WO2017056566A1 - 音速算出システムおよび音速算出方法 - Google Patents

音速算出システムおよび音速算出方法 Download PDF

Info

Publication number
WO2017056566A1
WO2017056566A1 PCT/JP2016/067085 JP2016067085W WO2017056566A1 WO 2017056566 A1 WO2017056566 A1 WO 2017056566A1 JP 2016067085 W JP2016067085 W JP 2016067085W WO 2017056566 A1 WO2017056566 A1 WO 2017056566A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
straight line
angle
subject
ultrasonic
Prior art date
Application number
PCT/JP2016/067085
Other languages
English (en)
French (fr)
Inventor
拓明 山本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP16850743.2A priority Critical patent/EP3357431A4/en
Priority to JP2017542781A priority patent/JP6434642B2/ja
Publication of WO2017056566A1 publication Critical patent/WO2017056566A1/ja
Priority to US15/938,196 priority patent/US20180214135A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest

Definitions

  • the present invention relates to a sound speed calculation system and a sound speed calculation method.
  • Patent Document 1 In order to calculate the sound speed of a desired region in the subject, it is considered to calculate the sound speed at two different points and calculate the average sound speed between the two points (Patent Document 1). It is also possible to calculate the speed of sound based on ultrasonic echoes obtained from the transmission focal point by causing the ultrasonic probe to transmit ultrasonic waves several times so as to form a predetermined transmission focal point. (Patent Document 2).
  • Patent Document 3 one that sets the transmission focus and sets the sound speed
  • Patent Document 3 one that determines the sound speed of the environment by transmitting and focusing ultrasonic waves to two or more points in the subject
  • Documents 4 and 5 use the first element data when the position for determining the sound speed is near the focus, and determine the sound speed using the second element data when the position is not near the focus
  • Etc. are also considered.
  • Patent Documents 1 to 7 considers the ultrasonic echo that passes through the region of interest in the subject and the ultrasonic echo that does not pass through the region of interest in the subject. However, if the speed of sound in the subject is different from that in other areas, the speed of sound in the area of interest in the subject cannot be calculated accurately.
  • An object of the present invention is to accurately calculate the speed of sound in a region of interest in a subject.
  • An acoustic velocity calculation system includes an acoustic wave probe in which a plurality of acoustic wave transducers are arranged, a transmission drive unit that drives the acoustic wave transducer to transmit an acoustic wave from the acoustic wave transducer to the subject, a subject Generated by an acoustic wave image generating means for generating an acoustic wave image of an object using an acoustic wave echo signal that is received and output by transmitting an acoustic wave to the object.
  • a region-of-interest setting means for setting a region of interest in the acoustic wave image with respect to the acoustic wave image, and a portion of the subject corresponding to the region of interest in the acoustic wave image that is farthest in the transmission direction of the acoustic wave
  • Focus setting means for setting the focus of the acoustic wave transmitted from the first partial acoustic wave vibrator among the plurality of acoustic wave vibrators, and the focus set by the focus setting means
  • the second partial acoustic wave transducers that receive the acoustic wave echoes, a second acoustic wave transducer other than the first acoustic wave transducer and the first acoustic wave transducer at the closest distance from the focal point
  • Two second acoustic wave transducers which are positioned on a straight line passing through the focal region and the region of interest in the subject and sandwiching the first acoustic wave transducer, Sound velocity calculation
  • This invention also provides a sound speed calculation method. That is, in this method, the transmission drive means drives the acoustic wave transducer included in the acoustic wave probe in which a plurality of acoustic wave transducers are arranged, and transmits the acoustic wave from the acoustic wave transducer to the subject.
  • the acoustic wave image generation means generates an acoustic wave image of the subject using the acoustic wave echo signal that is received and output by transmitting the acoustic wave to the subject,
  • the region setting unit sets a region of interest in the acoustic wave image with respect to the acoustic wave image generated by the acoustic wave image generating unit, and the focus setting unit sets the region of interest in the subject corresponding to the region of interest in the acoustic wave image.
  • the focal point of the acoustic wave transmitted from the first acoustic wave transducer among the plurality of acoustic wave transducers is set at the most distant portion in the acoustic wave transmission direction, and the sound speed calculation means Set by setting means A first acoustic wave transducer and a first acoustic wave transducer that are closest to the focal point among the second partial acoustic wave transducers that receive acoustic echoes from the focused focal point Two second acoustic wave transducers, which are located on a straight line passing through the focal point and the region of interest in the subject and sandwiching the first acoustic wave transducer therebetween And the acoustic wave echo signal output from the other acoustic wave transducer between the first acoustic wave transducer and the second acoustic wave transducer, the sound velocity of the region of interest in the subject is determined. Is to be calculated.
  • the region of interest in the subject is, for example, a shape surrounded by two radii and an arc of a circle, and the portion farthest in the acoustic wave transmission direction is the farthest from the acoustic probe in the region of interest in the subject. Is the center of the arc.
  • the straight line connecting the focal point and the first acoustic wave transducer is defined as the first straight line
  • the straight line connecting the first vertex and the focal point farthest from the focal point among the four vertexes of the region of interest in the subject is the first straight line.
  • the sound velocity calculation means sets the second acoustic wave vibrator to the acoustic wave vibrator located on the second straight line, and then sets the first acoustic wave vibrator and the first acoustic wave vibrator.
  • the sound velocity of the region of interest in the subject is calculated using acoustic wave echo signals output from the acoustic wave transducer 2 and the other acoustic wave transducers.
  • the sound speed calculation means for example, the first straight line
  • the second acoustic wave vibrator is An acoustic wave echo signal output from the first acoustic wave vibrator, the second acoustic wave vibrator, and another acoustic wave vibrator is set on the acoustic wave vibrator located on the second straight line.
  • the second acoustic wave transducer is set as the third acoustic wave transducer, Using the acoustic wave echo signals output from the first acoustic wave vibrator, the second acoustic wave vibrator, and the other acoustic wave vibrator, the subject To calculate the speed of sound of the definitive area of interest.
  • the second part of the acoustic wave transducers are, for example, a maximum number of acoustic wave echoes from a set focal point that can simultaneously receive ultrasonic echoes used for calculating the sound velocity of the region of interest in the subject. It consists of an acoustic wave transducer.
  • the sound velocity calculation means for example, If the first angle, which is the angle between the first straight line and the second straight line, is smaller than the third angle, which is the angle between the first straight line and the fourth straight line, the second acoustic wave An acoustic wave output from the first acoustic wave transducer, the second acoustic wave transducer, and another acoustic wave transducer after setting the transducer to an acoustic wave transducer positioned on the second straight line
  • the sound speed of the region of interest in the subject is calculated using the echo signal, and when the first angle is larger than the third angle, the second acoustic wave transducer is set as the fourth acoustic wave transducer.
  • the acoustic wave echo signals output from the first acoustic wave vibrator, the second acoustic wave vibrator, and the other acoustic wave vibrators are used for the detection. Calculating the sound speed of the region of interest in the body.
  • the sound velocity calculating means can, for example, use the first straight line and the second straight line.
  • the fifth acoustic wave transducer When the first angle that is the angle formed with the straight line is smaller than the fourth angle that is the angle formed between the first straight line and the fifth straight line, the fifth acoustic wave transducer is moved to the second straight line.
  • the acoustic wave echo signal output from the first acoustic wave vibrator, the second acoustic wave vibrator, and the other acoustic wave vibrator is set on the acoustic wave vibrator located above. Is used to calculate the sound velocity of the region of interest in the subject, and when the first angle is larger than the fourth angle, the second acoustic wave transducer is set as the fifth acoustic wave transducer.
  • the sound velocity of the region of interest in the subject is calculated using the acoustic wave echo signals output from the first acoustic wave transducer, the second acoustic wave transducer, and the other acoustic wave transducer.
  • the second part of the acoustic wave vibrator is the maximum number of acoustic wave vibrations capable of simultaneously receiving an acoustic wave echo from a set focal point and an ultrasonic echo used for calculating a sound velocity of a region of interest in the subject.
  • a straight line connecting the focal point and the third acoustic wave transducer located farthest from the focal point among the plurality of acoustic wave transducers is defined as a third straight line, and the focal point and the second partial acoustic wave vibration
  • the first angle which is the angle formed by the first straight line and the second straight line, is the straight line connecting the fourth acoustic wave transducer located farthest from the focal point of the child as the fourth straight line
  • the sound velocity calculation means for example, the first angle that is the angle formed by the first straight line and the second straight line.
  • the acoustic wave echo output from the first acoustic wave transducer, the second acoustic wave transducer, and the other acoustic wave transducer after setting the second acoustic wave transducer to the fourth acoustic wave transducer The sound speed of the region of interest in the subject is calculated using the signal, and when the first angle is larger than the second angle, the second acoustic wave transducer is set as the third acoustic wave transducer.
  • the sound velocity of the region of interest in the subject is calculated using the acoustic wave echo signals output from the first acoustic wave transducer, the second acoustic wave transducer, and the other acoustic wave transducer.
  • the second part of the acoustic wave vibrator is the maximum number of acoustic wave vibrations capable of simultaneously receiving an acoustic wave echo from a set focal point and an ultrasonic echo used for calculating a sound velocity of a region of interest in the subject.
  • a fifth acoustic wave vibrator comprising a child and included in the second partial acoustic wave vibrator, wherein the fifth acoustic wave vibrator is a distance between the focal point and the first acoustic wave vibrator;
  • the fifth acoustic wave transducer in which the difference between a certain first distance and the second distance, which is the distance between the focal point and the fifth acoustic wave transducer, is the closest to the predetermined detection limit width,
  • a straight line connecting the third acoustic wave vibrator located farthest from the focal point among the acoustic wave vibrators of the first and second acoustic wave vibrators is defined as a third straight line, and the focal point and the second partial acoustic wave vibrator are farthest from the focal point.
  • the straight line connecting the fourth acoustic wave vibrator at the position is the fourth straight line, and the focal point and the second partial acoustic wave vibrator Among these, the straight line connecting the fourth acoustic wave transducer located farthest from the focal point is the fifth straight line, and the first angle that is the angle formed by the first straight line and the second straight line is the first angle.
  • the sound speed calculating means for example, has the first angle that is the angle formed by the first straight line and the second straight line, If it is larger than the fourth angle, which is the angle formed by the first straight line and the fifth straight line, the second acoustic wave vibrator is set as an acoustic wave vibrator located on the second straight line.
  • the sound velocity of the region of interest in the subject is calculated using the acoustic wave echo signals output from the first acoustic wave transducer, the second acoustic wave transducer, and the other acoustic wave transducer, and the first angle Is smaller than the fourth angle, the second acoustic wave vibrator is set as the fifth acoustic wave vibrator, and then the first acoustic wave vibrator is set. Calculating the sound speed of a region of interest in the subject using an acoustic wave echo signals output from the transducer and the second acoustic wave resonator and the other acoustic wave oscillator.
  • the acoustic wave probe is, for example, a convex acoustic wave probe in which a plurality of acoustic wave transducers are arranged in an arc shape.
  • the acoustic wave probe may be a linear acoustic wave probe.
  • the region of interest in the subject is rectangular, and the portion that is farthest in the direction of acoustic wave transmission is the center of the region of interest in the subject that is away from the acoustic wave probe in the direction of acoustic wave transmission. is there.
  • an acoustic wave image of a subject is generated, and a region of interest in the acoustic wave image is set for the generated acoustic wave image.
  • the focal point of the acoustic wave is set at the portion of the subject corresponding to the region of interest in the acoustic wave image that is farthest in the acoustic wave transmission direction of the region of interest.
  • the speed of sound is calculated.
  • the sound velocity of the region of interest in the subject is calculated using the ultrasound echo that passes through the region of interest in the subject without using the ultrasound echo that does not pass through the region of interest in the subject. be able to.
  • a mode that the ultrasonic wave is transmitted from the ultrasonic probe is shown.
  • a mode that the ultrasonic wave is transmitted from the ultrasonic probe is shown.
  • a mode that the ultrasonic wave is transmitted from the ultrasonic probe is shown.
  • a mode that the ultrasonic wave is transmitted from the ultrasonic probe is shown.
  • a mode that the ultrasonic wave is transmitted from the ultrasonic probe is shown.
  • a mode that the ultrasonic wave is transmitted from the ultrasonic probe is shown.
  • a mode that the ultrasonic wave is transmitted from the ultrasonic probe is shown. It is a flowchart which shows the process sequence which determines a use angle. A mode that the ultrasonic wave is transmitted from the ultrasonic probe is shown.
  • an ultrasonic wave is used as an acoustic wave.
  • the ultrasonic wave is not limited to an ultrasonic wave. If an appropriate frequency is selected according to the subject and measurement conditions, an acoustic wave having an audible frequency is used. You may make it use.
  • FIG. 1 shows an embodiment of the present invention and is a block diagram showing an electrical configuration of an ultrasonic diagnostic apparatus 1 (sound speed calculation system).
  • the overall operation of the ultrasonic diagnostic apparatus 1 is controlled by the control apparatus 2.
  • the control device 2 is connected to an operation device 3 operated by a user (doctor, nurse, engineer, etc.) who operates the ultrasonic diagnostic device 1 and a storage device 4 in which predetermined data is stored.
  • the ultrasonic diagnostic apparatus 1 includes an ultrasonic probe 10.
  • the ultrasonic probe 10 according to this embodiment is a convex type, and a plurality of ultrasonic transducers are arranged in an arc shape (see FIG. 6 and the like).
  • the control signal output from the control device 2 is given to the scanning control device 5.
  • an ultrasonic transducer that transmits ultrasonic waves among a plurality of ultrasonic transducers included in the ultrasonic probe 10 and a transmission direction of ultrasonic waves transmitted from the ultrasonic probe 10 are set.
  • a control signal for setting an ultrasonic transducer that transmits ultrasonic waves and a control signal for setting the transmission direction of ultrasonic waves are provided from the scanning control device 5 to the transmission control device 7.
  • an ultrasonic transducer that receives an ultrasonic echo from the subject is set.
  • a control signal for setting an ultrasonic transducer for receiving the ultrasonic echo is given from the scanning control device 5 to the reception control device 13.
  • the ultrasonic diagnostic apparatus 1 also includes a transmission delay pattern storage device 6.
  • the transmission delay pattern storage device 6 stores a plurality of transmission delay patterns used when transmitting ultrasonic waves from the ultrasonic probe 10. Based on the control signal for setting the transmission direction of the ultrasonic wave given from the scanning control device 5, a transmission delay pattern is set by the transmission control device 7 from among a plurality of transmission delay patterns stored in the transmission delay pattern storage device 6. Selected.
  • the drive signal generator 8 is controlled by the transmission controller 7 so that ultrasonic waves are transmitted from the ultrasonic probe 10 in accordance with the selected transmission delay pattern.
  • the ultrasonic probe 10 When the ultrasonic probe 10 is controlled by the drive signal generating device 8, the subject from the ultrasonic transducer set by the scanning control device 5 among the plurality of ultrasonic transducers included in the ultrasonic probe 10 is measured. Ultrasound is transmitted to The control device 2, the scanning control device 5, the transmission delay pattern storage device 6, the transmission control device 7, and the drive signal generation device 8 drive the ultrasonic transducer (acoustic wave transducer) included in the ultrasonic probe 10.
  • the transmission driving means transmits ultrasonic waves (acoustic waves) from the ultrasonic transducer to the subject.
  • an ultrasonic echo is generated from the subject and is received by a plurality of ultrasonic transducers included in the ultrasonic probe 10.
  • An ultrasonic echo signal is output from the ultrasonic transducer and applied to the amplifier 11.
  • the ultrasonic echo signal is amplified by the amplifying device 11 and converted into digital ultrasonic echo data by an A / D (analog / digital) conversion circuit 12.
  • the ultrasonic echo data is input to the reception control device 13.
  • the ultrasonic diagnostic apparatus 1 also includes a reception delay pattern storage device 14.
  • the reception delay pattern storage device 14 stores a plurality of reception delay patterns used when reception focus processing is performed on ultrasonic echo data.
  • one reception delay pattern is selected from the plurality of reception delay patterns stored in the reception delay pattern storage device 14 based on the control signal given from the scanning control device 5.
  • Focus processing is performed.
  • An envelope detection process is performed on the generated data by the reception focus process.
  • the set sound speed value given from the sound speed calculation device 18 to the reception control device 23 is a general in-vivo sound speed C0 (1530 m / s or 1540 m / s) in the initial state where the sound speed is not calculated. Thereafter, the calculated average sound speed Ci is used.
  • the delay amount of the ultrasonic echo data in the reception focus process is determined based on the sound speed in the subject.
  • N is the number of ultrasonic transducers used.
  • the data generated in the reception control device 13 is given to an STC (sensitivity time control) device 15.
  • STC device 15 the data given from the reception control device 13 is subjected to attenuation correction by distance according to the depth of the reflection position of the ultrasonic wave.
  • the data corrected for attenuation in the STC device 15 is given to a DSC (digital scan converter) 16.
  • DSC 16 the sound ray data subjected to attenuation correction is subjected to raster conversion so that the image data conforms to a normal television signal scanning method, and necessary image processing such as gradation processing is performed, so that B-mode image data is converted. Generated.
  • an ultrasonic image (B-mode image) of the subject is displayed on the display screen 30 of the display device 21 by the display device 21.
  • the STC device 15 and DSC 16 serve as acoustic wave image generation means.
  • FIG. 2 shows an example of an ultrasonic image 31 displayed on the display screen 30 of the display device 21.
  • the obtained ultrasonic image 31 has a shape surrounded by two arcs and two straight lines. The doctor looks at the ultrasound image 31 and diagnoses the subject.
  • the sound speed calculation device 18 is controlled by the control device 2, and the set sound speed is sequentially changed to the average sound speed Ci by the sound speed calculation device 18.
  • the focus determination device 17 determines the beam convergence degree in the reception focus process when the set sound speed is changed to the average sound speed Ci.
  • the focus determination device 17 performs a fast Fourier transform on the data generated by the reception control device 13, so that the ratio of the high frequency component (for example, the ratio of the high frequency component to the mid frequency component) in the generated data is maximized. It is determined that the beam focusing degree is maximum. Further, by performing fast Fourier transform on the B-mode image data output from the DSC, it is determined that the beam focusing degree is maximum when the ratio of the high frequency component of the spatial frequency in the B-mode image data is maximized. Also good.
  • the sound velocity value calculation unit 42 determines the distance from the focal point set to the subject to the ultrasonic echo from the focal point set to the subject.
  • the average sound velocity Ci of the subject is calculated by dividing by the time received by the ultrasonic transducer included in the acoustic probe 10. Details of the sound speed calculation will be described later.
  • the image display control device 20 selects at least one of the generated B-mode image data and data representing the average sound speed Ci calculated by the sound speed calculation device 18 in accordance with a user operation using the operation device 3. Thus, image data for display is generated.
  • the display device 21 displays the ultrasonic image or the average sound speed Ci based on the display image data. You may make it display an ultrasonic image and average sound speed Ci.
  • FIG. 3 and 4 are flowcharts showing the sound speed calculation processing procedure, and show the processing procedure of the control device 2.
  • FIG. 5 is an example of an ultrasonic image 31 displayed on the display screen 30 of the display device 21.
  • the user of the ultrasound diagnostic device 1 uses the operation device 3 (region of interest setting means) to A region of interest 32 in the sound wave image 31 is set (step S1).
  • the set region of interest 32 is displayed on the ultrasound image 31.
  • the focal point 33 is set by the control device 2 (step S2).
  • the set focal point 33 is also displayed on the ultrasonic image 31.
  • the focal point 33 represents the focal position of the ultrasonic wave transmitted from the ultrasonic probe 10 to the subject.
  • the focal point 33 is set at the farthest part in the ultrasonic wave transmission direction in the region of interest 32 in the ultrasonic image 31.
  • the focus is set on the region of interest in the subject corresponding to the region of interest 32 on the display screen 30.
  • FIG. 6 shows a state in which the ultrasonic wave w is transmitted from the ultrasonic probe 10 to the subject.
  • the ultrasonic probe 10 includes a plurality of ultrasonic transducers 41 to 79 arranged in an arc shape.
  • the ultrasonic wave w is transmitted from the ultrasonic probe 10 to the subject from the arcuate center O toward the opposite side of the ultrasonic probe 10.
  • ultrasonic waves are transmitted from the first partial ultrasonic transducer (acoustic wave transducer) 56-64 to the subject.
  • First ultrasonic transducer means an ultrasonic transducer that transmits ultrasonic waves.
  • Ultrasonic waves may be transmitted from other ultrasonic transducers.
  • the control device 2 focus setting means
  • the region of interest 35 of the subject has a shape surrounded by two radii and an arc of a circle, so that the portion farthest in the transmission direction of the ultrasonic wave w is the region of interest 35. It becomes the center of the arc farthest from the ultrasonic probe 10.
  • the center may be a portion that can be regarded as substantially the center even if it is not completely centered.
  • the focal point F set in the subject corresponds to the focal point 33 set on the display screen 30 of the display device 21.
  • the focal point F is a position where the ultrasonic wave w transmitted from the first partial ultrasonic transducer 56-64 converges.
  • the ultrasonic wave w is transmitted from the first partial ultrasonic transducer 56-64 so as to be focused at the focal point F (step S4).
  • the ultrasonic echo from the focal point F is received by the second partial ultrasonic transducer 51-69 among the multiple ultrasonic transducers 41-79 included in the ultrasonic probe 10.
  • the second partial ultrasonic transducer 51-69 is an ultrasonic transducer that receives an ultrasonic echo from the focal point F.
  • the second partial ultrasonic transducers 51-69 may be the same as the first partial ultrasonic transducers 56-64, and a plurality of ultrasonic transducers 41-79 included in the ultrasonic probe 10 may be used. Everything is fine.
  • the ultrasonic transducers 60 (in the case shown in FIG. The ultrasonic transducer 41-79 in the center) is referred to as a first ultrasonic transducer 60.
  • the focal point F is located on the first straight line L ⁇ b> 1 that is the transmission direction of the first ultrasonic transducer 60.
  • the ultrasonic transducers 51-69 are located on a straight line L2 that passes through the focal point F and the region of interest 35 in the subject except for the first ultrasonic transducer 60.
  • ultrasonic transducers 51 and 69 Two ultrasonic transducers (in the case shown in FIG. 6, ultrasonic transducers 51 and 69) 51 and 69 sandwiching the first ultrasonic transducer 60 are referred to as second ultrasonic transducers. .
  • the ultrasonic transducers 52-59 between the first ultrasonic transducer 60 and one second ultrasonic transducer 51, and The ultrasonic transducers 61-68 between the first ultrasonic transducer 60 and the other second ultrasonic transducer 69 will be referred to as other ultrasonic transducers.
  • the sound speed (average sound speed Ci) of the region of interest 35 in the subject is calculated by the sound speed calculation device 18 (sound speed calculation means).
  • the ultrasonic echo signal output from 69 is amplified by the amplifying device 11 and converted into digital ultrasonic echo data by the A / D conversion circuit 12.
  • the ultrasonic echo data is given to the reception control device 13, and sound ray data is generated from the ultrasonic echo data in the reception control device 13.
  • the sound ray data is input to the focus determination device 17, and the focus determination device 17 performs determination.
  • Data representing the determination result in the focus determination device 17 is input to the sound speed calculation device 18, and the sound speed of the subject is calculated (step S5).
  • the ultrasonic echo used for calculating the sound velocity has a high ratio of passing through the region of interest 35 of the subject in the path. Since the sound speed is calculated based on such ultrasonic echoes, the calculated sound speed accurately represents the sound speed in the region of interest 35 of the subject.
  • the sound speed calculated in this way is displayed on the display screen 30 of the display device 21 under the control of the image display control device 20 (step S6).
  • FIG. 7 shows another embodiment, and shows a state in which the ultrasonic wave w is transmitted from the ultrasonic probe 10 to the subject.
  • the region of interest 35 in the subject is set.
  • a focus F is set at a portion of the subject that is farthest in the transmission direction of the region of interest 35.
  • the straight line connecting the focal point F and the first ultrasonic transducer 60 at the closest distance from the focal point F is the first straight line L1. Further, among the four vertices P1, P2, P3 and P4 of the region of interest 35 in the subject, a straight line connecting the two first vertices P1 and P2 farthest from the focal point F and the focal point F is a second one. Let it be a straight line L2. In this case, the second ultrasonic transducer is set to the ultrasonic transducers 49 and 71 located on the second straight line L2 by the control device 2 (sound speed calculation means).
  • the ultrasonic wave w is transmitted from the first partial ultrasonic transducer 56-64, and the ultrasonic echo from the focal point F is received by the second partial ultrasonic transducer 49-71.
  • the sound velocity calculation device 18 calculates the sound speed of the region of interest 35 in the subject using the ultrasonic echo signals output from the children 61-70.
  • the control device 2 (sound speed calculation means) to explicitly set the second ultrasonic transducers in the ultrasonic transducers 51 and 69 located on the second straight line L2.
  • the ultrasonic transducer 51- existing in a range sandwiched between two vertices P1 and P2 farthest from the focus F and the two second straight lines L2 passing through the focus F
  • the sound speed of the region of interest 35 in the subject may be calculated using the ultrasonic echo signal output from 69.
  • FIG. 8 and FIG. 9 show another embodiment and show a state in which ultrasonic waves w are transmitted from the ultrasonic probe 10 to the subject.
  • the region of interest 35 in the subject is set in correspondence with the region of interest 32 on the display screen 30.
  • a focus F is set at a portion of the subject that is farthest in the transmission direction of the region of interest 35.
  • the straight line connecting the focal point F and the first ultrasonic transducer 60 at the closest distance from the focal point F is the first straight line L1.
  • the straight line connecting the two first vertices P1 and P2 that are farthest from the focus F and the focus F is the second.
  • the ultrasonic transducer located farthest from the focal point F is defined as a third ultrasonic transducer, and the focal point F and the third A straight line connecting the ultrasonic transducers is defined as a third straight line L3.
  • the ultrasonic transducers 41-79 among the plurality of ultrasonic transducers 41-79, the ultrasonic transducers farthest from the focal point F are the ultrasonic transducers 41 and 79. These ultrasonic transducers 41 and 79 Is a third ultrasonic transducer. A straight line connecting the focal point F and each of the ultrasonic transducers 41 and 79 is a third straight line L3.
  • the first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is smaller than the second angle ⁇ 2 that is an angle formed by the first straight line L1 and the third straight line L3.
  • the first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is the second angle ⁇ 2 that is an angle formed by the first straight line L1 and the third straight line L3.
  • the second ultrasonic transducer is set to the ultrasonic transducers 49 and 71 located on the second straight line L2, and the first ultrasonic transducer 60 and the second ultrasonic transducer are set.
  • the sound speed calculation device 18 calculates the sound speed using the ultrasonic echo signals output from the other ultrasonic vibrators 61 to 70 between the ultrasonic vibrator 71 and the other ultrasonic vibrator 71.
  • the ultrasonic probe 10A shown in FIG. 9 includes a plurality of ultrasonic transducers 53-67 smaller than the plurality of ultrasonic transducers 41-79 included in the ultrasonic probe 10B shown in FIG. Yes.
  • the ultrasonic transducers farthest from the focal point F are the ultrasonic transducers 53 and 67, and these ultrasonic transducers 53 and 67 are the third ultrasonic transducers. It is considered as a vibrator.
  • a straight line connecting the focal point F and each of the ultrasonic transducers 53 and 67 is a third straight line L3.
  • the first angle ⁇ 1 that is the angle formed by the first straight line L1 and the second straight line L2 is the second angle that is formed by the first straight line L1 and the third straight line L3. It becomes larger than the angle ⁇ 2.
  • the first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is the second angle ⁇ 2 that is an angle formed by the first straight line L1 and the third straight line L3. If larger, the second ultrasonic transducer is set to the third ultrasonic transducer 53 and 67, the first ultrasonic transducer 60, and the set second ultrasonic transducer 53 and 67.
  • the speed of sound is calculated in the speed of sound calculation device 18 using the ultrasonic echo signals output from the other ultrasonic vibrators 61-66 between the vibrator 67.
  • the ultrasonic transducers 49 and 71 positioned on the second straight line L2 are clearly set as the second ultrasonic transducer by the control device 2 (sound velocity calculation means). It is not always necessary, and the ultrasonic transducers 41 and 79 located on the third straight line L3 do not necessarily have to be clearly set as the third ultrasonic transducer.
  • the second ultrasonic transducer it is not always necessary to explicitly set the second ultrasonic transducer to the third ultrasonic transducer by the control device 2 (sound velocity calculating means).
  • the control device 2 sound velocity calculating means.
  • the sound speed of the region of interest 35 in the subject may be calculated using the ultrasonic echo signal output from the.
  • the sound speed of the region of interest 35 in the subject may be calculated as shown in FIG. 8, or the sound speed of the region of interest 35 in the subject may be calculated as shown in FIG.
  • FIG. 10 and FIG. 11 show another embodiment, and shows a state in which the ultrasonic wave w is transmitted from the ultrasonic probe 10 to the subject.
  • the region of interest 35 in the subject is set corresponding to the region of interest 32 on the display screen 30.
  • a focus F is set at a portion of the subject that is farthest in the transmission direction of the region of interest 35.
  • the straight line connecting the focal point F and the first ultrasonic transducer 60 at the closest distance from the focal point F is the first straight line L1.
  • the straight line connecting the two first vertices P1 and P2 that are farthest from the focus F and the focus F is the second.
  • the ultrasonic probe used for calculating the sound velocity of the region of interest 35 in the subject among the plurality of ultrasonic transducers 41-79 included in the ultrasonic probe 10 is used.
  • the maximum number of ultrasonic transducers that can simultaneously receive acoustic echoes is the second partial ultrasonic transducer.
  • the ultrasonic transducer located farthest from the focal point F among the focal point F and the second partial ultrasonic transducer is defined as a fourth ultrasonic transducer.
  • a straight line connecting the focal point F and the fourth ultrasonic transducer is a fourth straight line L4.
  • the maximum number of ultrasonic transducers that can simultaneously receive the ultrasonic echoes used for calculating the speed of sound of the region of interest 35 in the subject are ultrasonic transducers 44-76.
  • the fourth ultrasonic transducers farthest from the focal point F are the ultrasonic transducers 44 and 76.
  • a first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is a third angle ⁇ 3 that is an angle formed by the first straight line L1 and the fourth straight line L4. Smaller than.
  • the first angle ⁇ 1 that is the angle formed by the first straight line L1 and the second straight line L2 is the third angle ⁇ 3 that is the angle formed by the first straight line L1 and the fourth straight line L4.
  • the second ultrasonic transducer is set to the ultrasonic transducers 49 and 71 located on the second straight line L2 by the control device 2 (sound speed calculating means).
  • the sound velocity of the region of interest 35 in the subject is measured. Is calculated by the sound speed calculation device 18.
  • the maximum number of ultrasonic transducers that can simultaneously receive ultrasonic echoes used for calculating the speed of sound of the region of interest 35 in the subject are ultrasonic transducers 53-67.
  • the second partial ultrasonic transducer is an ultrasonic transducer 53-67.
  • the fourth ultrasonic transducers farthest from the focal point F are the ultrasonic transducers 53 and 67.
  • a first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is a third angle ⁇ 3 that is an angle formed by the first straight line L1 and the fourth straight line L4. Greater than.
  • the first angle ⁇ 1 that is the angle formed by the first straight line L1 and the second straight line L2 is the third angle ⁇ 3 that is the angle formed by the first straight line L1 and the fourth straight line L4.
  • the second ultrasonic transducers 53 and 71 are set to the fourth ultrasonic transducers 53 and 67 by the control device 2 (sound speed calculation means).
  • the first ultrasonic transducer 60, the second ultrasonic transducers 49 and 71, and the fourth ultrasonic transducer 53 and the first ultrasonic transducer 60 set as the second ultrasonic transducer.
  • the other ultrasonic transducers 61-66 existing between the other ultrasonic transducers 54-59 and the other fourth ultrasonic transducer 67 and the first ultrasonic transducer 60.
  • the sound speed calculation device 18 calculates the sound speed of the region of interest 35 in the subject using the ultrasonic echo signal output from the sound wave.
  • the control device 2 sound velocity calculating means.
  • the first angle ⁇ 1 that is the angle formed by the first straight line L1 and the second straight line L2 is greater than the third angle ⁇ 3 that is the angle formed by the first straight line L1 and the fourth straight line L4 .
  • An ultrasonic transducer 53-67 existing in a range sandwiched between two fourth straight lines L4 (a range included in a third angle ⁇ 3 that is an angle between the first straight line L1 and the first straight line L1).
  • the sound speed of the region of interest 35 in the subject may be calculated using the ultrasonic echo signal output from the.
  • the sound speed of the region of interest 35 in the subject may be calculated as shown in FIG. 10, or the sound speed of the region of interest 35 in the subject may be calculated as shown in FIG.
  • FIG. 12 and FIG. 13 show another embodiment and show a state in which the ultrasonic wave w is transmitted from the ultrasonic probe 10 to the subject.
  • the focus F is set at a portion of the subject that is farthest in the transmission direction of the region of interest 35.
  • the straight line connecting the focal point F and the first ultrasonic transducer 60 at the closest distance from the focal point F is the first straight line L1.
  • the straight line connecting the two first vertices P1 and P2 that are farthest from the focus F and the focus F is the second.
  • a fifth ultrasonic transducer included in the second partial ultrasonic transducer is set.
  • the fifth ultrasonic transducer has a first distance that is the distance between the focal point F and the first ultrasonic transducer 60, and a second distance that is the distance between the focal point F and the fifth ultrasonic transducer. The difference from the distance is the closest to the predetermined detection limit width.
  • a straight line connecting the focal point F and the fifth ultrasonic transducer is defined as a fifth straight line L5.
  • the region of interest 35A in the subject is set so that the length of the ultrasonic wave w in the transmission direction is longer than the length of the ultrasonic probe 10 in the arc direction.
  • the first angle ⁇ 1 that is the angle formed by the first straight line L1 and the second straight line L2 is smaller than the fourth angle ⁇ 4 that is the angle formed by the first straight line L1 and the fifth straight line L5.
  • the second ultrasonic transducer is set to the fifth ultrasonic transducers 56 and 64.
  • the sound speed in the area 35A is calculated by the sound speed calculation device 18.
  • the region of interest 35 in the subject corresponding to the region of interest 32 in the ultrasound image 31 is set.
  • the first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is larger than the fourth angle ⁇ 4 that is an angle formed by the first straight line L1 and the fifth straight line L5.
  • the first angle ⁇ 1 that is the angle formed by the first straight line L1 and the second straight line L2 is greater than the fourth angle ⁇ 4 that is the angle formed by the first straight line L1 and the fifth straight line L5
  • the ultrasonic transducers 58 and 62 where the second ultrasonic transducer is located on the second straight line L2.
  • the sound speed calculation device 18 calculates 35 sound speeds.
  • the sound speed of the region of interest 35A in the subject may be calculated as shown in FIG. 12, or the sound speed of the region of interest 35 in the subject may be calculated as shown in FIG.
  • FIG. 14 and FIG. 15 show another embodiment, and shows a state in which the ultrasonic wave w is transmitted from the ultrasonic probe 10 to the subject.
  • a region of interest 35 in the subject is set corresponding to the region of interest 32 on the display screen 30.
  • a focus F is set at a portion of the subject that is farthest in the transmission direction of the region of interest 35.
  • the straight line connecting the focal point F and the first ultrasonic transducer 60 at the closest distance from the focal point F is the first straight line L1.
  • the straight line connecting the two first vertices P1 and P2 that are farthest from the focus F and the focus F is the second.
  • the second number of ultrasonic transducers capable of simultaneously receiving ultrasonic echoes used for calculating the sound velocity of the region of interest 35 in the subject are the second. It becomes some ultrasonic transducers.
  • the ultrasonic transducers 41 and 79 located farthest from the focal point F among the focal point F and the plurality of ultrasonic transducers 41 to 79 are assumed to be third ultrasonic transducers.
  • a straight line connecting the focal point F and each of the third ultrasonic transducer 41 and the third ultrasonic transducer 79 is defined as a third straight line L3.
  • the ultrasonic transducer located farthest from the focal point F among the focal point F and the second partial ultrasonic transducer is defined as a fourth ultrasonic transducer.
  • a straight line connecting the focal point F and the fourth ultrasonic transducer is a fourth straight line L4.
  • first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is larger than the third angle ⁇ 3 that is an angle formed by the first straight line L1 and the fourth straight line L4. .
  • a first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is a second angle ⁇ 2 that is an angle formed by the first straight line L1 and the third straight line L3. Smaller than. In this way, the first angle ⁇ 1 that is the angle formed by the first straight line L1 and the second straight line L2 is the second angle ⁇ 2 that is the angle formed by the first straight line L1 and the third straight line L3. If it is smaller, the second ultrasonic transducer is set to the fourth ultrasonic transducers 53 and 67.
  • the sound speed calculation device 18 uses the ultrasonic echo signals output from -59 and the other second ultrasonic transducer 61-66, calculates the sound speed of the region of interest 35 in the subject.
  • the first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is larger than the third angle ⁇ 3 that is an angle formed by the first straight line L1 and the fourth straight line L4.
  • the first angle ⁇ 1 is smaller than the second angle ⁇ 2, which is an angle formed by the first straight line L1 and the third straight line L3, a range between the two fourth straight lines L4 (first The ultrasonic echo signal output from the ultrasonic transducer 53-67 existing in the third angle ⁇ 3 that is an angle formed by the first straight line L1 and the fourth straight line L4 is used in the subject.
  • the sound speed of the region of interest 35 may be calculated.
  • the ultrasonic probe 10B includes a plurality of ultrasonic transducers 51-69.
  • the first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is larger than the second angle ⁇ 2 that is an angle formed by the first straight line L1 and the third straight line L3.
  • the first angle ⁇ 1 that is the angle formed by the first straight line L1 and the second straight line L2 is the second angle ⁇ 2 that is the angle formed by the first straight line L1 and the third straight line L3.
  • the second ultrasonic transducer is set to the third ultrasonic transducers 51 and 69.
  • the first ultrasonic transducer 60, the second ultrasonic transducers 51 and 69, and other ultrasonic oscillations between one second ultrasonic transducer 51 and the first ultrasonic transducer 60 Using ultrasonic echo signals output from the child 52-59 and the other ultrasonic transducers 61-68 between the first ultrasonic transducer 60 and the other second ultrasonic transducer 69
  • the sound speed calculation device 18 calculates the sound speed of the region of interest 35 in the subject.
  • the sound speed of the region of interest 35 in the subject may be calculated as shown in FIG. 14, or the subject as shown in FIG.
  • the sound speed of the region of interest 35 at may be calculated.
  • FIG. 16 and FIG. 17 show still another embodiment, and shows a state where the ultrasonic wave w is transmitted from the ultrasonic probe 10 to the subject.
  • the region of interest 35 in the subject is set corresponding to the region of interest 32 on the display screen 30.
  • a focus F is set at a portion of the subject that is farthest in the transmission direction of the region of interest 35.
  • the straight line connecting the focal point F and the first ultrasonic transducer 60 at the closest distance from the focal point F is the first straight line L1.
  • the straight line connecting the two first vertices P1 and P2 that are farthest from the focus F and the focus F is the second.
  • the maximum number of ultrasonic transducers capable of simultaneously receiving ultrasonic echoes used for calculating the sound velocity of the region of interest 35 in the subject is the second. It becomes some ultrasonic transducers.
  • the ultrasonic transducers 41 and 79 located farthest from the focal point F among the focal point F and the plurality of ultrasonic transducers 41 to 79 are assumed to be third ultrasonic transducers.
  • a straight line connecting the focal point F and each of the third ultrasonic transducer 41 and the third ultrasonic transducer 79 is defined as a third straight line L3.
  • the ultrasonic transducer located farthest from the focal point F among the focal point F and the second partial ultrasonic transducer is defined as a fourth ultrasonic transducer.
  • a straight line connecting the focal point F and the fourth ultrasonic transducer is a fourth straight line L4.
  • the fifth ultrasonic transducer included in the second partial ultrasonic transducer includes a first distance, which is a distance between the focal point F and the first ultrasonic transducer 60, and the focal point F and the first ultrasonic transducer.
  • the difference from the second distance that is the distance from the ultrasonic transducer 5 is defined as the one closest to the predetermined detection limit width.
  • a straight line connecting the focal point F and the fourth ultrasonic transducer located farthest from the focal point F among the second partial ultrasonic transducers is defined as a fifth straight line L5.
  • first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is smaller than the third angle ⁇ 3 that is an angle formed by the first straight line L1 and the fourth straight line L4. .
  • a first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is a fourth angle ⁇ 4 that is an angle formed by the first straight line L1 and the fifth straight line L5. Greater than.
  • the first angle ⁇ 1 that is the angle formed by the first straight line L1 and the second straight line L2 is the fourth angle ⁇ 4 that is the angle formed by the first straight line L1 and the fifth straight line L5.
  • the second ultrasonic transducer is set to the ultrasonic transducers 49 and 71 located on the second straight line L2.
  • the control device 2 sound velocity calculation means.
  • the first angle ⁇ 1 is smaller than the third angle ⁇ 3 and the first angle ⁇ 1 is larger than the fourth angle ⁇ 4
  • the range between the two second straight lines L2 first The ultrasonic echo signal output from the ultrasonic transducer 49-71 existing in the first angle ⁇ 1 which is an angle formed by the first straight line L1 and the second straight line L2 is used in the subject.
  • the sound speed of the region of interest 35 may be calculated.
  • a first angle ⁇ 1 that is an angle formed by the first straight line L1 and the second straight line L2 is a fourth angle that is an angle formed by the first straight line L1 and the fifth straight line L5. smaller than ⁇ 4.
  • the first angle ⁇ 1 that is the angle formed by the first straight line L1 and the second straight line L2 is the fourth angle ⁇ 4 that is the angle formed by the first straight line L1 and the fifth straight line L5. If smaller, the second ultrasonic transducer is set to the fifth ultrasonic transducers 41 and 79.
  • the second ultrasonic transducers 41 and 79 set as the first ultrasonic transducer 60 and the other ultrasonic transducer between one second ultrasonic transducer 41 and the first ultrasonic transducer 60.
  • the sound speed calculation device 18 calculates the sound speed of the region of interest 35 in the subject.
  • the second ultrasonic transducer is clearly set to vibrate with the fifth ultrasonic wave by the control device 2 (sound velocity calculation means).
  • the range between the two fourth straight lines L4 first The ultrasonic echo signal output from the ultrasonic transducer 41-79 existing in the fourth angle ⁇ 4, which is an angle formed by the first straight line L1 and the fourth straight line L4, is used in the subject.
  • the sound speed of the region of interest 35 may be calculated.
  • the sound velocity of the region of interest 35 in the subject may be calculated as shown in FIG. 16, or the subject as shown in FIG.
  • the sound speed of the region of interest 35 at may be calculated.
  • FIG. 18 is a flowchart showing a processing procedure for determining the use angle ⁇ according to the first angle ⁇ 1 to the fourth angle ⁇ 4.
  • the sound velocity of the region of interest in the subject is calculated using the ultrasonic echo signal output from the ultrasonic transducer included in the range of the determined use angle ⁇ .
  • the control device 2 determines whether the first angle ⁇ 1 is smaller than the second angle ⁇ 2 (step S12). .
  • the use angle ⁇ is determined as the third angle ⁇ 3 (step S13).
  • the use angle ⁇ is determined as the second angle ⁇ 2 (step S14).
  • the controller 2 determines whether the fourth angle ⁇ 4 is smaller than the first angle ⁇ 1 (step S15). ). When the fourth angle ⁇ 4 is smaller than the first angle ⁇ 1 (YES in step S15), the use angle ⁇ is determined as the first angle ⁇ 1 (step S16). When the fourth angle ⁇ 4 is equal to or larger than the first angle ⁇ 1 (NO in step S15), the use angle ⁇ is determined as the fourth angle ⁇ 4 (step S17).
  • step S11 of FIG. 18 when the first angle ⁇ 1 is equal to the third angle ⁇ 3, the processing of step S5 may be performed.
  • step S12 when the first angle ⁇ 1 is equal to the second angle ⁇ 2, the use angle ⁇ may be determined as the third angle ⁇ 3.
  • step S15 when the fourth angle ⁇ 4 is equal to the first angle ⁇ 1, the use angle ⁇ may be determined as the first angle ⁇ 1.
  • FIG. 19 shows another embodiment, and shows a state in which the ultrasonic wave w is transmitted from the ultrasonic probe 10C to the subject.
  • the ultrasonic probe 10C is a linear ultrasonic probe 10C.
  • a plurality of ultrasonic transducers 81 to 101 are arranged in a straight line on the ultrasonic probe 10C.
  • the transmission direction of the ultrasonic probe 10C is perpendicular to the arrangement direction of the ultrasonic transducers 81-101 of the ultrasonic probe 10C, and is the direction toward the subject.
  • a region of interest 36 in the subject is set, and the region of interest 36 in the subject is rectangular.
  • a focus F is set at a portion of the subject that is farthest in the transmission direction of the region of interest 36.
  • the ultrasonic wave w is transmitted from the first partial ultrasonic transducer 90-94 to the subject, and the ultrasonic echo from the focal point F is received by the second partial ultrasonic transducer 87-97.
  • the first ultrasonic transducer 90-94 and the second ultrasonic transducer 87-97 may be the same, or all of the plurality of ultrasonic transducers 81-101 included in the ultrasonic probe 10C are the first. Some of the ultrasonic transducers or the second partial ultrasonic transducer may be used, or all of the plurality of ultrasonic transducers 81-101 included in the ultrasonic probe 10C may be the first partial ultrasonic transducer. The child and the second partial ultrasonic transducer may be used.
  • the straight line connecting the focal point F and the first ultrasonic transducer 92 at the closest distance from the focal point F is the first straight line L1.
  • a straight line connecting the two first vertices P1 and P2 that are farthest from the focal point F and the focal point F is the second.
  • the first ultrasonic transducer 60 located at the closest distance from the focal point F
  • a second ultrasonic transducer other than the first ultrasonic transducer 60 is located on a straight line L2 passing through the focal point F and the region of interest 35 in the subject
  • the first ultrasonic transducer 60 is Two other ultrasonic transducers 87 and 97 sandwiched between them, and another ultrasonic transducer 88-91 between the first ultrasonic transducer 50 and one second ultrasonic transducer 87.
  • the speed of sound of the region of interest 36 in the subject is calculated by the sound speed calculation device 18. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

精度良く被検体における関心領域の音速を算出できる音速算出システムおよび音速算出方法を提供する。関心領域(35)の超音波(w)の送信方向に最も離れている部分に,超音波(w)の焦点(F)が設定される。焦点(F)からの超音波エコーを第2の一部の超音波振動子(51)-(69)が受信する。焦点(F)からの距離が最も近い位置にある第1の超音波振動子(60)と,第1の超音波振動子以外である第2の超音波振動子であって焦点(F)および被検体における関心領域(35)を通過する直線(L2)上に位置し,第1の超音波振動子(60)を間に挟む2つの第2の超音波振動子(51)および(69)と,第1の超音波振動子(60)と第2の超音波振動子(51)および(69)の間にある他の超音波振動子(52)-(59)および(61)-(68)から出力される超音波エコー信号を用いて,関心領域(35)の音速が算出される。

Description

音速算出システムおよび音速算出方法
 この発明は,音速算出システムおよび音速算出方法に関する。
 被検体内の所望の領域の音速を算出するために,異なる2点における音速を算出し,その2点間の平均音速を算出するものが考えられている(特許文献1)。また,超音波プローブに,所定の送信焦点を形成するように超音波を送信させることを複数回行わせ,送信焦点から得られる超音波エコーにもとづいて,音速を算出するものも考えられている(特許文献2)。
 また,送信焦点を設定し,音速を設定するもの(特許文献3),被検体内の2点以上に対して超音波を各々送信フォーカスし,受信することにより,環境音速を決定するもの(特許文献4,5),音速を決定する位置が焦点近傍の場合には第1の素子データを用い,焦点近傍でない場合には第2の素子データを用いて音速を決定するもの(特許文献6)なども考えられている。さらに,関心領域の深さに応じて焦点距離を変更するものなどもある(特許文献7)。
特開2010-207490号公報 特開2014-79568号公報 特開2014-140410号公報 特開2013-208495号公報 特開2011-92686号公報 特開2014-68806号公報 特開2003-93389号公報
 しかしながら,特許文献1から7のいずれにおいても,被検体における関心領域を通る超音波エコーと被検体における関心領域を通らない超音波エコーとを考慮していないので,被検体における関心領域での音速が,被検体における他の領域での音速と異なる場合には,被検体における関心領域での音速を正確に算出できない。
 この発明は,被検体における関心領域での音速を精度良く算出することを目的とする。
 この発明による音速算出システムは,複数の音響波振動子が配列されている音響波プローブ,音響波振動子を駆動して音響波振動子から被検体に音響波を送信させる送信駆動手段,被検体に音響波を送信することにより被検体からの音響波エコーを受信し出力される音響波エコー信号を用いて被検体の音響波画像を生成する音響波画像生成手段,音響波画像生成手段によって生成された音響波画像に対して,音響波画像における関心領域を設定する関心領域設定手段,音響波画像における関心領域に対応する被検体における関心領域の音響波の送信方向に最も離れている部分に,複数の音響波振動子のうち第1の一部の音響波振動子から送信される音響波の焦点を設定する焦点設定手段,ならびに焦点設定手段によって設定された焦点からの音響波エコーを受信する第2の一部の音響波振動子のうち,焦点からの距離が最も近い位置にある第1の音響波振動子と,第1の音響波振動子以外である第2の音響波振動子であって焦点および被検体における関心領域を通過する直線上に位置し,かつ第1の音響波振動子を間に挟む2つの第2の音響波振動子と,第1の音響波振動子と第2の音響波振動子との間にある他の音響波振動子と,から出力される音響波エコー信号を用いて,被検体における関心領域の音速を算出する音速算出手段を備えていることを特徴とする。
 この発明は,音速算出方法も提供している。すなわち,この方法は,送信駆動手段が,複数の音響波振動子が配列されている音響波プローブに含まれている音響波振動子を駆動して音響波振動子から被検体に音響波を送信させ,音響波画像生成手段が,被検体に音響波を送信することにより被検体からの音響波エコーを受信し出力される音響波エコー信号を用いて被検体の音響波画像を生成し,関心領域設定手段が,音響波画像生成手段によって生成された音響波画像に対して,音響波画像における関心領域を設定し,焦点設定手段が,音響波画像における関心領域に対応する被検体における関心領域の音響波の送信方向に最も離れている部分に,複数の音響波振動子のうち第1の一部の音響波振動子から送信される音響波の焦点を設定し,音速算出手段が,焦点設定手段によって設定された焦点からの音響波エコーを受信する第2の一部の音響波振動子のうち,焦点からの距離が最も近い位置にある第1の音響波振動子と,第1の音響波振動子以外である第2の音響波振動子であって焦点および被検体における関心領域を通過する直線上に位置し,かつ第1の音響波振動子を間に挟む2つの第2の音響波振動子と,第1の音響波振動子と第2の音響波振動子との間にある他の音響波振動子と,から出力される音響波エコー信号を用いて,被検体における関心領域の音速を算出するものである。
 被検体における関心領域は,たとえば,円の二つの半径と弧で囲まれた形状であり,音響波の送信方向に最も離れている部分は,被検体における関心領域のうち音響波プローブから最も離れている弧の中央である。
 焦点と第1の音響波振動子とを結ぶ直線を第1の直線とし,被検体における関心領域の4つの頂点のうち焦点から最も遠い位置にある第1の頂点と焦点とを結ぶ直線を第2の直線とした場合に,音速算出手段は,たとえば,第2の音響波振動子を第2の直線上に位置する音響波振動子に設定した上で,第1の音響波振動子と第2の音響波振動子と他の音響波振動子とから出力される音響波エコー信号を用いて被検体における関心領域の音速を算出する。
 焦点と複数の音響波振動子のうち焦点から最も遠い位置にある第3の音響波振動子とを結ぶ直線を第3の直線とした場合には,音速算出手段は,たとえば,第1の直線と第2の直線とのなす角である第1の角度が,第1の直線と第3の直線とのなす角である第2の角度より小さい場合には,第2の音響波振動子を第2の直線上に位置する音響波振動子に設定した上で,第1の音響波振動子と第2の音響波振動子と他の音響波振動子とから出力される音響波エコー信号を用いて被検体における関心領域の音速を算出し,第1の角度が第2の角度よりも大きい場合には,第2の音響波振動子を第3の音響波振動子に設定した上で,第1の音響波振動子と第2の音響波振動子と他の音響波振動子とから出力される音響波エコー信号を用いて被検体における関心領域の音速を算出する。
 第2の一部の音響波振動子は,たとえば,設定された焦点からの音響波エコーを,被検体における関心領域の音速計算に用いられる超音波エコーを同時に受信する事が可能な最大数の音響波振動子からなる。焦点と第2の一部の音響波振動子のうち焦点から最も遠い位置にある第4の音響波振動子とを結ぶ直線を第4の直線とした場合に,音速算出手段は,たとえば,第1の直線と第2の直線とのなす角である第1の角度が,第1の直線と第4の直線とのなす角である第3の角度より小さい場合には,第2の音響波振動子を第2の直線上に位置する音響波振動子に設定した上で,第1の音響波振動子と第2の音響波振動子と他の音響波振動子とから出力される音響波エコー信号を用いて被検体における関心領域の音速を算出し,第1の角度が,第3の角度よりも大きい場合には,第2の音響波振動子を第4の音響波振動子に設定した上で,第1の音響波振動子と第2の音響波振動子と他の音響波振動子とから出力される音響波エコー信号を用いて被検体における関心領域の音速を算出する。
 第2の一部の音響波振動子に含まれる第5の音響波振動子であって,第5の音響波振動子は,焦点と第1の音響波振動子との距離である第1の距離と,焦点と第5の音響波振動子との距離である第2の距離との差が所定の検出限界幅に最も近い第5の音響波振動子であり,焦点と第2の一部の音響波振動子のうち焦点から最も遠い位置にある第4の音響波振動子とを結ぶ直線を第5の直線とした場合に,音速算出手段は,たとえば,第1の直線と第2の直線とのなす角である第1の角度が,第1の直線と第5の直線とのなす角である第4の角度より小さい場合には,第5の音響波振動子を第2の直線上に位置する音響波振動子に設定した上で,第1の音響波振動子と第2の音響波振動子と他の音響波振動子とから出力される音響波エコー信号を用いて被検体における関心領域の音速を算出し,第1の角度が,第4の角度よりも大きい場合には,第2の音響波振動子を第5の音響波振動子に設定した上で,第1の音響波振動子と第2の音響波振動子と他の音響波振動子とから出力される音響波エコー信号を用いて被検体における関心領域の音速を算出する。
 第2の一部の音響波振動子は,設定された焦点からの音響波エコーを被検体における関心領域の音速計算に用いられる超音波エコーを同時に受信することが可能な最大数の音響波振動子からなり,焦点と複数の音響波振動子のうち焦点から最も遠い位置にある第3の音響波振動子とを結ぶ直線を第3の直線とし,焦点と第2の一部の音響波振動子のうち焦点から最も遠い位置にある第4の音響波振動子とを結ぶ直線を第4の直線とし,かつ第1の直線と第2の直線とのなす角である第1の角度が,第1の直線と第4の直線とのなす角である第3の角度より大きい場合において,音速算出手段は,たとえば,第1の直線と第2の直線とのなす角である第1の角度が,第1の直線と第3の直線とのなす角である第2の角度より小さい場合には,第2の音響波振動子を第4の音響波振動子に設定した上で,第1の音響波振動子と第2の音響波振動子と他の音響波振動子とから出力される音響波エコー信号を用いて被検体における関心領域の音速を算出し,第1の角度が第2の角度よりも大きい場合には,第2の音響波振動子を第3の音響波振動子に設定した上で,第1の音響波振動子と第2の音響波振動子と他の音響波振動子とから出力される音響波エコー信号を用いて被検体における関心領域の音速を算出する。
 第2の一部の音響波振動子は,設定された焦点からの音響波エコーを被検体における関心領域の音速計算に用いられる超音波エコーを同時に受信することが可能な最大数の音響波振動子からなり,第2の一部の音響波振動子に含まれる第5の音響波振動子であって,第5の音響波振動子は,焦点と第1の音響波振動子との距離である第1の距離と,焦点と第5の音響波振動子との距離である第2の距離との差が所定の検出限界幅に最も近い第5の音響波振動子であり,焦点と複数の音響波振動子のうち焦点から最も遠い位置にある第3の音響波振動子とを結ぶ直線を第3の直線とし,焦点と第2の一部の音響波振動子のうち焦点から最も遠い位置にある第4の音響波振動子とを結ぶ直線を第4の直線とし,焦点と第2の一部の音響波振動子のうち焦点から最も遠い位置にある第4の音響波振動子とを結ぶ直線を第5の直線とし,かつ第1の直線と第2の直線とのなす角である第1の角度が,第1の直線と第4の直線とのなす角である第3の角度より小さい場合において,音速算出手段は,たとえば,第1の直線と第2の直線とのなす角である第1の角度が,第1の直線と第5の直線とのなす角である第4の角度より大きい場合には,第2の音響波振動子を第2の直線上に位置する音響波振動子に設定した上で,第1の音響波振動子と第2の音響波振動子と他の音響波振動子とから出力される音響波エコー信号を用いて被検体における関心領域の音速を算出し,第1の角度が第4の角度よりも小さい場合には,第2の音響波振動子を第5の音響波振動子に設定した上で,第1の音響波振動子と第2の音響波振動子と他の音響波振動子とから出力される音響波エコー信号を用いて被検体における関心領域の音速を算出する。
 音響波プローブは,たとえば,複数の音響波振動子が円弧状に配列されているコンベックス型の音響波プローブでもある。
 音響波プローブは,リニア型音響波プローブでもよい。この場合,被検体における関心領域は矩形であり,音響波の送信方向に最も離れている部分は,被検体における関心領域のうち音響波プローブから音響波の送信方向に離れている辺の中央である。
 この発明によると,被検体の音響波画像が生成され,生成された音響波画像に対して,音響波画像における関心領域が設定される。音響波画像における関心領域に対応する被検体における関心領域の音響波の送信方向に最も離れている部分に,音響波の焦点が設定される。音響波プローブから音響波が送信されると焦点から音響波エコーが生じる。音響波エコーが超音波振動子において受信されると,超音波エコーを受信した超音波振動子から超音波エコー信号が出力する。焦点からの距離が最も近い位置にある第1の音響波振動子と,焦点および被検体における関心領域を通過する直線上に位置し,第1の音響波振動子を間に挟む第2の音響波振動子と,第1の音響波振動子と第2の音響波振動子との間にある他の音響波振動子と,から出力される超音波エコー信号を用いて被検体の関心領域における音速が算出される。被検体における関心領域を通らない超音波エコーを利用されずに,被検体における関心領域を通る超音波エコーを利用して被検体における関心領域の音速が算出されるから,精度良く音速を算出することができる。
超音波診断装置の電気的構成を示すブロック図である。 超音波画像の一例である。 超音波診断装置の処理手順のフローチャートである。 超音波診断装置の処理手順のフローチャートである。 超音波画像に設定された関心領域の一例である。 超音波プローブから超音波が送信されている様子を示す。 超音波プローブから超音波が送信されている様子を示す。 超音波プローブから超音波が送信されている様子を示す。 超音波プローブから超音波が送信されている様子を示す。 超音波プローブから超音波が送信されている様子を示す。 超音波プローブから超音波が送信されている様子を示す。 超音波プローブから超音波が送信されている様子を示す。 超音波プローブから超音波が送信されている様子を示す。 超音波プローブから超音波が送信されている様子を示す。 超音波プローブから超音波が送信されている様子を示す。 超音波プローブから超音波が送信されている様子を示す。 超音波プローブから超音波が送信されている様子を示す。 使用角度を決定する処理手順を示すフローチャートである。 超音波プローブから超音波が送信されている様子を示す。
 この実施例においては,音響波として超音波が用いられるが,超音波に限定されるものではなく,被検体,測定条件などに応じて適切な周波数が選択されれば,可聴周波数の音響波を用いるようにしてもよい。
  図1は,この発明の実施例を示すもので,超音波診断装置1(音速算出システム)の電気的構成を示すブロック図である。
 超音波診断装置1の全体の動作は,制御装置2によって統括される。
 制御装置2には,超音波診断装置1を操作するユーザ(医師,看護師,技師など)によって操作される操作装置3および所定のデータ等が格納される格納装置4が接続されている。
 超音波診断装置1には,超音波プローブ10が含まれている。この実施例による超音波プローブ10は,コンベックス型であり,複数の超音波振動子が円弧状に配列されている(図6など参照)。
 制御装置2から出力される制御信号は,走査制御装置5に与えられる。走査制御装置5において,超音波プローブ10に含まれる複数の超音波振動子のうち超音波を送信する超音波振動子および超音波プローブ10から送信される超音波の送信方向が設定される。超音波を送信する超音波振動子を設定する制御信号および超音波の送信方向を設定する制御信号は,走査制御装置5から送信制御装置7に与えられる。また,走査制御装置5において,超音波プローブ10に含まれる複数の超音波振動子のうち,被検体からの超音波エコーを受信する超音波振動子が設定される。超音波エコーを受信する超音波振動子を設定する制御信号は,走査制御装置5から受信制御装置13に与えられる。
 超音波診断装置1には,送信遅延パターン記憶装置6も含まれている。送信遅延パターン記憶装置6には,超音波プローブ10から超音波を送信するときに用いられる送信遅延パターンが複数記憶されている。走査制御装置5から与えられた超音波の送信方向を設定する制御信号にもとづいて,送信遅延パターン記憶装置6に記憶されている複数の送信遅延パターンの中から送信制御装置7によって送信遅延パターンが選択される。選択された送信遅延パターンにしたがって,超音波プローブ10から超音波が送信されるように,送信制御装置7によって駆動信号発生装置8が制御される。駆動信号発生装置8によって超音波プローブ10が制御されることにより,超音波プローブ10に含まれている複数の超音波振動子のうち,走査制御装置5によって設定された超音波振動子から被検体に超音波が送信される。制御装置2,走査制御装置5,送信遅延パターン記憶装置6,送信制御装置7および駆動信号発生装置8が超音波プローブ10に含まれている超音波振動子(音響波振動子)を駆動して超音波振動子から被検体に超音波(音響波)を送信する送信駆動手段となる。
 被検体に超音波が送信されると,被検体から超音波エコーが生じ,超音波プローブ10に含まれる複数の超音波振動子において受信される。超音波振動子から,超音波エコー信号が出力され,増幅装置11に与えられる。超音波エコー信号は,増幅装置11において増幅され,A/D(アナログ/ディジタル)変換回路12において,ディジタルの超音波エコー・データに変換される。超音波エコー・データは,受信制御装置13に入力する。
 超音波診断装置1には,受信遅延パターン記憶装置14も含まれている。受信遅延パターン記憶装置14には,超音波エコー・データに対して受信フォーカス処理を行う場合に用いられる複数の受信遅延パターンが記憶されている。受信制御装置13において,走査制御装置5から与えられる制御信号にもとづいて,受信遅延パターン記憶装置14に記憶されている複数の受信遅延パターンの中から1つの受信遅延パターンが選択される。選択された受信遅延パターンと音速算出装置18から受信制御装置13に与えられる設定音速値とにもとづいて,複数の超音波エコー・データに遅延を与えて加算することにより,受信制御装置13において受信フォーカス処理が行われる。受信フォーカス処理により,生成されたデータに対して包絡線検波処理が行われる。音速算出装置18から受信制御装置23に与えられる設定音速値は,音速が算出されていない初期状態では,一般的な生体内の音速C0(1530m/sまたは1540m/s)とされる。その後,算出された平均音速Ciが利用される。
 受信フォーカス処理における超音波エコー・データの遅延量は,被検体内の音速にもとづいて定められる。一般には,生体内の音速C0として,1530m/sまたは1540m/sが設定されているが,実際には,生体内の組織によって音速が異なっている。そこで,被検体内の平均音速Ciを設定し,受信遅延パターンにおける遅延量D0(j)に(C0/Ci)を乗ずることにより,複数の遅延量D1(j)=(C0/Ci)・D0(j)が決定される(j=1,2,・・・,N)。ただし,Nは,使用される超音波振動子の数である。
 受信制御装置13において生成されたデータは,STC(sensitivity time control)装置15に与えられる。STC装置15において,受信制御装置13から与えられたデータに対して,超音波の反射位置の深度に応じて距離による減衰補正が行われる。STC装置15において減衰補正されたデータは,DSC(digital scan converter)16に与えられる。DSC16において,減衰補正された音線データが通常のテレビジョン信号の走査方式に従う画像データとなるようにラスタ変換され,階調処理等の必要な画像処理が行われることにより,Bモード画像データが生成される。生成されたBモード画像データが表示装置21に与えられることにより,表示装置21によって表示装置21の表示画面30に被検体の超音波画像(Bモード画像)が表示される。STC装置15およびDSC16が音響波画像生成手段となる。
 図2は,表示装置21の表示画面30に表示される超音波画像31の一例を示している。
 超音波プローブ10は,コンベックス型であるため,得られる超音波画像31は,2つの円弧と2つの直線とで囲まれている形状となっている。医師は,超音波画像31を見て被検体を診断する。
 また,制御装置2によって,音速算出装置18が制御され,音速算出装置18によって設定音速が平均音速Ciに順次変更させられる。フォーカス判定装置17によって,設定音速が平均音速Ciに変更されたときの受信フォーカス処理におけるビーム集束度が判定される。
 たとえば,フォーカス判定装置17は,受信制御装置13によって生成されたデータを高速フーリエ変換することにより,生成されたデータにおける高域成分の比率(例えば,高域成分対中域成分の比)が最大になったときにビーム集束度が最大であると判定する。また,DSCから出力されるBモード画像データを高速フーリエ変換することにより,Bモード画像データにおける空間周波数の高域成分の比率が最大になったときにビーム集束度が最大であると判定しても良い。
 音速値計算部42は,フォーカス判定装置17においてビーム集束度が最大と判定された場合に,被検体に設定される焦点からの超音波エコーまでの距離を,被検体に設定される焦点から超音波プローブ10に含まれる超音波振動子が受信する時間で除することにより被検体の平均音速Ciを算出する。この音速算出についての詳細は,後述する。
 画像表示制御装置20は,操作装置3を用いたユーザの操作に従って,生成されたBモード画像データと,音速算出装置18において算出された平均音速Ciを表すデータとのうちの少なくとも1つを選択して,表示用の画像データを生成する。表示装置21は,表示用の画像データに基づいて超音波画像もしくは平均音速Ciを表示する。超音波画像と平均音速Ciとを表示するようにしてもよい。
 次に,被検体内における音速(平均音速Ci)算出方法について説明する。
 図3および図4は,音速算出処理手順を示すフローチャートであり,制御装置2の処理手順を示している。図5は,表示装置21の表示画面30に表示される超音波画像31の一例である。
 図5に示すように,被検体の超音波画像31が表示装置21の表示画面30に表示されると,超音波診断装置1のユーザは,操作装置3(関心領域設定手段)を用いて超音波画像31における関心領域32を設定する(ステップS1)。設定された関心領域32は,超音波画像31上に表示される。つづいて,焦点33が制御装置2によって設定される(ステップS2)。設定された焦点33も,超音波画像31上に表示される。焦点33は,超音波プローブ10から被検体に送信される超音波の集束位置を表している。この実施例では,超音波画像31における関心領域32のうち超音波の送信方向のもっとも離れている部分に焦点33が設定される。
 表示装置21の表示画面30上で関心領域32および焦点33が設定されると,表示画面30における関心領域32に対応する被検体における関心領域に焦点が設定される。
 図6は,超音波プローブ10から被検体に超音波wが送信される様子を示している。
 超音波プローブ10には,円弧状に配列されている複数の超音波振動子41から79が含まれている。円弧状の中心Oから超音波プローブ10の反対側に向かって超音波プローブ10から超音波wが被検体に送信される。超音波プローブ10に含まれている複数の超音波振動子40-79のうち,第1の一部の超音波振動子(音響波振動子)56-64から超音波が被検体に送信されるが(第1の一部の超音波振動子とは,超音波を送信する超音波振動子をいう。超音波プローブ10に含まれる一部の超音波振動子でもよいし,すべての超音波振動子41-79でもよい。また,後述する第2の一部の超音波振動子51-69と同じでもよい。),他の超音波振動子から超音波が送信されるようにしてもよい。表示画面30上で設定された超音波画像31における関心領域32に対応する被検体における関心領域35のうち,超音波の送信方向にもっとも離れている部分に制御装置2(焦点設定手段)によって焦点Fが設定される。図6に示す例では,被検体の関心領域35は,円の二つの半径と弧で囲まれた形状であるから,超音波wの送信方向に最も離れている部分は,関心領域35のうち超音波プローブ10から最も離れている弧の中央となる。中央は,完全に中央でなくとも,実質的に中央と見做せる部分であればよい。被検体において設定される焦点Fは,表示装置21の表示画面30に設定された焦点33に対応する。焦点Fは,第1の一部の超音波振動子56-64から送信される超音波wが収束する位置である。
 駆動信号発生装置8から超音波プローブ10に駆動信号が与えられると,焦点Fに集束するように第1の一部の超音波振動子56-64から超音波wが送信される(ステップS4)。
 この実施例では,焦点Fからの超音波エコーは,超音波プローブ10に含まれる複数の超音波振動子41-79のうち,第2の一部の超音波振動子51-69において受信される。第2の一部の超音波振動子51-69とは,焦点Fからの超音波エコーを受信する超音波振動子をいう。第2の一部の超音波振動子51-69は,第1の一部の超音波振動子56-64と同じでもよく,超音波プローブ10に含まれる複数の超音波振動子41-79のすべてでもよい。
 焦点Fからの超音波エコーを受信する第2の一部の超音波振動子51-69のうち,焦点Fからの距離がもっとも近い位置にある超音波振動子60(図6に示す場合,複数の超音波振動子41-79の中央の超音波振動子)を,第1の超音波振動子60ということにする。図6の場合,第1の超音波振動子60の送信方向である第1の直線L1上に焦点Fが位置する。また,第2の一部の超音波振動子51-69のうち,第1の超音波振動子60以外であって,焦点Fおよび被検体における関心領域35を通過する直線L2上に位置し,かつ第1の超音波振動子60を間に挟む2つの超音波振動子(図6に示す場合では,超音波振動子51および69)51および69を第2の超音波振動子ということにする。また,第2の一部の超音波振動子51-69のうち,第1の超音波振動子60と一方の第2の超音波振動子51との間にある超音波振動子52-59および第1の超音波振動子60と他方の第2の超音波振動子69との間にある超音波振動子61-68を他の超音波振動子ということにする。
 この実施例では,第2の一部の超音波振動子51-69のうち,第1の超音波振動子60,2つの第2の超音波振動子51および69ならびに他の超音波振動子52-59および61-69から出力される超音波エコー信号を用いて,被検体における関心領域35の音速(平均音速Ci)が音速算出装置18(音速算出手段)において算出される。第2の一部の超音波振動子51-69のうち,第1の超音波振動子60,2つの第2の超音波振動子51および69ならびに他の超音波振動子52-59および61-69から出力される超音波エコー信号は,増幅装置11において増幅され,A/D変換回路12においてディジタルの超音波エコー・データに変換される。超音波エコー・データは,受信制御装置13に与えられ,受信制御装置13において超音波エコー・データから音線データが生成される。音線データは,フォーカス判定装置17に入力し,フォーカス判定装置17における判定が行われる。フォーカス判定装置17における判定結果を表すデータは音速算出装置18に入力し,被検体の音速が算出される(ステップS5)。
 音速の算出に利用される超音波エコーは,その経路のうち被検体の関心領域35を通過する割合が大きい。そのような超音波エコーにもとづいて音速が算出されるから,算出された音速は,被検体の関心領域35における音速を精度良く表すこととなる。このようにして算出された音速は,画像表示制御装置20の制御のもとに表示装置21の表示画面30に表示される(ステップS6)。
 図7は,他の実施例を示すもので,超音波プローブ10から被検体に超音波wが送信される様子を示している。
 表示画面30における関心領域32に対応して,被検体における関心領域35が設定されている。被検体における関心領域35の送信方向に最も離れている部分に焦点Fが設定されている。
 焦点Fと,焦点Fからの距離がもっとも近い位置にある第1の超音波振動子60とを結ぶ直線は第1の直線L1である。また,被検体における関心領域35の4つの頂点P1,P2,P3およびP4のうち,焦点Fから最も遠い位置にある2つの第1の頂点P1およびP2と焦点Fとを結ぶ直線を第2の直線L2とする。この場合,第2の超音波振動子が,制御装置2(音速算出手段)によって第2の直線L2上に位置する超音波振動子49および71に設定される。
 第1の一部の超音波振動子56-64から超音波wが送信され,焦点Fからの超音波エコーが第2の一部の超音波振動子49-71において受信される。第1の超音波振動子60と,2つの第2の超音波振動子49および71と,2つの第2の超音波振動子49および71のうち,一方の第2の超音波振動子49と第1の超音波振動子60との間の他の超音波振動子50-59および他方の第2の超音波振動子71と第1の超音波振動子60との間の他の超音波振動子61-70と,から出力される超音波エコー信号を用いて被検体における関心領域35の音速が音速算出装置18において算出される。
 超音波エコーの焦点Fから第2の一部の超音波振動子51-69への経路に対して,被検体における関心領域35の経路の割合が高くなるので,被検体における関心領域35の音速をより正確に算出できる。
 制御装置2(音速算出手段)によって第2の直線L2上に位置する超音波振動子51および69に第2の超音波振動子が明確に設定処理される必要は必ずしもなく,被検体における関心領域35の頂点P1,P2,P3およびP4のうち焦点Fから最も遠い2つの頂点P1およびP2と焦点Fとを通過する2つの第2の直線L2で挟まれる範囲に存在する超音波振動子51-69から出力される超音波エコー信号を用いて被検体における関心領域35の音速が算出されればよい。
 図8および図9は,他の実施例を示すもので,超音波プローブ10から被検体に超音波wが送信される様子を示している。
 図8および図9のいずれにおいても,表示画面30における関心領域32に対応して,被検体における関心領域35が設定されている。被検体における関心領域35の送信方向に最も離れている部分に焦点Fが設定されている。
 焦点Fと,焦点Fからの距離がもっとも近い位置にある第1の超音波振動子60とを結ぶ直線は第1の直線L1である。また,被検体における関心領域35の4つの頂点P1,P2,P3およびP4のうち,焦点Fから最も遠い位置にある2つの第1の頂点P1およびP2と焦点Fとを結ぶ直線が第2の直線L2である。さらに,焦点Fから超音波プローブ10に含まれる複数の超音波振動子41-79のうち焦点Fから最も遠い位置にある超音波振動子を第3の超音波振動子とし,焦点Fと第3の超音波振動子を結ぶ直線を第3の直線L3とする。
 図8に示す場合,複数の超音波振動子41-79のうち焦点Fから最も遠い位置にある超音波振動子は,超音波振動子41および79であり,これらの超音波振動子41および79が第3の超音波振動子とされる。焦点Fと超音波振動子41および79のそれぞれとを結ぶ直線が第3の直線L3である。
 第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2より小さくなる。そのように,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2より小さい場合には,第2の超音波振動子が第2の直線L2上に位置する超音波振動子49および71に設定され,第1の超音波振動子60,第2の超音波振動子49および71ならびに第1の超音波振動子60と一方の第2の超音波振動子49との間の他の超音波振動子50-59および第1の超音波振動子60と他方の第2の超音波振動子71との間の他の超音波振動子61-70から出力される超音波エコー信号を用いて音速算出装置18において音速が算出される。
 図9に示す超音波プローブ10Aには,図8に示した超音波プローブ10Bに含まれている複数の超音波振動子41-79よりも少ない複数の超音波振動子53-67が含まれている。
 複数の超音波振動子53-67のうち焦点Fから最も遠い位置にある超音波振動子は,超音波振動子53および67であり,これらの超音波振動子53および67が第3の超音波振動子とされる。焦点Fと超音波振動子53および67のそれぞれとを結ぶ直線が第3の直線L3となる。
 図9に示す場合,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2より大きくなる。そのように,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2より大きい場合には,第2の超音波振動子が第3の超音波振動子53および67に設定され,第1の超音波振動子60,設定された第2の超音波振動子53および67ならびに第1の超音波振動子60と一方の第2の超音波振動子53との間の他の超音波振動子54-59および第1の超音波振動子60と他方の第2の超音波振動子67との間の他の超音波振動子61-66から出力される超音波エコー信号を用いて音速算出装置18において音速が算出される。
 図8に示す実施例においても,制御装置2(音速算出手段)によって第2の直線L2上に位置する超音波振動子49および71が第2の超音波振動子に明確に設定される必要は必ずしもなく,第3の直線L3上に位置する超音波振動子41および79が第3の超音波振動子に明確に設定される必要は必ずしもない。第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2より小さい場合に,2つの第2の直線L2で挟まれる範囲(第1の直線L1と第2の直線L2とのなす角である第1の角度θ1に含まれる範囲)に存在する超音波振動子49-71から出力される超音波エコー信号を用いて被検体における関心領域35の音速が算出されればよい。
 また,図9に示す実施例においても,制御装置2(音速算出手段)によって第2超音波振動子を第3の超音波振動子に明確に設定する必要は必ずしもない。第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2より大きい場合に,2つの第3の直線L3で挟まれる範囲(第1の直線L1と第3の直線L3とのなす角である第2の角度θ2に含まれる範囲)に存在する超音波振動子53-67から出力される超音波エコー信号を用いて被検体における関心領域35の音速が算出されればよい。
 第1の直線L1と第2の直線L2とのなす角である第1の角度θ1と,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2とが等しい場合には,図8に示すようにして被検体における関心領域35の音速が算出されてもよいし,図9に示すようにして被検体における関心領域35の音速が算出されてもよい。第1の直線L1と第2の直線L2とのなす角である第1の角度θ1と,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2とが等しい場合でも,2つの第2の直線L2で挟まれる範囲(第1の直線L1と第2の直線L2とのなす角である第1の角度θ1に含まれる範囲)または2つの第3の直線L3で挟まれる範囲(第1の直線L1と第3の直線L3とのなす角である第2の角度θ2に含まれる範囲)に存在する超音波振動子から出力される超音波エコー信号を用いて被検体における関心領域35の音速が算出されればよい。
 図10および図11は,他の実施例を示すもので,超音波プローブ10から被検体に超音波wが送信される様子を示している。
 図10および図11のいずれにおいても,表示画面30における関心領域32に対応して,被検体における関心領域35が設定されている。被検体における関心領域35の送信方向に最も離れている部分に焦点Fが設定されている。
 図10および図11においても焦点Fと,焦点Fからの距離がもっとも近い位置にある第1の超音波振動子60とを結ぶ直線は第1の直線L1である。また,被検体における関心領域35の4つの頂点P1,P2,P3およびP4のうち,焦点Fから最も遠い位置にある2つの第1の頂点P1およびP2と焦点Fとを結ぶ直線が第2の直線L2である。
 さらに,図10および図11に示す超音波プローブ10においては,超音波プローブ10に含まれている複数の超音波振動子41-79のうち,被検体における関心領域35の音速計算に用いられる超音波エコーを同時に受信することが可能な最大数の超音波振動子が第2の一部の超音波振動子となる。さらに,焦点Fと第2の一部の超音波振動子のうち焦点Fから最も遠い位置にある超音波振動子を第4の超音波振動子とする。また,焦点Fと第4の超音波振動子とを結ぶ直線を第4の直線L4とする。
 図10においては,被検体における関心領域35の音速計算に用いられる超音波エコーを同時に受信することが可能な最大数の超音波振動子は,超音波振動子44-76とする。焦点Fと第2の一部の超音波振動子44-76のうち焦点Fから最も遠い位置にある第4の超音波振動子は,超音波振動子44および76である。
 図10では,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第4の直線L4とのなす角である第3の角度θ3より小さい。このように,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第4の直線L4とのなす角である第3の角度θ3より小さい場合には,第2の超音波振動子が第2の直線L2上に位置する超音波振動子49および71に制御装置2(音速算出手段)によって設定される。第1の超音波振動子60,第2の超音波振動子49および71ならびに一方の第2の超音波振動子49と第1の超音波振動子60との間に存在する他の超音波振動子50-59および他方の第2の超音波振動子71との間に存在する他の超音波振動子61-70から出力される超音波エコー信号を用いて,被検体における関心領域35の音速が音速算出装置18によって算出される。
 図10に示す実施例においても,制御装置2(音速算出手段)によって第2の超音波振動子を第2の直線L2上に位置する超音波振動子49および71に明確に設定する必要は必ずしもない。第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第4の直線L4とのなす角である第3の角度θ3より小さい場合に,2つの第2の直線L2で挟まれる範囲(第1の直線L1と第2の直線L2とのなす角である第1の角度θ1に含まれる範囲)に存在する超音波振動子49-71から出力される超音波エコー信号を用いて被検体における関心領域35の音速が算出されればよい。
 図11においては,被検体における関心領域35の音速計算に用いられる超音波エコーを同時に受信することが可能な最大数の超音波振動子は,超音波振動子53-67とする。第2の一部の超音波振動子は,超音波振動子53-67となる。焦点Fと第2の一部の超音波振動子53-67のうち焦点Fから最も遠い位置にある第4の超音波振動子は,超音波振動子53および67である。
 図11では,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第4の直線L4とのなす角である第3の角度θ3より大きい。このように,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第4の直線L4とのなす角である第3の角度θ3より大きい場合には,第2の超音波振動子53および71を第4の超音波振動子53および67に制御装置2(音速算出手段)によって設定される。第1の超音波振動子60,第2の超音波振動子49および71ならびに第2の超音波振動子と設定された一方の第4の超音波振動子53と第1の超音波振動子60との間に存在する他の超音波振動子54-59および他方の第4の超音波振動子67と第1の超音波振動子60との間に存在する他の超音波振動子61-66から出力される超音波エコー信号を用いて,被検体における関心領域35の音速が音速算出装置18によって算出される。
 図11に示す実施例においても,制御装置2(音速算出手段)によって第2の超音波振動子を第4の超音波振動子53および67に明確に設定する必要は必ずしもない。第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第4の直線L4とのなす角である第3の角度θ3より大きい場合に,2つの第4の直線L4で挟まれる範囲(第1の直線L1と第1の直線L1とのなす角である第3の角度θ3に含まれる範囲)に存在する超音波振動子53-67から出力される超音波エコー信号を用いて被検体における関心領域35の音速が算出されればよい。
 第1の直線L1と第2の直線L2とのなす角である第1の角度θ1と,第1の直線L1と第4の直線L4とのなす角である第3の角度θ3とが等しい場合には,図10に示すようにして被検体における関心領域35の音速が算出されてもよいし,図11に示すようにして被検体における関心領域35の音速が算出されてもよい。
 図12および図13は,他の実施例を示すもので,超音波プローブ10から被検体に超音波wが送信される様子を示している。
 図12および図13のいずれにおいても,被検体における関心領域35の送信方向に最も離れている部分に焦点Fが設定されている。
 図12および図13においても焦点Fと,焦点Fからの距離がもっとも近い位置にある第1の超音波振動子60とを結ぶ直線は第1の直線L1である。また,被検体における関心領域35の4つの頂点P1,P2,P3およびP4のうち,焦点Fから最も遠い位置にある2つの第1の頂点P1およびP2と焦点Fとを結ぶ直線が第2の直線L2である。
 さらに,図12および図13に示す超音波プローブ10においては,第2の一部の超音波振動子に含まれる第5の超音波振動子が設定される。この第5の超音波振動子は,焦点Fと第1の超音波振動子60との距離である第1の距離と,焦点Fと第5の超音波振動子との距離である第2の距離との差が所定の検出限界幅に最も近いものである。焦点Fと第5の超音波振動子とを結ぶ直線を第5の直線L5とする。
 図12においては,被検体における関心領域35Aは,超音波wの送信方向の長さの方が超音波プローブ10の円弧方向の長さよりも長くなるように設定されている。
 第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第5の直線L5とのなす角である第4の角度θ4より小さい。第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第5の直線L5とのなす角である第4の角度θ4より小さい場合には,第2の超音波振動子が第5の超音波振動子56および64に設定される。第1の超音波振動子60,第2の超音波振動子56および64ならびに一方の第2の超音波振動子56と第1の超音波振動子60との間の他の超音波振動子57-59および他方の第2の超音波振動子64と第1の超音波振動子60との間の他の超音波振動子61-63から出力される超音波エコー信号を用いて被検体における関心領域35Aの音速が音速算出装置18において算出される。
 図12においても制御装置2(音速算出手段)によって,第5の超音波振動子が第2の直線L2上に位置する超音波振動子58および62に明確に設定される必要は必ずしも無い。第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第5の直線L5とのなす角である第4の角度θ4より小さい場合に,2つの第5の直線L5で挟まれる範囲(第1の直線L1と第5の直線L5とのなす角である第4の角度θ4に含まれる範囲)に存在する超音波振動子56-64から出力される超音波エコー信号を用いて被検体における関心領域35Aの音速が算出されればよい。
 図13においては,超音波画像31における関心領域32に対応する被検体における関心領域35が設定されている。
 第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第5の直線L5とのなす角である第4の角度θ4より大きい。第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第5の直線L5とのなす角である第4の角度θ4より大きい場合には,第2の超音波振動子が第2の直線L2上に位置する超音波振動子58および62に設定される。第1の超音波振動子60,設定された第2の超音波振動子58および62ならびに一方の第2の超音波振動子58と第1の超音波振動子60との間の他の超音波振動子59および他方の第2の超音波振動子62と第1の超音波振動子60との間の他の超音波振動子61から出力される超音波エコー信号を用いて被検体における関心領域35の音速が音速算出装置18において算出される。
 図13においても制御装置2(音速算出手段)によって,第2の超音波振動子が第5の超音波振動子に明確に設定される必要は必ずしも無い。第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第5の直線L5とのなす角である第4の角度θ4より大きい場合に,2つの第2の直線L2で挟まれる範囲(第1の直線L1と第2の直線L2とのなす角である第1の角度θ1に含まれる範囲)に存在する超音波振動子57-63から出力される超音波エコー信号を用いて被検体における関心領域35の音速が算出されればよい。
 第1の直線L1と第2の直線L2とのなす角である第1の角度θ1と,第1の直線L1と第5の直線L5とのなす角である第4の角度θ4とが等しい場合には,図12に示すようにして被検体における関心領域35Aの音速が算出されてもよいし,図13に示すようにして被検体における関心領域35の音速が算出されてもよい。
 図14および図15は,他の実施例を示すもので,超音波プローブ10から被検体に超音波wが送信される様子を示している。
 図14および図15のいずれにおいても,表示画面30における関心領域32に対応して,被検体における関心領域35が設定されている。被検体における関心領域35の送信方向に最も離れている部分に焦点Fが設定されている。
 図14および図15においても焦点Fと,焦点Fからの距離がもっとも近い位置にある第1の超音波振動子60とを結ぶ直線は第1の直線L1である。また,被検体における関心領域35の4つの頂点P1,P2,P3およびP4のうち,焦点Fから最も遠い位置にある2つの第1の頂点P1およびP2と焦点Fとを結ぶ直線が第2の直線L2である。
 さらに,図14および図15に示す超音波プローブ10においては,被検体における関心領域35の音速計算に用いられる超音波エコーを同時に受信することが可能な最大数の超音波振動子が第2の一部の超音波振動子となる。さらに,焦点Fと複数の超音波振動子41-79のうち焦点Fから最も遠い位置にある超音波振動子41および79を第3の超音波振動子とする。また,焦点Fと第3の超音波振動子41および第3の超音波振動子79のそれぞれとを結ぶ直線を第3の直線L3とする。さらに,焦点Fと第2の一部の超音波振動子のうち焦点Fから最も遠い位置にある超音波振動子を第4の超音波振動子とする。また,焦点Fと第4の超音波振動子とを結ぶ直線を第4の直線L4とする。
 さらに,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第4の直線L4とのなす角である第3の角度θ3より大きい。
 図14において,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2より小さい。このように,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2より小さい場合には,第2の超音波振動子が第4の超音波振動子53および67に設定される。第1の超音波振動子60と第2の超音波振動子53および67と一方の第2の超音波振動子53と第1の超音波振動子60との間の他の超音波振動子54-59と他方の第2の超音波振動子61-66とから出力される超音波エコー信号を用いて,音速算出装置18において被検体における関心領域35の音速が算出される。
 図14において,制御装置2(音速算出手段)によって,第2の超音波振動子が第4の超音波振動子に明確に設定される必要は必ずしも無い。第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第4の直線L4とのなす角である第3の角度θ3より大きい場合であって,第1の角度θ1が,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2より小さい場合に,2つの第4の直線L4で挟まれる範囲(第1の直線L1と第4の直線L4とのなす角である第3の角度θ3に含まれる範囲)に存在する超音波振動子53-67から出力される超音波エコー信号を用いて被検体における関心領域35の音速が算出されればよい。
 図15においては,超音波プローブ10Bには複数の超音波振動子51-69が含まれている。
 第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2より大きい。このように,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第3の直線L3とのなす角である第2の角度θ2より大きい場合には,第2の超音波振動子が第3の超音波振動子51および69に設定される。第1の超音波振動子60と,第2の超音波振動子51および69と,一方の第2の超音波振動子51から第1の超音波振動子60までの間の他の超音波振動子52-59と,第1の超音波振動子60から他方の第2の超音波振動子69までの間の他の超音波振動子61-68と,から出力される超音波エコー信号を用いて音速算出装置18において被検体における関心領域35の音速が算出される。
 第1の角度θ1と第2の角度θ2とが等しい場合には,図14に示すようにして被検体における関心領域35の音速が算出されてもよいし,図15に示すようにして被検体における関心領域35の音速が算出されてもよい。
 図16および図17は,さらに他の実施例を示すもので,超音波プローブ10から被検体に超音波wが送信される様子を示している。
 図16および図17のいずれにおいても,表示画面30における関心領域32に対応して,被検体における関心領域35が設定されている。被検体における関心領域35の送信方向に最も離れている部分に焦点Fが設定されている。
 図16および図17においても焦点Fと,焦点Fからの距離がもっとも近い位置にある第1の超音波振動子60とを結ぶ直線は第1の直線L1である。また,被検体における関心領域35の4つの頂点P1,P2,P3およびP4のうち,焦点Fから最も遠い位置にある2つの第1の頂点P1およびP2と焦点Fとを結ぶ直線が第2の直線L2である。
 さらに,図16および図17に示す超音波プローブ10においても,被検体における関心領域35の音速計算に用いられる超音波エコーを同時に受信することが可能な最大数の超音波振動子が第2の一部の超音波振動子となる。さらに,焦点Fと複数の超音波振動子41-79のうち焦点Fから最も遠い位置にある超音波振動子41および79を第3の超音波振動子とする。また,焦点Fと第3の超音波振動子41および第3の超音波振動子79のそれぞれとを結ぶ直線を第3の直線L3とする。さらに,焦点Fと第2の一部の超音波振動子のうち焦点Fから最も遠い位置にある超音波振動子を第4の超音波振動子とする。また,焦点Fと第4の超音波振動子とを結ぶ直線を第4の直線L4とする。
 さらに,第2の一部の超音波振動子に含まれる第5の超音波振動子が,焦点Fと第1の超音波振動子60との距離である第1の距離と,焦点Fと第5の超音波振動子との距離である第2の距離との差が所定の検出限界幅に最も近いものとして規定される。また,焦点Fと第2の一部の超音波振動子のうち焦点Fから最も遠い位置にある第4の超音波振動子とを結ぶ直線を第5の直線L5とする。
 さらに,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第4の直線L4とのなす角である第3の角度θ3より小さい。
 図16において,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第5の直線L5とのなす角である第4の角度θ4より大きい。このように,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第5の直線L5とのなす角である第4の角度θ4より大きい場合には,第2の超音波振動子が第2の直線L2上に位置する超音波振動子49および71に設定される。第1の超音波振動子60と第2の超音波振動子49および71と一方の第2の超音波振動子49と第1の超音波振動子60との間の他の超音波振動子50-70と第1の超音波振動子60から他方の第2の超音波振動子71の間の他の超音波振動子61-70から出力される超音波エコー信号を用いて,音速算出装置18において被検体における関心領域35の音速が算出される。
 図16において,制御装置2(音速算出手段)によって,第2の超音波振動子が第2の直線L2上に位置する超音波振動子に明確に設定される必要は必ずしも無い。第1の角度θ1が第3の角度θ3よりも小さい場合であって,かつ第1の角度θ1が第4の角度θ4よりも大きい場合に,2つの第2の直線L2で挟まれる範囲(第1の直線L1と第2の直線L2とのなす角である第1の角度θ1に含まれる範囲)に存在する超音波振動子49-71から出力される超音波エコー信号を用いて被検体における関心領域35の音速が算出されればよい。
 図17においては,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第5の直線L5とのなす角である第4の角度θ4より小さい。このように,第1の直線L1と第2の直線L2とのなす角である第1の角度θ1が,第1の直線L1と第5の直線L5とのなす角である第4の角度θ4より小さい場合には,第2の超音波振動子が,第5の超音波振動子41および79に設定される。第1の超音波振動子60と設定された第2の超音波振動子41および79と,一方の第2の超音波振動子41と第1の超音波振動子60との間の他の超音波振動子42-59と第1の超音波振動子60から他方の第2の超音波振動子79の間の他の超音波振動子61-79から出力される超音波エコー信号を用いて,音速算出装置18において被検体における関心領域35の音速が算出される。
 図17において,制御装置2(音速算出手段)によって,第2の超音波振動子が第5超音波振動しに明確に設定される必要は必ずしも無い。第1の角度θ1が第3の角度θ3よりも小さい場合であって,かつ第1の角度θ1が第4の角度θ4よりも小さい場合に,2つの第4の直線L4で挟まれる範囲(第1の直線L1と第4の直線L4とのなす角である第4の角度θ4に含まれる範囲)に存在する超音波振動子41-79から出力される超音波エコー信号を用いて被検体における関心領域35の音速が算出されればよい。
 第1の角度θ1と第4の角度θ4とが等しい場合には,図16に示すようにして被検体における関心領域35の音速が算出されてもよいし,図17に示すようにして被検体における関心領域35の音速が算出されてもよい。
 図18は,第1の角度θ1から第4の角度θ4に応じて,使用角度θを決定する処理手順を示すフローチャートである。決定した使用角度θの範囲に含まれる超音波振動子から出力される超音波エコー信号を用いて被検体における関心領域の音速が算出される。
 第1の角度θ1が第3の角度θ3以上の場合には(ステップS11でNO),第1の角度θ1が第2の角度θ2より小さいかどうかが制御装置2によって判断される(ステップS12)。第1の角度θ1が第2の角度θ2よりも小さい場合には(ステップS12でYES),使用角度θは第3の角度θ3と決定される(ステップS13)。第1の角度θ1が第2の角度θ2以上の場合には(ステップS12でNO),使用角度θは,第2の角度θ2と決定される(ステップS14)。
 第1の角度θ1が第3の角度θ3より小さい場合には(ステップS11でYES),第4の角度θ4が第1の角度θ1よりも小さいかどうかが制御装置2によって判断される(ステップS15)。第4の角度θ4が第1の角度θ1より小さい場合には(ステップS15でYES),使用角度θは第1の角度θ1と決定される(ステップS16)。第4の角度θ4が第1の角度θ1以上の場合には(ステップS15でNO),使用角度θは第4の角度θ4と決定される(ステップS17)。
 図18のステップS11において,第1の角度θ1が第3の角度θ3と等しい場合にステップS5の処理に以降してもよい。また,ステップS12おいて,第1の角度θ1が第2の角度θ2と等しい場合に,使用角度θを第3の角度θ3と決定してもよい。さらに,ステップS15において,第4の角度θ4が第1の角度θ1と等しい場合に,使用角度θを第1の角度θ1と決定してもよい。
 図19は,他の実施例を示すもので,超音波プローブ10Cから被検体に超音波wが送信される様子を示している。
 超音波プローブ10Cは,リニア型の超音波プローブ10Cである。超音波プローブ10Cには複数の超音波振動子81から101が一直線状に配列されている。
 超音波プローブ10Cの送信方向は,超音波プローブ10Cの超音波振動子81-101の配列方向に垂直方向であり,被検体に向かう方向である。被検体における関心領域36が設定されており,被検体における関心領域36は矩形である。被検体における関心領域36の送信方向に最も離れている部分に焦点Fが設定されている。
 第1の一部の超音波振動子90-94から被検体に対して超音波wが送信され,焦点Fからの超音波エコーが第2の一部の超音波振動子87-97において受信される。第1の超音波振動子90-94と第2の超音波振動子87-97とが同じでもよいし,超音波プローブ10Cに含まれる複数の超音波振動子81-101のすべてが第1の一部の超音波振動子または第2の一部の超音波振動子でもよいし,超音波プローブ10Cに含まれる複数の超音波振動子81-101のすべてが第1の一部の超音波振動子および第2の一部の超音波振動子でもよい。
 焦点Fと,焦点Fからの距離がもっとも近い位置にある第1の超音波振動子92とを結ぶ直線は第1の直線L1である。また,被検体における関心領域36の4つの頂点P1,P2,P3およびP4のうち,焦点Fから最も遠い位置にある2つの第1の頂点P1およびP2と焦点Fとを結ぶ直線が第2の直線L2である。
 設定された焦点Fからの超音波エコーを受信する第2の一部の超音波振動子87-97のうち,焦点Fからの距離が最も近い位置にある第1の超音波振動子60と,第1の超音波振動子60以外である第2の超音波振動子であって焦点Fおよび被検体における関心領域35を通過する直線L2上に位置し,かつ第1の超音波振動子60を間に挟む2つの第2の超音波振動子87および97と,第1の超音波振動子50と一方の第2の超音波振動子87との間にある他の超音波振動子88-91と,第1の超音波振動子50と他方の第2の超音波振動子96から出力される超音波エコー信号を用いて,被検体における関心領域36の音速が音速算出装置18において算出される。
1 超音波診断装置(音速算出システム)
2 制御装置(送信制御手段,音速算出手段,焦点設定手段,音速算出手段)
3 操作装置(関心領域設定手段)
5 操作制御装置(送信制御手段)
7 送信制御装置(送信制御手段)
8 駆動信号発生装置(送信制御手段)
10,10A,10B,10C 超音波プローブ(音響波プローブ)
15 STC装置(音響波画像生成手段)
16 DSC(音響波画像生成手段)
18 音速算出装置(音速算出手段)

Claims (11)

  1.  複数の音響波振動子が配列されている音響波プローブ,
     音響波振動子を駆動して音響波振動子から被検体に音響波を送信させる送信駆動手段,
     上記被検体に上記音響波を送信することにより上記被検体からの音響波エコーを受信し出力される音響波エコー信号を用いて上記被検体の音響波画像を生成する音響波画像生成手段,
     上記音響波画像生成手段によって生成された音響波画像に対して,音響波画像における関心領域を設定する関心領域設定手段,
     上記音響波画像における関心領域に対応する上記被検体における関心領域の上記音響波の送信方向に最も離れている部分に,上記複数の音響波振動子のうち第1の一部の音響波振動子から送信される音響波の焦点を設定する焦点設定手段,ならびに
     上記焦点設定手段において設定された焦点からの上記音響波エコーを受信する第2の一部の音響波振動子のうち,上記焦点からの距離が最も近い位置にある第1の音響波振動子と,上記第1の音響波振動子以外である第2の音響波振動子であって上記焦点および上記被検体における関心領域を通過する直線上に位置し,かつ上記第1の音響波振動子を間に挟む2つの第2の音響波振動子と,上記第1の音響波振動子と上記第2の音響波振動子との間にある他の音響波振動子と,から出力される音響波エコー信号を用いて,上記被検体における関心領域の音速を算出する音速算出手段,
    を備えた音速算出システム。
  2.  上記被検体における関心領域は,円の二つの半径と弧で囲まれた形状であり,
    上記音響波の送信方向に最も離れている部分は,上記被検体における関心領域のうち上記音響波プローブから最も離れている弧の中央である,
     請求項1に記載の音速算出システム。
  3.  上記焦点と上記第1の音響波振動子とを結ぶ直線を第1の直線とし,上記被検体における関心領域の4つの頂点のうち上記焦点から最も遠い位置にある第1の頂点と上記焦点とを結ぶ直線を第2の直線とした場合に,
     上記音速算出手段は,上記第2の音響波振動子を上記第2の直線上に位置する音響波振動子に設定した上で,上記第1の音響波振動子と上記第2の音響波振動子と上記他の音響波振動子とから出力される音響波エコー信号を用いて上記被検体における関心領域の音速を算出する,
     請求項2に記載の音速算出システム
  4.  上記焦点と上記複数の音響波振動子のうち上記焦点から最も遠い位置にある第3の音響波振動子とを結ぶ直線を第3の直線とした場合に,
     上記音速算出手段は,
    上記第1の直線と上記第2の直線とのなす角である第1の角度が,上記第1の直線と上記第3の直線とのなす角である第2の角度より小さい場合には,上記第2の音響波振動子を上記第2の直線上に位置する音響波振動子に設定した上で,上記第1の音響波振動子と上記第2の音響波振動子と上記他の音響波振動子とから出力される音響波エコー信号を用いて上記被検体における関心領域の音速を算出し,
     上記第1の角度が上記第2の角度よりも大きい場合には,上記第2の音響波振動子を上記第3の音響波振動子に設定した上で,上記第1の音響波振動子と上記第2の音響波振動子と上記他の音響波振動子とから出力される音響波エコー信号を用いて上記被検体における関心領域の音速を算出する,
      請求項3に記載の音速算出システム。
  5.  上記第2の一部の音響波振動子は,上記設定された上記焦点からの上記音響波エコーを,上記被検体における関心領域の音速計算に用いられる超音波エコーを同時に受信する事が可能な最大数の音響波振動子からなり,
     上記焦点と上記第2の一部の音響波振動子のうち上記焦点から最も遠い位置にある第4の音響波振動子とを結ぶ直線を第4の直線とした場合に,
     上記音速算出手段は,
     上記第1の直線と上記第2の直線とのなす角である第1の角度が,上記第1の直線と上記第4の直線とのなす角である第3の角度より小さい場合には,上記第2の音響波振動子を上記第2の直線上に位置する音響波振動子に設定した上で,上記第1の音響波振動子と上記第2の音響波振動子と上記他の音響波振動子とから出力される音響波エコー信号を用いて上記被検体における関心領域の音速を算出し,
     上記第1の角度が,上記第3の角度よりも大きい場合には,上記第2の音響波振動子を上記第4の音響波振動子に設定した上で,上記第1の音響波振動子と上記第2の音響波振動子と上記他の音響波振動子とから出力される音響波エコー信号を用いて上記被検体における関心領域の音速を算出する
     請求項3に記載の音速算出システム。
  6.  上記第2の一部の音響波振動子に含まれる第5の音響波振動子であって,
    上記第5の音響波振動子は,上記焦点と上記第1の音響波振動子との距離である第1の距離と,上記焦点と上記第5の音響波振動子との距離である第2の距離との差が所定の検出限界幅に最も近い第5の音響波振動子であり,
    上記焦点と上記第2の一部の音響波振動子のうち上記焦点から最も遠い位置にある第4の音響波振動子とを結ぶ直線を第5の直線とした場合に,
     上記音速算出手段は,
    上記第1の直線と上記第2の直線とのなす角である第1の角度が,上記第1の直線と上記第5の直線とのなす角である第4の角度より大きい場合には,上記第2の音響波振動子を上記第2の直線上に位置する音響波振動子に設定した上で,上記第1の音響波振動子と上記第2の音響波振動子と上記他の音響波振動子とから出力される音響波エコー信号を用いて上記被検体における関心領域の音速を算出し,
     上記第1の角度が,上記第4の角度よりも小さい場合には,上記第2の音響波振動子を上記第5の音響波振動子に設定した上で,上記第1の音響波振動子と上記第2の音響波振動子と上記他の音響波振動子とから出力される音響波エコー信号を用いて上記被検体における関心領域の音速を算出する,
     請求項3に記載の音速算出システム。
  7.  上記第2の一部の音響波振動子は,上記設定された焦点からの上記音響波エコーを上記被検体における関心領域の音速計算に用いられる超音波エコーを同時に受信することが可能な最大数の音響波振動子からなり,
     上記焦点と上記複数の音響波振動子のうち上記焦点から最も遠い位置にある第3の音響波振動子とを結ぶ直線を第3の直線とし,
     上記焦点と上記第2の一部の音響波振動子のうち上記焦点から最も遠い位置にある第4の音響波振動子とを結ぶ直線を第4の直線とし,かつ
     上記第1の直線と上記第2の直線とのなす角である第1の角度が,上記第1の直線と上記第4の直線とのなす角である第3の角度より大きい場合において,
     上記音速算出手段は,
     上記第1の直線と上記第2の直線とののなす角である第1の角度が,上記第1の直線と上記第3の直線とのなす角である第2の角度より小さい場合には,上記第2の音響波振動子を上記第4の音響波振動子に設定した上で,上記第1の音響波振動子と上記第2の音響波振動子と上記他の音響波振動子とから出力される音響波エコー信号を用いて上記被検体における関心領域の音速を算出し,
     上記第1の角度が上記第2の角度よりも大きい場合には,上記第2の音響波振動子を上記第3の音響波振動子に設定した上で,上記第1の音響波振動子と上記第2の音響波振動子と上記他の音響波振動子とから出力される音響波エコー信号を用いて上記被検体における関心領域の音速を算出する,
     請求項3に記載の音速算出システム。
  8.  上記第2の一部の音響波振動子は,上記設定された焦点からの上記音響波エコーを上記被検体における関心領域の音速計算に用いられる超音波エコーを同時に受信することが可能な最大数の音響波振動子からなり,
     上記第2の一部の音響波振動子に含まれる第5の音響波振動子であって,
    上記第5の音響波振動子は,上記焦点と上記第1の音響波振動子との距離である第1の距離と,上記焦点と上記第5の音響波振動子との距離である第2の距離との差が所定の検出限界幅に最も近い第5の音響波振動子であり,
     上記焦点と上記複数の音響波振動子のうち上記焦点から最も遠い位置にある第3の音響波振動子とを結ぶ直線を第3の直線とし,
     上記焦点と上記第2の一部の音響波振動子のうち上記焦点から最も遠い位置にある第4の音響波振動子とを結ぶ直線を第4の直線とし,
     上記焦点と上記第2の一部の音響波振動子のうち上記焦点から最も遠い位置にある第4の音響波振動子とを結ぶ直線を第5の直線とし,かつ
     上記第1の直線と上記第2の直線とのなす角である第1の角度が,上記第1の直線と上記第4の直線とのなす角である第3の角度より小さい場合において,
     上記音速算出手段は,
     上記第1の直線と上記第2の直線とのなす角である第1の角度が,上記第1の直線と上記第5の直線とのなす角である第4の角度より大きい場合には,上記第2の音響波振動子を上記第2の直線上に位置する音響波振動子に設定した上で,上記第1の音響波振動子と上記第2の音響波振動子と上記他の音響波振動子とから出力される音響波エコー信号を用いて上記被検体における関心領域の音速を算出し,
     上記第1の角度が上記第4の角度よりも小さい場合には,上記第2の音響波振動子を上記第5の音響波振動子に設定した上で,上記第1の音響波振動子と上記第2の音響波振動子と上記他の音響波振動子とから出力される音響波エコー信号を用いて上記被検体における関心領域の音速を算出する,
     請求項3に記載の音速算出システム。
  9.  上記音響波プローブは,上記複数の音響波振動子が円弧状に配列されているコンベックス型の音響波プローブである,
     請求項2に記載の音速算出システム。
  10.  上記音響波プローブは,リニア型音響波プローブであり,
     上記被検体における関心領域は矩形であり,
    上記音響波の送信方向に最も離れている部分は,上記被検体における関心領域のうち上記音響波プローブから音響波の送信方向に離れている辺の中央である,
     請求項1に記載の音速算出システム。
  11.  送信駆動手段が,複数の音響波振動子が配列されている音響波プローブに含まれている上記音響波振動子を駆動して上記音響波振動子から被検体に音響波を送信させ,
     音響波画像生成手段が,上記被検体に上記音響波を送信することにより上記被検体からの音響波エコーを受信し出力される音響波エコー信号を用いて上記被検体の音響波画像を生成し,
     関心領域設定手段が,上記音響波画像生成手段によって生成された音響波画像に対して,音響波画像における関心領域を設定し,
     焦点設定手段が,上記音響波画像における関心領域に対応する上記被検体における関心領域の上記音響波の送信方向に最も離れている部分に,上記複数の音響波振動子のうち第1の一部の音響波振動子から送信される音響波の焦点を設定し,
     音速算出手段が,上記焦点設定手段によって設定された焦点からの上記音響波エコーを受信する第2の一部の音響波振動子のうち,上記焦点からの距離が最も近い位置にある第1の音響波振動子と,上記第1の音響波振動子以外である第2の音響波振動子であって上記焦点および上記被検体における関心領域を通過する直線上に位置し,かつ上記第1の音響波振動子を間に挟む2つの第2の音響波振動子と,上記第1の音響波振動子と上記第2の音響波振動子との間にある他の音響波振動子と,から出力される音響波エコー信号を用いて,上記被検体における関心領域の音速を算出する,
     音速算出方法。
PCT/JP2016/067085 2015-09-29 2016-06-08 音速算出システムおよび音速算出方法 WO2017056566A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16850743.2A EP3357431A4 (en) 2015-09-29 2016-06-08 Sound speed calculation system and sound speed calculation method
JP2017542781A JP6434642B2 (ja) 2015-09-29 2016-06-08 音速算出システムおよび音速算出方法
US15/938,196 US20180214135A1 (en) 2015-09-29 2018-03-28 Sound speed calculation system and sound speed calculation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015190725 2015-09-29
JP2015-190725 2015-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/938,196 Continuation US20180214135A1 (en) 2015-09-29 2018-03-28 Sound speed calculation system and sound speed calculation method

Publications (1)

Publication Number Publication Date
WO2017056566A1 true WO2017056566A1 (ja) 2017-04-06

Family

ID=58423131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067085 WO2017056566A1 (ja) 2015-09-29 2016-06-08 音速算出システムおよび音速算出方法

Country Status (4)

Country Link
US (1) US20180214135A1 (ja)
EP (1) EP3357431A4 (ja)
JP (1) JP6434642B2 (ja)
WO (1) WO2017056566A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533539A (zh) * 2018-08-24 2021-03-19 深圳迈瑞生物医疗电子股份有限公司 一种超声成像装置和方法、超声弹性检测装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161569A (ja) * 2011-02-09 2012-08-30 Fujifilm Corp 超音波診断装置および超音波画像生成方法
JP2012192077A (ja) * 2011-03-17 2012-10-11 Fujifilm Corp 超音波診断装置および超音波画像生成方法
JP2012196304A (ja) * 2011-03-22 2012-10-18 Fujifilm Corp 超音波診断装置および超音波画像生成方法
JP2013255598A (ja) * 2012-06-11 2013-12-26 Fujifilm Corp 超音波診断装置及び方法
JP2013255599A (ja) * 2012-06-11 2013-12-26 Fujifilm Corp 超音波診断装置及び方法
JP2015062483A (ja) * 2013-09-24 2015-04-09 日立アロカメディカル株式会社 超音波診断装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382631A (ja) * 1986-09-26 1988-04-13 株式会社東芝 超音波診断装置
JP5473381B2 (ja) * 2008-06-23 2014-04-16 キヤノン株式会社 超音波装置
WO2012002420A1 (ja) * 2010-06-30 2012-01-05 富士フイルム株式会社 超音波診断装置及び超音波診断方法
JP2012192133A (ja) * 2011-03-18 2012-10-11 Fujifilm Corp 超音波診断装置および超音波画像生成方法
US9052268B2 (en) * 2011-03-22 2015-06-09 Fujifilm Corporation Ultrasound diagnostic apparatus and method of producing ultrasound image
JP5869958B2 (ja) * 2012-05-25 2016-02-24 富士フイルム株式会社 超音波信号処理装置および超音波信号処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161569A (ja) * 2011-02-09 2012-08-30 Fujifilm Corp 超音波診断装置および超音波画像生成方法
JP2012192077A (ja) * 2011-03-17 2012-10-11 Fujifilm Corp 超音波診断装置および超音波画像生成方法
JP2012196304A (ja) * 2011-03-22 2012-10-18 Fujifilm Corp 超音波診断装置および超音波画像生成方法
JP2013255598A (ja) * 2012-06-11 2013-12-26 Fujifilm Corp 超音波診断装置及び方法
JP2013255599A (ja) * 2012-06-11 2013-12-26 Fujifilm Corp 超音波診断装置及び方法
JP2015062483A (ja) * 2013-09-24 2015-04-09 日立アロカメディカル株式会社 超音波診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3357431A4 *

Also Published As

Publication number Publication date
US20180214135A1 (en) 2018-08-02
EP3357431A1 (en) 2018-08-08
JPWO2017056566A1 (ja) 2018-04-12
JP6434642B2 (ja) 2018-12-05
EP3357431A4 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP5399632B2 (ja) 超音波診断装置
US9310472B2 (en) Focal point information determination method and apparatus, and ambient sound velocity obtaining method and apparatus
JP5702326B2 (ja) 超音波プローブおよびそれを備える超音波診断装置
JP2012217611A (ja) 超音波診断装置および超音波画像生成方法
JP6165542B2 (ja) 超音波診断装置、超音波診断装置の作動方法、及び超音波診断プログラム
JP6110760B2 (ja) 超音波診断装置および超音波診断装置の作動方法
JP2009101145A (ja) 超音波診断方法及び装置
JP2012170467A (ja) 超音波プローブおよび超音波診断装置
JP5281107B2 (ja) 超音波診断装置および超音波画像生成方法
JP6434642B2 (ja) 音速算出システムおよび音速算出方法
JP5777604B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP2009028158A (ja) 超音波診断装置
JP2012192133A (ja) 超音波診断装置および超音波画像生成方法
JP5869411B2 (ja) 超音波診断装置および超音波画像生成方法
JP6494784B2 (ja) 超音波診断装置および超音波診断装置の制御方法
JP5313610B2 (ja) 超音波診断方法及び装置
JP5331839B2 (ja) 超音波プローブおよび超音波診断装置
US9291601B2 (en) Ambient sound velocity obtaining method and apparatus
WO2014192466A1 (ja) 超音波診断装置、超音波診断装置の音線信号生成方法、及び超音波診断装置の音線信号生成プログラム
JP5247844B2 (ja) 超音波診断装置および超音波画像生成方法
JP5289482B2 (ja) 超音波プローブおよび超音波診断装置
JP5296824B2 (ja) 超音波診断装置
JP2013123470A (ja) 超音波診断装置
JPH0321229A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016850743

Country of ref document: EP