WO2017057374A1 - 有機被膜の製造方法、導電性基板の製造方法、有機被膜製造装置 - Google Patents

有機被膜の製造方法、導電性基板の製造方法、有機被膜製造装置 Download PDF

Info

Publication number
WO2017057374A1
WO2017057374A1 PCT/JP2016/078480 JP2016078480W WO2017057374A1 WO 2017057374 A1 WO2017057374 A1 WO 2017057374A1 JP 2016078480 W JP2016078480 W JP 2016078480W WO 2017057374 A1 WO2017057374 A1 WO 2017057374A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
film
base material
substrate
Prior art date
Application number
PCT/JP2016/078480
Other languages
English (en)
French (fr)
Inventor
貴広 須田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201680055845.8A priority Critical patent/CN108027689B/zh
Priority to JP2017543437A priority patent/JP6720978B2/ja
Priority to KR1020187007839A priority patent/KR102535550B1/ko
Publication of WO2017057374A1 publication Critical patent/WO2017057374A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C13/00Means for manipulating or holding work, e.g. for separate articles
    • B05C13/02Means for manipulating or holding work, e.g. for separate articles for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/005Curtain coaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/06Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying two different liquids or other fluent materials, or the same liquid or other fluent material twice, to the same side of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a method for producing an organic film, a method for producing a conductive substrate, and an organic film production apparatus.
  • the capacitive touch panel converts information on the position of an adjacent object on the panel surface into an electrical signal by detecting a change in capacitance caused by the object adjacent to the panel surface. Since the conductive substrate used for the capacitive touch panel is installed on the surface of the display, the material of the conductive layer of the conductive substrate is required to have low reflectance and be difficult to be visually recognized.
  • a material for the conductive layer used for the capacitive touch panel a material having low reflectivity and not easily visible is used, and wiring is formed on a transparent substrate or a transparent film.
  • Patent Document 1 discloses a capacitance-type digital touch panel including a plurality of transparent sheet electrodes in which a touch panel portion is printed on a PET film with an ITO film and a signal pattern and a GND pattern are printed.
  • the use of metals such as copper in place of ITO as the material for the conductive layer is being studied.
  • the metal has a metallic luster and there is a problem that the visibility of the display is reduced due to reflection
  • Patent Document 2 discloses a film-like touch panel sensor that includes a striped copper wiring on each of the portions that need to be seen through on the front and back surfaces of the film, and has a black copper oxide film on the side where the copper wiring on the front and back sides is visually recognized. It is disclosed.
  • At least a resist layer is formed into a striped wiring pattern by a step of forming a resist layer on a copper thin film supported by the film and a photolithography method. And a step of processing the lead wiring pattern, a step of removing the exposed copper thin film by etching to form a striped copper wiring and a lead copper wiring, and a step of blackening the copper wiring.
  • Patent Document 2 in which the surface of the copper wiring is blackened after the copper wiring is formed, the number of steps is increased. For this reason, after forming a metal layer and a blackened layer whose surface is blackened on a base material, a method of patterning the metal layer and the blackened layer by etching or the like to obtain a conductive substrate has been studied. Yes.
  • the metal wiring patterned with the metal layer inconspicuous, it is effective to perform fine wiring processing of the metal layer and the blackened layer formed on the upper surface thereof.
  • the reactivity of the blackened layer to the etching solution is low, and the blackened layer sometimes peels off when the metal layer and the blackened layer are etched in order to perform fine wiring processing.
  • the organic film can be formed by applying an organic solution as a raw material for the organic film on the surface of the metal layer of the base material formed up to the metal layer. After the organic film is formed, a blackened layer is formed on the organic film. Thereby, it can be set as the structure which has arrange
  • the inventors of the present invention have conventionally formed an organic coating by the following method.
  • the thickness of the organic film formed on the surface of the metal layer is not constant, or a part where the organic film is not formed on a part of the surface of the metal layer is generated. It tends to be in a uniform state.
  • the non-uniformity of the organic film has been a problem because it caused a decrease in the adhesion of the blackened layer formed on the upper surface of the organic film.
  • an object of one aspect of the present invention is to provide a method for producing an organic coating that can form a uniform organic coating on a film formation surface.
  • An organic film is produced by supplying an organic solution to the surface of a sheet-like base material to form an organic film, With respect to the surface of the base material transported with the width direction of the base material as the height direction, the organic solution is A spray nozzle in which a plurality of nozzle holes are arranged to face the surface of the substrate; A supply port disposed at an upper portion in the height direction of the base material, the organic solution from the supply port in a film-like flow, and the surface of the base material, and the film-form of the organic solution Provided is a liquid film forming means for supplying a liquid so as to be in contact with the flow, and a method for producing an organic film supplied from the liquid film forming means.
  • FIG. 2 is a cross-sectional view taken along line AA ′ in FIG. 1.
  • an organic solution can be formed by supplying an organic solution to the surface of a sheet-like substrate. And an organic solution can be supplied with the spray nozzle and a liquid film formation means with respect to the surface of the base material conveyed by making the width direction of a base material into a height direction.
  • the spray nozzle can have a configuration in which a plurality of nozzle holes are arranged so as to face the surface of the substrate.
  • the liquid film forming means has a supply port arranged at the upper part in the height direction of the base material so that the organic solution becomes a film-like flow from the supply port, and the surface of the base material and the organic solution It can supply so that a film-like flow may contact.
  • FIG. 1 shows a view of a process of forming an organic film on the substrate 11 from a direction perpendicular to one surface 11a which is a film formation surface on which the organic film of the substrate 11 is formed.
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG.
  • the base material 11 is a long sheet, and is conveyed in the direction indicated by the block arrow 1 shown in FIG. 1 along the X-axis direction in the figure. At this time, the sheet-like base material 11 is held and transported in a state where the width direction is the height direction, that is, the width direction of the base material 11 is along the height direction.
  • the height direction means the Z-axis direction shown in the figure, and the X-axis direction is the horizontal direction.
  • First upstream rinsing means 12 for cleaning one surface 11a, which is the surface on which the organic film of the substrate 11 is formed, can be disposed upstream of the substrate 11 in the transport direction.
  • the first water washing means 12 can be washed, for example, by spraying water on one surface 11a of the substrate 11 with a spray nozzle.
  • the 1st water washing means 12 can be provided with the some spray nozzle so that the one surface 11a whole of the base material 11 currently conveyed can be wash
  • the 1st water washing means 12 can be set as the structure which arranged the some spray nozzle along the height direction, for example, the Z-axis in a figure, for example.
  • an organic solution that is a raw material for the organic film can be supplied downward in the figure from the supply port of the liquid film forming means 13 disposed at the upper part in the height direction of the substrate 11 being conveyed.
  • the liquid film forming means 13 forms a liquid film flow 14 that is a film-like flow from the supply port 131 of the liquid film forming means 13, and the liquid film flow 14 and the substrate
  • the organic solution can be supplied so as to be in contact with the surface of 11.
  • the liquid film flow 14 is formed from above the base material 11, and the liquid film forming means 13 supplies the organic solution so that the liquid film flow 14 comes into contact with the surface of the base material 11.
  • An organic solution can be applied to the surface 11a.
  • the second water washing means 15 can be further arranged downstream of the liquid film forming means 13.
  • the excess organic solution applied on the substrate 11 can be washed and removed by the second water washing means 15.
  • the second water washing means 15 may be any means that can wash the surface of the base material 11 coated with the organic solution, and its structure is not particularly limited.
  • the second water washing means 15 has the same structure as the first water washing means 12 described above. can do.
  • the configuration example of the method for producing an organic coating described above has been described.
  • the organic coating formed on the surface of the metal layer tends to be in a non-uniform state.
  • the non-uniformity of the organic film has been a problem because it causes a decrease in the adhesion of the blackened layer formed on the upper surface of the organic film.
  • the inventors of the present invention have conducted intensive studies on the reason why the organic coating becomes non-uniform when the organic coating is formed on the base material by the conventional organic coating manufacturing method. It was.
  • the organic solution is applied only by bringing the liquid film flow into contact with the surface of the substrate.
  • the coating method of the organic solution since the organic solution flows from the upper part to the lower part along the surface of the substrate being conveyed, the impact on the substrate when the organic solution contacts the substrate is gentle. It has become.
  • the processing time which processes the surface of a base material with an organic solution is limited by the conveyance speed of a base material.
  • the inventors of the present invention have found that the process of applying the organic solution on the surface of the substrate does not completely end, and the formed organic film tends to be non-uniform. And the inventors of this invention completed this invention based on the subject of the manufacturing method of the conventional organic coating film which concerns.
  • FIG.3 The manufacturing method of the organic coating film of this embodiment is demonstrated using FIG.3 and FIG.4.
  • the same number is attached
  • FIG. 3 shows a view of a process of forming an organic coating on the substrate 11 from a direction perpendicular to one surface 11a which is a film formation surface on which the organic coating of the substrate 11 is formed.
  • FIG. 4 is a cross-sectional view taken along line BB ′ of FIG.
  • the base material 11 has a long sheet shape, and is conveyed in the direction indicated by the block arrow 1 shown in the drawing along the X-axis direction in the drawing.
  • the example using the elongate sheet-like base material is shown in FIG. 3, it is not limited to the form which concerns. However, since it can be produced continuously, a long sheet is preferable.
  • the kind of base material 11 is not specifically limited, The base material which forms an organic film on at least one surface can be used. For example, as described later, in order to produce a conductive substrate in which a metal layer, an organic coating, and a blackening layer are laminated on a transparent substrate, when forming an organic coating, a metal layer is formed on the transparent substrate. Can be used as the substrate 11 here.
  • the sheet-like base material 11 is held and transported so that the width direction is the height direction, that is, the width direction of the base material 11 is along the height direction.
  • the height direction means the Z-axis direction shown in the figure, and the X-axis direction is the horizontal direction.
  • the organic solution which is a raw material of an organic film is made to flow the liquid film flow 14 toward the downward direction in the figure.
  • the organic solution can be supplied so that the liquid film flow 14 and the surface of the substrate 11 are in contact with each other.
  • the liquid film forming means 13 can be configured in the same manner as in the case of the conventional method for producing an organic film, and therefore the description thereof is omitted here.
  • the formed organic film may become non-uniform. Therefore, in the method for producing an organic film of the present embodiment, in addition to the liquid film forming means described above, an organic solution is applied to one surface 11a that is a surface on which the organic film of the substrate 11 is formed by the spray nozzle 21. Can be supplied.
  • the spray nozzle 21 can have a configuration in which a plurality of nozzle holes 211 are arranged so as to face the surface of the substrate 11, that is, one surface 11 a. And an organic film can be apply
  • the impact on the base material when the organic solution contacts the base material is moderate. For this reason, when an organic solution is formed on the surface of the substrate 11 on which the organic film is to be formed only by the liquid film forming means, the organic film may become non-uniform.
  • the organic solution is applied to the surface of the base material on which the organic film is formed by the spray nozzle, the impact on the base material when the organic solution comes into contact with the base material can be increased. For this reason, it becomes possible to form a uniform organic film by applying an organic solution to the surface of the substrate by the liquid film forming means and the spray nozzle to form an organic film.
  • the spray nozzle 21 can have a plurality of nozzle holes 211.
  • the arrangement of the nozzle holes 211 is not particularly limited, but the organic solution can be applied to the entire one surface 11a of the substrate 11 conveyed along the X-axis direction which is a direction perpendicular to the paper surface in FIG. 4 is preferably arranged along the Z-axis direction in 4, that is, along the height direction.
  • the organic solution supplied from the nozzle hole 211 and applied on the substrate 11 becomes a continuous organic solution coating film.
  • coating an organic solution on the base material 11 is contacting from the nozzle hole 211 adjacent to a height direction, and it is more preferable that a part overlaps.
  • the shape of the nozzle hole 211 of the spray nozzle 21 is not particularly limited.
  • a spray nozzle having a circular or elliptical spray pattern formed on the surface of the substrate by the organic solution supplied from the nozzle hole of the spray nozzle can be preferably used.
  • the spray pattern formed on the base material by the organic solution supplied from the nozzle hole that is, when the organic solution is supplied from the nozzle hole to the base material, A particularly strong impact is given when the shape of the pattern to be formed is elliptical.
  • the spray nozzle it is more preferable for the spray nozzle to have an elliptical spray pattern formed on the surface of the substrate by the organic solution supplied from the nozzle hole.
  • the spray nozzle can have a plurality of nozzle holes, but the shape of the spray pattern here means the shape when the organic solution is supplied onto the substrate from each nozzle hole.
  • the ratio of the major axis to the minor axis is not particularly limited, but for example, the major axis / minor axis is preferably 5 or more and 20 or less.
  • FIG. 3 although the example which has arrange
  • the order of the application means is not particularly limited.
  • the organic solution may be applied on the substrate 11 by the spray nozzle 21 after the organic solution is applied on the substrate 11 by the liquid film forming means 13.
  • the organic solution may be applied onto the substrate 11 simultaneously by the liquid film forming means 13 and the spray nozzle 21.
  • FIG. 3 shows an example in which the organic solution is applied once by the liquid film forming means and once by the spray nozzle when applying the organic solution on the substrate 11, but it is limited to such a form. It is not a thing.
  • a plurality of liquid film forming means and / or spray nozzles may be provided on the transport path of the base material 11, and the organic solution may be applied a plurality of times on the base material 11 by the liquid film forming means and / or spray nozzles.
  • the type of the organic solution used for manufacturing the organic coating is not particularly limited, and can be arbitrarily selected according to the type of the organic coating to be manufactured. For example, when an organic film of a conductive substrate described later is formed, an organic solution corresponding to the organic film can be used.
  • cleaning one surface 11a of the base material 11 can be arrange
  • the second water washing means 15 can be disposed downstream of the liquid film forming means 13 and the spray nozzle 21 in the transport direction of the base material 11. Since the 1st water washing means 12 and the 2nd water washing means 15 can be comprised similarly to the case of the manufacturing method of the conventional organic film, description is abbreviate
  • an organic film can be formed also on the other surface 11b by arranging liquid film forming means and a spray nozzle in the same manner on the other surface 11b side of the substrate 11 being conveyed. .
  • the spray nozzle provided on the one surface 11a side and the spray nozzle provided on the other surface side are particularly arranged so that the nozzle holes face each other with the substrate 11 in between. That is, it is preferable to arrange in the same position as seen in the conveyance direction of the substrate. This is because warpage or the like can be prevented from occurring in the base material 11 by supplying the organic solution from both sides of the base material 11 with the same pressure.
  • a uniform organic film can be formed on the surface of the base material on which the organic film is formed. For this reason, when it uses, for example when forming the organic film of the electroconductive board
  • an organic solution can be supplied to the surface of a sheet-like substrate to form an organic film, and the following configuration can be provided.
  • Conveying means for conveying the width direction of the base material as the height direction.
  • a spray nozzle in which a plurality of nozzle holes are arranged so as to face the surface of the substrate.
  • It has a supply port arranged at the upper part in the height direction of the base material so that the organic solution forms a film from the supply port, and the surface of the base material and the film-like flow of the organic solution come into contact with each other Liquid film forming means to be supplied.
  • an organic film can be formed by supplying and applying an organic solution to the substrate being conveyed.
  • the organic film manufacturing apparatus of this embodiment can have a conveyance means which conveys a base material.
  • the configuration of the conveying means is not particularly limited.
  • the base material is formed by a roll-to-roll method.
  • a conveying means for conveying can be used.
  • the conveyance means by a roll-to-roll system is to supply a base material from an unwinding roll in which the base material is previously wound in a coil shape, and to wind up the base material on which the organic film is formed by the winding roll. This means a conveying means for conveying the substrate.
  • a spray nozzle and a liquid film forming means can be provided as means for supplying the organic solution to the surface on which the organic film of the substrate being conveyed by the conveying means is formed.
  • the spray nozzle 21 includes a plurality of nozzle holes 211, and an organic solution is supplied from the nozzle holes 211 to the surface on which the organic film of the substrate 11 being conveyed is formed. Can be supplied and applied.
  • the shape of the nozzle hole of the spray nozzle is not particularly limited.
  • the spray pattern formed on the surface of the base material by the organic solution supplied from the nozzle hole is preferably elliptical.
  • FIG. 3 although the structural example of the organic film manufacturing apparatus provided with the spray nozzle 21 and the liquid film formation means 13 one each is shown, it is not limited to the form which concerns.
  • a plurality of spray nozzles and / or a plurality of liquid film forming means can be provided on the transport path of the substrate 11.
  • the spray nozzle 21 and the liquid film forming means 13 are arranged in this order from the upstream side in the transport direction of the base material 11, but the embodiment is not limited to this.
  • the liquid film forming means 13 and the spray nozzle 21 can be arranged in this order from the upstream side in the transport direction of the base material 11.
  • the spray nozzle 21 and the liquid film forming means 13 may be provided at overlapping positions when viewed in the transport direction of the substrate 11.
  • the organic film manufacturing apparatus of the present embodiment is not limited to the above members, and can have any various means.
  • the first water washing means 12 and / or the second water washing means 15 can be provided. Since the first rinsing means 12 and the second rinsing means 15 have already been described, description thereof is omitted here.
  • a draining means for cutting off water adhering to the surface of the base material 11 and a drying means for drying the base material surface may be further provided downstream of the second water washing means 15 in the transport direction of the base material 11.
  • the organic film manufacturing apparatus that forms the organic film only on one surface 11a of the base material 11 has been described as an example.
  • the surface facing the one surface 11a that is, the surface shown in FIG.
  • the apparatus can also be configured to form an organic coating on the other surface 11b at the same time.
  • the liquid film forming means and the spray nozzle are similarly arranged on the other surface 11b side of the substrate 11 being conveyed, so that an organic film can be formed on the other surface 11b. it can.
  • the spray nozzle provided on the one surface 11a side and the spray nozzle provided on the other surface side are located at the same position so that the nozzle holes face each other with the base material 11 interposed therebetween, that is, in the transport direction of the base material. It is preferable to arrange. This is because warpage or the like can be prevented from occurring in the base material 11 by supplying the organic solution from both sides of the base material 11 with the same pressure.
  • a uniform organic film can be formed on the surface of the base material on which the organic film is formed. For this reason, when it uses, for example when forming the organic film of the electroconductive board
  • the manufacturing method of the conductive substrate according to the present embodiment can include the following steps.
  • a metal layer forming step of forming a metal layer on at least one surface of the transparent substrate An organic film forming step of forming an organic film on the upper surface of the metal layer.
  • a blackening layer forming step of forming a blackening layer on the upper surface of the organic coating And in an organic film formation process, an organic film can be formed on the upper surface of a metal layer with the manufacturing method of an organic film mentioned above.
  • the conductive substrate includes a transparent substrate, a metal layer formed on at least one surface of the transparent substrate, an organic coating formed on the metal layer, a blackening layer formed on the organic coating, Can have.
  • the conductive substrate in the present embodiment is a substrate having a metal layer, an organic coating, and a blackened layer on the surface of the transparent base material before patterning the metal layer and the like, and the metal layer and the like are patterned.
  • a substrate that is, a wiring substrate.
  • the transparent substrate is not particularly limited, and a transparent substrate such as a resin substrate (resin film) that transmits visible light or a glass substrate can be preferably used.
  • a transparent substrate such as a resin substrate (resin film) that transmits visible light or a glass substrate can be preferably used.
  • a resin such as a polyamide resin, a polyethylene terephthalate resin, a polyethylene naphthalate resin, a cycloolefin resin, a polyimide resin, or a polycarbonate resin can be preferably used.
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PEN polyethylene naphthalate
  • polyamide, polyimide, polycarbonate, and the like can be more preferably used as the material for the resin substrate that transmits visible light.
  • the thickness of the transparent base material is not particularly limited, and can be arbitrarily selected according to the strength, capacitance, light transmittance, and the like required for a conductive substrate.
  • the thickness of the transparent substrate can be, for example, 10 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the transparent substrate is preferably 20 ⁇ m or more and 120 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the transparent substrate is preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the total light transmittance of the transparent substrate is preferably higher.
  • the total light transmittance is preferably 30% or more, and more preferably 60% or more.
  • the visibility of the display can be sufficiently secured.
  • the total light transmittance of the transparent substrate can be evaluated by the method defined in JIS K 7361-1.
  • the material which comprises a metal layer is not specifically limited, The material which has the electrical conductivity according to the application can be selected,
  • the material which comprises a metal layer is Cu, Ni, Mo, Ta, Ti, V, Cr , Fe, Mn, Co and W are preferably a copper alloy with at least one metal selected from the group consisting of copper, or a material containing copper.
  • the metal layer can be a copper layer made of copper.
  • the method for forming the metal layer on the transparent substrate is not particularly limited, it is preferable not to dispose an adhesive between the transparent substrate and the metal layer in order not to reduce the light transmittance. That is, the metal layer is preferably formed directly on at least one surface of the transparent substrate. In addition, when arrange
  • the metal layer In order to directly form the metal layer on the upper surface of the transparent substrate, the metal layer preferably has a metal thin film layer. Moreover, the metal layer may have a metal thin film layer and a metal plating layer.
  • a metal thin film layer can be formed on a transparent substrate by a dry plating method, and the metal thin film layer can be used as a metal layer. Thereby, a metal layer can be directly formed on the transparent substrate without using an adhesive.
  • the dry plating method will be described in detail later.
  • a sputtering method, a vapor deposition method, an ion plating method, or the like can be preferably used.
  • the metal thin film layer and the metal plating layer are formed by forming the metal plating layer by electroplating, which is a kind of wet plating method, using the metal thin film layer as a power feeding layer. It can also be a metal layer. Since the metal layer has the metal thin film layer and the metal plating layer, the metal layer can be directly formed on the transparent substrate without using an adhesive.
  • the thickness of the metal layer is not particularly limited, and when the metal layer is used as a wiring, it can be arbitrarily selected according to the magnitude of the current supplied to the wiring, the wiring width, and the like.
  • the thickness of the metal layer is preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the metal layer preferably has a thickness of 50 nm or more, more preferably 60 nm or more, and 150 nm. More preferably, it is the above.
  • a metal layer has a metal thin film layer and a metal plating layer as mentioned above, it is preferable that the sum total of the thickness of a metal thin film layer and the thickness of a metal plating layer is the said range.
  • the thickness of the metal thin film layer is not particularly limited, For example, it is preferably 50 nm or more and 500 nm or less.
  • the metal layer can be used as a wiring by patterning it into a desired wiring pattern, for example. And since a metal layer can make an electrical resistance value lower than ITO conventionally used as a transparent conductive film, the electrical resistance value of an electroconductive board
  • substrate can be made small by providing a metal layer.
  • the organic coating can be formed on the surface of the metal layer facing the blackening layer described later. Therefore, when a conductive substrate is used, it can be disposed between the metal layer and the blackened layer.
  • the organic film preferably contains a nitrogenous organic material. This is because the organic coating contains a nitrogen-based organic substance, so that the adhesion between the blackened layer and the metal layer and the organic coating that is the lower layer of the blackened layer can be particularly improved, and the peeling of the blackened layer can be suppressed. This is because the etching property of the blackened layer can be improved.
  • the reflectance of a conductive substrate can be reduced because an organic film contains a nitrogen-type organic substance.
  • the nitrogen-based organic material used for the organic coating is not particularly limited, and can be arbitrarily selected from organic compounds containing nitrogen.
  • the nitrogen-based organic material used for the organic coating preferably contains, for example, 1,2,3-benzotriazole or a derivative thereof.
  • Specific examples of nitrogen-based organic substances used for the organic coating include 1,2,3-benzotriazole and 5-methyl-1H benzotriazole.
  • Examples of the organic solution containing a nitrogen-based organic material that can be suitably used for the organic coating include a rust preventive agent for copper, and commercially available chemicals include, for example, an OPC defender (trade name, Okuno Pharmaceutical). Kogyo Co., Ltd.) can be preferably used.
  • the content of the nitrogen-based organic substance in the organic coating is preferably 0.2 ⁇ g / cm 2 or more, and more preferably 0.3 ⁇ g / cm 2 or more. According to the study by the inventors of the present invention, the reflectance of the conductive substrate can be significantly suppressed by setting the content of the nitrogen-based organic substance in the organic coating to 0.2 ⁇ g / cm 2 or more. Because it can. In addition, when the content of nitrogenous organic matter in the organic coating increases, the a * and b * values when the color of the blackened layer is converted to the CIE (L * a * b * ) color system can be lowered. This is because the wiring of the conductive substrate can be made inconspicuous.
  • the upper limit of the content of nitrogen-based organic matter in the organic coating is not particularly limited. However, to increase the content of nitrogenous organic matter in the organic coating, increase the concentration of the organic solution containing the nitrogenous organic matter used when forming the organic coating, or supply of the organic solution containing the nitrogenous organic matter. The time will be lengthened and so on. For this reason, if the content of nitrogen-based organic matter in the organic coating is excessively increased, the handling of the solution containing the nitrogen-based organic matter is reduced, the time required to form the organic coating is increased, and production May be reduced.
  • the content of the nitrogen-based organic substance in the organic coating is preferably, for example, 10 ⁇ g / cm 2 or less, and the lower the content, the better the adhesion of the blackened layer, so that the content is 1 ⁇ g / cm 2 or less. More preferably, it is more preferably 0.5 ⁇ g / cm 2 or less.
  • the concentration of the nitrogen-based organic substance in the organic solution used when forming the organic film is not particularly limited, and is arbitrarily determined in consideration of the content of the nitrogen-based organic substance in the target organic film, operability, etc. You can choose.
  • the lower limit of the concentration of nitrogen-based organic matter in the organic solution is preferably 1 mL / L or more, and more preferably 2 mL / L or more.
  • an upper limit is 4 mL / L or less.
  • the temperature of the organic solution when supplying the organic solution to the surface of the metal layer is not particularly limited, and can be arbitrarily selected in consideration of the viscosity, operability, reactivity, and the like of the solution. For example, it is preferably 10 ° C. or higher, and more preferably 20 ° C. or higher. However, since the organic solution may react with other substances when the temperature increases, the temperature is preferably 40 ° C. or lower.
  • the pH of the organic solution is not particularly limited, and can be selected in consideration of, for example, the type of organic solution used and the reactivity of the solution.
  • the pH of the organic solution is preferably 2 or more, and more preferably 3 or more.
  • the pH of the organic solution is preferably 4 or less.
  • the length of the treatment time for supplying and reacting the organic solution to the surface of the metal layer is not particularly limited, and is arbitrarily selected according to the type of organic solution used, the thickness of the organic coating to be formed, and the like. be able to.
  • the treatment time is preferably 3 seconds or more, and more preferably 4 seconds or more. However, if the treatment time is too long, productivity may be lowered, and therefore it is preferably 10 seconds or less.
  • the processing time can be set to a desired time by adjusting the conveyance speed of the substrate.
  • the processing time in the method for producing an organic coating described above means that an organic solution is supplied from a spray nozzle and a liquid film forming means to any point on the surface of the substrate on which the organic coating is formed. Means the total amount of time.
  • the blackening layer can be formed on the top surface of the organic coating.
  • the material of the blackening layer is not particularly limited, and any material that can suppress the reflection of light on the surface of the metal layer can be suitably used.
  • the blackening layer preferably contains at least one metal selected from, for example, Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Further, the blackening layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
  • the blackening layer can also include a metal alloy containing at least two metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. . Also in this case, the blackening layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • a Cu—Ni—Fe alloy, Ni—Cu alloy, Ni—Zn alloy, Ni—Ti alloy, Ni—W alloy, Ni—Cr alloy, and Ni—Cu—Cr alloy can be preferably used.
  • a Ni—Cu alloy can be used more preferably.
  • the film formation method of the blackening layer is not particularly limited, and can be formed by any method, for example, a dry method or a wet method.
  • the specific method is not particularly limited, but for example, a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method can be preferably used.
  • a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackened layer, and in this case, the reactive sputtering method can be more preferably used.
  • a target containing a metal species constituting the blackened layer can be used as the target.
  • the blackened layer contains an alloy
  • a target may be used for each metal species contained in the blackened layer, and the alloy may be formed on the surface of the film-deposited body such as a substrate, and is included in the blackened layer in advance. It is also possible to use a target obtained by alloying a metal.
  • the blackened layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen
  • these are added to the atmosphere when the blackened layer is formed, so that the blackened layer Can be added inside.
  • carbon monoxide gas and / or carbon dioxide gas is used
  • oxygen, oxygen gas is used
  • hydrogen, hydrogen gas and / or water is used.
  • nitrogen gas can be added to the atmosphere during sputtering.
  • One or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackening layer by adding these gases to the inert gas when forming the blackening layer.
  • Argon can be preferably used as the inert gas.
  • the blackened layer When the blackened layer is formed by a wet method, it can be formed by, for example, an electroplating method using a plating solution corresponding to the material of the blackened layer.
  • the blackening layer can be formed by either a dry method or a wet method.
  • the material constituting the organic coating starts to dissolve in the plating solution and is blackened. It is preferable to form the film by a dry method because it may affect the color tone and other characteristics of the blackened layer by being incorporated into the blackened layer.
  • the thickness of the blackening layer is not particularly limited, but is preferably 15 nm or more, for example, and more preferably 25 nm or more. This is because when the thickness of the blackened layer is thin, reflection of light on the surface of the metal layer may not be sufficiently suppressed. Therefore, the thickness of the blackened layer is set to 15 nm or more as described above. This is because it is preferable to configure so that reflection of light on the surface of the layer can be particularly suppressed.
  • the upper limit of the thickness of the blackening layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited.
  • the thickness of the blackened layer is preferably 70 nm or less, and more preferably 50 nm or less.
  • the conductive substrate can be provided with any layer other than the above-mentioned transparent base material, metal layer, organic coating, and blackening layer.
  • an adhesion layer can be provided.
  • the metal layer can be formed on the transparent substrate, but when the metal layer is directly formed on the transparent substrate, the adhesion between the transparent substrate and the metal layer may not be sufficient. . For this reason, when a metal layer is directly formed on the upper surface of the transparent substrate, the metal layer may be peeled off from the transparent substrate during the production process or use.
  • an adhesion layer can be disposed on the transparent substrate in order to improve the adhesion between the transparent substrate and the metal layer.
  • the adhesion layer between the transparent substrate and the metal layer By disposing the adhesion layer between the transparent substrate and the metal layer, the adhesion between the transparent substrate and the metal layer can be improved, and the metal layer can be prevented from peeling from the transparent substrate.
  • the adhesion layer can function as a blackening layer. For this reason, it becomes possible to suppress the reflection of the light of the metal layer by the light from the lower surface side of the metal layer, that is, the transparent substrate side.
  • the material constituting the adhesion layer is not particularly limited, the adhesion strength with the transparent base material and the metal layer, the degree of suppression of light reflection on the surface of the required metal layer, and the use of a conductive substrate It can be arbitrarily selected according to the degree of stability to the environment (for example, humidity and temperature).
  • the adhesion layer preferably contains at least one metal selected from, for example, Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • the adhesion layer may further contain one or more elements selected from carbon, oxygen, hydrogen, and nitrogen.
  • the adhesion layer can also include a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn. Also in this case, the adhesion layer can further include one or more elements selected from carbon, oxygen, hydrogen, and nitrogen. At this time, as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn, a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • a Cu—Ti—Fe alloy is used as a metal alloy containing at least two kinds of metals selected from Ni, Zn, Mo, Ta, Ti, V, Cr, Fe, Co, W, Cu, Sn, and Mn.
  • a Cu—Ni—Fe alloy, Ni—Cu alloy, Ni—Zn alloy, Ni—Ti alloy, Ni—W alloy, Ni—Cr alloy, and Ni—Cu—Cr alloy can be preferably used.
  • a Ni—Cu alloy can be used more preferably.
  • the method for forming the adhesion layer is not particularly limited, but it is preferable to form the film by a dry plating method.
  • a dry plating method for example, a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used.
  • a sputtering method it is more preferable to use a sputtering method because the film thickness can be easily controlled.
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the adhesion layer, and in this case, a reactive sputtering method can be more preferably used.
  • the adhesion layer contains one or more elements selected from carbon, oxygen, hydrogen, and nitrogen
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen in the atmosphere when forming the adhesion layer Can be added to the adhesion layer.
  • carbon monoxide gas and / or carbon dioxide gas when adding oxygen, oxygen gas, when adding hydrogen, hydrogen gas and / or water
  • nitrogen gas can be added to the atmosphere when dry plating is performed.
  • a gas containing one or more elements selected from carbon, oxygen, hydrogen, and nitrogen is preferably added to an inert gas and used as an atmosphere gas during dry plating.
  • an inert gas For example, argon can be used preferably.
  • the adhesion layer By forming the adhesion layer by the dry plating method as described above, the adhesion between the transparent substrate and the adhesion layer can be enhanced. And since an adhesion layer can contain a metal as a main component, for example, its adhesiveness with a metal layer is also high. For this reason, peeling of a metal layer can be suppressed by arrange
  • the thickness of the adhesion layer is not particularly limited, but is preferably 3 nm to 50 nm, for example, more preferably 3 nm to 35 nm, and still more preferably 3 nm to 33 nm.
  • the thickness of the adhesion layer is preferably 3 nm or more as described above.
  • the upper limit value of the thickness of the adhesion layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited.
  • the thickness of the adhesion layer is preferably 50 nm or less as described above, more preferably 35 nm or less, and further preferably 33 nm or less.
  • the conductive substrate of this embodiment can have a transparent substrate, a metal layer, an organic coating, and a blackening layer. Further, a layer such as an adhesion layer can be optionally provided.
  • FIGS. 5A, 5B, 6A, and 6B show examples of cross-sectional views of the conductive substrate of this embodiment on a plane parallel to the lamination direction of the transparent base material, the metal layer, the organic coating, and the blackening layer. Yes.
  • the conductive substrate of this embodiment can have a structure in which, for example, a metal layer, an organic coating, and a blackening layer are laminated in that order from the transparent substrate side on at least one surface of the transparent substrate. .
  • the metal layer 52, the organic coating 53, and the blackening layer 54 are formed one by one on the one surface 51a side of the transparent substrate 51. They can be stacked in order. Further, like the conductive substrate 50B shown in FIG. 5B, the metal layers 52A and 52B and the organic layers are respectively formed on the one surface 51a side and the other surface (the other surface) 51b side of the transparent base material 51. The coatings 53A and 53B and the blackening layers 54A and 54B can be stacked one by one in that order.
  • an adhesion layer may be provided.
  • the adhesion layer 55, the metal layer 52, the organic coating 53, and the blackening layer 54 are formed on the one surface 51a side of the transparent substrate 51. , Can be stacked in that order.
  • an adhesive layer, a metal layer, an organic coating, and a blackening layer are laminated on both surfaces of the transparent substrate 51.
  • the adhesion layers 55A and 55B and the metal layers 52A and 52B are respectively formed on the one surface 51a side and the other surface 51b side of the transparent base material 51.
  • the organic coatings 53A and 53B and the blackening layers 54A and 54B can be stacked in that order.
  • substrate of this embodiment reflection of the light by a metal layer is suppressed by providing a metal layer, an organic film, and a blackening layer on a transparent base material, and the reflectance of an electroconductive board
  • the degree of reflectivity of the conductive substrate of the present embodiment is not particularly limited.
  • the reflectivity is lower. Is good.
  • the average reflectance of light having a wavelength of 400 nm to 700 nm is preferably 20% or less, more preferably 17% or less, and particularly preferably 15% or less.
  • the reflectance can be measured by irradiating the blackened layer of the conductive substrate with light.
  • the blackening layer 54 is irradiated with light. It can be measured by irradiating the surface A of the blackened layer 54 with light.
  • light having a wavelength of 400 nm or more and 700 nm or less is irradiated to the blackened layer 54 of the conductive substrate, for example, at a wavelength of 1 nm as described above, and the average value of the measured values is used as the reflectance of the conductive substrate. be able to.
  • the conductive substrate of this embodiment can be preferably used as a conductive substrate for a touch panel.
  • the conductive substrate can be configured to have mesh-like wiring.
  • the conductive substrate provided with the mesh-like wiring can be obtained by etching the metal layer, the organic coating, and the blackening layer of the conductive substrate of the present embodiment described so far.
  • a mesh-like wiring can be formed by two-layer wiring.
  • FIG. 7 shows a view of the conductive substrate 70 having mesh-like wiring as viewed from the upper surface side in the stacking direction of the metal layer or the like.
  • the transparent substrate 51 and the metal layer are arranged so that the wiring pattern is easy to understand.
  • the layers other than the wirings 71A and 71B formed by patterning are not shown.
  • a wiring 71B that is visible through the transparent substrate 51 is also shown.
  • the 7 includes a transparent substrate 51, a plurality of wirings 71A parallel to the Y-axis direction in the drawing, and wirings 71B parallel to the X-axis direction.
  • the wirings 71A and 71B are formed by etching a metal layer, and an organic coating and a blackening layer (not shown) are formed on the upper and / or lower surfaces of the wirings 71A and 71B.
  • the organic coating and the blackened layer are etched in the same shape as the wirings 71A and 71B.
  • the arrangement of the transparent substrate 51 and the wirings 71A and 71B is not particularly limited. 8A and 8B show a configuration example of the arrangement of the transparent substrate 51 and the wiring. 8A and 8B are cross-sectional views taken along line AA ′ of FIG.
  • wirings 71A and 71B may be arranged on the upper and lower surfaces of the transparent base 51, respectively.
  • organic films 72A and 72B and blackening layers 73A and 73B etched in the same shape as the wiring are disposed on the upper surface of the wiring 71A and the lower surface of 71B.
  • a pair of transparent base materials 51 are used, and wirings 71A and 71B are arranged on the upper and lower surfaces with one transparent base material 51 interposed therebetween, and one wiring 71B is a transparent base material. 51 may be arranged.
  • organic coatings 72A and 72B and blackening layers 73A and 73B etched in the same shape as the wiring are disposed on the upper surfaces of the wirings 71A and 71B.
  • an adhesion layer can be provided in addition to the metal layer, the organic coating, and the blackening layer. For this reason, in any case of FIG. 8A and FIG.
  • an adhesion layer can be provided between the wiring 71A and / or the wiring 71B and the transparent substrate 51, for example.
  • the adhesion layer is also preferably etched into the same shape as the wirings 71A and 71B.
  • the conductive substrate having the mesh-like wiring shown in FIGS. 7 and 8A includes, for example, metal layers 52A and 52B, organic coatings 53A and 53B, and a blackening layer 54A on both surfaces of the transparent base 51 as shown in FIG. 5B. , 54B can be formed from a conductive substrate.
  • the metal layer 52A, the organic coating 53A, and the blackening layer 54A on the one surface 51a side of the transparent base 51 are shown as Y in FIG.
  • Etching is performed so that a plurality of linear patterns parallel to the axial direction are arranged at predetermined intervals along the X-axis direction.
  • the X-axis direction in FIG. 5B means a direction parallel to the width direction of each layer.
  • the Y-axis direction in FIG. 5B means a direction perpendicular to the paper surface in FIG. 5B.
  • the metal layer 52B, the organic coating 53B, and the blackening layer 54B on the other surface 51b side of the transparent substrate 51 have a plurality of linear patterns parallel to the X-axis direction in FIG. Etching is performed so as to be arranged along the axial direction.
  • the conductive substrate having the mesh-like wiring shown in FIGS. 7 and 8A can be formed.
  • the etching of both surfaces of the transparent substrate 51 can be performed simultaneously. That is, the etching of the metal layers 52A and 52B, the organic coatings 53A and 53B, and the blackening layers 54A and 54B may be performed simultaneously.
  • the conductive substrate having an adhesion layer patterned in the same shape as the wirings 71A and 71B between the wirings 71A and 71B and the transparent base material 51 is the conductive substrate shown in FIG. 6B. It can produce by carrying out similarly and etching.
  • FIG. 7 can also be formed by using two conductive substrates shown in FIG. 5A or FIG. 6A.
  • the case where the two conductive substrates shown in FIG. 5A are used will be described as an example.
  • the metal layer 52, the organic coating 53, and the blackening layer 54 are respectively formed on the X axis.
  • Etching is performed so that a plurality of linear patterns parallel to the direction are arranged along the Y-axis direction at predetermined intervals.
  • the conductive substrate having mesh-like wiring is obtained by bonding the two conductive substrates so that the linear patterns formed on the respective conductive substrates intersect with each other by the etching process. be able to.
  • the surface to be bonded when the two conductive substrates are bonded is not particularly limited.
  • the surface A in FIG. 5A in which the metal layer 52 or the like is laminated and the other surface 51b in FIG. 5A in which the metal layer 52 or the like is not laminated are bonded together so that the structure shown in FIG. 8B is obtained. You can also.
  • the other surfaces 51b in FIG. 5A where the metal layer 52 of the transparent base material 51 or the like is not laminated can be bonded together so that the cross section has the structure shown in FIG. 8A.
  • the conductive substrate having an adhesion layer patterned in the same shape as the wirings 71A and 71B between the wirings 71A and 71B and the transparent base material 51 is the conductive substrate shown in FIG. 5A.
  • the conductive substrate shown in FIG. 6A can be used instead of the conductive substrate.
  • the wiring width and the distance between the wirings in the conductive substrate having the mesh-like wiring shown in FIG. 7, FIG. 8A, and FIG. 8B are not particularly limited. You can choose.
  • the wiring that constitutes can be of any shape.
  • the shape of the wiring constituting the mesh-like wiring pattern can be changed to various shapes such as jagged lines (zigzag straight lines) so that moire (interference fringes) does not occur between the images on the display.
  • a conductive substrate having a mesh-like wiring composed of two layers of wiring can be preferably used as a conductive substrate for a projected capacitive touch panel, for example.
  • the transparent base material used for the metal layer forming step can be prepared in advance.
  • a transparent base material such as a resin substrate (resin film) that transmits visible light or a glass substrate can be preferably used as described above.
  • the transparent base material can be cut into an arbitrary size in advance if necessary.
  • the metal layer preferably has a metal thin film layer as described above.
  • the metal layer can also have a metal thin film layer and a metal plating layer.
  • a metal layer formation process can have a process of forming a metal thin film layer, for example by a dry-type plating method.
  • the metal layer forming step includes a step of forming a metal thin film layer by a dry plating method, a step of forming a metal plating layer by an electroplating method which is a kind of wet plating method, using the metal thin film layer as a power feeding layer, You may have.
  • the dry plating method used in the step of forming the metal thin film layer is not particularly limited, and for example, an evaporation method, a sputtering method, an ion plating method, or the like can be used.
  • a vapor deposition method a vacuum vapor deposition method can be used preferably.
  • the dry plating method used in the step of forming the metal thin film layer it is more preferable to use the sputtering method because the film thickness is particularly easy to control.
  • the conditions in the step of forming the metal plating layer by the wet plating method that is, the conditions for the electroplating treatment are not particularly limited, and various conditions according to ordinary methods may be adopted.
  • a metal plating layer can be formed by supplying a base material on which a metal thin film layer is formed in a plating tank containing a metal plating solution and controlling the current density and the conveyance speed of the base material.
  • an organic film can be formed on the metal layer.
  • the adhesion of the blackened layer can be improved and the reflectance of the conductive substrate can be suppressed.
  • the organic film can be formed by the method for producing an organic film described above. Moreover, since the organic solution etc. used when forming an organic film are already described, description is abbreviate
  • the method for forming the blackened layer is not particularly limited, and can be formed by any method.
  • a dry plating method such as a sputtering method, an ion plating method or a vapor deposition method can be preferably used.
  • the sputtering method is more preferable because the film thickness can be easily controlled.
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the blackened layer, and in this case, the reactive sputtering method can be more preferably used.
  • the blackened layer can be formed by a wet method such as an electroplating method.
  • the materials that make up the organic coating start to dissolve in the plating solution and are taken into the blackened layer, which may affect the color tone and other characteristics of the blackened layer. Therefore, it is preferable to form a film by a dry method.
  • an optional step can be further performed in addition to the above-described steps.
  • an adhesion layer forming step of forming an adhesion layer on the surface of the transparent substrate on which the metal layer is formed can be performed.
  • the metal layer forming step can be carried out after the adhesion layer forming step.
  • the metal is formed on the substrate on which the adhesion layer is formed on the transparent substrate in this step.
  • a thin film layer can be formed.
  • the method for forming the adhesion layer is not particularly limited, but it is preferable to form the film by a dry plating method.
  • a dry plating method for example, a sputtering method, an ion plating method, a vapor deposition method, or the like can be preferably used.
  • the adhesion layer is formed by a dry method, it is more preferable to use a sputtering method because the film thickness can be easily controlled.
  • one or more elements selected from carbon, oxygen, hydrogen, and nitrogen can be added to the adhesion layer, and in this case, the reactive sputtering method can be more preferably used.
  • the conductive substrate obtained by the conductive substrate manufacturing method of the present embodiment can be used for various applications such as a touch panel. And when using for various uses, it is preferable that the metal layer, organic film, and blackening layer which are contained in the electroconductive board
  • the metal layer, the organic coating, and the blackening layer, and in some cases, the adhesion layer can be patterned in accordance with, for example, a desired wiring pattern.
  • the layers are preferably patterned in the same shape.
  • the manufacturing method of the conductive substrate of this embodiment can have the patterning process which patterns a metal layer, an organic film, and a blackening layer.
  • the patterning step can be a step of patterning the adhesion layer, the metal layer, the organic coating, and the blackening layer.
  • the specific procedure of the patterning step is not particularly limited, and can be performed by an arbitrary procedure.
  • a desired pattern is formed on the surface A on the blackened layer 54.
  • a mask placement step of placing a mask can be performed.
  • an etching step of supplying an etching solution to the surface A on the blackened layer 54, that is, the surface side where the mask is disposed can be performed.
  • the etching solution used in the etching step is not particularly limited, and can be arbitrarily selected according to the material constituting the layer to be etched.
  • the etching solution can be changed for each layer, and the metal layer, the organic coating, and the blackening layer, and in some cases, the adhesion layer can be further etched with the same etching solution.
  • the conductive substrate 50B in which the metal layers 52A and 52B, the organic coatings 53A and 53B, and the blackening layers 54A and 54B are stacked on the one surface 51a and the other surface 51b of the transparent base material 51 is also patterned.
  • a patterning process can be performed. In this case, for example, a mask placement step of placing a mask having a desired pattern on the surface A and the surface B on the blackening layers 54A and 54B can be performed.
  • an etching step of supplying an etching solution to the surface A and the surface B on the blackening layers 54A and 54B, that is, the surface side where the mask is disposed can be performed.
  • the pattern formed in the etching step is not particularly limited, and can be an arbitrary shape.
  • the metal layer 52, the organic coating 53, and the blackening layer 54 include a plurality of straight lines or jagged lines (zigzag straight lines). A pattern can be formed.
  • a pattern can be formed by the metal layer 52A and the metal layer 52B so as to form a mesh-like wiring.
  • the organic coating 53A and the blackening layer 54A are patterned so as to have the same shape as the metal layer 52A, and the organic coating 53B and the blackening layer 54B are patterned so as to have the same shape as the metal layer 52B. preferable.
  • a lamination step of laminating two or more patterned conductive substrates can be performed.
  • laminating for example, by laminating so that the pattern of the metal layer of each conductive substrate intersects, a laminated conductive substrate provided with mesh-like wiring can be obtained.
  • the method of fixing two or more laminated conductive substrates is not particularly limited, but can be fixed by, for example, an adhesive.
  • the conductive substrate obtained by the method for manufacturing a conductive substrate of the present embodiment described above has an organic film and a blackened layer laminated on a metal layer formed on at least one surface of a transparent base material. It has a structure. Moreover, since the organic film is manufactured by the method for manufacturing an organic film described above, a uniform film can be obtained.
  • the adhesion between the blackened layer and the metal layer and the organic film, which are the lower layers of the blackened layer, can be particularly improved, and the peeling of the blackened layer can be suppressed, so that the etching property of the blackened layer is improved.
  • a fine wiring process can be easily performed about a metal layer, a blackening layer, etc., reflection of the light in the metal layer surface can be suppressed and it can be set as the electroconductive board
  • the visibility of the display can be enhanced when used for applications such as a touch panel.
  • a vertical cut line having a length of 20 mm. Eleven pieces of 91a are formed parallel to each other at intervals of 1.0 mm.
  • 11 horizontal cutting lines 91b having a length of 20 mm are formed parallel to each other at intervals of 1.0 mm so as to be orthogonal to the previously formed vertical cutting lines 91a.
  • an adhesiveness evaluation tape (Elcometer 99 tape manufactured by Elcomometer Co., Ltd.) is applied so as to cover the grid-like cuts, and then sufficiently rubbed.
  • Example preparation conditions As examples and comparative examples, conductive substrates were produced under the conditions described below and evaluated by the above-described evaluation method.
  • Example 1 Adhesion layer forming process
  • An adhesion layer was formed on one surface of a transparent substrate made of polyethylene terephthalate resin (PET), which is a long sheet having a width of 570 mm and a thickness of 50 ⁇ m.
  • PET polyethylene terephthalate resin
  • the transparent base material made of polyethylene terephthalate resin used as the transparent base material was evaluated to have a total light transmittance of 97% when evaluated by the method defined in JIS K 7361-1.
  • a Ni—Cu alloy layer containing oxygen was formed as an adhesion layer by a roll-to-roll sputtering apparatus equipped with a Ni-17 wt% Cu alloy target. The procedure for forming the adhesion layer will be described below.
  • the above-mentioned transparent base material which was previously heated to 60 ° C. to remove moisture, was placed in the chamber of the sputtering apparatus.
  • Metal layer forming process In the metal layer forming step, a metal thin film layer forming step and a metal plating layer forming step were performed.
  • a substrate in which the adhesion layer was formed on the transparent substrate in the adhesion layer forming step was used, and a copper thin film layer was formed as the metal thin film layer on the adhesion layer.
  • the metal thin film layer is the same as in the case of the adhesion layer except that the copper target is used and the inside of the chamber in which the base material is set is evacuated and then the argon gas is supplied to form an argon atmosphere.
  • the film was formed by a to-roll sputtering apparatus.
  • the copper thin film layer which is a metal thin film layer, was formed to a thickness of 150 nm.
  • a copper plating layer was formed as the metal plating layer.
  • the copper plating layer was formed by electroplating so that the thickness of the copper plating layer was 0.5 ⁇ m.
  • Organic film forming process an organic film was formed on the metal layer of the base material on which the adhesion layer and the metal layer were formed on the transparent base material. In the organic film forming step, the organic film was formed using the organic film manufacturing apparatus described with reference to FIGS.
  • an OPC diffuser (Okuno Pharmaceutical Co., Ltd.) solution containing 1,2,3-benzotriazole, which is a nitrogen-based organic substance, was used as the organic solution.
  • the organic solution was used by adjusting in advance so that the concentration of 1,2,3-benzotriazole was 3 mL / L, the bath temperature was 30 ° C., and the pH was 3.
  • the base material is set on the unwinding roll of an organic film manufacturing apparatus provided with a roll-to-roll type conveying means (not shown), and the base material is wound up by a take-up roll to 3.5 m / The conveyance was started at a conveyance speed of min.
  • the first water washing means 12 was provided on the upstream side in the substrate transport direction, and the surface of the metal layer was washed on one surface 11a, which is the surface on which the organic film of the substrate 11 was formed.
  • the spray nozzle 21 is arrange
  • the above-mentioned organic solution is supplied to substrate 11 from a plurality of nozzle holes which this spray nozzle 21 has, Applied.
  • the spray pattern formed on the surface of the base material 11 by the organic solution supplied from the nozzle hole 211 is an elliptical shape having a minor axis of 5 mm and a major axis of 70 mm (manufactured by Miri no Ikeuchi, model number: INVV11550). .
  • each nozzle hole is arranged so that the major axis of the spray pattern is parallel to the height direction.
  • nozzle holes 211 are installed at equal intervals along the height direction, and the pitch between the nozzle holes 211 is 70 mm.
  • the above-mentioned organic solution was supplied from the spray nozzle 21 at a flow rate of 19 L / min.
  • the liquid film formation means 13 is provided in the conveyance direction downstream rather than the spray nozzle 21,
  • variety is 320 mm from the supply port of the liquid film formation means 13 arrange
  • the film was supplied so that the surface of the substrate was in contact with the film-like flow of the organic solution.
  • the above-mentioned organic solution was supplied from the liquid film forming means 13 at a flow rate of 54 L / min.
  • a Ni—Cu alloy layer was formed as a blackening layer by a roll-to-roll sputtering apparatus equipped with a Ni-35 wt% Cu alloy target. The procedure for forming the blackened layer will be described below.
  • adherence layer, the metal layer, and the organic film on the transparent base material was set in the chamber of the sputtering device.
  • a blackened layer is formed on the upper surface of the metal layer, that is, the surface opposite to the surface facing the adhesion layer of the metal layer via the organic coating, and the adhesion layer and the metal layer are formed on the transparent substrate.
  • a conductive substrate in which an organic film and a blackening layer were laminated in this order was obtained.
  • the spray pattern formed on the surface of the base material 11 by the organic solution supplied from the nozzle hole 211 using the organic film manufacturing apparatus shown in FIGS. 1 and 2 has a circular shape with a diameter of 70 mm.
  • a conductive substrate was produced in the same manner as in Example 1 except that the spray nozzle was used.
  • the conductive substrate is formed in the same manner as in Example 1 except that the organic film manufacturing apparatus shown in FIGS. 1 and 2 is used and the organic solution is not supplied from the spray nozzle to the base material 11. Was made.
  • Example 1 From the results of Example 1, Example 2, and Comparative Example 1, the spray nozzle and the liquid film forming means are used in combination, the organic solution is supplied to the base material, and the organic film is formed. It was confirmed that the adhesion of the layer could be improved. This is because the organic film is uniformly formed on the surface of the metal layer.
  • Example 2 the use of a spray nozzle having a nozzle hole in which the spray pattern formed on the surface of the substrate has an elliptical shape as the spray nozzle allows adhesion of the blackened layer. We were able to confirm that it was particularly enhanced.
  • Substrate 13 Liquid film forming means 21 Spray nozzle 211 Nozzle holes 50A, 50B, 60A, 60B, 70 Conductive substrate 51 Transparent substrate 52, 52A, 52B Metal layers 53, 53A, 53B, 72A, 72B Organic coating 54, 54A, 54B, 73A, 73B Blackening layer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Nozzles (AREA)
  • Coating Apparatus (AREA)

Abstract

シート状の基材の表面に有機溶液を供給し、有機被膜を形成する有機被膜の製造方法であって、 前記基材の幅方向を高さ方向として搬送する前記基材の表面に対して、前記有機溶液を、 前記基材の表面と対向するように複数のノズル孔が配置されたスプレーノズルと、 前記基材の高さ方向上部に配置された供給口を有し、前記供給口から前記有機溶液を膜状の流れとなるように、かつ前記基材の表面と、前記有機溶液の膜状の流れとが接触するように供給する液膜形成手段と、から供給する有機被膜の製造方法を提供する。

Description

有機被膜の製造方法、導電性基板の製造方法、有機被膜製造装置
 本発明は、有機被膜の製造方法、導電性基板の製造方法、有機被膜製造装置に関する。
 静電容量式タッチパネルは、パネル表面に近接する物体により引き起こされる静電容量の変化を検出することにより、パネル表面上での近接する物体の位置の情報を電気信号に変換する。静電容量式タッチパネルに用いられる導電性基板は、ディスプレイの表面に設置されるため、導電性基板の導電層の材料には反射率が低く、視認されにくいことが要求されている。
 そこで、静電容量式タッチパネルに用いられる導電層の材料としては、反射率が低く、視認されにくい材料が用いられ、透明基板または透明なフィルム上に配線が形成されている。
 例えば、特許文献1には、タッチパネル部がPETフィルムにITO膜により、信号パターンとGNDパターンが印刷された複数の透明シート電極よりなる静電容量型デジタル式タッチパネルが開示されている。
 ところで、近年タッチパネルを備えたディスプレイの大画面化が進んでおり、これに対応してタッチパネル用の導電性基板についても大面積化が求められている。しかし、ITOは電気抵抗値が高く信号の劣化を生じるため、ITOを用いた導電性基板は大型パネルには不向きという問題があった。
 そこで、導電層の材料として、ITOにかえて銅等の金属を用いることが検討されている。ただし、金属は金属光沢を有しており、反射によりディスプレイの視認性が低下するという問題があるため、銅等の金属による金属層と共に、黒色の材料により構成される黒化層を形成した導電性基板が検討されている。
 例えば特許文献2には、フィルム表面と裏面の透視が必要な部分のそれぞれに、ストライプ状銅配線を備え、表裏の銅配線の視認される側に黒色の酸化銅皮膜を有するフィルム状タッチパネルセンサーが開示されている。
 また、特許文献2に開示されたフィルム状タッチパネルセンサーの製造方法によれば、フィルムに支持された銅薄膜の上にレジスト層を形成する工程と、フォトリソ法により、少なくともレジスト層をストライプ状配線パターンと引き出し用配線パターンに加工する工程と、露出した銅薄膜をエッチングにより除去しストライプ状銅配線と引き出し用銅配線を形成する工程と、銅配線を黒化処理する工程を有するとされている。
 しかし、特許文献2に開示された、銅配線を形成した後にその表面を黒化処理する方法では、工程数が多くなる。このため、基材上に金属層、及びその表面を黒化処理した黒化層を形成した後、エッチング等により金属層、及び黒化層をパターニングし、導電性基板とする方法が検討されている。
 そして、金属層をパターニングした金属配線をより目立たなくするためには、金属層、及びその上面に形成した黒化層の微細配線加工を行うことが効果的である。ところが、黒化層のエッチング液に対する反応性が低く、微細配線加工を行うために金属層、及び黒化層をエッチングする際に黒化層が剥離する場合があった。
 そこで、金属層と黒化層との間に有機被膜を配置することで黒化層のエッチング性を向上させる方法が検討されている。
 有機被膜は、金属層まで形成した基材の金属層表面に、有機被膜の原料となる有機溶液を塗布することで形成することができ、有機被膜形成後に有機被膜上に黒化層を形成することで、金属層と黒化層との間に有機被膜を配置した構成とすることができる。
 本発明の発明者らは、従来、以下のような方法により有機被膜の形成を行っていた。
 まず、金属層まで形成した基材の幅方向を高さ方向として基材を搬送しつつ、基材の高さ方向上部から有機溶液を供給して形成した膜状の有機溶液の流れと、金属層表面とを接触させて金属層表面に有機溶液を塗布する。そして、有機被膜を塗布した面を水洗することで余分な有機溶液を除去した後、乾燥する。
日本国特開2004-213114号公報 日本国特開2013-206315号公報
 しかしながら、上述の有機被膜の形成方法によれば、金属層表面に形成された有機被膜の厚さが一定ではなかったり、金属層表面の一部に有機被膜が形成されていない場所が生じる等不均一な状態となり易い。有機被膜の不均一性は、有機被膜上面に形成した黒化層の密着性の低下を引き起こし、問題であった。
 上記従来技術の問題に鑑み、本発明の一側面では、被成膜面に均一な有機被膜を形成できる有機被膜の製造方法を提供することを目的とする。
 上記課題を解決するため本発明の一側面では、
 シート状の基材の表面に有機溶液を供給し、有機被膜を形成する有機被膜の製造方法であって、
 前記基材の幅方向を高さ方向として搬送する前記基材の表面に対して、前記有機溶液を、
 前記基材の表面と対向するように複数のノズル孔が配置されたスプレーノズルと、
 前記基材の高さ方向上部に配置された供給口を有し、前記供給口から前記有機溶液を膜状の流れとなるように、かつ前記基材の表面と、前記有機溶液の膜状の流れとが接触するように供給する液膜形成手段と、から供給する有機被膜の製造方法を提供する。
 本発明の一側面によれば、被成膜面に均一な有機被膜を形成できる有機被膜の製造方法を提供することができる。
従来の有機被膜の製造方法の構成例の説明図。 図1のA-A´線における断面図。 本発明の実施形態に係る有機被膜の製造方法の構成例の説明図。 図3のB-B´線における断面図。 本発明の実施形態に係る導電性基板の断面図。 本発明の実施形態に係る導電性基板の断面図。 本発明の実施形態に係る導電性基板の断面図。 本発明の実施形態に係る導電性基板の断面図。 本発明の実施形態に係るメッシュ状の配線を備えた導電性基板の上面図。 図7のA-A´線における断面図。 図7のA-A´線における断面図。 実施例、比較例における密着性試験を行う際に形成する切込み線の説明図。
 以下、本発明の有機被膜の製造方法、導電性基板の製造方法、有機被膜製造装置の一実施形態について説明する。
(有機被膜の製造方法)
 本実施形態の有機被膜の製造方法においては、シート状の基材の表面に有機溶液を供給し、有機被膜を形成することができる。 
 そして、基材の幅方向を高さ方向として搬送する基材の表面に対して、有機溶液を、スプレーノズルと、液膜形成手段とにより、供給することができる。 
 ここで、スプレーノズルは、基材の表面と対向するように複数のノズル孔が配置された構成を有することができる。また、液膜形成手段は、基材の高さ方向上部に配置された供給口を有し、供給口から有機溶液を膜状の流れとなるように、かつ基材の表面と、有機溶液の膜状の流れとが接触するように供給することができる。
 図1、図2を用いて、基材上に有機被膜を形成する際に検討されていた従来の有機被膜の製造方法の一構成例について説明する。
 図1は基材11の有機被膜を形成する被成膜面である一方の面11aと垂直な方向から、基材11上に有機被膜を形成する工程を見た図を示している。また、図2は、図1のA-A´線での断面図を示している。
 図1で基材11は長尺のシート状であり、図中のX軸方向に沿って、図1中に示したブロック矢印1が示す方向に搬送されている。この際、シート状の基材11は、幅方向が高さ方向となるように、すなわち基材11の幅方向が高さ方向に沿うようにした状態で保持、搬送されている。なお、高さ方向とは図中に示したZ軸方向を意味しており、X軸方向が水平方向となる。
 基材11の搬送方向の上流側には、基材11の有機被膜を形成する面である一方の面11aを洗浄するための第1の水洗手段12を配置することができる。第1の水洗手段12は例えば基材11の一方の面11aに対してスプレーノズルにより水を吹き付けて洗浄することができる。なお、搬送されている基材11の一方の面11a全体を洗浄できるように、第1の水洗手段12は複数のスプレーノズルを備えておくことができる。第1の水洗手段12は、例えば高さ方向に沿って、すなわち図中のZ軸に沿って複数のスプレーノズルを配列した構成とすることができる。
 そして、搬送されている基材11の高さ方向上部に配置された液膜形成手段13の供給口から、有機被膜の原料である有機溶液を図中下方向に向かって供給することができる。この際、液膜形成手段13は、図2に示したように、液膜形成手段13の供給口131から膜状の流れである液膜流14を形成し、該液膜流14と基材11の表面とが接触するように有機溶液を供給できる。基材11の上方から液膜流14を形成し、液膜流14が基材11の表面と接触するように、液膜形成手段13が有機溶液を供給することで、基材11の一方の面11aに有機溶液を塗布することができる。
 次いで、液膜形成手段13の下流側にはさらに第2の水洗手段15を配置することができる。第2の水洗手段15により基材11上に塗布された余分な有機溶液を水洗、除去することができる。第2の水洗手段15は、基材11の有機溶液を塗布した面を水洗できる手段であればよく、その構成は特に限定されないが、例えば既述の第1の水洗手段12と同様の構成とすることができる。
 ここまで、既述の有機被膜の製造方法の構成例について説明したが、係る有機被膜の製造方法によれば、金属層表面に形成された有機被膜が不均一な状態となり易い。有機被膜の不均一性は、有機被膜上面に形成した黒化層の密着性の低下を引き起こすため、問題であった。
 このように従来の有機被膜の製造方法により基材上に有機溶液を塗布し、有機被膜を形成した際に、有機被膜が不均一になる理由について、本発明の発明者らは鋭意検討を行った。
 従来の有機被膜の製造方法によれば、上述の様に、幅方向を高さ方向とした状態で搬送している基材の上方から下方に向かって有機溶液を供給することで形成した有機溶液の液膜流を、基材の表面と接触させることのみで有機溶液を塗布している。係る有機溶液の塗布方法によれば、有機溶液が搬送している基材の表面を伝って上部から下部へ流れていくため、有機溶液が基材と接触する際の基材に対するインパクトは穏やかとなっている。また、基材の表面を有機溶液により処理する処理時間は基材の搬送速度により限られている。このため、基材表面に有機溶液を塗布する処理が完全に終了せず、形成された有機被膜が不均一になり易いことを、本発明の発明者らは見出した。そして、本発明の発明者らは、係る従来の有機被膜の製造方法の課題をもとに、本発明を完成させた。
 本実施形態の有機被膜の製造方法について、図3、及び図4を用いて説明する。なお、図1、図2と同じ部材については同じ番号を付している。
 図3は基材11の有機被膜を形成する被成膜面である一方の面11aと垂直な方向から、基材11上に有機被膜を形成する工程を見た図を示している。また、図4は、図3のB-B´線での断面図を示している。
 図3で基材11は長尺のシート状であり、図中のX軸方向に沿って、図中に示したブロック矢印1が示す方向に搬送されている。
 なお、図3では長尺のシート状の基材を用いた例を示しているが、係る形態に限定されるものではない。ただし、連続的に生産することができるため、長尺のシートであることが好ましい。また、基材11の種類は特に限定されるものではなく、有機被膜を少なくとも一方の面上に形成する基材を用いることができる。例えば後述の様に、透明基材上に金属層、有機被膜、黒化層が積層された導電性基板を製造するため、有機被膜を形成する場合、透明基材上に金属層を形成したものをここでの基材11として用いることができる。
 この際、シート状の基材11は、幅方向が高さ方向となるように、すなわち基材11の幅方向が高さ方向に沿うようにした状態で保持、搬送されている。なお、高さ方向とは図中に示したZ軸方向を意味しており、X軸方向は水平方向となる。
 そして、搬送されている基材11の高さ方向上部に配置された液膜形成手段13の供給口から、有機被膜の原料である有機溶液を図中下方向に向かって、液膜流14を形成するように、かつ液膜流14と基材11の表面とが接触するように有機溶液を供給できる。液膜形成手段13については従来の有機被膜の製造方法の場合と同様に構成することができるため、ここでは説明を省略する。
 既述の様に、液膜形成手段13のみにより基材11の一方の面11aに有機溶液を供給、塗布すると、形成された有機被膜が不均一になる場合があった。そこで、本実施形態の有機被膜の製造方法においては、上述の液膜形成手段に加えて、スプレーノズル21により、基材11の有機被膜を形成する面である一方の面11aに対して有機溶液を供給することができる。
 図4に示すように、スプレーノズル21は、基材11の表面、すなわち一方の面11aと対向するように複数のノズル孔211が配置された構成を有することができる。そして、スプレーノズル21の複数のノズル孔211から、基材11の一方の面11aに対して有機溶液を供給することで基材11の一方の面11aに有機被膜を塗布できる。
 既述の様に、液膜形成手段により基材の有機被膜を形成する面に有機溶液を塗布する場合、有機溶液が基材と接触する際の基材に対するインパクトは穏やかとなっている。このため、液膜形成手段のみにより基材11の有機被膜を形成する面に有機溶液を塗布し、有機被膜を形成した場合、有機被膜が不均一になる場合があった。これに対して、スプレーノズルにより基材の有機被膜を形成する面に有機溶液を塗布した場合、有機溶液が基材と接触する際の基材に対するインパクトを強くすることができる。このため、液膜形成手段と、スプレーノズルと、により基材の表面に対して有機溶液を塗布し、有機被膜を形成することで均一な有機被膜を形成することが可能となる。
 図4に示すように、スプレーノズル21は複数のノズル孔211を有することができる。ノズル孔211の配列は特に限定されないが、図4において紙面と垂直な方向であるX軸方向に沿って搬送されている基材11の一方の面11a全体に有機溶液を塗布できるように、図4中のZ軸方向に沿って、すなわち高さ方向に沿って配列されていることが好ましい。
 特にノズル孔211から供給し、基材11上に塗布した有機溶液が連続した有機溶液の塗膜となることが好ましい。このため、高さ方向に隣接するノズル孔211から、基材11上に有機溶液を塗布することで形成されるスプレーパターンが接していることが好ましく、一部が重なり合うことがより好ましい。
 スプレーノズル21のノズル孔211の形状は特に限定されるものではない。例えばスプレーノズルのノズル孔から供給した有機溶液により、基材の表面に形成されるスプレーパターンが円形状や、楕円形状のスプレーノズルを好ましく用いることができる。
 ただし、スプレーノズル21により、基材11上に有機溶液を塗布した際に、基材に対してより強いインパクトを与えることが、形成する有機被膜の均一性を高める観点から好ましい。そして、本発明の発明者らの検討によれば、ノズル孔から供給した有機溶液により基材上に形成されるスプレーパターン、すなわちノズル孔から基材に有機溶液を供給した際に基材上に形成されるパターンの形状が、楕円形の場合に特に強いインパクトを与えられる。
 このため、スプレーノズルは、ノズル孔から供給した有機溶液により、基材の表面に形成されるスプレーパターンが楕円形状であることがより好ましい。
 なお、スプレーノズルは複数のノズル孔を有することができるが、ここでのスプレーパターンの形状は、各ノズル孔から基材上に有機溶液を供給した際の形状を意味している。
 また、スプレーパターンが楕円形状の場合、その長径と短径との比は特に限定されるものではないが、例えば長径/短径が、5以上20以下であることが好ましい。
 図3においては、基材11の搬送方向上流側から順に、スプレーノズル21と、液膜形成手段13とを配置した例を示しているが、基材11に対して有機溶液を塗布する際の、塗布手段の順番は特に限定されるものではない。例えば液膜形成手段13により基材11上に有機溶液を塗布した後、スプレーノズル21により基材11上に有機溶液を塗布してもよい。また、液膜形成手段13とスプレーノズル21とにより同時に基材11上に有機溶液を塗布してもよい。
 また、図3では基材11上に有機溶液を塗布する際、液膜形成手段により1回、スプレーノズルにより1回、有機溶液を塗布している例を示したが、係る形態に限定されるものではない。例えば基材11の搬送経路上に、液膜形成手段および/またはスプレーノズルを複数設け、基材11上に液膜形成手段および/またはスプレーノズルにより、複数回有機溶液を塗布することもできる。
 有機被膜を製造する際に用いる有機溶液の種類は特に限定されるものではなく、製造する有機被膜の種類等に応じて任意に選択することができる。例えば後述する導電性基板の有機被膜を成膜する場合、係る有機被膜に対応した有機溶液を用いることができる。
 なお、基材11の搬送方向の上流側には、基材11の一方の面11aを洗浄するための第1の水洗手段12を配置することができる。
 また、液膜形成手段13、およびスプレーノズル21の、基材11の搬送方向の下流側には第2の水洗手段15を配置することもできる。第1の水洗手段12、及び第2の水洗手段15については従来の有機被膜の製造方法の場合と同様に構成できるため、ここでは説明を省略する。
 ここまで、図3、図4においては、基材11の一方の面11aのみに有機被膜を形成する場合を例に説明したが、一方の面11aと対向する面、すなわち図4に示した他方の面11bにも有機被膜を同時に形成することができる。
 具体的には例えば、搬送されている基材11の他方の面11b側にも同様に液膜形成手段、及びスプレーノズルを配置することで他方の面11bにも有機被膜を形成することができる。
 他方の面11bにも有機被膜を形成する場合、特に一方の面11a側に設けたスプレーノズルと、他方の面側に設けたスプレーノズルは、ノズル孔が基材11を挟んで対向するように、すなわち基材の搬送方向で見て同じ位置に配置することが好ましい。これは基材11の両面から同様の圧力で有機溶液を供給することで基材11に反り等が生じることを抑制できるからである。
 スプレーノズルだけではなく、液膜形成手段や第1の水洗手段、第2の水洗手段等についても基材11の搬送方向で見て同じ位置に配置することが好ましい。
 以上に説明した本実施形態の有機被膜の製造方法によれば、基材の有機被膜を形成する面に、均一な有機被膜を形成できる。このため、例えば金属層、有機被膜、黒化層が積層された導電性基板の有機被膜を成膜する際に用いた場合、黒化層の密着性を高めることができる。
 また、ここまで基材上に有機被膜を形成する場合を例に説明したが、基材上に液膜形成手段、及びスプレーノズルから液体を供給することで、基材上に均一な液膜を形成することができる。このため、例えば有機溶液に代えて水等の洗浄液を用い、液膜形成手段、及びスプレーノズルから洗浄液を供給することで、基材の表面を洗浄する方法として用いることもできる。また、有機被膜以外の各種被膜の製造方法としても用いることができる。
(有機被膜製造装置)
 次に、本実施形態の有機被膜製造装置の一構成例について説明する。
 なお、本実施形態の有機被膜製造装置は、既述の有機被膜の製造方法に好適に用いることができるため、有機被膜の製造方法において、既に説明した事項については説明を一部省略する。
 本実施形態の有機被膜製造装置によれば、シート状の基材の表面に有機溶液を供給し、有機被膜を形成することができ、以下の構成を有することができる。
 基材の幅方向を高さ方向として搬送する搬送手段。 
 基材の表面と対向するように複数のノズル孔が配置されたスプレーノズル。
 基材の高さ方向上部に配置された供給口を有し、供給口から有機溶液を膜状となるように、かつ基材の表面と、有機溶液の膜状の流れとが接触するように供給する液膜形成手段。
 本実施形態の有機被膜製造装置について、図3、図4を用いて説明する。
 本実施形態の有機被膜製造装置によれば、搬送している基材に対して、有機溶液を供給、塗布し、有機被膜を形成できる。
 このため、本実施形態の有機被膜製造装置は、基材を搬送する搬送手段を有することができる。搬送手段の構成については特に限定されるものではなく、例えば、基材として、図3に示したような長尺シート状の基材を用いる場合には、ロール・トゥ・ロール方式により基材を搬送する搬送手段を用いることができる。なお、ロール・トゥ・ロール方式による搬送手段とは、予めコイル状に基材を巻き取ってある巻き出しロールから基材を供給し、巻き取りロールで有機被膜を成膜した基材を巻き取ることで基材を搬送する搬送手段を意味する。
 そして、搬送手段により搬送している基材の有機被膜を形成する面に対して有機溶液を供給する手段として、スプレーノズル、及び液膜形成手段を有することができる。
 図3、図4に示した様に、スプレーノズル21は複数のノズル孔211を備えており、搬送している基材11の有機被膜を形成する面に対して、ノズル孔211から有機溶液を供給、塗布できる。
 スプレーノズルのノズル孔の形状は特に限定されるものではないが、例えばスプレーノズルは、ノズル孔から供給した有機溶液により、基材の表面に形成されるスプレーパターンが楕円形状であることが好ましい。
 スプレーノズルについてその他の点は、有機被膜の製造方法において既述のため、説明を省略する。
 また、液膜形成手段の構成例についても既述のため、ここでは説明を省略する。
 なお、図3においては、スプレーノズル21と、液膜形成手段13とをそれぞれ1つずつ備えた有機被膜製造装置の構成例を示しているが、係る形態に限定されるものではない。例えば、基材11の搬送経路上に複数のスプレーノズルおよび/または複数の液膜形成手段を設けることもできる。
 また、図3においては、基材11の搬送方向上流側から、スプレーノズル21、液膜形成手段13の順に配置した例を示しているが、係る形態に限定されるものではない。例えば基材11の搬送方向上流側から、液膜形成手段13、スプレーノズル21の順に配置することもできる。また、スプレーノズル21と、液膜形成手段13とが基材11の搬送方向で見て、重複する位置に設けてもよい。
 本実施形態の有機被膜製造装置は、上記部材に限定されるものではなく、任意の各種手段を有することができる。例えば第1の水洗手段12および/または第2の水洗手段15を有することができる。第1の水洗手段12、第2の水洗手段15については既述のため、ここでは説明を省略する。
 また、第2の水洗手段15よりも、基材11の搬送方向の下流側に基材11の表面に付着した水を切る水切り手段や、基材表面を乾燥させる乾燥手段等をさらに設けることもできる、
 なお、図3、図4においては、基材11の一方の面11aのみに有機被膜を形成する有機被膜製造装置を例に説明したが、一方の面11aと対向する面、すなわち図4に示した他方の面11bにも有機被膜を同時に形成するように装置を構成することもできる。
 具体的には例えば、搬送されている基材11の他方の面11b側にも同様に液膜形成手段、及びスプレーノズルを配置することで、他方の面11bにも有機被膜を形成することができる。特に一方の面11a側に設けたスプレーノズルと、他方の面側に設けたスプレーノズルは、ノズル孔が基材11を挟んで対向するように、すなわち基材の搬送方向で見て同じ位置に配置することが好ましい。これは基材11の両面から同様の圧力で有機溶液を供給することで基材11に反り等が生じることを抑制できるからである。
 スプレーノズルだけではなく、液膜形成手段や第1の水洗手段、第2の水洗手段等についても基材11の搬送方向で見て同じ位置に配置することが好ましい。すなわち、基材11の一方の面11aと垂直な面での断面において、基材11を挟んで対称に各種手段が設けられていることが好ましい。
 以上に説明した本実施形態の有機被膜製造装置によれば、基材の有機被膜を形成する面に、均一な有機被膜を形成できる。このため、例えば金属層、有機被膜、黒化層が積層された導電性基板の有機被膜を成膜する際に用いた場合、黒化層の密着性を高めることができる。
 なお、ここまで基材上に有機被膜を形成する場合を例に説明したが、基材上に液膜形成手段、及びスプレーノズルから液体を供給することで、基材上に均一な液膜を形成することができる。このため、例えば有機溶液に代えて水等の洗浄液を用い、液膜形成手段、及びスプレーノズルから洗浄液を供給することで、基材表面の洗浄装置として用いることもできる。また、有機被膜以外の各種被膜の製造装置としても用いることができる。
(導電性基板の製造方法)
 次に、本実施形態の導電性基板の製造方法の一構成例について説明する。
 本実施形態の導電性基板の製造方法は、以下の工程を有することができる。
 透明基材の少なくとも一方の面上に金属層を形成する金属層形成工程。 
 金属層の上面に有機被膜を形成する有機被膜形成工程。 
 有機被膜の上面に黒化層を形成する黒化層形成工程。 
 そして、有機被膜形成工程において、既述の有機被膜の製造方法により、金属層の上面に有機被膜を形成することができる。
 ここでまず、本実施形態の導電性基板の製造方法により得られる導電性基板の構成例について説明する。
 導電性基板は、透明基材と、透明基材の少なくとも一方の面上に形成された金属層と、金属層上に形成された有機被膜と、有機被膜上に形成された黒化層と、を有することができる。
 なお、本実施形態における導電性基板とは、金属層等をパターン化する前の、透明基材の表面に金属層、有機被膜、及び黒化層を有する基板と、金属層等をパターン化した基板、すなわち、配線基板と、を含む。
 ここでまず、導電性基板に含まれる各部材について以下に説明する。
 透明基材としては特に限定されるものではなく、可視光を透過する樹脂基板(樹脂フィルム)や、ガラス基板等の透明基材を好ましく用いることができる。
 可視光を透過する樹脂基板の材料としては例えば、ポリアミド系樹脂、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、シクロオレフィン系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂等の樹脂を好ましく用いることができる。特に、可視光を透過する樹脂基板の材料として、PET(ポリエチレンテレフタレート)、COP(シクロオレフィンポリマー)、PEN(ポリエチレンナフタレート)、ポリアミド、ポリイミド、ポリカーボネート等をより好ましく用いることができる。
 透明基材の厚さについては特に限定されず、導電性基板とした場合に要求される強度や静電容量、光の透過率等に応じて任意に選択することができる。透明基材の厚さとしては例えば10μm以上200μm以下とすることができる。特にタッチパネルの用途に用いる場合、透明基材の厚さは20μm以上120μm以下とすることが好ましく、20μm以上100μm以下とすることがより好ましい。タッチパネルの用途に用いる場合で、例えば特にディスプレイ全体の厚さを薄くすることが求められる用途においては、透明基材の厚さは20μm以上50μm以下であることが好ましい。
 透明基材の全光線透過率は高い方が好ましく、例えば全光線透過率は30%以上であることが好ましく、60%以上であることがより好ましい。透明基材の全光線透過率が上記範囲であることにより、例えばタッチパネルの用途に用いた場合にディスプレイの視認性を十分に確保することができる。
 なお透明基材の全光線透過率はJIS K 7361-1に規定される方法により評価することができる。
 次に、金属層について説明する。
 金属層を構成する材料は特に限定されず用途にあった電気伝導率を有する材料を選択できるが、例えば、金属層を構成する材料は、Cuと、Ni,Mo,Ta,Ti,V,Cr,Fe,Mn,Co,Wから選ばれる少なくとも1種の以上の金属との銅合金、または銅を含む材料であることが好ましい。また、金属層は銅から構成される銅層とすることもできる。
 透明基材上に金属層を形成する方法は特に限定されないが、光の透過率を低減させないため、透明基材と金属層との間に接着剤を配置しないことが好ましい。すなわち金属層は、透明基材の少なくとも一方の面上に直接形成されていることが好ましい。なお、後述のように透明基材と金属層との間に密着層を配置する場合には、金属層は密着層の上面に直接形成されていることが好ましい。
 透明基材の上面に金属層を直接形成するため、金属層は金属薄膜層を有することが好ましい。また、金属層は金属薄膜層と金属めっき層とを有していてもよい。
 例えば透明基材上に、乾式めっき法により金属薄膜層を形成し該金属薄膜層を金属層とすることができる。これにより、透明基材上に接着剤を介さずに直接金属層を形成できる。なお、乾式めっき法としては後で詳述するが、例えばスパッタリング法や蒸着法、イオンプレーティング法等を好ましく用いることができる。
 また、金属層の膜厚を厚くする場合には、金属薄膜層を給電層として湿式めっき法の一種である電気めっき法により金属めっき層を形成することにより、金属薄膜層と金属めっき層とを有する金属層とすることもできる。金属層が金属薄膜層と金属めっき層とを有することにより、この場合も透明基材上に接着剤を介さずに直接金属層を形成できる。
 金属層の厚さは特に限定されるものではなく、金属層を配線として用いた場合に、該配線に供給する電流の大きさや配線幅等に応じて任意に選択することができる。
 ただし、金属層が厚くなると、配線パターンを形成するためにエッチングを行う際にエッチングに時間を要するためサイドエッチが生じ易くなり、細線が形成しにくくなる等の問題を生じる場合がある。このため、金属層の厚さは5μm以下であることが好ましく、3μm以下であることがより好ましい。
 また、特に導電性基板の抵抗値を低くし、十分に電流を供給できるようにする観点から、例えば金属層は厚さが50nm以上であることが好ましく、60nm以上であることがより好ましく、150nm以上であることがさらに好ましい。
 なお、金属層が上述のように金属薄膜層と、金属めっき層とを有する場合には、金属薄膜層の厚さと、金属めっき層の厚さとの合計が上記範囲であることが好ましい。
 金属層が金属薄膜層により構成される場合、または金属層が、金属薄膜層と金属めっき層とを有する場合のいずれの場合でも、金属薄膜層の厚さは特に限定されるものではないが、例えば50nm以上500nm以下とすることが好ましい。
 金属層は後述するように例えば所望の配線パターンにパターニングすることにより配線として用いることができる。そして、金属層は従来透明導電膜として用いられていたITOよりも電気抵抗値を低くすることができるから、金属層を設けることにより導電性基板の電気抵抗値を小さくできる。
 次に有機被膜について説明する。
 有機被膜は金属層の後述する黒化層と対向する面に形成することができる。従って、導電性基板とした場合に、金属層と黒化層との間に配置することができる。有機被膜は窒素系有機物を含有することが好ましい。これは有機被膜が窒素系有機物を含有することで、黒化層と、黒化層の下層である金属層及び有機被膜との密着性を特に高めることができ、黒化層の剥離を抑制できるため、黒化層のエッチング性を高められるからである。また、本発明の発明者らの検討によれば、有機被膜が窒素系有機物を含有することで、導電性基板の反射率を低減することができる。
 有機被膜に用いる窒素系有機物としては特に限定されるものではなく、窒素を含有する有機化合物から任意に選択して用いることができる。有機被膜に用いる窒素系有機物は例えば、1,2,3-ベンゾトリアゾール、またはその誘導体を含むことが好ましい。有機被膜に用いる窒素系有機物としては、具体的には例えば、1,2,3-ベンゾトリアゾールや、5-メチル-1Hベンゾトリアゾール等を挙げることができる。
 有機被膜に好適的に用いることができる窒素系有機物を含有する有機溶液としては、例えば銅用の防錆処理剤が挙げられ、市販されている薬品としては例えばOPCディフェンサー(商品名、奥野製薬工業株式会社)等を好ましく用いることができる。
 有機被膜の窒素系有機物の含有量は0.2μg/cm以上であることが好ましく、0.3μg/cm以上であることがより好ましい。これは、本発明の発明者らの検討によれば、有機被膜の窒素系有機物の含有量を0.2μg/cm以上とすることで、導電性基板の反射率を大幅に抑制することができるからである。また、有機被膜の窒素系有機物の含有量が増加すると、黒化層の色をCIE(L)表色系に換算した際のa値、b値を下げることができ、特に導電性基板の配線を目立たなくすることができるため好ましいからである。
 有機被膜の窒素系有機物の含有量の上限値は特に限定されるものではない。ただし、有機被膜の窒素系有機物の含有量を増加させるためには、有機被膜を形成する際に用いる窒素系有機物を含有する有機溶液の濃度を高めたり、窒素系有機物を含有する有機溶液の供給時間を長くしたり等を行うこととなる。このため、有機被膜の窒素系有機物の含有量を過度に多くしようとすると、窒素系有機物を含有する溶液の取扱い性が低下したり、有機被膜を形成するために要する時間が長くなったり、生産性が低下する恐れがある。そこで、有機被膜の窒素系有機物の含有量は例えば10μg/cm以下とすることが好ましく、また、含有量が低い方が黒化層の密着性が良好なため、1μg/cm以下とすることがより好ましく、0.5μg/cm以下とすることがさらに好ましい。
 有機被膜を形成する際に用いる有機溶液中の窒素系有機物の濃度は特に限定されるものではなく、目標とする有機被膜中の窒素系有機物の含有量や、操作性等を考慮して任意に選択することができる。例えば有機溶液中の窒素系有機物の濃度の下限値は、1mL/L以上であることが好ましく、2mL/L以上であることがより好ましい。また、上限値は、4mL/L以下であることが好ましい。
 金属層表面に有機溶液を供給する際の有機溶液の温度は特に限定されるものではなく、該溶液の粘度や操作性、反応性等を考慮して任意に選択することができる。例えば10℃以上であることが好ましく、20℃以上であることがより好ましい。ただし、温度が高くなると有機溶液が他の物質と反応する恐れがあることから、40℃以下とすることが好ましい。
 有機溶液のpHは特に限定されるものではなく、例えば用いる有機溶液の種類や該溶液の反応性等を考慮して選択することができる。例えば有機溶液のpHは2以上であることが好ましく、3以上であることがより好ましい。ただし、pHが高くなると、例えば被膜中の窒素系有機物の含有量が低下することから、有機溶液のpHは4以下であることが好ましい。
 金属層表面に対して有機溶液を供給し、反応させる処理時間の長さは特に限定されるものではなく、用いる有機溶液の種類や、形成する有機被膜の厚さ等に応じて任意に選択することができる。例えば処理時間は3秒以上であることが好ましく、4秒以上であることがより好ましい。ただし、処理時間を長くしすぎると、生産性が低下する恐れがあることから10秒以下であることが好ましい。なお、既述の有機被膜の製造方法においては、基材の搬送速度等を調整することにより、処理時間を所望の時間とすることができる。また、既述の有機被膜の製造方法における処理時間とは、基材の有機被膜を形成する面の任意の点に対して、スプレーノズル、及び液膜形成手段により、有機溶液をが供給されている時間の合計を意味する。
 次に黒化層について説明する。
 黒化層は、有機被膜の上面に形成することができる。
 黒化層の材料は特に限定されるものではなく、金属層表面における光の反射を抑制できる材料であれば好適に用いることができる。
 黒化層は例えば、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも1種以上の金属を含むことが好ましい。また、黒化層は、炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。
 なお、黒化層は、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金を含むこともできる。この場合についても、黒化層は炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。この際、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金としては、Cu-Ti-Fe合金や、Cu-Ni-Fe合金、Ni-Cu合金、Ni-Zn合金、Ni-Ti合金、Ni-W合金、Ni-Cr合金、Ni-Cu-Cr合金を好ましく用いることができる。特にNi-Cu合金をより好ましく用いることができる。
 黒化層の成膜方法は特に限定されるものではなく、任意の方法により成膜することができ、例えば乾式法、または湿式法により成膜することができる。
 黒化層を乾式法により成膜する場合、その具体的な方法は特に限定されるものではないが、例えばスパッタリング法、イオンプレーティング法や蒸着法等の乾式めっき法を好ましく用いることができる。黒化層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、黒化層には上述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。
 反応性スパッタリング法により黒化層を成膜する場合、ターゲットとしては、黒化層を構成する金属種を含むターゲットを用いることができる。黒化層が合金を含む場合には、黒化層に含まれる金属種毎にターゲットを用い、基材等の被成膜体の表面で合金を形成してもよく、予め黒化層に含まれる金属を合金化したターゲットを用いることもできる。
 また、黒化層に炭素、酸素、水素、窒素から選ばれる1種以上の元素が含まれる場合、これらは黒化層を成膜する際の雰囲気中に添加しておくことにより、黒化層中に添加することができる。例えば、黒化層に炭素を添加する場合には一酸化炭素ガスおよび/または二酸化炭素ガスを、酸素を添加する場合には酸素ガスを、水素を添加する場合には水素ガスおよび/または水を、窒素を添加する場合には窒素ガスを、スパッタリングを行う際の雰囲気中に添加しておくことができる。黒化層を成膜する際の不活性ガス中にこれらのガスを添加することにより、炭素、酸素、水素、窒素から選ばれる1種以上の元素を黒化層中に添加することができる。なお、不活性ガスとしてはアルゴンを好ましく用いることができる。
 黒化層を湿式法により成膜する場合には、黒化層の材料に応じためっき液を用い、例えば電気めっき法により成膜することができる。
 上述の様に黒化層は、乾式法、湿式法のいずれの方法でも形成することができるが、黒化層を形成する際に、有機被膜を構成する材料が、めっき液中に溶けだし、黒化層中に取り込まれることで、黒化層の色調や他の特性に影響を及ぼす恐れがあるため、乾式法により成膜することが好ましい。
 黒化層の厚さは特に限定されるものではないが、例えば15nm以上であることが好ましく、25nm以上であることがより好ましい。これは、黒化層の厚さが薄い場合には、金属層表面における光の反射を十分に抑制できない場合があるため、上述のように黒化層の厚さを15nm以上とすることにより金属層表面における光の反射を特に抑制できるように構成することが好ましいためである。
 黒化層の厚さの上限値は特に限定されるものではないが、必要以上に厚くしても成膜に要する時間や、配線を形成する際のエッチングに要する時間が長くなり、コストの上昇を招くことになる。このため、黒化層の厚さは70nm以下とすることが好ましく、50nm以下とすることがより好ましい。
 また、導電性基板は上述の透明基材、金属層、有機被膜、黒化層以外に任意の層を設けることもできる。例えば密着層を設けることができる。
 密着層の構成例について説明する。
 上述のように金属層は透明基材上に形成することができるが、透明基材上に金属層を直接形成した場合に、透明基材と金属層との密着性は十分ではない場合がある。このため、透明基材の上面に直接金属層を形成した場合、製造過程、または、使用時に透明基材から金属層が剥離する場合がある。
 そこで、本実施形態の導電性基板においては、透明基材と金属層との密着性を高めるため、透明基材上に密着層を配置することができる。
 透明基材と金属層との間に密着層を配置することにより、透明基材と金属層との密着性を高め、透明基材から金属層が剥離することを抑制できる。
 また、密着層は黒化層としても機能させることができる。このため、金属層の下面側、すなわち透明基材側からの光による金属層の光の反射も抑制することが可能になる。
 密着層を構成する材料は特に限定されるものではなく、透明基材及び金属層との密着力や、要求される金属層表面での光の反射の抑制の程度、また、導電性基板を使用する環境(例えば湿度や、温度)に対する安定性の程度等に応じて任意に選択することができる。
 密着層は例えば、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも1種以上の金属を含むことが好ましい。また、密着層は炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。
 なお、密着層は、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金を含むこともできる。この場合についても、密着層は炭素、酸素、水素、窒素から選ばれる1種以上の元素をさらに含むこともできる。この際、Ni,Zn,Mo,Ta,Ti,V,Cr,Fe,Co,W,Cu,Sn,Mnから選ばれる少なくとも2種以上の金属を含む金属合金としては、Cu-Ti-Fe合金や、Cu-Ni-Fe合金、Ni-Cu合金、Ni-Zn合金、Ni-Ti合金、Ni-W合金、Ni-Cr合金、Ni-Cu-Cr合金を好ましく用いることができる。特にNi-Cu合金をより好ましく用いることができる。
 密着層の成膜方法は特に限定されるものではないが、乾式めっき法により成膜することが好ましい。乾式めっき法としては例えばスパッタリング法、イオンプレーティング法や蒸着法等を好ましく用いることができる。密着層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、密着層には上述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。
 密着層が炭素、酸素、水素、窒素から選ばれる1種以上の元素を含む場合には、密着層を成膜する際の雰囲気中に炭素、酸素、水素、窒素から選ばれる1種以上の元素を含有するガスを添加しておくことにより、密着層中に添加することができる。例えば、密着層に炭素を添加する場合には一酸化炭素ガスおよび/または二酸化炭素ガスを、酸素を添加する場合には酸素ガスを、水素を添加する場合には水素ガスおよび/または水を、窒素を添加する場合には窒素ガスを、乾式めっきを行う際の雰囲気中に添加しておくことができる。
 炭素、酸素、水素、窒素から選ばれる1種以上の元素を含有するガスは、不活性ガスに添加し、乾式めっきの際の雰囲気ガスとすることが好ましい。不活性ガスとしては特に限定されないが、例えばアルゴンを好ましく用いることができる。
 密着層を上述のように乾式めっき法により成膜することにより、透明基材と密着層との密着性を高めることができる。そして、密着層は例えば金属を主成分として含むことができるため金属層との密着性も高い。このため、透明基材と金属層との間に密着層を配置することにより、金属層の剥離を抑制することができる。
 密着層の厚さは特に限定されるものではないが、例えば3nm以上50nm以下とすることが好ましく、3nm以上35nm以下とすることがより好ましく、3nm以上33nm以下とすることがさらに好ましい。
 密着層についても黒化層として機能させる場合、すなわち金属層における光の反射を抑制する場合、密着層の厚さを上述のように3nm以上とすることが好ましい。
 密着層の厚さの上限値は特に限定されるものではないが、必要以上に厚くしても成膜に要する時間や、配線を形成する際のエッチングに要する時間が長くなり、コストの上昇を招くことになる。このため、密着層の厚さは上述のように50nm以下とすることが好ましく、35nm以下とすることがより好ましく、33nm以下とすることがさらに好ましい。
 次に、導電性基板の構成例について説明する。
 上述のように、本実施形態の導電性基板は透明基材と、金属層と、有機被膜と、黒化層と、を有することができる。また、任意に密着層等の層を設けることもできる。
 具体的な構成例について、図5A、図5B、図6A、図6Bを用いて以下に説明する。図5A、図5B、図6A、図6Bは、本実施形態の導電性基板の、透明基材、金属層、有機被膜、黒化層の積層方向と平行な面における断面図の例を示している。
 本実施形態の導電性基板は、例えば透明基材の少なくとも一方の面上に、透明基材側から金属層と、有機被膜と、黒化層とがその順に積層された構造を有することができる。
 具体的には例えば、図5Aに示した導電性基板50Aのように、透明基材51の一方の面51a側に金属層52と、有機被膜53と、黒化層54と、を一層ずつその順に積層することができる。また、図5Bに示した導電性基板50Bのように、透明基材51の一方の面51a側と、もう一方の面(他方の面)51b側と、にそれぞれ金属層52A、52Bと、有機被膜53A、53Bと、黒化層54A、54Bと、を一層ずつその順に積層することができる。
 また、さらに任意の層として、例えば密着層を設けた構成とすることもできる。この場合例えば、透明基材の少なくとも一方の面上に、透明基材側から密着層と、金属層と、有機被膜と、黒化層とがその順に形成された構造とすることができる。
 具体的には例えば図6Aに示した導電性基板60Aのように、透明基材51の一方の面51a側に、密着層55と、金属層52と、有機被膜53と、黒化層54と、をその順に積層することができる。
 この場合も透明基材51の両面に密着層、金属層、有機被膜、黒化層を積層した構成とすることもできる。具体的には図6Bに示した導電性基板60Bのように、透明基材51の一方の面51a側と、他方の面51b側と、にそれぞれ密着層55A、55Bと、金属層52A、52Bと、有機被膜53A、53Bと、黒化層54A、54Bとをその順に積層できる。
 なお、図5B、図6Bにおいて、透明基材の両面に金属層、有機被膜、黒化層等を積層した場合に、透明基材51を対称面として透明基材51の上下に積層した層が対称になるように配置した例を示したが、係る形態に限定されるものではない。例えば、図6Bにおいて、透明基材51の一方の面51a側の構成を図5Bの構成と同様に、密着層55Aを設けずに金属層52Aと、有機被膜53Aと、黒化層54Aとをその順に積層した形態とし、透明基材51の上下に積層した層を非対称な構成としてもよい。
 ところで、本実施形態の導電性基板においては、透明基材上に金属層と、有機被膜と、黒化層とを設けることで、金属層による光の反射を抑制し、導電性基板の反射率を抑制することができる。
 本実施形態の導電性基板の反射率の程度については特に限定されるものではないが、例えばタッチパネル用の導電性基板として用いた場合のディスプレイの視認性を高めるためには、反射率は低い方が良い。例えば、波長400nm以上700nm以下の光の平均反射率が20%以下であることが好ましく、17%以下であることがより好ましく、15%以下であることが特に好ましい。
 反射率の測定は、導電性基板の黒化層に光を照射するようにして行うことができる。具体的には例えば図5Aのように透明基材51の一方の面51a側に金属層52、有機被膜53、黒化層54の順に積層した場合、黒化層54に光を照射するように黒化層54の表面Aに対して光を照射し、測定できる。測定に当たっては波長400nm以上700nm以下の光を例えば波長1nm間隔で上述のように導電性基板の黒化層54に対して照射し、測定した値の平均値を該導電性基板の反射率とすることができる。
 本実施形態の導電性基板はタッチパネル用の導電性基板として好ましく用いることができる。この場合導電性基板はメッシュ状の配線を備えた構成とすることができる。
 メッシュ状の配線を備えた導電性基板は、ここまで説明した本実施形態の導電性基板の金属層、有機被膜、及び黒化層をエッチングすることにより得ることができる。
 例えば、二層の配線によりメッシュ状の配線とすることができる。具体的な構成例を図7に示す。図7はメッシュ状の配線を備えた導電性基板70を金属層等の積層方向の上面側から見た図を示しており、配線パターンが分かり易いように、透明基材51、及び金属層をパターニングして形成した配線71A、71B以外の層は記載を省略している。また、透明基材51を透過して見える配線71Bも示している。
 図7に示した導電性基板70は、透明基材51と、図中Y軸方向に平行な複数の配線71Aと、X軸方向に平行な配線71Bとを有している。なお、配線71A、71Bは金属層をエッチングして形成されており、該配線71A、71Bの上面および/または下面には図示しない有機被膜、及び黒化層が形成されている。また、有機被膜、及び黒化層は配線71A、71Bと同じ形状にエッチングされている。
 透明基材51と配線71A、71Bとの配置は特に限定されない。透明基材51と配線との配置の構成例を図8A、図8Bに示す。図8A、図8Bは図7のA-A´線での断面図に当たる。
 まず、図8Aに示したように、透明基材51の上下面にそれぞれ配線71A、71Bが配置されていてもよい。なお、図8Aでは配線71Aの上面、及び71Bの下面には、配線と同じ形状にエッチングされた有機被膜72A、72B、黒化層73A、73Bが配置されている。
 また、図8Bに示したように、1組の透明基材51を用い、一方の透明基材51を挟んで上下面に配線71A、71Bを配置し、かつ、一方の配線71Bは透明基材51間に配置されてもよい。この場合も、配線71A、71Bの上面には配線と同じ形状にエッチングされた有機被膜72A、72B、黒化層73A、73Bが配置されている。なお、既述のように、金属層、有機被膜、黒化層以外に密着層を設けることもできる。このため、図8A、図8Bいずれの場合でも、例えば配線71Aおよび/または配線71Bと透明基材51との間に密着層を設けることもできる。密着層を設ける場合、密着層も配線71A、71Bと同じ形状にエッチングされていることが好ましい。
 図7及び図8Aに示したメッシュ状の配線を有する導電性基板は例えば、図5Bのように透明基材51の両面に金属層52A、52Bと、有機被膜53A、53Bと、黒化層54A、54Bを備えた導電性基板から形成することができる。
 図5Bの導電性基板を用いて形成した場合を例に説明すると、まず、透明基材51の一方の面51a側の金属層52A、有機被膜53A、及び黒化層54Aを、図5B中Y軸方向に平行な複数の線状のパターンがX軸方向に沿って所定の間隔をあけて配置されるようにエッチングを行う。なお、図5B中のX軸方向は、各層の幅方向と平行な方向を意味している。また、図5B中のY軸方向とは、図5B中の紙面と垂直な方向を意味している。
 そして、透明基材51の他方の面51b側の金属層52B、有機被膜53B、及び黒化層54Bを図5B中X軸方向と平行な複数の線状のパターンが所定の間隔をあけてY軸方向に沿って配置されるようにエッチングを行う。
 以上の操作により図7、図8Aに示したメッシュ状の配線を有する導電性基板を形成することができる。なお、透明基材51の両面のエッチングは同時に行うこともできる。すなわち、金属層52A、52B、有機被膜53A、53B、黒化層54A、54Bのエッチングは同時に行ってもよい。また、図8Aにおいて、配線71A、71Bと、透明基材51との間にさらに配線71A、71Bと同じ形状にパターニングされた密着層を有する導電性基板は、図6Bに示した導電性基板を用いて同様にエッチングを行うことで作製できる。
 図7に示したメッシュ状の配線を有する導電性基板は、図5Aまたは図6Aに示した導電性基板を2枚用いることにより形成することもできる。図5Aの導電性基板を2枚用いて形成した場合を例に説明すると、図5Aに示した導電性基板2枚についてそれぞれ、金属層52、有機被膜53、及び黒化層54を、X軸方向と平行な複数の線状のパターンが所定の間隔をあけてY軸方向に沿って配置されるようにエッチングを行う。そして、上記エッチング処理により各導電性基板に形成した線状のパターンが互いに交差するように向きをあわせて2枚の導電性基板を貼り合せることによりメッシュ状の配線を備えた導電性基板とすることができる。2枚の導電性基板を貼り合せる際に貼り合せる面は特に限定されるものではない。例えば、金属層52等が積層された図5Aにおける表面Aと、金属層52等が積層されていない図5Aにおける他方の面51bとを貼り合せて、図8Bに示した構造となるようにすることもできる。
 また、例えば透明基材51の金属層52等が積層されていない図5Aにおける他方の面51b同士を貼り合せて断面が図8Aに示した構造となるようにすることもできる。
 なお、図8A、図8Bにおいて、配線71A、71Bと、透明基材51との間にさらに配線71A、71Bと同じ形状にパターニングされた密着層を有する導電性基板は、図5Aに示した導電性基板にかえて図6Aに示した導電性基板を用いることで作製できる。
 図7、図8A、図8Bに示したメッシュ状の配線を有する導電性基板における配線の幅や、配線間の距離は特に限定されるものではなく、例えば、配線に流す電流量等に応じて選択することができる。
 また、図7、図8A、図8Bにおいては、直線形状の配線を組み合わせてメッシュ状の配線(配線パターン)を形成した例を示しているが、係る形態に限定されるものではなく、配線パターンを構成する配線は任意の形状とすることができる。例えばディスプレイの画像との間でモアレ(干渉縞)が発生しないようメッシュ状の配線パターンを構成する配線の形状をそれぞれ、ぎざぎざに屈曲した線(ジグザグ直線)等の各種形状にすることもできる。
 このように2層の配線から構成されるメッシュ状の配線を有する導電性基板は、例えば投影型静電容量方式のタッチパネル用の導電性基板として好ましく用いることができる。
 次に本実施形態の導電性基板の製造方法の一構成例について説明する。
 金属層形成工程に供する透明基材は予め準備しておくことができる。用いる透明基材の種類は特に限定されるものではないが、既述のように可視光を透過する樹脂基板(樹脂フィルム)や、ガラス基板等の透明基材を好ましく用いることができる。透明基材は必要に応じて予め任意のサイズに切断等行っておくこともできる。
 そして、金属層は既述のように、金属薄膜層を有することが好ましい。また、金属層は金属薄膜層と金属めっき層とを有することもできる。このため、金属層形成工程は、例えば乾式めっき法により金属薄膜層を形成する工程を有することができる。また、金属層形成工程は、乾式めっき法により金属薄膜層を形成する工程と、該金属薄膜層を給電層として、湿式めっき法の一種である電気めっき法により金属めっき層を形成する工程と、を有していてもよい。
 金属薄膜層を形成する工程で用いる乾式めっき法としては、特に限定されるものではなく、例えば、蒸着法、スパッタリング法、又はイオンプレーティング法等を用いることができる。なお、蒸着法としては真空蒸着法を好ましく用いることができる。金属薄膜層を形成する工程で用いる乾式めっき法としては、特に膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。
 次に金属めっき層を形成する工程について説明する。湿式めっき法により金属めっき層を形成する工程における条件、すなわち、電気めっき処理の条件は、特に限定されるものではなく、常法による諸条件を採用すればよい。例えば、金属めっき液を入れためっき槽に金属薄膜層を形成した基材を供給し、電流密度や、基材の搬送速度を制御することによって、金属めっき層を形成できる。
 金属層に好適に用いることができる材料や、金属層の好適な厚さ等については既述のため、ここでは説明を省略する。
 次に、有機被膜形成工程について説明する。
 有機被膜形成工程においては、金属層上に有機被膜を形成することができる。
 既述のように、金属層と黒化層との間に有機被膜を設けることで、黒化層の密着性を高め、導電性基板の反射率を抑制することができる。
 有機被膜は既述の有機被膜の製造方法により形成することができる。また、有機被膜を形成する際に用いる有機溶液等については既述のため、ここでは説明を省略する。
 次に、黒化層形成工程について説明する。
 黒化層形成工程において、黒化層を形成する方法は特に限定されるものではなく、任意の方法により形成することができる。
 黒化層形成工程において黒化層を成膜する方法としては、例えばスパッタリング法、イオンプレーティング法や蒸着法等の乾式めっき法を好ましく用いることができる。特に、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、黒化層には既述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。
 また、既述のように黒化層は電気めっき法等の湿式法により成膜することもできる。
 ただし、黒化層を形成する際に、有機被膜を構成する材料が、めっき液中に溶けだし、黒化層中に取り込まれることで、黒化層の色調や他の特性に影響を及ぼす恐れがあるため、乾式法により成膜することが好ましい。
 黒化層に好適に用いることができる材料や、黒化層の好適な厚さ等については既述のため、ここでは説明を省略する。
 本実施形態の導電性基板の製造方法においては、上述の工程に加えてさらに任意の工程を実施することもできる。
 例えば透明基材と金属層との間に密着層を形成する場合、透明基材の金属層を形成する面上に密着層を形成する密着層形成工程を実施することができる。密着層形成工程を実施する場合、金属層形成工程は、密着層形成工程の後に実施することができ、金属層形成工程では、本工程で透明基材上に密着層を形成した基材に金属薄膜層を形成できる。
 密着層形成工程において、密着層の成膜方法は特に限定されるものではないが、乾式めっき法により成膜することが好ましい。乾式めっき法としては例えばスパッタリング法、イオンプレーティング法や蒸着法等を好ましく用いることができる。密着層を乾式法により成膜する場合、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。なお、密着層には既述のように炭素、酸素、水素、窒素から選ばれる1種以上の元素を添加することもでき、この場合は反応性スパッタリング法をさらに好ましく用いることができる。
 密着層に好適に用いることができる材料や、密着層の好適な厚さ等については既述のため、ここでは説明を省略する。
 本実施形態の導電性基板の製造方法で得られる導電性基板は例えばタッチパネル等の各種用途に用いることができる。そして、各種用途に用いる場合には、本実施形態の導電性基板に含まれる金属層、有機被膜、及び黒化層がパターン化されていることが好ましい。なお、密着層を設ける場合は、密着層についてもパターン化されていることが好ましい。金属層、有機被膜、及び黒化層、場合によってはさらに密着層は、例えば所望の配線パターンにあわせてパターン化することができ、金属層、有機被膜、及び黒化層、場合によってはさらに密着層は同じ形状にパターン化されていることが好ましい。
 このため、本実施形態の導電性基板の製造方法は、金属層、有機被膜及び黒化層をパターニングするパターニング工程を有することができる。なお、密着層を形成した場合には、パターニング工程は、密着層、金属層、有機被膜、及び黒化層をパターニングする工程とすることができる。
 パターニング工程の具体的手順は特に限定されるものではなく、任意の手順により実施することができる。例えば図5Aのように透明基材51上に金属層52、有機被膜53、黒化層54が積層された導電性基板50Aの場合、まず黒化層54上の表面Aに所望のパターンを有するマスクを配置するマスク配置ステップを実施することができる。次いで、黒化層54の上の表面A、すなわち、マスクを配置した面側にエッチング液を供給するエッチングステップを実施できる。
 エッチングステップにおいて用いるエッチング液は特に限定されるものではなく、エッチングを行う層を構成する材料に応じて任意に選択することができる。例えば、層毎にエッチング液を変えることもでき、また、同じエッチング液により同時に金属層、有機被膜、及び黒化層、場合によってはさらに密着層をエッチングすることもできる。
 また、図5Bのように透明基材51の一方の面51a、他方の面51bに金属層52A、52B、有機被膜53A、53B、黒化層54A、54Bを積層した導電性基板50Bについてもパターニングするパターニング工程を実施できる。この場合例えば黒化層54A、54B上の表面A、及び表面Bに所望のパターンを有するマスクを配置するマスク配置ステップを実施できる。次いで、黒化層54A、54B上の表面A、及び表面B、すなわち、マスクを配置した面側にエッチング液を供給するエッチングステップを実施できる。
 エッチングステップで形成するパターンについては特に限定されるものではなく、任意の形状とすることができる。例えば図5Aに示した導電性基板50Aの場合、既述のように金属層52、有機被膜53、及び黒化層54を複数の直線や、ぎざぎざに屈曲した線(ジグザグ直線)を含むようにパターンを形成することができる。
 また、図5Bに示した導電性基板50Bの場合、金属層52Aと、金属層52Bとでメッシュ状の配線となるようにパターンを形成することができる。この場合、有機被膜53A、及び黒化層54Aは、金属層52Aと同様の形状に、有機被膜53B、及び黒化層54Bは金属層52Bと同様の形状になるようにそれぞれパターニングを行うことが好ましい。
 また、例えばパターニング工程で上述の導電性基板50Aについて金属層52等をパターン化した後、パターン化した2枚以上の導電性基板を積層する積層工程を実施することもできる。積層する際、例えば各導電性基板の金属層のパターンが交差するように積層することにより、メッシュ状の配線を備えた積層導電性基板を得ることもできる。
 積層した2枚以上の導電性基板を固定する方法は特に限定されるものではないが、例えば接着剤等により固定することができる。
 以上の本実施形態の導電性基板の製造方法により得られる導電性基板は、透明基材の少なくとも一方の面上に形成された金属層上に、有機被膜と、黒化層と、を積層した構造を有している。また、有機被膜を既述の有機被膜の製造方法により製造しているため、均一な膜とすることができる。
 このため、黒化層と、黒化層の下層である金属層及び有機被膜との密着性を特に高めることができ、黒化層の剥離を抑制できるため、黒化層のエッチング性を高めることができる。そして、金属層や黒化層等について微細配線加工を容易に行うことができるため、金属層表面における光の反射を抑制し、反射率を抑制した導電性基板とすることができる。
 さらには、例えばタッチパネル等の用途に用いた場合にディスプレイの視認性を高めることができる。
 以下に具体的な実施例、比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
 まず、得られた導電性基板の黒化層の密着性の評価方法について説明する。
 図9に示すように、黒化層まで形成した導電性基板の黒化層に対して、切込み工具(Precision Gate&Tool Company社製 Cross Cut Kit 1.0MM)を用いて、長さ20mmの縦切り込み線91aを1.0mm間隔で互いに平行になるように11本形成する。
 次いで同じ切込み工具を用いて、先に形成した縦切込み線91aと直交するように、長さ20mmの横切り込み線91bを1.0mm間隔で互いに平行になるように11本形成する。
 以上の工程により、図9に示すように黒化層に縦方向、横方向それぞれ11本の切込み線により、格子状の切込みが形成される。
 次いで、格子状の切込みを覆うように密着度評価用テープ(エルコメーター社製 Elcometer99テープ)を貼り付けた後、十分に擦り付ける。
 密着度評価用テープを貼り付けてから30秒経過後に測定面に対して可能な限り180°の方向に素早く密着度評価用テープを剥がす。
 密着度評価用テープを剥がした後、格子状の縦切込み線91a、及び横切込み線91bとで囲まれた、図9中の評価領域92内で黒化層の下に形成した金属層(有機物層)が露出した面積により密着性の評価を行った。
 評価領域内の金属層の露出面積が0%の場合を5B、0%より多く5%未満の場合を4B、5%以上15%未満の場合を3B、15%以上35%未満の場合を2B、35%以上65%未満の場合を1B、65%以上の場合を0Bと評価した。係る評価について0Bが最も黒化層の密着性が低く、5Bが黒化層の密着性が最も高くなる。
 密着性試験の結果、4B、5Bの場合について黒化層の密着性が十分であると評価できる。
(試料の作製条件)
 実施例、比較例として、以下に説明する条件で導電性基板を作製し、上述の評価方法により評価を行った。
[実施例1]
(密着層形成工程)
 幅570mm、厚さ50μmの長尺シートであるポリエチレンテレフタレート樹脂(PET)製の透明基材の一方の面上に密着層を成膜した。なお、透明基材として用いたポリエチレンテレフタレート樹脂製の透明基材について、全光線透過率をJIS K 7361-1に規定された方法により評価を行ったところ97%であった。
 密着層形成工程では、Ni-17重量%Cu合金のターゲットを装着したロール・トゥ・ロールスパッタリング装置により、密着層として酸素を含有するNi-Cu合金層を成膜した。以下に密着層の成膜手順について説明する。
 予め60℃まで加熱して水分を除去した上述の透明基材を、スパッタリング装置のチャンバー内に設置した。
 次に、チャンバー内を1×10-3Paまで排気した後、アルゴンガスと酸素ガスとを導入し、チャンバー内の圧力を1.3Paとした。なお、この際チャンバー内の雰囲気は体積比で30%が酸素、残部がアルゴンとしている。
 そして係る雰囲気下でターゲットに電力を供給し、透明基材を搬送しつつ、透明基材の一方の面上に密着層を厚さが20nmになるように成膜した。
(金属層形成工程)
 金属層形成工程では、金属薄膜層形成工程と、金属めっき層形成工程と、を実施した。
 まず、金属薄膜層形成工程について説明する。
 金属薄膜層形成工程では、基材として密着層形成工程で透明基材上に密着層を成膜したものを用い、密着層上に金属薄膜層として銅薄膜層を形成した。
 金属薄膜層は、銅のターゲットを用いた点と、基材をセットしたチャンバー内を排気した後、アルゴンガスを供給してアルゴン雰囲気とした点以外は、密着層の場合と同様にしてロール・トゥ・ロールスパッタリング装置により成膜した。
 金属薄膜層である銅薄膜層は膜厚が150nmとなるように成膜した。
 次に、金属めっき層形成工程においては、金属めっき層として銅めっき層を形成した。銅めっき層は、電気めっき法により銅めっき層の厚さが0.5μmになるように成膜した。
(有機被膜形成工程)
 有機被膜形成工程では、透明基材上に、密着層と、金属層とが形成された基材の金属層上に、有機被膜を形成した。なお、有機被膜形成工程では、図3、図4を用いて説明した有機被膜製造装置を用いて有機被膜を形成した。
 有機被膜形成工程では、有機溶液として、窒素系有機物である1,2,3-ベンゾトリアゾールを含有するOPCディフューザー(奥野製薬工業株式会社製)溶液を用いた。なお、有機溶液は1,2,3-ベンゾトリアゾールの濃度が3mL/Lであり、浴温30℃、pH3となるように予め調整して用いた。
 搬送手段として、図示しないロール・トゥ・ロール方式の搬送手段を備えた有機被膜製造装置の巻き出しロールに、上記基材をセットし、巻き取りロールで巻き取ることにより基材を3.5m/minの搬送速度で搬送を開始した。
 基材の搬送方向の上流側には、第1の水洗手段12を設け基材11の有機被膜を形成する面である一方の面11aについて金属層表面を洗浄した。
 そして、第1の水洗手段12の搬送方向下流側には、スプレーノズル21が配置されており、該スプレーノズル21が有する複数のノズル孔から基材11に対して、上述の有機溶液を供給、塗布した。なお、ノズル孔211から供給した有機溶液により、基材11の表面に形成されるスプレーパターンが、短径5mm、長径70mmの楕円形状となるスプレーノズル(霧のいけうち製 型番:INVV11550)を用いた。この際、スプレーパターンの長径が、高さ方向と平行になるように各ノズル孔は配置されている。
 また、ノズル孔211は、高さ方向に沿って等間隔に7個設置されており、ノズル孔211間のピッチは70mmとした。スプレーノズル21からは19L/minの流量で上述の有機溶液を供給した。
 そして、スプレーノズル21よりも搬送方向下流側には、液膜形成手段13を設けており、基材の高さ方向上部に配置された液膜形成手段13の供給口から上記有機溶液を幅320mmの膜状の流れとなるように、かつ基材の表面と、有機溶液の膜状の流れとが接触するように供給した。液膜形成手段13からは54L/minの流量で上述の有機溶液を供給した。
 その後、さらに基材の搬送方向下流側に設けた第2の水洗手段15により、基材11の表面に付着した余分な有機溶液を水洗、除去した後、図示しない乾燥手段により乾燥し、図示しない巻き取りロールにより、有機被膜を形成した基材を巻き取った。
(黒化層形成工程)
 黒化層形成工程では、有機被膜形成工程で形成した有機被膜上に、スパッタリング法により黒化層としてNi-Cu層を形成した。
 黒化層形成工程では、Ni-35重量%Cu合金のターゲットを装着したロール・トゥ・ロールスパッタリング装置により、黒化層としてNi-Cu合金層を成膜した。以下に黒化層の成膜手順について説明する。
 まず、透明基材上に、密着層と、金属層と、有機被膜と、を積層した積層体をスパッタリング装置のチャンバー内にセットした。
 次にチャンバー内を1×10-3Paまで排気した後、アルゴンガスを導入し、チャンバー内の圧力を1.3Paとした。
 そして係る雰囲気下でターゲットに電力を供給し、基材を搬送しつつ、有機被膜上に厚さ30nmになるように黒化層を成膜した。
 以上の工程により、金属層の上面、すなわち、金属層の密着層と対向する面と反対側の面に有機被膜を介して黒化層を形成し、透明基材上に、密着層、金属層、有機被膜、黒化層がその順で積層された導電性基板が得られた。
 得られた導電性基板について、密着性試験を実施したところ5Bであった。
[実施例2]
 有機被膜形成工程において、図1、図2に示した有機被膜製造装置を用い、ノズル孔211から供給した有機溶液により、基材11の表面に形成されるスプレーパターンが、直径70mmの円形状となるスプレーノズルを用いた点以外は実施例1と同様にして導電性基板を作製した。
 得られた導電性基板について、密着性試験を実施したところ4Bであった。
[比較例1]
 有機被膜形成工程において、図1、図2に示した有機被膜製造装置を用い、スプレーノズルから基材11への有機溶液の供給を行わなかった点以外は実施例1と同様にして導電性基板を作製した。
 得られた導電性基板について、密着性試験を実施したところ3Bであった。
 実施例1、実施例2、比較例1の結果から、スプレーノズルと、液膜形成手段とを併用して、基材に対して有機溶液を供給し、有機被膜を形成することで、黒化層の密着性を高めることができることを確認できた。これはすなわち、金属層の表面に有機被膜が均一に形成されているためである。
 また、実施例1、実施例2の結果から、スプレーノズルとして、基材の表面に形成されるスプレーパターンが楕円形状であるノズル孔を備えたスプレーノズルを用いることで、黒化層の密着性を特に高められることを確認できた。
 これらの結果から、スプレーノズルと、液膜形成手段とを併用することで、基材上に均一な有機被膜を形成できることを確認できた。
 以上に有機被膜の製造方法、導電性基板の製造方法、有機被膜製造装置を、実施形態および実施例等で説明したが、本発明は上記実施形態および実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。
 本出願は、2015年9月30日に日本国特許庁に出願された特願2015-195190号に基づく優先権を主張するものであり、特願2015-195190号の全内容を本国際出願に援用する。
11                 基材
13                 液膜形成手段
21                 スプレーノズル
211                ノズル孔
50A、50B、60A、60B、70 導電性基板
51                 透明基材
52、52A、52B         金属層
53、53A、53B、72A、72B 有機被膜
54、54A、54B、73A、73B 黒化層

Claims (5)

  1.  シート状の基材の表面に有機溶液を供給し、有機被膜を形成する有機被膜の製造方法であって、
     前記基材の幅方向を高さ方向として搬送する前記基材の表面に対して、前記有機溶液を、
     前記基材の表面と対向するように複数のノズル孔が配置されたスプレーノズルと、
     前記基材の高さ方向上部に配置された供給口を有し、前記供給口から前記有機溶液を膜状の流れとなるように、かつ前記基材の表面と、前記有機溶液の膜状の流れとが接触するように供給する液膜形成手段と、から供給する有機被膜の製造方法。
  2.  前記スプレーノズルは、前記ノズル孔から供給した前記有機溶液により、前記基材の表面に形成されるスプレーパターンが楕円形状である請求項1に記載の有機被膜の製造方法。
  3.  透明基材の少なくとも一方の面上に金属層を形成する金属層形成工程と、
     前記金属層の上面に有機被膜を形成する有機被膜形成工程と、
     前記有機被膜の上面に黒化層を形成する黒化層形成工程とを有する導電性基板の製造方法であって、
     前記有機被膜形成工程において、請求項1または2に記載の有機被膜の製造方法により、前記金属層の上面に有機被膜を形成する導電性基板の製造方法。
  4.  シート状の基材の表面に有機溶液を供給し、有機被膜を形成する有機被膜製造装置であって、
     前記基材の幅方向を高さ方向として搬送する搬送手段と、
     前記基材の表面と対向するようにノズル孔が配置された複数のスプレーノズルと、
     前記基材の高さ方向上部に配置された供給口を有し、前記供給口から前記有機溶液を膜状となるように、かつ前記基材の表面と、前記有機溶液の膜状の流れとが接触するように供給する液膜形成手段とを備えた有機被膜製造装置。
  5.  前記スプレーノズルは、前記ノズル孔から供給した前記有機溶液により、前記基材の表面に形成されるスプレーパターンが楕円形状である請求項4に記載の有機被膜製造装置。
PCT/JP2016/078480 2015-09-30 2016-09-27 有機被膜の製造方法、導電性基板の製造方法、有機被膜製造装置 WO2017057374A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680055845.8A CN108027689B (zh) 2015-09-30 2016-09-27 有机皮膜的制造方法、导电性基板的制造方法、有机皮膜制造装置
JP2017543437A JP6720978B2 (ja) 2015-09-30 2016-09-27 有機被膜の製造方法、導電性基板の製造方法、有機被膜製造装置
KR1020187007839A KR102535550B1 (ko) 2015-09-30 2016-09-27 유기 피막 제조방법, 도전성 기판 제조방법 및 유기 피막 제조장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015195190 2015-09-30
JP2015-195190 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057374A1 true WO2017057374A1 (ja) 2017-04-06

Family

ID=58423793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078480 WO2017057374A1 (ja) 2015-09-30 2016-09-27 有機被膜の製造方法、導電性基板の製造方法、有機被膜製造装置

Country Status (5)

Country Link
JP (1) JP6720978B2 (ja)
KR (1) KR102535550B1 (ja)
CN (1) CN108027689B (ja)
TW (1) TWI709438B (ja)
WO (1) WO2017057374A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300274A (ja) * 2002-04-10 2003-10-21 Dainippon Printing Co Ltd 交互吸着膜の製造方法および製造装置
JP2005000887A (ja) * 2003-06-16 2005-01-06 Inoue Kinzoku Kogyo Co Ltd 塗工方法及び塗工装置
WO2015115528A1 (ja) * 2014-01-31 2015-08-06 住友金属鉱山株式会社 導電性基板、積層導電性基板、導電性基板の製造方法、及び積層導電性基板の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072409A (ja) * 2000-09-04 2002-03-12 Fuji Photo Film Co Ltd 熱現像感光材料の塗布方法及び装置
JP2004213114A (ja) 2002-12-27 2004-07-29 Pentel Corp 静電容量型デジタル式タッチパネル
WO2005105322A1 (ja) * 2004-04-28 2005-11-10 Ebara Corporation 基板処理ユニット及び基板処理装置
JP4929747B2 (ja) * 2005-03-28 2012-05-09 コニカミノルタオプト株式会社 光学フィルムの製造方法
EP1757370B8 (en) * 2005-08-24 2012-03-14 Brother Kogyo Kabushiki Kaisha Film forming apparatus and jetting nozzle
CN100495165C (zh) * 2006-08-02 2009-06-03 精工爱普生株式会社 功能膜的形成方法及液晶显示装置的制造方法
CN101524679B (zh) * 2008-03-07 2010-12-08 富港电子(东莞)有限公司 薄膜的涂布方法
JP2011071500A (ja) * 2009-08-31 2011-04-07 Fujifilm Corp パターン転写装置及びパターン形成方法
JP5417186B2 (ja) * 2010-01-08 2014-02-12 大日本スクリーン製造株式会社 基板処理装置
JP5492289B2 (ja) * 2010-03-26 2014-05-14 シャープ株式会社 成膜装置および成膜方法
US20130004653A1 (en) * 2011-06-30 2013-01-03 Shenzhen China Star Optoelectronics Technology Co.,Ltd. Alignment Film Coating Method and Alignment Film Coating Apparatus
KR20160044587A (ko) * 2011-07-27 2016-04-25 스미도모쥬기가이고교 가부시키가이샤 기판제조장치 및 기판제조방법
US20130052360A1 (en) * 2011-08-30 2013-02-28 Tadashi Maegawa Substrate processing apparatus, substrate processing method, and nozzle
JP2013206315A (ja) 2012-03-29 2013-10-07 Toppan Printing Co Ltd フィルム状タッチパネルセンサー及びその製造方法
JP2013242692A (ja) * 2012-05-21 2013-12-05 Nippon Zeon Co Ltd 静電容量方式タッチパネルセンサー
JP5472950B2 (ja) * 2012-06-19 2014-04-16 Jeインターナショナル株式会社 マスキング剤および表面処理基材の製造方法
KR102203771B1 (ko) * 2013-12-16 2021-01-15 엘지디스플레이 주식회사 전도성 패턴의 제조방법
EP3089854B1 (en) * 2013-12-31 2018-11-21 Johnson & Johnson Consumer Inc. Single-pass process for forming a multilayered shaped film product, product and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300274A (ja) * 2002-04-10 2003-10-21 Dainippon Printing Co Ltd 交互吸着膜の製造方法および製造装置
JP2005000887A (ja) * 2003-06-16 2005-01-06 Inoue Kinzoku Kogyo Co Ltd 塗工方法及び塗工装置
WO2015115528A1 (ja) * 2014-01-31 2015-08-06 住友金属鉱山株式会社 導電性基板、積層導電性基板、導電性基板の製造方法、及び積層導電性基板の製造方法

Also Published As

Publication number Publication date
JPWO2017057374A1 (ja) 2018-08-09
CN108027689B (zh) 2021-03-23
TW201729907A (zh) 2017-09-01
CN108027689A (zh) 2018-05-11
JP6720978B2 (ja) 2020-07-08
TWI709438B (zh) 2020-11-11
KR20180063068A (ko) 2018-06-11
KR102535550B1 (ko) 2023-05-22

Similar Documents

Publication Publication Date Title
WO2016017773A1 (ja) タッチパネル用導電性基板、タッチパネル用導電性基板の製造方法
JP2015164030A (ja) 導電性基板、積層導電性基板、導電性基板の製造方法、及び積層導電性基板の製造方法
WO2017057374A1 (ja) 有機被膜の製造方法、導電性基板の製造方法、有機被膜製造装置
JP6500746B2 (ja) 導電性基板の製造方法
JPWO2017022596A1 (ja) 導電性基板、導電性基板の製造方法
JPWO2016002679A1 (ja) 導電性基板、積層導電性基板、導電性基板の製造方法、積層導電性基板の製造方法
JP6432684B2 (ja) 導電性基板、導電性基板の製造方法
JP6597139B2 (ja) 黒化めっき液、導電性基板
TWI707255B (zh) 導電性基板
JP6428942B2 (ja) 導電性基板、導電性基板の製造方法
JPWO2016190224A1 (ja) 黒化めっき液、導電性基板
JP6439628B2 (ja) 導電性基板の製造方法
JP2018016827A (ja) 有機被膜の製造方法、導電性基板の製造方法、有機被膜製造装置
JPWO2018193940A1 (ja) 導電性基板
JPWO2017130869A1 (ja) 黒化めっき液、導電性基板の製造方法
JP6447185B2 (ja) 導電性基板の製造方法、積層導電性基板の製造方法
JPWO2017130867A1 (ja) 導電性基板
JP2010045119A (ja) フレキシブル基材およびその製造方法
JP2017008405A (ja) 導電性基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543437

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187007839

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851545

Country of ref document: EP

Kind code of ref document: A1