수 있다.
상기 환형 카보네이트계 유기용매는 고점도의 유기용매로서, 그 구체적인 예로 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트 또는 비닐렌 카보네이트를 들 수 있다.
또한, 상기 선형 카보네이트계 유기용매는 저점도 및 저유전율을 가지는 유기용매로서, 그 대표적인 예로 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 또는 에틸프로필 카보네이트를 들 수 있다.
상기 비불소계 카보네이트계 용매는 산화 안정성이 낮기 때문에 고온 저장 시 또는 고전압 구동 시에 전극과의 부반응에 의해 가스가 발생하여 리튬 이차전지의 안정성을 저해시킬 수 있다. 따라서, 이차전지의 성능 향상 측면에서 비수전해액 중에 비불소계 카보네이트계 용매는 포함하지 않는 것이 바람직하다.
나아가, 본 발명의 비수전해액은 동일한 이유로 불소계 에스테르 용매도 포함하지 않는 것이 바람직하다.
상기 비수 전해액에서 LiPF6, LiN(FSO2)2 및 후술하는 부가적 첨가제를 제외한 잔부는 비수성 유기용매일 수 있다.
(4) 부가적 첨가제
본 발명의 리튬 이차전지에 포함되는 비수 전해액은 고전압 환경에서 비수 전해액이 분해되어 전극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온에서의 전지 팽창 억제 효과 등을 더욱 향상시키기 위하여, 필요에 따라 상기 비수 전해액 내에 부가적 첨가제들을 추가로 포함할 수 있다.
이러한 부가적 첨가제는 그 대표적인 예로 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 화합물, 보레이트계 화합물, 니트릴계 화합물, 아민계 화합물, 실란계 화합물 및 벤젠계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 부가적 첨가제를 포함할 수 있다.
상기 환형 카보네이트계 화합물은 비닐렌카보네이트(VC) 또는 비닐에틸렌 카보네이트를 들 수 있으며, 구체적으로 비닐렌 카보네이트를 들 수 있다.
한편, 상술한 바와 같이 본 발명의 비수전해액은 비불소계 카보네이트계 용매는 포함하지 않는 것이 바람직하다. 따라서, 첨가제로 상기 환형 카보네이트계 화합물을 포함하는 경우, 상기 환형 카보네이트계 화합물은 비수 전해액 전체 중량을 기준으로 4 중량% 미만, 바람직하게 0.1 내지 3 중량% 범위로 포함될 수 있다. 만약, 상기 환형 카보네이트계 화합물의 함량이 4 중량%를 초과하는 경우, 리튬 이차전지의 안정성이 저해될 수 있다.
상기 할로겐 치환된 카보네이트계 화합물은 플루오로에틸렌 카보네이트(FEC)를 들 수 있다.
상기 설톤계 화합물은 음극 표면에서 환원반응에 의한 안정한 SEI 막을 형성할 수 있는 물질로서, 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 들 수 있으며, 구체적으로 1,3-프로판 설톤(PS) 또는 1,3-프로펜 설톤(PRS)을 들 수 있다.
상기 설페이트계 화합물은 음극 표면에서 전기적으로 분해되어 고온 저장 시에도 균열되지 않는 안정적인 SEI 막을 형성할 수 물질로서, 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 또는 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS)을 들 수 있다.
상기 포스페이트계 화합물은 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 테트라메틸 트리메틸 실릴 포스페이트, 트리메틸 실릴 포스파이트, 트리스(2,2,2-트리플루오로에틸)포스페이트 및 트리스(트리플루오로에틸) 포스파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 구체적으로 불소 성분을 함유하는 리튬 디플루오로(비스옥살라토)포스페이트 및 리튬 디플루오로포스페이트 (LiPO2F2) 로 이루어진 군으로부터 선택되는 적어도 하나 이상을 들 수 있다.
상기 보레이트계 화합물은 리튬 테트라페닐보레이트 및 리튬 디플루오로(옥살라토)보레이트(LiODFB)를 들 수 있다.
상기 니트릴계 화합물은 숙시노니트릴, 아디포니트릴, 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 들 수 있으며, 구체적으로 불소 성분을 함유하는 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴 및 트리플루오로벤조니트릴로 이루어진 군으로부터 선택되는 적어도 하나 이상을 들 수 있다.
상기 아민계 화합물은 트리에탄올아민 또는 에틸렌 디아민 등을 들 수 있으며, 상기 실란계 화합물로 테트라비닐실란을 들 수 있다.
상기 벤젠계 화합물은 모노플루오로벤제, 디플루오로벤젠, 트리플루오로벤젠, 테트라플루오로벤젠 등을 들 수 있다.
상기 리튬염계 화합물은 상기 비수 전해액에 포함되는 리튬염과 상이한 화합물로서, LiPO2F2, LiODFB, LiBOB(리튬 비스옥살레이토보레이트(LiB(C2O4)2) 및 리튬 테트라플루오로보레이트(LiBF4)로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있다.
한편, 상기 부가적 첨가제들은 2종 이상이 혼합되어 사용될 수 있으며, 이들 부가적 첨가제들의 혼합 함량은 비수 전해액 전체 중량을 기준으로 50 중량% 미만, 구체적으로 0.1 내지 10 중량%로 포함될 수 있으며, 바람직하게는 0.05 내지 5 중량%로 포함될 수 있다. 상기 부가적 첨가제들의 혼합 함량이 0.1 중량% 보다 적으면 전지의 저온 용량 개선 및 고온 저장 특성 및 고온 수명 특성 개선의 효과가 미미하고, 상기 부가적 첨가제들의 혼합 함량이 50 중량%를 초과하면 전지의 충방전시 전해액 내의 부반응이 과도하게 발생할 가능성이 있다. 특히, 상기 SEI 막 형성용 첨가제들이 과량으로 첨가될 시에 고온에서 충분히 분해되지 못하여, 상온에서 전해액 내에서 미반응물 또는 석출된 채로 존재하고 있을 수 있다. 이에 따라 이차전지의 수명 또는 저항특성이 저하되는 부반응이 발생될 수 있다.
(5) 세퍼레이터
본 발명의 리튬 이차전지에 포함되는 상기 세퍼레이터는 일반적으로 사용되는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1.
(리튬 이차전지용 비수전해액 제조)
플루오로에틸렌 카보네이트(FEC) 및 플루오로에틸 메틸 카보네이트(FEMC)를 3:7의 부피비로 혼합한 다음, 0.5M의 LiPF6와 1.0M의 LiN(FSO2)2(LiFSI)를 용해하여 혼합 유기용매를 제조하였다. 상기 혼합 유기용매 99.5g에 1,3-프로판설톤(PS) 0.5g을 혼합하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
N-메틸-2-피롤리돈(NMP)에 양극 활물질 (LiNi0.8Co0.1Mn0.1O2; NCM), 도전재(카본 블랙) 및 바인더(폴리비닐리덴플루오라이드)를 97.5:1:1.5 중량비로 첨가하여 양극 슬러리(고형분 함량: 50 중량%)를 제조하였다. 상기 양극 슬러리를 12㎛ 두께의 양극 집전체인 알루미늄(Al) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질 (그라파이트:SiO=10:90 중량비), 바인더(SBR-CMC) 및 도전재(카본 블랙)를 95:3.5:1.5 중량비로 용매인 물에 첨가하여 음극 슬러리(고형분 함량: 60 중량%)를 제조하였다. 상기 음극 슬러리를 6㎛ 두께의 음극 집전체인 구리(Cu) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 무기물 입자(Al2O3)가 도포된 폴리올레핀계 다공성 분리막 및 음극을 순차적으로 적층하여 전극조립체를 제조하였다.
파우치형 전지 케이스 내에 상기 조립된 전극조립체를 수납하고, 상기 리튬 이차전지용 비수전해액을 주액하여 파우치형 리튬 이차전지를 제조하였다.
실시예 2.
(리튬 이차전지용 비수전해액 제조)
플루오로에틸렌 카보네이트(FEC) 및 플루오로에틸 메틸 카보네이트(FEMC)를 3:7의 부피비로 혼합한 다음, 0.5M의 LiPF6와 1.0M의 LiN(FSO2)2(LiFSI)를 용해하여 혼합 유기용매를 제조하였다. 상기 혼합 유기용매 96.5g에 1,3-프로판설톤(PS) 0.5g 및 비닐렌 카보네이트 3.0g을 혼합하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
실시예 1에서 제조된 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
실시예 3.
(리튬 이차전지용 비수전해액 제조)
플루오로에틸렌 카보네이트(FEC) 및 플루오로에틸 메틸 카보네이트(FEMC)를 1:9의 부피비로 혼합한 다음, 0.5M의 LiPF6와 1.0M의 LiN(FSO2)2(LiFSI)를 용해하여 혼합 유기용매를 제조하였다. 상기 혼합 유기용매 96.5g에 1,3-프로판설톤(PS) 0.5g 및 비닐렌 카보네이트 3.0g을 혼합하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
실시예 1에서 제조된 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 1.
(리튬 이차전지용 비수전해액 제조)
1.0M LiPF6가 용해된 비수용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=3:7 부피비) 98g에 1,3-프로판설톤(PS) 2.0g을 혼합하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
실시예 1에서 제조된 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 2.
(리튬 이차전지용 비수전해액 제조)
1.0M LiPF6가 용해된 비수용매 (에틸렌 카보네이트(EC):디메틸카보네이트(DMC)=3:7 부피비) 98g에 1,3-프로판설톤(PS) 2.0g을 혼합하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
비교예 1에서 제조된 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는 비교예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 3.
(리튬 이차전지용 비수전해액 제조)
1.0M LiPF6가 용해된 비수용매 (플루오로에틸렌 카보네이트(FEC): 에틸메틸카보네이트(EMC)=3:7 부피비) 98g에 1,3-프로판설톤(PS) 2.0g을 혼합하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
비교예 1에서 제조된 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는 비교예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 4.
(리튬 이차전지용 비수전해액 제조)
1.0M LiPF6가 용해된 비수 용매 (플루오로에틸렌 카보네이트(FEC): 디에틸카보네이트(DEC)=3:7 부피비) 98g에 1,3-프로판설톤(PS) 2.0g을 혼합하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
비교예 1에서 제조된 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는 비교예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 5.
(리튬 이차전지용 비수전해액 제조)
1.0M LiPF6가 용해된 비수 용매 (플루오로에틸렌 카보네이트(FEC): 플루오로에틸 메틸 카보네이트(FEMC)=3:7 부피비) 98g에 1,3-프로판설톤(PS) 2.0g을 혼합하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
비교예 1에서 제조된 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는 비교예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 6.
(리튬 이차전지용 비수전해액 제조)
플루오로에틸렌 카보네이트(FEC) 및 디에틸카보네이트(DEC)를 1:9의 부피비로 혼합한 다음, 1.5M의 LiPF6를 용해하여 혼합 유기용매를 제조하였다. 상기 혼합 유기용매 96.5g에 1,3-프로판설톤(PS) 0.5g 및 비닐렌 카보네이트 3.0g을 혼합하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
비교예 1에서 제조된 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는 비교예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 7.
(리튬 이차전지용 비수전해액 제조)
플루오로에틸렌 카보네이트(FEC) 및 디에틸카보네이트(DEC)를 1:9의 부피비로 혼합한 다음, 1.5M의 LiPF6, 0.2M의 LiPO2F2 및 1.5M의 LiBF4를 용해하여 혼합 유기용매를 제조하였다. 상기 혼합 유기용매 96.5g에 1,3-프로판설톤(PS) 0.5g 및 비닐렌 카보네이트 3.0g을 혼합하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
비교예 1에서 제조된 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는 비교예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 8.
(리튬 이차전지용 비수전해액 제조)
플루오로에틸렌 카보네이트(FEC), 프로필렌 카보네이트(PC) 및 디에틸카보네이트(DEC)를 1:1:8의 부피비로 혼합한 다음, 1.5M의 LiPF6, 0.2M의 LiPO2F2 및 1.5M의 LiBF4를 용해하여 혼합 유기용매를 제조하였다. 상기 혼합 유기용매 96.5g에 1,3-프로판설톤(PS) 0.5g 및 비닐렌 카보네이트 3.0g을 혼합하여 리튬 이차전지용 비수전해액을 제조하였다.
(리튬 이차전지 제조)
비교예 1에서 제조된 비수전해액 대신 상기 제조된 비수전해액을 사용하는 것을 제외하고는 비교예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
실험예
실험예 1. 사이클 특성 평가
실시예 1에서 제조된 리튬 이차전지와 비교예 3 및 5에서 제조된 각각의 리튬 이차전지를 25℃에서 1.0C 속도로 4.2V까지 CC-CV(constant current-constant voltage) 조건으로 충전하고, 0.5C 속도로 3.0V까지 CC 조건으로 방전하였다. 상기 충방전을 1 사이클로 하여 3 사이클의 초기 충방전을 실시하였다.
이어서, 상기 초기 충방전된 각각의 리튬 이차전지를 1.0C 속도로 4.2V까지 CC-CV 조건으로 충전하고, 0.5C 속도로 3.0V까지 CC 조건으로 방전하였다. 상기 충방전을 1 사이클로 하여 25℃에서 20 사이클을 실시하였다.
이때, 5 사이클 마다 방전 용량을 측정하고, 측정된 값을 하기 식 1에 대입하여 용량 유지율을 산출하였다. 그 결과를 하기 도 1에 나타내었다.
[식 1]
용량 유지율 (%) = (5 사이클 마다의 방전 용량 / 초기 충방전 후의 방전 용량) × 100
도 1을 살펴보면, 20 사이클 후의 용량 유지율(%)은 비교예 3 및 5에서 제조된 이차전지에 비해 실시예 1에서 제조된 이차전지가 보다 우수한 것을 알 수 있다.
실험예 2. 사이클 특성 평가
실시예 2에서 제조된 리튬 이차전지와 비교예 1 내지 5에서 제조된 각각의 리튬 이차전지를 25℃에서 1.0C 속도로 4.2V까지 CC-CV(constant current-constant voltage) 조건으로 충전하고, 0.5C 속도로 3.0V까지 CC 조건으로 방전하였다. 상기 충방전을 1 사이클로 하여 3 사이클의 초기 충방전을 실시하였다.
이어서, 상기 초기 충방전된 각각의 리튬 이차전지를 1.0C 속도로 4.2V까지 CC-CV 조건으로 충전하고, 0.5C 속도로 3.0V까지 CC 조건으로 방전하였다. 상기 충방전을 1 사이클로 하여 25℃에서 150 사이클을 실시하였다.
이때, 5 사이클 마다 방전 용량을 측정하고, 측정된 값을 상기 식 1에 대입하여 용량 유지율을 산출하였다. 그 결과를 도 2에 나타내었다.
도 2를 살펴보면, 비교예 1 내지 5에서 제조된 이차전지에 비해 실시예 2에서 제조된 이차전지의 150 사이클 후의 용량 유지율(%)이 보다 우수한 것을 알 수 있다.
실험예 3. 저항 증가율 평가
실시예 2에서 제조된 이차전지와 비교예 3에서 제조된 이차전지를 25℃에서 1.0C 속도로 4.2V까지 CC-CV 조건으로 충전하고, 0.5C 속도로 3.0V까지 CC 조건으로 방전하였다. 상기 충방전을 1 사이클로 하여 3 사이클의 초기 충방전을 실시하였다. PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 초기 전압을 측정하고, 이로부터 저항 값을 산출하였다.
이어서, 상기 초기 충방전된 리튬 이차전지를 각각 1.0C 속도로 4.2V까지 CC-CV 조건으로 충전하고, 0.5C 속도로 3.0V까지 CC 조건으로 방전하였다. 상기 충방전을 1 사이클로 하여 200 사이클을 실시하였다.
그 다음, 200 사이클 후 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 전압을 측정하고, 얻어진 전압으로부터 저항 값을 산출하였다.
상기 측정된 초기 저항값과 200 사이클 후의 저항값을 하기 식 (2)에 대입하여 저항 증가율을 측정하고, 그 결과를 도 3에 나타내었다.
[식 2]
저항 증가율 (%) = [(200 사이클 후의 저항 값/초기 충방전 후의 저항 값) × 100)]-100
도 3을 참고하면, 비교예 3의 이차전지는 200 사이클 후의 저항 증가율(%)이 50%인 반면에, 실시예 2에서 제조된 리튬 이차전지는 200 사이클 후의 저항 증가율(%)이 25%로 개선된 것을 알 수 있다.
즉, 실시예 2의 이차전지는 비수전해액 내에 비수용매로 비불소계 유기용매를 포함하지 않으므로, 충방전 시에 추가적인 전해질 분해 반응이 저감되어, 저항 증가가 억제된 것을 알 수 있다.
실험예 4. 미분 용량 평가
실시예 2에서 제조한 이차전지와 비교예 3에서 제조한 각각의 이차전지에 대하여 각각 상온(25℃)에서 1.0C 속도로 4.2V까지 CC-CV 조건으로 충전하고, 0.5C 속도로 3.0V까지 CC 조건으로 방전하였다. 상기 충방전을 1 사이클로 하여 200 사이클을 진행한 다음, 0.05 C의 속도(C-rate)로 SOC 100%까지 충전한 후 재 방전하여 미분 용량 곡선을 구하고, 이를 도 4에 나타내었다.
상기 미분 용량 곡선이란, 충방전 용량을 전압으로 미분하여 얻어지는 미분 용량(dQ/dV)과 전압의 관계를 나타낸 그래프로서, 전압 곡선의 피크가 감소하는 것은 해당 전압 영역에서의 충방전 반응이 줄어들어 발현되는 방전 용량이 감소한다는 것을 의미한다.
도 4를 살펴보면, 실시예 2에 따라 제조된 리튬 이차전지는 저율 방전 시에 3.5V 전압 부근에서 실리콘에 의한 높은 방전 용량이 발현되는 반면에, 비교예 3의 리튬 이차전지는 3.5V 전압에서 발현하는 용량이 소실되어, 용량 발현이 불가능해졌음을 확인할 수 있다.
이로부터, 실시예 2의 리튬 이차전지의 경우 우수한 SEI가 형성되어, 전해질 분해 반응이 상대적으로 감소하고, 이에 따라 반복적인 충방전 사이클에서 발생하는 Li 소실과 활물질 입자 간의 전기적 단락이 억제되어, 방전 가역성이 비교예 3에 비해 상당히 개선됨을 알 수 있다.
실험예 5. QOCV 평가
실시예 2에서 제조한 이차전지와 비교예 3에서 제조한 이차전지에 대하여, 25℃에서 1.0C 속도로 4.2V까지 CC-CV 조건으로 충전하고, 0.5C 속도로 3.0V까지 CC 조건으로 방전하는 충방전을 1 사이클로 하여 200 사이클 충방전을 진행하였다.
이어서, 0.05 C로 방전을 진행하고 1시간 휴지(rest) 후 상온(25℃)에서 각각의 이차전지에 대한 Q-OCV (quasi-open-circuit voltage)를 측정하고, 그 결과를 도 5에 나타내었다.
이때, 그래프에서 QOCV 값이 높게 나타날 경우, Li 이온이 음극에서 트랩(trap)되어 방전이 정상적으로 발생하지 않음을 의미한다. 반대로 QOCV 값이 낮게 나타날 경우, Li이 음극에서 정상적으로 탈리되어 양극으로 가역적으로 삽입되었음을 의미한다. 따라서, 이러한 결과로부터 전지의 방전 가역성의 변화를 추정할 수 있다.
도 5를 살펴보면, 비교예 3의 이차전지의 QOCV 값은 3.37 V인 반면에 실시예 1 및 2의 이차전지에 대한 QOCV 값은 각각 3.29V 미 3.20V로, 비교예 3의 이차전지에 비하여 더 낮은 것을 알 수 있다.
즉, 200 사이클 충방전 후에도 본 발명의 이차전지는 Li 이온이 음극에서 트래핑(trapping) 되는 것을 방지할 수 있어, 전지의 비가역성이 개선되었음을 알 수 있다.
실험예 6. 사이클 특성 평가
실시예 3에서 제조된 리튬 이차전지와 비교예 6 내지 8에서 제조된 각각의 리튬 이차전지를 25℃에서 0.1 C CC-CV (0.05 C current cut-off) 조건으로 4.2V까지 충전한 후, 2.5V 내지 4.2V의 전압 대역에서 0.33C CC-CV (0.05 C current cut-off)로 충방전하는 사이클을 3 사이클 거친 다음, SOC 50% 상태에서 2.5C CC의 30 sec의 current pulse를 인가하여 저항을 측정하고, 이후 상온에서 1.0C 속도로 4.2V까지 CC-CV(constant current-constant voltage) 조건으로 충전하고, 0.5C 속도로 3.0V까지 CC 조건으로 방전하였다.
상기 충방전을 1 사이클로 하여 25℃에서 수명 특성의 평가를 진행하였다.
이때, 매 사이클 마다 방전 용량을 측정하고, 측정된 값을 하기 식 1에 대입하여 용량 유지율을 산출하였다. 그 결과를 하기 도 6에 나타내었다.
[식 1]
용량 유지율 (%) = (매 사이클 마다의 방전 용량 / 초기 충방전 후의 방전 용량) × 100
도 6을 살펴보면, 100 사이클 후의 용량 유지율(%)은 비교예 6 내지 8에서 제조된 이차전지에 비해 실시예 3에서 제조된 이차전지가 보다 우수한 것을 알 수 있다.
구체적으로, 비불소계 유기용매가 혼용되고, LiN(FSO2)2를 포함하지 않는 경우, LiPO2F2 및 LiBF4 등의 다른 리튬염을 사용하더라도 실시예와 동일한 수준의 사이클 특성을 얻기 어려움을 확인할 수 있다.

Claims (14)

  1. 양극;
    탄소계 물질 및 규소계 화합물을 포함하는 음극;
    LiPF6, LiN(FSO2)2 및 비수성 유기용매를 포함하는 비수전해액; 및
    세퍼레이터를 포함하고,
    상기 비수성 유기용매로 불소계 환형 카보네이트 유기용매 및 불소계 선형 카보네이트 유기용매를 포함하는 리튬 이차전지.
  2. 청구항 1에 있어서,
    상기 탄소계 물질은 결정질 탄소 및 비정질 탄소 중 적어도 하나 이상을 포함하는 것인 리튬 이차전지.
  3. 청구항 1에 있어서,
    상기 규소계 화합물은 Si, SiOx(0<x≤2) 및 Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, Si를 제외한 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소임) 중 선택된 1종 이상인 것인 리튬 이차전지.
  4. 청구항 1에 있어서,
    상기 탄소계 물질 및 규소계 화합물의 중량비는 1:1 내지 1:10인 것인 리튬 이차전지.
  5. 청구항 1에 있어서,
    상기 LiPF6 및 LiN(FSO2)2의 몰농도비는 1:1 내지 1:10인 것인 리튬 이차전지.
  6. 청구항 1에 있어서,
    상기 비수성 유기용매는 불소계 환형 카보네이트 유기용매 및 불소계 선형 카보네이트로 구성되는 것인 리튬 이차전지.
  7. 청구항 1에 있어서,
    상기 불소계 환형 카보네이트 유기용매는 플루오로에틸렌카보네이트(FEC), 디플루오로에틸렌카보네이트, 트리플루오로에틸렌카보네이트, 테트라플루오로에틸렌카보네이트, 3,3,3-트리플루오로프로필렌카보네이트, 및 1-플루오로프로필렌카보네이트로 이루어진 군으로부터 선택된 적어도 하나 이상인 것인 리튬 이차전지.
  8. 청구항 1에 있어서,
    상기 불소계 환형 카보네이트 유기용매는 플루오로에틸렌카보네이트(FEC)인 것인 리튬 이차전지.
  9. 청구항 1에 있어서,
    상기 불소계 선형 카보네이트 유기용매는 플루오로에틸 메틸 카보네이트(FEMC), 플루오로디메틸 카보네이트, 디(2,2,2-트리플루오로에틸)카보네이트, 2,2,2-트리플루오로에틸메틸카보네이트, 디플루오로메틸메틸카보네이트, 트리플루오로메틸메틸카보네이트, 디플루오로메틸에틸카보네이트, 1-플루오로에틸메틸카보네이트 및 메틸 2,2,2-트리플루오로에틸 카보네이트로 이루어진 군으로부터 선택된 적어도 하나 이상인 것인 리튬 이차전지.
  10. 청구항 1에 있어서,
    상기 불소계 선형 카보네이트 유기용매는 플루오로에틸 메틸 카보네이트 (FEMC)인 것인 리튬 이차전지.
  11. 청구항 1에 있어서,
    상기 불소계 환형 카보네이트 유기용매는 플루오로에틸렌카보네이트(FEC)이고,
    상기 불소계 선형 카보네이트 유기용매는 플루오로에틸 메틸 카보네이트 (FEMC)인 것인 리튬 이차전지.
  12. 청구항 1에 있어서,
    상기 불소계 환형 카보네이트 유기용매 및 불소계 선형 카보네이트 유기용매의 부피비는 0.5:9.5 내지 4:6인 것인 리튬 이차전지.
  13. 청구항 12에 있어서,
    상기 불소계 환형 카보네이트 유기용매 및 불소계 선형 카보네이트 유기용매의 부피비는 1:9 내지 4:6인 것인 리튬 이차전지.
  14. 청구항 13에 있어서,
    상기 불소계 환형 카보네이트 유기용매 및 불소계 선형 카보네이트 유기용매의 부피비는 1:9 내지 3:7인 것인 리튬 이차전지.
PCT/KR2020/010117 2019-08-02 2020-07-31 사이클 특성이 향상된 리튬 이차전지 WO2021025382A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/606,892 US20220209302A1 (en) 2019-08-02 2020-07-31 Lithium Secondary Battery Having Improved Cycle Characteristics
CN202080031833.8A CN113748537A (zh) 2019-08-02 2020-07-31 具有改善的循环特性的锂二次电池
EP20850726.9A EP3951991B1 (en) 2019-08-02 2020-07-31 Lithium secondary battery having improved cycle characteristics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0094377 2019-08-02
KR20190094377 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021025382A1 true WO2021025382A1 (ko) 2021-02-11

Family

ID=74503213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010117 WO2021025382A1 (ko) 2019-08-02 2020-07-31 사이클 특성이 향상된 리튬 이차전지

Country Status (5)

Country Link
US (1) US20220209302A1 (ko)
EP (1) EP3951991B1 (ko)
KR (1) KR20210015711A (ko)
CN (1) CN113748537A (ko)
WO (1) WO2021025382A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552020A (zh) * 2022-03-02 2022-05-27 南京工业大学 一种电解液及锂离子电池
KR20240105049A (ko) * 2022-12-28 2024-07-05 에스케이온 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814843B1 (ko) * 2005-11-15 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지용 전해액, 및 이를 포함하는 리튬 이차전지
KR20100085950A (ko) * 2007-11-12 2010-07-29 도다 고교 가부시끼가이샤 비수전해액 이차 전지용 망간산리튬 입자 분말 및 그의 제조 방법, 및 비수전해액 이차 전지
KR20160029457A (ko) * 2014-09-05 2016-03-15 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
KR20160081110A (ko) * 2014-12-30 2016-07-08 삼성에스디아이 주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR101810758B1 (ko) * 2013-06-07 2017-12-19 폭스바겐 악티엔 게젤샤프트 고에너지 애노드를 위한 신규 전해질 조성물

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942319B2 (ja) * 2005-09-07 2012-05-30 三洋電機株式会社 リチウム二次電池
JP6320876B2 (ja) * 2013-10-29 2018-05-09 パナソニック株式会社 非水電解質二次電池
JP6740147B2 (ja) 2017-02-01 2020-08-12 トヨタ自動車株式会社 非水電解液および非水電解液二次電池の製造方法
KR102453271B1 (ko) 2017-03-17 2022-10-12 주식회사 엘지에너지솔루션 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
CN108963340A (zh) * 2018-07-13 2018-12-07 东莞市杉杉电池材料有限公司 一种耐高压锂离子电池及其电解液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814843B1 (ko) * 2005-11-15 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지용 전해액, 및 이를 포함하는 리튬 이차전지
KR20100085950A (ko) * 2007-11-12 2010-07-29 도다 고교 가부시끼가이샤 비수전해액 이차 전지용 망간산리튬 입자 분말 및 그의 제조 방법, 및 비수전해액 이차 전지
KR101810758B1 (ko) * 2013-06-07 2017-12-19 폭스바겐 악티엔 게젤샤프트 고에너지 애노드를 위한 신규 전해질 조성물
KR20160029457A (ko) * 2014-09-05 2016-03-15 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
KR20160081110A (ko) * 2014-12-30 2016-07-08 삼성에스디아이 주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951991A4 *

Also Published As

Publication number Publication date
EP3951991B1 (en) 2023-02-15
CN113748537A (zh) 2021-12-03
EP3951991A4 (en) 2022-06-15
KR20210015711A (ko) 2021-02-10
US20220209302A1 (en) 2022-06-30
EP3951991A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2020130575A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019156539A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020149678A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018093152A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2023027547A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023043190A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020213962A1 (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2021025382A1 (ko) 사이클 특성이 향상된 리튬 이차전지
WO2020153791A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2021256825A1 (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2021049872A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2023075379A1 (ko) 비수 전해질용 첨가제, 이를 포함하는 비수 전해질 및 리튬 이차전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020096411A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2021091215A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021049875A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020850726

Country of ref document: EP

Effective date: 20211027

NENP Non-entry into the national phase

Ref country code: DE