WO2017056529A1 - 重合体粒子及びその用途 - Google Patents

重合体粒子及びその用途 Download PDF

Info

Publication number
WO2017056529A1
WO2017056529A1 PCT/JP2016/059720 JP2016059720W WO2017056529A1 WO 2017056529 A1 WO2017056529 A1 WO 2017056529A1 JP 2016059720 W JP2016059720 W JP 2016059720W WO 2017056529 A1 WO2017056529 A1 WO 2017056529A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
polymer
volume
weight
particle size
Prior art date
Application number
PCT/JP2016/059720
Other languages
English (en)
French (fr)
Inventor
孝至 後藤
智之 ▲高▼橋
悟 松本
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58422898&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017056529(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to CN202110517009.XA priority Critical patent/CN113336976B/zh
Priority to CN201680057624.4A priority patent/CN108137719B/zh
Priority to KR1020207022254A priority patent/KR102382184B1/ko
Priority to US15/764,058 priority patent/US11098167B2/en
Priority to KR1020187011934A priority patent/KR20180061289A/ko
Priority to EP16850707.7A priority patent/EP3357934B8/en
Priority to JP2017542765A priority patent/JP6685316B2/ja
Publication of WO2017056529A1 publication Critical patent/WO2017056529A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/04Fractionation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8029Masked aromatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes

Definitions

  • the present invention relates to polymer particles particularly suitable as a light diffusing agent for optical members such as a light diffusing film and an antiglare film, and uses thereof (resin compositions, optical films, and external preparations).
  • Polymer particles having a volume average particle diameter of 1 to 100 ⁇ m are, for example, additives for coating agents such as paints (matting agents etc.), additives for inks (matting agents etc.), main components of adhesives or Additives, artificial marble additives (low shrinkage agents, etc.), paper treatment agents, packing materials for external preparations such as cosmetics (fillers for improving slipperiness), column packing materials used for chromatography, electrostatic charge Used in applications such as toner additives used for image development, unevenness imparting agents for resin films, light diffusing agents for optical members (optical films such as light diffusion films and antiglare films, light diffusers, etc.) Has been.
  • additives for coating agents such as paints (matting agents etc.), additives for inks (matting agents etc.), main components of adhesives or Additives, artificial marble additives (low shrinkage agents, etc.), paper treatment agents, packing materials for external preparations such as cosmetics (fillers for improving slipperiness), column packing materials used for chromatography, electrostatic charge
  • Patent Document 1 discloses that particles having a volume average particle diameter of 1.0 ⁇ m or more and 3.5 ⁇ m or less, a volume-based particle diameter variation coefficient of 30% or more, and a volume average particle diameter of twice or more. Vinyl polymer fine particles are described in which the number of coarse particles having a diameter is 180 or less out of 1 million fine particles (claim 1).
  • Patent Document 2 discloses a value ⁇ obtained by dividing a volume-based cumulative 10% particle diameter by a number-based cumulative 10% particle diameter, and a volume-based cumulative 50% particle diameter divided by a number-based cumulative 50% particle diameter.
  • the value ⁇ obtained by dividing the volume-based cumulative 90% particle diameter by the number-based cumulative 90% particle diameter is the following formula 1 ⁇ > ⁇ > ⁇ Formula 1
  • the volume-based particle diameter CV value is 30% ⁇ volume-based particle diameter CV value ⁇ 40% Equation 2
  • a value A obtained by dividing the volume-based cumulative 10% particle diameter by the volume-based cumulative 50% particle diameter is expressed by Equation 3 A ⁇ 0.75 Formula 3
  • a value B obtained by dividing the volume-based cumulative 90% particle diameter by the volume-based cumulative 50% particle diameter is expressed by Equation 4 1.1 ⁇ B ⁇ 1.6 Formula 4
  • Acrylic resin particles satisfying the above requirements and having a volume-based cumulative 50% particle diameter of 1 to 50 ⁇ m are described (claim 1, paragraph [0025]).
  • JP 2014-198797 A Japanese Patent No. 5740479
  • an optical film such as a light diffusion film and an antiglare film
  • a film base material with a coating liquid in which polymer particles are dispersed in a binder or a solvent.
  • Uniform optical properties light diffusivity, antiglare, light transmittance, etc.
  • defects such as transmission defects (defects where light can be observed without being diffused)
  • polymer particles are not aggregated in the resin composition (specifically, in a binder or an organic solvent). It is necessary to disperse uniformly.
  • the acrylic resin particles of the invention of Patent Document 1 have a volume-based particle diameter CV value (variation coefficient) of 34.9 to 37.4% (Examples 1 to 3), and are described in Patent Document 2
  • the vinyl polymer fine particles used have a volume-based particle diameter variation coefficient of 30% or more (Claim 1), both are polymer particles having a volume-based particle diameter CV value of 30% or more.
  • the proportion of small particles (polymer particles having a particle size much smaller than the average particle size) and the proportion of large particles (polymer particles having a particle size much larger than the average particle size) are large.
  • the above conventional polymer particles have a large proportion of small particles, so that the dispersion of the polymer particles dispersed in other materials has low fluidity, and the uniform dispersibility of the polymer particles in other materials Is bad.
  • an optical film such as a light diffusing film or an antiglare film
  • the viscosity of the coating liquid is reduced. Since the consistency is increased, it becomes difficult to perform coating without unevenness (high technique is required).
  • the optical characteristics (light diffusibility, antiglare property, light transmittance, etc.) of the obtained optical film are likely to be non-uniform, and defects such as transmission defects (defects where light is transmitted without being diffused) are present. Likely to happen. Since the conventional polymer particles have a large proportion of large particles, aggregation is likely to occur and uniform dispersibility is poor.
  • an optical film such as a light diffusing film or an antiglare film
  • a coating liquid in which polymer particles are dispersed in a binder and a solvent and drying the coating liquid on a film substrate after coating In the drying step, aggregation is likely to occur when the ratio of large particles that often involve surrounding small particles and become a starting point of aggregation and often cause defects. Therefore, the optical properties (light diffusibility, antiglare property, light transmittance, etc.) of the obtained optical film are likely to be non-uniform, and defects such as transmission defects are likely to occur.
  • the present invention has been made in view of the above-described situation, and an object thereof is to provide polymer particles excellent in uniform dispersibility, a resin composition using the same, an optical film, and an external preparation.
  • the polymer particles of the present invention are polymer particles containing a surfactant and have a volume-based particle size distribution variation coefficient of 13.0% to 25.0%, and 5.0 g of polymer particles. 15.0 g of water was added to the mixture, and the polymer particles were dispersed in water by carrying out a dispersion treatment for 60 minutes using an ultrasonic cleaner, placed in a centrifuge tube having an inner diameter of 24 mm, and a K factor 6943 using a centrifuge. In addition, when the supernatant is collected after centrifugation under the condition of a rotation time of 30 minutes, the concentration of the non-volatile component in the supernatant is less than 3.5% by weight.
  • polymer particles containing a surfactant are usually obtained by suspension polymerization or seed polymerization in the presence of a surfactant and an aqueous medium.
  • polymer particles thus obtained,
  • polymer particles having a remarkably small particle diameter for example, a particle diameter of 500 nm or less
  • Fine particles such as “emulsion polymerization product” are present on the surface of the polymer particles and between the polymer particles.
  • the fluidity of the dispersion in which the polymer particles are dispersed in the other material is lowered, and as a result, The uniform dispersibility of the polymer particles in the polymer may deteriorate.
  • an optical film such as a light diffusing film or an antiglare film is produced by applying a coating liquid in which such polymer particles are dispersed in a binder or a solvent onto a film substrate. It may become difficult to stabilize the optical properties (light diffusibility, anti-glare property, light transmittance, etc.) of the optical film over the entire surface by coating the liquid evenly and uniformly without increasing the viscosity of the liquid. . Therefore, the optical characteristics of the obtained optical film become non-uniform, and defects such as transmission defects may occur.
  • the concentration of the non-volatile component corresponds to the content of fine particles such as the emulsion polymerization product.
  • the concentration of the non-volatile component is suppressed to less than 3.5% by weight, it contains fine particles such as emulsion polymerization products existing on the surface of the polymer particles or between the polymer particles. The amount is small.
  • the polymer particles of the present invention have a small particle content because the volume-based particle size distribution coefficient of variation is 25% or less in addition to the small content of fine particles such as emulsion polymerization products. Therefore, the fluidity of the dispersion in which the polymer particles are dispersed in another material is high, and the uniform dispersion of the polymer particles in the other material is excellent.
  • an optical film such as a light diffusion film or an antiglare film
  • a coating liquid in which the polymer particles of the present invention are dispersed in a binder or a solvent onto a film substrate The viscosity of the liquid is kept low, and uniform and uniform coating is possible. Therefore, the optical properties (light diffusibility, antiglare property, light transmittance, etc.) of the obtained optical film become uniform, and the occurrence of defects such as transmission defects can be suppressed.
  • the polymer particles of the present invention have a volume-based particle size distribution variation coefficient of 25% or less. Since the ratio is small, aggregation is unlikely to occur and the uniform dispersibility is excellent. For example, when producing an optical film such as a light diffusing film or an antiglare film by coating a coating liquid in which the polymer particles of the present invention are dispersed in a binder and a solvent and drying the coating liquid, Aggregation during coating and drying is suppressed, and the occurrence of defects such as transmission defects can be suppressed.
  • the polymer particles of the present invention have a volume-based variation coefficient of particle size distribution of 13% or more
  • a coating liquid in which the polymer particles of the present invention are dispersed in a binder or a solvent is used as a film base.
  • an optical film such as a light diffusing film or an antiglare film is produced by coating on the material, there is a sufficient amount of small particles filling between the polymer particles having a particle size near the average particle size. Generation of defects can be suppressed.
  • an optical member having a good light diffusibility is obtained because the variation coefficient of the volume-based particle size distribution is 15.0% or more. It can be realized, and an optical member having good light transmission can be realized when the variation coefficient of the volume-based particle size distribution is 25.0% or less.
  • the resin composition of the present invention is characterized by containing the polymer particles of the present invention. Since the resin composition of the present invention contains the polymer particles of the present invention excellent in uniform dispersibility, it is excellent in uniform dispersibility.
  • the optical film of the present invention is an optical film including a base film and a coating formed thereon, and the coating includes the polymer particles of the present invention.
  • the optical film of the present invention includes a coating containing the polymer particles of the present invention having excellent uniform dispersibility, uniform optical properties (light diffusibility, antiglare property, light transmittance, etc.) in the entire optical film. Is obtained.
  • the external preparation of the present invention is characterized by containing the polymer particles of the present invention. Since the external preparation of the present invention contains the polymer particles of the present invention excellent in uniform dispersibility, it is excellent in uniform dispersibility and produces a rolling effect (slidability, ball bearing effect).
  • the polymer particles of the present invention are polymer particles containing a surfactant and have a volume-based particle size distribution variation coefficient of 13.0% to 25.0%, and 5.0 g of polymer particles. 15.0 g of water was added to the mixture, and the polymer particles were dispersed in water by carrying out a dispersion treatment for 60 minutes using an ultrasonic cleaner, placed in a centrifuge tube having an inner diameter of 24 mm, and a K factor 6943 using a centrifuge. When the supernatant is collected after centrifugation under a rotation time of 30 minutes, the concentration of non-volatile components in the supernatant (hereinafter referred to as “non-volatile component concentration”) is less than 3.5% by weight. is there.
  • the coefficient of variation of the volume-based particle size distribution is preferably more than 15.0% and not more than 25.0%.
  • the non-volatile component concentration is more preferably less than 2.0% by weight, and further preferably less than 1.0% by weight. Thereby, the uniform dispersibility of the polymer particles can be further improved.
  • the volume average particle diameter of the polymer particles is preferably 0.5 to 100 ⁇ m, more preferably 1 to 30 ⁇ m, as a light diffusing agent for optical members.
  • the optical member has both optical properties such as good antiglare property and light diffusibility and light transmittance.
  • the volume average particle diameter of the polymer particles refers to the arithmetic average of the volume-based particle size distribution measured by the Coulter method, for example, the method described in the Examples section.
  • Polymer particles having a volume average particle diameter in the range of 1 to 30 ⁇ m are suitable as a light diffusing agent for an optical film such as an antiglare film or a light diffusing film, or an optical member such as a light diffusing material. It is particularly suitable as a light diffusing agent for (especially a light diffusing film for liquid crystal displays), and is particularly suitable as a light diffusing agent for liquid crystal displays.
  • the polymer particles having a volume average particle diameter in the range of 1 to 30 ⁇ m are polymer particles having a volume average particle diameter of 1 ⁇ m or more and 8 ⁇ m or less, and polymer particles having a volume average particle diameter of more than 8 ⁇ m and 30 ⁇ m or less. Can be classified.
  • Polymer particles having a volume average particle diameter of 1 ⁇ m or more and 8 ⁇ m or less are suitable as a light diffusing agent for small liquid crystal displays (in particular, a light diffusing agent used as a light diffusing film constituting a small liquid crystal display). This is because a small liquid crystal display is usually required to have higher definition (narrow pixel pitch) than a large liquid crystal display.
  • the polymer particles having a volume average particle diameter of more than 8 ⁇ m and not more than 30 ⁇ m are suitable as a light diffusing agent for large liquid crystal displays (particularly, a light diffusing agent used as a light diffusing film constituting a large liquid crystal display). This is because the large liquid crystal display is required to have high definition, but the required level is not as required as the small liquid crystal display.
  • the small liquid crystal display is a liquid crystal display of a portable device typified by a smartphone or a tablet terminal, and has a size of 15 inches or less, typically 10 inches or less.
  • the small liquid crystal display is a liquid crystal display of a stationary device typified by a liquid crystal television, and has a size of more than 15 inches, typically 20 inches or more.
  • the volume average particle diameter of the polymer particles is preferably 0.5 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and more preferably 4 to 40 ⁇ m as an additive for coating agents such as paints or inks. More preferably, it is most preferably 8 to 30 ⁇ m.
  • the volume average particle diameter of the polymer particles is preferably 0.5 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and more preferably 4 to 30 ⁇ m, as an additive for external preparations. More preferably, it is most preferably in the range of 6 to 10 ⁇ m.
  • the surfactant content per unit surface area of the polymer particles is preferably 10 to 250 ⁇ 10 ⁇ 5 g / m 2 , more preferably 10 to 200 ⁇ 10 ⁇ 5 g / m 2. preferable.
  • the volume average particle diameter of the polymer particles is more than 8 ⁇ m and not more than 30 ⁇ m
  • the content of the surfactant per unit surface area of the polymer particles is 10 to 150 ⁇ 10 ⁇ 5 g / m 2. More preferably, it is 10 to 100 ⁇ 10 ⁇ 5 g / m 2 .
  • the content of the surfactant per unit surface area of the polymer particles is not more than the upper limit of the above range, the uniform dispersibility of the polymer particles can be further improved.
  • the content of the surfactant in the polymer particles is, for example, the content of the surfactant in the polymer particles measured by liquid chromatography / mass spectrometry (LC-MS-MS). It can be calculated by dividing by the specific surface area of the polymer particles measured using (nitrogen adsorption method).
  • the surfactant contained in the polymer particles of the present invention is the surfactant remaining in the production of the polymer particles.
  • any surfactant usually used in the production of polymer particles for example, an anionic surfactant as described in the section of [Method for producing polymer particles] described later, Nonionic surfactants, cationic surfactants, and amphoteric surfactants can be exemplified.
  • the surfactant contained in the polymer particles of the present invention preferably contains at least one of an anionic surfactant and a nonionic surfactant, and more preferably contains an anionic surfactant. When the polymer particles of the present invention contain an anionic surfactant, the dispersion stability during the polymerization reaction can be ensured.
  • the polymer constituting the polymer particles of the present invention is, for example, a vinyl monomer polymer.
  • the vinyl monomer include a monofunctional vinyl monomer having one ethylenically unsaturated group and a polyfunctional vinyl monomer having two or more ethylenically unsaturated groups. .
  • Examples of the monofunctional vinyl monomer include, for example, (meth) acrylate monomers; styrene monomers (aromatic vinyl monomers); vinyl acetate, vinyl propionate, vinyl versatate, etc. Saturated fatty acid vinyl monomers; vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; ethylenic unsaturation such as acrylic acid, methacrylic acid, crotonic acid, citraconic acid, itaconic acid, maleic acid and fumaric acid Carboxylic acid; Ethylenically unsaturated carboxylic acid anhydride such as maleic anhydride; Ethylenically unsaturated dicarboxylic acid monoalkyl ester such as monobutylmaleic acid; Ethylenically unsaturated carboxylic acid and ethylenically unsaturated dicarboxylic acid monoalkyl ester Ethylenically unsaturated carboxylates such as ammonium salts or alkali metal
  • Examples of the (meth) acrylate monomer include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, isononyl acrylate, acrylic acid Alkyl acrylate monomers such as lauryl and stearyl acrylate; alkyl methacrylate monomers such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and stearyl methacrylate; glycidyl acrylate (Meth) acrylic acid ester having an epoxy group (glycidyl group) such as glycidyl methacrylate; hydroxyalkyl (meth) acrylate such as 2-hydroxyethyl methacrylate and 2-hydroxypropyl acrylate; dimethyl Amino ethyl me
  • the (meth) acrylic acid ester monomer preferably contains at least one of an alkyl acrylate monomer and an alkyl methacrylate monomer.
  • (meth) acrylate means acrylate or methacrylate
  • (meth) acryl means acryl or methacryl.
  • styrenic monomer examples include styrene, ⁇ -methylstyrene, vinyl toluene, and ethyl vinyl benzene.
  • polyfunctional vinyl monomer examples include, for example, allyl (meth) acrylate, divinylbenzene, diallyl phthalate, triallyl cyanurate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and polyethylene glycol dimethacrylate.
  • polyethylene glycol (600) dimethacrylate) propylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and the like.
  • the above-mentioned vinyl monomers may be used alone or in combination of two or more.
  • the polymer particles are preferably composed of at least one of a (meth) acrylic polymer, a styrene polymer, and a (meth) acryl-styrene copolymer.
  • the (meth) acrylic polymer is a polymer of a (meth) acrylic acid ester monomer, or a (meth) acrylic acid ester monomer, a (meth) acrylic acid ester monomer, and styrene. It is a copolymer with a vinyl monomer other than the monomer.
  • the styrene polymer is a polymer of a styrene monomer or a copolymer of a styrene monomer and a vinyl monomer other than a (meth) acrylate monomer and a styrene monomer. It is a polymer.
  • the (meth) acrylic-styrene copolymer is a copolymer of a (meth) acrylic acid ester monomer and a styrene monomer, or a (meth) acrylic acid ester monomer.
  • the polymer particles are preferably composed of a (meth) acrylic polymer or a (meth) acryl-styrene copolymer from the viewpoint of light diffusibility and antiglare property.
  • the polymer constituting the polymer particles is preferably a copolymer (crosslinked polymer) of the monofunctional vinyl monomer and the polyfunctional vinyl monomer. Therefore, the polymer constituting the polymer particles is particularly preferably a (meth) acrylic crosslinked polymer or a (meth) acrylic-styrene crosslinked copolymer in terms of light diffusibility and antiglare property. .
  • the amount of the structural unit derived from the polyfunctional vinyl monomer in the polymer is preferably in the range of 5 to 50% by weight with respect to 100% by weight of the polymer. When the quantity of the structural unit derived from the said polyfunctional vinyl-type monomer is less than the said range, the crosslinking degree of the said polymer will become low.
  • the polymer particles when polymer particles are mixed with a binder and applied as a resin composition, the polymer particles may swell and increase the viscosity of the resin composition, which may reduce the coating workability. Furthermore, as a result of the low degree of crosslinking of the polymer, the polymer particles are mixed with the binder and molded when the polymer particles are heated during mixing or molding (so-called kneading application). Particles are easily dissolved or deformed. When the amount of the structural unit derived from the polyfunctional vinyl monomer is larger than the above range, the improvement in the effect commensurate with the use amount of the polyfunctional vinyl monomer is not recognized, and the production cost increases. There is.
  • the gel fraction of the polymer particles of the present invention is preferably 90% by weight or more, and more preferably 97% by weight or more. If the gel fraction is less than 90% by weight, sufficient solvent resistance cannot be ensured.
  • polymer particles are mixed with an organic solvent together with a binder and coated on a film substrate, When an optical film such as a light diffusing film is used, polymer particles are dissolved in an organic solvent, and there is a possibility that optical properties such as light diffusibility and antiglare property cannot be obtained sufficiently.
  • a gel fraction shall point out the gel fraction measured, for example by the method as described in the term of an Example.
  • the refractive index of the polymer particles of the present invention is preferably 1.490 to 1.595.
  • the polymer particles having the above-described structure exhibit good optical characteristics (for example, light transmittance, antiglare property, light diffusibility, etc.) when used for an optical member such as an antiglare film or a light diffusion film.
  • the polymer particles of the present invention preferably have a maximum particle size in a volume-based particle size distribution of 3.5 times or less of the volume average particle size.
  • the maximum particle diameter in the volume-based particle diameter distribution is 3.5 times or less of the volume average particle diameter. Is preferable, and is more preferably 2.5 times or less of the volume average particle diameter.
  • the volume average particle diameter of the polymer particles of the present invention is more than 8 ⁇ m and not more than 30 ⁇ m
  • the maximum particle diameter in the volume-based particle diameter distribution is 2.5 times or less of the volume average particle diameter. It is more preferable that it is 2.0 times or less of the volume average particle diameter.
  • the maximum particle size in the volume-based particle size distribution is less than or equal to the above upper limit, coarse particles that involve many surrounding small particles and often become defects as a starting point of aggregation (a weight having a particle size larger than the above upper limit). Since the coalesced particles can be removed, the uniform dispersibility of the polymer particles can be further improved.
  • the number of polymer particles having a particle diameter of 8 ⁇ m or more and 10 ⁇ m or less is preferably 2 or less in 300,000.
  • the uniform dispersibility of the polymer particles can be further improved.
  • the value obtained by dividing the variation coefficient of the number-based particle size distribution by the variation coefficient of the volume-based particle size distribution is preferably 1.0 to 3.0.
  • a value obtained by dividing the variation coefficient of the number-based particle size distribution by the variation coefficient of the volume-based particle size distribution represents the distribution variation and the number of small particles.
  • the value obtained by dividing the variation coefficient of the number-based particle size distribution by the variation coefficient of the volume-based particle size distribution is not more than the upper limit of the above range, so that the polymer particles of the present invention were dispersed in a binder or a solvent.
  • the coating liquid When the coating liquid is coated on a film substrate to produce an optical film such as a light diffusing film or an antiglare film, the coating liquid is kept low in viscosity and uniform and non-uniform coating is possible. It becomes. Therefore, the optical properties (light diffusibility, antiglare property, light transmittance, etc.) of the obtained optical film become uniform, and the occurrence of defects such as transmission defects can be suppressed. Further, the value obtained by dividing the variation coefficient of the number-based particle size distribution by the variation coefficient of the volume-based particle size distribution is not less than the lower limit of the above range, so that the polymer particles of the present invention are dispersed in a binder or a solvent.
  • the coated coating liquid When the coated coating liquid is applied onto a film substrate to produce an optical film such as a light diffusing film or an antiglare film, small particles are embedded between polymer particles having a particle size near the average particle size. Since a sufficient amount exists, the generation of transmission defects can be suppressed.
  • the polymer particles of the present invention are preferably transparent particles that do not contain dyes or pigments (organic pigments or inorganic pigments). If a dye or pigment is contained in the polymer particles, the transparency of the polymer particles decreases, and when the optical film is produced using the polymer particles of the present invention, the transparency and anti-glare of the produced optical film. This is undesirable because it adversely affects the performance and diffusion performance.
  • the polymer particles of the present invention are polymer particles having a volume-based particle size distribution coefficient of variation of more than 25.0% by polymerizing a vinyl monomer in an aqueous medium in the presence of a surfactant. Then, the polymer particles can be produced by a method of classifying the polymer particles so that the variation coefficient of the volume-based particle size distribution is 13.0% or more and 25.0% or less. According to the above production method, the content of fine particles such as emulsion polymerization formed on the surfaces of the polymer particles during classification is reduced, so that the concentration of the non-volatile component is less than 3.5% by weight. Certain polymer particles of the present invention are obtained.
  • a vinyl monomer and a surfactant are added to an aqueous medium, and a high shear (shear) applied to the gap between the rotating blades and the vessel wall or the gap between the rotating blades is used.
  • a method of dispersing with a fine emulsifier such as an emulsifier / disperser (for example, “Homomixer MARK II type 2.5” manufactured by Primix Co., Ltd.), an ultrasonic processor, Nanomizer (registered trademark), or a vinyl type ceramic ceramic porous film
  • a suspension is prepared by dispersing a vinyl monomer in an aqueous medium by a method in which the monomer is pressurized and pressed into an aqueous medium.
  • Other devices may be used in combination depending on the purpose.
  • aqueous medium examples include water; lower alcohols such as methyl alcohol and ethyl alcohol (alcohols having 5 or less carbon atoms); mixtures of water and lower alcohols, and the like.
  • the surfactant stabilizes the dispersion of the vinyl monomer in the liquid medium during the polymerization.
  • any of an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant can be used.
  • a liquid medium is used.
  • the dispersion of the vinyl-based monomer can be more stably ensured, and polymer particles having a uniform particle diameter can be obtained, so that at least one of an anionic surfactant and a nonionic surfactant Is preferably used. It is more preferable to use at least an anionic surfactant as the surfactant. Thereby, the dispersion stability at the time of a polymerization reaction is securable. On the other hand, when only a nonionic surfactant is used as the surfactant, significant aggregation may occur during the polymerization reaction.
  • any known anionic surfactant such as fatty acid salt type, sulfate ester type, sulfonate salt type, phosphate ester salt type, phosphate ester type can be used.
  • nonionic surfactant any known nonionic surfactant such as an ester type, an ether type, and an ester / ether type can be used.
  • a polyoxyethylene alkyl such as polyoxyethylene tridecyl ether can be used.
  • Polyoxyethylene alkyl phenyl ethers such as ether, polyoxyethylene octylphenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene fatty acid esters, polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene alkyl Polyoxyalkylene amines such as amines, oxyethylene-oxypropylene block polymers, polyoxyalkylene tridecyl ethers in which the alkylene group has 3 or more carbon atoms Kill ether, sorbitan fatty acid esters, glycerin fatty acid ester and the like. These nonionic surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • cationic surfactant known cationic surfactants such as amine salt type and quaternary ammonium salt type can be used, but water-soluble cationic surfactants are used from the viewpoint of handling. It is advantageous.
  • the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate; alkyltrimethylammonium such as lauryltrimethylammonium chloride, hexadecyltrimethylammonium chloride, cocoyltrimethylammonium chloride, and dodecyltrimethylammonium chloride.
  • alkyl dimethyl benzyl chlorides such as hexadecyl dimethyl benzyl ammonium chloride and lauryl dimethyl benzyl ammonium chloride;
  • These cationic surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • amphoteric surfactants examples include lauryl dimethylamine oxide, phosphate ester surfactants, phosphite ester surfactants, and the like. These amphoteric surfactants may be used alone or in combination of two or more.
  • the above surfactants may be used alone or in combination of two or more.
  • the surfactant preferably has a solubility in water at a liquid temperature of 25 ° C. of 0.3 g / 100 ml to 5.0 g / 100 ml, more preferably 0.5 g / 100 ml to 3.0 g / 100 ml. If a surfactant having a solubility of less than 0.3 g / 100 ml is used, the vinyl monomer may not be stably dispersed in the aqueous medium when the liquid medium is an aqueous medium in the polymerization step.
  • a surfactant having a solubility exceeding 5.0 g / 100 ml has a poor hydrophobic group effect and a poor effect of stabilizing the dispersion of the vinyl monomer in an aqueous medium.
  • a large amount of a surfactant is required to stabilize the dispersion of the vinyl monomer in the aqueous medium. It is not preferable in terms of sex.
  • the amount of the surfactant used in the polymerization of the vinyl monomer is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the vinyl monomer.
  • the amount of the surfactant used is less than the above range, the polymerization stability may be lowered.
  • there is more usage-amount of surfactant than the said range it is uneconomical in terms of cost.
  • a polymerization initiator may be added to the vinyl monomer as necessary.
  • the polymerization initiator may be obtained by mixing the polymerization initiator with the vinyl monomer, and then dispersing the obtained mixture in an aqueous medium, or combining both the polymerization initiator and the vinyl monomer. Those separately dispersed in an aqueous medium may be mixed.
  • a polymerization initiator is used as necessary.
  • the polymerization initiator is not particularly limited.
  • benzoyl peroxide lauroyl peroxide, benzoyl peroxide, o-methoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide
  • Organic peroxides such as oxide, t-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis (2, 4-dimethylvaleronitrile), 2,2′-azobis (2,3-dimethylbutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,3,3) 3-trimethylbutyronitrile), 2,2′-azobis (2-isopropylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbononitrile) ), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), (2-carbamoyl
  • a dispersant is used as necessary.
  • the dispersant include soluble poorly water-soluble inorganic compounds such as calcium phosphate and magnesium pyrophosphate; water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, celluloses (hydroxyethyl cellulose, carboxymethyl cellulose, etc.) and polycarboxylic acids. It is done.
  • Each of the dispersants may be used alone or in combination of two or more.
  • the amount of the dispersant added is preferably in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the vinyl monomer.
  • An antioxidant such as pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] is used in the reaction system for the polymerization of the vinyl monomer as necessary. May be.
  • a molecular weight modifier may be used in order to adjust the weight average molecular weight of the polymer particles obtained.
  • the molecular weight modifier include mercaptans such as n-octyl mercaptan, n-dodecyl mercaptan and tert-dodecyl mercaptan; ⁇ -methylstyrene dimer; terpenes such as ⁇ -terpinene and dipentene; halogens such as chloroform and carbon tetrachloride. Hydrocarbons can be used.
  • the weight average molecular weight of the polymer particles obtained can be adjusted by adjusting the amount of the molecular weight modifier used.
  • nitrites such as sodium nitrite, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, polyphenols
  • a water-soluble polymerization inhibitor such as may be added to the aqueous medium.
  • the polymerization temperature of the vinyl monomer can be appropriately selected according to the type of vinyl monomer and the type of polymerization initiator used as necessary.
  • the polymerization reaction may be performed in an atmosphere of an inert gas (for example, nitrogen) that is inert to the polymerization.
  • the polymerization method of the vinyl monomer is not particularly limited as long as it is a known polymerization method using a liquid medium and a surfactant.
  • methods such as seed polymerization, emulsion polymerization, suspension polymerization, etc. Is mentioned.
  • suspension polymerization is most preferable because polymer particles having a volume-based particle size distribution variation coefficient of 13.0% to 25.0% can be easily obtained.
  • the suspension polymerization is a polymerization method in which a vinyl monomer and an aqueous medium such as water are mechanically stirred to suspend the vinyl monomer in the aqueous medium for polymerization.
  • the suspension polymerization is characterized in that polymer particles having a small particle size and a relatively uniform particle size can be obtained.
  • a dispersant composed of a soluble poorly water-soluble inorganic compound is used. It is preferable to do.
  • an acid for example, hydrochloric acid
  • a solid-liquid separation process such as a filtration process, a washing process, and a drying process.
  • the polymer particles of the present invention can be obtained by performing classification after performing the pulverization step. In the case of producing polymer particles having a volume average particle diameter of 2 ⁇ m or more and 4 ⁇ m or less, the cake obtained by performing the solid-liquid separation (deliquidation) step after the dissolution step is re-slurried with water. You may wash
  • the dispersant and the inorganic substance derived from the dispersant can be sufficiently removed, the content of fine particles such as an emulsion polymerization product can be reduced, and the concentration of the non-volatile component is less than 3.5% by weight. It becomes easy to obtain coalesced particles.
  • the cleaning liquid used in the cleaning step is preferably an aqueous medium, and examples thereof include water; lower alcohols such as methyl alcohol and ethyl alcohol (alcohols having 5 or less carbon atoms); and mixtures of water and lower alcohols. It is preferable to use the same medium as used in the polymerization step.
  • the weight of the cleaning liquid used in the cleaning step is preferably at least twice the weight of the polymer particles, and more preferably at least four times the weight of the polymer particles. This makes it easier to obtain the polymer particles of the present invention having a non-volatile component concentration of less than 3.5% by weight, and the weight of the present invention with a low surfactant content per unit surface area of the polymer particles. Combined particles (especially polymer particles of the present invention having a particle size of 10 to 250 ⁇ 10 ⁇ 5 g / m 2 ) are easily obtained.
  • the method for classifying polymer particles is not particularly limited as long as small particles and large particles can be removed by classification, and examples thereof include airflow classification (wind classification), screen classification (sieving classification), and the like.
  • Airflow classification is preferable because the polymer particles having a diameter can be classified without causing clogging.
  • Airflow classification refers to a method of classifying particles using an air flow.
  • Screen classification refers to a method of classifying particles on the screen into particles that pass through the screen mesh and particles that do not pass through by supplying particles on the screen and vibrating the screen.
  • the airflow classification (1) a method in which polymer particles are put on a flow of air, the polymer particles collide with the screen, and classified into polymer particles that pass through the screen mesh and polymer particles that do not pass through the screen; (2) The polymer particles are placed on a swirling airflow, and the centrifugal force applied to the polymer particles by the swirling airflow and the flow of the airflow toward the swirling center of the airflow are combined into groups of two large and small particle sizes. Examples include a classification method and (3) a classification method using the Coanda effect.
  • Examples of the air classifier that performs the air classification of (1) above are, for example, the product name “Blois Shifter” from Yugrup Co., Ltd., the product name “Hi-Volter” from Toyo High-Tech Co., Ltd., and the product name “Micro Shifter” from Hadano Industry Co., Ltd.
  • airflow classifiers commercially available at Airflow classifiers that perform airflow classification in (2) above are commercially available from Nissin Engineering Co., Ltd. under the trade name “Turbo Classifier (registered trademark)” and from Seishin Corporation under the trade name “Spedick Classifier”. The air classifier that is.
  • Examples of the air classifier that performs the air classification of (3) include a Coanda type air classifier (elbow jet classifier) commercially available from Matsubo Corporation.
  • the above three classification methods can be properly used depending on the properties of the polymer particles to be classified, the target coarse particle removal level and the fine particle removal level.
  • the air classifier of (2) When the adhesion of polymer particles is high and when it is desired to increase the removal accuracy of coarse particles and the level of fine particle removal, it is preferable to use the air classifier of (2).
  • the polymer particles of the present invention are suitable as a light diffusing agent for an optical member such as an antiglare film or a light diffusing film, or an optical member such as a light diffusing material, and for a light diffusing film (particularly a light diffusing film for liquid crystal displays) It is particularly suitable as a light diffusing agent.
  • the resin composition of the present invention contains the polymer particles of the present invention.
  • the resin composition of the present invention include a coating resin composition and a molding resin composition.
  • the resin composition of the present invention is particularly suitable as a coating resin composition.
  • the coating resin composition preferably contains a binder in addition to the polymer particles of the present invention.
  • the molding resin composition preferably contains the polymer particles of the present invention and a transparent resin. The coating resin composition and the molding resin composition will be described in detail later.
  • the optical film of the present invention is an optical film including a base film and a coating formed thereon, and the coating includes the polymer particles of the present invention.
  • the optical film of the present invention is obtained, for example, by dispersing the polymer particles in a binder to obtain a coating resin composition, and coating the obtained coating resin composition (coating agent) on a film substrate.
  • the coating resin composition (solid content thereof) is formed on the film substrate.
  • the binder is not particularly limited as long as it is used in the field according to required properties such as transparency, polymer particle dispersibility, light resistance, moisture resistance and heat resistance.
  • the binder include (meth) acrylic resins; (meth) acrylic-urethane resins; urethane resins; polyvinyl chloride resins; polyvinylidene chloride resins; melamine resins; styrene resins; alkyd resins.
  • Phenol resin epoxy resin; polyester resin; chlorinated polyolefin resin; amorphous polyolefin resin; silicone resin such as alkylpolysiloxane resin; (meth) acrylic-silicone resin, silicone-alkyd resin, silicone- Examples thereof include modified silicone resins such as urethane resins and silicone-polyester resins; binder resins such as fluorine resins such as polyvinylidene fluoride and fluoroolefin vinyl ether polymers.
  • the binder resin is preferably a curable resin capable of forming a crosslinked structure by a crosslinking reaction from the viewpoint of improving the durability of the coating resin composition.
  • the curable resin can be cured under various curing conditions.
  • the curable resin is classified into an ionizing radiation curable resin such as an ultraviolet curable resin and an electron beam curable resin, a thermosetting resin, a hot air curable resin, and the like depending on the type of curing.
  • thermosetting resin examples include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin.
  • polyfunctional (meth) acrylate resin such as polyhydric alcohol polyfunctional (meth) acrylate; diisocyanate, polyhydric alcohol, and (meth) acrylic acid ester having a hydroxy group And polyfunctional urethane acrylate resins.
  • the amount of the polymer particles in the coating resin composition is preferably 10 to 300 parts by weight with respect to 100 parts by weight of the solid content of the binder.
  • the coating resin composition may further contain an organic solvent.
  • the organic solvent is added to the coating resin composition so that the coating resin composition for the substrate is coated.
  • the coating is not particularly limited as long as the coating is easy.
  • organic solvent examples include aromatic solvents such as toluene and xylene; alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and propylene glycol monomethyl ether; Ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone can be used.
  • aromatic solvents such as toluene and xylene
  • alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and propylene glycol monomethyl ether
  • Ester solvents such as ethyl acetate and butyl acetate
  • the film substrate is preferably transparent.
  • transparent film base materials include polyester polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose (TAC), polycarbonate polymers, and polymethyl methacrylate.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • polycarbonate polymers polycarbonate polymers
  • polymethyl methacrylate polymethyl methacrylate
  • a film made of a polymer such as a (meth) acrylic polymer.
  • a film made of a polymer such as a vinyl polymer or an amide polymer such as nylon or aromatic polyamide may also be mentioned.
  • films made of polymers such as polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers and blends of the above polymers.
  • films made of polymers such as polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers and blends of the above polymers.
  • films substrate those having a particularly low birefringence are preferably used.
  • the thickness of the film substrate can be determined as appropriate, but is generally within the range of 10 to 500 ⁇ m and within the range of 20 to 300 ⁇ m from the viewpoints of strength, workability such as handling, and thin layer properties. It is preferable that it is within a range of 30 to 200 ⁇ m.
  • an additive may be added to the film substrate.
  • the additive include an ultraviolet absorber, an infrared absorber, an antistatic agent, a refractive index adjuster, and an enhancer.
  • the coating resin composition can be applied on the film substrate by bar coating, blade coating, spin coating, reverse coating, die coating, spray coating, roll coating, gravure coating, micro gravure coating, lip coating, air Known coating methods such as knife coating and dipping method may be mentioned.
  • the binder contained in the coating resin composition is an ionizing radiation curable resin
  • the solvent is dried and further irradiated with active energy rays to cure the ionizing radiation.
  • the curing resin may be cured.
  • Examples of the active energy rays include ultraviolet rays emitted from light sources such as xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, carbon arc lamps, tungsten lamps, etc .; Electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like extracted from electron beam accelerators such as a type, a resonant transformation type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type can be used.
  • light sources such as xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, carbon arc lamps, tungsten lamps, etc .
  • Electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like extracted from electron beam accelerators such as a type, a resonant transformation type, an insulated core transformer type, a linear type,
  • the thickness of the layer in which the polymer particles are dispersed in the binder formed by application (and curing) of the coating resin composition is not particularly limited and is appropriately determined depending on the particle diameter of the polymer particles. It is preferably in the range of ⁇ 50 ⁇ m, more preferably in the range of 3 to 30 ⁇ m.
  • optical film of the present invention described above can be suitably used for light diffusion or antiglare, that is, as a light diffusion film or antiglare film.
  • the film substrate is preferably transparent.
  • transparent film base materials include polyester polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose (TAC), polycarbonate polymers, and polymethyl methacrylate.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • polycarbonate polymers polycarbonate polymers
  • polymethyl methacrylate polymethyl methacrylate
  • a film made of a polymer such as a (meth) acrylic polymer.
  • a film made of a polymer such as a vinyl polymer or an amide polymer such as nylon or aromatic polyamide may also be mentioned.
  • films made of polymers such as polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers and blends of the above polymers.
  • films made of polymers such as polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers and blends of the above polymers.
  • films substrate those having a particularly low birefringence are preferably used.
  • the thickness of the film substrate can be determined as appropriate, but is generally within the range of 10 to 500 ⁇ m and within the range of 20 to 300 ⁇ m from the viewpoints of strength, workability such as handling, and thin layer properties. It is preferable that it is within a range of 30 to 200 ⁇ m.
  • the coating resin composition has been described with respect to the optical film production application, but the coating resin composition can be used for other applications.
  • a known coating surface adjusting agent, fluidity adjusting agent, ultraviolet absorber, light stabilizer, curing catalyst, extender pigment, coloring pigment, Metal pigments, mica powder pigments, dyes and the like may be included.
  • the polymer particles of the present invention can also be used for resin moldings.
  • the resin molded body is a molded body of a molding resin composition containing the polymer particles of the present invention and a transparent resin.
  • the polymer particles function as a light diffusing agent. Therefore, the resin molded body functions as a light diffusing body such as a light diffusing plate and can be used as an LED illumination cover or the like.
  • the transparent resin is a base material of the resin molded body.
  • a (meth) acrylic resin, a polycarbonate resin, a polystyrene resin, a (meth) acrylic-styrene resin ((meth) acrylic) acid ester and styrene are co-polymerized. Polymer) and the like. Among them, polystyrene resin or (meth) acryl-styrene resin is preferable as the transparent resin.
  • the amount of the polymer particles contained in the resin composition is preferably in the range of 0.01 to 5 parts by weight, preferably in the range of 0.1 to 5 parts by weight, with respect to 100 parts by weight of the transparent resin. More preferably. You may add additives, such as a ultraviolet absorber, antioxidant, a heat stabilizer, a light stabilizer, and a fluorescent whitening agent, to the said resin composition.
  • the thickness, shape and the like of the resin molded body can be appropriately selected depending on the application of the resin molded body.
  • the resin molded body can be obtained by melt-kneading the transparent resin and the polymer particles with a single screw extruder or a twin screw extruder. Moreover, the resin composition obtained by melt kneading may be molded into a plate shape or the like via a T die and a roll unit to obtain a resin molded body. Moreover, the resin composition obtained by melt kneading may be pelletized, and the pellet may be formed into a plate shape by injection molding or press molding to obtain a resin molded body.
  • the resin molded body is a molded body of a molding resin composition containing the polymer particles of the present invention having excellent uniform dispersibility, the resin molded body has uniform optical characteristics (light diffusibility, Anti-glare property, light transmittance, etc.).
  • the polymer particles of the present invention impart irregularities to the surface of the resin film in order to prevent the resin film surfaces that are in contact with each other from coming into close contact with each other when they are wound up (blocking). It can be used as an unevenness imparting agent for resin films. Since the polymer particles of the present invention have a volume-based particle size distribution variation coefficient of 25.0% or less, a good anti-blocking effect can be obtained.
  • the resin film examples include polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyolefin resins such as polyethylene resins and polypropylene resins; (meth) acrylic resins, polystyrene resins, polyethersulfone resins, and polyurethanes. Resin, polycarbonate resin, polysulfone resin, polyether resin, polymethylpentene resin, polyether ketone resin, (meth) acrylonitrile resin, norbornene resin, amorphous polyolefin resin, polyamide resin, polyimide
  • the resin film include a resin and a resin such as a triacetyl cellulose resin.
  • the polymer particles of the present invention When the polymer particles of the present invention are used as the unevenness imparting agent for resin films, the polymer particles may be added to the resin film, and a coating agent containing the polymer particles is applied to the resin film surface. Also good.
  • the polymer particles of the present invention can also be used as a raw material for external preparations.
  • the external preparation of the present invention contains the polymer particles of the present invention.
  • the content of the polymer particles in the external preparation can be appropriately set according to the type of the external preparation, but is preferably 0.1 to 50% by weight, and more preferably 0.3 to 30% by weight.
  • the content of the polymer particles with respect to the total amount of the external preparation is less than 0.1% by weight, a clear effect due to the inclusion of the polymer particles may not be recognized.
  • the content of the polymer particles exceeds 50% by weight, a remarkable effect commensurate with the increase in the content may not be recognized.
  • Examples of the above external preparations include cosmetics and external medicines.
  • the cosmetic is not particularly limited as long as it has an effect due to the inclusion of the polymer particles.
  • liquid systems such as pre-shave lotion, body lotion, lotion, cream, emulsion, body shampoo, antiperspirant, etc.
  • the external medicine is not particularly limited as long as it is applied to the skin, and examples thereof include pharmaceutical creams, ointments, pharmaceutical emulsions, and pharmaceutical lotions.
  • additives can be blended with these external preparations according to the purpose within a range not impairing the effects of the present invention.
  • examples of such additives include dispersion media such as water and lower alcohols (alcohols having 5 or less carbon atoms, such as ethanol) and 1,3-butylene glycol, oils and fats, hydrocarbons (petrol, liquid paraffin, etc.).
  • fatty acids fatty acids having 12 or more carbon atoms such as stearic acid
  • higher alcohols alcohol having 6 or more carbon atoms such as cetyl alcohol
  • sterols fatty acid esters (octyldodecyl myristate, oleic acid ester, 2-ethylhexane) Cetyl acid), metal soap, moisturizer (polyethylene glycol such as polyethylene glycol 4000, propylene glycol, etc.), anti-inflammatory agent (glycyrrhizic acid), surfactant (sorbitan sesquioleate, etc.), polymer compound, coloring material raw material (For example, red iron oxide, yellow iron oxide, black iron oxide, etc.
  • Iron oxide Iron oxide
  • pigments titanium oxide
  • clay minerals talc, mica (eg, mica; for example, muscovite), sericite, titanium sericite, magnesium aluminum silicate, etc.
  • fragrance antiseptic / bactericidal agent
  • antioxidant examples include ultraviolet absorbers, pH adjusters (such as triethanolamine), and special blend additives.
  • the present invention is not limited to this.
  • the volume average particle diameter of seed particles used in some of the following polymer particle production examples, various characteristic values of the polymer particles obtained in the following polymer particle production examples, and the following examples and A method for measuring various characteristic values of the polymer particles obtained in the comparative example will be described.
  • volume-average particle size and number average particle size of polymer particles are measured by Coulter Multisizer TM 3 (measurement device manufactured by Beckman Coulter, Inc.). The measurement shall be performed using an aperture calibrated according to the Multisizer TM 3 User's Manual issued by Beckman Coulter, Inc.
  • the aperture used for the measurement is appropriately selected depending on the size of the polymer particles to be measured.
  • Current (aperture current) and Gain (gain) are appropriately set according to the size of the selected aperture. For example, when an aperture having a size of 50 ⁇ m is selected, the current (aperture current) is set to ⁇ 800 and the gain (gain) is set to 4.
  • the volume average particle diameter of the polymer particles is an arithmetic average in a volume-based particle size distribution of 100,000 polymer particles.
  • the number average particle diameter of the polymer particles is an arithmetic average in a particle size distribution based on the number of 100,000 polymer particles.
  • volume-based CV value volume-based particle size distribution of polymer particles
  • number-based CV value variation coefficient of the number-based particle size distribution
  • volume-based particle size distribution [Calculation method of maximum particle size of volume-based particle size distribution in polymer particles]
  • volume-based the particle size at which the cumulative (cumulative) volume percentage becomes 100% is the maximum particle size of the volume-based particle size distribution of polymer particles (hereinafter referred to as “volume-based”). Called the "maximum particle size").
  • the content of the surfactant in the polymer particles is measured by extracting the polymer particles with a solvent and using a liquid chromatograph tandem mass spectrometer (LC / MS / MS apparatus).
  • polymer particles in Examples and Comparative Examples described later use at least one of lauryl sulfate, polyoxyethylene nonylphenyl ether phosphate, and di (2-ethylhexyl) sulfosuccinate as a surfactant.
  • the content of the surfactant in the polymer particles of Examples and Comparative Examples was measured by the following method.
  • Approximately 0.10 g of polymer particles as a sample are precisely weighed in a centrifuge tube, and 5 mL of methanol as an extract is poured with a whole pipette to mix the polymer particles and the extract well. After performing ultrasonic extraction at room temperature for 15 minutes, centrifugation is performed at 3500 rpm for 15 minutes, and the resulting supernatant is used as a test solution.
  • the amount of the extract is 5 ml.
  • Surfactant content ⁇ Surfactant concentration in test solution ( ⁇ g / ml) x Extraction liquid amount (ml) ⁇ ⁇ Sample weight (g)
  • the surfactant concentration is calculated from a calibration curve prepared in advance from the peak area value on the obtained chromatogram using an LC / MS / MS apparatus.
  • a calibration curve is created for each of these surfactants, and the surfactant concentration is calculated using the created calibration curve.
  • the total surfactant concentration of the surfactant is determined as the “surfactant concentration in the test solution ( ⁇ g / ml)” in the above calculation formula, and the content of the surfactant in the polymer particles is determined.
  • the calibration curve creation method is as follows according to the type of surfactant used in the examples and comparative examples.
  • the specific surface area of the polymer particles was measured by the BET method (nitrogen adsorption method) described in ISO 9277 1st edition JIS Z 8830: 2001.
  • the BET nitrogen adsorption isotherm was measured using an automatic specific surface area / pore distribution measuring device Tristar 3000 manufactured by Shimadzu Corporation, and the specific surface area was determined from the nitrogen adsorption amount using the BET multipoint method.
  • the measurement was performed using the constant volume method under the condition of the adsorbate cross section of 0.162 nm 2 using nitrogen as the adsorbate.
  • the pretreatment is performed by heating the container containing the polymer particles at 65 ° C., performing a nitrogen purge for 20 minutes, allowing to cool to room temperature, and then heating the container at 65 ° C. This was performed by performing vacuum deaeration until the pressure in the container was 0.05 mmHg or less.
  • a centrifuge tube having an inner diameter of 24 mm for example, a centrifuge tube having an internal volume of 50 mL and an inner diameter of 24 mm (manufactured by Thermo Fisher Scientific, trade name “Nalgen (registered trademark) 3119-0050”).
  • the centrifuge tube is set in a rotor, for example, an angle rotor (model number “RR24A”, manufactured by Hitachi Koki Co., Ltd., in which eight centrifuge tubes with an internal volume of 50 mL are set), and a centrifuge, for example, a high-speed cooling centrifuge (high -Speed refrigerated centrifuge (model number "CR22GII”, manufactured by Hitachi Koki Co., Ltd.) is set with the rotor described above, and using the high-speed cooling centrifuge, K-factor 6943 (when the angle rotor is used, the rotation speed is 4800 rpm) Sometimes the K factor is 6943 After centrifugation at a rotational time 30 minutes, collecting the supernatant.
  • a centrifuge for example, an angle rotor (model number “RR24A”, manufactured by Hitachi Koki Co., Ltd., in which eight centrifuge tubes with an internal volume of 50 mL are set
  • a centrifuge for example, a
  • the following calculation formula To calculate the concentration (% by weight) of a non-volatile component (corresponding to a by-product (emulsion polymerization product)) in the supernatant.
  • the gel fraction of the polymer particles indicates the degree of crosslinking of the polymer particles, and is measured by the following method. That is, first, 1.0 g of polymer particles as a sample and 0.03 g of boiling stone are precisely weighed and put into a 200 mL eggplant flask, and further 100 mL of toluene is added, and then a cooling tube is connected to the eggplant flask. The eggplant flask is immersed in an oil bath that is attached and maintained at 130 ° C. and refluxed for 24 hours.
  • the contents (dissolved solution) in the eggplant flask were weighed with glass fiber filters “GB-140 ( ⁇ 37 mm)” and “GA-200 ( ⁇ 37 mm)” manufactured by ADVANTEC.
  • Filtration is performed using a Buchner funnel type filter 3G (glass particle pore diameter 20-30 ⁇ m, volume 30 mL), and the solid content is recovered in the Buchner funnel type filter 3G.
  • the solid content collected in the Buchner funnel filter 3G is dried together with the Buchner funnel filter 3G in a vacuum oven at 130 ° C. for 1 hour, and then dried at a gauge pressure of 0.06 MPa for 2 hours. And cool to room temperature.
  • the Buchner funnel type filter 3G, the glass fiber filter, and the total weight of the solid matter are measured in a state where the Buchner funnel type filter 3G contains the solid matter. Then, the weight (g) of the dry powder is obtained by subtracting the weight of the Buchner funnel type filter 3G and the glass fiber filter and the weight of the boiling stone from the measured total weight.
  • the gel fraction is calculated by the following calculation formula.
  • the refractive index of the polymer particles was measured by the Becke method. First, polymer particles are placed on a slide glass, and a plurality of refraction liquids (cargill standard: Cargill standard refraction liquid with a refractive index nD25 of 1.480 to 1.596 are prepared in increments of 0.002 in refractive index difference. ) Is dripped. After mixing the polymer particles and the refractive liquid well, the outline of the polymer particles is observed from above with an optical microscope while irradiating light from a high pressure sodium lamp “NX35” (center wavelength 589 nm) manufactured by Iwasaki Electric Co., Ltd. Observed. And when the outline was not visible, it was judged that the refractive index of a refractive liquid and a polymer particle was equal.
  • a high pressure sodium lamp “NX35” center wavelength 589 nm
  • observation with an optical microscope is not particularly problematic as long as it is an observation at a magnification at which the outline of the polymer particles can be confirmed, but an observation magnification of about 500 times is appropriate for polymer particles having a particle diameter of 5 ⁇ m.
  • the intermediate value between the two types of refractive liquid is set as the refractive index of the polymer particles. It was judged. For example, when a test is performed with refractive liquids having a refractive index of 1.554 and a refractive index of 1.556, if there is no difference in the appearance of polymer particles between the two refractive liquids, an intermediate value of 1.555 between these refractive liquids is overlapped. The refractive index of the coalesced particles was determined.
  • the measurement was performed in an environment with a test room temperature of 23 ° C. to 27 ° C.
  • a surfactant solution as a dispersant preferably 0.05 g of alkylbenzene sulfonate, was added to 20 ml of ion exchange water to obtain a surfactant aqueous solution. Thereafter, 0.02 g of the polymer particles to be measured is added to the aqueous surfactant solution, and an ultrasonic cleaner (eg, “VS-150” manufactured by VervoCrea Inc.) is used as a disperser. A dispersion treatment for dispersing the polymer particles in the aqueous surfactant solution was performed over a period of time to obtain a dispersion for measurement.
  • an ultrasonic cleaner eg, “VS-150” manufactured by VervoCrea Inc.
  • the above-mentioned flow type particle image analyzer equipped with a standard objective lens (10 ⁇ ) is used.
  • a particle sheath liquid used in the above flow type particle image analyzer a particle sheath (trade name “PSE-900A”, Sysmex Corporation) was used.
  • the measurement dispersion prepared according to the above procedure was introduced into the flow type particle image analyzer and measured under the following measurement conditions.
  • Measurement mode LPF measurement mode Particle diameter measurement range: 0.5 to 200 ⁇ m Measurement number of polymer particles: 300,000 Measurement range of circularity of particles: 0.97 to 1.0
  • the above-mentioned flow type particles are used by using a suspension of standard polymer particles (for example, “5200A” (manufactured by Thermo Fisher Scientific, diluted standard polystyrene particles with ion-exchanged water)) before starting the measurement. Automatic focus adjustment of the image analyzer was performed.
  • the above dispersion is supplied to a polymerization reactor equipped with a stirrer and a thermometer, and suspension polymerization is carried out at 70 ° C. for 3 hours while stirring with a stirrer, whereby crosslinked polymethyl methacrylate particles as polymer particles are obtained.
  • a suspension dispersed in water was obtained.
  • Hydrochloric acid was added to the suspension to dissolve the dispersion stabilizer (metathesis magnesium pyrophosphate). Thereafter, the suspension is supplied to a centrifugal dehydrator having a filter cloth in the inner basket, and the basket is rotated for 30 minutes so that the centrifugal effect is 700 G. A cake containing was obtained. Thereafter, while rotating the basket so that the centrifugal effect is 700 G, 500 parts by weight of deionized water is supplied into the basket, the cake is washed for 30 minutes, and the basket is further rotated for 60 minutes to crosslink the polymethacrylic acid. A cake containing methyl acid particles was obtained. The obtained cake was dried to obtain crosslinked polymethyl methacrylate particles.
  • dispersion stabilizer metalthesis magnesium pyrophosphate
  • the resulting crosslinked polymethyl methacrylate particles have a volume average particle size of 14.4 ⁇ m, a volume-based particle size distribution coefficient of variation of 44.3%, a number-average particle size of 7.5 ⁇ m, and a number-based particle size distribution. Of 55.8%, (number-based CV value) / (volume-based CV value) was 1.26, and volume-based maximum particle size was 60.8 ⁇ m.
  • the resulting crosslinked polymethyl methacrylate particles have a volume average particle diameter of 6.2 ⁇ m, a volume standard CV value of 48.6%, a number average particle diameter of 3.9 ⁇ m, a number standard CV value of 43.4%, ( The number-based CV value) / (volume-based CV value) was 0.89, and the volume-based maximum particle size was 29.6 ⁇ m.
  • a primary suspension in which the monomer composition was uniformly dispersed as droplets having a droplet diameter of about 3 ⁇ m in deionized water was obtained. Further, this primary suspension is equipped with a suspension dispersing device (trade name “LNP-20 / 300” manufactured by Nanomizer Co., Ltd.) and a high-pressure dispersion device (trade name “Nanomizer (registered trademark)” manufactured by Nanomizer Co., Ltd. LA-33 "), and an impact force was applied under a high pressure of 29.4 MPa to refine the droplets of the monomer composition to obtain a secondary suspension.
  • a suspension dispersing device trade name “LNP-20 / 300” manufactured by Nanomizer Co., Ltd.
  • a high-pressure dispersion device trade name “Nanomizer (registered trademark)” manufactured by Nanomizer Co., Ltd. LA-33 "
  • the above-mentioned secondary suspension is supplied to a polymerization reactor equipped with a stirrer and a thermometer, and suspended and polymerized at 70 ° C. for 3 hours while stirring with a stirrer to form crosslinked polymethyl methacrylate as polymer particles. A suspension with particles dispersed in water was obtained.
  • an aqueous hydrochloric acid solution was added to dissolve magnesium pyrophosphate, and the cake obtained by removing the liquid by centrifugal filtration at a centrifugal effect of 1000 G for 10 minutes was re-slurried with 300 parts by weight of water.
  • An aqueous solution was added to adjust the pH of the system to a strong acid region.
  • the suspension is supplied to a centrifugal dehydrator equipped with a basket with a filter cloth inside, and the basket is rotated for 30 minutes so that the centrifugal effect is 1000 G.
  • 900 parts by weight of deionized water is supplied into the basket and washing is performed for 30 minutes. Further, the rotation of the basket is continued for 60 minutes to obtain crosslinked polymethyl methacrylate particles.
  • a cake containing was obtained. The obtained cake was dried to obtain crosslinked polymethyl methacrylate particles.
  • the resulting crosslinked polymethyl methacrylate particles have a volume average particle diameter of 2.8 ⁇ m, a volume standard CV value of 32.0%, a number average particle diameter of 2.6 ⁇ m, a number standard CV value of 30.0%, The number-based CV value) / (volume-based CV value) was 0.94, and the volume-based maximum particle size was 18.5 ⁇ m.
  • the resulting crosslinked polymethyl methacrylate particles have a volume average particle diameter of 17.7 ⁇ m, a volume-based CV value of 38.9%, a number-average particle diameter of 7.8 ⁇ m, a number-based CV value of 66.5%,
  • the standard CV value) / (volume standard CV value) was 1.71, and the volume standard maximum particle size was 59.2 ⁇ m.
  • the resulting crosslinked methyl methacrylate-styrene copolymer particles have a volume average particle size of 4.4 ⁇ m, a volume-based particle size distribution variation coefficient of 47.2%, a number average particle size of 3.1 ⁇ m, and a number-based particle size.
  • the variation coefficient of the particle size distribution was 40.9%, (number-based CV value) / (volume-based CV value) was 0.87, and the volume-based maximum particle size was 20.7 ⁇ m.
  • a primary suspension in which the monomer composition was uniformly dispersed as droplets having a droplet diameter of about 8 ⁇ m in deionized water was obtained. Further, this primary suspension is equipped with a suspension dispersing device (trade name “LNP-20 / 300” manufactured by Nanomizer Co., Ltd.) and a high-pressure dispersion device (trade name “Nanomizer (registered trademark)” manufactured by Nanomizer Co., Ltd. LA-33 "), and an impact force was applied under a high pressure of 29.4 MPa to refine the droplets of the monomer composition to obtain a secondary suspension.
  • a suspension dispersing device trade name “LNP-20 / 300” manufactured by Nanomizer Co., Ltd.
  • a high-pressure dispersion device trade name “Nanomizer (registered trademark)” manufactured by Nanomizer Co., Ltd. LA-33 "
  • the above-mentioned secondary suspension is supplied to a polymerization reactor equipped with a stirrer and a thermometer, and suspended and polymerized at 70 ° C. for 3 hours while stirring with a stirrer to form crosslinked polymethyl methacrylate as polymer particles. A suspension with particles dispersed in water was obtained.
  • the resulting crosslinked polymethyl methacrylate particles have a volume average particle diameter of 8.4 ⁇ m, a volume standard CV value of 25.7%, a number average particle diameter of 6.0 ⁇ m, a number standard CV value of 37.1%,
  • the number-based CV value) / (volume-based CV value) was 1.44, and the volume-based maximum particle size was 29.0 ⁇ m.
  • the resulting polybutyl acrylate particles have a volume average particle diameter of 29.9 ⁇ m, a volume-based CV value of 36.2%, a number-average particle diameter of 17.1 ⁇ m, a number-based CV value of 42.2% (number-based CV value) / (volume-based CV value) was 1.17, and the volume-based maximum particle size was 81.3 ⁇ m.
  • Example 1 Polymer particles (crosslinked polymethyl methacrylate particles) obtained in Production Example 1 of polymer particles are classified into a classifying rotor type airflow classifier (trade name “Turbo Classifier (registered trademark) TC-25”, manufactured by Nisshin Engineering Co., Ltd.) Using a coarse rotor as a classification rotor, classification is performed by the classification rotor type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.5. Thus, 30% by weight of coarse powder (coarse polymer particles) was removed from the polymer particles.
  • a classifying rotor type airflow classifier trade name “Turbo Classifier (registered trademark) TC-25”, manufactured by Nisshin Engineering Co., Ltd.
  • classification is performed by the classification rotor type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.0. 30% by weight of fine powder (fine polymer particles) was removed from the polymer particles.
  • fine powder fine polymer particles
  • the resulting crosslinked polymethyl methacrylate particles have a volume average particle diameter of 13.5 ⁇ m, a volume standard CV value of 15.7%, a number average particle diameter of 12.0 ⁇ m, a number standard CV value of 24.3%, The number-based CV value) / (volume-based CV value) was 1.55, and the volume-based maximum particle size was 24.0 ⁇ m.
  • the obtained crosslinked polymethyl methacrylate particles have a refractive index of 1.495, a gel fraction of 98.1% by weight, a non-volatile component concentration of 0.5% by weight, and an interface per unit surface area of the polymer particles.
  • the activator content was 67 ⁇ 10 ⁇ 5 g / m 2 .
  • Polymer particles (crosslinked polymethyl methacrylate particles) obtained in Production Example 2 of polymer particles are Coanda type airflow classifier (elbow jet classifier) (form: EJ-PURO, production: manufactured by Nippon Steel Mining Co., Ltd., sales) : Matsubo Co., Ltd.), and by classifying with the Coanda type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.5, 25% by weight of coarse powder and 30% by weight of fine powder were removed.
  • Coanda type airflow classifier elbow jet classifier
  • the resulting crosslinked polymethyl methacrylate particles have a volume average particle diameter of 5.0 ⁇ m, a volume standard CV value of 23.6%, a number average particle diameter of 4.0 ⁇ m, a number standard CV value of 31.2%, ( The number-based CV value / volume-based CV value was 1.30, and the volume-based maximum particle size was 15.8 ⁇ m.
  • the obtained crosslinked polymethyl methacrylate particles had a refractive index of 1.495, a gel fraction of 98.3% by weight, a non-volatile component concentration of 3.1% by weight, and an interface per unit surface area of the polymer particles.
  • the activator content was 225 ⁇ 10 ⁇ 5 g / m 2 .
  • Example 3 The polymer particles obtained in Production Example 3 of the polymer particles are supplied to a classification rotor type airflow classifier (trade name “Turbo Classifier (registered trademark) TC-25”, manufactured by Nisshin Engineering Co., Ltd.), and used as a classification rotor.
  • a classification rotor type airflow classifier trade name “Turbo Classifier (registered trademark) TC-25”, manufactured by Nisshin Engineering Co., Ltd.
  • classification is performed by the classifying rotor type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.5. 30% by weight of powder was removed.
  • classification is performed by the classification rotor type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.0. 25% by weight of fine powder was removed from the polymer particles.
  • crosslinked polymethyl methacrylate particles as an example of the polymer particles of the present invention were obtained.
  • the resulting crosslinked polymethyl methacrylate particles have a volume average particle diameter of 2.7 ⁇ m, a volume standard CV value of 18.1%, a number average particle diameter of 2.4 ⁇ m, a number standard CV value of 21.2%, The number-based CV value) / (volume-based CV value) was 1.17, and the volume-based maximum particle size was 6.2 ⁇ m.
  • the obtained crosslinked polymethyl methacrylate particles have a refractive index of 1.495, a gel fraction of 97.9% by weight, a non-volatile component concentration of 0.8% by weight, and an interface per unit surface area of the polymer particles.
  • the activator content was 180 ⁇ 10 ⁇ 5 g / m 2 .
  • the obtained crosslinked polymethyl methacrylate particles have a number of polymer particles having a particle diameter of 8 ⁇ m or more and 10 ⁇ m or less, one in the number of 300,000 polymer particles, and the number of polymer particles having a particle diameter of 10 ⁇ m or more. There were zero.
  • Example 4 Supply the polymer particles obtained in Production Example 4 of polymer particles to a Coanda-type air classifier (Elbow Jet Classifier) (Type: EJ-PURO, Manufactured by: Nippon Steel Mining Co., Ltd., Sales: Matsubo Co., Ltd.) Then, classification is performed by the Coanda type air classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.5, so that 35% by weight of the coarse powder is obtained from the polymer particles. 30% by weight of fine powder was removed. Thereby, crosslinked polymethyl methacrylate particles as an example of the polymer particles of the present invention were obtained.
  • a Coanda-type air classifier Elbow Jet Classifier
  • Type: EJ-PURO Manufactured by: Nippon Steel Mining Co., Ltd., Sales: Matsubo Co., Ltd.
  • the obtained crosslinked polymethyl methacrylate particles have a volume average particle diameter of 18.1 ⁇ m, a volume standard CV value of 26.2%, a number average particle diameter of 13.4 ⁇ m, a number standard CV value of 42.6% ( The number-based CV value / volume-based CV value was 2.12, and the volume-based maximum particle size was 33.2 ⁇ m.
  • the obtained crosslinked polymethyl methacrylate particles have a refractive index of 1.495, a gel fraction of 97.8% by weight, a non-volatile component concentration of 1.2% by weight, and an interface per unit surface area of the polymer particles.
  • the activator content was 64 ⁇ 10 ⁇ 5 g / m 2 .
  • Example 5 The polymer particles (crosslinked methyl methacrylate-styrene copolymer particles) obtained in Production Example 5 of polymer particles are classified into a classification rotor type airflow classifier (trade name “Turbo Classifier (registered trademark) TC-25”, Nissin Engineering Co., Ltd. Co., Ltd.) and using a coarse rotor as the classification rotor, the classification rotor type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.5. As a result of classification, 25% by weight of coarse powder (coarse polymer particles) was removed from the polymer particles.
  • a classification rotor type airflow classifier trade name “Turbo Classifier (registered trademark) TC-25”, Nissin Engineering Co., Ltd. Co., Ltd.
  • classification is performed by the classification rotor type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.0.
  • 25% by weight of fine powder (fine polymer particles) was removed from the polymer particles.
  • crosslinked methyl methacrylate-styrene copolymer particles as an example of the polymer particles of the present invention were obtained.
  • the obtained crosslinked methyl methacrylate-styrene copolymer particles have a volume average particle diameter of 4.1 ⁇ m, a volume standard CV value of 23.7%, a number average particle diameter of 3.4 ⁇ m, and a number standard CV value of 28. 0%, (number-based CV value) / (volume-based CV value) was 1.18, and the volume-based maximum particle size was 12.0 ⁇ m.
  • the obtained crosslinked methyl methacrylate-styrene copolymer particles had a refractive index of 1.505, a gel fraction of 97.2% by weight, a non-volatile component concentration of 1.0% by weight, and a unit of polymer particles.
  • the surfactant content per surface area was 98 ⁇ 10 ⁇ 5 g / m 2 .
  • Example 6 Polymer particles (crosslinked polymethyl methacrylate particles) obtained in Production Example 6 of polymer particles are Coanda type airflow classifier (elbow jet classifier) (model: EJ-PURO, manufactured by Nippon Steel Mining Co., Ltd., sold) : Matsubo Co., Ltd.), and by classifying with the Coanda type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.5, 10% by weight of coarse powder and 10% by weight of fine powder were removed. Thereby, crosslinked polymethyl methacrylate particles as an example of the polymer particles of the present invention were obtained.
  • Coanda type airflow classifier elbow jet classifier
  • model: EJ-PURO manufactured by Nippon Steel Mining Co., Ltd., sold
  • Matsubo Co., Ltd. Matsubo Co.
  • the obtained crosslinked polymethyl methacrylate particles have a volume average particle diameter of 8.0 ⁇ m, a volume standard CV value of 24.0%, a number average particle diameter of 6.2 ⁇ m, a number standard CV value of 35.0%, The number-based CV value) / (volume-based CV value) was 1.46, and the volume-based maximum particle size was 19.0 ⁇ m.
  • the obtained crosslinked polymethyl methacrylate particles had a refractive index of 1.495, a gel fraction of 97.6% by weight, a non-volatile component concentration of 2.1% by weight, and an interface per unit surface area of the polymer particles.
  • the activator content was 197 ⁇ 10 ⁇ 5 g / m 2 .
  • Example 7 The polymer particles (crosslinked polybutyl acrylate particles) obtained in Production Example 7 of polymer particles are classified into a classification rotor type airflow classifier (trade name “Turbo Classifier (registered trademark) TC-25”, manufactured by Nisshin Engineering Co., Ltd.) Using a coarse rotor as a classification rotor, classification is performed by the classification rotor type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.5. Thus, 40% by weight of the coarse powder was removed from the polymer particles.
  • a classification rotor type airflow classifier trade name “Turbo Classifier (registered trademark) TC-25”, manufactured by Nisshin Engineering Co., Ltd.
  • classification is performed by the classification rotor type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.0. 25% by weight of fine powder was removed from the polymer particles.
  • crosslinked polybutyl acrylate particles as an example of the polymer particles of the present invention were obtained.
  • the obtained crosslinked polybutyl acrylate particles have a volume average particle diameter of 28.5 ⁇ m, a volume standard CV value of 24.5%, a number average particle diameter of 18.2 ⁇ m, a number standard CV value of 37.5%, ( The number-based CV value / volume-based CV value was 1.53, and the volume-based maximum particle size was 70.4 ⁇ m.
  • the obtained crosslinked polybutyl acrylate particles had a refractive index of 1.495, a gel fraction of 98.1% by weight, a non-volatile component concentration of 0.4% by weight, and an interface per unit surface area of the polymer particles.
  • the activator content was 44 ⁇ 10 ⁇ 5 g / m 2 .
  • classification is performed by the classification rotor type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.0. 10% by weight of fine powder was removed from the polymer particles.
  • crosslinked polymethyl methacrylate particles were obtained as comparative polymer particles.
  • the resulting crosslinked polymethyl methacrylate particles have a volume average particle diameter of 13.9 ⁇ m, a volume standard CV value of 34.3%, a number average particle diameter of 7.5 ⁇ m, a number standard CV value of 55.5%, The number-based CV value) / (volume-based CV value) was 1.62, and the volume-based maximum particle size was 30.2 ⁇ m.
  • the obtained cross-linked polymethyl methacrylate particles have a refractive index of 1.495, a gel fraction of 98.3% by weight, a non-volatile component concentration of more than 3.5% by weight, and a unit surface area of the polymer particles.
  • the surfactant content in was 91 ⁇ 10 ⁇ 5 g / m 2 .
  • Polymer particles (crosslinked polymethyl methacrylate particles) obtained in Production Example 2 of polymer particles are Coanda type airflow classifier (elbow jet classifier) (form: EJ-PURO, production: manufactured by Nippon Steel Mining Co., Ltd., sales) : Matsubo Co., Ltd.), and by classifying with the Coanda type airflow classifier so that the number-based CV value / volume-based CV value does not deviate from the range of 1.0 to 3.5, 10% by weight of coarse powder and 10% by weight of fine powder were removed. As a result, crosslinked polymethyl methacrylate particles were obtained as comparative polymer particles.
  • Coanda type airflow classifier elbow jet classifier
  • the resulting crosslinked polymethyl methacrylate particles have a volume average particle diameter of 5.9 ⁇ m, a volume standard CV value of 32.0%, a number average particle diameter of 3.9 ⁇ m, a number standard CV value of 43.1%,
  • the number-based CV value) / (volume-based CV value) was 1.35, and the volume-based maximum particle size was 15.3 ⁇ m.
  • the obtained cross-linked polymethyl methacrylate particles have a refractive index of 1.495, a gel fraction of 98.4% by weight, a non-volatile component concentration of more than 3.5% by weight, and a unit surface area of the polymer particles.
  • the surfactant content in was 250 ⁇ 10 ⁇ 5 g / m 2 .
  • the obtained crosslinked polymethyl methacrylate particles have a volume average particle diameter of 2.8 ⁇ m, a volume standard CV value of 26.2%, a number average particle diameter of 2.5 ⁇ m, a number standard CV value of 28.5%, ( The number-based CV value) / (volume-based CV value) was 1.08, and the volume-based maximum particle size was 14.8 ⁇ m.
  • the obtained crosslinked polymethyl methacrylate particles have a refractive index of 1.495, a gel fraction of 97.5% by weight, a non-volatile component concentration of 0.9% by weight, and an interface per unit surface area of the polymer particles.
  • the activator content was 183 ⁇ 10 ⁇ 5 g / m 2 .
  • volume-based average particle diameter volume average particle diameter
  • volume-based CV value number-based average particle diameter (number-average particle diameter)
  • number-based CV value / volume Table 1 shows the reference CV value, the volume reference maximum particle diameter, the refractive index, the gel fraction, the non-volatile component concentration, and the surfactant content per unit surface area of the polymer particles.
  • Example 8 Production example of light diffusion film
  • 250 parts by weight of the polymer particles obtained in Example 1 180 parts by weight of acrylic polyol (Acridic A-801, solid content 50% by weight) and polyisocyanate (Takenate D110N, solid content 60% by weight) as a binder resin 50 parts by weight, 300 parts by weight of toluene as an organic solvent and 330 parts by weight of methyl ethyl ketone are mixed well, and coated on a 100 ⁇ m-thick PET film as a film substrate by a die coating method to form a 20 ⁇ m-thick coating film To form a light diffusion film.
  • the produced light diffusing film was a good one in which polymer particles were uniformly dispersed over the entire surface and there was no transmission defect.
  • Example 9 Production example of light diffusion film
  • a light diffusion film was produced in the same manner as in Example 1 except that the polymer particles obtained in Example 2 were used in place of the polymer particles obtained in Example 1.
  • the produced light diffusing film was a good one in which polymer particles were uniformly dispersed over the entire surface and there was no transmission defect.
  • Example 10 Production example of light diffusion film
  • a light diffusion film was produced in the same manner as in Example 1 except that the polymer particles obtained in Example 3 were used in place of the polymer particles obtained in Example 1.
  • the produced light diffusing film was a good one in which polymer particles were uniformly dispersed over the entire surface and there was no transmission defect.
  • Example 11 Production example of light diffusion film
  • a light diffusion film was produced in the same manner as in Example 1 except that the polymer particles obtained in Example 4 were used in place of the polymer particles obtained in Example 1.
  • the produced light diffusing film was a good one in which polymer particles were uniformly dispersed over the entire surface and there was no transmission defect.
  • Example 12 Production example of light diffusion film
  • a light diffusion film was produced in the same manner as in Example 1 except that the polymer particles obtained in Example 5 were used in place of the polymer particles obtained in Example 1.
  • the produced light diffusing film was a good one in which polymer particles were uniformly dispersed over the entire surface and there was no transmission defect.
  • Example 13 Production example of light diffusion film
  • a light diffusion film was produced in the same manner as in Example 1 except that the polymer particles obtained in Example 6 were used in place of the polymer particles obtained in Example 1.
  • the produced light diffusing film was a good one in which polymer particles were uniformly dispersed over the entire surface and there was no transmission defect.
  • Example 14 Production example of light diffusion film
  • a light diffusion film was produced in the same manner as in Example 1 except that the polymer particles obtained in Example 7 were used in place of the polymer particles obtained in Example 1.
  • the produced light diffusing film was a good one in which polymer particles were uniformly dispersed over the entire surface and there was no transmission defect.
  • Comparative Example 4 Comparative production example of light diffusion film
  • a light diffusion film was produced in the same manner as in Example 1 except that the polymer particles obtained in Comparative Example 1 were used in place of the polymer particles obtained in Example 1.
  • polymer particles were partially dispersed non-uniformly, and transmission defects were generated.
  • Comparative Example 6 Comparative production example of light diffusing film
  • a light diffusion film was produced in the same manner as in Example 1 except that the polymer particles obtained in Comparative Example 3 were used in place of the polymer particles obtained in Example 1.
  • polymer particles were partially dispersed non-uniformly, and transmission defects were generated.
  • the light diffusion film using the polymer particles of Comparative Examples 1 and 2 in which the concentration of the non-volatile component is more than 3.5% by weight has a transmission defect
  • the concentration of the non-volatile component is The light diffusion film using the polymer particles of Examples 1 to 7 that is less than 3.5% by weight (specifically, 0.4 to 3.1% by weight) was good without transmission defects. .
  • Example 15 Production example of body lotion
  • 3 parts by weight of the polymer particles obtained in Example 6, 50 parts by weight of ethanol as a dispersion medium, 0.1 part by weight of glycyrrhizic acid as an anti-inflammatory agent, and 46.4 parts by weight of purified water as a dispersion medium And 0.5 part by weight of a fragrance were sufficiently mixed with a mixer to obtain a body lotion as an external preparation.
  • the obtained body lotion was excellent in slipping when applied to the skin, and was smooth and excellent in usability.
  • the body lotion was excellent in usability because the settled resin particles were easily redispersed by lightly shaking during use.
  • Example 16 Production example of pre-shave lotion
  • 4 parts by weight of the polymer particles obtained in Example 6, 91 parts by weight of ethanol as a dispersion solvent, 5.0 parts by weight of 1,3-butylene glycol as a dispersion medium, and 2.0 parts by weight of cetyl ethylhexanoate Part and perfume (suitable amount) were sufficiently mixed with a mixer to obtain a pre-shave lotion as an external preparation.
  • the obtained pre-shave lotion was excellent in slipping when applied to the skin, and was smooth and excellent in usability.
  • the pre-shave lotion was excellent in usability because the settled resin particles were easily redispersed simply by shaking lightly during use.
  • Example 17 Production example of powder foundation
  • 15 parts by weight of the polymer particles obtained in Example 6, 21 parts by weight of sericite as clay minerals, 51 parts by weight of muscovite as clay minerals, 0.6% of red iron oxide as a color material raw material Part by weight, 1 part by weight of yellow iron oxide as a color material raw material, and 0.1 part by weight of black iron oxide as a color material raw material are mixed with a Henschel mixer to obtain a mixture.
  • 10 parts by weight of cetyl 2-ethylhexanoate as a fatty acid ester, 1 part by weight of sorbitan sesquioleate as a surfactant, and 0.2 part by weight of a preservative are added to the mixture.
  • the resulting mixture was further mixed with 0.1 part by weight of a fragrance, pulverized, and the pulverized product was passed through a sieve. And the pulverized material which passed the said sieve was compression-molded to the metal pan, and the powder foundation was obtained.
  • the obtained powder foundation was excellent in slipping when applied to the skin, and was smooth and excellent in usability.
  • Example 18 Production example of emulsion type foundation] 20.0 parts by weight of the polymer particles obtained in Example 6, 6.0 parts by weight of sericite as a clay mineral, 3.0 parts by weight of titanium dioxide, and a pigment (appropriate amount) were mixed with a kneader. A powder part was prepared.
  • aqueous phase component 2.0 parts by weight of stearic acid as a higher fatty acid, 0.3 parts by weight of cetyl alcohol as a higher alcohol, 20.0 parts by weight of liquid paraffin as a hydrocarbon, and a fragrance (Appropriate amount) and preservative (appropriate amount) were mixed and dissolved by heating, and then kept at 70 ° C. to obtain an oil phase component.
  • the aqueous phase component was added to the obtained oil phase component, pre-emulsified, uniformly emulsified and dispersed with a homomixer, and then cooled while stirring to obtain an emulsified foundation.
  • the obtained emulsified foundation was excellent in slipping when applied to the skin, and was smooth and excellent in usability.
  • Example 19 Production example of loose powder] 21.0 parts by weight of polymer particles obtained in Example 6, 30.0 parts by weight of mica as clay minerals, 30.0 parts by weight of sericite as clay minerals, and titanium as clay minerals After mixing 9.0 parts by weight of sericite, 8.0 parts by weight of titanium dioxide, and 2.0 parts by weight of iron oxide as a coloring material raw material with a Henschel mixer, a rotor speed mill ZM-100 manufactured by Retsch was added. And then pulverized once (using a 12-blade rotor, 1 mm screen mounted, rotating at 14,000 rpm) to obtain loose powder.
  • the obtained loose powder was excellent in slipping when applied to the skin, and was smooth and excellent in usability.
  • Example 20 Production example of body powder
  • the powder was pulverized once (using a 12-blade rotor, 1 mm screen mounted, rotating at 14,000 rpm) to obtain body powder.
  • the obtained body powder was excellent in slipping and usability when applied to the skin.
  • Example 21 Production example of resin composition for coating
  • a centrifugal stirrer 3 parts by weight of the polymer particles obtained in Example 6 and 20 parts by weight of a commercially available aqueous resin binder liquid (urethane resin, solid content 30% by weight, manufactured by ALBERDINGK, trade name “U330”) Stir for 3 minutes to obtain a dispersion.
  • a commercially available aqueous resin binder liquid urethane resin, solid content 30% by weight, manufactured by ALBERDINGK, trade name “U330”
  • the polymer particles were easily dispersed in the aqueous resin binder by stirring for 3 minutes with a centrifugal stirrer.
  • the resulting dispersion was allowed to stand for 3 hours and then stirred again for 3 minutes with a centrifugal stirrer to obtain a coating resin composition (paint).
  • the resulting coating resin composition was excellent in redispersibility because the polymer particles were redispersed just by shaking after 12 hours.
  • the coating resin composition was spray coated on an acrylic plate having a thickness of 3 mm to produce a matte coating film having a thickness of 50 ⁇ m.
  • the obtained coating film had no mats (protrusions) and had good matteness and touch.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

均一分散性に優れた重合体粒子及びその用途を提供する。重合体粒子は、界面活性剤を含有する重合体粒子であって、体積基準の粒子径分布の変動係数が13.0%以上25.0%以下であり、重合体粒子5.0gに水15.0gを添加し、超音波洗浄器を用いて60分間分散処理を行うことにより重合体粒子を水中に分散させ、内径24mmの遠心管に入れて遠心分離機を用いてKファクタ6943、回転時間30分間の条件で遠心分離した後、上澄み液を回収したときに、上澄み液中における非揮発成分の濃度が3.5重量%未満である。

Description

重合体粒子及びその用途
 本発明は、光拡散フィルムや防眩フィルム等の光学部材用の光拡散剤として特に好適な重合体粒子及びその用途(樹脂組成物、光学フィルム、及び外用剤)に関する。
 体積平均粒子径が1~100μmの重合体粒子は、例えば、塗料等のコーティング剤用の添加剤(艶消し剤等)、インク用の添加剤(艶消し剤等)、接着剤の主成分または添加剤、人工大理石用の添加剤(低収縮化剤等)、紙処理剤、化粧品等の外用剤の充填材(滑り性向上のための充填剤)、クロマトグラフィーに用いるカラム充填材、静電荷像現像に使用されるトナー用の添加剤、樹脂フィルム用の凹凸付与剤、光学部材(光拡散フィルム、防眩フィルム等の光学フィルム、光拡散体等)用の光拡散剤等の用途で使用されている。
 例えば、特許文献1には、体積平均粒子径が1.0μm以上、3.5μm以下であり、体積基準の粒子径の変動係数が30%以上であり、体積平均粒子径の2倍以上の粒子径を有する粗大粒子の数が、微粒子100万個中、180個以下であるビニル重合体微粒子が記載されている(請求項1)。
 また、特許文献2には、体積基準の累積10%粒子径を個数基準の累積10%粒子径で除した値α、体積基準の累積50%粒子径を個数基準の累積50%粒子径で除した値γ、及び、体積基準の累積90%粒子径を個数基準の累積90%粒子径で除した値ηが下記式1
 α>γ>η ・・・式1
を満し且つ体積基準の粒子径のCV値が式2
 30%≦体積基準の粒子径のCV値≦40% ・・・式2
を満たすと共に、体積基準の累積10%粒子径を体積基準の累積50%粒子径で除した値Aが式3
 A≦0.75 ・・・式3
を満たし且つ体積基準の累積90%粒子径を体積基準の累積50%粒子径で除した値Bが式4
 1.1≦B≦1.6 ・・・式4
を満たしているアクリル系樹脂粒子であって、体積基準の累積50%粒子径が1~50μmのアクリル系樹脂粒子が記載されている(請求項1、段落[0025])。
特開2014-198797号公報 特許第5740479号公報
 ところで、光拡散フィルムや防眩フィルム等の光学フィルムとして、重合体粒子をバインダーや溶剤等の中に分散させた塗工液をフィルム基材上に塗工してなるものがある。透過欠陥(光が拡散されることなく透過する箇所が目視で確認できるような欠陥)等の欠陥の発生が抑制された均一な光学特性(光拡散性、防眩性、光透過率等)を有する光学フィルムを得るためには、フィルム基材上に樹脂組成物を塗工する前に、その樹脂組成物中(具体的には、バインダーや有機溶剤中)に重合体粒子を凝集することなく均一に分散させておく必要がある。
 しかしながら、特許文献1の発明のアクリル系樹脂粒子は、体積基準の粒子径のCV値(変動係数)が34.9~37.4%であり(実施例1~3)、特許文献2に記載されているビニル重合体微粒子は、体積基準の粒子径の変動係数が30%以上であり(請求項1)、何れも体積基準の粒子径のCV値が30%以上の重合体粒子であるので、小粒子(平均粒子径よりもずっと小さい粒子径を有する重合体粒子)の割合や大粒子(平均粒子径よりもずっと大きい粒子径を有する重合体粒子)の割合が多い。上記従来の重合体粒子は、小粒子の割合が多いことにより、重合体粒子を他の材料中に分散させた分散体の流動性が低く、他の材料中への重合体粒子の均一分散性が悪い。例えば、重合体粒子をバインダーや溶剤の中に分散させた塗工液をフィルム基材上に塗工して光拡散フィルムや防眩フィルム等の光学フィルムを製造するときに、塗工液の粘稠性を上げてしまうので、ムラの無い塗工を行うことが困難になる(高い技術を要する)。そのため、得られる光学フィルムの光学特性(光拡散性、防眩性、光透過率等)が不均一となりやすく、透過欠陥(光が拡散されることなく透過する箇所がある欠陥)等の欠陥が発生しやすい。上記従来の重合体粒子は、大粒子の割合が多いことにより、凝集が起こりやすく、均一分散性が悪い。例えば、重合体粒子をバインダー及び溶剤の中に分散させた塗工液をフィルム基材上に塗工し乾燥して光拡散フィルムや防眩フィルム等の光学フィルムを製造するときに、塗工後の乾燥工程で、周囲の小粒子を巻き込んで凝集の起点となって欠陥となることが多い大粒子の割合が多いと、凝集が起こりやすい。そのため、得られる光学フィルムの光学特性(光拡散性、防眩性、光透過率等)が不均一となりやすく、透過欠陥等の欠陥が発生しやすい。
 本発明は、上記した状況に鑑みてなされたものであって、均一分散性に優れた重合体粒子並びにそれを用いた樹脂組成物、光学フィルム、及び外用剤を提供することを目的とする。
 本発明の重合体粒子は、界面活性剤を含有する重合体粒子であって、体積基準の粒子径分布の変動係数が13.0%以上25.0%以下であり、重合体粒子5.0gに水15.0gを添加し、超音波洗浄器を用いて60分間分散処理を行うことにより重合体粒子を水中に分散させ、内径24mmの遠心管に入れて遠心分離機を用いてKファクタ6943、回転時間30分間の条件で遠心分離した後、上澄み液を回収したときに、上澄み液中における非揮発成分の濃度が3.5重量%未満であることを特徴としている。
 ところで、界面活性剤を含有する重合体粒子は、通常、界面活性剤及び水性媒体の存在下での懸濁重合やシード重合等によって得られるが、そのようにして得られた重合体粒子においては、通常、副反応である水相中での乳化重合により生成した、目的とする重合体粒子の粒子径と比較して顕著に小さい粒子径(例えば500nm以下の粒子径)を有する重合体粒子(「乳化重合生成物」と呼ばれる)等の微小粒子が、重合体粒子表面や重合体粒子間に存在している。重合体粒子は、このような乳化重合生成物等の微小粒子を多量に含有すると、他の材料中に重合体粒子を分散させた分散体の流動性が低くなり、その結果として他の材料中への重合体粒子の均一分散性が悪くなることがある。例えば、そのような重合体粒子をバインダーや溶剤の中に分散させた塗工液をフィルム基材上に塗工して光拡散フィルムや防眩フィルム等の光学フィルムを製造するときに、塗工液の粘稠性が高くなって、均一にムラ無く塗工し、光学フィルムの光学特性(光拡散性、防眩性、光透過率等)を全面にわたり安定させることが困難となることがある。そのため、得られる光学フィルムの光学特性が不均一となって、透過欠陥等の欠陥が発生することがある。
 上記非揮発成分の濃度は、上記乳化重合生成物等の微小粒子の含有量に相当する。本発明の重合体粒子は、上記非揮発成分の濃度が3.5重量%未満に抑えられているので、重合体粒子表面や重合体粒子間に存在する乳化重合生成物等の微小粒子の含有量が少ない。本発明の重合体粒子は、このように乳化重合生成物等の微小粒子の含有量が少ないことに加えて、体積基準の粒子径分布の変動係数が25%以下であるために小粒子の割合が少ないことから、他の材料中に重合体粒子を分散させた分散体の流動性が高く、他の材料中への重合体粒子の均一分散性に優れている。例えば、本発明の重合体粒子をバインダーや溶剤の中に分散させた塗工液をフィルム基材上に塗工して光拡散フィルムや防眩フィルム等の光学フィルムを製造するときに、塗工液の粘稠性を低く保ち、均一でムラの無い塗工が可能となる。そのため、得られる光学フィルムの光学特性(光拡散性、防眩性、光透過率等)が均一となって、透過欠陥等の欠陥が発生することを抑制できる。
 また、本発明の重合体粒子は、体積基準の粒子径分布の変動係数が25%以下であるために、周囲の小粒子を巻き込んで凝集の起点となって欠陥となることが多い大粒子の割合が少ないことから、凝集が起こりにくく、均一分散性に優れている。例えば、本発明の重合体粒子をバインダー及び溶剤の中に分散させた塗工液をフィルム基材上に塗工し乾燥して光拡散フィルムや防眩フィルム等の光学フィルムを製造するときに、塗工及び乾燥時の凝集が抑制され、透過欠陥等の欠陥が発生することを抑制できる。
 また、本発明の重合体粒子は、体積基準の粒子径分布の変動係数が13%以上であるために、本発明の重合体粒子をバインダーや溶剤の中に分散させた塗工液をフィルム基材上に塗工して光拡散フィルムや防眩フィルム等の光学フィルムを製造するときに、平均粒子径付近の粒子径を有する重合体粒子間を埋める小粒子が十分な量存在するため、透過欠陥の発生を抑制できる。
 また、本発明の重合体粒子は、光学部材用光拡散剤として使用した場合、体積基準の粒子径分布の変動係数が15.0%以上であることにより良好な光拡散性を有する光学部材を実現でき、体積基準の粒子径分布の変動係数が25.0%以下であることにより良好な光透過性を有する光学部材を実現できる。
 本発明の樹脂組成物は、本発明の重合体粒子を含むことを特徴としている。本発明の樹脂組成物は、均一分散性に優れた本発明の重合体粒子を含むものであるから、均一分散性に優れている。
 本発明の光学フィルムは、基材フィルムと、その上に形成されているコーティングとを含む光学フィルムであって、前記コーティングが、本発明の重合体粒子を含むことを特徴としている。
 本発明の光学フィルムは、均一分散性に優れた本発明の重合体粒子を含有するコーティングを含むものであるから、光学フィルム全体において均一な光学特性(光拡散性、防眩性、光透過率等)が得られる。
 本発明の外用剤は、本発明の重合体粒子を含むことを特徴としている。本発明の外用剤は、均一分散性に優れた本発明の重合体粒子を含むものであるから、均一分散性に優れており、転がし効果(滑り性、ボールベアリング効果)を生む。
 本発明によれば、均一分散性に優れた重合体粒子並びにそれを用いた樹脂組成物、光学フィルム、及び外用剤を提供することができる。
 以下に、本発明について詳細に説明する。
 〔重合体粒子〕
 本発明の重合体粒子は、界面活性剤を含有する重合体粒子であって、体積基準の粒子径分布の変動係数が13.0%以上25.0%以下であり、重合体粒子5.0gに水15.0gを添加し、超音波洗浄器を用いて60分間分散処理を行うことにより重合体粒子を水中に分散させ、内径24mmの遠心管に入れて遠心分離機を用いてKファクタ6943、回転時間30分間の条件で遠心分離した後、上澄み液を回収したときに、上澄み液中における非揮発成分の濃度(以下、「非揮発成分濃度」と称する)が3.5重量%未満である。体積基準の粒子径分布の変動係数は、15.0%超25.0%以下であることが好ましい。
 上記非揮発成分濃度は、2.0重量%未満であることがより好ましく、1.0重量%未満であることがさらに好ましい。これにより、重合体粒子の均一分散性をさらに向上させることができる。
 上記重合体粒子の体積平均粒子径は、光学部材用の光拡散剤としては、0.5~100μmであることが好ましく、1~30μmであることがより好ましい。これにより、防眩フィルムや光拡散フィルム等の光学部材に重合体粒子を光拡散剤として使用したときに、良好な防眩性や光拡散性等の光学特性と光透過性とを兼ね備える光学部材を実現することができる。なお、本出願書類において、重合体粒子の体積平均粒子径は、コールター法、例えば実施例の項に記載の方法によって測定された体積基準の粒度分布の算術平均を指すものとする。
 体積平均粒子径が1~30μmの範囲内である重合体粒子は、防眩フィルムや光拡散フィルム等の光学フィルムや光拡散体等の光学部材用の光拡散剤として好適であり、光拡散フィルム(特に液晶ディスプレイの光拡散フィルム)用の光拡散剤として特に好適であり、また、液晶ディスプレイ用光拡散剤として特に好適である。体積平均粒子径が1~30μmの範囲内である重合体粒子は、体積平均粒子径が1μm以上8μm以下である重合体粒子と、体積平均粒子径が8μm超30μm以下である重合体粒子とに分類できる。体積平均粒子径が1μm以上8μm以下である重合体粒子は、小型液晶ディスプレイ用光拡散剤(特に、小型液晶ディスプレイを構成する光拡散フィルムとして使用される光拡散剤)として好適である。これは、小型液晶ディスプレイは、通常、大型液晶ディスプレイよりも、より高精細(狭画素ピッチ)であることが求められるからである。体積平均粒子径が8μm超30μm以下である重合体粒子は、大型液晶ディスプレイ用光拡散剤(特に、大型液晶ディスプレイを構成する光拡散フィルムとして使用される光拡散剤)として好適である。これは、大型液晶ディスプレイは、高精細であることが要求はされるが、要求レベルは小型液晶ディスプレイほど要求されないからである。なお、小型液晶ディスプレイとは、スマートフォンやタブレット端末に代表される携帯機器の液晶ディスプレイであり、15インチ以下、典型的には10インチ以下のサイズのものである。なお、小型液晶ディスプレイとは、液晶テレビに代表される据置型機器の液晶ディスプレイであり、15インチ超、典型的には20インチ以上のサイズのものである。
 上記重合体粒子の体積平均粒子径は、塗料等のコーティング剤用又はインク用の添加剤としては、0.5~100μmであることが好ましく、1~50μmであることがより好ましく、4~40μmであることがさらに好ましく、8~30μmであることが最も好ましい。これにより、塗料等のコーティング剤又はインクに対して重合体粒子を添加剤として使用したときに、良好な艶消し性や意匠性を備えるコーティング又はインクを実現することができる。
 上記重合体粒子の体積平均粒子径は、外用剤用の添加剤としては、0.5~100μmであることが好ましく、1~50μmの範囲内であることがより好ましく、4~30μmの範囲内であることがさらに好ましく、6~10μmの範囲内にあることが最も好ましい。これにより、外用剤に対して重合体粒子を充填剤として使用したときに、滑り性や光拡散性を兼ね備える外用剤を実現することができる。
 前記重合体粒子の単位表面積あたりにおける界面活性剤の含有量は、10~250×10-5g/mであることが好ましく、10~200×10-5g/mであることがより好ましい。また、重合体粒子の体積平均粒子径が8μm超30μm以下である場合、重合体粒子の単位表面積あたりにおける界面活性剤の含有量は、10~150×10-5g/mであることがさらに好ましく、10~100×10-5g/mであることが最も好ましい。前記重合体粒子の単位表面積あたりにおける界面活性剤の含有量が前記範囲の上限以下であることにより、上記重合体粒子の均一分散性をさらに向上させることができる。また、前記重合体粒子の単位表面積あたりにおける界面活性剤の含有量が前記範囲の下限未満である重合体粒子を製造することは困難である。
 なお、重合体粒子中における界面活性剤の含有量は、例えば、液体クロマトグラフ質量分析法(LC-MS-MS)を用いて測定した重合体粒子中における界面活性剤の含有量を、BET法(窒素吸着法)を用いて測定した重合体粒子の比表面積で割ることにより算出することができる。
 本発明の重合体粒子に含まれる界面活性剤は、当該重合体粒子の製造において使用した界面活性剤が残存したものである。このため、上記界面活性剤としては、重合体粒子の製造に通常使用されるあらゆる界面活性剤、例えば、後述する〔重合体粒子の製造方法〕の項に記載のようなアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両イオン性界面活性剤を挙げることができる。また、本発明の重合体粒子に含まれる界面活性剤は、アニオン性界面活性剤及びノニオン性界面活性剤の少なくとも一方を含むことが好ましく、アニオン性界面活性剤を含むことがより好ましい。本発明の重合体粒子がアニオン性界面活性剤を含む場合、重合反応時の分散安定性を確保することができる。
 本発明の重合体粒子を構成する重合体は、例えば、ビニル系単量体の重合体である。上記ビニル系単量体としては、1つのエチレン性不飽和基を有する単官能ビニル系単量体と、2つ以上のエチレン性不飽和基を有する多官能ビニル系単量体を挙げることができる。
 上記単官能ビニル系単量体としては、例えば、(メタ)アクリル酸エステル系単量体;スチレン系単量体(芳香族ビニル系単量体);酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル等の飽和脂肪酸ビニル系単量体;アクリロニトリル、メタクリロニトリル等のシアン化ビニル系単量体;アクリル酸、メタクリル酸、クロトン酸、シトラコン酸、イタコン酸、マレイン酸、フマル酸等のエチレン性不飽和カルボン酸;無水マレイン酸等のエチレン性不飽和カルボン酸無水物;モノブチルマレイン酸等のエチレン性不飽和ジカルボン酸モノアルキルエステル;上記エチレン性不飽和カルボン酸やエチレン性不飽和ジカルボン酸モノアルキルエステルのアンモニウム塩又はアルカリ金属塩等のエチレン性不飽和カルボン酸塩類;アクリルアミド、メタクリルアミド、ジアセトンアクリルアミド等のエチレン性不飽和カルボン酸アミド類;N-メチロールアクリルアミド、N-メチロールメタクリルアミド、メチロール化ジアセトンアクリルアミド、及び、これら単量体と炭素数1~8のアルコール類とのエーテル化物(例えば、N-イソブトキシメチルアクリルアミド)等のエチレン性不飽和カルボン酸アミド類のメチロール化物及びその誘導体等が挙げられる。
 上記(メタ)アクリル酸エステル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸イソノニル、アクリル酸ラウリル、アクリル酸ステアリル等のアクリル酸アルキル系単量体;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ステアリル等のメタクリル酸アルキル系単量体;グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基(グリシジル基)を有する(メタ)アクリル酸エステル;2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート等のヒドロキシアルキル(メタ)アクリレート;ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート等のアミノ基を有する(メタ)アクリル酸エステル等が挙げられる。上記(メタ)アクリル酸エステル系単量体は、アクリル酸アルキル系単量体及びメタクリル酸アルキル系単量体の少なくとも一方を含むことが好ましい。なお、本出願書類において、「(メタ)アクリレート」はアクリレート又はメタクリレートを意味し、「(メタ)アクリル」はアクリル又はメタクリルを意味するものとする。
 上記スチレン系単量体としては、スチレン、α-メチルスチレン、ビニルトルエン、エチルビニルベンゼン等が挙げられる。
 上記多官能ビニル系単量体としては、例えば、(メタ)アクリル酸アリル、ジビニルベンゼン、ジアリルフタレート、トリアリルシアヌレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジメタクリレート(例えば、ポリエチレングリコール(600)ジメタクリレート)、プロピレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 上記したビニル系単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記重合体粒子は、(メタ)アクリル系重合体、スチレン系重合体、及び(メタ)アクリル-スチレン系共重合体の少なくとも1つで構成されることが好ましい。これにより、光透過性の高い重合体粒子を実現できる。上記(メタ)アクリル系重合体は、(メタ)アクリル酸エステル系単量体の重合体、または、(メタ)アクリル酸エステル系単量体と、(メタ)アクリル酸エステル系単量体及びスチレン系単量体以外のビニル系単量体との共重合体である。上記スチレン系重合体は、スチレン系単量体の重合体、または、スチレン系単量体と、(メタ)アクリル酸エステル系単量体及びスチレン系単量体以外のビニル系単量体の共重合体である。また、上記(メタ)アクリル-スチレン系共重合体は、(メタ)アクリル酸エステル系単量体とスチレン系単量体との共重合体、または、(メタ)アクリル酸エステル系単量体と、スチレン系単量体と、(メタ)アクリル酸エステル系単量体及びスチレン系単量体以外のビニル系単量体との共重合体である。上記重合体粒子は、これらの中でも(メタ)アクリル系重合体又は(メタ)アクリル-スチレン系共重合体で構成されることが、光拡散性及び防眩性の点で好ましい。
 上記重合体粒子を構成する重合体は、上記単官能ビニル系単量体と上記多官能ビニル系単量体との共重合体(架橋重合体)であることが好ましい。したがって、上記重合体粒子を構成する重合体は、(メタ)アクリル系架橋重合体又は(メタ)アクリル-スチレン系架橋共重合体であることが、光拡散性及び防眩性の点で特に好ましい。例えば、上記重合体における上記多官能ビニル系単量体に由来する構成単位の量は、上記重合体100重量%に対して5~50重量%の範囲内であることが好ましい。上記多官能ビニル系単量体に由来する構成単位の量が上記範囲より少ない場合、上記重合体の架橋度が低くなる。その結果、重合体粒子をバインダーと混合して樹脂組成物として塗工する場合に、重合体粒子が膨潤して樹脂組成物の粘度上昇が起こり塗工の作業性が低下する恐れがある。さらに、上記重合体の架橋度が低くなる結果、重合体粒子をバインダーと混合して成形する用途(いわゆる練り込み用途)において混合時や成形時に重合体粒子に熱をかけたときに、重合体粒子が溶解又は変形しやすくなる。上記多官能ビニル系単量体に由来する構成単位の量が上記範囲より多い場合、上記多官能ビニル系単量体の使用量に見合った効果の向上が認められず、生産コストが上昇する場合がある。
 本発明の重合体粒子のゲル分率は、90重量%以上であることが好ましく、97重量%以上であることがより好ましい。ゲル分率が90重量%未満であると、十分な耐溶剤性が確保できないため、例えば、重合体粒子をバインダーと共に有機溶剤と混合してフィルム基材上に塗工して、防眩フィルムや光拡散フィルム等の光学フィルムとする場合において、有機溶剤に重合体粒子が溶解してしまい、光拡散性や防眩性等の光学特性が十分に得られないおそれがある。なお、本出願書類において、ゲル分率は、例えば実施例の項に記載の方法によって測定されたゲル分率を指すものとする。
 本発明の重合体粒子の屈折率は、1.490~1.595であることが好ましい。これにより、上記構成の重合体粒子は、防眩フィルムや光拡散フィルム等の光学部材に使用されたときに、良好な光学特性(例えば、光透過性、防眩性、光拡散性等)を有する光学部材を実現できる。
 本発明の重合体粒子は、体積基準の粒子径分布における最大粒子径が体積平均粒子径の3.5倍以下であることが好ましい。また、本発明の重合体粒子は、体積平均粒子径が1μm以上8μm以下である場合には、体積基準の粒子径分布における最大粒子径が、体積平均粒子径の3.5倍以下であることが好ましく、体積平均粒子径の2.5倍以下であることがより好ましい。また、本発明の重合体粒子は、体積平均粒子径が8μm超30μm以下である場合には、体積基準の粒子径分布における最大粒子径が、体積平均粒子径の2.5倍以下であることが好ましく、体積平均粒子径の2.0倍以下であることがより好ましい。体積基準の粒子径分布における最大粒子径が上記上限以下であることで、周囲の小粒子を巻き込んで凝集の起点となって欠陥となることが多い粗大粒子(上記上限より大きい粒子径を有する重合体粒子)を除去することができるので、重合体粒子の均一分散性をさらに向上させることができる。
 本発明の重合体粒子は、体積平均粒子径が2μm以上4μm以下である場合、8μm以上10μm以下の粒子径を有する重合体粒子の個数が30万個中2個以下であることが好ましい。これにより、周囲の小粒子を巻き込んで凝集の起点となって欠陥となることが多い粗大粒子(8μm以上10μm以下の粒子径を有する重合体粒子)を2個以下まで除去することができるので、重合体粒子の均一分散性をさらに向上させることができる。
 本発明の重合体粒子は、個数基準の粒子径分布の変動係数を体積基準の粒子径分布の変動係数で除した値が、1.0~3.0であることが好ましい。個数基準の粒子径分布の変動係数を体積基準の粒子径分布の変動係数で除した値は、分布のばらつきや小粒子の多さを表している。個数基準の粒子径分布の変動係数を体積基準の粒子径分布の変動係数で除した値が上記範囲の上限以下であることで、本発明の重合体粒子をバインダーや溶剤の中に分散させた塗工液をフィルム基材上に塗工して光拡散フィルムや防眩フィルム等の光学フィルムを製造するときに、塗工液の粘稠性を低く保ち、均一でムラの無い塗工が可能となる。そのため、得られる光学フィルムの光学特性(光拡散性、防眩性、光透過率等)が均一となって、透過欠陥等の欠陥が発生することを抑制できる。また、個数基準の粒子径分布の変動係数を体積基準の粒子径分布の変動係数で除した値が上記範囲の下限以上であることで、本発明の重合体粒子をバインダーや溶剤の中に分散させた塗工液をフィルム基材上に塗工して光拡散フィルムや防眩フィルム等の光学フィルムを製造するときに、平均粒子径付近の粒子径を有する重合体粒子間を埋める小粒子が十分な量存在するため、透過欠陥の発生を抑制できる。
 本発明の重合体粒子は、染料や顔料(有機顔料、無機顔料)が含まれていない透明粒子であることが好ましい。重合体粒子中に染料や顔料が含まれると、重合体粒子の透明性が低下し、本発明の重合体粒子を用いて光学フィルムを作製した場合に、作製した光学フィルムの透過性、防眩性、及び拡散性能に悪影響を及ぼすため、好ましくない。
 〔重合体粒子の製造方法〕
 本発明の重合体粒子は、例えば、水性媒体中、界面活性剤の存在下でビニル系単量体を重合させることによって体積基準の粒子径分布の変動係数が25.0%超の重合体粒子を得た後、体積基準の粒子径分布の変動係数が13.0%以上25.0%以下となるように重合体粒子を分級する製造方法によって製造できる。上記製造方法によれば、分級の際に、重合体粒子同士の表面に存在する乳化重合生成等の微小粒子の含有量が少なくなることで、非揮発成分の濃度が3.5重量%未満である本発明の重合体粒子が得られる。
 上記製造方法では、例えば、ビニル系単量体と界面活性剤とを水性媒体に添加し、ホモジナイザー、回転羽根と器壁とのギャップあるいは回転羽根同士のギャップにかかる高シェアー(剪断)を利用した乳化分散機(例えば、プライミクス株式会社製の「ホモミクサーMARK II 2.5型」)、超音波処理機、ナノマイザー(登録商標)等の微細乳化機により分散させる方法、あるいはセラミックミクロ多孔膜にビニル系単量体を加圧して通し水性媒体に圧入する方法によって、水性媒体中にビニル系単量体を分散させて懸濁液を作製する。目的に応じて、他の装置を併用してもよい。
 上記水性媒体としては、例えば、水;メチルアルコール、エチルアルコール等の低級アルコール(炭素数5以下のアルコール);水と低級アルコールとの混合物等が挙げられる。
 上記界面活性剤は、上記重合時に、液状の媒体中でのビニル系単量体の分散を安定化させる。
 上記界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、及び両イオン性界面活性剤の何れをも用いることができるが、上記重合工程において、液状の媒体中でのビニル系単量体の分散をより安定に確保することができ、且つ粒子径の揃った重合体粒子を得ることができることから、アニオン性界面活性剤及びノニオン性界面活性剤の少なくとも一方を用いることが好ましい。上記界面活性剤として、アニオン性界面活性剤を少なくとも用いることがより好ましい。これにより、重合反応時の分散安定性を確保することができる。これに対し、上記界面活性剤として、ノニオン性界面活性剤のみを使用した場合、重合反応時に著しい凝集が発生する場合がある。
 上記アニオン性界面活性剤としては、脂肪酸塩型、硫酸エステル塩型、スルホン酸塩型、リン酸エステル塩型、リン酸エステル型等公知のアニオン性界面活性剤をいずれも用いることができ、例えば、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩;ポリオキシエチレンアルキル硫酸エステル;ポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム等のポリオキシエチレンスチレン化フェニルエーテル硫酸エステル塩;ポリオキシエチレンノニルフェニルエーテルリン酸塩(例えばポリオキシエチレンノニルフェニルエーテルリン酸ナトリウム)等のポリオキシエチレンアルキルフェニルエーテルリン酸塩;ポリオキシエチレンスチレン化フェニルエーテルリン酸エステル;ポリオキシエチレンアルキルエーテルリン酸エステル;オレイン酸ナトリウム、ヒマシ油カリ石鹸等の脂肪酸石鹸;ラウリル硫酸塩(例えば、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等)等のアルキル硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジ(2-エチルヘキシル)スルホコハク酸塩(ナトリウム塩)、ジオクチルスルホコハク酸塩(ナトリウム塩)等のジアルキルスルホコハク酸塩;アルケニルコハク酸塩(ジカリウム塩);アルキルリン酸エステル塩;ナフタレンスルホン酸ホルマリン縮合物等が挙げられる。これらのアニオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記ノニオン性界面活性剤としては、エステル型、エーテル型、エステル・エーテル型等の公知のノニオン性界面活性剤をいずれも用いることができ、例えば、ポリオキシエチレントリデシルエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレン脂肪酸エステル、モノラウリン酸ポリオキシエチレンソルビタンなどのポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、オキシエチレン-オキシプロピレンブロック重合体、アルキレン基の炭素数が3以上であるポリオキシアルキレントリデシルエーテルなどのポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル等が挙げられる。これらのノニオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記カチオン性界面活性剤としては、アミン塩型、第4級アンモニウム塩型等の公知のカチオン性界面活性剤をいずれも用いることができるが、水溶性のカチオン性界面活性剤がその取扱い上から有利である。上記カチオン性界面活性剤の具体例としては、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩;ラウリルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、ココイルトリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド等のアルキルトリメチルアンモニウムクロライド;ヘキサデシルジメチルベンジルアンモニウムクロライド、ラウリルジメチルベンジルアンモニウムクロライド等のアルキルジメチルベンジルクロライド等が挙げられる。これらのカチオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記両イオン性界面活性剤としては、ラウリルジメチルアミンオキサイド、リン酸エステル系界面活性剤、亜リン酸エステル系界面活性剤等が挙げられる。これらの両イオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記界面活性剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記界面活性剤としては、液温25℃の水に対する溶解度が、0.3g/100ml~5.0g/100mlのものが好ましく、0.5g/100ml~3.0g/100mlのものがより好ましい。上記溶解度が0.3g/100ml未満の界面活性剤を使用すると、上記重合工程において、上記液状の媒体が水性媒体である場合に、当該水性媒体中でビニル系単量体が安定に分散しないおそれがあり、また、当該界面活性剤の水への溶出が困難であることから、重合体粒子を洗浄する後述の洗浄工程において、多量の洗浄液を必要とし、生産性の面で好ましくない。一方、上記溶解度が5.0g/100mlを超える界面活性剤は、疎水基の効力が乏しく、水性媒体中でビニル系単量体の分散を安定化させる効果に乏しいことから、当該界面活性剤を使用すると、上記重合工程において、上記液状の媒体が水性媒体である場合に、当該水性媒体中でのビニル系単量体の分散を安定化させるために、多量の界面活性剤を必要とし、生産性の面で好ましくない。
 上記ビニル系単量体の重合における界面活性剤の使用量は、ビニル系単量体の使用量100重量部に対して0.01~5重量部の範囲内であることが好ましい。界面活性剤の使用量が上記範囲より少ない場合には、重合安定性が低くなる恐れがある。また、界面活性剤の使用量が上記範囲より多い場合には、コスト的に不経済である。
 上記ビニル系単量体には、必要に応じて重合開始剤を添加していてもよい。上記重合開始剤は、上記重合開始剤をビニル系単量体に混合した後、得られた混合物を水性媒体中に分散させてもよいし、重合開始剤とビニル系単量体との両者を別々に水性媒体に分散させたものを混合してもよい。上記ビニル系単量体の重合の反応系には、必要に応じて、重合開始剤が使用される。上記重合開始剤としては、特に限定されるものではないが、例えば、過酸化ベンゾイル、過酸化ラウロイル、o-クロロ過酸化ベンゾイル、o-メトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,3-ジメチルブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2’-アゾビス(2-イソプロピルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、(2-カルバモイルアゾ)イソブチロニトリル、4,4’-アゾビス(4-シアノバレリン酸)、ジメチル-2,2’-アゾビスイソブチレート等のアゾ化合物等が挙げられる。上記重合開始剤は、ビニル系単量体100重量部に対して、0.1~1.0重量部の範囲内で使用されることが好ましい。
 上記ビニル系単量体の重合の反応系には、必要に応じて、分散剤が使用される。上記分散剤としては、リン酸カルシウム、ピロリン酸マグネシウム等の可溶性の難水溶性無機化合物;ポリビニルアルコール、ポリビニルピロリドン、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース等)、ポリカルボン酸等の水溶性高分子等が挙げられる。上記分散剤は、それぞれ1種のみを使用してもよく、2種以上を組み合わせて使用してもよい。上記分散剤の添加量は、ビニル系単量体100重量部に対して1~10重量部の範囲内であることが好ましい。
 上記ビニル系単量体の重合の反応系には、必要に応じて、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]等の酸化防止剤を使用してもよい。
 上記ビニル系単量体の重合の反応系には、得られる重合体粒子の重量平均分子量を調整するために、分子量調整剤を使用してもよい。前記分子量調整剤としては、n-オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン等のメルカプタン類;α-メチルスチレンダイマー;γ-テルピネン、ジペンテン等のテルペン類;クロロホルム、四塩化炭素等のハロゲン化炭化水素類等を使用できる。上記分子量調整剤の使用量の加減により、得られる重合体粒子の重量平均分子量を調整することができる。
 また、上記重合における水性媒体中での乳化重合生成物の発生を抑えるために、亜硝酸ナトリウム等の亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を水性媒体に添加してもよい。
 上記ビニル系単量体の重合温度は、ビニル系単量体の種類や、必要に応じて用いられる重合開始剤の種類に応じて適宜選択できる。上記重合反応は、重合に対して不活性な不活性ガス(例えば窒素)の雰囲気下で行ってもよい。
 ビニル系単量体の重合法としては、液状の媒体と界面活性剤を使用する公知の重合方法であれば特に限定されるものではなく、例えば、シード重合、乳化重合、懸濁重合等の方法が挙げられる。これら重合法のうち、体積基準の粒子径分布の変動係数が13.0%以上25.0%以下の重合体粒子が得られ易いことから、懸濁重合が最も好ましい。
 上記懸濁重合とは、ビニル系単量体と水等の水性媒体とを機械的に攪拌して、ビニル系単量体を水性媒体中に懸濁させて重合させる重合法である。上記懸濁重合には、粒子径が小さく、かつ粒子径が比較的整った重合体粒子を得ることができるという特徴がある。懸濁重合においては、体積基準の粒子径分布の変動係数が13.0%以上25.0%以下の重合体粒子が得られ易いことから、可溶性の難水溶性無機化合物からなる分散剤を使用することが好ましい。
 重合終了後、必要に応じて、酸(例えば塩酸)を添加して可溶性の難水溶性無機化合物からなる分散剤を溶解する溶解工程、濾過工程のような固液分離工程、洗浄工程、乾燥工程、及び粉砕工程を行ってから、分級を行うことにより、本発明の重合体粒子を得ることができる。上記体積平均粒子径が2μm以上4μm以下の重合体粒子を製造する場合には、上記溶解工程の後に上記固液分離(脱液)工程を行って得たケーキを水でリスラリーしたものに、更に酸(例えば塩酸)を添加した後に水で洗浄してもよい。これにより、分散剤及び分散剤由来の無機物を十分に除去できると共に乳化重合生成物等の微小粒子の含有量を低減でき、非揮発成分の濃度が3.5重量%未満である本発明の重合体粒子が得られやすくなる。
 前記洗浄工程において使用する洗浄液としては、水性媒体が好ましく、例えば、水;メチルアルコール、エチルアルコール等の低級アルコール(炭素数5以下のアルコール);水と低級アルコールとの混合物等が挙げられるが、上記重合工程で使用した媒体と同様のものを用いることが好ましい。前記洗浄工程で用いる洗浄液の重量は、重合体粒子の重量の2倍以上であることが好ましく、重合体粒子の重量の4倍以上であることがより好ましい。これにより、非揮発成分濃度が3.5重量%未満である本発明の重合体粒子が得られやすくなり、また、重合体粒子の単位表面積あたりにおける界面活性剤の含有量が少ない本発明の重合体粒子(特に10~250×10-5g/mである本発明の重合体粒子)が得られやすくなる。
 重合体粒子の分級方法としては、分級によって小粒子及び大粒子を除去することができれば、特に限定されず、例えば、気流分級(風力分級)、スクリーン分級(篩分級)などが挙げられ、小さな粒子径を有する重合体粒子を目詰まりを生じさせることなく分級することができるので、気流分級が好ましい。気流分級とは、空気の流れを利用して粒子を分級する方法をいう。スクリーン分級とは、スクリーン上に粒子を供給し、スクリーンを振動させることによって、スクリーン上の粒子を、スクリーンの網目を通過する粒子と通過しない粒子とに分級する方法をいう。
 上記気流分級としては、(1)重合体粒子を空気の流れにのせて、重合体粒子をスクリーンに衝突させ、スクリーンの網目を通過する重合体粒子と通過しない重合体粒子とに分級する方法、(2)重合体粒子を旋回気流の流れにのせて、旋回気流により重合体粒子に与えられる遠心力と、気流の旋回中心に向かう気流の流れとの相互作用によって大小二つの粒子径のグループに分級する方法、(3)コアンダ効果を利用した分級方法が挙げられる。上記(1)の気流分級を行う気流分級機としては、例えば、ユーグロップ株式会社から商品名「ブロワシフター」、東洋ハイテック株式会社から商品名「ハイボルター」、槇野産業株式会社から商品名「ミクロシフター」にて市販されている気流分級機が挙げられる。上記(2)の気流分級を行う気流分級機としては、日清エンジニアリング株式会社から商品名「ターボクラシファイア(登録商標)」、株式会社セイシン企業から商品名「スペディック・クラシファイアー」にて市販されている気流分級機が挙げられる。上記(3)の気流分級を行う気流分級機としては、株式会社マツボーから市販されているコアンダ型気流分級機(エルボージェット分級機)が挙げられる。上記3つの分級方法は、分級する重合体粒子の性状や、目的とする粗大粒子除去レベル及び微粒子除去レベルによって使い分けることができる。重合体粒子の付着性が高い場合及び粗大粒子の除去精度及び微粒子除去レベルを高めたい場合には、(2)の気流分級機を用いることが好ましい。
 〔重合体粒子の用途〕
 本発明の重合体粒子は、防眩フィルムや光拡散フィルム等の光学フィルムや光拡散体等の光学部材用の光拡散剤として好適であり、光拡散フィルム(特に液晶ディスプレイの光拡散フィルム)用の光拡散剤として特に好適である。
 〔樹脂組成物〕
 本発明の樹脂組成物は、本発明の重合体粒子を含むものである。本発明の樹脂組成物としては、コーティング用樹脂組成物や成形用樹脂組成物等が挙げられるが、本発明の樹脂組成物は、コーティング用樹脂組成物として特に好適である。上記コーティング用樹脂組成物は、本発明の重合体粒子に加えてバインダーを含むことが好ましい。上記成形用樹脂組成物は、本発明の重合体粒子と透明樹脂とを含むことが好ましい。コーティング用樹脂組成物や成形用樹脂組成物については、後段で詳細に説明する。
 〔光学フィルム、コーティング用樹脂組成物〕
 本発明の光学フィルムは、基材フィルムと、その上に形成されているコーティングとを含む光学フィルムであって、前記コーティングが本発明の重合体粒子を含むものである。本発明の光学フィルムは、例えば、バインダー中に上記重合体粒子を分散させてコーティング用樹脂組成物を得て、得られたコーティング用樹脂組成物(コーティング剤)をフィルム基材上に塗工して、上記コーティング用樹脂組成物(の固形分)からなる塗膜を上記フィルム基材上に形成することにより得られる。
 上記バインダーとしては、透明性、重合体粒子分散性、耐光性、耐湿性及び耐熱性等の要求される特性に応じて、当該分野において使用されるものであれば特に限定されるものではない。上記バインダーとしては、例えば、(メタ)アクリル系樹脂;(メタ)アクリル-ウレタン系樹脂;ウレタン系樹脂;ポリ塩化ビニル系樹脂;ポリ塩化ビニリデン系樹脂;メラミン系樹脂;スチレン系樹脂;アルキド系樹脂;フェノール系樹脂;エポキシ系樹脂;ポリエステル系樹脂;塩素化ポリオレフィン樹脂;アモルファスポリオレフィン樹脂;アルキルポリシロキサン系樹脂等のシリコーン系樹脂;(メタ)アクリル-シリコーン系樹脂、シリコーン-アルキド系樹脂、シリコーン-ウレタン系樹脂、シリコーン-ポリエステル樹脂等の変性シリコーン樹脂;ポリフッ化ビニリデン、フルオロオレフィンビニルエーテル重合体等のフッ素系樹脂等のバインダー樹脂が挙げられる。
 上記バインダー樹脂は、コーティング用樹脂組成物の耐久性を向上させる観点から、架橋反応により架橋構造を形成できる硬化性樹脂であることが好ましい。上記硬化性樹脂は、種々の硬化条件で硬化させることができる。上記硬化性樹脂は、硬化のタイプにより、紫外線硬化性樹脂、電子線硬化性樹脂等の電離放射線硬化性樹脂、熱硬化性樹脂、温気硬化性樹脂等に分類される。
 上記熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレ重合体とからなる熱硬化型ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。
 上記電離放射線硬化性樹脂としては、多価アルコール多官能(メタ)アクリレート等のような多官能(メタ)アクリレート樹脂;ジイソシアネート、多価アルコール、及びヒドロキシ基を有する(メタ)アクリル酸エステル等から合成されるような多官能ウレタンアクリレート樹脂等が挙げられる。
 上記コーティング用樹脂組成物中における重合体粒子の量は、バインダーの固形分100重量部に対して、10~300重量部が好ましい。
 上記コーティング用樹脂組成物は、有機溶剤をさらに含んでいてもよい。後述するフィルム基材等の基材に上記コーティング用樹脂組成物を塗工する場合、上記有機溶剤は、それをコーティング用樹脂組成物に含有させることによって、基材へのコーティング用樹脂組成物の塗工が容易になるものであれば、特に限定されるものではない。上記有機溶剤としては、例えば、トルエン、キシレン等の芳香族系溶媒;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶媒等を用いることができる。
 上記フィルム基材は、透明であることが好ましい。透明のフィルム基材としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル系重合体、ジアセチルセルロース、トリアセチルセルロース(TAC)等のセルロース系重合体、ポリカーボネート系重合体、ポリメチルメタクリレート等の(メタ)アクリル系重合体等の重合体からなるフィルムが挙げられる。また、透明のフィルム基材として、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系重合体、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系重合体、塩化ビニル系重合体、ナイロンや芳香族ポリアミド等のアミド系重合体等の重合体からなるフィルムも挙げられる。さらに、透明のフィルム基材として、イミド系重合体、サルホン系重合体、ポリエーテルサルホン系重合体、ポリエーテルエーテルケトン系重合体、ポリフェニルスルフィド系重合体、ビニルアルコール系重合体、塩化ビニリデン系重合体、ビニルブチラール系重合体、アリレート系重合体、ポリオキシメチレン系重合体、エポキシ系重合体や上記重合体のブレンド物等の重合体からなるフィルム等も挙げられる。上記フィルム基材として、特に複屈折率の少ないものが好適に用いられる。
 上記フィルム基材の厚さは、適宜に決定しうるが、一般には、強度や取り扱い等の作業性、薄層性等の点より10~500μmの範囲内であり、20~300μmの範囲内であることが好ましく、30~200μmの範囲内であることがより好ましい。
 また、フィルム基材には、添加剤を加えてもよい。上記添加剤としては、例えば、紫外線吸収剤、赤外線吸収剤、帯電防止剤、屈折率調整剤、増強剤等が挙げられる。
 上記コーティング用樹脂組成物をフィルム基材上に塗布する方法としては、バーコーティング、ブレードコーティング、スピンコーティング、リバースコーティング、ダイコーティング、スプレーコーティング、ロールコーティング、グラビアコーティング、マイクログラビアコーティング、リップコーティング、エアーナイフコーティング、ディッピング法等の公知の塗工方法が挙げられる。
 上記コーティング用樹脂組成物に含まれるバインダーが電離放射線硬化性樹脂である場合、上記コーティング用樹脂組成物の塗布後に、必要に応じ溶剤を乾燥させ、さらに活性エネルギー線を照射することにより電離放射線硬化性樹脂を硬化させればよい。
 上記活性エネルギー線としては、例えば、キセノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク灯、タングステンランプ等の光源から発せられる紫外線;通常20~2000KeVのコッククロフト・ワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の電子線加速器から取り出される電子線、α線、β線、γ線等を用いることができる。
 コーティング用樹脂組成物の塗布(及び硬化)によって形成される、バインダー中に重合体粒子が分散された層の厚みは、特に限定されず、重合体粒子の粒子径により適宜決定されるが、1~50μmの範囲内であることが好ましく、3~30μmの範囲内であることがより好ましい。
 上記した本発明の光学フィルムは、光拡散用又は防眩用として、すなわち、光拡散フィルム又は防眩フィルムとして好適に使用することができる。
 上記フィルム基材は、透明であることが好ましい。透明のフィルム基材としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル系重合体、ジアセチルセルロース、トリアセチルセルロース(TAC)等のセルロース系重合体、ポリカーボネート系重合体、ポリメチルメタクリレート等の(メタ)アクリル系重合体等の重合体からなるフィルムが挙げられる。また、透明のフィルム基材として、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系重合体、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系重合体、塩化ビニル系重合体、ナイロンや芳香族ポリアミド等のアミド系重合体等の重合体からなるフィルムも挙げられる。さらに、透明のフィルム基材として、イミド系重合体、サルホン系重合体、ポリエーテルサルホン系重合体、ポリエーテルエーテルケトン系重合体、ポリフェニルスルフィド系重合体、ビニルアルコール系重合体、塩化ビニリデン系重合体、ビニルブチラール系重合体、アリレート系重合体、ポリオキシメチレン系重合体、エポキシ系重合体や上記重合体のブレンド物等の重合体からなるフィルム等も挙げられる。上記フィルム基材として、特に複屈折率の少ないものが好適に用いられる。
 上記フィルム基材の厚さは、適宜に決定しうるが、一般には、強度や取り扱い等の作業性、薄層性等の点より10~500μmの範囲内であり、20~300μmの範囲内であることが好ましく、30~200μmの範囲内であることがより好ましい。
 以上の説明では、コーティング用樹脂組成物を、光学フィルムの製造用途に関して説明したが、コーティング用樹脂組成物は、他の用途にも使用できる。コーティング用樹脂組成物は、他の用途に使用される場合、必要に応じて、公知の塗面調整剤、流動性調整剤、紫外線吸収剤、光安定剤、硬化触媒、体質顔料、着色顔料、金属顔料、マイカ粉顔料、染料等を含んでいてもよい。
 〔樹脂成形体〕
 本発明の重合体粒子は、樹脂成形体に使用することもできる。上記樹脂成形体は、本発明の重合体粒子と透明樹脂とを含む成形用樹脂組成物の成形体である。上記樹脂成形体中において、上記重合体粒子は光拡散剤として機能する。したがって、上記樹脂成形体は、光拡散板等の光拡散体として機能し、LED照明カバー等として利用できる。
 上記透明樹脂は、上記樹脂成形体の基材であり、例えば、(メタ)アクリル系樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、(メタ)アクリル-スチレン樹脂((メタ)アクリル)酸エステルとスチレンとの共重合体)等が挙げられる。それらの中でも、ポリスチレン樹脂又は(メタ)アクリル-スチレン樹脂が上記透明樹脂として好ましい。
 上記樹脂組成物に含まれる重合体粒子の量は、透明樹脂100重量部に対して、0.01~5重量部の範囲内であることが好ましく、0.1~5重量部の範囲内であることがより好ましい。上記樹脂組成物には、紫外線吸収剤、酸化防止剤、熱安定剤、光安定剤、蛍光増白剤等の添加剤を加えてもよい。
 上記樹脂成形体の厚み及び形状等は、樹脂成形体の用途によって適宜選択することができる。
 上記樹脂成形体は、上記透明樹脂と上記重合体粒子とを一軸押出機や二軸押出機等で溶融混練することにより得ることができる。また、溶融混練によって得られた樹脂組成物を、Tダイ及びロールユニットを介して板状等に成形して樹脂成形体を得てもよい。また、溶融混練によって得られた樹脂組成物をペレット化し、ペレットを射出成形やプレス成形等により板状に成形して樹脂成形体を得てもよい。
 上記樹脂成形体は、均一分散性に優れた本発明の重合体粒子を含む成形用樹脂組成物の成形体であるから、その樹脂成形体において、むらのない均一な光学特性(光拡散性、防眩性、光透過率等)が得られる。
 〔凹凸付与剤〕
 本発明の重合体粒子は、樹脂フィルムを巻き取ったときなどに、互いに接した樹脂フィルム表面同士が密着して剥がれなくなること(ブロッキング)を防止するために、樹脂フィルムの表面に凹凸を付与する樹脂フィルム用凹凸付与剤として使用できる。本発明の重合体粒子は、体積基準の粒子径分布の変動係数が25.0%以下であることから、良好なアンチブロッキング効果を得ることができる。
 上記樹脂フィルムとしては、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂;ポリエチレン系樹脂、ポリプロピレン系樹脂などのポリオレフィン系樹脂;(メタ)アクリル系樹脂、ポリスチレン系樹脂、ポリエーテルサルホン系樹脂、ポリウレタン系樹脂、ポリカーボネート系樹脂、ポリスルホン系樹脂、ポリエーテル系樹脂、ポリメチルペンテン系樹脂、ポリエーテルケトン系樹脂、(メタ)アクリロニトリル系樹脂、ノルボルネン系樹脂、非晶質ポリオレフィン系樹脂、ポリアミド樹脂、ポリイミド樹脂、およびトリアセチルセルロース樹脂等の樹脂からなる樹脂フィルムが挙げられる。
 本発明の重合体粒子を上記樹脂フィルム用凹凸付与剤として使用する場合、上記重合体粒子を樹脂フィルム中に添加してもよく、上記重合体粒子を含むコーティング剤を樹脂フィルム表面に塗布してもよい。
 〔外用剤〕
 本発明の重合体粒子は、外用剤の原料としても使用できる。本発明の外用剤は、本発明の重合体粒子を含んでいる。
 上記外用剤における重合体粒子の含有量は、外用剤の種類に応じて適宜設定できるが、0.1~50重量%が好ましく、0.3~30重量%がより好ましい。外用剤全量に対する重合体粒子の含有量が0.1重量%を下回ると、重合体粒子の含有による明確な効果が認められないことがある。また、重合体粒子の含有量が50重量%を上回ると、含有量の増加に見合った顕著な効果が認められないことがあるため、生産コスト上好ましくない。
 上記外用剤としては、例えば化粧料、外用医薬品等が挙げられる。
 上記化粧料としては、上記重合体粒子の含有により効果を奏するものであれば特に限定されず、例えば、プレシェーブローション、ボディローション、化粧水、クリーム、乳液、ボディシャンプー、制汗剤等の液系の化粧料;石鹸、スクラブ洗顔料等の洗浄用化粧品;パック類;ひげ剃り用クリーム;おしろい類;パウダーファンデーション、乳化型ファンデーション、リキッドファンデーション等のファンデーション;ルースパウダー等のフェイスパウダー;口紅;リップクリーム;頬紅;眉目化粧品;マニキュア化粧品;洗髪用化粧品;染毛料;整髪料;芳香性化粧品;歯磨き;浴用剤;日焼け止め製品;サンタン製品;ボディパウダー、ベビーパウダー等のボディー用の化粧料が挙げられる。
 上記外用医薬品としては、皮膚に適用するものであれば特に制限されず、例えば、医薬用クリーム、軟膏、医薬用乳剤、医薬用ローション等が挙げられる。
 また、これらの外用剤には、本発明の効果を損なわない範囲で、一般に用いられている添加物を目的に応じて配合できる。そのような添加剤としては、例えば、水や低級アルコール(炭素数5以下のアルコール、例えばエタノール)や1,3-ブチレングリコール等の分散媒、油脂及びロウ類、炭化水素(ワセリン、流動パラフィン等)、高級脂肪酸(ステアリン酸等の炭素数12以上の脂肪酸)、高級アルコール(セチルアルコール等の炭素数6以上のアルコール)、ステロール、脂肪酸エステル(ミリスチン酸オクチルドデシル、オレイン酸エステル、2-エチルヘキサン酸セチル等)、金属石鹸、保湿剤(ポリエチレングリコール4000等のポリエチレングリコール、プロピレングリコール等)、抗炎症剤(グリチルリチン酸)、界面活性剤(ソルビタンセスキオレエート等)、高分子化合物、色材原料(例えば、赤色酸化鉄、黄色酸化鉄、黒色酸化鉄等の酸化鉄)、顔料、酸化チタン、粘土鉱物類(タルク、マイカ(雲母;例えば、白雲母)、セリサイト、チタンセリサイト、ケイ酸マグネシウムアルミニウム等)、香料、防腐・殺菌剤、酸化防止剤、紫外線吸収剤、pH調整剤(トリエタノールアミン等)、特殊配合添加物等が挙げられる。
 以下、実施例及び比較例により本発明を説明するが、本発明はこれに限定されるものではない。まず、以下の重合体粒子の製造例の一部で使用した種粒子の体積平均粒子径、以下の重合体粒子の製造例で得られた重合体粒子の各種特性値、並びに以下の実施例及び比較例で得られた重合体粒子の各種特性値の測定方法を説明する。
 〔重合体粒子の体積平均粒子径及び個数平均粒子径、並びに体積基準の粒子径分布の変動係数及び個数基準の粒子径の変動係数の測定方法〕
 重合体粒子の体積平均粒子径(体積基準の平均粒子径)及び個数平均粒子径(個数基準の平均粒子径)は、コールターMultisizerTM 3(ベックマン・コールター株式会社製測定装置)により測定する。測定は、ベックマン・コールター株式会社発行のMultisizerTM3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施するものとする。
 なお、測定に用いるアパチャーは、測定する重合体粒子の大きさによって、適宜選択する。Current(アパチャー電流)及びGain(ゲイン)は、選択したアパチャーのサイズによって、適宜設定する。例えば、50μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は-800、Gain(ゲイン)は4と設定する。
 測定用試料としては、重合体粒子0.1gを0.1重量%ノニオン性界面活性剤水溶液10m1中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)及び超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEANER VS-150」)を用いて分散させ、分散液としたものを使用する。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、重合体粒子の体積基準の粒度分布及び体積平均粒子径、並びに個数基準の粒度分布及び個数平均粒子径を10万個測定した時点で測定を終了する。重合体粒子の体積平均粒子径は、10万個の重合体粒子の体積基準の粒度分布における算術平均である。重合体粒子の個数平均粒子径は、10万個の重合体粒子の個数基準の粒度分布における算術平均である。
 重合体粒子の体積基準の粒子径分布の変動係数(以下、「体積基準CV値」と称する)及び個数基準の粒子径分布の変動係数(以下、「個数基準CV値」と称する)は、以下の数式によって算出する。
 重合体粒子の体積基準CV値=(重合体粒子の体積基準の粒度分布の標準偏差÷重合体粒子の体積平均粒子径)×100
 重合体粒子の個数基準CV値=(重合体粒子の個数基準の粒度分布の標準偏差÷重合体粒子の個数平均粒子径)×100
 〔重合体粒子の(個数基準CV値)/(体積基準CV値)の算出方法〕
 重合体粒子の個数基準CV値を体積基準CV値で除した値、すなわち(個数基準CV値)/(体積基準CV値)は、前項の測定方法により測定された個数基準CV値を、前項の測定方法により測定された体積基準CV値で除することにより算出される。
 〔重合体粒子における体積基準の粒子径分布の最大粒子径の算出方法〕
 前項の測定方法により測定された体積基準の粒子径分布において積算(累積)体積百分率が100%となる粒子径を、重合体粒子における体積基準の粒子径分布の最大粒子径(以下、「体積基準最大粒子径」と称する)とする。
 〔重合体粒子中の界面活性剤の含有量の測定方法〕
 重合体粒子中の界面活性剤の含有量は、重合体粒子を溶媒により抽出し、液体クロマトグラフタンデム型質量分析計(LC/MS/MS装置)を用いて測定する。
 なお、後述する実施例及び比較例の重合体粒子における界面活性剤の含有量の測定には、LC/MS/MS装置として、Thermo Fisher Scientific製の「UHPLC ACCELA」、及びThermo Fisher Scientific製の「Linear Ion Trap LC/MS LXQ」を用いた。
 また、後述する実施例及び比較例における重合体粒子は、界面活性剤として、ラウリル硫酸塩、ポリオキシエチレンノニルフェニルエーテルリン酸塩、及びジ(2-エチルヘキシル)スルホコハク酸塩の少なくとも1つを使用しており、実施例及び比較例の重合体粒子における界面活性剤の含有量は、以下に示す方法により、測定した。
 試料としての重合体粒子約0.10gを遠沈管に精秤し、抽出液としてのメタノール5mLをホールピペットで注加して、重合体粒子と抽出液とをよく混合させる。15分間、室温で超音波抽出を行った後、回転数3500rpmで15分間遠心分離を行い、これにより得られた上澄みを試験液とする。
 この試験液中の界面活性剤濃度をLC/MS/MS装置を用いて測定する。そして、測定された試験液中の界面活性剤濃度(μg/ml)と、試料として用いた重合体粒子の重量(試料重量(g))と、抽出液の量(抽出液量(ml))とから、下記算出式により、重合体粒子中の界面活性剤の含有量(μg/g)を求める。なお、抽出液量は、5mlである。
 界面活性剤の含有量(μg/g)
 ={試験液中の界面活性剤濃度(μg/ml)×抽出液量(ml)}÷試料重量(g)
 なお、界面活性剤濃度は、LC/MS/MS装置を用い、得られたクロマトグラム上のピーク面積値から予め作成した検量線より含有量を算出する。また、重合体粒子が、複数種の界面活性剤を含む場合には、それら界面活性剤の各々について、検量線を作成して、作成した検量線により界面活性剤濃度を算出し、算出した界面活性剤の界面活性剤濃度の合計を、上記算出式における「試験液中の界面活性剤濃度(μg/ml)」として、重合体粒子中の界面活性剤の含有量を求める。
 検量線作成方法は、実施例及び比較例で使用した界面活性剤の種類に応じて、以下の通りである。
 -ラウリル硫酸塩の検量線作成方法-
 ラウリル硫酸塩の約1000ppm中間標準液(メタノール溶液)を調製後、さらにメタノールで段階的に希釈して0.1ppm、0.2ppm、0.5ppm、1.0ppm、2.0ppmの検量線作成用標準液を調製する。各濃度の検量線作成用標準液を後述するLC測定条件及びMS測定条件にて測定し、モニターイオンm/z=421.3(プリカーサーイオン)→227.2(プロダクトイオン)のクロマトグラム上のピーク面積値を得る。各濃度と面積値をプロットして最小二乗法により近似曲線(二次曲線)を求め、これを定量用の検量線とする。
 -ポリオキシエチレンノニルフェニルエーテルリン酸塩の検量線作成方法-
 ポリオキシエチレンノニルフェニルエーテルリン酸塩の約1000ppm中間標準液(メタノール溶液)を調製後、さらにメタノールで段階的に希釈して0.1ppm、0.5ppm、1.0ppm、2.0ppm、10.0pmの検量線作成用標準液を調製する。各濃度の検量線作成用標準液を後述するLC測定条件及びMS測定条件にて測定し、モニターイオンm/z=502.3(プリカーサーイオン)→485.2(プロダクトイオン)のクロマトグラム上のピーク面積値を得る。各濃度と面積値をプロットして最小二乗法により近似曲線(二次曲線)を求め、これを定量用の検量線とする。
 -ジ(2-エチルヘキシル)スルホコハク酸塩の検量線作成方法-
 ジ(2-エチルヘキシル)スルホコハク酸塩の約1000ppm中間標準液(メタノール溶液)を調製後、さらにメタノールで段階的に希釈して0.1ppm、0.2ppm、0.5ppm、1.0ppm、2.0ppmの検量線作成用標準液を調製する。各濃度の検量線作成用標準液を後述するLC測定条件及びMS測定条件にて測定し、モニターイオンm/z=421.3(プリカーサーイオン)→227.2(プロダクトイオン)のクロマトグラム上のピーク面積値を得る。各濃度と面積値をプロットして最小二乗法により近似曲線(二次曲線)を求め、これを定量用の検量線とする。
 -LC測定条件-
測定装置:UHPLC ACCELA(Thermo Fisher Scientific製)
カラム:Thermo Fisher Scientific製 Hypersil GOLD C18 1.9μm(内径2.1mm、長さ100mm)
 -MS測定条件-
測定装置:Linear Ion Trap LC/MS LXQ(Thermo Fisher Scientific製)
イオン化法(Ionization):(ESI/negative)
シースガス(Sheath Gas):30arb
補助ガス(AUX Gas):10arb
スイープガス(Sweep Gas):0arb
スプレー電圧(I Spray Voltage):5.0kV
キャピラリー温度(Capillary Temp):350℃
キャピラリー電圧(Capillary voltage):-20V
チューブレンズ電圧(Tube lens Voltage):-100V
モニターイオン(Monitoring ion)(m/Z):
 ラウリル硫酸塩(n=421.3/n2=227.2)
 ポリオキシエチレンノニルフェニルエーテルリン酸塩(n=502.3/n2=485.2)
 ジ(2-エチルヘキシル)スルホコハク酸塩(n=421.3/n2=227.2)
 〔重合体粒子の比表面積の測定方法〕
 重合体粒子の比表面積は、ISO 9277第1版 JIS Z 8830:2001記載のBET法(窒素吸着法)により測定した。対象となる重合体粒子について、株式会社島津製作所社製の自動比表面積/細孔分布測定装置Tristar3000を用いてBET窒素吸着等温線を測定し、窒素吸着量からBET多点法を用いて比表面積を算出した。加熱ガスパージによる前処理を実施した後、吸着質として窒素を用い、吸着質断面積0.162nmの条件下で定容量法を用いて測定を行った。なお、前記前処理は、具体的には、重合体粒子が入った容器を65℃で加熱しながら、窒素パージを20分行い、室温放冷した後、その容器を65℃で加熱しながら、前記容器内の圧力が0.05mmHg以下になるまで真空脱気を行うことにより、行った。
 〔重合体粒子の単位表面積あたりにおける界面活性剤の含有量の算出方法〕
 上述の測定方法により測定された重合体粒子中の界面活性剤の含有量と、上述の測定方法により測定された重合体粒子の比表面積とから、以下の算出式により重合体粒子の単位表面積あたりにおける界面活性剤の含有量を算出した。
 (重合体粒子の単位表面積あたりにおける界面活性剤の含有量)(g/m
 =(重合体粒子中の界面活性剤の含有量)(g/重合体粒子1gあたり)
   ÷重合体粒子の比表面積(m/重合体粒子1gあたり)
 〔重合体粒子中の副生成物(乳化重合生成物)の含有量の測定方法(溶剤分散法)〕
 重合体粒子を水中に分散させ遠心分離すると、目的とする粒子径を有する重合体粒子は沈降する一方、重合体粒子中に含有される副生成物(乳化重合生成物)は、浮遊して少量の水と共に上澄み液を構成する。そこで、ここでは、重合体粒子中における重合の副生成物(乳化重合生成物)の含有量を、上澄み液中における非揮発成分の含有量として測定する。
 [上澄み液の作製]
 まず、各実施例及び各比較例で得られた重合体粒子5.0gを内容量50mlのサンプル瓶に入れ、水15.0gを添加する。その後、超音波洗浄器(株式会社ヴェルヴォクリーア製「ULTRASONIC CLEANER VS-150」、発振周波数:50kHz、高周波出力:150W)を用いて60分間分散処理を行うことにより重合体粒子を水中に分散させて、分散液を得る。なお、重合体粒子が水に分散しにくい場合には、重合体粒子を微量(上限0.8g)のアルコール(例えばエタノール)で湿潤させた後、水に分散させてもよい。
 次に、内径24mmの遠心管、例えば内容量50mLで内径24mmの遠心管(Thermo Fisher Scientific社製、商品名「ナルゲン(登録商標)3119-0050」)に上記分散液を20.0g入れ、その遠心管をローター、例えばアングルローター(型番「RR24A」、日立工機株式会社製、内容量50mLの遠心管が8本セットされるもの)にセットし、遠心分離機、例えば高速冷却遠心機(high-Speed refrigerated centrifuge)(型番「CR22GII」、日立工機株式会社製)に前記のローターをセットし、前記高速冷却遠心機を用いてKファクタ6943(前記アングルローターを使用した場合、回転数4800rpmのときにKファクタが6943となる)、回転時間30分間の条件で遠心分離した後、上澄み液を回収する。
 [副生成物(乳化重合生成物)の定量評価]
 次に、回収した上澄み液5.0g中に含まれる副生成物(乳化重合生成物)の含有量を評価する。すなわち、まず、予め重量を計量した内容量10mlのサンプル瓶に、上澄み液5.0gを秤り取り、温度60℃の真空オーブンに5時間入れて水分を蒸発させる。蒸発乾固した残留物、すなわち非揮発成分を含むサンプル瓶の重量(g)を計量する。
 そして、非揮発成分を含むサンプル瓶の重量(g)と、サンプル瓶の重量(g)と、サンプル瓶に入れた上澄み液の重量(g)(=5.0g)とから、以下の算出式によって、上澄み液中における非揮発成分(副生成物(乳化重合生成物)に相当)の濃度(重量%)を算出する。
 (上澄み液中における非揮発成分の濃度)(重量%)
 ={(非揮発成分を含むサンプル瓶の重量)(g)-(サンプル瓶の重量)(g)}
  ÷(サンプル瓶に入れた上澄み液の重量)(g)×100
 〔重合体粒子のゲル分率の測定方法〕
 重合体粒子のゲル分率は、重合体粒子の架橋度を示すものであり、以下の方法で測定される。すなわち、まず、200mLナスフラスコに、試料としての重合体粒子1.0gと、沸騰石0.03gとを精秤して投入し、更にトルエン100mLを注加した後、前記ナスフラスコに冷却管を装着し、130℃に保ったオイルバスに前記ナスフラスコを浸けて24時間還流する。
 還流後、前記ナスフラスコ内の内容物(溶解液)を、ADVANTEC社製のガラスファイバーフィルター「GB-140(φ37mm)」及び「GA-200(φ37mm)」を装着して秤量したTOP社製のブフナーロート型フィルター3G(硝子粒子細孔直径20~30μm、容量30mL)を用いて濾過し、前記ブフナーロート型フィルター3G内に固形分を回収する。そして、前記ブフナーロート型フィルター3G内に回収した固形分を、前記ブフナーロート型フィルター3Gごと、130℃の真空オーブンにて1時間乾燥させた後、ゲージ圧0.06MPaで2時間乾燥させてトルエンを除去し、室温まで冷却する。
 冷却後、前記ブフナーロート型フィルター3G内に前記固形分を含んだ状態で、ブフナーロート型フィルター3Gとガラスファイバーフィルターと固形分の総重量を測定する。そして、測定した総重量から、ブフナーロート型フィルター3Gとガラスファイバーフィルターの重量および沸騰石の重量を差し引きし、乾燥粉体の重量(g)を求める。
 そして、乾燥粉体の重量(g)と、ナスフラスコに投入した試料の重量(g)とを用いて、以下の算出式により、ゲル分率を算出する。
 ゲル分率(重量%)={乾燥粉体(g)/試料重量(g)}×100
 〔重合体粒子の屈折率の測定方法〕
 重合体粒子の屈折率測定はベッケ法により行った。まず、スライドガラス上に重合体粒子を載せ、屈折液(CARGILLE社製:カーギル標準屈折液、屈折率nD25が1.480~1.596の屈折液を、屈折率差0.002刻みで複数準備)を滴下する。そして、重合体粒子と屈折液をよく混ぜた後、下から岩崎電気株式会社製高圧ナトリウムランプ「NX35」(中心波長589nm)の光を照射しながら、上部から光学顕微鏡により重合体粒子の輪郭を観察した。そして、輪郭が見えない場合を、屈折液と重合体粒子の屈折率が等しいと判断した。
 なお、光学顕微鏡による観察は、重合体粒子の輪郭が確認できる倍率での観察であれば特に問題ないが、粒子径5μmの重合体粒子であれば500倍程度の観察倍率が適当である。上記操作により、重合体粒子と屈折液の屈折率が近いほど重合体粒子の輪郭が見えにくくなることから、重合体粒子の輪郭が判りにくい屈折液の屈折率をその重合体粒子の屈折率と等しいと判断した。
 また、屈折率差が0.002の2種類の屈折液の間で重合体粒子の見え方に違いがない場合は、これら2種類の屈折液の中間の値を当該重合体粒子の屈折率と判断した。例えば、屈折率1.554と1.556の屈折液それぞれで試験をしたときに、両屈折液で重合体粒子の見え方に違いがない場合は、これら屈折液の中間値1.555を重合体粒子の屈折率と判定した。
 なお、上記の測定においては試験室気温23℃~27℃の環境下で測定を実施した。
 〔8μm以上10μm以下の粒子径を有する重合体粒子の個数、及び10μm以上の粒子径を有する重合体粒子の個数の測定方法〕
 以下の実施例3の重合体粒子における、8μm以上10μm以下の粒子径を有する重合体粒子の個数、及び10μm以上の粒子径を有する重合体粒子の個数は、フロー式粒子像分析装置(商品名「FPIA(登録商標)-3000S」、シスメックス株式会社製)を用いて測定した。
 具体的な測定方法としては、イオン交換水20mlに、分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩0.05gを加えて界面活性剤水溶液を得た。その後、上記界面活性剤水溶液に、測定対象の重合体粒子0.02gを加え、分散機として超音波洗浄器(例えば、株式会社ヴェルヴォクリーア製の「VS-150」など)を用いて、2分間かけて、重合体粒子を界面活性剤水溶液中に分散させる分散処理を行い、測定用の分散液を得た。
 測定には、標準対物レンズ(10倍)を搭載した上記フロー式粒子像分析装置を用い、上記フロー式粒子像分析装置に使用するシース液としては、パーティクルシース(商品名「PSE-900A」、シスメックス株式会社製)を使用した。上記手順に従い調整した測定用の分散液を上記フロー式粒子像分析装置に導入し、下記測定条件にて測定した。
 測定モード:LPF測定モード
 粒子径の測定範囲:0.5~200μm
 重合体粒子の測定個数:30万個
 粒子の円形度の測定範囲:0.97~1.0
 測定にあたっては、測定開始前に標準ポリマー粒子群の懸濁液(例えば、Thermo Fisher Scientific社製の「5200A」(標準ポリスチレン粒子群をイオン交換水で希釈したもの))を用いて上記フロー式粒子像分析装置の自動焦点調整を行った。
 上記方法によって測定した30万個の重合体粒子の粒子径から、8μm以上10μm以下の粒子径を有する重合体粒子の個数、及び10μm以上の粒子径を有する重合体粒子の個数をカウントした。
 〔重合体粒子の製造例1〕
 (メタ)アクリル酸エステル系単量体としてのメタクリル酸メチル90重量部及び多官能ビニル系単量体としてのエチレングリコールジメタクリレート10重量部並びに重合開始剤としての過酸化ベンゾイル0.4重量部からなる単量体組成物と、水性媒体としての脱イオン水200重量部と、酸可溶性の難水溶性無機化合物からなる分散安定剤としての複分解ピロリン酸マグネシウム(複分解生成法により得られたピロリン酸マグネシウム)5重量部と、界面活性剤としてのラウリル硫酸ナトリウム0.05重量部及びポリオキシエチレンノニルフェニルエーテルリン酸ナトリウム0.05重量部とを、高速乳化・分散機(プライミクス株式会社製、商品名「ホモミクサーMARK II 2.5型」)に供給して、液滴径が15μm程度になるように調整、混合した。これにより、単量体組成物が脱イオン水中に均一に分散した分散液を得た。
 攪拌機及び温度計が配設された重合反応器に上記分散液を供給し、撹拌機で攪拌しながら70℃にて3時間にわたって懸濁重合し、重合体粒子としての架橋ポリメタクリル酸メチル粒子が水中に分散した懸濁液が得られた。
 この懸濁液に塩酸を添加し、分散安定剤(複分解ピロリン酸マグネシウム)を溶解した。その後、内部バスケットに濾布を配設した遠心分離方式の脱水装置へ懸濁液を供給して遠心効果が700Gとなるようにバスケットを30分間回転させて脱液し、架橋ポリメタクリル酸メチル粒子を含むケーキを得た。その後、遠心効果が700Gとなるようにバスケットを回転させながら脱イオン水500重量部をバスケット内へ供給して30分間かけてケーキを洗浄し、さらにバスケットの回転を60分間続けて、架橋ポリメタクリル酸メチル粒子を含むケーキを得た。得られたケーキを乾燥して、架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が14.4μm、体積基準の粒子径分布の変動係数が44.3%、個数平均粒子径が7.5μm、個数基準の粒子径分布の変動係数が55.8%、(個数基準CV値)/(体積基準CV値)が1.26、体積基準最大粒子径が60.8μmであった。
 〔重合体粒子の製造例2〕
 ラウリル硫酸ナトリウムの量を0.2重量部に、ポリオキシエチレンノニルフェニルエーテルリン酸ナトリウムの量を0.25重量部にそれぞれ変更したこと以外は、重合体粒子の製造例1と同様にして、重合体粒子としての架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が6.2μm、体積基準CV値が48.6%、個数平均粒子径が3.9μm、個数基準CV値が43.4%、(個数基準CV値)/(体積基準CV値)が0.89、体積基準最大粒子径が29.6μmであった。
 〔重合体粒子の製造例3〕
 (メタ)アクリル酸エステル系単量体としてのメタクリル酸メチル70重量部、多官能ビニル系単量体としてのエチレングリコールジメタクリレート30重量部、重合開始剤としての2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8重量部及び過酸化ベンゾイル0.4重量部、分子量調整剤(連鎖移動剤)としてのn-ドデシルメルカプタン0.3重量部、並びに酸化防止剤としてのペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](商品名:「SONGNOX(登録商標)1010」、ソンウォン・インダストリアル社製)0.4重量部からなる単量体組成物と、水性媒体としての脱イオン水297重量部と、酸可溶性の難水溶性無機化合物からなる分散安定剤としての複分解ピロリン酸マグネシウム8.6重量部と、界面活性剤としてのポリオキシエチレンノニルフェニルエーテルリン酸ナトリウム0.28重量部とを、高速乳化・分散機(プライミクス株式会社製、商品名「ホモミクサーMARK II 2.5型」)に供給して、液滴径が3μm程度になるように混合した。これにより、脱イオン水中に単量体組成物が液滴径3μm程度の液滴として均一に分散した一次懸濁液を得た。さらに、この一次懸濁液を懸濁液分散具(ナノマイザー株式会社製、商品名「LNP-20/300」)を取り付けた高圧型分散装置(ナノマイザー株式会社製、商品名「ナノマイザー(登録商標)LA-33」)に投入し、29.4MPaの高圧下にて衝撃力を加えて単量体組成物の液滴を微細化させて、二次懸濁液を得た。
 攪拌機及び温度計が配設された重合反応器に上記二次懸濁液を供給し、攪拌機で攪拌しながら70℃にて3時間にわたって懸濁重合し、重合体粒子としての架橋ポリメタクリル酸メチル粒子が水中に分散した懸濁液が得られた。
 この懸濁液に塩酸水溶液を添加してピロリン酸マグネシウムを溶解した後に遠心効果1000Gで10分間遠心濾過することにより脱液して得たケーキを300重量部の水でリスラリーしたものに、更に塩酸水溶液を添加して、系のpHが強酸領域となるように調整した。その後、濾布が配設されたバスケットを内部に備える遠心分離方式の脱水装置へ上記懸濁液を供給して遠心効果が1000Gとなるようにバスケットを30分間回転させて脱液した後に、遠心効果が1000Gとなるようにバスケットを回転させながら脱イオン水900重量部をバスケット内へ供給して30分間かけて洗浄を行い、さらにバスケットの回転を60分間続けて、架橋ポリメタクリル酸メチル粒子を含むケーキを得た。得られたケーキを乾燥して、架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が2.8μm、体積基準CV値が32.0%、個数平均粒子径が2.6μm、個数基準CV値が30.0%、(個数基準CV値)/(体積基準CV値)が0.94、体積基準最大粒子径が18.5μmであった。
 〔重合体粒子の製造例4〕
 複分解ピロリン酸マグネシウムの量を4重量部に、ラウリル硫酸ナトリウムの量を0.05重量部に、ポリオキシエチレンノニルフェニルエーテルリン酸ナトリウムの量を0.03重量部にそれぞれ変更したこと、及び「ホモミクサーMARK II 2.5型」で液滴径を18μm程度に調整したこと以外は、重合体粒子の製造例1と同様にして、重合体粒子としての架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子の体積平均粒子径は17.7μm、体積基準CV値は38.9%、個数平均粒子径は7.8μm、個数基準CV値は66.5%、(個数基準CV値)/(体積基準CV値)は1.71、体積基準最大粒子径は59.2μmであった。
 〔重合体粒子の製造例5〕
 スチレン系単量体としてのスチレン10重量部を単量体組成物に添加したこと、メタクリル酸メチルの量を80重量部に、複分解ピロリン酸マグネシウムの量を6.5重量部に、ラウリル硫酸ナトリウムの量を0.25重量部に、ポリオキシエチレンノニルフェニルエーテルリン酸ナトリウムの量を0.25重量部にそれぞれ変更したこと、及び「ホモミクサーMARK II 2.5型」で液滴径を4μm程度に調整したこと、懸濁重合を8時間にわたって行ったこと以外は、重合体粒子の製造例1と同様にして、重合体粒子としての架橋メタクリル酸メチル-スチレン共重合体粒子を得た。
 得られた架橋メタクリル酸メチル-スチレン共重合体粒子は、体積平均粒子径が4.4μm、体積基準の粒子径分布の変動係数が47.2%、個数平均粒子径が3.1μm、個数基準の粒子径分布の変動係数が40.9%、(個数基準CV値)/(体積基準CV値)が0.87、体積基準最大粒子径が20.7μmであった。
 〔重合体粒子の製造例6〕
 (メタ)アクリル酸エステル系単量体としてのメタクリル酸メチル95重量部、多官能ビニル系単量体としてのエチレングリコールジメタクリレート5重量部、重合開始剤としての過酸化ベンゾイル0.5重量部、水性媒体としての脱イオン水300重量部と、酸可溶性の難水溶性無機化合物からなる分散安定剤としての複分解ピロリン酸マグネシウム5重量部と、界面活性剤としてのラウリル硫酸ナトリウム0.15重量部及びポリオキシエチレンノニルフェニルエーテルリン酸ナトリウム0.10重量部とを、高速乳化・分散機(プライミクス株式会社製、商品名「ホモミクサーMARK II 2.5型」)に供給して、液滴径が8μm程度になるように混合した。これにより、脱イオン水中に単量体組成物が液滴径8μm程度の液滴として均一に分散した一次懸濁液を得た。さらに、この一次懸濁液を懸濁液分散具(ナノマイザー株式会社製、商品名「LNP-20/300」)を取り付けた高圧型分散装置(ナノマイザー株式会社製、商品名「ナノマイザー(登録商標)LA-33」)に投入し、29.4MPaの高圧下にて衝撃力を加えて単量体組成物の液滴を微細化させて、二次懸濁液を得た。
 攪拌機及び温度計が配設された重合反応器に上記二次懸濁液を供給し、攪拌機で攪拌しながら70℃にて3時間にわたって懸濁重合し、重合体粒子としての架橋ポリメタクリル酸メチル粒子が水中に分散した懸濁液が得られた。
 この懸濁液に塩酸を添加し、複分解ピロリン酸マグネシウムを溶解した。その後、内部バスケットに濾布を配設した遠心分離方式の脱水装置へ懸濁液を供給して遠心効果が700Gとなるようにバスケットを30分間回転させて脱液し、架橋ポリメタクリル酸メチル粒子を含むケーキを得た。その後、遠心効果が700Gとなるようにバスケットを回転させながら脱イオン水500重量部をバスケット内へ供給して30分間かけてケーキを洗浄し、さらにバスケットの回転を60分間続けて、架橋ポリメタクリル酸メチル粒子を含むケーキを得た。得られたケーキを乾燥して、架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が8.4μm、体積基準CV値が25.7%、個数平均粒子径が6.0μm、個数基準CV値が37.1%、(個数基準CV値)/(体積基準CV値)が1.44、体積基準最大粒子径が29.0μmであった。
 〔重合体粒子の製造例7〕
 (メタ)アクリル酸エステル系単量体としてメタクリル酸メチルに代えてアクリル酸ブチルを使用したこと、多官能ビニル系単量体としてエチレングリコールジメタクリレートに代えてポリエチレングリコール(600)ジメタクリレートを使用したこと、複分解ピロリン酸マグネシウムの量を3.5重量部に、ラウリル硫酸ナトリウムの量を0.04重量部に、ポリオキシエチレンノニルフェニルエーテルリン酸ナトリウムの量を0.03重量部にそれぞれ変更したこと、及び「ホモミクサーMARK II 2.5型」で液滴径を30μm程度に調整したこと以外は、重合体粒子の製造例1と同様にして、重合体粒子としての架橋ポリアクリル酸ブチル粒子を得た。
 得られたポリアクリル酸ブチル粒子の体積平均粒子径は29.9μm、体積基準CV値は36.2%、個数平均粒子径は17.1μm、個数基準CV値は42.2%、(個数基準CV値)/(体積基準CV値)は1.17、体積基準最大粒子径は81.3μmであった。
 〔実施例1〕
 重合体粒子の製造例1で得た重合体粒子(架橋ポリメタクリル酸メチル粒子)を分級ローター型気流分級機(商品名「ターボクラシファイア(登録商標)TC-25」、日清エンジニアリング株式会社製)へ供給し、分級ローターとして粗粉ローターを使用して、個数基準CV値/体積基準CV値が1.0~3.5の範囲から逸脱しないように上記分級ローター型気流分級機により分級を行うことで、重合体粒子から粗粉(粗大な重合体粒子)を30重量%除去した。続いて、分級ローターとして微粉ローターを使用して、個数基準CV値/体積基準CV値が1.0~3.0の範囲から逸脱しないように上記分級ローター型気流分級機により分級を行うことで、重合体粒子から微粉(微細な重合体粒子)を30重量%除去した。これにより、本発明の重合体粒子の一例としての架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が13.5μm、体積基準CV値が15.7%、個数平均粒子径が12.0μm、個数基準CV値が24.3%、(個数基準CV値)/(体積基準CV値)が1.55、体積基準最大粒子径が24.0μmであった。また、得られた架橋ポリメタクリル酸メチル粒子は、屈折率が1.495、ゲル分率が98.1重量%、非揮発成分濃度が0.5重量%、重合体粒子の単位表面積あたりにおける界面活性剤の含有量が67×10-5g/mであった。
 〔実施例2〕
 重合体粒子の製造例2で得た重合体粒子(架橋ポリメタクリル酸メチル粒子)をコアンダ型気流分級機(エルボージェット分級機)(形式:EJ-PURO、製造:日鉄鉱業株式会社製、販売:株式会社マツボー)へ供給し、個数基準CV値/体積基準CV値が1.0~3.5の範囲から逸脱しないように上記コアンダ型気流分級機により分級を行うことで、重合体粒子から粗粉を25重量%、微粉を30重量%除去した。これにより、本発明の重合体粒子の一例としての架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が5.0μm、体積基準CV値が23.6%、個数平均粒子径が4.0μm、個数基準CV値が31.2%、(個数基準CV値)/(体積基準CV値)が1.30、体積基準最大粒子径が15.8μmであった。また、得られた架橋ポリメタクリル酸メチル粒子は、屈折率が1.495、ゲル分率が98.3重量%、非揮発成分濃度が3.1重量%、重合体粒子の単位表面積あたりにおける界面活性剤の含有量が225×10-5g/mであった。
 〔実施例3〕
 重合体粒子の製造例3で得た重合体粒子を分級ローター型気流分級機(商品名「ターボクラシファイア(登録商標)TC-25」、日清エンジニアリング株式会社製)へ供給し、分級ローターとして粗粉ローターを使用して、個数基準CV値/体積基準CV値が1.0~3.5の範囲から逸脱しないように上記分級ローター型気流分級機により分級を行うことで、重合体粒子から粗粉を30重量%除去した。続いて、分級ローターとして微粉ローターを使用して、個数基準CV値/体積基準CV値が1.0~3.0の範囲から逸脱しないように上記分級ローター型気流分級機により分級を行うことで、重合体粒子から微粉を25重量%除去した。これにより、本発明の重合体粒子の一例としての架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が2.7μm、体積基準CV値が18.1%、個数平均粒子径が2.4μm、個数基準CV値が21.2%、(個数基準CV値)/(体積基準CV値)が1.17、体積基準最大粒子径が6.2μmであった。また、得られた架橋ポリメタクリル酸メチル粒子は、屈折率が1.495、ゲル分率が97.9重量%、非揮発成分濃度が0.8重量%、重合体粒子の単位表面積あたりにおける界面活性剤の含有量が180×10-5g/mであった。また、得られた架橋ポリメタクリル酸メチル粒子は、8μm以上10μm以下の粒子径を有する重合体粒子の個数が30万個カウント中に1個、10μm以上の粒子径を有する重合体粒子の個数が0個であった。
 〔実施例4〕
 重合体粒子の製造例4で得た重合体粒子を、コアンダ型気流分級機(エルボージェット分級機)(形式:EJ-PURO、製造:日鉄鉱業株式会社製、販売:株式会社マツボー)へ供給し、個数基準CV値/体積基準CV値が1.0~3.5の範囲から逸脱しないように上記コアンダ型気流分級機により分級を行うことで、重合体粒子から粗粉を35重量%、微粉を30重量%除去した。これにより、本発明の重合体粒子の一例としての架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が18.1μm、体積基準CV値が26.2%、個数平均粒子径が13.4μm、個数基準CV値が42.6%、(個数基準CV値)/(体積基準CV値)が2.12、体積基準最大粒子径が33.2μmであった。また、得られた架橋ポリメタクリル酸メチル粒子は、屈折率が1.495、ゲル分率が97.8重量%、非揮発成分濃度が1.2重量%、重合体粒子の単位表面積あたりにおける界面活性剤の含有量が64×10-5g/mであった。
 〔実施例5〕
 重合体粒子の製造例5で得た重合体粒子(架橋メタクリル酸メチル-スチレン共重合体粒子)を分級ローター型気流分級機(商品名「ターボクラシファイア(登録商標)TC-25」、日清エンジニアリング株式会社製)へ供給し、分級ローターとして粗粉ローターを使用して、個数基準CV値/体積基準CV値が1.0~3.5の範囲から逸脱しないように上記分級ローター型気流分級機により分級を行うことで、重合体粒子から粗粉(粗大な重合体粒子)を25重量%除去した。続いて、分級ローターとして微粉ローターを使用して、個数基準CV値/体積基準CV値が1.0~3.0の範囲から逸脱しないように上記分級ローター型気流分級機により分級を行うことで、重合体粒子から微粉(微細な重合体粒子)を25重量%除去した。これにより、本発明の重合体粒子の一例としての架橋メタクリル酸メチル-スチレン共重合体粒子を得た。
 得られた架橋メタクリル酸メチル-スチレン共重合体粒子は、体積平均粒子径が4.1μm、体積基準CV値が23.7%、個数平均粒子径が3.4μm、個数基準CV値が28.0%、(個数基準CV値)/(体積基準CV値)が1.18、体積基準最大粒子径が12.0μmであった。また、得られた架橋メタクリル酸メチル-スチレン共重合体粒子は、屈折率が1.505、ゲル分率が97.2重量%、非揮発成分濃度が1.0重量%、重合体粒子の単位表面積あたりにおける界面活性剤の含有量が98×10-5g/mであった。
 〔実施例6〕
 重合体粒子の製造例6で得た重合体粒子(架橋ポリメタクリル酸メチル粒子)をコアンダ型気流分級機(エルボージェット分級機)(形式:EJ-PURO、製造:日鉄鉱業株式会社製、販売:株式会社マツボー)へ供給し、個数基準CV値/体積基準CV値が1.0~3.5の範囲から逸脱しないように上記コアンダ型気流分級機により分級を行うことで、重合体粒子から粗粉を10重量%、微粉を10重量%除去した。これにより、本発明の重合体粒子の一例としての架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が8.0μm、体積基準CV値が24.0%、個数平均粒子径が6.2μm、個数基準CV値が35.0%、(個数基準CV値)/(体積基準CV値)が1.46、体積基準最大粒子径が19.0μmであった。また、得られた架橋ポリメタクリル酸メチル粒子は、屈折率が1.495、ゲル分率が97.6重量%、非揮発成分濃度が2.1重量%、重合体粒子の単位表面積あたりにおける界面活性剤の含有量が197×10-5g/mであった。
 〔実施例7〕
 重合体粒子の製造例7で得た重合体粒子(架橋ポリアクリル酸ブチル粒子)を分級ローター型気流分級機(商品名「ターボクラシファイア(登録商標)TC-25」、日清エンジニアリング株式会社製)へ供給し、分級ローターとして粗粉ローターを使用して、個数基準CV値/体積基準CV値が1.0~3.5の範囲から逸脱しないように上記分級ローター型気流分級機により分級を行うことで、重合体粒子から粗粉を40重量%除去した。続いて、分級ローターとして微粉ローターを使用して、個数基準CV値/体積基準CV値が1.0~3.0の範囲から逸脱しないように上記分級ローター型気流分級機により分級を行うことで、重合体粒子から微粉を25重量%除去した。これにより、本発明の重合体粒子の一例としての架橋ポリアクリル酸ブチル粒子を得た。
 得られた架橋ポリアクリル酸ブチル粒子は、体積平均粒子径が28.5μm、体積基準CV値が24.5%、個数平均粒子径が18.2μm、個数基準CV値が37.5%、(個数基準CV値)/(体積基準CV値)が1.53、体積基準最大粒子径が70.4μmであった。また、得られた架橋ポリアクリル酸ブチル粒子は、屈折率が1.495、ゲル分率が98.1重量%、非揮発成分濃度が0.4重量%、重合体粒子の単位表面積あたりにおける界面活性剤の含有量が44×10-5g/mであった。
 〔比較例1〕
 重合体粒子の製造例1で得た重合体粒子(架橋ポリメタクリル酸メチル粒子)を分級ローター型気流分級機(商品名「ターボクラシファイア(登録商標)TC-25」、日清エンジニアリング株式会社製)へ供給し、分級ローターとして粗粉ローターを使用して、個数基準CV値/体積基準CV値が1.0~3.5の範囲から逸脱しないように上記分級ローター型気流分級機により分級を行うことで、重合体粒子から粗粉を10重量%除去した。続いて、分級ローターとして微粉ローターを使用して、個数基準CV値/体積基準CV値が1.0~3.0の範囲から逸脱しないように上記分級ローター型気流分級機により分級を行うことで、重合体粒子から微粉を10重量%除去した。これにより、比較用の重合体粒子としての架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が13.9μm、体積基準CV値が34.3%、個数平均粒子径が7.5μm、個数基準CV値が55.5%、(個数基準CV値)/(体積基準CV値)が1.62、体積基準最大粒子径が30.2μmであった。また、得られた架橋ポリメタクリル酸メチル粒子は、屈折率が1.495、ゲル分率が98.3重量%、非揮発成分濃度が3.5重量%より多く、重合体粒子の単位表面積あたりにおける界面活性剤の含有量が91×10-5g/mであった。
 〔比較例2〕
 重合体粒子の製造例2で得た重合体粒子(架橋ポリメタクリル酸メチル粒子)をコアンダ型気流分級機(エルボージェット分級機)(形式:EJ-PURO、製造:日鉄鉱業株式会社製、販売:株式会社マツボー)へ供給し、個数基準CV値/体積基準CV値が1.0~3.5の範囲から逸脱しないように上記コアンダ型気流分級機により分級を行うことで、重合体粒子から粗粉を10重量%、微粉を10重量%除去した。これにより、比較用の重合体粒子としての架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が5.9μm、体積基準CV値が32.0%、個数平均粒子径が3.9μm、個数基準CV値が43.1%、(個数基準CV値)/(体積基準CV値)が1.35、体積基準最大粒子径が15.3μmであった。また、得られた架橋ポリメタクリル酸メチル粒子は、屈折率が1.495、ゲル分率が98.4重量%、非揮発成分濃度が3.5重量%より多く、重合体粒子の単位表面積あたりにおける界面活性剤の含有量が250×10-5g/mであった。
 〔比較例3〕
 重合体粒子の製造例3で得た重合体粒子(架橋ポリメタクリル酸メチル粒子)を、ブロースルー式高性能ふるい機(商品名「ハイボルター」、東洋ハイテック株式会社製)へ供給し、上記ブロースルー式高性能ふるい機により分級を行うことで、重合体粒子から粗粉を5重量%除去すると共に微粉を除去した。微粉は、バグフィルターで回収した。これにより、比較用の重合体粒子としての架橋ポリメタクリル酸メチル粒子を得た。
 得られた架橋ポリメタクリル酸メチル粒子は、体積平均粒子径が2.8μm、体積基準CV値が26.2%、個数平均粒子径が2.5μm、個数基準CV値が28.5%、(個数基準CV値)/(体積基準CV値)が1.08、体積基準最大粒子径が14.8μmであった。また、得られた架橋ポリメタクリル酸メチル粒子は、屈折率が1.495、ゲル分率が97.5重量%、非揮発成分濃度が0.9重量%、重合体粒子の単位表面積あたりにおける界面活性剤の含有量が183×10-5g/mであった。
 以上の各実施例及び比較例について、得られた体積基準の平均粒子径(体積平均粒子径)、体積基準CV値、個数基準の平均粒子径(個数平均粒子径)、個数基準CV値/体積基準CV値、体積基準最大粒子径、屈折率、ゲル分率、非揮発成分濃度、及び重合体粒子の単位表面積あたりにおける界面活性剤の含有量を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 〔実施例8:光拡散フィルムの製造例〕
 実施例1で得られた重合体粒子250重量部と、バインダー樹脂としてのアクリルポリオール(アクリディックA-801、固形分50重量%)180重量部及びポリイソシアネート(タケネートD110N、固形分60重量%)50重量部と、有機溶剤としてのトルエン300質量部及びメチルエチルケトン330質量部とをよく混合し、フィルム基材としての厚さ100μmのPETフィルム上へダイコート法により塗工して厚さ20μmの塗膜を形成し、光拡散フィルムを作製した。作製された光拡散フィルムは、重合体粒子が全面にわたり均一分散した、透過欠陥がない良好なものであった。
 〔実施例9:光拡散フィルムの製造例〕
 実施例1で得られた重合体粒子に代えて実施例2で得られた重合体粒子を使用したこと以外は実施例1と同様にして、光拡散フィルムを作製した。作製された光拡散フィルムは、重合体粒子が全面にわたり均一分散した、透過欠陥がない良好なものであった。
 〔実施例10:光拡散フィルムの製造例〕
 実施例1で得られた重合体粒子に代えて実施例3で得られた重合体粒子を使用したこと以外は実施例1と同様にして、光拡散フィルムを作製した。作製された光拡散フィルムは、重合体粒子が全面にわたり均一分散した、透過欠陥がない良好なものであった。
 〔実施例11:光拡散フィルムの製造例〕
 実施例1で得られた重合体粒子に代えて実施例4で得られた重合体粒子を使用したこと以外は実施例1と同様にして、光拡散フィルムを作製した。作製された光拡散フィルムは、重合体粒子が全面にわたり均一分散した、透過欠陥がない良好なものであった。
 〔実施例12:光拡散フィルムの製造例〕
 実施例1で得られた重合体粒子に代えて実施例5で得られた重合体粒子を使用したこと以外は実施例1と同様にして、光拡散フィルムを作製した。作製された光拡散フィルムは、重合体粒子が全面にわたり均一分散した、透過欠陥がない良好なものであった。
 〔実施例13:光拡散フィルムの製造例〕
 実施例1で得られた重合体粒子に代えて実施例6で得られた重合体粒子を使用したこと以外は実施例1と同様にして、光拡散フィルムを作製した。作製された光拡散フィルムは、重合体粒子が全面にわたり均一分散した、透過欠陥がない良好なものであった。
 〔実施例14:光拡散フィルムの製造例〕
 実施例1で得られた重合体粒子に代えて実施例7で得られた重合体粒子を使用したこと以外は実施例1と同様にして、光拡散フィルムを作製した。作製された光拡散フィルムは、重合体粒子が全面にわたり均一分散した、透過欠陥がない良好なものであった。
 〔比較例4:光拡散フィルムの比較製造例〕
 実施例1で得られた重合体粒子に代えて比較例1で得られた重合体粒子を使用したこと以外は実施例1と同様にして、光拡散フィルムを作製した。作製された光拡散フィルムは、重合体粒子が一部不均一に分散しており、透過欠陥が発生していた。
 〔比較例5:光拡散フィルムの比較製造例〕
 実施例1で得られた重合体粒子に代えて比較例2で得られた重合体粒子を使用したこと以外は実施例1と同様にして、光拡散フィルムを作製した。作製された光拡散フィルムは、重合体粒子が一部不均一に分散しており、透過欠陥が発生していた。
 〔比較例6:光拡散フィルムの比較製造例〕
 実施例1で得られた重合体粒子に代えて比較例3で得られた重合体粒子を使用したこと以外は実施例1と同様にして、光拡散フィルムを作製した。作製された光拡散フィルムは、重合体粒子が一部不均一に分散しており、透過欠陥が発生していた。
 以上のように、体積基準の粒子径分布の変動係数が25.0%超(具体的には26.2~34.3%)である比較例1~3の重合体粒子を用いた光拡散フィルムは、透過欠陥が発生していたのに対し、体積基準の粒子径分布の変動係数が13.0%以上25.0%以下(具体的には15.7~24.5%)である実施例1~7の重合体粒子を用いた光拡散フィルムは、透過欠陥がない良好なものであった。また、非揮発成分の濃度が3.5重量%超である比較例1及び2の重合体粒子を用いた光拡散フィルムは、透過欠陥が発生していたのに対し、非揮発成分の濃度が3.5重量%未満(具体的には0.4~3.1重量%)である実施例1~7の重合体粒子を用いた光拡散フィルムは、透過欠陥がない良好なものであった。
 〔実施例15:ボディローションの製造例〕
 実施例6で得られた重合体粒子3重量部と、分散媒としてのエタノール50重量部と、抗炎症剤としてのグリチルリチン酸0.1重量部と、分散媒としての精製水46.4重量部と、香料0.5重量部とをミキサーにて十分に混合して、外用剤としてのボディローションを得た。
 得られたボディローションは、肌に塗布する際の滑りに優れ、滑らかで使用感に優れたものであった。また、ボディローションは、使用の際に軽く振るだけで沈降している樹脂粒子が容易に再分散し、使用性に優れるものであった。
 〔実施例16:プレシェーブローションの製造例〕
 実施例6で得られた重合体粒子4重量部と、分散溶媒としてのエタノール91重量部と、分散媒としての1,3-ブチレングリコール5.0重量部と、エチルヘキサン酸セチル2.0重量部と、香料(適量)とをミキサーにて十分に混合して、外用剤としてのプレシェーブローションを得た。
 得られたプレシェーブローションは、肌に塗布する際の滑りに優れ、滑らかで使用感に優れたものであった。また、プレシェーブローションは、使用の際に軽く振るだけで沈降している樹脂粒子が容易に再分散し、使用性に優れるものであった。
 〔実施例17:パウダーファンデーションの製造例〕
 実施例6で得られた重合体粒子15重量部と、粘土鉱物類としてのセリサイト21重量部と、粘土鉱物類としての白雲母51重量部と、色材原料としての赤色酸化鉄0.6重量部と、色材原料としての黄色酸化鉄1重量部と、色材原料としての黒色酸化鉄0.1重量部とをヘンシェルミキサーで混合し、混合物を得る。次いで、前記混合物に、脂肪酸エステルとしての2-エチルヘキサン酸セチル10重量部と、界面活性剤としてのソルビタンセスキオレエート1重量部と、防腐剤0.2重量部とを混合溶解したものを加えて均一に混合し、得られた混合物に、さらに香料0.1重量部を加えて混合した後、粉砕し、この粉砕物を篩いに通した。そして、前記篩いを通過した粉砕物を金皿に圧縮成型してパウダーファンデーションを得た。
 得られたパウダーファンデーションは、肌に塗布する際の滑りに優れ、滑らかで使用感に優れたものであった。
 〔実施例18:乳化型ファンデーションの製造例〕
 実施例6で得られた重合体粒子20.0重量部と、粘土鉱物類としてのセリサイト6.0重量部と、二酸化チタン3.0重量部と、顔料(適量)とをニーダーで混合し、粉末部を調製した。
 そして、粉末部とは別に、分散媒としての精製水50.2重量部に、保湿剤としてのポリエチレングリコール(ポリエチレングリコール4000)5.0重量部と、pH調整剤としてのトリエタノールアミン1.0重量部と、保湿剤としてのプロピレングリコール5.0重量部と、粘土鉱物類としてのケイ酸マグネシウムアルミニウム(商品名「VEEGUM(登録商標)」、バンダービルト社製)0.5重量部とを加え加熱溶解した。これにより得られた溶液に先に調製した前記粉末部を加え、ホモミクサーで粉末を均一に分散させた後、70℃に保温し、水相成分を得た。
 次いで、前記水相成分とは別に、高級脂肪酸としてのステアリン酸2.0重量部と、高級アルコールとしてのセチルアルコール0.3重量部と、炭化水素としての流動パラフィン20.0重量部と、香料(適量)と、防腐剤(適量)とを混合して加熱溶解した後、70℃に保温し、油相成分を得た。
 得られた油相成分に前記水相成分を加えて、予備乳化を行い、ホモミクサーで均一に乳化・分散後、かきまぜながら冷却させて乳化型ファンデーションを得た。
 得られた乳化型ファンデーションは、肌に塗布する際の滑りに優れ、滑らかで使用感に優れたものであった。
 〔実施例19:ルースパウダーの製造例〕
 実施例6で得られた重合体粒子21.0重量部と、粘土鉱物類としてのマイカ30.0重量部と、粘土鉱物類としてのセリサイト30.0重量部と、粘土鉱物類としてのチタンセリサイト9.0重量部と、二酸化チタン8.0重量部と、色材原料としての酸化鉄2.0重量部とをヘンシェルミキサーで混合した後、Retsch社製のロータースピードミルZM-100を用いて、1回粉砕(12本刃ローター使用、1mmスクリーン装着、回転数14000rpm)し、ルースパウダーを得た。
 得られたルースパウダーは、肌に塗布する際の滑りに優れ、滑らかで使用感に優れたものであった。
 〔実施例20:ボディパウダーの製造例〕
 実施例6で得られた重合体粒子50.0重量部と、粘土鉱物類としてのマイカ25.0重量部と、粘土鉱物類としてのセリサイト25.0重量部とをヘンシェルミキサーで混合した後、Retsch社製のロータースピードミルZM-100を用いて、1回粉砕(12本刃ローター使用、1mmスクリーン装着、回転数14000rpm)し、ボディパウダーを得た。
 得られたボディパウダーは、肌に塗布する際の滑り、使用感に優れたものであった。
 〔実施例21:コーティング用樹脂組成物の製造例〕
 実施例6で得られた重合体粒子3重量部と、市販の水系樹脂バインダー液(ウレタン系樹脂、固形分30重量%、ALBERDINGK社製、商品名「U330」)20重量部とを遠心攪拌機により3分間攪拌して、分散液を得た。この工程において、重合体粒子は、遠心攪拌機により3分間攪拌することで、水系樹脂バインダーに容易に分散した。
 そして、得られた前記分散液を3時間放置した後、再び遠心攪拌機により3分間攪拌することによって、コーティング用樹脂組成物(塗料)を得た。
 得られたコーティング用樹脂組成物は、12時間経過後も振り混ぜるだけで重合体粒子が再分散し、再分散性に優れたものであった。
 (アクリル板の塗工)
 前記コーティング用樹脂組成物を厚み3mmのアクリル板に吹き付け塗工することにより、厚み50μmの艶消し塗膜を作成した。得られた塗膜は、ブツ(突起)も見られず、良好な艶消し性及び触感を有していた。
 本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 また、この出願は、2015年9月30日に日本で出願された特願2015-194341に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
 

Claims (20)

  1.  界面活性剤を含有する重合体粒子であって、
     体積基準の粒子径分布の変動係数が13.0%以上25.0%以下であり、
     重合体粒子5.0gに水15.0gを添加し、超音波洗浄器を用いて60分間分散処理を行うことにより重合体粒子を水中に分散させ、内径24mmの遠心管に入れて遠心分離機を用いてKファクタ6943、回転時間30分間の条件で遠心分離した後、上澄み液を回収したときに、上澄み液中における非揮発成分の濃度が3.5重量%未満であることを特徴とする重合体粒子。
  2.  請求項1に記載の重合体粒子であって、
     体積基準の粒子径分布の変動係数が15.0%超25.0%以下であることを特徴とする重合体粒子。
  3.  請求項1又は2に記載の重合体粒子であって、
     前記重合体粒子の単位表面積あたりにおける界面活性剤の含有量が、10~250×10-5g/mであることを特徴とする重合体粒子。
  4.  請求項1~3のいずれか1項に記載の重合体粒子であって、
     (メタ)アクリル系重合体、スチレン系重合体、及び(メタ)アクリル-スチレン系共重合体の少なくとも1つで構成されることを特徴とする重合体粒子。
  5.  請求項1~4のいずれか1項に記載の重合体粒子であって、
     ゲル分率が、90重量%以上であることを特徴とする重合体粒子。
  6.  請求項1~5のいずれか1項に記載の重合体粒子であって、
     屈折率が、1.490~1.595であることを特徴とする重合体粒子。
  7.  請求項1~6のいずれか1項に記載の重合体粒子であって、
     体積平均粒子径が、1μm以上8μm以下であることを特徴とする重合体粒子。
  8.  請求項7に記載の重合体粒子であって、
     体積基準の粒子径分布における最大粒子径が、体積平均粒子径の3.5倍以下であることを特徴とする重合体粒子。
  9.  請求項7又は8に記載の重合体粒子であって、
     体積平均粒子径が、2μm以上4μm以下であり、
     8μm以上10μm以下の粒子径を有する重合体粒子の個数が、30万個中2個以下であることを特徴とする重合体粒子。
  10.  請求項1~6のいずれか1項に記載の重合体粒子であって、
     体積平均粒子径が、8μm超30μm以下であることを特徴とする重合体粒子。
  11.  請求項10に記載の重合体粒子であって、
     体積基準の粒子径分布における最大粒子径が、体積平均粒子径の2.5倍以下であることを特徴とする重合体粒子。
  12.  請求項1~11のいずれか1項に記載の重合体粒子であって、
     個数基準の粒子径分布の変動係数を体積基準の粒子径分布の変動係数で除した値が、1.0~3.0であることを特徴とする重合体粒子。
  13.  請求項1~6のいずれか1項に記載の重合体粒子であって、
     コーティング剤用又はインク用の添加剤であり、
     体積平均粒子径が、4~40μmであることを特徴とする重合体粒子。
  14.  請求項1~6のいずれか1項に記載の重合体粒子であって、
     外用剤用の添加剤であり、
     体積平均粒子径が、4~30μmであることを特徴とする重合体粒子。
  15.  請求項1~12のいずれか1項に記載の重合体粒子であって、
     光学部材用光拡散剤であることを特徴とする重合体粒子。
  16.  請求項1~12のいずれか1項に記載の重合体粒子であって、
     樹脂フィルム用凹凸付与剤であることを特徴とする重合体粒子。
  17.  請求項1~13のいずれか1項に記載の重合体粒子を含むことを特徴とする樹脂組成物。
  18.  請求項17に記載の樹脂組成物であって、
     コーティング用樹脂組成物であることを特徴とする樹脂組成物。
  19.  基材フィルムと、その上に形成されているコーティングとを含む光学フィルムであって、
     前記コーティングが、請求項1~6及び13のいずれか1項に記載の重合体粒子を含むことを特徴とする光学フィルム。
  20.  請求項1~6及び14のいずれか1項に記載の重合体粒子を含むことを特徴とする外用剤。
     
PCT/JP2016/059720 2015-09-30 2016-03-25 重合体粒子及びその用途 WO2017056529A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202110517009.XA CN113336976B (zh) 2015-09-30 2016-03-25 聚合物颗粒和其用途
CN201680057624.4A CN108137719B (zh) 2015-09-30 2016-03-25 聚合物颗粒和其用途
KR1020207022254A KR102382184B1 (ko) 2015-09-30 2016-03-25 중합체 입자 및 그 용도
US15/764,058 US11098167B2 (en) 2015-09-30 2016-03-25 Polymer particles and use thereof
KR1020187011934A KR20180061289A (ko) 2015-09-30 2016-03-25 중합체 입자 및 그 용도
EP16850707.7A EP3357934B8 (en) 2015-09-30 2016-03-25 Polymer particles and use thereof
JP2017542765A JP6685316B2 (ja) 2015-09-30 2016-03-25 重合体粒子及びその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015194341 2015-09-30
JP2015-194341 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017056529A1 true WO2017056529A1 (ja) 2017-04-06

Family

ID=58422898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059720 WO2017056529A1 (ja) 2015-09-30 2016-03-25 重合体粒子及びその用途

Country Status (6)

Country Link
US (1) US11098167B2 (ja)
EP (1) EP3357934B8 (ja)
JP (2) JP6685316B2 (ja)
KR (2) KR102382184B1 (ja)
CN (2) CN113336976B (ja)
WO (1) WO2017056529A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039139A1 (ja) * 2019-08-29 2021-03-04 Eneos株式会社 架橋型メタクリレート樹脂粒子および造孔剤
WO2021171669A1 (ja) * 2020-02-28 2021-09-02 積水化成品工業株式会社 重合体粒子及びその用途
WO2021199465A1 (ja) * 2020-03-30 2021-10-07 積水化成品工業株式会社 重合体粒子、増粘剤及び組成物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3745164A1 (en) * 2019-05-31 2020-12-02 Lotte Chemical Corporation Thermoplastic resin composition and light diffusion sheet produced therefrom
WO2021039798A1 (ja) * 2019-08-28 2021-03-04 積水化成品工業株式会社 樹脂微粒子及びその製造方法
US11795333B2 (en) * 2021-05-11 2023-10-24 Xerox Corporation Crosslinked organic additive for waterborne coating compositions
US11952448B2 (en) 2021-07-27 2024-04-09 Xerox Corporation Organic additives and compositions containing the same
CN113913008B (zh) * 2021-11-15 2022-06-24 聊城鲁西聚碳酸酯有限公司 一种光扩散剂和阻燃型光扩散聚碳酸酯组合物及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030977A1 (ja) * 2011-08-31 2013-03-07 積水化成品工業株式会社 樹脂粒子集合体、その製造方法、およびその用途
JP2013203938A (ja) * 2012-03-29 2013-10-07 Sekisui Plastics Co Ltd 樹脂粒子およびその製造方法、並びにその樹脂粒子を用いた多孔性樹脂成形体の製造方法
JP2015004007A (ja) * 2013-06-21 2015-01-08 積水化成品工業株式会社 樹脂粒子溶剤分散体及びその用途
WO2015045448A1 (ja) * 2013-09-30 2015-04-02 積水化成品工業株式会社 重合体粒子、その製造方法、及びその用途

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069097A (en) 1975-11-11 1978-01-17 Westinghouse Electric Corporation Method and apparatus for monitoring flux deviations in a nuclear reactor
JPS5740479A (en) 1980-08-21 1982-03-06 Kaken Pharmaceut Co Ltd Preparation of benzofuran derivative and its acid addition salt
JP5634031B2 (ja) 2009-03-27 2014-12-03 株式会社日本触媒 重合体粒子およびそれを用いた重合体粒子含有組成物
US8124309B2 (en) * 2009-04-20 2012-02-28 Xerox Corporation Solvent-free emulsion process
CN102597012B (zh) * 2009-11-18 2015-09-23 综研化学株式会社 树脂粒子及其制造方法
CN103140505B (zh) * 2010-09-28 2017-06-30 积水化成品工业株式会社 树脂颗粒及其制造方法、以及防眩薄膜、光扩散性树脂组合物及外用剂
CN102443234B (zh) * 2010-09-30 2016-05-25 积水化成品工业株式会社 交联树脂粒子和光扩散膜
CN103827148B (zh) * 2011-09-29 2015-11-25 株式会社日本触媒 乙烯基聚合物微粒、其制备方法、树脂组合物以及光学用材料
JP5889665B2 (ja) * 2012-02-14 2016-03-22 シャープ株式会社 静電荷現像用トナー、及びそれを用いる画像形成装置、並びに画像形成方法
JP6052992B2 (ja) * 2012-09-28 2016-12-27 積水化成品工業株式会社 着色樹脂粒子、並びにそれを用いた着色樹脂粒子分散体及び画像表示装置
JP6018007B2 (ja) 2013-03-29 2016-11-02 積水化成品工業株式会社 アクリル系樹脂粒子、塗料組成物及び光学材料
JP6087189B2 (ja) 2013-03-29 2017-03-01 積水化成品工業株式会社 多孔質樹脂粒子及びその製造方法、並びに、その用途
KR102224659B1 (ko) * 2013-08-30 2021-03-05 세키스이가세이힝코교가부시키가이샤 수지 입자군

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030977A1 (ja) * 2011-08-31 2013-03-07 積水化成品工業株式会社 樹脂粒子集合体、その製造方法、およびその用途
JP2013203938A (ja) * 2012-03-29 2013-10-07 Sekisui Plastics Co Ltd 樹脂粒子およびその製造方法、並びにその樹脂粒子を用いた多孔性樹脂成形体の製造方法
JP2015004007A (ja) * 2013-06-21 2015-01-08 積水化成品工業株式会社 樹脂粒子溶剤分散体及びその用途
WO2015045448A1 (ja) * 2013-09-30 2015-04-02 積水化成品工業株式会社 重合体粒子、その製造方法、及びその用途

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039139A1 (ja) * 2019-08-29 2021-03-04 Eneos株式会社 架橋型メタクリレート樹脂粒子および造孔剤
WO2021171669A1 (ja) * 2020-02-28 2021-09-02 積水化成品工業株式会社 重合体粒子及びその用途
WO2021199465A1 (ja) * 2020-03-30 2021-10-07 積水化成品工業株式会社 重合体粒子、増粘剤及び組成物

Also Published As

Publication number Publication date
JPWO2017056529A1 (ja) 2018-07-26
JP6685316B2 (ja) 2020-04-22
CN113336976B (zh) 2023-10-31
US11098167B2 (en) 2021-08-24
CN108137719A (zh) 2018-06-08
KR102382184B1 (ko) 2022-04-04
KR20200093714A (ko) 2020-08-05
KR20180061289A (ko) 2018-06-07
CN108137719B (zh) 2021-05-14
CN113336976A (zh) 2021-09-03
EP3357934B8 (en) 2024-01-17
JP2020128536A (ja) 2020-08-27
EP3357934A1 (en) 2018-08-08
US20180273696A1 (en) 2018-09-27
EP3357934B1 (en) 2023-11-15
EP3357934A4 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
JP6685316B2 (ja) 重合体粒子及びその用途
JP6121718B2 (ja) 樹脂粒子及びその製造方法、並びに、防眩フィルム、光拡散性樹脂組成物、及び外用剤
TWI531585B (zh) 樹脂粒子集合體、其製造方法以及其用途
JP6029507B2 (ja) 多孔質樹脂粒子、多孔質樹脂粒子の製造方法、及び、その用途
JP6612417B2 (ja) 重合体粒子及びその用途
JP5075860B2 (ja) 樹脂粒子、その製造方法及びその用途
JP6522135B2 (ja) 複合粒子及びその製造方法、並びにその用途
JP6668489B2 (ja) 重合体粒子分散液及びそれに用いる重合体粒子、分散剤及び分散媒体、並びにそれらの用途
TWI534159B (zh) 樹脂粒子及其用途
JP2019052306A (ja) 重合体粒子及びその用途
TWI504617B (zh) 樹脂粒子及其製造方法,以及防炫膜、光擴散性樹脂組成物及外用劑

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542765

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15764058

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187011934

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016850707

Country of ref document: EP