WO2017057335A1 - 電気化学素子用セパレータ及び電気化学素子 - Google Patents

電気化学素子用セパレータ及び電気化学素子 Download PDF

Info

Publication number
WO2017057335A1
WO2017057335A1 PCT/JP2016/078401 JP2016078401W WO2017057335A1 WO 2017057335 A1 WO2017057335 A1 WO 2017057335A1 JP 2016078401 W JP2016078401 W JP 2016078401W WO 2017057335 A1 WO2017057335 A1 WO 2017057335A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
curvature
beating
fiber diameter
density
Prior art date
Application number
PCT/JP2016/078401
Other languages
English (en)
French (fr)
Inventor
拓己 市村
典弘 和田
学 松岡
篤 井河
Original Assignee
ニッポン高度紙工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッポン高度紙工業株式会社 filed Critical ニッポン高度紙工業株式会社
Priority to JP2017543416A priority Critical patent/JP6836509B2/ja
Priority to US15/760,716 priority patent/US10748713B2/en
Priority to KR1020187008809A priority patent/KR102583728B1/ko
Priority to EP16851506.2A priority patent/EP3358584B1/en
Priority to CN201680056614.9A priority patent/CN108140491B/zh
Publication of WO2017057335A1 publication Critical patent/WO2017057335A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a separator for an electrochemical element and an electrochemical element using the separator.
  • the present invention is suitable for application to separators and electrochemical elements for electrochemical elements such as aluminum electrolytic capacitors, electric double layer capacitors, lithium ion capacitors, lithium primary batteries, and lithium ion secondary batteries.
  • Electrochemical elements are capacitors, capacitors, and batteries. These electrochemical devices have been used in many fields in recent years, such as automobile-related equipment, renewable energy-related equipment such as wind power generation and solar power generation, and communication equipment such as smart meters. Expected.
  • Electrochemical devices are required to further improve charge / discharge characteristics, output characteristics, and cycle life. As means for solving these problems, it is effective to reduce the resistance of the electrochemical element.
  • the resistance When charging or discharging is performed, if the resistance is large, the loss due to the resistance increases. Also, heat is generated by this loss, and the generated heat directly affects the life. Small heat generation directly leads to a long life, so the demand for lower resistance is further increased.
  • various members such as electrode materials and electrolytic solutions are being actively improved, and the demand for lowering the resistance of separators is also increasing.
  • the main role of the separator is to separate both electrode foils and hold the electrolyte.
  • the separator In order to isolate both electrode foils, the separator is required to have high density while having low resistance. Furthermore, the separator material is required to have electrical insulation, and hydrophilicity and lipophilicity are required for holding various types of electrolytes. If the wettability of the separator is low, not only the productivity of the electrochemical element is lowered, but also it is difficult to maintain a sufficient amount of the electrolytic solution, so that the lifetime of the electrochemical element is shortened.
  • the separator for an electrochemical device is required to have high density and excellent wettability of the electrolytic solution while having low resistance.
  • separators as shown below have been proposed as separators for electrochemical elements (see, for example, Patent Documents 1 to 7).
  • JP 2000-3834 A JP 2012-221567 A JP-A-8-273984 JP-A-6-168848 JP 2010-53245 A JP-A-11-312507 Japanese Patent Laying-Open No. 2015-162281
  • Patent Document 1 proposes a method of using beaten solvent-spun recycled cellulose fibers in order to improve the density of the separator and reduce the resistance.
  • a separator composed of highly beaten solvent-spun recycled cellulose has a high density and a microporous paper quality.
  • Cellulose is suitable as a separator material for an electrochemical element because it exhibits electrical insulation and further has hydrophilicity and lipophilicity.
  • a separator that can further reduce the resistance has been demanded.
  • Patent Document 2 a separator is proposed in which not only the beating degree but also the fiber length after beating is specified, and the strength at the time of electrolytic solution adhesion is improved.
  • it after forming an electrochemical element and impregnating it with an electrolyte, it can withstand deformation without intense movement, such as expansion and contraction due to heat. In a large process, the separator breaks.
  • Patent Document 3 proposes a low-density paper manufactured by a circular net paper machine in order to improve the internal resistance of an electrochemical element.
  • Patent Document 3 there is a possibility that a short circuit failure of the electrochemical element may occur due to the presence of the through holes unique to the circular mesh.
  • Patent Document 4 proposes a separator that reduces short-circuit defects and improves internal resistance by using a two-layer separator of a high-density natural cellulose layer and a low-density natural cellulose layer.
  • the separator described in Patent Document 4 because it has a natural cellulose layer with a high degree of beating, it is effective in reducing the short-circuit defect rate, but compared to the separator described in Patent Document 1, etc., Internal resistance gets worse.
  • Patent Document 5 proposes a polyolefin microporous membrane.
  • Polyolefin porous membrane has low wettability compared to cellulose separator and has less voids, so it does not hold electrolyte sufficiently, impedes ionic conduction of electrolyte, and resistance deteriorates. There was a problem.
  • the polyolefin microporous film has poor heat resistance, and cannot cope with the temperature rise inside the device due to the increase in capacity and output of the electrochemical device.
  • Patent Document 6 proposes a melt blown nonwoven fabric made of polyolefin, but the melt blown nonwoven fabric has a lower density than a cellulose separator. Therefore, a certain amount of thickness is necessary as means for ensuring the denseness. Therefore, there is a problem that the resistance of the electrochemical element is deteriorated and the electrochemical element cannot be reduced in size.
  • Patent Document 7 proposes a separator that defines the fiber diameter of solvent-spun recycled cellulose fiber, is thin, and has excellent mechanical strength.
  • this separator contains synthetic fibers and natural fibers as essential components. Compared to separators composed only of solvent-spun recycled cellulose, the electrolyte retainability However, since the resistance of the separator is high, there is a problem that the resistance and cycle characteristics of the electrochemical element are deteriorated.
  • the separator of a prior art is restricted to use with a specific device among electrochemical elements, and was not a separator applicable to all electrochemical elements.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a separator that solves the conventional problems. That is, the separator of the present invention is a separator for an electrochemical element that is excellent in denseness, resistance, and wettability of an electrolytic solution. By using this separator for an electrochemical element, the resistance and short-circuit defect rate can be reduced. An object of the present invention is to provide an electrochemical device capable of reducing and improving productivity and life.
  • the present invention has the following configuration. That is, a separator for an electrochemical element that is interposed between a pair of electrodes and can hold an electrolyte-containing electrolyte solution, and is composed of solvent-spun recycled cellulose fibers having an average fiber diameter of 1 to 11 ⁇ m in the core portion.
  • a separator for an electrochemical element characterized by having a thickness of 5 to 100 ⁇ m, a density of 0.25 to 0.9 g / cm 3 , and a curvature of 1.5 to 15.
  • the present invention is characterized by being an electrochemical element using the electrochemical element separator described above.
  • the electrochemical element is any one of an aluminum electrolytic capacitor, an electric double layer capacitor, a lithium ion capacitor, a lithium primary battery, and a lithium ion secondary battery.
  • the inventors have found that the curvature of the separator has a correlation with the resistance.
  • the curvature is represented by the ratio of the thickness of the separator and the length of the ion flow path in the gas or fluid separator. The lower the curvature, the shorter the path length and the lower the resistance.
  • the curvature when the curvature is high, the resistance increases, but it is effective for suppressing short-circuiting of the electrochemical element. Therefore, the problems of the resistance and short circuit failure of the electrochemical element can be solved by controlling the curvature.
  • the curvature depends on the diameter of the fiber constituting the separator, and the larger the fiber diameter or the flatter the shape, the higher the curvature and the worse the resistance.
  • the separator has high resistance.
  • fine fibers having a fiber diameter of less than 1 ⁇ m generated by beating are defined as “fibril”, and the original fiber itself having a fiber diameter of 1 ⁇ m or more is defined as “core”.
  • the average fiber diameter of the fibers after beating and the curvature of the separator are controlled, so that the denseness and resistance, and the electrolyte wettability are excellent.
  • An electrochemical device separator can be provided. Further, by using the separator, it is possible to provide an electrochemical element capable of reducing the short-circuit defect rate and improving the productivity and life without adversely affecting the resistance performance.
  • the core portion is composed of solvent-spun recycled cellulose fibers having an average fiber diameter of 1 to 11 ⁇ m, and has a thickness. If the thickness is 5 to 100 ⁇ m, the density is 0.25 to 0.9 g / cm 3 , and the curvature is in the range of 1.5 to 15, the wettability of the electrolyte solution with low resistance without impairing the density of the separator An excellent separator can be realized.
  • the separator is preferably formed by a paper making method.
  • the papermaking format include long net paper, short net paper, circular net paper, and combinations thereof. At least one long net paper or short net paper was produced in order to improve the density of the separator. It is preferable to have a layer.
  • the separator of the present embodiment preferably has a curvature in the range of 1.5 to 15, more preferably a curvature of 2 to 2, when paper is made using beatingable solvent-spun recycled cellulose fibers.
  • the range is 10.
  • the curvature is less than 1.5, it leads to an increase in short-circuit failure of the electrochemical element.
  • the curvature exceeds 15, the ion flow path length becomes longer, and the resistance value tends to increase.
  • the curvature satisfies the range of 1.5 to 15, the separator is excellent in denseness and low in resistance.
  • FIG. 1 shows a cross section of a fiber constituting the separator and a flow path of ions passing between the fibers in the cross section of the separator.
  • the ion flow path is indicated by an arrow.
  • the cross section of the fiber is a horizontally long ellipse.
  • FIG. 2 and FIG. 3 compare and show two states of the curvature of the separator, respectively.
  • the cross section of the fiber is a horizontally long ellipse as in FIG. 1, and the ion flow path length in the separator of thickness L is I 1 .
  • the curvature of the fiber is larger in the oblong elliptical cross section than in the circular cross section of the fiber.
  • the ion flow path length in the separator thickness L is I 2.
  • the cross section of the fiber is a circle with a small diameter, and the ion flow path length in the separator having a thickness L is I 3 . Since the magnitude of the ion flow path length is I 2 > I 3 as can be seen from FIG.
  • the average fiber diameter of the core portion after beating the solvent-spun recycled cellulose fiber is preferably 1 to 11 ⁇ m, more preferably 1.5 to 9 ⁇ m. If the average fiber diameter of the core portion is less than 1 ⁇ m, a large amount of fibers are pulled out from the wire of the paper machine, resulting in poor yield. Moreover, since the curvature becomes too low, short-circuit defects increase. In addition, since the number of bonding points between the fibers is reduced, the separator is weak. Moreover, when the average fiber diameter of the core part after beating exceeds 11 ⁇ m, the ion flow path length becomes long, so that the separator has a high curvature. In addition, the thickness of the separator tends to increase, and it may be difficult to reduce the size of the element.
  • FIG. 4 shows a cross section of the separator 1, in which a core 2 having a fiber diameter of 1 ⁇ m or more and a fibril 3 having a fiber diameter of less than 1 ⁇ m obtained by beating are present.
  • the thickness of the separator is preferably 5 to 100 ⁇ m, more preferably 15 to 60 ⁇ m.
  • the thickness is less than 5 ⁇ m, not only the density of the separator is lowered, but also a separator having low strength is obtained. If the thickness exceeds 100 ⁇ m, the distance between the electrodes of the electrochemical element becomes long, so that the resistance of the element deteriorates even when the curvature is low. In addition, since the separator is thick, it is difficult to reduce the size of the element.
  • the density of the separator is preferably from 0.25 ⁇ 0.9g / cm 3, more preferably 0.35 ⁇ 0.8g / cm 3. If the density is less than 0.25 g / cm 3, the density of the separator is low, which may increase the short circuit failure of the electrochemical device. Therefore, in order to suppress short circuit defects, it is necessary to increase the thickness of the separator. In order to exceed the density of 0.9 g / cm 3 , it is necessary to perform beating treatment at a high level, and the fiber diameter of the core must be made thinner than 1 ⁇ m. Therefore, not only the yield in the paper making process is deteriorated, but also a separator having a low curvature and strength.
  • solvent-spun recycled cellulose fiber that can be beaten is blended, and the natural cellulose fiber and other synthetic fibers are not blended.
  • Solvent-spun recycled cellulose fibers that can be beaten are formed by using a solution obtained by dissolving cellulose in an organic solvent such as N-methylmorpholine-N-oxide as a spinning stock solution and extruding from a spinning nozzle. Therefore, the initial fiber shape and fiber diameter can be arbitrarily controlled, and the curvature of the separator can be easily adjusted by beating.
  • natural cellulose generally has a thick core, so the curvature is greatly increased. Even when the core before beating is thin, natural cellulose has low rigidity and tends to be flat in the paper making process, so the curvature is more likely to increase than solvent-spun recycled cellulose.
  • Synthetic fibers do not have hydrogen bonds, so when combined with cellulose, the strength is reduced. Therefore, in the electrochemical element manufacturing process, the separator is broken or torn, and the productivity is lowered. Moreover, since the wettability of the electrolytic solution is inferior to that of cellulose, the productivity and life of the electrochemical element may be reduced.
  • a typical example of the solvent-spun recycled cellulose fiber that can be beaten is lyocell, but any solvent-spun recycled cellulose that can be beaten may be used, and is not limited to lyocell.
  • the initial fiber diameter is preferably 3 to 18 ⁇ m.
  • the separator of the present embodiment can be obtained by controlling the raw material concentration and total load at the time of beating.
  • Solvent-spun recycled cellulose fibers gradually become shorter as fibrillation progresses by beating.
  • the speed of fibrillation and fiber shortening is fast in the initial stage of beating and becomes moderate from the middle stage to the end stage.
  • the fibers When the fibers are beaten at a high concentration, they are refined by friction between the fibers rather than by cutting with a blade. For this reason, fibrillation is beaten preferentially over shortening, and the fiber diameter can be reduced simultaneously with fibrillation. If the raw material concentration is low, shortening fiber works predominately, so that fibrils are hardly generated and it is difficult to reduce the fiber diameter.
  • the initial concentration of beating is preferably 5 to 15% by mass, and the concentration from the middle to the end of beating is preferably 2 to 8% by mass.
  • the concentration at the initial stage of beating is less than 5%, cutting with a blade is superior to friction between fibers, and only shortening of the fibers is remarkably advanced. If the concentration at the initial stage of beating exceeds 15%, the flowability of the raw material is poor, so that the raw material is clogged.
  • the concentration from the middle to the end of the beating By setting the concentration from the middle to the end of the beating to 2 to 8% by mass, it is possible to further reduce the fiber diameter without causing the fibrils generated at the beginning of the beating to fall off from the fiber core. If the concentration is less than 2%, the fibrils drop off due to the shearing force of the blade and the shortening of the fibers progresses. If the concentration exceeds 8%, the fibers entangled at the beginning of the beating cannot be loosened, and the apparent fiber diameter becomes thick due to the overlap of the fibers.
  • the beating concentration can be measured by various densitometers and methods.
  • the raw material used for beating 50 g was dried and obtained from the mass difference between before and after. Specifically, it is as shown in Equation 1 below.
  • C the beating concentration (mass%)
  • W the mass of the raw material after drying (absolute dry mass).
  • the initial beating in the present embodiment is a period until the fiber is shortened to 60% of the average fiber length before beating, and the subsequent period is the middle to the end of beating.
  • the initial fiber length is preferably 1 to 8 mm.
  • the total load in the present embodiment is a value calculated by dividing the electric power used from the beginning to the end of the beating by the weight of the raw material, and the unit is kWh / kg. As a result of a test study on various total beating loads, it was found that the total load is preferably in the range of 1 to 15 kWh / kg. By managing the total beating load in addition to the beating concentration within the above range, the average fiber diameter of the core portion can be within a predetermined range.
  • the equipment used for beating the fibers may be any one as long as it is usually used for preparing papermaking raw materials.
  • a beater, a conical refiner, a disc refiner, a high-pressure homogenizer, and the like can be given.
  • the present embodiment can provide a separator for an electrochemical element that is excellent in denseness, resistance, and wettability of an electrolytic solution. Further, by using the separator, it is possible to obtain a separator capable of reducing the short-circuit defect rate of the electrochemical element and improving the productivity and life without adversely affecting the resistance performance.
  • the curvature can be calculated from the separator thickness, Gurley value, porosity, and pore diameter. Specifically, it was calculated by the following formula 2 in the literature (Callahan et al., “Characterization of Microporus Membrane Separators”, The Tenth International Seminar on Primary and Secondary Battery Technology and Applications, March 2 1993).
  • Formula 2 ⁇ (t ⁇ ⁇ ⁇ d) / (5.18 ⁇ 10 ⁇ 3 ⁇ L) ⁇ (1/2)
  • is the curvature
  • L is the separator thickness ( ⁇ m)
  • t the Gurley value (sec / 100 ml)
  • is the porosity
  • d the pore diameter ( ⁇ m).
  • the pore diameter is an apparatus conforming to “JIS K3832“ Bubble point test method for microfiltration membrane element and module ”3.
  • Filter disk bubble point test apparatus in this embodiment, capillary flow meter CFP-1200 (Used by PMI)).
  • the separator for an electrochemical element of this embodiment is used for an aluminum electrolytic capacitor, an electric double layer capacitor, a lithium ion capacitor, a lithium primary battery, and a lithium ion secondary battery will be described. However, this does not exclude the use of other electrochemical devices.
  • the aluminum electrolytic capacitor using the separator for an electrochemical element of this embodiment can be constituted by impregnating and holding an electrolytic solution in the separator portion and separating the anode foil and the cathode foil with the separator.
  • a plurality of separators may be interposed between the two electrodes as necessary within the allowable range of the outer diameter of the capacitor element.
  • Any electrolyte solution may be used as long as it is a commonly used electrolyte solution.
  • an electrolytic solution generally, ethylene glycol (hereinafter abbreviated as EG), ⁇ -butyrolactone (hereinafter abbreviated as GBL), dimethylformamide, sulfolane and the like are used as solvents, and boric acid, adipic acid, and maleic acid are used as these solvents. Or there exists what melt
  • the electrolytic solution is not limited to the above examples and combinations thereof, and any electrolytic solution that is usually used may be used.
  • the aluminum electrolytic capacitor was wound with a separator interposed so that the anode aluminum foil and the cathode aluminum foil subjected to the etching treatment and oxide film formation treatment were not in contact with each other to obtain an aluminum electrolytic capacitor element.
  • the element is housed in a cylindrical aluminum case with a bottom, and an electrolyte solution in which ammonium adipate is dissolved as an electrolyte is injected into GBL or EG as a solvent, followed by vacuum impregnation, and then sealed with sealing rubber. An electrolytic capacitor was produced.
  • the electric double layer capacitor using the electrochemical device separator of this embodiment can be constituted by impregnating and holding an organic electrolyte in the separator portion and separating a pair of polarizable electrodes by the separator.
  • the organic electrolyte include propylene carbonate and an organic solvent such as acetonitrile in which a cation species such as tetraethylammonium and triethylmethylammonium and a salt of an anionic species such as tetrafluoroborate and hexafluorophosphate are dissolved.
  • the electrolytic solution is not limited to the above examples and combinations thereof, and any electrolytic solution that is usually used may be used.
  • the electric double layer capacitor was obtained by winding an activated carbon electrode and the separator of the present invention to obtain an electric double layer capacitor element.
  • the element is housed in a cylindrical aluminum case with a bottom, and an electrolyte solution in which tetraethylammonium tetrafluoroborate is dissolved as an electrolyte is injected into a propylene carbonate solvent, vacuum impregnated, and sealed with sealing rubber.
  • a double layer capacitor was fabricated.
  • a lithium ion capacitor using the separator for an electrochemical element of this embodiment can be configured by impregnating and holding an organic electrolyte in the separator portion and separating the two electrodes with the separator.
  • the positive electrode material in general, an electrode in which activated carbon in a fine powder form is applied and bonded to the surface of a metal foil as a current collector with a binder is used in the same manner as an electric double layer capacitor.
  • the negative electrode material an electrode is generally used in which graphite, graphite, or the like is applied and bonded to the surface of a metal foil as a current collector with a binder.
  • an organic electrolyte generally, an organic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate is mixed with lithium ions and a salt of an anionic species such as tetrafluoroborate or hexafluorophosphate. Some are dissolved.
  • the bipolar material and the electrolytic solution are not limited to the above examples and combinations thereof, and any material may be used as long as it is normally used.
  • An activated carbon electrode for a lithium ion capacitor was used as the positive electrode material, and a graphite electrode was used as the negative electrode material.
  • the separator and the electrode material were alternately folded to obtain a lithium ion capacitor element.
  • the device was housed in a multilayer laminate film together with a foil for lithium pre-doping, injected with an electrolyte solution, vacuum impregnated, and sealed to produce a lithium ion capacitor.
  • the electrolytic solution a solution obtained by dissolving lithium hexafluorophosphate as an electrolyte in a propylene carbonate solvent was used.
  • the lithium primary battery using the separator for an electrochemical device of the present embodiment includes a positive electrode containing manganese dioxide or fluorinated graphite, and a light metal such as lithium, lithium or lithium.
  • the negative electrode containing the alloy can be constituted by separating it with the separator.
  • an organic electrolyte there is generally one obtained by dissolving lithium ions and anion species such as tetrafluoroborate in an organic solvent such as GBL, propylene carbonate, dimethoxyethane, and tetrahydrofuran.
  • the bipolar material and the electrolytic solution are not limited to the above examples and combinations thereof, and any material may be used as long as it is normally used.
  • a manganese dioxide as the positive electrode material and lithium metal as the negative electrode
  • winding was performed through a separator to obtain a lithium primary battery element.
  • an electrolyte was injected, and the opening of the outer can was laser sealed with a battery lid to produce a lithium primary battery.
  • the electrolytic solution a solution obtained by dissolving lithium ions and tetrafluoroborate in a GBL solvent was used.
  • a lithium ion secondary battery using the separator for an electrochemical element according to this embodiment can be configured by impregnating and holding an organic electrolyte solution in a separator portion and isolating both electrodes with the separator.
  • the positive electrode material generally used is an electrode in which lithium cobaltate, lithium nickelate, lithium manganate, and combinations thereof are applied and bonded to the surface of a metal foil as a current collector with a binder.
  • the negative electrode material generally, an electrode in which graphite or graphite is applied and bonded to the surface of a metal foil as a current collector with a binder is used as in the case of a lithium ion capacitor.
  • an organic electrolyte generally, an organic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate is mixed with lithium ions and a salt of an anionic species such as tetrafluoroborate or hexafluorophosphate. Some are dissolved.
  • the bipolar material and the electrolytic solution are not limited to the above examples and combinations thereof, and any material may be used as long as it is normally used.
  • a lithium cobalt oxide electrode for a lithium ion secondary battery was used as the positive electrode material, and a graphite electrode was used as the negative electrode material, which was wound with a separator to obtain a lithium ion secondary battery element.
  • the device is housed in a cylindrical case with a bottom, and an electrolyte solution in which lithium ions and tetrafluoroborate are dissolved as electrolytes is injected into a propylene carbonate solvent, and sealed with a press to produce a lithium ion secondary battery. did.
  • Capacitance The capacitance of the aluminum electrolytic capacitor was determined by the method of “4.7 Capacitance” defined in “JIS C 5101-1“ Fixed Capacitors for Electronic Equipment Part 1: General Rules for Each Item ””. The capacitance of the electric double layer capacitor and the lithium ion capacitor is specified in “JIS C 5160-1“ Fixed Electric Double Layer Capacitor for Electronic Equipment Part 1: General Rules for Each Item ””. The “capacity” was determined by the constant current discharge method.
  • the discharge capacity of the lithium primary battery was obtained from the duration when the battery was discharged to a final voltage of 2.0 V under the conditions of “5.2 Discharge Test” defined in “JIS C 8500“ General Rules for Primary Battery ””. .
  • the discharge capacity of the lithium ion secondary battery is specified in “JIS C 8715-1“ Industrial Lithium Secondary Battery Cell and Battery System—Part 1: Performance Requirements ””, “8.4.1”. Measured according to “Discharge performance test”.
  • the resistance of the aluminum electrolytic capacitor was determined by the method of “4.10 Impedance” defined in “JIS C 5101-1“ Fixed Capacitors for Electronic Equipment Part 1: General Rules for Each Item ””.
  • the internal resistance of the electric double layer capacitor and the lithium ion capacitor is that of “4.6 Internal Resistance” defined in “JIS C 5160-1“ Fixed Electric Double Layer Capacitor for Electronic Equipment Part 1: General Rules for Each Item ””. It measured by the alternating current (ac) resistance method.
  • the internal resistance r ( ⁇ ) of the lithium primary battery is the voltage E2 (V) of the battery when an electric circuit is formed by connecting the battery voltage E1 (V) and the resistor R ( ⁇ ) and current is passed through the circuit.
  • the short-circuit defect rate of the electrochemical element is regarded as a short-circuit defect when the charging voltage does not increase up to the rated voltage, and the number of electrochemical elements having these short-circuit defects is divided by the number of produced electrochemical elements, Percentage was used as the short defect rate.
  • separator for the separator of this example, solvent-spun recycled cellulose was used to obtain a nonwoven fabric by a papermaking method using a long web paper machine, a long web paper machine, or a short web paper machine. That is, the separator was composed of a wet nonwoven fabric.
  • Example 1 A lyocell fiber (hereinafter referred to as lyocell), which is a solvent-spun regenerated cellulose, is beaten at a front-stage concentration of 15%, a back-stage concentration of 8%, and a total load of 15 kWh / kg.
  • a papermaking raw material having an average fiber diameter of 1 ⁇ m was obtained. This raw material was subjected to long paper making to obtain a separator having a thickness of 5 ⁇ m, a density of 0.90 g / cm 3 , a Gurley value of 1.5 sec / 100 ml, a pore diameter of 0.1 ⁇ m, and a curvature of 1.5.
  • an aluminum electrolytic capacitor having a rated voltage of 6.3 WV, a capacitance of 1000 ⁇ F, and a cell size of 10 mm ⁇ ⁇ 20 mm using a GBL-based electrolytic solution was formed, and the aluminum electrolytic capacitor of Example 1 was obtained.
  • Example 2 The lyocell was beaten at a former stage concentration of 14%, a latter stage concentration of 7.5%, and a total load of 14.5 kWh / kg to obtain a papermaking raw material having an average fiber diameter of the core of 1.5 ⁇ m.
  • a separator having a thickness of 10 ⁇ m, a density of 0.80 g / cm 3 , a Gurley value of 2.0 sec / 100 ml, a pore diameter of 0.2 ⁇ m, and a curvature of 1.9 was obtained.
  • an aluminum electrolytic capacitor using a GBL electrolyte and having a rated voltage of 6.3 WV, a capacitance of 1000 ⁇ F, and a cell size of 10 mm ⁇ ⁇ 20 mm was formed.
  • the lyocell was beaten at a pre-stage concentration of 15%, a post-stage concentration of 8%, and a total load of 15 kWh / kg to obtain a papermaking raw material having an average core fiber diameter of 1.0 ⁇ m.
  • This raw material was subjected to long paper making to obtain a separator having a thickness of 3 ⁇ m, a density of 0.90 g / cm 3 , a Gurley value of 0.7 sec / 100 ml, a pore diameter of 0.1 ⁇ m, and a curvature of 1.3.
  • the lyocell was beaten at a pre-stage concentration of 15%, a post-stage concentration of 8%, and a total load of 16 kWh / kg to obtain a papermaking raw material having an average core fiber diameter of 0.5 ⁇ m.
  • This raw material was subjected to long net paper making to obtain a separator having a thickness of 5 ⁇ m, a density of 0.93 g / cm 3 , a Gurley value of 1.5 sec / 100 ml, a pore diameter of 0.08 ⁇ m, and a curvature of 1.3.
  • Example 3 The lyocell was beaten at a front stage concentration of 5%, a rear stage concentration of 2%, and a total load of 1 kWh / kg to obtain a papermaking raw material having an average fiber diameter of 11 ⁇ m.
  • a separator having a thickness of 100 ⁇ m, a density of 0.25 g / cm 3 , a Gurley value of 19 sec / 100 ml, a pore diameter of 7.3 ⁇ m, and a curvature of 15 was obtained.
  • an aluminum electrolytic capacitor having a rated voltage of 450 WV, a capacitance of 50 ⁇ F, and a cell size of 18 mm ⁇ ⁇ 20 mm using a GBL electrolyte was formed, and the aluminum electrolytic capacitor of Example 3 was obtained.
  • the lyocell was beaten at a front stage concentration of 5%, a rear stage concentration of 2%, and a total load of 0.8 kWh / kg to obtain a papermaking raw material having an average core fiber diameter of 12 ⁇ m.
  • a separator having a thickness of 105 ⁇ m, a density of 0.23 g / cm 3 , a Gurley value of 21.4 sec / 100 ml, a pore diameter of 8.1 ⁇ m, and a curvature of 16 was obtained.
  • Example 4 The lyocell was beaten at a pre-stage concentration of 7%, a post-stage concentration of 3%, and a total load of 3 kWh / kg to obtain a papermaking raw material having an average fiber diameter of 10 ⁇ m. This raw material was made into a long mesh paper, thereby obtaining a two-layer separator having a thickness of 70 ⁇ m, a density of 0.33 g / cm 3 , a Gurley value of 15 sec / 100 ml, a pore diameter of 4.9 ⁇ m, and a curvature of 12.
  • an aluminum electrolytic capacitor having a rated voltage of 200 WV, a capacitance of 120 ⁇ F, and a cell size of 18 mm ⁇ ⁇ 25 mm using an EG electrolyte was formed, and the aluminum electrolytic capacitor of Example 4 was obtained.
  • Example 5 The lyocell was beaten at a pre-stage concentration of 8%, a post-stage concentration of 4%, and a total load of 5 kWh / kg to obtain a papermaking raw material having an average fiber diameter of 9 ⁇ m. This raw material was made into a short mesh paper, thereby obtaining a two-layer separator having a thickness of 60 ⁇ m, a density of 0.35 g / cm 3 , a Gurley value of 11.7 sec / 100 ml, a pore diameter of 3.8 ⁇ m, and a curvature of 10.
  • an aluminum electrolytic capacitor having a rated voltage of 200 WV, a capacitance of 120 ⁇ F, and a cell size of 18 mm ⁇ ⁇ 25 mm using an EG electrolyte was formed, and the aluminum electrolytic capacitor of Example 5 was obtained.
  • a two-layer separator having a thickness of 60 ⁇ m, a density of 0.80 g / cm 3 , a Gurley value of 30000 sec / 100 ml, a pore diameter of 0.01 ⁇ m, and a curvature of 21 was obtained using a long web paper machine.
  • the paper layer made of a long net is beaten with 100% by weight of kraft pulp, which is natural cellulose, at a pre-stage concentration of 15%, a post-stage concentration of 8%, and a total load of 15 kWh / kg, so that the average fiber diameter of the core is 20 ⁇ m.
  • the raw material was used.
  • a papermaking raw material having 100% by mass of unbeaten kraft pulp and an average fiber diameter of the core of 40 ⁇ m was used.
  • an aluminum electrolytic capacitor having a rated voltage of 200 WV, a capacitance of 120 ⁇ F, and a cell size of 18 mm ⁇ ⁇ 25 mm using an EG-based electrolytic solution was formed, and the aluminum electrolytic capacitor of Conventional Example 1 was obtained.
  • Example 6 The lyocell was beaten at a pre-stage concentration of 9%, a post-stage concentration of 5%, and a total load of 7 kWh / kg to obtain a papermaking raw material having an average fiber diameter of 7 ⁇ m. This raw material was subjected to long paper making to obtain a separator having a thickness of 20 ⁇ m, a density of 0.40 g / cm 3 , a Gurley value of 8.5 sec / 100 ml, a pore diameter of 0.8 ⁇ m, and a curvature of 7.
  • An aluminum electrolytic capacitor having a rated voltage of 50 WV, a capacitance of 150 ⁇ F, and a cell size of 10 mm ⁇ ⁇ 20 mm was formed using this separator using a GBL electrolyte, and the aluminum electrolytic capacitor of Example 6 was obtained.
  • Example 7 The lyocell was beaten at a pre-stage concentration of 10%, a post-stage concentration of 5.5%, and a total load of 8 kWh / kg to obtain a papermaking raw material having an average fiber diameter of 5 ⁇ m. This raw material was subjected to long paper making to obtain a separator having a thickness of 15 ⁇ m, a density of 0.50 g / cm 3 , a Gurley value of 6.3 sec / 100 ml, a pore diameter of 0.5 ⁇ m, and a curvature of 5.
  • an aluminum electrolytic capacitor having a rated voltage of 50 WV, a capacitance of 150 ⁇ F, and a cell size of 10 mm ⁇ ⁇ 20 mm was formed using a GBL electrolyte, and the aluminum electrolytic capacitor of Example 7 was obtained.
  • Example 8 The lyocell was beaten at a pre-stage concentration of 9%, a post-stage concentration of 5%, and a total load of 6 kWh / kg to obtain a papermaking raw material having an average fiber diameter of 8 ⁇ m. This raw material was subjected to long paper making to obtain a separator having a thickness of 40 ⁇ m, a density of 0.40 g / cm 3 , a Gurley value of 13.1 sec / 100 ml, a pore diameter of 1.0 ⁇ m, and a curvature of 7.
  • an electric double layer capacitor having a rated voltage of 2.7 V, an electrostatic capacity of 300 F, and a cell size of 35 mm ⁇ ⁇ 60 mm was formed, and the electric double layer capacitor of Example 8 was obtained. Furthermore, a lithium ion capacitor having a rated voltage of 3.8 V, a capacitance of 1000 F, and a cell size of 180 mm ⁇ 125 mm ⁇ 6 mm was formed using the same separator, and the lithium ion capacitor of Example 8 was obtained.
  • the lyocell was beaten at a pre-stage concentration of 6%, a post-stage concentration of 4%, and a total load of 3 kWh / kg to obtain a papermaking raw material having an average fiber diameter of 11.5 ⁇ m.
  • This raw material was subjected to long paper making to obtain a separator having a thickness of 40 ⁇ m, a density of 0.40 g / cm 3 , a Gurley value of 10.2 sec / 100 ml, a pore diameter of 1.8 ⁇ m, and a curvature of 8.
  • an electric double layer capacitor having a rated voltage of 2.7 V, an electrostatic capacity of 300 F, and a cell size of 35 mm ⁇ ⁇ 60 mm was formed as the electric double layer capacitor of Conventional Example 3. Further, a lithium ion capacitor having a rated voltage of 3.8 V, a capacitance of 1000 F, and a cell size of 180 mm ⁇ 125 mm ⁇ 6 mm was formed using the same separator, and the lithium ion capacitor of Conventional Example 3 was obtained.
  • Example 9 The lyocell was beaten at a pre-stage concentration of 9%, a post-stage concentration of 5%, and a total load of 6 kWh / kg to obtain a papermaking raw material having an average fiber diameter of 8 ⁇ m. This raw material was subjected to long paper making to obtain a separator having a thickness of 100 ⁇ m, a density of 0.40 g / cm 3 , a Gurley value of 30.1 sec / 100 ml, a pore diameter of 0.9 ⁇ m, and a curvature of 6. Using this separator, a lithium primary battery having a rated voltage of 3.0 V, a discharge capacity of 950 mAh, and a cell size of 14 mm ⁇ ⁇ 25 mm was formed, and the lithium primary battery of Example 9 was obtained.
  • Example 10 The lyocell was beaten at a pre-stage concentration of 13%, a post-stage concentration of 7%, and a total load of 14 kWh / kg to obtain a papermaking raw material having an average core fiber diameter of 3 ⁇ m. This raw material was subjected to long paper making and then calendered to obtain a separator having a thickness of 15 ⁇ m, a density of 0.70 g / cm 3 , a Gurley value of 7 sec / 100 ml, a pore diameter of 0.3 ⁇ m, and a curvature of 3.8. .
  • a lithium ion secondary battery having a rated voltage of 4.2 V, a discharge capacity of 2200 mAh, and a cell size of 18 mm ⁇ ⁇ 65 mm was formed, and the lithium ion secondary battery of Example 10 was obtained.
  • Tables 1 to 4 show the evaluation results of the separators of the present embodiment, Comparative Examples 1 to 5, and Conventional Examples 1 to 5 and the performance evaluation results of the electrochemical devices described above.
  • 1000 electrochemical elements are manufactured, and various measured values show average values.
  • the average fiber diameter of the core after beating 1 ⁇ m and 1.5 ⁇ m, the thickness 5 ⁇ m and 10 ⁇ m, the density 0.90 g / cm 3 and 0.80 g / cm 3 , the curvature 1 .5 and 2.0 separators.
  • the separator of Example 3 is a separator having an average fiber diameter of 11 ⁇ m, a thickness of 100 ⁇ m, a density of 0.25 g / cm 3 , and a curvature of 15 after beating. It can be seen that the aluminum electrolytic capacitor manufactured using this separator satisfies the performance. Moreover, in Example 1 and Example 2, the separator of Example 2 has a shorter short-circuit defect rate.
  • the second embodiment has a higher curvature than the first embodiment, and therefore the denseness of the separator is improved.
  • the separators of Comparative Examples 1 and 2 had low separator strength, the separator was broken in the production process of the aluminum electrolytic capacitor, and could not be used for evaluation of the aluminum electrolytic capacitor.
  • the separator of Comparative Example 3 has a high core impedance, a high curvature, and a thickness of 105 ⁇ m, so that the impedance is high.
  • Example 4 the average fiber diameter of the core after beating 10 ⁇ m and 9 ⁇ m, the thickness 70 ⁇ m and 60 ⁇ m, the density 0.33 g / cm 3 and 0.35 g / cm 3 , and the curvatures 12 and 10 Although both are separators, no short-circuit defect occurs, and the impedance is lower in Example 5.
  • Conventional Example 1 composed of 100% by mass of natural cellulose, the impedance is greatly deteriorated because the average fiber diameter of the core is large and the curvature is high.
  • the average fiber diameter of the core after beating is 1 to 11 ⁇ m
  • the thickness of the separator is 5 to 100 ⁇ m
  • the density is 0.25 to 0.9 g / cm 3
  • the curvature is in the range of 1.5 to 15. It can be seen that this is preferable as a separator for aluminum electrolytic capacitors. More preferably, the average fiber diameter of the core after beating the separator is 1.5 to 9 ⁇ m, the thickness is 10 to 60 ⁇ m, the density is 0.35 to 0.8 g / cm 3 , and the curvature is in the range of 2.0 to 10. It can be seen that it is.
  • Comparative Example 4 is a separator in which 10% by mass of PET, which is a chemical fiber, is blended, but its strength is weaker than that of cellulose 100% and its compactness is also reduced. It was 1%.
  • Comparative Example 5 is a separator using 90% by mass of lyocell and 10% by mass of esparte, which is a natural cellulose. Esparto is a natural fiber and is more natural than solvent-spun recycled cellulose, although the original fiber diameter is narrow and nearly circular. Due to its low rigidity, it tends to become flat in the press process during papermaking.
  • the separator of Comparative Example 5 satisfies the curvature and the average fiber diameter of the core, the influence of the esparto fiber diameter is large, and the impedance of the aluminum electrolytic capacitor is high.
  • Conventional Example 2 is a separator manufactured by a circular net paper machine, and has a through hole peculiar to the circular net, so the curvature is as low as 1.4 and the short-circuit defect rate is 2.1%. Increased.
  • the constituent material of the separator is preferably composed of 100% by mass of solvent-spun recycled cellulose.
  • Examples 8 to 10 are examples in which the separator of this embodiment is used in an electric double layer capacitor, a lithium ion capacitor, a lithium primary battery, and a lithium ion secondary battery.
  • the separator of this embodiment When manufactured, no short-circuit defect occurs, and the internal resistance can be kept low as compared with Conventional Examples 3 to 5.
  • Conventional Example 4 and Conventional Example 5 are made of polyolefin, but the wettability of the electrolytic solution is low. Therefore, compared to Examples 9 and 10, the productivity of the lithium primary battery and the lithium ion secondary battery is high. Decreased.
  • the average fiber diameter of the core after beating is 1 to 11 ⁇ m, and 100% by mass of solvent-spun regenerated cellulose that can be beaten, the curvature is 1.5 to 15 and the thickness is 5 to 5
  • the separator has no breakage in the manufacturing process of the electrochemical element, and has excellent resistance, short-circuit resistance, and electrolyte wettability. Can be provided.
  • the separator of the present embodiment can be applied to aluminum electrolytic capacitors, electric double layer capacitors, lithium ion capacitors, lithium primary batteries, lithium ion secondary batteries, as well as various electrochemical elements such as sodium ion batteries and solid electrolytic capacitors. Can also be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

緻密性と抵抗、および電解液の濡れ性に優れた電気化学素子用セパレータを提供する。一対の電極間に介在し、電解質を含有した電解液を保持可能な電気化学素子用セパレータであって、芯部分の平均繊維径が1~11μmの溶剤紡糸再生セルロース繊維で構成された、厚さ5~100μm、密度0.25~0.9g/cm、曲路率が1.5~15の範囲である電気化学素子用セパレータを構成する。

Description

電気化学素子用セパレータ及び電気化学素子
 本発明は、電気化学素子用セパレータ及び該セパレータを用いた電気化学素子に関するものである。そして、本発明は、例えばアルミ電解コンデンサ、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウム一次電池、リチウムイオン二次電池等の電気化学素子用セパレータ及び電気化学素子に適用して好適なものである。
 電気化学素子の代表例は、コンデンサやキャパシタ、電池である。これら電気化学素子は、近年、自動車関連機器や風力発電・太陽光発電などの再生可能エネルギー関連機器、スマートメータなどの通信機器など、多くの分野に採用されており、今後も市場拡大は続くと予想されている。
 電気化学素子には更なる充放電特性や出力特性、サイクル寿命の向上が求められている。これらを解決する手段としては、電気化学素子の低抵抗化が有効である。充電もしくは放電が行われる際、抵抗が大きいと、抵抗による損失が増大する。また、この損失により熱が発生し、発生した熱は直接的に寿命へ影響する要因となる。発熱が小さいことは、そのまま長寿命化へつながるため、低抵抗化に対する要求は一層高くなっている。
 電気化学素子の低抵抗化には、電極材料や電解液等の各種部材の改良が活発に行われており、セパレータにも低抵抗化の要求が強くなっている。
 電気化学素子において、セパレータの主な役割は、両電極箔の隔離と電解液の保持である。両電極箔を隔離するために、セパレータには、低抵抗でありながらも、高い緻密性が求められる。さらに、セパレータの素材には電気絶縁性が必要とされ、また様々な種類の電解液の保持のために、親水性、親油性が求められている。セパレータの濡れ性が低い場合、電気化学素子の生産性が低下するだけでなく、電解液量を十分に保持することが困難であるため、電気化学素子の寿命が短くなってしまう。
 以上述べたように、電気化学素子用セパレータには、低抵抗でありながらも、緻密性が高く、電解液の濡れ性に優れることが求められている。
 これまで、電気化学素子用セパレータとしては、以下に示すようなセパレータが提案されている(例えば、特許文献1~特許文献7を参照。)。
特開2000-3834号公報 特開2012-221567公報 特開平8-273984号公報 特開平6-168848号公報 特開2010-53245号公報 特開平11-312507号公報 特開2015-162281号公報
 特許文献1において、セパレータの緻密性を向上させ、且つ抵抗を低減するために、叩解した溶剤紡糸再生セルロース繊維を使用する方法が提案されている。叩解可能な溶剤紡糸再生セルロース繊維は、叩解処理を施すことによって、1μm未満の微細なフィブリルが得られる。そのため、高度に叩解された溶剤紡糸再生セルロースで構成されたセパレータは、緻密性が高く、かつ微多孔質状の紙質となる。また、セルロースは電気絶縁性を示し、更に親水性、親油性を有することから、電気化学素子用セパレータ材料として好適である。しかしながら、近年、さらに抵抗を低減することが可能なセパレータが求められている。
 特許文献2において、叩解度だけでなく、叩解後の繊維長を規定し、電解液付着時の強度を改善したセパレータが提案されている。しかしながら、電気化学素子を形成して電解液を含浸させた後の、例えば熱による膨張収縮といったような、激しい動きを伴わない変形には耐えられるが、素子の巻取り工程のような、動きの大きな工程では、セパレータが破断してしまう。
 特許文献3において、電気化学素子の内部抵抗を改善するために、円網抄紙機で製造された低密度紙が提案されている。しかしながら、特許文献3の構成では、円網特有の貫通孔が存在することで、電気化学素子のショート不良が発生する可能性がある。
 特許文献4において、密度の高い天然セルロース層と密度の低い天然セルロース層の、二層のセパレータとすることで、ショート不良を低減すると共に、内部抵抗を改善するセパレータが提案されている。
 特許文献4に記載されたセパレータでは、叩解の程度の高い天然セルロースの層を持つため、ショート不良率の低減には効果的であるものの、特許文献1に記載されたセパレータ等と比較して、内部抵抗が悪化してしまう。
 特許文献5において、ポリオレフィン微多孔膜が提案されている。ポリオレフィン製多孔質膜は、セルロース製セパレータと比較して、濡れ性が低く、空隙が少ないことから十分に電解液を保持せず、電解液のイオン伝導を阻害し、抵抗が悪化してしまうという問題があった。
 また、ポリオレフィン微多孔膜は耐熱性に乏しく、電気化学素子の高容量化、高出力化による素子内部の温度上昇に対応することができない。
 特許文献6において、ポリオレフィン製メルトブロー不織布が提案されているが、メルトブロー不織布は、セルロース製セパレータと比較して緻密性が低い。そのため、緻密性を確保する手段として、ある程度の厚さが必要である。従って、電気化学素子の抵抗が悪化し、また電気化学素子の小型化に対応できなくなるという問題があった。
 特許文献7において、溶剤紡糸再生セルロース繊維の繊維径を規定し、薄く、機械強度に優れたセパレータが提案されている。このセパレータには、溶剤紡糸再生セルロース繊維の他に、合成繊維と天然繊維が必須成分として含まれているが、溶剤紡糸再生セルロースのみで構成されたセパレータと比較して、電解液の保液性が低く、また、セパレータの抵抗が高くなることから、電気化学素子の抵抗やサイクル特性が悪化してしまう問題がある。
 以上のように、セパレータに要求される高緻密性と低抵抗は相反の関係であり、叩解度や繊維長、および繊維径のコントロールだけでは、これらの要求を同時に満たすことは困難であった。また、従来技術のセパレータは、電気化学素子の中でもそれぞれ特定のデバイスでの使用に限られており、電気化学素子全般に適用できるセパレータではなかった。
 本発明は、上記問題点に鑑みてなされたもので、従来の課題を解決するセパレータを提供することを目的としたものである。すなわち、本発明のセパレータは、緻密性と抵抗、および電解液の濡れ性に優れた電気化学素子用セパレータであって、また、この電気化学素子用セパレータを用いることによって、抵抗とショート不良率を低減し、かつ生産性及び寿命を向上させることが可能な電気化学素子を提供することを目的としたものである。
 上述した問題点を解決し、上述した目的を達成する手段として、本発明は、以下の構成を備える。
 即ち、一対の電極間に介在し、電解質を含有した電解液を保持可能な電気化学素子用セパレータであって、芯部分の平均繊維径が1~11μmの溶剤紡糸再生セルロース繊維で構成された、厚さ5~100μm、密度0.25~0.9g/cm、曲路率が1.5~15の範囲であることを特徴とする電気化学素子用セパレータとする。
 更に、上記の電気化学素子用セパレータを用いた電気化学素子であることを特徴とする。
 そして、上記の電気化学素子がアルミニウム電解コンデンサ、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウム一次電池、リチウムイオン二次電池のいずれかであることを特徴とする。
 本発明者らは、セパレータの曲路率が抵抗と相関があることを見出した。曲路率はセパレータの厚さと、気体や流体のセパレータ中のイオン流路長の比で表す。曲路率が低いほど、通路経路長が短く、低抵抗となる。一方、曲路率が高い場合、抵抗は大きくなるが、電気化学素子のショート抑制には効果的である。従って、電気化学素子の抵抗及びショート不良の課題は、曲路率を制御することで解決できる。
 曲路率は、セパレータを構成する繊維の径によって左右され、繊維径が太いこと、あるいは扁平形状である程、曲路率が高くなり、抵抗が悪化する。そのため、同じ叩解度、また同じ繊維長であっても、芯の径が太い場合、抵抗の高いセパレータとなる。
 なお、本明細書において、叩解によって発生した、繊維径が1μm未満の微細繊維を「フィブリル」と定義し、繊維径が1μm以上の元々の繊維自体を「芯」と定義する。
 本発明によれば、溶剤紡糸再生セルロース繊維を用いて、叩解後の繊維の平均繊維径と、セパレータの曲路率とを制御することで、緻密性と抵抗、および電解液の濡れ性に優れた電気化学素子用セパレータを提供できる。また該セパレータを用いることによって、抵抗性能に悪影響を与えることなく、ショート不良率を低減し、生産性及び寿命の向上が可能な電気化学素子を提供することができる。
本発明に係る一発明の実施の形態例におけるセパレータの曲路率を、セパレータの厚さと、イオン流路長との関係で示した図である。 セパレータの曲路率の2つの状態を比較して示した図である。 セパレータの曲路率の2つの状態を比較して示した図である。 本発明における「芯部分の平均繊維径」の測定方法を示した図である。
 以下、図面なども参照して、本発明に係る一発明の実施の形態例について詳細に説明する。
 本実施の形態例および実施例に示す例の他、種々の材料、構成割合についての試験研究を行った結果、芯部分の平均繊維径が1~11μmの溶剤紡糸再生セルロース繊維で構成され、厚さ5~100μm、密度0.25~0.9g/cm、曲路率が1.5~15の範囲内であれば、セパレータの緻密性を損なうことなく、低抵抗で電解液の濡れ性に優れたセパレータを実現できる。
 そしてこのセパレータは、抄紙法によりシート形成されていることが好ましい。抄紙形式としては、長網抄紙、短網抄紙、円網抄紙、及びそれらの組み合わせなどが挙げられるが、セパレータの緻密性を向上させるために、少なくとも一層の長網抄紙、もしくは短網抄紙された層を持つことが好ましい。
 本実施の形態例のセパレータは、叩解可能な溶剤紡糸再生セルロース繊維を用いて抄紙したとき、曲路率が1.5~15の範囲にあることが好ましく、さらに好ましくは曲路率が2~10の範囲である。
 曲路率が1.5を下回ると、電気化学素子のショート不良増加につながる。また、曲路率が15を超過すると、イオン流路長が長くなるため、抵抗値が増大する傾向となる。
 曲路率が1.5~15の範囲を満足する場合、そのセパレータは緻密性に優れ、かつ抵抗を低くすることができる。
 ここで、図1~図3を参照して、セパレータの曲路率について説明する。
 図1は、セパレータの断面における、セパレータを構成する繊維の断面と、繊維の間を通過するイオンの流路を示している。イオンの流路は矢印で示している。曲路率τは、セパレータの厚さLとイオン流路長Iとから、τ=I/Lで求められる。なお、図1では繊維の断面は横長の楕円形になっている。
 次に、図2及び図3に、それぞれセパレータの曲路率の2つの状態を比較して示す。
 図2の左の状態は、図1と同様に繊維の断面が横長の楕円形であり、厚さLのセパレータにおけるイオン流路長はIである。図2の右の状態は、繊維の断面が円形であり、厚さLのセパレータにおけるイオン流路長はIである。イオン流路長の大小は図2からわかるようにI>Iであるので、左の状態の曲路率τと右の状態の曲路率τの大小は、τ=I/L>τ=I/Lとなる。すなわち、繊維の断面が横長の楕円形の状態の方が、繊維の断面が円形の状態よりも、曲路率が大きくなる。
 図3の左の状態は、図2の右の状態と同じ状態、すなわち、繊維の断面が円形であり、厚さLのセパレータにおけるイオン流路長はIである。図3の右の状態は、繊維の断面が径の小さい円形であり、厚さLのセパレータにおけるイオン流路長はIである。イオン流路長の大小は図3からわかるようにI>Iであるので、左の状態の曲路率τと右の状態の曲路率τの大小は、τ=I/L>τ=I/Lとなる。すなわち、繊維の径が大きい状態の方が、繊維の径が小さい状態よりも、曲路率が大きくなる。
 溶剤紡糸再生セルロース繊維の叩解後の芯部分の平均繊維径は、1~11μmが好ましく、1.5~9μmがより好ましい。
 芯部分の平均繊維径が1μmを下回ると、抄紙機のワイヤーから繊維が多量に抜けてしまい、歩留りが悪くなってしまう。また、曲路率が低くなりすぎることから、ショート不良が増加してしまう。さらに、繊維同士の結合箇所が少なくなるため、強度の弱いセパレータとなる。
 また、叩解後の芯部分の平均繊維径が11μmを超過すると、イオン流路長が長くなるため、曲路率の高いセパレータになる。また、セパレータの厚さが厚くなりやすく、素子の小型化が難しくなる場合がある。
 ここで、本発明における「芯部分の平均繊維径」の測定方法を、図4に示す。
 図4は、セパレータ1の断面を示しており、繊維径が1μm以上の芯2と、叩解によって得られた繊維径が1μm未満のフィブリル3とが存在している。セパレータ1中の繊維のうちの芯2のみを抽出して、各々の芯2の繊維径を測り、芯2の繊維径の平均値を算出することによって、「芯部分の平均繊維径」を測定することができる。
 セパレータの厚さは、5~100μmが好ましく、15~60μmがより好ましい。厚さが5μmを下回ると、セパレータの緻密性が低くなるだけでなく、強度の弱いセパレータとなる。
 厚さが100μmを超過すると、電気化学素子の極間距離が長くなることから、曲路率が低い場合においても、素子の抵抗が悪化してしまう。また、セパレータの厚さが厚いため、素子の小型化が困難となる。
 セパレータの密度は、0.25~0.9g/cmが好ましく、0.35~0.8g/cmがより好ましい。
 密度0.25g/cm未満では、セパレータの緻密性が低いため、電気化学素子のショート不良が増大するおそれがある。従って、ショート不良を抑制するためには、セパレータを厚くする必要がある。
 密度0.9g/cmを超過するためには、高度に叩解処理を施す必要があり、芯の繊維径を1μmよりも細くしなければならない。そのため、抄紙工程上での歩留りが悪化してしまうだけでなく、曲路率および強度の弱いセパレータとなる。
 本発明のセパレータにおいて、叩解可能な溶剤紡糸再生セルロース繊維のみを配合し、天然セルロース繊維やその他の合成繊維等を配合しない理由は、以下の通りである。
 叩解可能な溶剤紡糸再生セルロース繊維は、N-メチルモルフォリン-N-オキサイド等の有機溶媒でセルロースを溶解した溶液を紡糸原液とし、紡糸ノズルから押出すことで形成されている。そのため、初期の繊維形状、繊維径を任意にコントロールすることが可能であり、叩解によりセパレータの曲路率を容易に調整することが可能である。
 一方、天然セルロースは、一般的に芯が太いため、曲路率が大幅に増加してしまう。また、叩解前の芯が細い場合でも、天然セルロースは剛性が低く、抄紙工程において扁平状になりやすいため、溶剤紡糸再生セルロースよりも曲路率が増大しやすい。
 合成繊維は、水素結合を持たないため、セルロースと組み合わせた場合、強度が低くなってしまう。そのため、電気化学素子の製造工程において、セパレータの破断や裂けが発生し、生産性が低下してしまう。
 また、電解液の濡れ性がセルロースよりも劣るため、電気化学素子の生産性及び寿命が低下するおそれがある。
 尚、叩解可能な溶剤紡糸再生セルロース繊維としては、リヨセルが代表的なものに挙げられるが、叩解可能な溶剤紡糸再生セルロースであれば何れでも良く、リヨセルに限定されるものではない。
 叩解前の繊維径は任意のものが使用できるが、初期の繊維径が太すぎると、叩解時の流動性が悪く、詰まりなどの不具合が発生しやすい。初期の繊維径が細すぎると、叩解によって発生するフィブリル量が少なくなるため、緻密性を確保することが難しくなる。このため、初期の繊維径は3~18μmが好ましい。
 本実施の形態のセパレータは、叩解時の原料濃度及び総負荷をコントロールすることで得ることができる。
 溶剤紡糸再生セルロース繊維は、叩解によりフィブリル化が進行するとともに、徐々に短繊維化する。このフィブリル化および短繊維化の速度は、叩解初期は速く叩解中期から末期にかけて緩やかになる。
 繊維は、高濃度で叩解されるとき、刃物による切断よりも、繊維同士の摩擦により微細化する。このため、短繊維化よりもフィブリル化が優位に叩解され、フィブリル化と同時に繊維径を細くすることが可能となる。原料濃度が低濃度だと、短繊維化が優位に働くためフィブリルが発生し難く、繊維径を細くすることが困難である。
 また、種々の叩解濃度について試験検討した結果、叩解初期の濃度は5~15質量%が好ましく、叩解中期から末期の濃度は2~8質量%が好ましいと判明した。
 叩解初期の濃度を5~15質量%とすることで、フィブリル化の促進と共に、繊維径を細くすることが可能となる。叩解初期の濃度は5%未満であれば、繊維同士の摩擦よりも刃物による切断が優位となり、短繊維化のみが顕著に進んでしまう。叩解初期の濃度が15%を超過すると、原料の流動性が悪いため、原料の詰まりが発生する。
 叩解中期から末期の濃度を2~8質量%とすることで、叩解初期に発生させたフィブリルを繊維の芯から脱落させることなく、繊維径をさらに細くさせることが可能となる。濃度が2%未満だと、刃物のせん断力によるフィブリルの脱落と、短繊維化が進んでしまう。濃度が8%を超過すると、叩解初期で絡まった繊維同士をほぐすことができず、繊維の重なりが原因で見かけの繊維径が太くなってしまう。
 叩解濃度は、種々の濃度計や方法により測定できるが、本実施の形態例では、50gの叩解に供する原料を乾燥させ、前後の質量差から求めた。
 具体的には、以下に示す式1の通りである。
   式1:C=(W/50)×100
 なお、ここで、Cは叩解濃度(質量%)であり、Wは原料の乾燥後の質量(絶乾質量)である。
 また、本実施の形態例における叩解初期とは、叩解前の平均繊維長の60%まで短繊維化するまでの期間であり、それ以後を叩解中期から末期としている。
 叩解前の繊維長は任意のものが使用できるが、初期の繊維長が長すぎると叩解時にもつれて均質な叩解が難しくなるし、短すぎると繊維同士の接着部分が少ないため、強度が出なくなる。そのため、初期の繊維長は1~8mmが好ましい。
 更に、叩解における総負荷を管理することも重要である。
 なお、本実施の形態例での総負荷は、叩解の初期から完了までに使用した電力を、原料の重量で除して算出した値であり、単位はkWh/kgである。
 そして、種々の叩解総負荷について試験研究した結果、総負荷は1~15kWh/kgの範囲内が好ましいことが判明した。叩解濃度に加え叩解総負荷も以上の範囲に管理することで、芯部分の平均繊維径を所定の範囲内にできる。
 そして、繊維の叩解に用いる設備は、通常抄紙原料の調製に使用されるものであれば、いずれでも良い。一般的には、ビーター、コニカルリファイナー、ディスクリファイナー、高圧ホモジナイザーなどが挙げられる。
 以上の構成を採用することにより、本実施の形態例は、緻密性と抵抗、および電解液の濡れ性に優れた電気化学素子用セパレータを提供できる。また、該セパレータを用いることによって、抵抗性能に悪影響を与えることなく、電気化学素子のショート不良率を低減し、生産性及び寿命を向上させることが可能なセパレータとすることができる。
〔セパレータ及び電気化学素子の評価方法〕
 本実施の形態の電気化学素子用セパレータ(以下、単に「セパレータ」とも呼ぶ)の特性の具体的な測定は、以下の条件及び方法で行った。
〔厚さの測定〕
 「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 5.1 厚さ」に規定された、「5.1.1 測定器及び測定方法 a外側マイクロメータを用いる場合」のマイクロメータを用いて、「5.1.3 紙を折り重ねて厚さを測る場合」の10枚に折り重ねる方法でセパレータの厚さを測定した。
〔叩解後の芯部分の平均繊維径〕
 セパレータをSEMで観察し、芯部分(繊維径1μm以上の繊維)のみをn=50個側長した時の平均値を求めた。
なお、扁平形状の繊維については、直線距離の長い部分を側長する。
〔密度の測定〕
 「JIS C 2300-2 『電気用セルロース紙-第2部:試験方法』 7.0A 密度」のB法に規定された方法で、絶乾状態のセパレータの密度を測定した。
〔曲路率〕
 曲路率は、セパレータの厚さ、ガーレー値、空孔率、空孔径から算出することができる。具体的には、文献(Callahan et al., ”Characterization of Microporus Membrane Separators”, The Tenth International Seminar on Primary and Secondary Battery Technology and Applications, March 2 1993)の下記式2により算出した。
式2:τ={(t・ε・d)/(5.18・10-3・L)}(1/2)
 ここで、τは曲路率、Lはセパレータ厚さ(μm)、tはガーレー値(sec/100ml)、εは空孔率、dは空孔径(μm)である。
 ガーレー値は、「JIS P 8117 『紙及び板紙-透気度及び透気抵抗度試験方法(中間試験)』-ガーレー法」の5 ガーレー試験法に規定された方法で測定した。
 また、空孔率は、セパレータの密度と、セパレータを構成する材料の比重との割合から、下記式3により算出した。
 式3:ε=1-(D1/D2)
 ここで、εは空孔率、D1はセパレータの密度、D2はセパレータを構成する材料の比重である。
 空孔径は、「JIS K3832『精密ろ過膜エレメント及びモジュールのバブルポイント試験方法』3.(1)フィルタディスクバブルポイント試験装置」に準拠した装置(本実施の形態例では、キャピラリーフローメーターCFP-1200(PMI社製)を用いた)にて測定した平均孔径である。
 以下の説明においては、本実施の形態例の電気化学素子用セパレータを、アルミニウム電解コンデンサ、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウム一次電池、リチウムイオン二次電池に用いる例について説明する。しかし、他の電気化学素子への採用を排除するものではない。
〔セパレータを使用したアルミニウム電解コンデンサの製作〕
 以下、本実施の形態例の電気化学素子用セパレータを用いたアルミニウム電解コンデンサの製作方法を説明する。
 本実施の形態例の電気化学素子用セパレータを用いたアルミニウム電解コンデンサは、セパレータ部分に電解液を含浸保持させ、陽極箔と陰極箔とを該セパレータで隔離することによって構成することができる。
 なお、アルミニウム電解コンデンサにおいて、コンデンサ素子の外径の許容する範囲内で、必要に応じて、複数枚のセパレータを両極間に介在させても良い。
 電解液としては、通常使用される電解液であれば、いずれでも良い。電解液として、一般的には、エチレングリコール(以下EGと略称する)や、γ‐ブチロラクトン(以下GBLと略称する)、ジメチルホルムアミド、スルホラン等を溶媒とし、これら溶媒に硼酸やアジピン酸、マレイン酸又はこれらのアンモニウム塩等の溶質を溶解したもの等がある。
 しかし、電解液は、以上の例及びその組み合わせに限定されるものではなく、通常使用される電解液であれば、いずれでも良い。
 アルミニウム電解コンデンサは、エッチング処理および酸化皮膜形成処理を行った陽極アルミ箔と陰極アルミ箔が接触しないように、セパレータを介在させて捲回し、アルミニウム電解コンデンサ素子を得た。その素子を有底円筒状のアルミニウムケース内に収納し、GBLもしくはEGを溶媒に、電解質としてアジピン酸アンモニウムを溶解した電解液を注入し真空含浸を行った後、封口ゴムで封止してアルミニウム電解コンデンサを作製した。
〔セパレータを使用した電気二重層キャパシタの製作〕
 以下、本実施の形態例の電気化学素子用セパレータを用いた電気二重層キャパシタの製作方法を説明する。
 本実施の形態例の電気化学素子用セパレータを用いた電気二重層キャパシタは、セパレータ部分に有機電解液を含浸保持させ、一対の分極性電極を該セパレータで隔離することによって構成することができる。
 有機電解液として、プロピレンカーボネートや、アセトニトリル等の有機溶媒に、テトラエチルアンモニウムやトリエチルメチルアンモニウム等のカチオン種と、テトラフルオロボレートやヘキサフルオロホスファート等のアニオン種の塩を溶解したものがある。しかし、電解液は、以上の例及びその組み合わせに限定されるものではなく、通常使用される電解液であれば、いずれでも良い。
 電気二重層キャパシタは、活性炭電極と本発明のセパレータとを捲回し、電気二重層キャパシタ素子を得た。その素子を有底円筒状のアルミニウムケース内に収納し、プロピレンカーボネート溶媒に、電解質としてテトラエチルアンモニウムテトラフルオロボレートを溶解した電解液を注入し真空含浸を行った後、封口ゴムで封止して電気二重層キャパシタを作製した。
〔セパレータを使用したリチウムイオンキャパシタの製作〕
 以下、本実施の形態例の電気化学素子用セパレータを用いたリチウムイオンキャパシタの製作方法を説明する。
 本実施の形態例の電気化学素子用セパレータを用いたリチウムイオンキャパシタは、セパレータ部分に有機電解液を含浸保持させ、両極間を該セパレータで隔離することによって構成することができる。
 正極材として、一般的には、電気二重層キャパシタと同様に、微粉末状にした活性炭をバインダーにより集電体である金属箔表面に塗布結着させた電極が使用される。
 負極材として、一般的には、グラファイトや黒鉛等をバインダーにより集電体である金属箔表面に塗布結着させた電極が使用されている。
 有機電解液として、一般的には、プロピレンカーボネートやエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の有機溶媒に、リチウムイオンと、テトラフルオロボレートやヘキサフルオロホスファート等のアニオン種の塩を溶解したものがある。
 しかし、両極材や電解液は、以上の例及びその組み合わせに限定されるものではなく、通常使用されるものであれば、いずれでも良い。
 正極材として、リチウムイオンキャパシタ用の活性炭電極を、負極材として、グラファイト電極を用いた。セパレータと電極材を交互に折り重ね、リチウムイオンキャパシタ素子を得た。その素子を、リチウムプレドープ用箔と共に多層ラミネートフィルムに収納し、電解液を注入し真空含浸を行った後、密封してリチウムイオンキャパシタを作製した。電解液としては、プロピレンカーボネート溶媒に、電解質としてリチウムヘキサフルオロホスファートを溶解したものを用いた。
〔セパレータを使用したリチウム一次電池の製作〕
 以下、本実施の形態例の電気化学素子用セパレータを用いたリチウム一次電池の製作方法を説明する。
 本実施の形態例の電気化学素子用セパレータを用いたリチウム一次電池は、セパレータ部分に有機電解液を含浸保持させ、二酸化マンガンまたはフッ化黒鉛を含有する正極と、リチウム等の軽金属やリチウムまたはリチウム合金を含有する負極とを、該セパレータで隔離することによって構成することができる。
 有機電解液として、一般的には、GBLやプロピレンカーボネート、ジメトキシエタン、テトラヒドロフラン等の有機溶媒に、リチウムイオンと、テトラフルオロボレート等のアニオン種の塩を溶解したものがある。
 しかし、両極材や電解液は、以上の例及びその組み合わせに限定されるものではなく、通常使用されるものであれば、いずれでも良い。
 正極材として二酸化マンガンを、負極としてリチウム金属を用いて、セパレータを介して捲回し、リチウム一次電池素子を得た。その素子を、外装缶に挿入後、電解液を注入し、電池蓋により外装缶の開口部をレーザー封止することによってリチウム一次電池を作製した。電解液としてはGBL溶媒に、リチウムイオンとテトラフルオロボレートを溶解したものを用いた。
〔セパレータを使用したリチウムイオン二次電池の製作〕
 以下、本実施の形態例の電気化学素子用セパレータを用いたリチウムイオン二次電池の製作方法を説明する。
 本実施の形態例の電気化学素子用セパレータを用いたリチウムイオン二次電池は、セパレータ部分に有機電解液を含浸保持させ、両極間を該セパレータで隔離することによって構成することができる。
 正極材として、一般的には、コバルト酸リチウムやニッケル酸リチウム、マンガン酸リチウム、及びそれらを組み合わせたものをバインダーにより集電体である金属箔表面に塗布結着させた電極が使用される。
 負極材として、一般的には、リチウムイオンキャパシタ同様、黒鉛やグラファイトをバインダーにより集電体である金属箔表面に塗布結着させた電極が使用される。
 有機電解液として、一般的には、プロピレンカーボネートやエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の有機溶媒に、リチウムイオンと、テトラフルオロボレートやヘキサフルオロホスファート等のアニオン種の塩を溶解したものがある。
 しかし、両極材や電解液は、以上の例及びその組み合わせに限定されるものではなく、通常使用されるものであれば、いずれでも良い。
 正極材として、リチウムイオン二次電池用のコバルト酸リチウム電極を、負極材としてグラファイト電極を用い、セパレータと共に捲回し、リチウムイオン二次電池素子を得た。その素子を有底円筒状のケース内に収納し、プロピレンカーボネート溶媒に、電解質としてリチウムイオンとテトラフルオロボレートを溶解した電解液を注入し、プレス機で封止してリチウムイオン二次電池を作製した。
〔電気化学素子の評価方法〕
 本実施の形態の電気化学素子の具体的な性能評価は、以下の条件及び方法で行った。
〔静電容量〕
 アルミニウム電解コンデンサの静電容量は、「JIS C 5101-1 『電子機器用固定コンデンサー第1部:品目別通則』」に規定された、「4.7 静電容量」の方法により求めた。
 また、電気二重層キャパシタ及びリチウムイオンキャパシタの静電容量は、「JIS C 5160-1 『電子機器用固定電気二重層コンデンサー第1部:品目別通則』」に規定された、「4.5静電容量」の定電流放電法により求めた。
〔放電容量〕
 リチウム一次電池の放電容量は、「JIS C 8500 『一次電池通則』」に規定された、「5.2放電試験」の条件下において、終止電圧2.0Vまで放電した時の持続時間から求めた。
 リチウムイオン二次電池の放電容量は、「JIS C 8715-1 『産業用リチウム二次電池の単電池及び電池システム-第一部:性能要求事項』」に規定された、「8.4.1放電性能試験」に従い測定した。
〔インピーダンス〕
 アルミニウム電解コンデンサの抵抗は、「JIS C 5101-1 『電子機器用固定コンデンサー第1部:品目別通則』」に規定された、「4.10 インピーダンス」の方法により求めた。
〔内部抵抗〕
 電気二重層キャパシタ及びリチウムイオンキャパシタの内部抵抗は、「JIS C 5160-1 『電子機器用固定電気二重層コンデンサー第1部:品目別通則』」に規定された、「4.6内部抵抗」の交流(a.c.)抵抗法により測定した。
 リチウム一次電池の内部抵抗r(Ω)は、電池の電圧E1(V)と、抵抗器R(Ω)を繋いだ電気回路を作製し、回路に電流を流した時の電池の電圧E2(V)より、
   r=R(E1―E2)/E2
の式から算出した。
 リチウムイオン二次電池の内部抵抗は、「JIS C 8715-1 『産業用リチウム二次電池の単電池及び電池システム-第一部:性能要求事項』」に規定された、「8.6.3交流内部抵抗」に従い測定した。
〔ショート不良率〕
 電気化学素子のショート不良率は、定格電圧まで充電電圧が上がらなかった場合をショート不良とみなし、これらのショート不良となった電気化学素子の個数を、作製した電気化学素子数で除して、百分率をもってショート不良率とした。
 以上に説明した本発明に係る一発明の実施の形態例のセパレータに係る具体的な実施例を説明する。
 本実施例のセパレータは、溶剤紡糸再生セルロースを使用して、長網抄紙機あるいは長網円網抄紙機、短網円網抄紙機により抄紙法にて不織布を得た。即ち、湿式不織布でセパレータを構成した。
 〔実施例1〕
 溶剤紡糸再生セルロースであるリヨセル繊維(以下、リヨセルと表記する)を、前段濃度15%、後段濃度8%、総負荷15kWh/kgで叩解することで、芯部分(以下、単に「芯」とも呼ぶ)の平均繊維径が1μmである抄紙原料を得た。この原料を長網抄紙することで、厚さ5μm、密度0.90g/cm、ガーレー値1.5sec/100ml、空孔径0.1μm、曲路率1.5のセパレータを得た。
 このセパレータを用いて、GBL系電解液を使用した、定格電圧6.3WV、静電容量1000μF、セルサイズ10mmφ×20mmのアルミニウム電解コンデンサを形成し、実施例1のアルミニウム電解コンデンサとした。
 〔実施例2〕
 リヨセルを、前段濃度14%、後段濃度7.5%、総負荷14.5kWh/kgで叩解することで、芯の平均繊維径が1.5μmである抄紙原料を得た。この原料を長網抄紙することで、厚さ10μm、密度0.80g/cm、ガーレー値2.0sec/100ml、空孔径0.2μm、曲路率1.9のセパレータを得た。
 このセパレータを用いて、GBL系電解液を使用した、定格電圧6.3WV、静電容量1000μF、セルサイズ10mmφ×20mmのアルミニウム電解コンデンサを形成し、実施例2のアルミニウム電解コンデンサとした。
 〔比較例1〕
リヨセルを、前段濃度15%、後段濃度8%、総負荷15kWh/kgで叩解することで、芯の平均繊維径が1.0μmである抄紙原料を得た。この原料を長網抄紙することで、厚さ3μm、密度0.90g/cm、ガーレー値0.7sec/100ml、空孔径0.1μm、曲路率1.3のセパレータを得た。
 このセパレータを用いて、GBL系電解液を使用した、定格電圧6.3WV、静電容量1000μF、セルサイズ10mmφ×20mmのアルミニウム電解コンデンサの作製を試みたが、コンデンサの製造工程でセパレータの破断が相次ぎ、セパレータを得ることができなかった。
 〔比較例2〕
 リヨセルを、前段濃度15%、後段濃度8%、総負荷16kWh/kgで叩解することで、芯の平均繊維径が0.5μmである抄紙原料を得た。この原料を長網抄紙することで、厚さ5μm、密度0.93g/cm、ガーレー値1.5sec/100ml、空孔径0.08μm、曲路率1.3のセパレータを得た。
 このセパレータを用いて、GBL系電解液を使用した、定格電圧6.3WV、静電容量1000μF、セルサイズ10mmφ×20mmのアルミニウム電解コンデンサの作製を試みたが、コンデンサの製造工程でセパレータの破断が相次ぎ、セパレータを得ることができなかった。
 〔実施例3〕
 リヨセルを、前段濃度5%、後段濃度2%、総負荷1kWh/kgで叩解することで、芯の平均繊維径が11μmである抄紙原料を得た。この原料を長網抄紙することで、厚さ100μm、密度0.25g/cm、ガーレー値19sec/100ml、空孔径7.3μm、曲路率15のセパレータを得た。
 このセパレータを用いて、GBL系電解液を使用した、定格電圧450WV、静電容量50μF、セルサイズ18mmφ×20mmのアルミニウム電解コンデンサを形成し、実施例3のアルミニウム電解コンデンサとした。
〔比較例3〕
 リヨセルを、前段濃度5%、後段濃度2%、総負荷0.8kWh/kgで叩解することで、芯の平均繊維径が12μmである抄紙原料を得た。この原料を長網抄紙することで、厚さ105μm、密度0.23g/cm、ガーレー値21.4sec/100ml、空孔径8.1μm、曲路率16のセパレータを得た。
 このセパレータを用いて、GBL系電解液を使用した、定格電圧450WV、静電容量50μF、セルサイズ18mmφ×20mmのアルミニウム電解コンデンサを形成し、比較例3のアルミニウム電解コンデンサとした。
〔実施例4〕
 リヨセルを、前段濃度7%、後段濃度3%、総負荷3kWh/kgで叩解することで、芯の平均繊維径が10μmである抄紙原料を得た。この原料を長網円網抄紙することで、厚さ70μm、密度0.33g/cm、ガーレー値15sec/100ml、空孔径4.9μm、曲路率12の二層セパレータを得た。
 このセパレータを用いて、EG系電解液を使用した、定格電圧200WV、静電容量120μF、セルサイズ18mmφ×25mmのアルミニウム電解コンデンサを形成し、実施例4のアルミニウム電解コンデンサとした。
 〔実施例5〕
 リヨセルを、前段濃度8%、後段濃度4%、総負荷5kWh/kgで叩解することで、芯の平均繊維径が9μmである抄紙原料を得た。この原料を短網円網抄紙することで、厚さ60μm、密度0.35g/cm、ガーレー値11.7sec/100ml、空孔径3.8μm、曲路率10の二層セパレータを得た。
 このセパレータを用いて、EG系電解液を使用した、定格電圧200WV、静電容量120μF、セルサイズ18mmφ×25mmのアルミニウム電解コンデンサを形成し、実施例5のアルミニウム電解コンデンサとした。
〔従来例1〕
 長網円網抄紙機にて、厚さ60μm、密度0.80g/cm、ガーレー値30000sec/100ml、空孔径0.01μm、曲路率21の二層セパレータを得た。
 長網で抄紙された層は、天然セルロースであるクラフトパルプ100質量%を前段濃度15%、後段濃度8%、総負荷15kWh/kgで叩解することで、芯の平均繊維径が20μmである抄紙原料を用いた。円網で抄紙された層は、未叩解のクラフトパルプ100質量%、芯の平均繊維径が40μmである抄紙原料を用いた。
 このセパレータを用いて、EG系電解液を使用した、定格電圧200WV、静電容量120μF、セルサイズ18mmφ×25mmのアルミニウム電解コンデンサを形成し、従来例1のアルミニウム電解コンデンサとした。
〔実施例6〕
 リヨセルを、前段濃度9%、後段濃度5%、総負荷7kWh/kgで叩解することで、芯の平均繊維径が7μmである抄紙原料を得た。この原料を長網抄紙することで、厚さ20μm、密度0.40g/cm、ガーレー値8.5sec/100ml、空孔径0.8μm、曲路率7のセパレータを得た。
 このセパレータを用いて、GBL系電解液を使用し、定格電圧50WV、静電容量150μF、セルサイズ10mmφ×20mmのアルミニウム電解コンデンサを形成し、実施例6のアルミニウム電解コンデンサとした。
〔実施例7〕
 リヨセルを、前段濃度10%、後段濃度5.5%、総負荷8kWh/kgで叩解することで、芯の平均繊維径が5μmである抄紙原料を得た。この原料を長網抄紙することで、厚さ15μm、密度0.50g/cm、ガーレー値6.3sec/100ml、空孔径0.5μm、曲路率5のセパレータを得た。
 このセパレータを用いて、GBL系電解液を使用し、定格電圧50WV、静電容量150μF、セルサイズ10mmφ×20mmのアルミニウム電解コンデンサを形成し、実施例7のアルミニウム電解コンデンサとした。
〔比較例4〕
 リヨセルを90質量%も用い、前段濃度13%、後段濃度7%、総負荷12kWh/kgで叩解することで、芯の平均繊維径が3.5μmである叩解原料を得た後、PET繊維を10質量%混合し、抄紙原料とした。この原料を長網抄紙することで、厚さ20μm、密度0.35g/cm、ガーレー値1.5sec/100ml、空孔径1.0μm、曲路率3のセパレータを得た。
 このセパレータを用いて、GBL系電解液を使用し、定格電圧50WV、静電容量150μF、セルサイズ10mmφ×20mmのアルミニウム電解コンデンサを形成し、比較例4のアルミニウム電解コンデンサとした。
〔比較例5〕
 リヨセルを90質量%も用い、前段濃度7%、後段濃度3%、総負荷3kWh/kgで叩解することで、芯の平均繊維径が10μmである叩解原料を得た後、未叩解のエスパルトパルプを10質量%混合し、抄紙原料とした。この原料を長網抄紙することで、厚さ20μm、密度0.45g/cm、ガーレー値15sec/100ml、空孔径1.6μm、曲路率13のセパレータを得た。
 このセパレータを用いて、GBL系電解液を使用し、定格電圧50WV、静電容量150μF、セルサイズ10mmφ×20mmのアルミニウム電解コンデンサを形成し、比較例5のアルミニウム電解コンデンサとした。
〔従来例2〕
 未叩解のエスパルトパルプ60質量%と、未叩解のマニラ麻パルプ40質量%を混合し、抄紙原料とした。この原料の芯の平均繊維径は14μmであった。この原料を円網抄紙することで、厚さ20μm、密度0.25g/cm、ガーレー値0.04sec/100ml、空孔径6.2μm、曲路率1.4のセパレータを得た。
 このセパレータを用いて、GBL系電解液を使用し、定格電圧50WV、静電容量150μF、セルサイズ10mmφ×20mmのアルミニウム電解コンデンサを形成し、従来例2のアルミニウム電解コンデンサとした。
〔実施例8〕
 リヨセルを、前段濃度9%、後段濃度5%、総負荷6kWh/kgで叩解することで、芯の平均繊維径が8μmである抄紙原料を得た。この原料を長網抄紙することで、厚さ40μm、密度0.40g/cm、ガーレー値13.1sec/100ml、空孔径1.0μm、曲路率7のセパレータを得た。
 このセパレータを用いて、定格電圧2.7V、静電容量300F、セルサイズ35mmφ×60mmの電気二重層キャパシタを形成し、実施例8の電気二重層キャパシタとした。
 さらに、同様のセパレータを用いて、定格電圧3.8V、静電容量1000F、セルサイズ180mm×125mm×6mmのリチウムイオンキャパシを形成し、実施例8のリチウムイオンキャパシタとした。
〔従来例3〕
 リヨセルを、前段濃度6%、後段濃度4%、総負荷3kWh/kgで叩解することで、芯の平均繊維径が11.5μmである抄紙原料を得た。この原料を長網抄紙することで、厚さ40μm、密度0.40g/cm、ガーレー値10.2sec/100ml、空孔径1.8μm、曲路率8のセパレータを得た。
 このセパレータを用いて、定格電圧2.7V、静電容量300F、セルサイズ35mmφ×60mmの電気二重層キャパシタを形成し、従来例3の電気二重層キャパシタとした。
 さらに、同様のセパレータを用いて、定格電圧3.8V、静電容量1000F、セルサイズ180mm×125mm×6mmのリチウムイオンキャパシを形成し、従来例3のリチウムイオンキャパシタとした。
〔実施例9〕
 リヨセルを、前段濃度9%、後段濃度5%、総負荷6kWh/kgで叩解することで、芯の平均繊維径が8μmである抄紙原料を得た。この原料を長網抄紙することで、厚さ100μm、密度0.40g/cm、ガーレー値30.1sec/100ml、空孔径0.9μm、曲路率6のセパレータを得た。
 このセパレータを用いて、定格電圧3.0V、放電容量950mAh、セルサイズ14mmφ×25mmのリチウム一次電池を形成し、実施例9のリチウム一次電池とした。
〔従来例4〕
 メルトブロー製造機にて、厚さ200μm、密度0.40g/cm、ガーレー値2.5sec/100ml、空孔径30.6μm、曲路率6のセパレータを得た。原料として、ポリプロピレンを100質量%用いた。また、このセパレータの繊維径は8μmであった。
 このセパレータを用いて、定格電圧3.0V、放電容量950mAh、セルサイズ14mmφ×25mmのリチウム一次電池を形成し、従来例4のリチウム一次電池とした。
〔実施例10〕
 リヨセルを、前段濃度13%、後段濃度7%、総負荷14kWh/kgで叩解することで、芯の平均繊維径が3μmである抄紙原料を得た。この原料を長網抄紙した後キャレンダー加工することで、厚さ15μm、密度0.70g/cm、ガーレー値7sec/100ml、空孔径0.3μm、曲路率3.8のセパレータを得た。
 このセパレータを用いて、定格電圧4.2V、放電容量2200mAh、セルサイズ18mmφ×65mmのリチウムイオン二次電池を形成し、実施例10のリチウムイオン二次電池とした。
〔従来例5〕
 厚さ15μm、曲路率1.7のポリオレフィン微多孔膜を用いて、定格電圧4.2V、放電容量2200mAh、セルサイズ18mmφ×65mmのリチウムイオン二次電池を形成し、従来例5のリチウムイオン二次電池とした。
 以上記載の本実施の形態例、比較例1乃至5、従来例1乃至5の各セパレータ単体の評価結果、及び電気化学素子の性能評価結果を表1乃至表4に示す。表では電気化学素子を各1000個製作し、各種測定値は平均値を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 以下、各実施例、比較例、従来例について、詳細に説明する。
 実施例1、実施例2のセパレータは、叩解後の芯の平均繊維径1μmと1.5μm、厚さ5μmと10μm、密度0.90g/cmと0.80g/cm、曲路率1.5と2.0のセパレータである。また、実施例3のセパレータは、叩解後の芯の平均繊維径11μm、厚さ100μm、密度0.25g/cm、曲路率15のセパレータである。このセパレータを用いて製作したアルミニウム電解コンデンサは、性能を満足していることが分かる。また、実施例1と実施例2では、実施例2のセパレータの方が、ショート不良率は低減している。これは、実施例2は実施例1よりも曲路率が高いことから、セパレータの緻密性が向上したことによる。一方、比較例1、比較例2のセパレータは、セパレータの強度が低いため、アルミニウム電解コンデンサの製造工程においてセパレータの破断が起こり、アルミニウム電解コンデンサの評価に供せなかった。
 また、比較例3のセパレータは、芯の径が太く、曲路率が高く、また厚さ105μmと厚いことから、インピーダンスが高い。
 実施例4と実施例5は、叩解後の芯の平均繊維径10μmと9μm、厚さ70μmと60μm、密度0.33g/cmと0.35g/cm、曲路率12と10、のセパレータであるが、どちらもショート不良は発生せず、インピーダンスは実施例5の方が低くなっている。一方、天然セルロース100質量%で構成された従来例1では、芯の平均繊維径が太く、曲路率が高いため、インピーダンスが大幅に悪化している。
 これらのことから、叩解後の芯の平均繊維径1~11μm、セパレータの厚さ5~100μm、密度0.25~0.9g/cm、曲路率1.5~15の範囲であれば、アルミ電解コンデンサ用セパレータとして好ましいことがわかる。また、さらに好ましくは、セパレータの叩解後の芯の平均繊維径1.5~9μm、厚さ10~60μm、密度0.35~0.8g/cm、曲路率2.0~10の範囲であることがわかる。
 比較例4は、化学繊維であるPETが10質量%配合されたセパレータであるが、セルロース100%よりも強度が弱く、また、緻密性も低減することから、アルミニウム電解コンデンサのショート不良率が1.1%となった。
 比較例5は、リヨセルを90質量%、天然セルロースであるエスパルトを10質量%用いたセパレータであるが、エスパルトは元々の繊維径が細く円形に近いものの、天然繊維であり溶剤紡糸再生セルロースよりも剛性が低いため、抄紙時のプレス工程で扁平になりやすい。そのため、比較例5のセパレータは、曲路率、芯の平均繊維径を満足しているが、エスパルトの繊維径の影響が大きく、アルミ電解コンデンサのインピーダンスが高くなっている。
 また、従来例2は、円網抄紙機で作製されたセパレータであり、円網特有の貫通孔が存在することから、曲路率が1.4と低く、ショート不良率が2.1%に増大した。
 一方、実施例6、実施例7のセパレータを用いて作製されたアルミニウム電解コンデンサでは、インピーダンス、ショート不良ともに良好な結果が得られている。
 これらのことから、セパレータの構成材料としては、溶剤紡糸再生セルロース100質量%で構成することが好ましいことがわかる。
 実施例8乃至実施例10は、本実施の形態例のセパレータを、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウム一次電池、リチウムイオン二次電池に採用した例であるが、これらのセパレータを用いて製作した場合、ショート不良は発生せず、また、従来例3乃至従来例5と比較して、いずれも内部抵抗を低く抑えることができている。
 また、従来例4、従来例5は、ポリオレフィン製であるが、電解液の濡れ性が低いため、実施例9、実施例10と比較して、リチウム一次電池、リチウムイオン二次電池の生産性が低下した。
 以上、本実施の形態例によれば、叩解後の芯の平均繊維径1~11μm、かつ叩解可能な溶剤紡糸再生セルロース100質量%含有した、曲路率1.5~15、厚さ5~100μm、密度0.25~0.9g/cmのセパレータとすることにより、電気化学素子の製造工程において、セパレータの破断がなく、抵抗と耐ショート性、及び電解液の濡れ性に優れたセパレータを提供することができる。
 本実施の形態例のセパレータは、アルミニウム電解コンデンサ、電気ニ重層キャパシタ、リチウムイオンキャパシタ、リチウム一次電池、リチウムイオン二次電池に適用できるほか、ナトリウムイオン電池、固体電解コンデンサなどの各種電気化学素子にも適用することが可能である。
1 セパレータ、2 芯、3 フィブリル

Claims (3)

  1.  一対の電極間に介在し、電解質を含有した電解液を保持可能な電気化学素子用セパレータであって、
     芯部分の平均繊維径が1~11μmの溶剤紡糸再生セルロース繊維で構成された、厚さ5~100μm、密度0.25~0.9g/cm、曲路率が1.5~15の範囲である
     ことを特徴とする電気化学素子用セパレータ。
  2.  請求項1に記載のセパレータを用いたことを特徴とする電気化学素子。
  3.  アルミニウム電解コンデンサ、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウム一次電池、リチウムイオン二次電池のいずれかであることを特徴とする請求項2に記載の電気化学素子。
PCT/JP2016/078401 2015-09-29 2016-09-27 電気化学素子用セパレータ及び電気化学素子 WO2017057335A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017543416A JP6836509B2 (ja) 2015-09-29 2016-09-27 電気化学素子用セパレータ及び電気化学素子
US15/760,716 US10748713B2 (en) 2015-09-29 2016-09-27 Separator for electrochemical device and electrochemical device
KR1020187008809A KR102583728B1 (ko) 2015-09-29 2016-09-27 전기 화학 소자용 세퍼레이터 및 전기 화학 소자
EP16851506.2A EP3358584B1 (en) 2015-09-29 2016-09-27 Separator for electrochemical device and electrochemical device
CN201680056614.9A CN108140491B (zh) 2015-09-29 2016-09-27 电化学元件用分隔件和电化学元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-190549 2015-09-29
JP2015190549 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017057335A1 true WO2017057335A1 (ja) 2017-04-06

Family

ID=58423767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078401 WO2017057335A1 (ja) 2015-09-29 2016-09-27 電気化学素子用セパレータ及び電気化学素子

Country Status (7)

Country Link
US (1) US10748713B2 (ja)
EP (1) EP3358584B1 (ja)
JP (1) JP6836509B2 (ja)
KR (1) KR102583728B1 (ja)
CN (1) CN108140491B (ja)
HU (1) HUE057888T2 (ja)
WO (1) WO2017057335A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149828A1 (ja) 2020-01-23 2021-07-29 ニッポン高度紙工業株式会社 リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6412805B2 (ja) * 2015-01-16 2018-10-24 ニッポン高度紙工業株式会社 セパレータ及びアルミニウム電解コンデンサ
US20210104749A1 (en) * 2017-03-28 2021-04-08 Nec Corporaion Secondary battery and method for manufacturing the same
JP6989414B2 (ja) * 2018-02-27 2022-01-05 ニッポン高度紙工業株式会社 電気化学素子用セパレータ及び電気化学素子
CN114823148A (zh) * 2022-03-15 2022-07-29 珠海格力新元电子有限公司 一种电容器芯子及铝电解电容器
DE102023201368A1 (de) * 2023-02-17 2024-08-22 Delfortgroup Ag Separator für elektrochemische Elemente mit reduzierter Selbstentladungsrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322988A (ja) * 1998-05-18 1999-11-26 Nitto Denko Corp 多孔質フィルム並びにその製造と用途
JP2000003834A (ja) * 1998-06-16 2000-01-07 Nippon Kodoshi Corp 電気二重層コンデンサ
JP2008124064A (ja) * 2006-11-08 2008-05-29 Asahi Kasei Fibers Corp コンデンサー用セパレーター
JP2009158811A (ja) * 2007-12-27 2009-07-16 Asahi Kasei Fibers Corp セパレーター
JP2011210574A (ja) * 2010-03-30 2011-10-20 Teijin Ltd ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池
JP2015162281A (ja) * 2014-02-26 2015-09-07 三菱製紙株式会社 リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693299B2 (ja) 1992-11-27 2005-09-07 ニッポン高度紙工業株式会社 電解コンデンサ
JPH08273984A (ja) 1995-03-30 1996-10-18 Nippon Koudoshi Kogyo Kk 電解コンデンサ
EP0933790A1 (en) * 1998-02-02 1999-08-04 Asahi Glass Company Ltd. Electric double layer capacitor
JPH11312507A (ja) 1998-04-28 1999-11-09 Mitsubishi Paper Mills Ltd 電池用セパレータおよび電池
JP2000331663A (ja) 1999-05-18 2000-11-30 Nippon Kodoshi Corp セパレータ及び該セパレータを使用した電解コンデンサ,電気二重層コンデンサ,非水系電池
JP5879018B2 (ja) * 2007-05-10 2016-03-08 日立マクセル株式会社 電気化学素子およびその製造方法
JP2010053245A (ja) 2008-08-28 2010-03-11 Teijin Ltd ポリオレフィン微多孔膜
US20120003525A1 (en) 2009-03-17 2012-01-05 Tomoegawa Co., Ltd. Separator for an electricity storage device and method of manufacturing same
JP2011192528A (ja) * 2010-03-15 2011-09-29 Teijin Ltd ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池
JP5594845B2 (ja) 2011-04-04 2014-09-24 三菱製紙株式会社 電気化学素子用セパレーター
RU2013134483A (ru) * 2011-10-13 2015-01-27 Токусю Токай Пейпер Ко., Лтд. Пористая мембрана и способ ее получения
JP5844166B2 (ja) * 2012-01-31 2016-01-13 ニッポン高度紙工業株式会社 アルカリ電池用セパレータ及びアルカリ電池
JP2014053259A (ja) * 2012-09-10 2014-03-20 Mitsubishi Paper Mills Ltd リチウム二次電池用セパレータ及びリチウム二次電池
US10177359B2 (en) 2013-03-20 2019-01-08 Lg Chem, Ltd. Separator for electrochemical device and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322988A (ja) * 1998-05-18 1999-11-26 Nitto Denko Corp 多孔質フィルム並びにその製造と用途
JP2000003834A (ja) * 1998-06-16 2000-01-07 Nippon Kodoshi Corp 電気二重層コンデンサ
JP2008124064A (ja) * 2006-11-08 2008-05-29 Asahi Kasei Fibers Corp コンデンサー用セパレーター
JP2009158811A (ja) * 2007-12-27 2009-07-16 Asahi Kasei Fibers Corp セパレーター
JP2011210574A (ja) * 2010-03-30 2011-10-20 Teijin Ltd ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池
JP2015162281A (ja) * 2014-02-26 2015-09-07 三菱製紙株式会社 リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149828A1 (ja) 2020-01-23 2021-07-29 ニッポン高度紙工業株式会社 リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池

Also Published As

Publication number Publication date
KR20180061199A (ko) 2018-06-07
US10748713B2 (en) 2020-08-18
JP6836509B2 (ja) 2021-03-03
JPWO2017057335A1 (ja) 2018-07-19
KR102583728B1 (ko) 2023-09-26
HUE057888T2 (hu) 2022-06-28
CN108140491B (zh) 2020-04-10
EP3358584A1 (en) 2018-08-08
US20180261392A1 (en) 2018-09-13
EP3358584B1 (en) 2021-11-10
CN108140491A (zh) 2018-06-08
EP3358584A4 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
WO2017057335A1 (ja) 電気化学素子用セパレータ及び電気化学素子
JP6674956B2 (ja) 電気化学素子用セパレータおよび電気化学素子
JP2008186707A (ja) 電気化学素子用セパレータ
US11063319B2 (en) Separator for electrochemical element and electrochemical element
KR102429448B1 (ko) 세퍼레이터 및 알루미늄 전해 컨덴서
KR102404190B1 (ko) 축전 디바이스용 세퍼레이터 및 상기 세퍼레이터를 사용한 축전 디바이스
JP2015088703A (ja) キャパシタ用セパレータおよび該セパレータを用いたキャパシタ
JP6338759B1 (ja) 電気化学素子用セパレータ及び電気化学素子
JP2000331663A (ja) セパレータ及び該セパレータを使用した電解コンデンサ,電気二重層コンデンサ,非水系電池
CN109155205B (zh) 电化学元件用隔离物及使用其而成的电化学元件
JP2009076486A (ja) 電気化学素子用セパレータ
JP2010129308A (ja) 蓄電デバイス用セパレータ
JP2010238640A (ja) 蓄電デバイス用セパレータ
JP6913439B2 (ja) 電気化学素子用セパレータ及び電気化学素子
JP7012425B2 (ja) アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ
JP2010277800A (ja) 蓄電デバイス用セパレータ
JP6850921B1 (ja) 電気化学素子用セパレータおよび電気化学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543416

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760716

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187008809

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851506

Country of ref document: EP