WO2017056203A1 - 樹脂製管継手 - Google Patents

樹脂製管継手 Download PDF

Info

Publication number
WO2017056203A1
WO2017056203A1 PCT/JP2015/077624 JP2015077624W WO2017056203A1 WO 2017056203 A1 WO2017056203 A1 WO 2017056203A1 JP 2015077624 W JP2015077624 W JP 2015077624W WO 2017056203 A1 WO2017056203 A1 WO 2017056203A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
resin pipe
channel
flow passage
joint
Prior art date
Application number
PCT/JP2015/077624
Other languages
English (en)
French (fr)
Inventor
誠 横山
晴也 溜渕
Original Assignee
ミライアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミライアル株式会社 filed Critical ミライアル株式会社
Priority to KR1020187011896A priority Critical patent/KR102405086B1/ko
Priority to US15/763,983 priority patent/US11199284B2/en
Priority to JP2017542565A priority patent/JPWO2017056203A1/ja
Priority to PCT/JP2015/077624 priority patent/WO2017056203A1/ja
Publication of WO2017056203A1 publication Critical patent/WO2017056203A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/02Branch units, e.g. made in one piece, welded, riveted
    • F16L41/021T- or cross-pieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L43/00Bends; Siphons
    • F16L43/008Bends; Siphons made from plastic material

Definitions

  • the present invention relates to a resin pipe joint provided with a tubular joint main body having an internal flow path for allowing fluid to flow, and two or more welded end portions provided in each of two or more openings of the internal flow path.
  • the present invention proposes a technique capable of realizing a good flow of fluid in the internal flow path.
  • Pipes such as chemical transportation lines used in various industries use welding machines to connect the ends of resin pipe joints made of thermoplastic resin, etc., and resin tube members or other resin pipe joints. It may be constituted by abutting each other and welding.
  • the end portions of the resin pipe joints and the end portions of the resin tube members and the like are opposed to each other of the clamp jigs forming a pair of the welders, and the resin pipe joints thereof. And each of the resin tube members and the like are held.
  • both ends of the resin pipe joint and the resin tube member held by the clamp jig are heated by a heater or other heating device to melt those ends, and in this state, the resin pipe The joint, the resin tube member, and the like are brought close to each other, and their end portions are abutted and welded by the action of a required pressure.
  • FIG. 7 A resin pipe joint 101 shown in FIG. 7 is provided in each of a T-shaped joint main body 102 having an internal flow path P extending in a substantially T shape and each of the opening portions 102A to 102C of the internal flow path P.
  • Three welding end portions 103a to 103c are provided.
  • a substantially T-shaped internal flow is formed in a mold cavity having a shape corresponding to the outer shape of the resin pipe joint 101 as shown by a broken line in FIG.
  • the three core pins 111a to 111c for forming the path P are arranged in a substantially T shape so as to be close to each other at the tips.
  • each of the three core pins 111a to 111c is shown in the figure from each of the three welded ends 103a to 103c of the resin pipe joint 101.
  • the resin pipe joint 101 including the T-shaped joint body 102 can be formed by pulling out in the direction indicated by the arrow in FIG.
  • the outer diameter is a straight portion adjacent to the welding end portions 103a to 103c, and the flow passage cross-sectional area of the internal flow passage P has a tapered shape that gradually increases toward the welding end portions 103a to 103c.
  • the taper angle ⁇ of the inner wall surface of the pipe forming the internal flow path P of the conventional resin pipe joint 101 is usually 0.5 ° to 1. ° with respect to the central axis of the internal flow path P in the cross section shown in FIG. It is about 0 °.
  • the flow path cross-sectional area of the internal flow path P changes greatly from the welded end portions 103a to 103c to the inside. Therefore, the flow rate of the fluid flowing through the internal flow path P also varies greatly, and there is a problem of adversely affecting the smooth flow of the fluid.
  • the resin pipe joint 101 may be used by cutting the welded end portions 103a to 103c to a predetermined length for reasons such as the shape of the piping formed using the piping, the arrangement space of the piping, and the like.
  • the inner diameter of the end portion of the resin pipe joint 101 after cutting is smaller than the inner diameter of the original end portion. Accordingly, when the resin pipe joint 101 and the resin tube member and the like are abutted and welded at the end portions as described above, the welded portion between the resin pipe joint 101 and the resin tube member is caused by an inner diameter difference.
  • An object of the present invention is to solve such a problem of a conventional resin pipe joint, and the object of the invention is a taper shape in which the flow path cross-sectional area gradually increases toward the weld end.
  • An object of the present invention is to provide a resin pipe joint capable of preventing adverse effects on fluid flow caused by the internal flow path.
  • the resin pipe joint of the present invention is provided in each of a tubular joint main body portion having an internal flow path for fluid flow and two or more opening portions of the internal flow path,
  • a resin pipe joint comprising two or more welded end parts that are welded in contact with an end part of a resin tube member for piping or an end part of another resin pipe joint.
  • the flow passage cross-sectional area of the passage is constant at least at a portion having a straight outer diameter adjacent to the welding end.
  • the joint main body portion changes the flow passage branching point where the internal flow passage is branched into two or more branches, the flow passage bending portion where the internal flow passage is bent, or the diameter of the internal flow passage.
  • Two or more channels that extend in a straight line so as to communicate the different flow passage locations and the internal flow passage from the flow passage branching portion, the flow passage bending portion or the flow passage different diameter portion to each of two or more welding ends. It is preferable that the cross-sectional area of the flow path be constant at each flow path extended position where the outer diameter of the joint body portion is a straight portion.
  • the joint main body portion has the flow passage branching portion or the flow passage bending portion, and the whole of the flow passage branching portion or the flow passage bending portion and the flow passage extension portion of the joint main body portion. It is preferable that the cross-sectional area of the flow path is constant.
  • the pipe inner wall surface of the flow path extension point in the cross section including the central axis of the internal flow path, is linearly parallel to the central axis line of the internal flow path at the flow path extension point. Preferably it is formed.
  • the ratio (Le / De) of the length Le of the flow path extension portion along the central axis of the internal flow path to the pipe outer diameter De at the flow path extension position of the joint main body is 0. .29 to 2.4 is preferable.
  • the joint body portion has a T-shaped channel branching point for bifurcating the internal channel, and two channel extension points are provided at the channel branching point.
  • the ratio (Lt / De) of the length Lt between the two welded end portions communicated in a straight line to the pipe outer diameter De at the passage extension portion of the joint main body portion is 1.9 to 8. 0 is preferable.
  • the length Lt between the two welding end portions that are linearly communicated with the T-shaped channel branching portion by the two channel extending portions can be set to 25 mm to 50 mm.
  • the length Le of the flow path extension along the central axis of the internal flow path is preferably 1 mm or more.
  • the resin pipe joint described above can be made of perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), or polyetheretherketone (PEEK).
  • PFA perfluoroalkoxyalkane
  • FEP perfluoroethylene propene copolymer
  • PEEK polyetheretherketone
  • the flow passage cross-sectional area of the internal flow passage of the joint main body portion is at least constant in the straight portion where the outer diameter adjacent to the weld end portion is Variations in the flow rate of the flowing fluid can be kept small. Further, even when the end portion of the resin pipe joint is cut and shortened, the pipe inner diameter does not change at least in a portion where the outer diameter adjacent to the weld end portion is straight. There is no difference in inner diameter at the welded portion between the resin tube member and the resin tube member, and it is possible to prevent the formation of a step or a large inner bead. As a result, adverse effects on the flow of fluid in the internal flow path are prevented, and good flow of fluid can be realized.
  • FIG. 1 shows the arrangement
  • FIG.1 (b) shows the arrangement
  • FIG.1 (b) shows the arrangement
  • FIG.1 (b) shows the arrangement
  • FIG.1 (b) shows the arrangement
  • FIG.1 (b) shows the arrangement
  • FIG.1 (b) shows the arrangement
  • FIG.1 (b) shows the arrangement
  • a resin pipe joint 1 illustrated in FIGS. 1 to 3 includes a tubular joint body 2 having an internal flow path P having a T shape in a cross section shown in FIG. And welding end portions 3a to 3c provided in the opening portions A1 to A3, respectively.
  • the welding end portions 3a to 3c of the resin pipe joint 1 use a welding machine (not shown) or the like when constructing a pipe including the resin pipe joint 1, and this is also a straight pipe or a curved pipe (not shown).
  • the resin tube member or other resin pipe joints are butted against each other and welded. This welding is performed, for example, in such a manner that the end portions of the resin pipe joint 1 and the end portions of the resin tube member and the like are opposed to each of the clamp jigs forming a pair of welding machines, respectively. 1 and the resin tube member are held, and then both ends of the resin pipe joint 1 and the resin tube member held by the clamp jig are heated and melted by a heater or other heating device.
  • the resin pipe joint 1 and the resin tube member and the like can be brought close to each other, and their end portions are abutted by the action of a required pressure.
  • the welding end portions 3a to 3c can be given a thickness of 1 mm or more as a welding allowance.
  • the internal flow path P of the joint body portion 2 allows a liquid such as a chemical solution or a gas or other fluid to flow, for example, when the pipe using the resin pipe joint 1 is used, so that the fluid is put in a predetermined place.
  • the internal flow path P in this embodiment includes a base portion Pa that extends linearly and a branch portion Pb that branches vertically from the base portion Pa in the middle of the extension of the base portion Pa.
  • the joint main-body part 2 which has the T-shaped internal flow path P also has a substantially T-shaped external shape.
  • the joint body 2 includes a flow passage branching portion 4 a for bifurcating the internal flow passage P and three internal flow passages P from the flow passage branching portion 4 a. And three flow path extension portions 4b extending linearly so as to communicate with each of the welding end portions 3a to 3c.
  • the flow path extension portion 4b is a constant straight portion without changing the outer diameter in the extending direction.
  • the flow path cross-sectional area has a tapered internal flow path that gradually increases toward the weld end.
  • the pipe inner wall surface at the flow path extension portion 4b of the joint main body 2 has a cross section shown in FIG. 1B, and the central axes C1 and C2 of the internal flow path P at the flow path extension portion 4b. It is formed in a parallel straight line, whereby the pipe inner diameter and the channel cross-sectional area are constant without changing at the channel extension portion 4b.
  • the resin pipe joint 1 has a constant cross-sectional area over the entire internal flow path P including not only the flow path extension part 4b but also the flow path branching part 4a. Therefore, it is more preferable because the flow rate of the fluid does not change.
  • the channel cross-sectional area means a cross-sectional area in a cross section of the internal flow path P, that is, a cross section orthogonal to the central axes C1 and C2 of the internal flow path P.
  • the inner wall surface of the pipe forming the flow path extension portion 4b is not a tapered shape as in the prior art and its inner diameter is constant, even when the end portion of the resin pipe joint 1 is cut and shortened Since there is no step due to the difference in the inner diameter at the welded portion with the resin tube member manufactured by matching with the inner diameter of the end portion before cutting of the resin pipe joint 1, The fluctuation of the flow rate can be prevented.
  • the shape of the flow path cross section of the internal flow path P is a perfect circle here, although not illustrated, it may be an ellipse, an ellipse, other circles, or a polygon such as a rectangle. Even with such a cross section of the flow path, it is sufficient that the cross-sectional area is constant at least at a portion having a straight outer diameter adjacent to the welding end.
  • Such a resin pipe joint 1 can be manufactured by, for example, using two core pins 51 and 52 having no taper as shown by broken lines in FIG. 4 in injection molding. That is, the base portion Pa of the internal flow path P and the cylindrical core pin 51 for a base portion disposed so as to extend through the two welding end portions 3b and 3c aligned in the same straight line at the opening portion of the base portion Pa, A single cylindrical core pin 52 for a branching portion arranged to extend through the branching portion Pb of the internal flow path P and the remaining welding end portion 3a is used, and a cavity of an injection mold (not shown) is used. Both core pins 51 and 52 are positioned by holding the tip of the branching core pin 52 on the side surface of the base core pin 51. Then, after filling the cavity with a molten resin and curing the resin, first the core pin 52 for branching part is pulled out, and then the core pin 51 for base part is pulled out to form the resin pipe joint 1.
  • the flow path extension portion 4b is shorter. Further, when the pipe is constituted by using the resin pipe joint 1, it is desired to shorten the flow path extension portion 4b in order to cope with various pipe shapes and pipe arrangement spaces. From this point of view, the length Le of each flow path extension portion 4b along the central axes C1 and C2 of the internal flow path P is the ratio (Le) to the pipe outer diameter De at the flow path extension portion 4b of the joint body 2. / De), and preferably 0.29 to 2.4.
  • Le / De When Le / De is less than 0.29, the length Le of the channel extension portion 4b is short with respect to the pipe outer diameter De, so that there is almost no welding allowance and it becomes difficult to weld the ends. There is. In addition, when Le / De is larger than 2.4, the length Le of the flow path extension portion 4b is longer than the pipe outer diameter De, which may hinder the extraction of the core pins 51 and 52, or during piping. The possibility that cutting of the end portion of the sheet is necessary cannot be sufficiently removed.
  • the total length along the central axis C2) is preferably 1.9 to 8.0, expressed as a ratio (Lt / De) to the pipe outer diameter De at the passage extension portion 4b of the joint body 2. is there.
  • Lt / De is less than 1.9, the length Lt between the two welding end portions 3b and 3c is too short with respect to the pipe outer diameter De, so that the welding used for the end welding is performed.
  • welding of the welding end portions 3a to 3c may be difficult. That is, when the welding end 3a, 3b or 3c of the resin pipe joint 1 held by the clamp jig is heated by a heater or the like, the end surface of the welding end 3a, 3b or 3c and the heater side Due to the distance between the front surface of the clamp jig being too close (that is, the portion of the welded end 3a, 3b or 3c protruding from the front surface of the clamp jig is too short) There is a concern that a large amount of heat is transferred to the clamp jig side and the welding end portions 3a to 3c are hardly melted.
  • the outer diameter of the flow passage extension portion 4b is slightly smaller than the outer diameter of the flow passage branch portion 4a, etc.
  • the area of the road extension point 4b is determined.
  • the area of the flow path extension portion is the portion where the outer diameter is straight, that is, the portion where the outer shape is curved or bent to branch or the outer diameter changes. .
  • the resin pipe joint 11 shown in FIG. 5 includes a joint main body 12 and two welded end portions 13a and 13b.
  • the joint main body 12 bends the internal flow path P at a bending angle of 90 °.
  • the flow path bending portion 14a to be made and the two flow passage extension portions 14b extending linearly from the flow path bending portion 14a to communicate with the two welding end portions 13a and 13b, respectively.
  • a resin pipe joint 21 shown in FIG. 6 includes a joint body portion 22 and two welding end portions 23a and 23b having different inner and outer diameters.
  • the flow path different diameter portion 24a having a tapered inner and outer diameter for gradually changing the diameter of the inner flow path and the internal flow path P are communicated from the flow path different diameter portion 24a to each of the two welding end portions 23a and 23b.
  • it is composed of two flow path extension portions 24b extending linearly as much as possible.
  • unintended fluctuations in the flow rate of the fluid in the flow path extension portions 14b and 24b and liquid accumulation at the welded portion with the resin tube member or the like can be effectively prevented, so that the fluid in the internal flow path P is good. Can be achieved.
  • two non-tapered cylindrical core pins are mutually connected at their tips to the cavity of a predetermined shape of the injection mold. It can arrange
  • this is also omitted from illustration, but a single outer shape corresponding to the shape of the internal flow path P of the resin pipe joint 21 is provided in a cavity having a predetermined shape. Place the core pin.
  • the core pin for the resin pipe joint 21 has a cylindrical shape without a taper at a portion other than the different diameter portion where the intermediate diameter changes. And after hardening resin in a cavity, it can manufacture by pulling out the core pin from the welding end part 23b side with a large internal diameter.
  • the pipe outer diameters De and De1 at the flow path extension portions 14b and 24b of the joint main body parts 12 and 22 are the same as the resin pipe joint 1 described above.
  • the ratio (Le / De) of the length Le, Le1, Le2 of the flow path extension along the central axis C of the internal flow path P to De2 is 0.29 to 2.4. It is preferable from the viewpoint of pullability.
  • the length Le of the channel extension portions 14b and 24b along the central axis C of the internal channel P is preferably 1 mm or more.
  • Examples of the material constituting the resin pipe joint described above include perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), and polyetheretherketone (PEEK). It is also possible to use materials other than those mentioned in the above.
  • PFA perfluoroalkoxyalkane
  • FEP perfluoroethylene propene copolymer
  • PEEK polyetheretherketone
  • the outer surface of the flow passage branching portion 4a of the joint main body 2 is extended T in parallel with the central axes C1 and C2 of the base portion Pa of the internal flow passage P and the branch portion Pb.
  • a T-shaped protrusion is formed on a straight line orthogonal to the central axis at the intersection of the central axes C1 and C2 of the base part Pa and the branch part Pb of the internal flow path P.
  • a circular protruding portion 5b protruding from the portion 5a is provided.
  • an L-shaped protrusion 15a extending in parallel with the central axis C of the internal flow path P is provided on the outer surface of the flow path bending portion 14a of the joint main body section 12, and A circular protrusion 15b protruding from the L-shaped protrusion is provided at the bent portion of the L-shaped protrusion 15a.
  • a circular protrusion 25 b is provided on the outer surface of the flow path different diameter portion 24 a of the joint body 22.
  • prototype resin pipe joints as shown in FIGS. 1 and 2
  • prototypes 1 to 16 were produced by injection molding using two non-tapered core pins as shown in FIG.
  • Table 1 shows the length (total length) Lt, the total height H between the two welded end portions of each prototype 1 to 16, and the pipe outer diameter (outer diameter) De at the passage extension portion of the joint body. It was as shown.
  • D1 and D3 are the outer diameters of the pipes at the flow path extension that forms the base of the internal flow path
  • D2 is the outside of the pipe at the flow path extension that forms the branch part of the internal flow path. Is the diameter.
  • prototypes 17 to 29 were manufactured by injection molding using the two non-tapered core pins described above.
  • Table 2 shows the total length L, the total height H, and the pipe outer diameter (outer diameter) De at the passage extension portion of the joint main body portion of each prototype 17-29.
  • D1 is the pipe outer diameter at the passage extension portion on the entire height H side
  • D2 is the pipe outer diameter at the passage extension portion on the full length L side.
  • prototypes 30 to 40 were manufactured by injection molding using the single taperless core pin described above.
  • Table 3 shows the total length L of each of the prototypes 30 to 40 and the pipe outer diameters (outer diameters) De1 and De2 at the flow path extension portion of the joint main body.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 この発明の樹脂製管継手は、流体を流動させる内部流路(P)を有する管状の継手本体部(2、12、22)と、前記内部流路(P)の二個以上の開口部分のそれぞれに設けられて、配管用の樹脂製チューブ部材の端部または他の樹脂製管継手の端部と突き合わせて溶着される二個以上の溶着端部(3a~3c、13a、13b、23a、23b)とを備える樹脂製管継手(1、11、21)であって、継手本体部(2、12、22)の内部流路(P)の流路断面積を、少なくとも、溶着端部(3a~3c、13a、13b、23a、23b)に隣接する外径がストレートな部分で、一定としてなるものである。

Description

樹脂製管継手
 この発明は、流体を流動させる内部流路を有する管状の継手本体部と、前記内部流路の二個以上の開口部分のそれぞれに設けた二個以上の溶着端部とを備える樹脂製管継手に関するものであり、特には、内部流路での流体の良好な通流を実現することのできる技術を提案するものである。
 様々な産業で用いられる薬液輸送ライン等の配管は、溶着機を用いて、熱可塑性樹脂等からなる樹脂製管継手と、樹脂製チューブ部材もしくは他の樹脂製管継手とのそれぞれの端部を互いに突き合わせて溶着させることにより構成されることがある。
 より詳細には、たとえば、溶着機の対をなすクランプ治具のそれぞれに、樹脂製管継手の端部と樹脂製チューブ部材等の端部とが互いに対向する姿勢で、それらの樹脂製管継手及び樹脂製チューブ部材等のそれぞれを保持させる。
 次いで、クランプ治具に保持させた樹脂製管継手及び樹脂製チューブ部材等の両端部を、ヒーターその他の加熱装置によって加熱することで、それらの端部を溶融させ、その状態で、樹脂製管継手及び樹脂製チューブ部材等を互いに接近させて、それらの端部を、所要の圧力の作用により突き合わせて溶着させる。
 この種の樹脂製管継手の一例として従来は、たとえば、図7に断面図で示すようなものがある。図7に示す樹脂製管継手101は、略T字状に延びる内部流路Pを有するT字状の継手本体部102と、内部流路Pのそれぞれの開口部分102A~102Cのそれぞれに設けた三個の溶着端部103a~103cとを備えるものである。
 図示の樹脂製管継手101を射出成形により製造するには、樹脂製管継手101の外面形状に対応する形状の金型キャビティに、図8に破線で示すように、略T字状の内部流路Pを形成するための三個のコアピン111a~111cを先端で相互に近接させて略T字状に配置する。そして、キャビティ内で樹脂を射出して所定の形状に硬化させた後、樹脂製管継手101の三個の溶着端部103a~103cのそれぞれから、三個のコアピン111a~111cのそれぞれを、図8に矢印で示す向きに引き抜くことにより、T字状の継手本体部102を備える樹脂製管継手101を形成することができる。
 ところで、上述したような従来の樹脂製管継手101では、製造に際して樹脂を硬化させた後の三個のコアピン111a~111cの引抜き性を確保するため、図7及び8に誇張して示すように、溶着端部103a~103cに隣接する外径がストレートな部分で、内部流路Pの流路断面積が、各溶着端部103a~103cに向かうに従って次第に大きくなるテーパ形状としていた。かかる従来の樹脂製管継手101の内部流路Pを形成する管内壁面のテーパ角度θは通常、図7に示す断面で、内部流路Pの中心軸線に対して、0.5°~1.0°程度である。
 しかるに、このようなテーパ形状の内部流路Pを有する継手本体部102の樹脂製管継手101では、溶着端部103a~103cから内側に向かって、内部流路Pの流路断面積が大きく変化するので、内部流路Pを流動する流体の流量もまた大きく変動することになり、流体の円滑な通流に悪影響を及ぼすという問題がある。
 また、樹脂製管継手101は、それを用いて形成する配管の形状、配管の配置スペース等の理由から、溶着端部103a~103cを切断して所定の長さに短くして用いることがあるところ、この場合、上述したテーパ形状に起因して、樹脂製管継手101の切断した後の端部の内径が、元の端部の内径より小さくなる。それにより、当該樹脂製管継手101と樹脂製チューブ部材等とを、先述したように端部で突き合わせて溶着すると、樹脂製管継手101と樹脂製チューブ部材との溶着部で、内径差に起因する段差が生じる他、溶着時に内径差のある端部同士が溶融状態で押圧されることによって、溶着部の内面が内周側に隆起する部分、いわゆる内ビードの大きさが増大する。その結果として、配管のそのような溶着部で、液溜まりが生じるとともに流量の低下を招くという問題もあった。
 この発明は、従来の樹脂製管継手のこのような問題を解決することを課題とするものであり、それの目的とするところは、流路断面積が溶着端部に向かうに従って漸増するテーパ形状の内部流路に起因する、流体の通流への悪影響を防止することのできる樹脂製管継手を提供することにある。
 発明者は、樹脂製管継手を射出成形により製造する際に、たとえばT字状の内部流路を有するものでは、同一直線状に整列する二個の溶着端部を通って延びるコアピン及び、残りの溶着端部を通って延びるコアピンの二本を用いること等により、少なくとも、溶着端部に隣接する外径がストレートな部分で、内部流路の流路断面が一定になる樹脂製管継手を成形できることを見出した。つまり、樹脂製管継手と樹脂製チューブ等の溶着の際に、たとえ継手端部がカットされる場合であっても、常に溶着箇所の前後での内部流路の断面形状を同一とすることができる樹脂製管継手を提供することを可能とした。
 このような知見の下、この発明の樹脂製管継手は、流体を流動させる内部流路を有する管状の継手本体部と、前記内部流路の二個以上の開口部分のそれぞれに設けられて、配管用の樹脂製チューブ部材の端部または他の樹脂製管継手の端部と突き合わせて溶着される二個以上の溶着端部とを備える樹脂製管継手であって、継手本体部の内部流路の流路断面積を、少なくとも、溶着端部に隣接する外径がストレートな部分で、一定としてなるものである。
 この発明の樹脂製管継手は、継手本体部が、内部流路を二叉以上に分岐させる流路分岐箇所、内部流路を屈曲させる流路屈曲箇所、又は、内部流路の径を変化させる流路異径箇所と、内部流路を流路分岐箇所、流路屈曲箇所もしくは流路異径箇所から二個以上の溶着端部のそれぞれに連通させるべく直線状に延びる二個以上の流路延長箇所とで構成されるものとし、継手本体部の外径がストレートな部分になる各流路延長箇所で、流路断面積を一定とすることが好ましい。
 ここで、上記の樹脂製管継手では、継手本体部が、前記流路分岐箇所又は流路屈曲箇所を有し、継手本体部の流路分岐箇所もしくは流路屈曲箇所及び流路延長箇所の全体にわたって、流路断面積を一定とすることが好ましい。
 またここで、上記の樹脂製管継手では、内部流路の中心軸線を含む断面で、流路延長箇所の管内壁面が、該流路延長箇所における内部流路の中心軸線に平行な直線状に形成されていることが好ましい。
 上記の樹脂製管継手では、継手本体部の流路延長箇所での管外径Deに対する、内部流路の中心軸線に沿う流路延長箇所の長さLeの比(Le/De)を、0.29~2.4とすることが好適である。
 また、上記の樹脂製管継手では、継手本体部が、内部流路を二叉に分岐させるT字状の流路分岐箇所を有し、当該流路分岐箇所に、二個の流路延長箇所により直線状に連通される二個の溶着端部の間の長さLtの、継手本体部の流路延長箇所での管外径Deに対する比(Lt/De)を、1.9~8.0とすることが好ましい。
 なお、T字状の流路分岐箇所に、二個の流路延長箇所により直線状に連通される二個の溶着端部の間の長さLtは、25mm~50mmとすることができる。
 内部流路の中心軸線に沿う流路延長箇所の長さLeは、1mm以上とすることが好ましい。
 以上に述べた樹脂製管継手は、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)又はポリエーテルエーテルケトン(PEEK)からなるものとすることができる。
 この発明の樹脂製管継手によれば、継手本体部の内部流路の流路断面積を、少なくとも、溶着端部に隣接する外径がストレートな部分で一定としたことにより、内部流路を流動する流体の流量の変動を小さく抑えることができる。また、樹脂製管継手の端部を切断して短くした場合であっても、少なくとも、溶着端部に隣接する外径がストレートな部分では、管内径が変化しないことにより、樹脂製管継手101と樹脂製チューブ部材との溶着部での内径差が発生せず、それによる段差や大きな内ビードの形成を防止することができる。
 その結果として、内部流路での流体の通流への悪影響が防止されて、流体の良好な通流を実現することができる。
この発明の一の実施形態の樹脂製管継手を示す側面図及び、内部流路の中心軸線を含む断面図である。 図1に示す樹脂製管継手の平面図である。 図1に示す樹脂製管継手の斜視図である。 図1の樹脂製管継手を製造する際のコアピンの配置態様及び引抜き態様を示す、図1(b)と同様の図である。 他の実施形態の樹脂製管継手を示す平面図及び、内部流路の中心軸線を含む断面図である。 さらに他の実施形態の樹脂製管継手を示す平面図及び、内部流路の中心軸線を含む断面図である。 従来の樹脂製管継手を示す、内部流路の中心軸線を含む断面図である。 図7の樹脂製管継手を製造する際のコアピンの配置態様及び引抜き態様を示す、図7と同様の図である。
 以下に図面に示すところに基き、この発明の実施の形態について詳細に説明する。
 図1~3に例示する樹脂製管継手1は、図1(b)に示す断面でT字状をなす内部流路Pを有する管状の継手本体部2と、内部流路Pの三個の開口部分A1~A3のそれぞれに設けた溶着端部3a~3cとを備えてなる。
 ここで、樹脂製管継手1の溶着端部3a~3cは、樹脂製管継手1を含む配管を構成する際に、図示しない溶着機等を用いて、これも図示しない直管ないし曲管状等の樹脂製チューブ部材または他の樹脂製管継手の端部と突き合わせて溶着されるものである。この溶着は、たとえば、溶着機の対をなすクランプ治具のそれぞれに、樹脂製管継手1の端部と樹脂製チューブ部材等の端部とが互いに対向する姿勢で、それらの樹脂製管継手1及び樹脂製チューブ部材等のそれぞれを保持させ、その後、クランプ治具に保持させた樹脂製管継手1及び樹脂製チューブ部材等の両端部を、ヒーターその他の加熱装置によって加熱して溶融させた状態で、樹脂製管継手1及び樹脂製チューブ部材等を互いに接近させ、それらの端部を、所要の圧力の作用により突き合わせることにより行うことができる。なお、溶着端部3a~3cは、溶着代として1mm以上の厚みを与えることができる。
 またここで、継手本体部2の内部流路Pは、樹脂製管継手1を用いた配管の使用時に、たとえば薬液等の液体もしくは気体その他の流体を流動させて、該流体を所定の場所に送るべく機能する。この実施形態における内部流路Pは、直線状に延びる基部Pa、及び、基部Paの延在途中の中央で基部Paから垂直に分岐する分岐部Pbからなる。
 そして、T字状の内部流路Pを有する継手本体部2もまた、略T字状の外形を有するものである。より具体的には、この樹脂製管継手1では、継手本体部2が、内部流路Pを二叉に分岐させる流路分岐箇所4aと、内部流路Pを流路分岐箇所4aから三個の溶着端部3a~3cのそれぞれに連通させるべく直線状に延びる三個の流路延長箇所4bとで構成されている。流路延長箇所4bは、その延在方向に外径が変化せずに一定のストレートな部分である。
 ここにおいて、従来の樹脂製管継手では、射出成形時のコアピンの良好な引抜き性を確保するため、流路断面積が、溶着端部に向かうにつれて漸増するテーパ形状の内部流路を有するものとしていたが、この発明の実施形態の樹脂製管継手1では、継手本体部2の、少なくとも、溶着端部3a~3cに隣接して外径がストレートな部分になる各流路延長箇所4bで、内部流路の流路断面積を一定とする。特にこの実施形態では、継手本体部2の流路延長箇所4bでの管内壁面が、図1(b)に示す断面で、当該流路延長箇所4bにおける内部流路Pの中心軸線C1、C2と平行な直線状に形成されており、それにより、流路延長箇所4bでは、管内径及び流路断面積が変化せずに一定となっている。
 このことによれば、少なくとも溶着端部3a~3cの近傍で内部流路Pの流路断面積が一定であることにより、内部流路Pにおける流体の流量の変動を抑制することができる。特に、この樹脂製管継手1は、流路延長箇所4bのみならず、流路分岐箇所4aを含む内部流路Pの全体にわたって流路断面積を一定としたことにより、内部流路Pの全体で流体の流量が変動しないのでより好適である。
 なお、流路断面積とは、内部流路Pの横断面、つまり内部流路Pの中心軸線C1、C2に直交する断面における断面積を意味する。
 また、流路延長箇所4bを形成する管内壁面が従来のようなテーパ形状ではなく、その内径が一定であることから、樹脂製管継手1の端部を切断して短くした場合であっても、樹脂製管継手1の切断前の端部の内径と整合させて製造された樹脂製チューブ部材等との溶着部で、内径差に起因する段差が生じないので、そこでの液溜まりの発生や流量の変動を防止することができる。
 なおここでは、内部流路Pの流路断面の形状を真円形としたが、図示は省略するが、楕円形、長円形その他の円形又は、矩形等の多角形とすることも可能である。かかる流路断面であっても、少なくとも、溶着端部に隣接する外径がストレートな部分で、断面積が一定であればよい。
 このような樹脂製管継手1は、射出成形において、たとえば、図4に破線で示すようなテーパなしの二本のコアピン51、52を用いること等により製造することができる。
 すなわち、内部流路Pの基部Pa並びに、基部Paの開口部分で同一直線状に整列する二個の溶着端部3b及び3cを通って延びるように配置される円柱状の基部用コアピン51と、内部流路Pの分岐部Pb及び残りの溶着端部3aを通って延びるように配置される円柱状の一本の分岐部用コアピン52を用いることとし、図示しない射出成形金型のキャビティに、分岐部用コアピン52の先端を基部用コアピン51の側面に抱きつかせて、両コアピン51、52を位置させる。そして、キャビティに溶融樹脂を充填し、該樹脂を硬化させた後、まず分岐部用コアピン52を引抜き、その後に基部用コアピン51を引き抜いて、樹脂製管継手1を成形する。
 樹脂製管継手1の製造時のコアピン51、52のより容易な引抜きを実現するため、流路延長箇所4bは短いほうが望ましい。また、樹脂製管継手1を用いて配管を構成する場合、様々な配管の形状、配管の配置スペースに対応するためにも、流路延長箇所4bを短くすることが望まれる。
 このような観点から、内部流路Pの中心軸線C1、C2に沿う各流路延長箇所4bの長さLeは、継手本体部2の流路延長箇所4bでの管外径Deに対する比(Le/De)で表して、0.29~2.4とすることが好ましい。Le/Deを0.29未満とした場合は、管外径Deに対して流路延長箇所4bの長さLeが短いことにより、溶着代がほとんどなくなって端部同士の溶着が困難となることがある。また、Le/Deを2.4より大きくした場合は、管外径Deに対して流路延長箇所4bの長さLeが長いことにより、コアピン51、52の引抜きに支障をきたしたり、配管時の端部の切断が必要になったりするおそれを十分に取り除くことができない。
 また同様の観点より、流路分岐箇所4aに二個の流路延長箇所4bにより直線状に連通される二個の溶着端部3b、3cの間の長さLt(内部流路Pの基部Paの中心軸線C2に沿う全長)は、継手本体部2の流路延長箇所4bでの管外径Deに対する比(Lt/De)で表して、1.9~8.0とすることが好適である。言い換えれば、Lt/Deが1.9未満である場合は、管外径Deに対して二個の溶着端部3b、3cの間の長さLtが短すぎることにより、端部溶着に用いる溶着機のクランプ治具の形状等にもよるが、溶着端部3a~3cの溶着が困難になるおそれがある。これはすなわち、クランプ治具に保持させた樹脂製管継手1の溶着端部3a、3b又は3cを、ヒーター等により加熱する際に、溶着端部3a、3b又は3cの端面と、ヒーター側のクランプ治具の前面との間の距離が近くなりすぎること(つまり、溶着端部3a、3b又は3cの、クランプ治具の前面から突出する部分が短すぎること)に起因して、ヒーターからの熱の多くがクランプ治具側に伝わって、溶着端部3a~3cが溶けにくくなるという現象の発生が懸念される。この一方で、Lt/Deが8.0を超える場合は、管外径Deに対して二個の溶着端部3b、3cの間の長さLtが長すぎることにより、特に基部用コアピン51の引抜きが困難となるおそれや、配管を構成するために端部の切断が必要になる可能性がある。
 具体的には、少なくとも、二個の溶着端部3b、3cの間の長さLtが25mm~50mmの範囲内、また流路延長箇所4bの長さLeが1mm以上の樹脂製管継手1であれば、成形実績よりコアピン51、52の引抜きを確実に行うことができて製造可能であることが解かっている。但し、二個の溶着端部3b、3cの間の長さLt、流路延長箇所4bの長さLeが上記の範囲を超える長さのものであっても製造できると考えられる。
 なおここで、図示の実施形態のように、たとえば流路延長箇所4bの外径が流路分岐箇所4aの外径よりもやや小さいこと等により、継手本体部2の外形で流路分岐箇所4aと流路延長箇所4bとの間に段差Sがあるといった場合のように、流路分岐箇所4aと流路延長箇所4bとを外形上判別できる場合は、その外形上の判別に基いて、流路延長箇所4bの領域を決定する。一方、外形上判別できない場合は、流路延長箇所の領域は、外径がストレートな部分、すなわち、分岐等するために外形が湾曲ないし屈曲し、または外径が変化する手前までの部分とする。
 図5及び6に、他の実施形態の樹脂製管継手11、21を示す。
 図5に示す樹脂製管継手11は、継手本体部12及び二個の溶着端部13a、13bを備えるものであり、この継手本体部12は、内部流路Pを90°の屈曲角度で屈曲させる流路屈曲箇所14a、流路屈曲箇所14aから二個の溶着端部13a、13bのそれぞれに連通させるべく直線状に延びる二個の流路延長箇所14bとで構成されている。
 また、図6に示す樹脂製管継手21は、継手本体部22及び、相互に内外径の異なる二個の溶着端部23a、23bを備えるものであり、継手本体部22は、内部流路Pの径を徐々に変化させるためのテーパ状の内外径を有する流路異径箇所24aと、内部流路Pを流路異径箇所24aから二個の溶着端部23a、23bのそれぞれに連通させるべく直線状に延びる二個の流路延長箇所24bとで構成されている。
 このような樹脂製管継手11、21でもまた、継手本体部12、22の、溶着端部13a、13b、23a、23bに隣接する外径がストレートな部分になる各流路延長箇所14b、24bでは、流路断面積が一定であり、また、流路延長箇所14b、24bの管内壁面が、内部流路Pの中心軸線Cを含む断面で、その中心軸線Cと平行な直線状に形成されている。
 それにより、流路延長箇所14b、24bでの流体の流量の意図しない変動や、樹脂製チューブ部材等との溶着部での液溜まりを有効に防止できるので、内部流路Pでの流体の良好な通流を実現することができる。
 図5に示す樹脂製管継手11を製造するには、図示は省略するが、射出成形金型の所定の形状のキャビティに、二本のテーパなし円柱状のコアピンを、それらの先端で相互に近接させて略直角をなす向きにそれぞれ配置し、キャビティで樹脂を硬化させた後に、それらのコアピンを順次に引き抜くことにより行うことができる。
 図6に示す樹脂製管継手21を製造するには、これも図示は省略するが、所定の形状のキャビティに、樹脂製管継手21の内部流路Pの形状の対応する外形の一本のコアピンを配置する。樹脂製管継手21用のこのコアピンは、その中間の径が変化する異径部分以外の部分では、テーパなしの円柱状をなす。そして、キャビティで樹脂を硬化させた後、そのコアピンを、内径の大きな溶着端部23b側から引き抜くことで製造できる。
 図5及び6に示す樹脂製管継手11、21でも、先に述べた樹脂製管継手1と同様に、継手本体部12、22の流路延長箇所14b、24bでの管外径De、De1、De2に対する、内部流路Pの中心軸線Cに沿うその流路延長箇所の長さLe、Le1、Le2の比(Le/De)は、0.29~2.4とすることが、コアピンの引抜き性等の観点から好ましい。具体的には、内部流路Pの中心軸線Cに沿う流路延長箇所14b、24bの長さLeは、1mm以上とすることが好ましい。
 以上に述べた樹脂製管継手を構成する材料としては、たとえば、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)又はポリエーテルエーテルケトン(PEEK)等を挙げることができるが、ここで挙げた材料以外のものを用いることも可能である。
 なお図1~3に示す樹脂製管継手1では、継手本体部2の流路分岐箇所4aの外面に、内部流路Pの基部Pa及び分岐部Pbの中心軸線C1及びC2と平行に延びるT字状突起部5aを設けるとともに、当該外面おいて、内部流路Pの基部Paと分岐部Pbとの中心軸線C1、C2の交差位置で該中心軸線に直交する直線上に、T字状突起部5aよりも突き出る円形突起部5bを設けている。
 また、図5に示す樹脂製管継手11では、継手本体部12の流路屈曲箇所14aの外面に、内部流路Pの中心軸線Cと平行に延びるL字状突起部15aを設け、また、L字状突起部15aの屈曲箇所に、L字状突起部よりも突き出る円形突起部15bを設けている。
 そしてまた、図6に示す樹脂製管継手21では、継手本体部22の流路異径箇所24aの外面に、円形突起部25bを設けている。
 これらの突起部は、樹脂製チューブ部材又は他の樹脂製チューブ部材との端部溶着を行う際に、溶着機のクランプ治具への樹脂製管継手1、11、21の確実な位置決め保持を可能にするべく機能する。
 次に、この発明の樹脂製管継手を試作したので以下に説明する。但し、ここでの説明は、単なる例示を目的としたものであり、それに限定されることを意図するものではない。
 図1及び2に示すような樹脂製管継手(いわゆるチーズ)として、試作品1~16を、図4に示すような二本のテーパなしコアピンを用いて射出成形により製造した。各試作品1~16の二個の溶着端部の間の長さ(全長)Lt、全高H及び、継手本体部の流路延長箇所での管外径(外径)Deは、表1に示すとおりであった。なお表1中、D1及びD3は、内部流路の基部を構成する流路延長箇所での管外径であり、D2は、内部流路の分岐部を構成する流路延長箇所での管外径である。
Figure JPOXMLDOC01-appb-T000001
 また、図5に示すような樹脂製管継手(いわゆるエルボ)として、試作品17~29を、先述した二本のテーパなしコアピンを用いて射出成形により製造した。各試作品17~29の全長L、全高H及び、継手本体部の流路延長箇所での管外径(外径)Deは、表2に示すとおりであった。なお表2中、D1は、全高H側の流路延長箇所での管外径であり、D2は、全長L側の流路延長箇所での管外径である。
Figure JPOXMLDOC01-appb-T000002
 また、図6に示すような樹脂製管継手(いわゆるレデューサ)として、試作品30~40を、先述した一本のテーパなしコアピンを用いて射出成形により製造した。各試作品30~40の全長L及び、継手本体部の流路延長箇所での管外径(外径)De1、De2は、表3に示すとおりであった。
Figure JPOXMLDOC01-appb-T000003
 以上より、表1~3に示すような、所定の部分で流路断面積が一定の樹脂製管継手を製造できることが解かった。
 1、11、21 樹脂製管継手
 2、12、22 継手本体部
 3a~3c、13a~13c、23a~23c 溶着端部
 4a 流路分岐箇所
 14a 流路屈曲箇所
 24a 流路異径箇所
 4b、14b、24b 流路延長箇所
 5a T字状突起部
 15a L字状突起部
 5b、15b、25b 円形突起部
 51、52 コアピン
 P 内部流路
 Pa 内部流路の基部
 Pb 内部流路の分岐部
 A1~A3 開口部分
 Lt 二個の溶着端部の間の長さ
 Le、Le1、Le2 流路延長箇所の長さ
 De、De1、De2 継手本体部の流路延長箇所での管外径
 C1、C2、C 中心軸線

Claims (9)

  1.  流体を流動させる内部流路を有する管状の継手本体部と、前記内部流路の二個以上の開口部分のそれぞれに設けられて、配管用の樹脂製チューブ部材の端部または他の樹脂製管継手の端部と突き合わせて溶着される二個以上の溶着端部とを備える樹脂製管継手であって、継手本体部の内部流路の流路断面積を、少なくとも、溶着端部に隣接する外径がストレートな部分で、一定としてなる樹脂製管継手。
  2.  継手本体部が、内部流路を二叉以上に分岐させる流路分岐箇所、内部流路を屈曲させる流路屈曲箇所、又は、内部流路の径を変化させる流路異径箇所と、内部流路を流路分岐箇所、流路屈曲箇所もしくは流路異径箇所から二個以上の溶着端部のそれぞれに連通させるべく直線状に延びる二個以上の流路延長箇所とで構成されるものとし、
     継手本体部の外径がストレートな部分になる各流路延長箇所で、流路断面積を一定としてなる請求項1に記載の樹脂製管継手。
  3.  継手本体部が、前記流路分岐箇所又は流路屈曲箇所を有し、継手本体部の流路分岐箇所もしくは流路屈曲箇所及び流路延長箇所の全体にわたって、流路断面積を一定としてなる請求項2に記載の樹脂製管継手。
  4.  内部流路の中心軸線を含む断面で、流路延長箇所の管内壁面が、該流路延長箇所における内部流路の中心軸線に平行な直線状に形成されてなる請求項2又は3に記載の樹脂製管継手。
  5.  継手本体部の流路延長箇所での管外径Deに対する、内部流路の中心軸線に沿う流路延長箇所の長さLeの比(Le/De)を、0.29~2.4としてなる請求項2~4のいずれか一項に記載の樹脂製管継手。
  6.  継手本体部が、内部流路を二叉に分岐させるT字状の流路分岐箇所を有し、当該流路分岐箇所に、二個の流路延長箇所により直線状に連通される二個の溶着端部の間の長さLtの、継手本体部の流路延長箇所での管外径Deに対する比(Lt/De)を、1.9~8.0としてなる請求項2~5のいずれか一項に記載の樹脂製管継手。
  7.  T字状の流路分岐箇所に、二個の流路延長箇所により直線状に連通される二個の溶着端部の間の長さLtを、25mm~50mmとしてなる請求項6に記載の樹脂製管継手。
  8.  内部流路の中心軸線に沿う流路延長箇所の長さLeを、1mm以上としてなる請求項2~7のいずれか一項に記載の樹脂製管継手。
  9.  パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)又はポリエーテルエーテルケトン(PEEK)からなる請求項1~8のいずれか一項に記載の樹脂製管継手。
PCT/JP2015/077624 2015-09-29 2015-09-29 樹脂製管継手 WO2017056203A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187011896A KR102405086B1 (ko) 2015-09-29 2015-09-29 수지제 관 이음매
US15/763,983 US11199284B2 (en) 2015-09-29 2015-09-29 Resin pipe joint
JP2017542565A JPWO2017056203A1 (ja) 2015-09-29 2015-09-29 樹脂製管継手
PCT/JP2015/077624 WO2017056203A1 (ja) 2015-09-29 2015-09-29 樹脂製管継手

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077624 WO2017056203A1 (ja) 2015-09-29 2015-09-29 樹脂製管継手

Publications (1)

Publication Number Publication Date
WO2017056203A1 true WO2017056203A1 (ja) 2017-04-06

Family

ID=58423099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077624 WO2017056203A1 (ja) 2015-09-29 2015-09-29 樹脂製管継手

Country Status (4)

Country Link
US (1) US11199284B2 (ja)
JP (1) JPWO2017056203A1 (ja)
KR (1) KR102405086B1 (ja)
WO (1) WO2017056203A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100410A (ja) * 2017-11-30 2019-06-24 株式会社クボタケミックス 管継手およびその製造方法
WO2022181720A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 管継手および管継手の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD996960S1 (en) * 2022-01-27 2023-08-29 Mullet Tools, LLC Adapter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515635A (ja) * 2008-03-18 2011-05-19 サン−ゴバン パフォーマンス プラスティックス コーポレイション 流体移送アセンブリおよび関連方法
JP2013103363A (ja) * 2011-11-11 2013-05-30 Kitz Sct:Kk 樹脂製端面突合せ継手とその継手の溶着方法並びに配管器材
JP2014025575A (ja) * 2012-07-30 2014-02-06 Kohyei Trading Co Ltd チューブの連結構造、及びチューブの連結方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070044A (en) * 1976-01-22 1978-01-24 Phillips Petroleum Company Polymer pipe connection and method to make it
GB8903223D0 (en) * 1989-02-13 1989-03-30 Du Pont Uk Adjustable pipe bend with electrofusion facility
DE3919496C1 (ja) * 1989-06-12 1990-07-05 Mannesmann Ag, 4000 Duesseldorf, De
JP2721448B2 (ja) 1991-11-29 1998-03-04 東京瓦斯株式会社 電気融着式管継手及びその製法
DE9202575U1 (ja) 1992-02-27 1992-08-13 Karl Rafeld Kg Spritzgusswerk, Elektronik Und Formenbau, 8954 Biessenhofen, De
US5452922A (en) * 1993-07-09 1995-09-26 Christopher G. Ziu Elbow fittings with expanded outer annulus space for double-containment assemblies
JPH07156276A (ja) 1993-12-09 1995-06-20 Sekisui Chem Co Ltd 管材の接続方法および管材の接続装置ならびに配管材
US5775736A (en) 1996-02-21 1998-07-07 Phillips Petroleum Company Plastic pipe fittings
JPH1194176A (ja) 1997-09-22 1999-04-09 Sekisui Chem Co Ltd 4方向継手の製造方法
US5975590A (en) * 1998-02-17 1999-11-02 Applied Materials, Inc. High pressure fitting
US6203071B1 (en) * 1998-11-30 2001-03-20 Saint Gobain Performance Plastics Corp. Rotationally orientable fluid handling devices
JP2001253950A (ja) 1999-12-27 2001-09-18 Bridgestone Corp 樹脂パイプ、及び該樹脂パイプを用いた感光ドラム
JP4764580B2 (ja) 2001-09-27 2011-09-07 株式会社光明製作所 仮設用水道管路
JP2003247687A (ja) 2002-02-22 2003-09-05 Sekisui Chem Co Ltd 曲がり継手用部材
JP2006177513A (ja) 2004-12-24 2006-07-06 Hitachi Metals Ltd 配管用多段ベンド及び樹脂管の接続方法
JP2006266397A (ja) 2005-03-24 2006-10-05 Yasuo Shiraishi 配管部品
DE102006034697A1 (de) 2005-08-20 2007-02-22 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kunststoffleitung
JP2007078069A (ja) 2005-09-14 2007-03-29 Nippon Pillar Packing Co Ltd 樹脂管継手構造及び樹脂管継手の組立方法
CN101668980A (zh) 2007-05-11 2010-03-10 福士汽车配套部件责任有限公司 用于流动介质的连接装置
US20100133804A1 (en) * 2008-12-01 2010-06-03 Brent Larkin Method of replacing pipe couplings
EP2489918B1 (de) * 2011-02-15 2016-04-13 Georg Fischer Rohrleitungssysteme AG Modulares Fitting
JP5963964B2 (ja) 2013-07-22 2016-08-03 ミライアル株式会社 溶着継手
US10436370B2 (en) * 2016-04-20 2019-10-08 Georg Fischer Central Plastics Llc Pipe elbows and methods of manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515635A (ja) * 2008-03-18 2011-05-19 サン−ゴバン パフォーマンス プラスティックス コーポレイション 流体移送アセンブリおよび関連方法
JP2013103363A (ja) * 2011-11-11 2013-05-30 Kitz Sct:Kk 樹脂製端面突合せ継手とその継手の溶着方法並びに配管器材
JP2014025575A (ja) * 2012-07-30 2014-02-06 Kohyei Trading Co Ltd チューブの連結構造、及びチューブの連結方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100410A (ja) * 2017-11-30 2019-06-24 株式会社クボタケミックス 管継手およびその製造方法
WO2022181720A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 管継手および管継手の製造方法
JP2022132164A (ja) * 2021-02-26 2022-09-07 ダイキン工業株式会社 管継手および管継手の製造方法
JP7197819B2 (ja) 2021-02-26 2022-12-28 ダイキン工業株式会社 管継手および管継手の製造方法

Also Published As

Publication number Publication date
KR20180058812A (ko) 2018-06-01
JPWO2017056203A1 (ja) 2018-07-12
US11199284B2 (en) 2021-12-14
KR102405086B1 (ko) 2022-06-02
US20180283590A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2017072888A1 (ja) 樹脂製管継手、配管及び、配管の製造方法
WO2017056203A1 (ja) 樹脂製管継手
EP3623681A1 (en) Pipe fittings allowing non-destructive pressure testing of integrity of seals
CN101715388A (zh) 接合部件的补偿元件
TWI674374B (zh) 樹脂製管接頭及夾持治具
JP6966841B2 (ja) 樹脂製管継手
JP6956158B2 (ja) 配管
WO2017072886A1 (ja) 樹脂製配管部材、樹脂製管継手及び、配管の製造方法
US20210114314A1 (en) Induction connection sleeve
CN110466142B (zh) 树脂制配管的制造方法、及树脂制配管
TWI736767B (zh) 樹脂製管構件、樹脂製管構件之製造方法、樹脂製管接頭及樹脂製配管
JP2016528513A5 (ja)
EP2762242A1 (en) Press-fitting
WO2017056204A1 (ja) 樹脂製チューブ部材、配管及び、配管の製造方法
JP6820699B2 (ja) フランジ付き管継手
JP6754685B2 (ja) 電気融着継手
JP2016036831A (ja) ろう付け構造
KR101901126B1 (ko) 파이프 연결구조체
JP5173571B2 (ja) エレクトロフュージョン継手
JPH07232379A (ja) 管状部材の溶着方法
JPH04164629A (ja) フッ素樹脂製接合物品の製造法
JP2002276884A (ja) 電気融着継手
JP2007040385A (ja) ブレードホース接続用エレクトロヒュージョン継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905357

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017542565

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15763983

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187011896

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15905357

Country of ref document: EP

Kind code of ref document: A1