WO2017057122A1 - フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌 - Google Patents

フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌 Download PDF

Info

Publication number
WO2017057122A1
WO2017057122A1 PCT/JP2016/077794 JP2016077794W WO2017057122A1 WO 2017057122 A1 WO2017057122 A1 WO 2017057122A1 JP 2016077794 W JP2016077794 W JP 2016077794W WO 2017057122 A1 WO2017057122 A1 WO 2017057122A1
Authority
WO
WIPO (PCT)
Prior art keywords
film capacitor
film
core
core body
cross
Prior art date
Application number
PCT/JP2016/077794
Other languages
English (en)
French (fr)
Inventor
山崎 洋一
中尾 吉宏
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US15/761,890 priority Critical patent/US10490357B2/en
Priority to CN201680053374.7A priority patent/CN108028143B/zh
Priority to JP2017543180A priority patent/JP6510662B2/ja
Priority to EP16851296.0A priority patent/EP3358586B1/en
Publication of WO2017057122A1 publication Critical patent/WO2017057122A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/02Machines for winding capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the metal core is used without being removed.
  • Metal cores have good heat conduction, high thermal strength and mechanical strength, so they have excellent heat dissipation and little loosening and deformation of metallized film even when used at relatively high temperatures. It was also easy to use the core of this, and it was possible to wind up a metallized film with high hardness.
  • the connected capacitor of the present disclosure is formed by connecting a plurality of the above-described film capacitors with a bus bar.
  • the inverter according to the present disclosure includes a bridge circuit configured by a switching element and a capacitor connected to the bridge circuit, and the capacitor is the above-described film capacitor or connected capacitor.
  • the electric vehicle of the present disclosure includes a power source, the above-described inverter connected to the power source, a motor connected to the inverter, and wheels driven by the motor.
  • the film capacitor of 1st Embodiment is shown typically, (a) is yz longitudinal cross-sectional view of a main body, (b) is xz longitudinal cross-sectional view of a modification, (c) is a core of FIG.4 (b). (D) is a side view which shows the end surface of the core of the further modification.
  • the film capacitor of 2nd Embodiment is shown typically, (a) is a cross-sectional view of a main body, (b) is a cross-sectional view explaining the dimension of a core, (c) is a perspective view of a core. is there. It is sectional drawing which shows an example of the core element body of 2nd Embodiment.
  • FIG. 1 schematically shows an example of the configuration of a film capacitor A having an elliptical cross section, where (a) is a side view, (b) is a developed perspective view, and (c) is a cross sectional view of a core body. It is.
  • Each drawing has xyz coordinate axes for ease of explanation.
  • the film capacitor A includes a main body 5, a first terminal electrode 6a, and a second terminal electrode 6b as shown in FIG.
  • metallized films 3a and 3b are overlapped as shown in FIG. 1B, and are wound around a core body 4 made of an insulating material.
  • the metallized film 3a is provided with an electrode film 2a on one surface of the dielectric film 1a
  • the metallized film 3b is provided with an electrode film 2b on one surface of the dielectric film 1b.
  • the first terminal electrode 6a is located on one end face of the body 5 in the axial length direction (z direction) of the core body 4, and the second terminal electrode 6b is on the other end face. Is located.
  • the first terminal electrode 6a is electrically connected to the electrode film 2a
  • the second terminal electrode 6b is electrically connected to the electrode film 2b.
  • the dielectric films 1a and 1b and the electrode films 2a and 2b are made thicker from the back to the front of FIG. In practice, these thicknesses are constant.
  • the description of the first and second terminal electrodes 6a and 6b is omitted.
  • the metallized film 3a has, on one surface of the dielectric film 1a, a portion having the electrode film 2a and a portion (hereinafter referred to as a dielectric film exposed portion) 15a where the dielectric film 1a is exposed. .
  • the dielectric film exposed portion 11a is provided on one end side in the width direction (z direction) of the metallized film 3a so as to be continuous in the longitudinal direction.
  • the metallized film 3b has, on one surface of the dielectric film 1b, a portion having the electrode film 2b and a portion (hereinafter referred to as a dielectric film exposed portion) 15b where the dielectric film 1b is exposed. .
  • the dielectric film exposed portion 15b is provided on one end side in the width direction (z direction) of the metallized film 3b so as to be continuous in the longitudinal direction.
  • the metallized films 3a and 3b are overlapped so that the dielectric film exposed portions 15a and 15b are located on different sides in the width direction (z direction) of the metallized films 3a and 3b.
  • the metallized films 3a and 3b are in a state where the other ends in the width direction (z direction) (ends having the electrode films 2a and 2b) are shifted so as to protrude in the width direction (z direction), respectively. It ’s been repeated. That is, as for the main body 5, metallized film 3a, 3b is laminated
  • the core body 4 has a cross section perpendicular to the axial length direction (z direction) (hereinafter sometimes referred to as a transverse cross section) having an oval outer periphery 7 and an inner periphery 8.
  • the outer periphery 7 has a major axis d1 and a minor axis d2.
  • the inner periphery 8 forms a slit 9 along the major axis d1.
  • the slit 9 is a narrow gap (slit, cut) in the core body 4 formed inside the inner periphery 8.
  • the cross section of the core body 4 has an elliptical outer periphery 7 and an inner periphery 8 that forms a slit 9 along the major axis.
  • the major axis of the elliptical shape coincides with the x direction and the minor axis coincides with the y direction, the length of the major axis is d1, and the length of the minor axis is d2.
  • FIG. 2C is a perspective view of the core body 4.
  • the outer periphery 7 has a convex shape. What is necessary is just to be formed by the curve made.
  • the outer periphery 7 of the cross section of the core body 4 is elliptical, local bending of the core body 4 and the metallized films 3a and 3b and loosening of the metallized films 3a and 3b are suppressed, and the metallized film 3a. 3b is less likely to generate a gap.
  • the metallicon that is the constituent material of the first and second terminal electrodes 6a and 6b is less likely to enter the gap between the metallized films 3a and 3b, and the film capacitor A has a low short-circuit rate and high insulation. Can do. What is necessary is just to confirm the shape of the cross section of such a core body 4 by image-processing the photograph of the cross section of the core body 4, for example.
  • Such a film capacitor A can be manufactured as follows, for example.
  • a tubular body is prepared in which the thickness in the x direction in the cross section is smaller than the thickness in the y direction.
  • a cross section of the core element has a circular outer periphery and an elliptical inner periphery, and an elliptical outer periphery as shown in FIG. Those having a circular inner periphery are used.
  • an insulating organic resin material may be used as the material of the core element.
  • an insulating organic resin material may be used.
  • PP polypropylene
  • POM polyacetal
  • PA polyamide
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • PEEK polyether ether ketone
  • the main body 5 which is the obtained wound body is pressed together with the core element body and flattened into a shape as shown in FIG.
  • the pressing direction is set to the y direction where the thickness of the core element is thick, so that the core element has an elliptical outer periphery 7 having a major axis d1 and a minor axis d2 and a major axis d1.
  • the core body 4 which has the inner periphery 8 which forms the slit 9 along.
  • the slit 9 here refers to a thin gap between the inner peripheries 8 that are closely opposed to each other, and is separated from the outer periphery 7.
  • Such a core body 4 is composed of a curve whose entire outer periphery 7 is convex in the radial direction. Further, as shown in FIG. 2B, the thickness on the major axis of the cross section (thickness between the outer periphery 7 in the x direction and the slit 9, t1) is the thickness on the minor axis (in the y direction). The thickness between the outer periphery 7 and the slit 9 is smaller than t2). When t1 is smaller than t2, when the main body 5 is pressed, the core body is greatly deformed at the portion where the thickness is small (t1), and there is no significant deformation at the portion where the thickness is large (t2).
  • the ratio of the length of the major axis d1 to the minor axis d2 of the core body 4 is preferably in the range of 0.05 to 0.5 as a ratio (d2 / d1).
  • (d2 / d1) By setting (d2 / d1) to 0.05 or more, the thickness of the core body 4 is ensured, and the effect of improving the dimensional accuracy during flattening is obtained. Further, by setting (d2 / d1) to 0.5 or less, the volume of the core body 4 can be suppressed to be small, and space saving of the element can be realized.
  • FIG. 4A is a cross-sectional view of the main body 5 viewed from the x-axis direction
  • FIG. 4B is a cross-sectional view of the main body 5 viewed from the y-direction.
  • the inner periphery 8 of the transverse cross section of the core body 4 has inner peripheries 8 facing each other in the minor axis direction (y direction) at least near the center in the axis length direction (z direction).
  • the slit 9 is closed by contact.
  • the insulating member 10 is disposed at least near the center in the axial length direction (z direction) in the slit 9 and the slit 9 is closed.
  • Fig. 4 (c) is a perspective view of the core body 4 shown in Fig. 4 (b).
  • the inner periphery 8 abuts at least near the center in the axial direction (z direction), or the insulating member 10 is disposed at least near the center in the axial direction (z direction) in the slit 9.
  • the gap 9 is not communicated in the axial length direction (z direction) of the core body 4. Accordingly, the first terminal electrode 6a and the second terminal electrode 6b are prevented from conducting through the gap of the slit 9 by the metallicon treatment, and the short-circuit rate can be reduced.
  • the position of the portion where the slit 9 is closed (hereinafter referred to as the slit closed portion) is not limited to the vicinity of the center in the axial length direction (z direction).
  • the slit closing part may be disposed near any end in the axial length direction (z direction) as long as the slit 9 is disposed so as not to communicate with the axial length direction (z direction).
  • occlusion part may be divided
  • the core body 4 preferably has openings 11 formed by slits 9 at both ends in the axial length direction (z direction). Since the core body 4 has the openings 11 at both ends, the metallicon enters the openings 11 when forming the external electrodes, and an anchor effect is obtained. By this anchor effect, an effect of improving the bonding strength between the main body 5 and the first and second terminal electrodes 6a and 6b is obtained.
  • the openings 11 do not penetrate in the axial length direction (z direction), that is, the openings 11 located at both ends are not connected to each other. That is, as shown in FIG. 4 (d), at both ends in the axial length direction (z direction) of the core body 4, the slit 9 has an opening 11 only at the end portion in the long diameter direction (x direction). It is good to close in the vicinity of the center in the direction (x direction).
  • the core body 4 has a pair of linear shapes having a cross section perpendicular to the axial length (z direction) (hereinafter sometimes referred to as a transverse cross section).
  • the outer periphery 7 having a long side 7a and a pair of short sides 7b, and the inner periphery 8 that forms a slit along the long side 7a inside the outer periphery 7 are provided.
  • the direction parallel to the long side 7a is the x direction
  • the direction perpendicular to the long side 7a is the y direction
  • the length of the long side 7a is L1
  • the length of the short side 7b is L2 (FIG. 5B).
  • the slit formed by the inner periphery 8 has a pair of bulging portions 12 that are gaps along the long side 7a and at both ends in the x direction.
  • FIG. 5C is a perspective view of the core body 4.
  • the shape of the outer periphery 7 may be referred to as a rounded rectangular shape.
  • the rounded rectangular shape refers to a rectangular shape having a pair of long sides and a pair of short sides and rounded corners.
  • the long side 7a is constituted by a straight line
  • the short side 7b connecting the opposing long sides 7a has an arc shape protruding outward in the axial length direction (z-axis direction).
  • the long side 7a is linear, but may be slightly outwardly convex.
  • the short side 7b is good to be comprised by the curve which makes an outward convex arc shape, you may have a linear part.
  • the long sides 7a facing each other are preferably parallel to each other, but may have a slight angle. Further, the opposing long sides 7a may have the same length, but may have different lengths. In this embodiment, the outer periphery 7 does not have an indented portion.
  • the outer periphery 7 of the cross section of the core body 4 is a rounded rectangular shape, local bending of the core body 4 and the metallized films 3a and 3b and loosening of the metallized films 3a and 3b are suppressed, and metallization is achieved. Air gaps are less likely to occur between the films 3a and 3b. As a result, the metallicon that is the constituent material of the first and second terminal electrodes 6a and 6b is less likely to enter the gap between the metallized films 3a and 3b, and the film capacitor A has a low short-circuit rate and high insulation. Can do. What is necessary is just to confirm the shape of the cross section of such a core body 4 by image-processing the photograph of the cross section of the core body 4, for example.
  • Such a film capacitor A can be manufactured as follows, for example.
  • a tubular body is prepared in which the thickness in the x direction in the cross section is smaller than the thickness in the y direction.
  • the core element has a circular outer periphery and an inner periphery having different radii in the x and y directions.
  • the material of the core element body may be the same as that of the first embodiment.
  • This metal core is laminated and wound with metallized films 3a and 3b in the same manner as in the first embodiment to obtain a wound body.
  • the obtained main body 5 which is a wound body is pressed together with the core element body and flattened into a shape as shown in FIG.
  • the pressing direction is set to the y direction where the thickness of the core element is thick, so that the core element has a rounded rectangular shape in which the cross section includes a pair of linear long sides 7a and a pair of short sides 7b.
  • a core body 4 having a cylindrical outer periphery 7 and an inner periphery 8 that forms a slit 9 along the long side 7a and having a pair of bulge portions 12 at both ends.
  • the slit 9 here refers to a thin gap between the inner peripheries 8 that are closely opposed to each other, and is separated from the outer periphery 7.
  • the entire outer periphery 7 is composed of a pair of linear long sides 7a and a pair of short sides 7b. Further, as shown in FIG. 5B, the thickness (thickness on the major axis, t1) of the short side 7b of the cross section is the thickness (thickness on the minor axis, t2) on the long side 7a. Will be smaller. When t1 is smaller than t2, when the main body 5 is pressed, the core body is greatly deformed at the portion where the thickness is small (t1), and there is no significant deformation at the portion where the thickness is large (t2).
  • the bulging portion 12 forms a teardrop-shaped void having an arc along the short side 7b.
  • the bulging part 12 makes such a teardrop shape, it can be set as the core 4 with small local deformation
  • the bulging portion 12 that is a teardrop-shaped gap is formed in a portion where the thickness of the core body 4 is small, so that the wall thickness is increased. It is possible to suppress local deformation (hereinafter, simply referred to as local deformation of the core body 4) in another part having a large diameter.
  • the shape of the cross section of the bulging portion 12 is preferably a teardrop shape, but is a shape (circle / elliptical shape, diamond shape, triangular shape, etc.) as shown in FIGS. Also good.
  • Such a shape can be obtained by designing the shape of the inner periphery of the core body so as to have the shape described above after pressing.
  • the length of the entire outer periphery 7 of the core body 4 is L0
  • the length of the long side 7a is L1
  • the length of the short side 7b is L2
  • the direction perpendicular to the long side 7a of the core body 4 The length (minor axis) in the (y direction) is d2.
  • the value of the formula P (L2 / L1) ⁇ (L0 / ( ⁇ ⁇ d2) ⁇ 1) is in the range of 0.8 to 1.2, particularly in the range of 0.9 to 1.1. It is preferable.
  • P is a parameter relating to the shape of the cross section of the core body 4, and local deformation of the core body 4 can be further suppressed by setting P within this range.
  • the thickness t1 at the short side 7b is 0.2 (t1 / d2) with respect to the length (minor diameter) d2 in the direction (y direction) perpendicular to the long side 7a. It is preferably in the range of ⁇ 0.3.
  • t1 / d2 in the range of 0.2 to 0.3, local deformation of the core body 4 can be further suppressed.
  • t1 / d2 is smaller than 0.2, the boundary between the long side 7a portion and the short side 7b portion is deformed in the initial stage of the press, and a gap between the metallized films tends to occur.
  • t1 / d2 is larger than 0.3, the long side 7a part is deformed at the initial stage of pressing, and there is a tendency that a gap between the metallized films is easily generated.
  • t1 / d2 is particularly preferably in the range of 0.23 to 0.27.
  • the inner periphery 8 of the cross section of the core body 4 is a portion facing each other along the long side 7a, that is, a portion facing each other via the slit 9 (two It is preferable that the slit 9 is closed by abutment between the bulging portions 12.
  • the opposing inner circumferences 8 may be in contact with each other over the entire axial length direction (z direction). However, as shown in FIG. 8A, the inner circumferences facing each other in at least a part of the axial length direction (z direction). The circumference 8 may abut.
  • FIG. 8A is a cross-sectional view of the main body 5 at the center of the core body 4 in the x direction.
  • the gap between the slits 9 formed by the inner periphery 8 does not have to penetrate from one end to the other end in the axial length direction (z direction).
  • the inner peripheries 8 facing each other in at least a part of the z direction abut, and the gap of the slit 9 is closed without penetrating from one end to the other end in the axial length direction (z direction). Even if the metallicon forming the terminal electrodes 6a and 6b enters the gap of the slit 9, the first terminal electrode 6a and the second terminal electrode 6b are prevented from conducting through the gap of the slit 9, and the short-circuit rate can be reduced. .
  • the position of the portion where the slit 9 is closed may be near the center in the axial length direction (z direction).
  • the slit 9 is provided so as not to penetrate in the axial length direction (z direction), it may be in the vicinity of any end in the axial length direction (z direction).
  • occlusion part may be divided
  • the opening part 11 of the slit 9 formed with the inner periphery 8 may exist in the both ends of an axial length direction (z direction).
  • the metallicon enters the opening 11 of the slit at the end in the axial direction (z direction), and an anchor effect is obtained.
  • an anchor effect an effect of improving the bonding strength between the main body 5 and the first and second terminal electrodes 6a and 6b is obtained.
  • FIG. 8B is a cross-sectional view of the main body 5 perpendicular to the x direction showing the bulging portion 12
  • FIG. 8C is a perspective view of the core body 4 shown in FIG. 8B.
  • the bulging portion 12 is preferably such that the insulating member 10 is disposed in the gap of the bulging portion 12 and the bulging portion 12 is closed.
  • the gap of the bulging portion 12 does not communicate from one end to the other end in the axial length direction (z direction) due to the arrangement of the insulating member 10. Accordingly, the first terminal electrode 6a and the second terminal electrode 6b are prevented from conducting through the gap between the bulging portions 12 by the metallicon treatment, and the short-circuit rate can be reduced.
  • the insulating member 10 may be disposed in the gap of the bulging portion 12 over the entire axial length direction (z direction). Moreover, the insulating member 10 may be arrange
  • gap of the bulging part 12 may open in the both ends of an axial length direction (z direction). Since the gap of the bulging portion 12 is open at the end in the axial length direction (z direction), the metallicon enters the gap of the opening of the bulging portion 12 when forming the external electrode, and an anchor effect is obtained. By this anchor effect, an effect of improving the bonding strength between the main body 5 and the first and second terminal electrodes 6a and 6b is obtained.
  • FIG. 9 is a perspective view schematically showing the configuration of the coupled capacitor C.
  • the coupled capacitor C of this embodiment has a configuration in which a plurality of film capacitors A are connected in parallel by a pair of bus bars 21 and 23.
  • the bus bars 21 and 23 are configured by terminal portions 21a and 23a for external connection and lead terminal portions 21b and 23b, and the lead terminal portions 21b and 23b are connected to the terminal electrodes 6a and 6b of the film capacitor A, respectively.
  • connection type capacitor C When the above-described film capacitor A is applied to the connection type capacitor C, the connection type capacitor C having a low short-circuit rate and high insulation can be obtained.
  • the coupled capacitor C can obtain the same effect even if it has a structure in which the flat surfaces of the film capacitor B are stacked.
  • the axial length direction (z direction) may be arranged along the vertical direction.
  • FIG. 10 is a schematic configuration diagram for explaining the configuration of the inverter.
  • FIG. 10 shows an example of an inverter D that generates alternating current from direct current.
  • the inverter D of the present embodiment has a configuration including a bridge circuit 31 and a capacitor unit 33.
  • the bridge circuit 31 includes a switching element (for example, an IGBT (insulated gate bipolar transistor)) and a diode, and the capacitor unit 33 is disposed between the input terminals of the bridge circuit 31 for voltage stabilization.
  • the film capacitor A or the connected capacitor C is applied as the capacitor 33.
  • the inverter D is connected to a booster circuit 35 that boosts the voltage of the DC power supply.
  • the bridge circuit 31 is connected to a motor generator (motor M) serving as a drive source.
  • FIG. 11 is a schematic configuration diagram showing an electric vehicle.
  • FIG. 11 shows an example of a hybrid vehicle (HEV) as the electric vehicle E.
  • HEV hybrid vehicle
  • reference numeral 41 denotes a driving motor
  • 43 denotes an engine
  • 45 denotes a transmission
  • 47 denotes an inverter
  • 49 denotes a power source (battery)
  • 51a and 51b denote front wheels and rear wheels.
  • the electric vehicle E has outputs of the motor 41 and the engine 43 or both as a drive source, and the output is transmitted to the pair of left and right front wheels 51 a via the transmission 45.
  • the power source 49 is connected to the motor 41 via the inverter 47.
  • the electric vehicle E shown in FIG. 11 is provided with a vehicle ECU 53 that performs overall control of the entire electric vehicle E.
  • the vehicle ECU 53 receives a drive signal corresponding to the operation of the driver or the like from the electric vehicle E such as an ignition key 55, an accelerator pedal (not shown), and a brake.
  • the vehicle ECU 53 outputs an instruction signal to the engine ECU 57, the power source 49, and the inverter 47 as a load based on the drive signal.
  • the engine ECU 57 controls the rotational speed of the engine 43 in response to the instruction signal and drives the electric vehicle E.
  • the film capacitor A or the connection type capacitor C is short-circuited. Since the rate is low and the insulating property is high, current control of a control device such as an ECU mounted on the electric vehicle E can be made more stable.
  • the inverter D of this embodiment can be applied not only to the hybrid vehicle (HEV) described above but also to various power conversion application products such as an electric vehicle (EV), a fuel cell vehicle, an electric bicycle, a generator, and a solar cell. .
  • EV electric vehicle
  • a fuel cell vehicle an electric bicycle
  • a generator an electric bicycle
  • a solar cell a solar cell
  • a dielectric film having an average thickness of 2.5 ⁇ m was prepared using polyarylate (U-100, manufactured by Unitika). Polyarylate was dissolved in toluene, and the resin solution was coated on a polyethylene terephthalate (PET) substrate using a coater, and formed into a sheet. The molded resin sheet was heat treated at 130 ° C. to remove toluene and obtain a dielectric film.
  • polyarylate U-100, manufactured by Unitika
  • the obtained dielectric film was peeled from the substrate and slitted to a width of 140 mm, and then an Al metal film having a width of 107 mm was formed by vacuum deposition using a metal mask as an electrode film on one main surface of the dielectric film. Forming a metallized film.
  • the metal film had a thickness of 70 nm and a sheet resistance of 8.0 ⁇ / ⁇ .
  • the film thickness of the metal film was calculated
  • a 140 mm wide metallized film was further slit to obtain a 55 mm wide metallized film having a 1.5 mm margin (exposed part of the dielectric film).
  • the core element had a cross-sectional shape as shown in FIG. 3A and FIG. 6, and a 55 mm long polypropylene (PP) product was prepared. That is, the outer periphery has a circular shape and the inner periphery has an elliptical cross-sectional shape (FIG. 3A), and the outer periphery has a circular shape and has a thin thickness in the x direction and a thick thickness in the y direction. What has a shape (FIG. 6) was prepared.
  • a pair of metallized films having a width of 55 mm were laminated and wound around the core element body so that the electrode films were opposed to each other through the dielectric film, and a wound body was produced.
  • the pair of metallized films were wound in a state where they were shifted from each other by 0.5 mm in the width direction (z direction) and the margin portions were arranged on different sides in the width direction (z direction).
  • the number of windings was 642, and a wound body having an outer diameter of 12.5 mm and a width of 55.5 mm (both average values) was obtained.
  • the obtained wound body was flattened by pressing together with the core element body to obtain a film capacitor body.
  • the press was performed under conditions of a temperature of 120 ° C. and a press load of 500 gf.
  • samples using a core element having a uniform thickness (Sample Nos. 1 and 2) and samples obtained by extracting and flattening the core element (Sample No. 3) were also produced.
  • the press direction was made into the y direction where the thickness of a core element body is thick.
  • the gap (slit) at the end of the core was sealed with polyimide tape. Thereafter, an alloy of zinc and tin was sprayed on the opposing end surfaces of the film capacitor body where the electrode film was exposed to form a metallicon electrode as a terminal electrode to obtain a film capacitor.
  • an outer periphery has an elliptical shape and an inner periphery has a slit along the major axis.
  • the outer periphery has a rounded rectangular shape, and the inner periphery has a shape having teardrop-shaped bulges at both ends of the slit.
  • a locally recessed portion was formed near the center of the portion corresponding to the long side of the outer periphery, and the outer periphery was not in an oval shape.
  • the inner circumference has a shape in which two elliptical voids are arranged.
  • the major axis d1 the minor axis d2, the ratio d2 / d1, the thickness t1 on the major axis, and the thickness t2 on the minor axis of the core was confirmed and shown in Table 1 (see FIG. 2B).
  • the parameter P related to the shape of the cross section of the core, and the thickness t1 of the short side and the length d2 in the direction perpendicular to the long side
  • the ratio (t1 / 2) was confirmed and shown in Table 2.
  • P (L2 / L1) ⁇ (L0 / ( ⁇ ⁇ d2) ⁇ 1), where L1 is the length of the outer peripheral long side, L2 is the length of the outer peripheral short side, and L0 is The length of the entire outer periphery, d2, is the length (short diameter) of the core body in the direction perpendicular to the long side (see FIG. 5B).
  • Dielectric breakdown voltage (BDV) is a voltage boost test in which a DC voltage is applied to a film capacitor at a voltage increase rate of 10 V per second from 0 V, immediately before the capacitance decreases by 5% or more with respect to the value of 0 V (initial value). Was obtained from the voltage value.
  • the initial value of the capacitance was measured under the conditions of AC 10 V and 1 kHz before the boost test. The average initial value of the capacitance was 17.7 ⁇ F.
  • the boost test when the short circuit, that is, when the leakage current value exceeds 1.0 mA, the DC voltage is once returned to 0 V, and the capacitance is measured under the conditions of AC 10 V and 1 kHz, and the value is the initial value. On the other hand, if it was 95% or more, the pressure increasing test was repeated from 0V.
  • Sample No. of the first embodiment or the second embodiment. Nos. 4 to 27 had high insulation properties with a short rate of 12% or less and a breakdown voltage (BDV) of 850V or more.
  • BDV breakdown voltage
  • the sample No. Sample No. 5 to 7 and the parameter P relating to the cross-sectional shape of the core body in the second embodiment is in the range of 0.8 to 1.2, and t1 / d2 is in the range of 0.2 to 0.3. .
  • the short rate was 6% or less and the BDV was 1050 V or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inverter Devices (AREA)

Abstract

絶縁材料からなる芯体4に金属化フィルム3aおよび3bを巻回してなる本体5と、本体5の軸長方向の両端面にそれぞれ設けられた第1、第2端子電極6a、6bとを具備し、芯体4は、軸長方向(z方向)に垂直な断面が、長径と短径とを有するオーバル形状の外周7と、長径に沿ったスリットを形成する内周8とを有する。このような芯体4を具備することで、金属化フィルム3a、3bの緩みや、金属化フィルム3a、3b間の空隙の発生を抑制することができ、絶縁性の高いフィルムコンデンサAとすることができる。

Description

フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌
 本発明は、フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌に関するものである。
 フィルムコンデンサは、例えば、ポリプロピレン樹脂をフィルム化した誘電体フィルムと、この誘電体フィルムの表面に蒸着によって形成された電極膜とを有する金属化フィルムを、金属製の巻芯に巻回してコンデンサ本体(以下、本体という)が構成されており(例えば、特許文献1を参照)、この本体の軸長方向の両端部には、メタリコンで形成された端子電極がそれぞれ設けられている。
 このようなフィルムコンデンサでは、金属製巻芯は抜き取らずにそのまま使用される。金属製巻芯は良好な熱伝導を有し、熱的強度や機械的強度が高いことから、放熱性に優れ、比較的高温で使用しても金属化フィルムの緩みや変形が少なく、大口径の巻芯の使用も容易であり、硬度の高い金属化フィルムを巻き取ることもできるものであった。
 また、近年のフィルムコンデンサにおいては、生産効率や材料ロスの低減を目的としてフィルムコンデンサ1素子当たりの容量・サイズの大型化が進むと共に、省スペース化を目的として偏平に加工した断面が小判形のフィルムコンデンサが多く用いられている。このような小判型のフィルムコンデンサには、通常、円筒型の巻芯が使用され、巻芯を抜き取らずに素子とともに偏平加工がおこなわれる。
特開昭64-55816号公報
 本開示のフィルムコンデンサは、絶縁材料からなる芯体に金属化フィルムを巻回してなる本体と、該本体の軸長方向の両端面にそれぞれ設けられた第1、第2端子電極とを具備するとともに、前記芯体は、前記軸長方向に垂直な断面が、長径と短径とを有するオーバル形状の外周と、前記長径に沿ったスリットを形成する内周とを有する。
 本開示の連結型コンデンサは、上述のフィルムコンデンサを、バスバーにより複数個接続してなる。
 本開示のインバータは、スイッチング素子により構成されるブリッジ回路と、該ブリッジ回路に接続された容量部とを備え、前記容量部が上述のフィルムコンデンサまたは連結型コンデンサである。
 本開示の電動車輌は、電源と、該電源に接続された上述のインバータと、該インバータに接続されたモータと、該モータにより駆動する車輪と、を備えている。
横断面が楕円状のフィルムコンデンサの構成を模式的に示すもので、(a)は側面図、(b)は展開斜視図、(c)は芯体の横断面図である。 第1実施形態のフィルムコンデンサを模式的に示すもので、(a)は本体の横断面図、(b)は芯体の寸法を説明する横断面図、(c)は芯体の斜視図である。 (a)、(b)は、第1実施形態の芯素体の一例を示す断面図である。 第1実施形態のフィルムコンデンサを模式的に示すもので、(a)は本体のyz縦断面図、(b)は変形例のxz縦断面図、(c)は図4(b)の芯体の斜視図、(d)はさらなる変形例の芯体の端面を示す側面図である。 第2実施形態のフィルムコンデンサを模式的に示すもので、(a)は本体の横断面図、(b)は芯体の寸法を説明する横断面図、(c)は芯体の斜視図である。 第2実施形態の芯素体の一例を示す断面図である。 (a)~(d)は、第2実施形態の芯体の変形例を示す横断面図である。 第2実施形態のフィルムコンデンサを模式的に示すもので、(a)、(b)は本体のyz縦断面図、(c)は図8(b)の芯体の斜視図である。 連結型コンデンサを模式的に示す斜視図である。 インバータの構成を説明するための概略構成図である。 電動車輌を示す概略構成図である。
 図1は、横断面が楕円状のフィルムコンデンサAの構成の一例を模式的に示すもので、(a)は側面図、(b)は展開斜視図、(c)は芯体の横断面図である。各図面には、説明を容易にするためにxyzの座標軸を付した。
 フィルムコンデンサAは、図1(a)に示すように、本体5、第1端子電極6a、および第2端子電極6bを具備している。本体5は、金属化フィルム3a、3bが図1(b)に示すように重ねられ、絶縁材料からなる芯体4に巻回されている。金属化フィルム3aは、誘電体フィルム1aの一方の面に電極膜2aを備えるものであり、金属化フィルム3bは、誘電体フィルム1bの一方の面に電極膜2bを備えるものである。
 図1(a)に示すように、第1端子電極6aは、芯体4の軸長方向(z方向)における本体5の一方の端面に位置し、第2端子電極6bは、もう一方の端面に位置している。第1端子電極6aは、電極膜2aに電気的に接続され、第2端子電極6bは、電極膜2bに電気的に接続されている。
 なお、図1(b)では、フィルムコンデンサAの構成を見やすくするため、誘電体フィルム1a、1b、電極膜2a、2bの厚みを、図1(b)の奥から手前に向けて厚くなるように記載したが、実際にはこれらの厚みは一定である。また、図1(b)では、第1、第2端子電極6a、6bの記載を省略した。
 金属化フィルム3aは、誘電体フィルム1aの一方の面上に、電極膜2aを有する部分と、誘電体フィルム1aが露出した部分(以下、誘電体フィルム露出部という)15aとを有している。誘電体フィルム露出部11aは、金属化フィルム3aの幅方向(z方向)の一端部側に、長手方向に連続するように設けられている。金属化フィルム3bは、誘電体フィルム1bの一方の面上に、電極膜2bを有する部分と、誘電体フィルム1bが露出した部分(以下、誘電体フィルム露出部という)15bとを有している。誘電体フィルム露出部15bは、金属化フィルム3bの幅方向(z方向)の一端側に、長手方向に連続するように設けられている。
 金属化フィルム3a、3bは、誘電体フィルム露出部15a、15bが、金属化フィルム3a、3bの幅方向(z方向)の互いに異なる側に位置するように重ねあわされている。また、金属化フィルム3a、3bは、幅方向(z方向)の他方の端部(電極膜2a、2bを有する端部)が、それぞれ幅方向(z方向)に突出するようにずれた状態で重ねあわあされている。すなわち、本体5は、金属化フィルム3a、3bが図1(b)に示すように芯体4に積層巻回されている。
 芯体4は、図1(c)に示すように、軸長方向(z方向)に垂直な断面(以下、横断面という場合もある)が、オーバル形状の外周7と、内周8とを有している。外周7は、長径d1と短径d2とを有している。内周8は、長径d1に沿ったスリット9を形成している。スリット9は、内周8の内側に形成される芯体4の細い隙間(細隙、切れ込み)である。
 通常、芯体としては金属製の円筒が用いられていた。しかし、金属製の芯体は機械的強度が高すぎて加工が極めて困難であり、偏平加工時に金属化フィルム3a、3bを痛めてしまう懸念があった。特に円筒型の芯体を用いた場合、偏平加工により芯体が局所的に折れ曲がって金属化フィルム3a、3bが緩み、金属化フィルム3a、3b間に空隙が生じることがあった。このように金属化フィルム3a、3b間に空隙がある状態で、第1、第2端子電極6a、6bとしてメタリコン電極を形成すると、メタリコンが空隙に侵入してショートが発生する懸念があった。
 <第1の実施形態>
 本実施形態では、芯体4の横断面が、図2(a)、(b)に示すように、楕円形状の外周7と、長径に沿ったスリット9を形成する内周8とを有する。ここで、楕円形状の長軸がx方向、短軸がy方向に一致するものとし、長径の長さをd1、短径の長さをd2とする。図2(c)は芯体4の斜視図である。
 なお、外周7が楕円形状であるとは、長軸と短軸の交点を原点とし、長半径の長さをr1(=d1/2)、短半径の長さをr2(=d2/2)としたとき、外周7上の点(x、y)が関係式(1):x/r1+y/r2=1を満たす形状をいうが、本開示では、外周7が凸形状をなす曲線により形成されているものであればよい。例えば、関係式(2):x/r1+y/r2=1、関係式(3):x/r1+y/r2=1を満たすものであってもよい。
 芯体4の横断面の外周7が楕円形状であることにより、芯体4および金属化フィルム3a、3bの局所的な折れ曲がり、および金属化フィルム3a、3bの緩みが抑えられ、金属化フィルム3a、3b間に空隙が生じにくくなる。その結果、第1、第2端子電極6a、6bの構成材料であるメタリコンが、金属化フィルム3a、3b間の空隙に侵入しにくくなり、ショート率が低く絶縁性の高いフィルムコンデンサAとすることができる。このような芯体4の横断面の形状は、例えば芯体4の横断面の写真を画像処理するなどして確認すればよい。
 このようなフィルムコンデンサAは、例えば以下のようにして作製できる。芯体4の芯素体として、横断面におけるx方向の肉厚がy方向の肉厚より小さい管状のものを準備する。この芯素体の横断面は、例えば図3(a)に示すように、円形状の外周と楕円形状の内周を有するものや、図3(b)に示すように、楕円形状の外周と円形状の内周を有するものなどを用いる。
 芯素体の材質は、絶縁性の有機樹脂材料を用いればよい。具体的には、例えば、ポリプロピレン(PP)、ポリアセタール(POM)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、ポリテトラフルオロエチレン(PTFE)、およびポリエーテルエーテルケトン(PEEK)などの有機樹脂材料が挙げられる。このような有機樹脂材料は、芯素体として所望の形状を形成しやすいとともに、フィルムを傷めることなく容易に偏平加工することが可能である。
 この芯素体に、上述の金属化フィルム3a、3bを積層巻回して巻回体を得る。この時、金属化フィルム3aと3bとは、フィルムの幅方向(z方向)に互いに少しずらした状態で積層巻回する。
 得られた巻回体である本体5を芯素体とともにプレスして、図2(a)に示すような形状に偏平加工する。このとき、プレスする方向を、芯素体の肉厚が厚いy方向とすることで、芯素体は、横断面が長径d1と短径d2とを有する楕円形状の外周7と、長径d1に沿ったスリット9を形成する内周8とを有する芯体4となる。なお、ここでいうスリット9とは、近接して対向する内周8間の細い隙間を指し、外周7とは離間している。
 このような芯体4は、外周7全体が径方向に凸の曲線からなる。また、図2(b)に示すように、横断面の長径上の肉厚(x方向の外周7とスリット9との間の肉厚、t1)が、短径上の肉厚(y方向の外周7とスリット9との間の肉厚、t2)よりも小さいものとなる。t1がt2よりも小さいことにより、本体5をプレスする際に肉厚が小さい(t1)部位において芯素体が大きく変形し、肉厚が大きい(t2)部位では大きな変形がない。このような芯体4を用いることで、芯体4が局所的に折れ曲がることに起因する金属化フィルム3a、3bの緩みや、金属化フィルム3a、3b間の空隙の発生を抑制することができ、絶縁性の高いフィルムコンデンサAとなる。
 特に、芯素体として円形状の外周と楕円形状の内周とを有するもの(図3(a)を参照)を用いるとともに、積層巻回時に楕円状の巻芯軸を用いることで、芯素体が空回りすることなく、容易に巻回することができる。
 芯体4の長径d1と短径d2の長さの比率は、比(d2/d1)にして0.05~0.5の範囲とするのがよい。(d2/d1)を0.05以上とすることで、芯体4の肉厚が確保され、偏平加工時の寸法精度が向上する効果が得られる。また、(d2/d1)を0.5以下とすることで、芯体4の体積を小さく抑えることができ、素子の省スペース化を実現できる。
 図4(a)は、本体5をx軸方向から見た断面図であり、図4(b)は、本体5をy方向から見た断面図である。芯体4の横断面の内周8は、図4(a)に示すように、軸長方向(z方向)の少なくとも中央近傍において、短軸方向(y方向)に互いに対向する内周8が当接してスリット9が閉塞しているのがよい。または、図4(b)に示すように、スリット9内の軸長方向(z方向)の少なくとも中央近傍に絶縁部材10が配され、スリット9が閉塞しているのがよい。
 図4(c)は、図4(b)に示す芯体4の斜視図である。これらは、軸長方向(z方向)の少なくとも中央近傍において内周8が当接する、またはスリット9内の軸長方向(z方向)の少なくとも中央近傍に絶縁部材10が配置されることにより、スリット9の隙間が芯体4の軸長方向(z方向)に連通していない。したがって、メタリコン処理により第1端子電極6aと第2端子電極6bとが、スリット9の隙間を通じて導通することが抑制され、ショート率を低減できる。
 なお、スリット9が閉塞している部分(以下、スリット閉塞部という)の位置は、軸長方向(z方向)の中央近傍に限定されない。スリット閉塞部は、スリット9が軸長方向(z方向)に連通しないように配置されていれば、軸長方向(z方向)のいずれかの端部近傍に配置されていてもよい。また、スリット閉塞部が軸長方向(z方向)の複数の部位に分割して配置されていてもよい。
 芯体4は、軸長方向(z方向)の両端部において、図4(a)、(b)に示すように、スリット9による開口部11を有するのがよい。芯体4が両端部に開口部11を有することで、外部電極を形成する際にメタリコンが開口部11に侵入し、アンカー効果が得られる。このアンカー効果により、本体5と第1、第2端子電極6a、6bとの接合強度が向上する効果が得られる。なお、開口部11は、軸長方向(z方向)に貫通していない、すなわち、両端部に位置するそれぞれの開口部11同士は互いにつながっていない。すなわち、図4(d)に示すように、芯体4の軸長方向(z方向)の両端部において、スリット9は長径方向(x方向)の端部のみに開口部11を有し、長径方向(x方向)の中央近傍では閉塞しているのがよい。
 <第2の実施形態>
 本実施形態では、芯体4は、図5(a)、(b)に示すように、軸長(z方向)に垂直な断面(以下、横断面という場合もある)が、一対の直線状の長辺7aおよび一対の短辺7bを備える外周7と、外周7の内側に長辺7aに沿うスリットを形成する内周8と、を有する。ここで、長辺7aに平行な方向をx方向、長辺7aに垂直な方向をy方向とし、長辺7aの長さをL1、短辺7bの長さをL2とする(図5(b)を参照)。内周8により形成されるスリットは、長辺7aに沿うとともにx方向の両端に空隙である一対の膨らみ部12を有する。図5(c)は芯体4の斜視図である。
 以下、外周7の形状を角丸長方形状という場合がある。角丸長方形状とは、一対の長辺と一対の短辺を有し、角が丸みを帯びている長方形状を指す。第2の実施形態では、長辺7aは直線で構成され、対向する長辺7a同士をつなぐ短辺7bが軸長方向(z軸方向)の外側に凸の弧状をなしている。
 長辺7aは、直線状とするが、わずかに外側に凸であってもよい。短辺7bは外側に凸の弧状をなす曲線で構成されているのがよいが、直線部分を有していてもよい。互いに対向する長辺7a同士は、互いに平行であるのがよいが、若干の角度を有していてもよい。また、対向する長辺7aは同じ長さであるのがよいが、互いに異なる長さであってもよい。本実施形態において、外周7は内側に凹んだ部分を有していない。
 芯体4の横断面の外周7が角丸長方形状であることにより、芯体4および金属化フィルム3a、3bの局所的な折れ曲がり、および金属化フィルム3a、3bの緩みが抑えられ、金属化フィルム3a、3b間に空隙が生じにくくなる。その結果、第1、第2端子電極6a、6bの構成材料であるメタリコンが、金属化フィルム3a、3b間の空隙に侵入しにくくなり、ショート率が低く絶縁性の高いフィルムコンデンサAとすることができる。このような芯体4の横断面の形状は、例えば芯体4の横断面の写真を画像処理するなどして確認すればよい。
 このようなフィルムコンデンサAは、例えば以下のようにして作製できる。芯体4の芯素体として、横断面におけるx方向の肉厚がy方向の肉厚より小さい管状のものを準備する。この芯素体の横断面は例えば図6に示すように円形状の外周と、x方向とy方向とで半径の異なる内周と、を有するものを用いる。
 芯素体の材質は、第1実施形態と同様なものを用いればよい。
 この芯素体に、第1実施形態と同様に金属化フィルム3a、3bを積層巻回して巻回体を得る。得られた巻回体である本体5を芯素体とともにプレスして、図5(a)に示すような形状に偏平加工する。このとき、プレスする方向を、芯素体の肉厚が厚いy方向とすることで、芯素体は、横断面が一対の直線状の長辺7aおよび一対の短辺7bを備える角丸長方形状の外周7と、長辺7aに沿うとともに両端に一対の膨らみ部12を有するスリット9を形成する内周8とを有する芯体4となる。なお、ここでいうスリット9とは、近接して対向する内周8間の細い隙間を指し、外周7とは離間している。
 このような芯体4は、外周7全体が一対の直線状の長辺7aおよび一対の短辺7bからなる。また、図5(b)に示すように、横断面の短辺7b部の肉厚(長径上の肉厚、t1)が、長辺7a部における肉厚(短径上の肉厚、t2)よりも小さいものとなる。t1がt2よりも小さいことにより、本体5をプレスする際に肉厚が小さい(t1)部位において芯素体が大きく変形し、肉厚が大きい(t2)部位では大きな変形がない。このような芯体4を用いることで、芯体4が局所的に折れ曲がることに起因する金属化フィルム3a、3bの緩みや、金属化フィルム3a、3b間の空隙の発生を抑制することができ、絶縁性の高いフィルムコンデンサAとなる。
 また、芯体4の横断面において、膨らみ部12は、短辺7bに沿う弧を有する涙滴状の空隙をなすものとなる。膨らみ部12がこのような涙滴状をなすことにより、局所的な変形が小さい芯体4とすることができる。換言すれば、巻回体である本体5をプレスして偏平加工する際に、芯体4の肉厚が小さい部位に涙滴状の空隙である膨らみ部12が形成されることで、肉厚の大きい他の部位における局所的な変形(以下、単に芯体4の局所的な変形という)を抑制することができる。このように膨らみ部12以外の部位における芯体4の局所的な変形が抑制されることにより、金属化フィルム3a、3bの緩みや金属化フィルム3a、3b間の空隙の発生(以下、単に金属化フィルム間の空隙発生という)を抑制することができる。
 膨らみ部12の横断面の形状は、涙滴状であるのがよいが、図7(a)~(d)に示すような形状(円・楕円形状、ひし形状、三角形状など)であってもよい。このような形状は、芯素体の内周の形状を、プレス後に上述のような形状となるように設計することにより得られる。
 芯体4の横断面において、芯体4の外周7全体の長さをL0、長辺7aの長さをL1、短辺7bの長さをL2、芯体4の長辺7aに垂直な方向(y方向)の長さ(短径)をd2とする。このとき、式P=(L2/L1)×(L0/(π・d2)-1)の値が、0.8~1.2の範囲、特には0.9~1.1の範囲にあることが好ましい。Pは、芯体4の横断面の形状に関するパラメータであり、Pをこの範囲とすることで、芯体4の局所的な変形をより一層抑制することができる。例えば、Pが0.8より小さい場合は、プレス後期に短辺7b部が大きく変形して金属化フィルム間の空隙が発生しやすくなる傾向がある。また、Pが1.2より大きい場合は、プレス初期に長辺7a部と短辺7b部との境界が変形してフィルム間の空隙が発生しやすくなる傾向がある。
 芯体4の横断面において、短辺7b部における肉厚t1は、長辺7aに垂直な方向(y方向)の長さ(短径)d2に対する比率(t1/d2)にして、0.2~0.3の範囲であることが好ましい。t1/d2を0.2~0.3の範囲とすることで、芯体4の局所的な変形をより一層抑制することができる。例えば、t1/d2が0.2より小さい場合は、プレス初期に長辺7a部と短辺7b部との境界が変形して金属化フィルム間の空隙が発生しやすくなる傾向がある。また、t1/d2が0.3より大きい場合は、プレス初期に長辺7a部が変形し、金属化フィルム間の空隙が発生しやすくなる傾向がある。t1/d2は、特に0.23~0.27の範囲とするのがよい。
 芯体4の横断面の内周8は、図5(a)~(c)に示すように、長辺7aに沿って互いに対向する部位、すなわちスリット9を介して互いに対向する部位(2つの膨らみ部12間に位置する部位)が当接してスリット9が閉塞しているのがよい。軸長方向(z方向)全体にわたって、対向する内周8が当接していてもよいが、図8(a)に示すように軸長方向(z方向の)の少なくとも一部において互いに対向する内周8が当接するものであってもよい。図8(a)は芯体4のx方向中央における本体5の断面図である。この場合、内周8により形成されるスリット9の間隙が軸長方向(z方向)の一端から他端に貫通していなければよい。z方向の少なくとも一部で互いに対向する内周8が当接し、スリット9の間隙が軸長方向(z方向)の一端から他端に貫通せず閉塞していることにより、第1、第2端子電極6a、6bを形成するメタリコンがスリット9の間隙に侵入しても、第1端子電極6aと第2端子電極6bとがスリット9の間隙を通じて導通することが抑制され、ショート率を低減できる。なお、スリット9が閉塞している部分(スリット閉塞部)の位置は、軸長方向(z方向)の中央近傍にであってもよい。また、スリット9が軸長方向(z方向)に貫通しないように設けられていれば、軸長方向(z方向)のいずれかの端部近傍であってもよい。また、スリット閉塞部が軸長方向(z方向)の複数の部位に分割して配置されていてもよい。
 なお、軸長方向(z方向)の両端では、内周8により形成されるスリット9の開口部11が存在してもよい。軸長方向(z方向)の端部においてスリットの開口部11にメタリコンが侵入し、アンカー効果が得られる。このアンカー効果により、本体5と第1、第2端子電極6a、6bとの接合強度が向上する効果が得られる。
 図8(b)は、膨らみ部12を示すx方向に垂直な本体5の断面図であり、図8(c)は図8(b)に示す芯体4の斜視図である。膨らみ部12は、図8(b)に示すように、膨らみ部12の空隙に絶縁部材10が配置され、膨らみ部12が閉塞しているのがよい。膨らみ部12の空隙は、絶縁部材10が配置されることにより軸長方向(z方向)の一端から他端に連通していない。したがって、メタリコン処理により第1端子電極6aと第2端子電極6bとが、膨らみ部12の間隙を通じて導通することが抑制され、ショート率を低減できる。
 なお、絶縁部材10は、膨らみ部12の空隙に、軸長方向(z方向)の全体にわたって配置されていてもよい。また、絶縁部材10は、軸長方向(z方向の)の少なくとも一部に配置されていてもよい。絶縁部材10は、膨らみ部12の空隙が軸長方向(z方向の)一端から他端に連通せず閉塞するように配置されていれば、軸長方向(z方向)のいずれかの端部近傍に配置されていてもよい。また、絶縁部材10は、軸長方向(z方向)の複数の部位に分割して配置されていてもよい。
 なお、軸長方向(z方向)の両端では、膨らみ部12の空隙が開口していてもよい。軸長方向(z方向)の端部に膨らみ部12の空隙が開口していることで、外部電極を形成する際にメタリコンが膨らみ部12の開口の空隙に侵入し、アンカー効果が得られる。このアンカー効果により、本体5と第1、第2端子電極6a、6bとの接合強度が向上する効果が得られる。
 <連結型コンデンサ、インバータ、電動車両>
 図9は、連結型コンデンサCの構成を模式的に示した斜視図である。図9においては構成を分かりやすくするために、ケースならびにモールド用の樹脂を省略して記載している。本実施形態の連結型コンデンサCは、複数個のフィルムコンデンサAが一対のバスバー21、23により並列接続された構成を有する。バスバー21、23は、外部接続用の端子部21a、23aと、引出端子部21b、23bにより構成され、引出端子部21b、23bは、フィルムコンデンサAの端子電極6a、6bにそれぞれ接続される。
 連結型コンデンサCに、上記したフィルムコンデンサAを適用すると、ショート率が低く絶縁性の高い連結型コンデンサCを得ることができる。
 なお、連結型コンデンサCは、図9に示したような平面的な配置の他に、フィルムコンデンサBの平坦な面同士が重なるように積み上げた構造であっても同様の効果を得ることができる。また、軸長方向(z方向)が鉛直方向に沿った配置としてもよい。
 図10は、インバータの構成を説明するための概略構成図である。図10には、直流から交流を作り出すインバータDの例を示している。本実施形態のインバータDは、図10に示すように、ブリッジ回路31と、容量部33とを備えた構成を有する。ブリッジ回路31は、スイッチング素子(例えば、IGBT(Insulated gate Bipolar Transistor))とダイオードにより構成され、容量部33は、電圧安定化のためにブリッジ回路31の入力端子間に配置される。本実施形態では、容量部33として上記のフィルムコンデンサAまたは連結型コンデンサCが適用される。
 インバータDは、直流電源の電圧を昇圧する昇圧回路35に接続される。ブリッジ回路31は駆動源となるモータジェネレータ(モータM)に接続される。
 図11は、電動車輌を示す概略構成図である。図11には、電動車輌Eとしてハイブリッド自動車(HEV)の例を示している。
 図11における符号41は駆動用のモータ、43はエンジン、45はトランスミッション、47はインバータ、49は電源(電池)、51a、51bは前輪および後輪である。
 電動車輌Eは、駆動源としてモータ41またはエンジン43、もしくは両方の出力を備え、その出力が、トランスミッション45を介して左右一対の前輪51aに伝達される。電源49は、インバータ47を介してモータ41に接続されている。
 また、図11に示した電動車輌Eには、電動車輌E全体の統括的な制御を行う車輌ECU53が設けられている。車輌ECU53には、イグニッションキー55や図示しないアクセルペダル、ブレーキ等の電動車輌Eからの運転者等の操作に応じた駆動信号が入力される。この車輌ECU53は、その駆動信号に基づいて、指示信号をエンジンECU57、電源49、および負荷としてのインバータ47に出力する。エンジンECU57は、指示信号に応答してエンジン43の回転数を制御し、電動車輌Eを駆動する。
 上記のフィルムコンデンサAまたは連結型コンデンサCを容量部33として適用したインバータDを、例えば、図11に示すような電動車輌Eのインバータ47として用いると、フィルムコンデンサAまたは連結型コンデンサCが、ショート率が低く絶縁性の高いものであるため、電動車輌Eに搭載されたECUなどの制御装置の電流制御をより安定したものにすることができる。
 なお、本実施形態のインバータDは、上記のハイブリッド自動車(HEV)のみならず、電気自動車(EV)や燃料電池車、あるいは電動自転車、発電機、太陽電池など種々の電力変換応用製品に適用できる。
 ポリアリレート(U-100、ユニチカ製)を用いて平均厚さ2.5μmの誘電体フィルムを作製した。ポリアリレートをトルエンに溶解し樹脂溶液を、コータを用いてポリエチレンテレフタレート(PET)製の基材上に塗布し、シート状に成形した。成形した樹脂シートを、130℃で熱処理してトルエンを除去し、誘電体フィルムを得た。
 得られた誘電体フィルムを基材から剥離し、140mm幅にスリット加工した後、誘電体フィルムの一方の主面に電極膜として、メタルマスクを用いて107mm幅のAl金属膜を真空蒸着法により形成し、金属化フィルムを得た。金属膜の厚さは70nm、シート抵抗は8.0Ω/□であった。なお、金属膜の膜厚は、イオンミリング加工をした断面の走査型電子顕微鏡(SEM)観察により求めた。シート抵抗(Rs)は、幅(w)10mm、長さ(l)300mmの金属膜の両端間の抵抗値(R)を二端子法で測定し、式Rs=R×w/lにより算出した。
 140mm幅の金属化フィルムをさらにスリット加工し、1.5mmのマージン部(誘電体フィルムの露出部)を有する55mm幅の金属化フィルムとした。
 芯素体は、図3(a)、および図6に示すような断面形状を有するもので、長さ55mmのポリプロピレン(PP)製のものを準備した。すなわち、外周が円形状で、内周が楕円形状の断面形状を有するもの(図3(a))、および外周が円形状で、x方向の肉厚が薄く、y方向の肉厚が厚い断面形状を有するもの(図6)を準備した。
 55mm幅の一対の金属化フィルムを、電極膜が誘電体フィルムを介して対向するように芯素体に積層巻回し、巻回体を作製した。なお、一対の金属化フィルムは、幅方向(z方向)に互いに0.5mmずれた状態とし、マージン部を幅方向(z方向)の異なる側にそれぞれ配した状態で巻回した。巻回数は642回とし、外径12.5mm、幅55.5mm(いずれも平均値)の巻回体を得た。
 得られた巻回体を、芯素体とともにプレスすることで偏平加工し、フィルムコンデンサ本体とした。プレスは温度120℃、プレス荷重500gfの条件で行った。また、比較のため、肉厚が一様な芯素体を用いたもの(試料No.1、2)、および芯素体を抜き取って偏平加工したもの(試料No.3)も作製した。なお、図3(a)および図6に示す横断面形状を有する芯素体については、プレス方向を芯素体の肉厚が厚いy方向とした。
 偏平加工後、芯体の端部の空隙(スリット)をポリイミド製テープで封止した。その後フィルムコンデンサ本体の電極膜が露出した対向する端面に亜鉛と錫との合金を溶射し、端子電極であるメタリコン電極を形成してフィルムコンデンサとした。
 得られたフィルムコンデンサの幅方向(z方向)の中央部を、ダイヤモンドワイヤーソーを用いて切断し、芯体の横断面形状を確認した。図3(a)に示す断面形状を有する芯素体を用いたものでは、外周が楕円形状で内周が長径に沿ったスリットを形成していた。
図6に示す断面形状を有する芯素体を用いたものでは、外周が角丸長方形状で内周がスリットの両端に涙滴状の膨らみ部を有する形状となっていた。肉厚が一様な芯素体を用いたものでは、外周の長辺に相当する部位の中央付近に局所的に凹んだ部分が形成され、オーバル状をなす外周を有していなかった。また、内周も2つの楕円状の空隙が並んだような形状をなしていた。
 第1実施形態、すなわち芯体の外周が楕円形状の試料については、芯体の横断面の長径d1、短径d2、比率d2/d1、長径上の肉厚t1および短径上の肉厚t2を確認し、表1に示した(図2(b)を参照)。
 第2実施形態、すなわち芯体の外周が角丸長方形状の試料については、芯体の横断面の形状に関するパラメータP、および短辺の肉厚t1と長辺に垂直な方向の長さd2の比率(t1/2)を確認し、表2に示した。なお、P=(L2/L1)×(L0/(π・d2)-1)であり、式中において、L1は外周の長辺の長さ、L2は外周の短辺の長さ、L0は外周全体の長さ、d2は長辺に垂直な方向の芯体の長さ(短径)である(図5(b)を参照)。
 なお、芯対応断面の形状に関するこれらの数値は、芯体の横断面をデジタルカメラで撮影した画像を、画像処理ソフトを用いて画像解析することにより求めた。
 作製したフィルムコンデンサのショート率、絶縁破壊電圧(BDV)を評価した。ショート率は、マルチメーターを用いてフィルムコンデンサの抵抗を測定し、1kΩ以下をショートとし、その割合を求めた。絶縁破壊電圧(BDV)は、フィルムコンデンサに、0Vから毎秒10Vの昇圧速度で直流電圧を印加する昇圧試験を行い、静電容量が0Vの値(初期値)に対して5%以上低下する直前の電圧値から求めた。静電容量の初期値は、昇圧試験を行う前にAC10V、1kHzの条件で測定した。静電容量の初期値の平均値は、17.7μFであった。また、昇圧試験においては、ショート、すなわち漏れ電流値が1.0mAを超えた場合に、一旦直流電圧を0Vに戻してAC10V、1kHzの条件にて静電容量を測定し、その値が初期値に対して95%以上であれば0Vから再度昇圧試験を行うことを繰り返した。
 フィルムコンデンサのショート率および絶縁破壊電圧(BDV)を表1および表2に示す。なお、ショート率以外はn=50の平均値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 第1実施形態、または第2実施形態の試料No.4~27は、ショート率が12%以下、絶縁破壊電圧(BDV)が850V以上という絶縁性の高いものであった。特に、第1実施形態で(d2/d1)が0.1~0.3の範囲である試料No.5~7、および第2実施形態で芯体の横断面の形状に関するパラメータPが0.8~1.2の範囲であり、t1/d2が0.2~0.3の範囲である試料No.11~13、16~18、21、22、25、26では、ショート率が6%以下、BDVが1050V以上とより絶縁性の高いものとなった。
1a、1b・・誘電体フィルム
2a、2b・・電極膜
3a、3b・・金属化フィルム
4・・・芯体
5・・・本体
6a・・・第1端子電極
6b・・・第2端子電極
7・・・芯体の外周
 7a・・芯体の外周の長辺
 7b・・芯体の外周の短辺
8・・・芯体の内周
9・・・スリット
10・・絶縁部材
11・・開口部
12・・膨らみ部
 

Claims (15)

  1.  絶縁材料からなる芯体に金属化フィルムを巻回してなる本体と、該本体の軸長方向の両端面にそれぞれ設けられた第1、第2端子電極とを具備するとともに、
     前記芯体は、前記軸長方向に垂直な断面が、長径と短径とを有するオーバル形状の外周と、前記長径に沿ったスリットを形成する内周とを有する、フィルムコンデンサ。
  2.  前記芯体は、前記長径上の肉厚(t1)が、前記短径上の肉厚(t2)よりも小さい、請求項1に記載のフィルムコンデンサ。
  3.  前記スリットが、前記長径上の両端に一対の膨らみ部を有する、請求項1または2に記載のフィルムコンデンサ。
  4.  前記スリットの前記膨らみ部は、前記断面において、前記長径の前記端部側に弧を有する涙滴状をなす、請求項3に記載のフィルムコンデンサ。
  5.  前記軸長方向の少なくとも一部において、前記芯体の前記膨らみ部内に絶縁部材を有する、請求項3または4に記載のフィルムコンデンサ。
  6.  前記内周は、前記軸長方向の少なくとも一部において、前記短径方向に互いに対向する部位が当接している、請求項1~5のいずれかに記載のフィルムコンデンサ。
  7.  前記軸長方向における前記芯体の両端部において、前記スリットによる開口部を有する、請求項1~6のいずれかに記載のフィルムコンデンサ。
  8.  前記長径の長さをd1、前記短径の長さをd2としたとき、該d2の前記d1に対する比(d2/d1)が0.05~0.5である、請求項1~7のいずれかに記載のフィルムコンデンサ。
  9.  前記外周が、前記長径に沿う一対の直線部と、該一対の直線をつなぐ一対の弧状部とを有する、請求項1~8のいずれかに記載のフィルムコンデンサ。
  10.  前記断面において、前記外周の長さをL0、前記直線部の長さをL1、前記弧状部の長さをL2、前記短径の長さをd2としたとき、
    式Q=(L2/L1)×(L0/(π・d2)-1)が、0.8~1.2の範囲にある、
    請求項9に記載のフィルムコンデンサ。
  11.  前記断面において、前記芯体の前記弧状部における肉厚(t2)が、前記短径の長さ(d2)に対する比率(t2/d2)にして、0.2~0.3の範囲にある、請求項9または10に記載のフィルムコンデンサ。
  12.  請求項1~11のうちいずれかに記載のフィルムコンデンサを、バスバーにより複数個接続してなることを特徴とする連結型コンデンサ。
  13.  スイッチング素子により構成されるブリッジ回路と、該ブリッジ回路に接続された容量部とを備えているインバータであって、前記容量部が請求項1~11のうちいずれかに記載のフィルムコンデンサであることを特徴とするインバータ。
  14.  スイッチング素子により構成されるブリッジ回路と、該ブリッジ回路に接続された容量部とを備えているインバータであって、前記容量部が請求項12に記載の連結型コンデンサであることを特徴とするインバータ。
  15.  電源と、該電源に接続された請求項13または14に記載のインバータと、該インバータに接続されたモータと、該モータにより駆動する車輪と、を備えていることを特徴とする電動車輌。
PCT/JP2016/077794 2015-09-28 2016-09-21 フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌 WO2017057122A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/761,890 US10490357B2 (en) 2015-09-28 2016-09-21 Film capacitor, combination type capacitor, inverter, and electric vehicle
CN201680053374.7A CN108028143B (zh) 2015-09-28 2016-09-21 薄膜电容器、连结型电容器、逆变器以及电动车辆
JP2017543180A JP6510662B2 (ja) 2015-09-28 2016-09-21 フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌
EP16851296.0A EP3358586B1 (en) 2015-09-28 2016-09-21 Film capacitor, coupled-type capacitor, inverter, and electric vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015189901 2015-09-28
JP2015-189901 2015-09-28
JP2015-213063 2015-10-29
JP2015213063 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017057122A1 true WO2017057122A1 (ja) 2017-04-06

Family

ID=58423509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077794 WO2017057122A1 (ja) 2015-09-28 2016-09-21 フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌

Country Status (5)

Country Link
US (1) US10490357B2 (ja)
EP (1) EP3358586B1 (ja)
JP (1) JP6510662B2 (ja)
CN (1) CN108028143B (ja)
WO (1) WO2017057122A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118954A1 (ja) * 2020-12-04 2022-06-09 株式会社村田製作所 フィルムコンデンサ
CN115985682A (zh) * 2023-03-22 2023-04-18 深圳江浩电子有限公司 一种车载电容器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015122977A1 (de) * 2015-12-30 2017-07-06 Epcos Ag Kondensator-Bauteil
JP6679459B2 (ja) * 2016-10-05 2020-04-15 株式会社シマノ 自転車用電力供給装置およびこれを備える自転車用電動装置
CN109266993B (zh) * 2018-11-28 2023-12-15 铜陵市新洲电子科技有限责任公司 一种电容器芯喷金专用固定框
WO2021038962A1 (ja) * 2019-08-30 2021-03-04 株式会社村田製作所 フィルムコンデンサ
EP4030450A4 (en) * 2019-09-13 2023-10-11 Kyocera Corporation FILM CAPACITOR ELEMENT
JP2023003947A (ja) * 2021-06-25 2023-01-17 日本電産株式会社 コンデンサモジュールとこれを備えたインバータ装置、モータモジュール及び車両

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840830U (ja) * 1981-09-12 1983-03-17 マルコン電子株式会社 金属化フイルムコンデンサ
JPS5936922A (ja) * 1982-08-25 1984-02-29 日新電機株式会社 高圧コンデンサ
JPH11354388A (ja) * 1998-06-03 1999-12-24 Nippon Chemicon Corp 電解コンデンサ
JP2003109869A (ja) * 2001-09-28 2003-04-11 Nippon Chemicon Corp 電解コンデンサ及びその製造方法
JP2013211326A (ja) * 2012-03-30 2013-10-10 Panasonic Corp 金属化フィルムコンデンサ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345298A (en) * 1980-09-19 1982-08-17 General Electric Company Modified round roll capacitor and method of making
JPS6455816A (en) 1987-08-26 1989-03-02 Shizuki Electric Capacitor
EP0350520B1 (en) * 1988-07-12 1994-03-02 Takeshi Ikeda Noise filter and method of making the same
JPH10303058A (ja) * 1997-04-24 1998-11-13 Hitachi Aic Inc 金属化フィルムコンデンサ
JP2005093761A (ja) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd フィルムコンデンサ
JP2006262665A (ja) * 2005-03-18 2006-09-28 Toyota Motor Corp 車両用インバータユニット
EP2851914B1 (en) * 2005-04-08 2017-09-06 Panasonic Intellectual Property Management Co., Ltd. Flattened metalized film wound capacitor, case mold type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
JP2007281333A (ja) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd 金属化フィルムコンデンサ
KR20090045141A (ko) * 2006-08-28 2009-05-07 파나소닉 주식회사 금속화 필름 콘덴서
JP4438863B2 (ja) * 2007-12-27 2010-03-24 Tdk株式会社 巻回型電気化学デバイス及びその製造方法
JP2008091958A (ja) * 2007-12-27 2008-04-17 Matsushita Electric Ind Co Ltd 偏平形金属化フィルムコンデンサの製造方法
WO2013088866A1 (ja) * 2011-12-13 2013-06-20 株式会社村田製作所 積層型アクチュエータ
JP6096091B2 (ja) * 2013-09-30 2017-03-15 ニチコン株式会社 コンデンサ素子
CN104134539A (zh) * 2014-08-11 2014-11-05 安徽源光电器有限公司 一种新型高压防爆聚丙烯薄膜电容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840830U (ja) * 1981-09-12 1983-03-17 マルコン電子株式会社 金属化フイルムコンデンサ
JPS5936922A (ja) * 1982-08-25 1984-02-29 日新電機株式会社 高圧コンデンサ
JPH11354388A (ja) * 1998-06-03 1999-12-24 Nippon Chemicon Corp 電解コンデンサ
JP2003109869A (ja) * 2001-09-28 2003-04-11 Nippon Chemicon Corp 電解コンデンサ及びその製造方法
JP2013211326A (ja) * 2012-03-30 2013-10-10 Panasonic Corp 金属化フィルムコンデンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358586A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118954A1 (ja) * 2020-12-04 2022-06-09 株式会社村田製作所 フィルムコンデンサ
CN115985682A (zh) * 2023-03-22 2023-04-18 深圳江浩电子有限公司 一种车载电容器

Also Published As

Publication number Publication date
CN108028143B (zh) 2020-04-28
US10490357B2 (en) 2019-11-26
EP3358586A4 (en) 2019-05-29
US20180269002A1 (en) 2018-09-20
JP6510662B2 (ja) 2019-05-08
JPWO2017057122A1 (ja) 2018-07-05
EP3358586A1 (en) 2018-08-08
EP3358586B1 (en) 2021-09-08
CN108028143A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2017057122A1 (ja) フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌
JP2004134561A (ja) 金属化フィルムコンデンサとそれを用いたインバータ平滑用コンデンサと自動車用コンデンサ
JP6574922B1 (ja) フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌
JP6938662B2 (ja) フィルムコンデンサ、連結型コンデンサと、これを用いたインバータおよび電動車輌
JP6687373B2 (ja) フィルムコンデンサ、連結型コンデンサと、これを用いたインバータおよび電動車輌
JP6688876B2 (ja) フィルムコンデンサ、連結型コンデンサと、これを用いたインバータおよび電動車輌
JP4923589B2 (ja) ケースモールド型コンデンサ
JP4967711B2 (ja) 金属化フィルムコンデンサ
JP6539338B2 (ja) フィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
WO2018101260A1 (ja) フィルムコンデンサ、インバータおよび電動車輌
JP6356936B2 (ja) フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌
JP6799588B2 (ja) フィルムコンデンサ、連結型コンデンサと、これを用いたインバータおよび電動車輌
JP6603441B1 (ja) フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌
WO2013073110A1 (ja) 金属化フィルムコンデンサ
JP2007081007A (ja) 金属化フィルムコンデンサ
JP2009200378A (ja) 複合型金属化フィルムコンデンサ
JP6649096B2 (ja) フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌
JP6737818B2 (ja) フィルムコンデンサ、連結型コンデンサ、インバータ、および電動車輌
JP2023049934A (ja) フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌
EP4075455A1 (en) Dielectric film, film capacitor using same, interlinked capacitor, inverter, and electric vehicle
JP2007208103A (ja) 電気二重層コンデンサの製造方法
JP2005268468A (ja) 電気二重層キャパシタの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543180

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15761890

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851296

Country of ref document: EP