WO2017051459A1 - 排気浄化フィルタ - Google Patents
排気浄化フィルタ Download PDFInfo
- Publication number
- WO2017051459A1 WO2017051459A1 PCT/JP2015/076948 JP2015076948W WO2017051459A1 WO 2017051459 A1 WO2017051459 A1 WO 2017051459A1 JP 2015076948 W JP2015076948 W JP 2015076948W WO 2017051459 A1 WO2017051459 A1 WO 2017051459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- twc
- gpf
- exhaust gas
- side end
- face
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/9454—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/061—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/068—Noble metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
- F01N3/0222—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/101—Three-way catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2066—Praseodymium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2068—Neodymium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20715—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/40—Mixed oxides
- B01D2255/407—Zr-Ce mixed oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/908—O2-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/915—Catalyst supported on particulate filters
- B01D2255/9155—Wall flow filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/014—Stoichiometric gasoline engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/02—Combinations of different methods of purification filtering and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/06—Ceramic, e.g. monoliths
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/30—Honeycomb supports characterised by their structural details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
- F01N2370/04—Zeolitic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an exhaust purification filter provided with a three-way catalyst.
- a three-way catalyst for purifying CO, HC and NO x contained in the exhaust gas is provided in a state of being supported by a honeycomb support.
- TWC three-way catalyst
- a plurality of TWCs are arranged in series in the exhaust passage to satisfy the required purification performance. Therefore, it is not preferable from the viewpoint of pressure loss and cost to newly provide GPF in the exhaust passage in addition to the plurality of TWCs.
- a TWC having a two-layer structure of an Rh layer and a Pd layer is known as a TWC having an excellent three-way purification function, but supporting this TWC on a GPF causes a large pressure loss. It is possible to mix and carry on GPF.
- Ba which is usually added to the Pd layer, is brought into contact with or in proximity to Rh in order to suppress the deterioration of Pd and to improve the NO x adsorption property.
- Rh is oxidized to be oxidized by the electron donating action of Ba, and as a result, the NO x reduction ability of Rh decreases, so that there is a problem that the NO x purification performance largely decreases.
- the present invention has been made in view of the above, and an object thereof is to provide a GPF capable of exhibiting a three-way purification function superior to the prior art.
- the present invention is provided in an exhaust passage (for example, an exhaust pipe 3 described later) of an internal combustion engine (for example, an engine 1 described later).
- An exhaust gas purification filter (for example, GPF 32 described later) that captures and purifies PM), and from the inflow side end surface of exhaust (for example, inflow side end surface 32a described later) to the outflow side end surface (for example
- a plurality of cells for example, the inflow cell 321 and the outflow cell 322 described later
- a filter base for example, a filter base 320 described later
- a three-way catalyst for example, TWC 33 described below
- An exhaust gas purification filter comprising: a catalyst metal containing at least Rh; and a composite oxide having an oxygen storage / release capacity and having Nd and
- a composite catalyst having at least a Rh-containing catalytic metal and an oxygen storage / release capacity and having Nd and Pr in the crystal structure in the partition wall. And an oxide.
- OSC complex oxide having oxygen storage and release capacity
- Nd and Pr are acids as described in detail later. It has the characteristic that the quantity of points is large. Therefore, the complex oxide having Nd and Pr in the crystal structure has a high amount of acid sites, has a high HC adsorption capacity, and a steam reforming reaction that proceeds in the presence of HC and water efficiently proceeds.
- the average pore diameter of the partition walls is 15 ⁇ m or more, and the particle diameter D90 of the TWC is 5 ⁇ m or less.
- micronized TWC can be introduced into the pores of the partition walls, and the inner surface of such pores can carry the TWC. Therefore, according to the present invention, it is possible to avoid an increase in pressure loss of the GPF caused by the TWC being supported only on the surface layer of the partition wall, and it is possible to exhibit a higher three-way purification function.
- the three-way catalyst is supported on the inner surface of the pores in the partition in a state where Rh and Pd are contained as the catalyst metal and Rh and Pd are mixed.
- Rh and Pd are contained as the catalyst metal and Rh and Pd are mixed.
- the three-way catalyst is composed of Rh and Pd, and is supported on the inner surface of the pore in the partition in a state where Rh and Pd are mixed.
- Rh and Pd are conventionally mixed and supported on GPF
- Ba added to the Pd layer as a result of contact or proximity to Rh causes Rh to be oxidized by the electron donating action of Ba. and oxide reduction, NO x purifying performance was reduced significantly.
- the present invention as a result of the effects of the invention of (1) being exhibited remarkably, it is possible to avoid a reduction in the NO x purification performance of Rh and to exhibit a three-way purification function superior to the conventional It can provide GPF.
- the catalyst composition is preferable for supporting the inner surfaces of the partition walls.
- the three-way catalyst is configured without containing Ba.
- the three-way catalyst is configured without containing Ba. According to the present invention, because it contains no Ba in TWC, oxides of Rh is promoted by Ba NO x purification performance as described above can be avoided from being reduced.
- the total content of Nd and Pr contained in the composite oxide is preferably 10% by mass or more.
- Nd and Pr are contained by 10% by mass or more in the crystal structure of the complex oxide. According to this invention, more excellent three-way purification performance is exhibited.
- GPF which can exhibit the three-way purification function superior to before can be provided.
- FIG. 1 It is a figure showing the composition of the exhaust gas purification device of the internal-combustion engine concerning one embodiment of the present invention. It is a cross-sectional schematic diagram of GPF which concerns on the said embodiment. It is an expansion mimetic diagram of a partition of GPF concerning the above-mentioned embodiment. It is a figure which shows the easiness of reduction
- FIG. 6 is a view showing the relationship between the temperature and the NO x purification rate in Example 1 and Comparative Example 1; It is a figure which shows the relationship between the temperature in Example 1 and Comparative Examples 2 and 3, and an air fuel ratio absorption rate.
- FIG. 16 is a view showing a particle size distribution of TWC of Example 6.
- FIG. 6 is a view showing a supported state of TWC in partition walls of GPF in Example 1.
- FIG. 7 is a view showing the relationship between D90 of TWC and pressure loss in Examples 1 to 7. It is a figure which shows the relationship of the average pore diameter of the partition of GPF and pressure loss in Example 1 and Examples 8, 9.
- FIG. 7 is a view showing the relationship between the washcoat amount of TWC and pressure loss in Example 1 and Examples 10 to 13.
- FIG. 6 is a view showing the relationship between the air fuel ratio and the purification rate in the GPF of the first embodiment.
- FIG. 20 is a view showing the relationship between the air fuel ratio and the purification rate in the GPF of Example 19.
- FIG. 20 is a view showing the relationship between the air fuel ratio and the purification rate in the GPF of the twentieth embodiment.
- FIG. 21 is a view showing the relationship between the air fuel ratio and the purification rate in the GPF of Example 21. It is a diagram showing the relationship between the total content and NO x _T50 of Nd and Pr. It is a figure which shows the relationship between the total content of Nd and Pr, and CO_T50. It is a figure which shows the relationship between the sum total content of Nd and Pr, and HC_T50.
- FIG. 1 is a view showing the configuration of an exhaust purification system 2 of an internal combustion engine (hereinafter referred to as “engine”) 1 according to the present embodiment.
- the engine 1 is a direct injection gasoline engine.
- the exhaust purification system 2 includes a TWC 31 and a GPF 32 provided in order from the upstream side of the exhaust pipe 3 through which the exhaust gas flows.
- the TWC 31 purifies HC in the exhaust gas to H 2 O and CO 2 , oxidizes CO to CO 2 , and oxidizes NO x to N 2 , respectively.
- a carrier obtained by supporting a noble metal such as Pd or Rh as a catalyst metal on a carrier made of an oxide such as alumina, silica, zirconia, titania, ceria or zeolite is used.
- the TWC 31 is usually supported on a honeycomb support.
- the TWC 31 includes an OSC material having OSC capability.
- the OSC material other CeO 2, a composite oxide of CeO 2 and ZrO 2 (hereinafter, referred to as "CeZr composite oxide”.) And the like.
- the CeZr composite oxide is preferably used because it has high durability.
- the said catalyst metal may be carry
- the preparation method of TWC 31 is not particularly limited, and is prepared by a conventionally known slurry method or the like. For example, after preparing a slurry containing the above-mentioned oxide, noble metal, OSC material and the like, it is prepared by coating the prepared slurry on a cordierite honeycomb support and baking it.
- the GPF 32 captures and purifies PM in exhaust gas. Specifically, when exhaust gas passes through fine pores in the partition walls described later, PM is captured by depositing PM on the surface of the partition walls.
- FIG. 2 is a schematic cross-sectional view of the GPF 32 according to the present embodiment.
- the GPF 32 comprises a filter substrate 320.
- the filter base 320 has, for example, a cylindrical shape elongated in the axial direction, and is formed of a porous body such as cordierite, mullite, silicon carbide (SiC) or the like.
- the filter base 320 is provided with a plurality of cells extending from the inflow side end face 32 a to the outflow side end face 32 b, and these cells are partitioned by the partition wall 323.
- the filter base 320 includes an inflow side plugging portion 324 that seals the inflow side end face 32a.
- the cell in which the inflow side end face 32a is sealed by the inflow side plugging portion 324 is closed at the inflow side end while the outflow side end is opened, and the outflow side exhausts the exhaust gas having passed through the partition 323 to the downstream side
- the cell 322 is configured.
- the inflow side plugging portion 324 is formed by sealing the plugging cement from the inflow side end face 32 a of the filter substrate 320.
- the filter base 320 includes an outlet-side plugging portion 325 that seals the outlet-side end surface 32 b.
- the cell in which the outflow side end face 32b is sealed by the outflow side plugging portion 325 forms the inflow side cell 321 in which the outflow side end is closed while the inflow side end is opened and the exhaust flows from the exhaust pipe 3 Do.
- the outflow side plugging portion 325 is formed by sealing the plugging cement from the outflow side end face 32 b of the filter base 320.
- the opening in the inflow side end face 32a of the cell and the opening in the outflow side end face 32b are alternately sealed, so that the inflow side cell 321 and the outflow side cell 322 are adjacent to each other in a lattice shape (checked shape). Is to be placed.
- FIG. 3 is an enlarged schematic view of the partition wall 323 of the GPF 32 according to the present embodiment.
- the TWC 33 is supported on the inner surface of the pore in the partition wall 323.
- the TWC 33 includes a TWC 33 a containing Rh and a TWC 33 b containing Pd. These TWCs 33 are supported on the inner surface of the pore in a micronized state. The pores of the partition walls 323 are not blocked by the TWCs 33 so that a large pressure loss does not occur.
- the partition wall 323 preferably has an average pore diameter of 15 ⁇ m or more. If the average pore diameter is 15 ⁇ m or more, the TWC 33 can enter into the pore diameter due to the relationship with the particle diameter of TWC 33 described later, and the TWC 33 can be supported on the inner surface of the pore. A more preferable average pore diameter is 20 ⁇ m or more.
- the thickness of the partition wall 323 is not particularly limited, but is preferably 10 mil or less. When the thickness of the partition exceeds 10 mils, the pressure loss may increase due to the relationship between the amount of TWC supported, the average pore diameter of the partition, and the like.
- the TWC 33 is micronized with a particle diameter D90 of 5 ⁇ m or less when the cumulative distribution from the small particle size side in the particle size distribution is 90%. If D90 of the TWC 33 is 5 ⁇ m or less, the TWC 33 can enter into the pore diameter in relation to the average pore diameter of the partition wall 323 described above, and the TWC 33 can be supported on the inner surface of the pore. More preferable D90 is 3 ⁇ m or less.
- the TWC 33 contains at least Rh as a catalytic metal, and preferably contains Rh and Pd as catalytic metals as shown in FIG. These Rh and Pd may be supported by a composite oxide having an OSC function described later, and may be supported by a conventionally known support comprising an oxide such as alumina, silica, zirconia, titania, ceria, or zeolite. Good.
- the TWC 33 is configured to include the TWC 33a containing Rh and the TWC 33b containing Pd. As shown in FIG. 3, the TWC 33a containing Rh and the TWC 33b containing Pd are supported on the inner surface of the pore in the partition wall 323 in a mixed state.
- the TWC 33 also contains a composite oxide having OSC capability and having Nd and Pr in the crystal structure.
- the composite oxide used as the OSC material is supported in the partition wall 323 together with the catalyst metal.
- the TWC has a function of oxidizing HC in the exhaust to convert it to CO 2 and H 2 O, oxidizing CO to convert it to CO 2 , and reducing NO x to N 2 .
- air-fuel ratio the ratio of fuel to air
- stoichiometric the ratio of fuel to air
- an OSC material having an oxygen storage and release capacity that stores oxygen in an oxidizing atmosphere and releases oxygen in a reducing atmosphere is used together with a catalytic metal as a cocatalyst.
- CeO 2 and composite oxides of Ce and Zr are known as OSC materials.
- the complex oxide used as the OSC material in the present embodiment has a structure in which part of Ce or Zr in the crystal structure of CeO 2 or ZrO 2 is replaced with Nd or Pr.
- Nd and Pr have high HC adsorption ability, and a large amount of hydrogen is generated by a steam reforming reaction described later. Hydrogen promotes the reduction of Rh and improves the NO x purification performance of Rh.
- Pr having a smaller amount of hydrogen generation by the steam reforming reaction than Nd is contained in the structure of the composite oxide. Since Pr has a function of absorbing the fluctuation of the air-fuel ratio to the stoichiometry, the inclusion of Pr makes it easy to maintain the air-fuel ratio in the vicinity of the stoichiometry.
- the CeZrNdPr composite oxide according to the present embodiment can be prepared, for example, by the following method. First, cerium nitrate, zirconium nitrate, neodymium nitrate and praseodymium nitrate are dissolved in pure water so as to have a desired ratio. Thereafter, an aqueous solution of sodium hydroxide is added dropwise to bring the pH of the solvent to 10, for example, to obtain a precipitate. Then, the solvent is evaporated by filtering under reduced pressure while heating the solution containing the precipitate to, for example, 60 ° C. Next, the residue is extracted and then calcined at, for example, 500 ° C. for 2 hours in a muffle furnace to obtain a CeZrNdPr composite oxide.
- the TWC 33 of the present embodiment is configured without containing Ba, which has been added from the viewpoint of the conventional deterioration suppression of Pd and the improvement of NO x adsorption property.
- the total content of Nd and Pr contained in the composite oxide is preferably 10% by mass or more. If the total content of Nd and Pr contained in the composite oxide is within this range, a higher three-way purification function is exhibited.
- the upper limit value of the total content is preferably 20% by mass, and a more preferable range is 12% by mass to 16% by mass.
- Rh: Pd 1: 10 to 1: 5 on a mass basis.
- the washcoat amount of TWC 33 is not particularly limited, but preferably 40 to 80 g / L. When the washcoat amount is less than 40 g / L, sufficient purification performance can not be obtained, and when it exceeds 80 g / L, pressure loss increases.
- the TWC 33 may contain another noble metal such as Pt as a catalyst metal.
- GPF 32 carries a catalyst having a function other than the three-way purification function in the partition wall or on the surface of the partition wall, such as an NO x catalyst, an oxidation catalyst, or an Ag-based catalyst for burning and removing PM deposited in GPF. It may be
- the GPF 32 according to the present embodiment is manufactured, for example, by dipping.
- a slurry containing a predetermined amount of constituent materials of TWC 33 is prepared by wet grinding or the like, GPF 32 is immersed in the prepared slurry, and then GPF 32 is pulled up and fired at a predetermined temperature condition, The GPF 32 can carry the TWC 33.
- a slurry prepared by mixing catalysts such as Rh and Pd with a ball mill or the like is pulverized to a particle size of 5 ⁇ m or less and dipped in GPF 32 once.
- Rh and Pd can be supported on the inner surface of the pores in the partition wall 323 in a state of being randomly mixed.
- FIG. 4 is a view showing the easiness of reduction of Rh by CO-TPR. Specifically, it is a diagram showing the results of measurement of the easiness of reduction of Rh depending on the presence or absence of Ba added to TWC according to the following procedure by CO-TPR (temperature-programmed reduction method).
- Rh was supported on Zr oxide at a ratio of 0.3% by mass and 3% by mass, respectively, and those with and without 10% by mass of Ba were respectively prepared and measured.
- the TWC containing Ba has a lower amount of CO 2 emission at a lower temperature as compared to the TWC containing no Ba. This means that Rh is difficult to be reduced, and Ba is considered to inhibit the reduction of Rh. Therefore, the TWC in the present embodiment maintains the reduction state of Rh by not containing Ba, and exhibits high NO x purification performance.
- the steam reforming reaction is a reaction represented by the following formula in which steam and HC react at high temperature in the presence of a catalyst to generate hydrogen.
- FIG. 5 is a diagram showing the amount of acid point of each complex oxide by NH 3 -TPD. Specifically, the amount of each acid point of Y, La, Pr, and Nd, which can be mentioned as an element that can be contained in the crystal structure of the complex oxide of Ce and Zr, is NH 3 -TPD Method according to the following procedure.
- Nd and Pr have more acid points than Y and La. Therefore, from this result, it can be said that Nd and Pr have high HC adsorption ability.
- FIG. 6 is a graph comparing the amount of hydrogen produced by the steam reforming reaction at 500 ° C. when each element of Y, La, Pr and Nd is contained in the crystal structure of the CeZr composite oxide.
- the content of each element of Y, La, Pr and Nd is 7% by mass
- the content of Ce is 41% by mass
- the content of Zr is 52% by mass.
- Pr and Nd generate more hydrogen than Y and La.
- the TWC 33 supported on the partition wall 323 is a catalyst metal containing at least Rh, and a composite oxide having OSC ability and having Nd and Pr in the crystal structure. It included.
- Nd and Pr have the property of having a large amount of acid sites. Therefore, the complex oxide having Nd and Pr in the crystal structure has a high amount of acid sites, has a high HC adsorption capacity, and a steam reforming reaction that proceeds in the presence of HC and water efficiently proceeds.
- the average pore diameter of the partition walls 323 is 15 ⁇ m or more, and the particle diameter D90 of the TWC 33 is 5 ⁇ m or less.
- the micronized TWC 33 can be introduced into the pores of the partition wall 323, and the TWC 33 can be supported on the inner surface of the pore. Therefore, according to the present embodiment, it is possible to avoid an increase in pressure loss of the GPF 32 caused by the TWC 33 being supported only on the surface layer of the partition wall 323, and it is possible to exhibit a higher three-way purification function.
- the TWC 33 is configured to include Rh and Pd, and is supported on the inner surface of the pore in the partition wall 323 in a state where Rh and Pd are mixed.
- Rh and Pd are mixed and supported on GPF 32
- the Ba added to the Pd layer contacts or approaches Rh so that Rh is oxidized and oxidized by the electron donating action of Ba. and Monoka, NO x purifying performance was reduced significantly.
- the catalyst composition has a preferable composition for supporting the inner surfaces of the partition walls 323 with pores.
- the TWC 33 is configured without containing Ba. According to this embodiment, because it contains no Ba in TWC33, it is promoted oxides of Rh is the NO x purification performance by Ba as described above can be avoided from being lowered.
- Nd and Pr are contained in an amount of 10% by mass or more in the crystal structure of the composite oxide. Thereby, more excellent three-way purification performance is exhibited.
- TWC and the carrier, the composite oxide, etc. were prepared according to the following procedure in the proportions shown in Table 1.
- an aqueous medium and an additive were added, and then mixed and slurried in a ball mill.
- the slurry was pulverized by wet pulverization or the like to adjust the particle size.
- the mixed slurry was immersed once in GPF by the dipping method.
- the loading amount (wash coat amount) was 60 g / L (except for Examples 10 to 13). Thereafter, baking was performed at 700 ° C. for 2 hours to obtain GPF on which TWC is supported.
- GPF a honeycomb structure made of NGK (inner diameter 25.4 ( ⁇ 1 inch) mm, average pore diameter 20 ⁇ m (except for Examples 8 and 9), wall thickness 8 mil (except for Examples 17 and 18), A cell number of 300, a material of cordierite, a capacity of 15 cc) was used.
- FIG. 7 is a view showing the relationship between the temperature and the NO x purification rate in Example 1 and Comparative Example 1.
- Nd in the OSC material, as in Example 1 with the addition of Pr, Y, Comparative Example 1 with the addition of La is a diagram showing results of evaluating the GPF of the NO x purifying performance under the following conditions. As shown in FIG. 7, it was found that the purification of NO x was progressing at a temperature lower than that of Comparative Example 1 in Example 1. From this result, in Example 1 was added Nd, Pr, the OSC material in the GPF is, Y, as compared with Comparative Example 1 with the addition of La has the NO x purification performance was confirmed to be improved.
- NO x purification performance evaluation conditions The NO x purification performance was evaluated by measuring the NO x concentration when the GPF was heated to 500 ° C. at 20 ° C./min in a stoichiometric gas.
- FIG. 8 is a graph showing the relationship between the temperature and the air-fuel ratio absorption rate in Example 1 and Comparative Examples 2 and 3. Specifically, for each of Comparative Example 2 in which only Nd was added to the OSC material, Comparative Example 3 in which only Pr was added, and Example 1 in which both Nd and Pr were used, the air-fuel ratio absorption ratio of GPF was measured. It is a figure which shows a result.
- air-fuel ratio amplitude (IN) indicates the air-fuel ratio amplitude before passing the OSC material
- air-fuel ratio amplitude (OUT) indicates the air-fuel ratio amplitude after passing the OSC material
- FIG. 9 is a graph showing the particle size distribution of TWC of Example 6. As shown in FIG. 9, it was confirmed that D90 of the TWC particles is 5 ⁇ m or less. In addition, the particle size distribution was similarly measured according to the following measurement conditions also about the other Example and the comparative example. The obtained D90 was as shown in Table 1.
- Device Laser diffraction type particle size distribution measuring device (manufactured by SHIMADZU, SALD-3100) Measurement method: Laser scattering method
- FIG. 10 is a view showing a supported state of TWC in the partition wall of the GPF of Example 1. Specifically, it is a mapping diagram obtained by carrying out cross-sectional SEM observation and elemental analysis by EPMA according to the following conditions for the supported state of TWC in the partition walls of GPF according to Example 1. From this result, it was confirmed that when the average pore diameter of the partition wall is 15 ⁇ m or more and the D90 of the TWC is 5 ⁇ m or less, the TWC is uniformly supported in the partition wall. In addition, it was confirmed that the TWC is uniformly supported in the partition similarly in the other examples in which the particle diameter of the TWC is 5 ⁇ m or less.
- Electron probe micro analyzer (JE0L, JXA-8100) Measurement conditions: acceleration voltage 15 KV, irradiation current 0.04 ⁇ A, pixel size 1 ⁇ m, data collection time per cell 38 ms, beam diameter 0.7 ⁇ m
- FIG. 11 is a view showing a relationship between D90 of TWC supported by GPFs of Examples 1 to 7 and pressure loss. As shown in FIG. 11, while the pressure drop remains at a substantially constant low level in Examples 1 to 6 in which D90 is 5 ⁇ m or less, when D90 exceeds 5 ⁇ m as in GPF of Example 7 in which D90 is 8 ⁇ m. It was found that the pressure loss increased. From this result, it was confirmed that the D90 of TWC supported on GPF is preferably 5 ⁇ m or less.
- FIG. 12 is a graph showing the relationship between the pressure loss and the average pore diameter of the partition walls of GPF in Example 1 and Examples 8 and 9. As shown in FIG. 12, it was found that the pressure loss slightly increased as the average pore size decreased, but the pressure loss of the GPF of Example 8 having an average pore size of 16 ⁇ m remained at a low level. From this result, it was confirmed that the average pore diameter of GPF is preferably 15 ⁇ m or more.
- FIG. 13 is a view showing the relationship between the washcoat amount of TWC and the pressure loss in Example 1 and Examples 10 to 13. As shown in FIG. 13, it was found that the pressure drop increased as the washcoat amount increased, but the pressure loss of the GPF of Example 13 having a washcoat amount of 80 g / L remained at a low level. From this result, it was confirmed that the washcoat amount of TWC is preferably 80 g / L or less.
- FIG. 14 is a view showing the relationship between GPF wall thickness and pressure loss in Example 1 and Examples 17 and 18. As shown in FIG. 14, it was found that the pressure loss increased as the wall thickness increased, but the pressure loss of the GPF of Example 18 having a wall thickness of 10 mils remained at a low level. From this result, it was confirmed that the wall thickness of GPF is preferably 10 mil or less.
- FIGS. 15A and 15B are diagrams showing the relationship between the air-fuel ratio and the purification rates of CO, HC, and NO x in the GPFs of the first embodiment and the nineteenth embodiment, respectively.
- the vertical axis represents CO, HC, the purification rate of the NO x, respectively
- the horizontal axis represents the air-fuel ratio which is the ratio of fuel and air.
- the term "stoichiometric" refers to a region where the air-fuel ratio is approximately 14.5.
- the TWC supported by the GPF of Example 1 contains Rh and Pd
- the TWC supported by the GPF of Example 19 contains only Rh. Evaluation conditions were performed according to the following conditions. From the evaluation results of FIG. 15A and FIG.
- Example 15B compared with GPF of Example 1 in which Rh and Pd are included, GPF of Example 19 in which only Rh is included has a low HC purification rate in a region where the air fuel ratio is higher than stoichiometry.
- Example 1 in which Rh and Pd were used in combination had higher three-way purification performance than Example 19 in which Rh alone was used as the TWC supported on GPF.
- HC, CO, NO x purifying performance evaluation condition By using an actual engine, the catalyst inlet temperature 500 ° C. continuously changed in 20 minutes air-fuel ratio from 13.5 to 15.5, the measured HC, CO, the purification rate of NO x.
- FIGS. 15C and 15D are diagrams showing the relationship between the air-fuel ratio and the purification rates of CO, HC, and NO x in the GPFs of Examples 20 and 21, respectively.
- the TWC supported by GPF of Example 20 contains solid Ba (Ba sulfate) together with Rh and Pd
- the TWC supported by GPF of Example 21 contains liquid Ba (Ba acetate and Ba together with Rh and Pd).
- Nitric acid Ba) is included.
- the TWC carried by the GPF of the above-mentioned Example 1 (FIG. 15A) contains Rh and Pd but does not contain Ba. This is referred to for comparison.
- ⁇ Purification performance due to difference in total content of Nd and Pd> 16A to 16C show the total content of Nd and Pr contained in GPFs of Example 1, Example 14, Example 15, Example 16 and Comparative Example 4, respectively, and NO x _T50, CO_T50, HC_T50. It is a figure which shows a relation. NO x _T50, CO_T50, the HC_T50, respectively CO, HC, represents the temperature at which 50% of the NO x is purified, shown on the vertical axis in FIG. The horizontal axis indicates the total content (mass%) of Nd and Pr in the composite oxide.
- the total content of Nd and Pr is 0, 6, 12, 14, 16% by mass in the order of Comparative Example 4, Example 14, Example 15, Example 1, and Example 16, respectively.
- GPFs of Example 1, Example 14, Example 15, and Example 16 were found to be that NO x , CO, and HC were purified at a lower temperature than Comparative Example 4.
- the total content of Nd and Pr is preferably 10% by mass to 20% by mass, and more preferably 12% by mass to 16% by mass. That was confirmed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
ここで、酸素吸蔵放出能(Oxygen Storage Capacity、以下「OSC」という。)を有する複合酸化物の結晶構造中に組み込むことが可能な元素のうち、Nd及びPrは後段で詳述するように酸点の量が多い特性を有する。そのため、結晶構造中にNd及びPrを有する複合酸化物は、酸点の量が多いためHC吸着能が高く、HCと水の存在下で進行するスチームリフォーミング反応が効率良く進行する。すると、このスチームリフォーミング反応の進行により水素が生成し、生成した水素によってTWCを構成するRhの酸化物化が抑制される。即ち、RhのNOx還元能の低下を回避できるため、高いNOx浄化性能を発揮できる。従って本発明によれば、従来よりも優れた三元浄化機能を発揮し得るGPFを提供できる。
また、後段で詳述するように、スチームリフォーミング反応による水素の生成量はPrよりもNdの方が高いが、Prは空燃比の変動を吸収する効果を有する。従って本発明によれば、結晶構造中にNd及びPrを有する複合酸化物を用いることにより、空燃比の変動を抑制しつつ高い三元浄化機能を発揮できる。
また、Rh層とPd層の2層構造を有する従来のTWCを、隔壁の細孔内表面に担持させるのは困難であるところ、この発明によればRhとPdを混合した状態でも高い三元浄化機能が発揮されるため、隔壁の細孔内表面への担持に好ましい触媒組成となっている。
エンジン1は、直噴方式のガソリンエンジンである。図1に示すように、排気浄化装置2は、排気が流通する排気管3の上流側から順に設けられた、TWC31と、GPF32と、を備える。
図2に示すように、GPF32は、フィルタ基材320を備える。フィルタ基材320は、例えば軸方向に長い円柱形状であり、コージェライト、ムライト、シリコンカーバイド(SiC)等の多孔質体により形成される。フィルタ基材320には、流入側端面32aから流出側端面32bまで延びる複数のセルが設けられ、これらセルは隔壁323により区画形成される。
流入側目封じ部324は、フィルタ基材320の流入側端面32aから目封じ用セメントを封入することで形成される。
流出側目封じ部325は、フィルタ基材320の流出側端面32bから目封じ用セメントを封入することで形成される。
図3に示すように、隔壁323内の細孔内表面には、TWC33が担持される。TWC33は、Rhを含むTWC33aと、Pdを含むTWC33bを含んで構成される。これらTWC33は、微粒子化された状態で細孔内表面に担持されている。なお、隔壁323の細孔は、これらTWC33により閉塞されてはおらず、大きな圧力損失が生じないようになっている。
TWCは、排気中のHCを酸化してCO2とH2Oに変換し、COを酸化してCO2に変換する一方、NOxをN2まで還元する機能を有している。この両反応に対する触媒作用を同時に有効に生じさせるためには、燃料と空気の比(以下「空燃比」という。)を完全燃焼反応における化学量論比(以下「ストイキ」という。)近傍に保つことが好ましい。
従って、酸化雰囲気下で酸素を吸蔵し、還元雰囲気下で酸素を放出する酸素吸蔵放出能を有するOSC材が助触媒として触媒金属と共に用いられている。例えばCeO2や、CeとZrの複合酸化物等がOSC材として知られている。
Nd、PrはHC吸着能が高く、後述するスチームリフォーミング反応による水素の発生量が多い。水素はRhの還元を促進させ、RhのNOx浄化性能を向上させる。
先ず、硝酸セリウム、硝酸ジルコニウム、硝酸ネオジウム及び硝酸プラセオジウムを、所望の比率になるように、純水に溶解する。その後、水酸化ナトリウム水溶液を滴下して、溶媒のpHを例えば10にすることで、沈殿物を得る。その後、沈殿物を含む溶液を例えば60℃に加熱した状態で減圧濾過することで、溶媒を蒸発させる。次いで、残留物を抽出後、マッフル炉内において例えば500℃で2時間の仮焼を行うことで、CeZrNdPr複合酸化物を得る。
本実施形態に係るGPF32は、例えばディッピング法により製造される。ディッピング法では、例えば、TWC33の構成材料を所定量含むスラリーを湿式粉砕等により作製し、作製したスラリー中にGPF32を浸漬させた後、GPF32を引き上げて所定の温度条件で焼成を行うことにより、GPF32にTWC33を担持させることができる。
図4は、CO-TPRによるRhの還元のし易さを示す図である。具体的には、TWCに添加されるBaの有無による、Rhの還元のし易さをCO-TPR(昇温還元法)により下記手順に従って測定した結果を示す図である。
TWCはRhをそれぞれ0.3質量%、3質量%の割合でZr酸化物に担持させ、10質量%のBaを添加したものと添加しないものをそれぞれ作成して測定したものである。
(1)He中で昇温させ、600℃で10分間保持した。
(2)100℃まで降温させた。
(3)1%CO/N2中で、10℃/分で800℃まで昇温させRhを還元させた。
(4)600℃まで降温させた。
(5)10%O2/N2中、600℃で10分間保持した。
(6)100℃まで降温させ、He中で10分間保持後、1%CO/N2中で10分間保持した。
(7)1%CO/N2中で、10℃/分で800℃まで昇温させCO2放出の温度による変化を計測した。
触媒金属として用いられるRhは、水素の存在下で還元状態が維持され、NOx浄化性能が向上する。そのため本実施形態においては、スチームリフォーミング反応を利用している。スチームリフォーミング反応は、高温、触媒存在下で水蒸気とHCが反応して水素が発生する次式のような反応である。
CnHm+nH2O→nCO+(n+1/2m)H2
図5は、NH3-TPDによる各複合酸化物の酸点の量を示す図である。具体的には、CeやZrの複合酸化物の結晶構造中に含有させることのできる元素として挙げられる、Y、La、Pr及びNdそれぞれの酸点の量を、NH3-TPD(昇温還元法)で下記手順により測定した結果を示す図である。
(1)He中で昇温させ、600℃で60分間保持した。
(2)100℃まで降温させた。
(3)0.1%NH3/He中で60分間保持した後、He中で60分間保持した。
(4)He中で、10℃/分で600℃まで昇温させた。
本実施形態では、所謂ウォールフロー型のGPF32において、隔壁323に担持するTWC33を、少なくともRhを含む触媒金属と、OSC能を有し且つ結晶構造中にNd及びPrを有する複合酸化物と、を含んで構成した。
ここで、OSC能を有する複合酸化物の結晶構造中に組み込むことが可能な元素のうち、Nd及びPrは酸点の量が多い特性を有する。そのため、結晶構造中にNd及びPrを有する複合酸化物は、酸点の量が多いためHC吸着能が高く、HCと水の存在下で進行するスチームリフォーミング反応が効率良く進行する。すると、このスチームリフォーミング反応の進行により水素が生成し、生成した水素によってTWC33を構成するRhの酸化物化が抑制される。即ち、RhのNOx還元能の低下を回避できるため、高いNOx浄化性能を発揮できる。従って本実施形態によれば、従来よりも優れた三元浄化機能を発揮し得るGPF32を提供できる。
また、スチームリフォーミング反応による水素の生成量はPrよりもNdの方が高いが、Prは空燃比の変動を吸収する効果を有する。従って本実施形態によれば、結晶構造中にNd及びPrを有する複合酸化物を用いることにより、空燃比の変動を抑制しつつ高い三元浄化機能を発揮できる。
また、Rh層とPd層の2層構造を有する従来のTWCを、隔壁の細孔内表面に担持させるのは困難であるところ、本実施形態によればRhとPdを混合した状態でも高い三元浄化機能が発揮されるため、隔壁323の細孔内表面への担持に好ましい触媒組成となっている。
TWC及び担体、複合酸化物等を、表1に示す割合で、以下の手順により調製した。
まず、水系媒体、添加材を添加した後ボールミルにて混合してスラリー化した。次に、スラリーを湿式粉砕等により粉砕し、粒子径を調整した。次に、ディッピング法にてGPFに、混合したスラリーを1回浸漬させた。担持量(ウォッシュコート量)は60g/Lにて行った(実施例10~13を除く)。その後、700℃×2時間焼成することで、TWCが担持されたGPFを得た。
なお、GPFとしては、NGK製のハニカム構造体(内径25.4(φ1インチ)mm、平均細孔径20μm(実施例8、9を除く)、壁厚8mil(実施例17、18を除く)、セル数300、材質コージェライト、容量15cc)を用いた。
図7は、実施例1及び比較例1における温度とNOx浄化率との関係を示す図である。具体的には、OSC材にNd、Prを添加した実施例1と、Y、Laを添加した比較例1について、以下の条件に従ってGPFのNOx浄化性能を評価した結果を示す図である。図7に示す通り、実施例1は比較例1よりも低い温度でNOxの浄化が進行していることが分かった。この結果から、GPF中のOSC材にNd、Prを添加した実施例1は、Y、Laを添加した比較例1と比較してNOx浄化性能が向上することが確認された。
[NOx浄化性能評価条件]
ストイキガス中でGPFを500℃まで20℃/分で昇温したときのNOx濃度を計測することにより、NOx浄化性能を評価した。
図8は、実施例1及び比較例2、3における温度と空燃比吸収率との関係を示す図である。具体的には、OSC材にNdのみを添加した比較例2、Prのみを添加した比較例3、NdとPrの双方を使用した実施例1のそれぞれについて、GPFの空燃比吸収率を測定した結果を示す図である。空燃比吸収率は、以下の条件に従って式(1)により算出した。
空燃比吸収率(%)=((空燃比振幅(IN)-空燃比振幅(OUT))÷空燃比振幅(IN))×100
・・・式(1)
(式(1)中、「空燃比振幅(IN)」はOSC材通過前の空燃比振幅を示し、「空燃比振幅(OUT)」はOSC材通過後の空燃比振幅を示す。)
[空燃比吸収率測定条件]
実機エンジンを用いて、空燃比を14.5±1.0(1Hz)で振幅させ、30℃/分で昇温しているときの空燃比吸収率を測定する。
図9は、実施例6のTWCの粒子径分布を示す図である。図9に示す通り、TWC粒子のD90は、5μm以下となっていることが確認された。なお、他の実施例及び比較例についても同様にして以下の測定条件に従って粒子径分布を測定した。得られたD90は表1に示す通りであった。
[粒子径分布測定条件]
装置:レーザ回折式粒子径分布測定装置(SHIMADZU社製、SALD-3100)
測定方法:レーザ散乱法
図10は、実施例1のGPFの隔壁内におけるTWCの担持状態を示す図である。具体的には、実施例1に係るGPFの隔壁内のTWCの担持状態を、以下の条件に従ってEPMAによる断面SEM観察及び元素分析を実施して得たマッピング図である。この結果から、隔壁の平均細孔径は15μm以上であり、TWCのD90が粒子径5μm以下である場合、TWCは隔壁内に均一に担持されることが確認された。
なお、TWCの粒子径が5μm以下である他の実施例についても、同様にTWCは隔壁内に均一に担持されることが確認された。
[EPMA測定条件]
装置:電子プローブマイクロアナライザ(JE0L社製、JXA-8100)
測定条件:加速電圧15KV、照射電流0.04μA、ピクセルサイズ1μm、1セルあたりのデータ採取時間38m秒、ビーム径0.7μm
図11は、実施例1~7のGPFに担持されるTWCのD90と、圧力損失との関係を示す図である。図11に示す通り、D90が5μm以下である実施例1~6は圧力損失が略一定の低いレベルに留まるのに対し、D90が8μmの実施例7のGPFのようにD90が5μmを超えると圧力損失が上昇することが分かった。この結果から、GPFに担持されるTWCのD90は5μm以下であることが好ましいことが確認された。
図12は、実施例1及び実施例8、9のGPFの隔壁の平均細孔径と、圧力損失との関係を示す図である。図12に示す通り、平均細孔径が小さくなるにつれ圧力損失がやや増大したが、平均細孔径が16μmである実施例8のGPFの圧力損失は低いレベルに留まることが分かった。この結果から、GPFの平均細孔径は15μm以上であることが好ましいことが確認された。
図13は、実施例1及び実施例10~13のTWCのウォッシュコート量と、圧力損失との関係を示す図である。図13に示す通り、ウォッシュコート量が増大するにつれ圧力損失が増大したが、ウォッシュコート量が80g/Lである実施例13のGPFの圧力損失は低いレベルに留まることが分かった。この結果から、TWCのウォッシュコート量は80g/L以下であることが好ましいことが確認された。
図14は、実施例1及び実施例17、18のGPFの壁厚と、圧力損失との関係を示す図である。図14に示す通り、壁厚が増大するにつれ圧力損失が増大したが、壁厚が10milである実施例18のGPFの圧力損失は低いレベルに留まることが分かった。この結果から、GPFの壁厚は10mil以下であることが好ましいことが確認された。
図15A及び図15Bは、実施例1及び実施例19のGPFにおける空燃比とそれぞれCO、HC、NOxの浄化率との関係を示す図である。図中、縦軸はそれぞれCO、HC、NOxの浄化率を示し、横軸は燃料と空気の比である空燃比を示す。なお、ストイキとは空燃比が約14.5である領域を示す。
実施例1のGPFに担持されるTWCには、Rh及びPdが含まれ、実施例19のGPFに担持されるTWCにはRhのみが含まれる。評価条件は以下の条件に従って行った。
図15A及び図15Bの評価結果から、Rh及びPdが含まれる実施例1のGPFと比較し、Rhのみが含まれる実施例19のGPFは、空燃比がストイキより高い領域でHC浄化率が低いことが分かった。この結果から、GPFに担持されるTWCとしてRhを単独で用いた実施例19と比較し、RhとPdを併用した実施例1の方が高い三元浄化性能を有することが確認された。
[HC、CO、NOx浄化性能評価条件]
実機エンジンを用いて、触媒入口温度500℃で空燃比を13.5から15.5まで20分間で連続的に変化させ、HC、CO、NOxの浄化率を測定した。
図15C及び図15Dは、実施例20及び実施例21のGPFにおける空燃比とそれぞれCO、HC、NOxの浄化率との関係を示す図である。
実施例20のGPFに担持されるTWCには、Rh及びPdと共に固体Ba(硫酸Ba)が含まれ、実施例21のGPFに担持されるTWCには、Rh及びPdと共に液体Ba(酢酸Ba及び硝酸Ba)が含まれる。また、前述の実施例1(図15A)のGPFに担持されるTWCにはRh及びPdが含まれるが、Baは含まれない。これを比較用として参照する。評価条件は上記HC、CO、NOx浄化性能評価条件と同様の条件で評価を行った。
図15A、図15C及び図15Dの評価結果から、固体Baや液体Baを含む実施例20及び21のGPFは、Baを含まない実施例1のGPFと比較し、空燃比がストイキより低い領域でNOx浄化率が低いことが分かった。この結果から、GPFに担持されるTWCにBaが含まれない実施例1は、Baが含まれる実施例20及び実施例21と比較して高い排気浄化性能を有することが確認された。
図16Aから図16Cは、それぞれ実施例1、実施例14、実施例15、実施例16及び比較例4のGPFに含まれるNd及びPrの合計含有量と、NOx_T50、CO_T50、HC_T50との関係を示す図である。NOx_T50、CO_T50、HC_T50とは、それぞれCO、HC、NOxの50%が浄化される温度を示し、図中の縦軸に示される。横軸は複合酸化物中におけるNdとPrの合計含有量(質量%)を示す。Nd及びPrの合計含有量は比較例4、実施例14、実施例15、実施例1、実施例16の順にそれぞれ0、6、12、14、16質量%である。
図16Aから図16Cに示す通り、実施例1、実施例14、実施例15、実施例16のGPFは比較例4に対し、低い温度でNOx、CO、HCが浄化されていることが分かった。従って本実施形態においてGPFに三元浄化機能を発揮させるには、NdとPrの合計含有量が10質量%~20質量%であることが好ましく、12質量%~16質量%であれば更に好ましいことが確認された。
2…排気浄化装置
3…排気管(排気通路)
32…GPF(排気浄化フィルタ)
32a…流入側端面
32b…流出側端面
33,33a,33b…TWC(三元触媒)
320…フィルタ基材
323…隔壁
321…流入側セル(セル)
322…流出側セル(セル)
324…流入側目封じ部
325…流出側目封じ部
Claims (5)
- 内燃機関の排気通路に設けられ、前記内燃機関の排気中の粒子状物質を捕捉して浄化する排気浄化フィルタであって、
排気の流入側端面から流出側端面まで延びる複数のセルが多孔質の隔壁により区画形成され且つこれらセルの流入側端面における開口と流出側端面における開口とが互い違いに目封じされたフィルタ基材と、
前記隔壁に担持された三元触媒と、を備え、
前記三元触媒は、少なくともRhを含む触媒金属と、酸素吸蔵放出能を有し且つ結晶構造中にNd及びPrを有する複合酸化物と、を含んで構成される排気浄化フィルタ。 - 前記隔壁は、平均細孔径が15μm以上であり、
前記三元触媒は、粒度分布における小粒径側からの累積分布が90%となるときの粒子径D90が5μm以下である請求項1に記載の排気浄化フィルタ。 - 前記三元触媒は、前記触媒金属としてRh及びPdを含み且つこれらRh及びPdが混合された状態で前記隔壁内の細孔内表面に担持される請求項1又は2に記載の排気浄化フィルタ。
- 前記三元触媒は、Baを含まずに構成される請求項1から3いずれかに記載の排気浄化フィルタ。
- 前記複合酸化物中に含まれるNd及びPrの合計含有量は、10質量%以上である請求項1から4いずれかに記載の排気浄化フィルタ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017541198A JPWO2017051459A1 (ja) | 2015-09-24 | 2015-09-24 | 排気浄化フィルタ |
DE112015006976.3T DE112015006976T5 (de) | 2015-09-24 | 2015-09-24 | Abgasreinigungsfilter |
CN201580083322.XA CN108138617B (zh) | 2015-09-24 | 2015-09-24 | 废气净化过滤器 |
US15/762,682 US10677124B2 (en) | 2015-09-24 | 2015-09-24 | Exhaust purification filter |
PCT/JP2015/076948 WO2017051459A1 (ja) | 2015-09-24 | 2015-09-24 | 排気浄化フィルタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/076948 WO2017051459A1 (ja) | 2015-09-24 | 2015-09-24 | 排気浄化フィルタ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017051459A1 true WO2017051459A1 (ja) | 2017-03-30 |
Family
ID=58386383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076948 WO2017051459A1 (ja) | 2015-09-24 | 2015-09-24 | 排気浄化フィルタ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10677124B2 (ja) |
JP (1) | JPWO2017051459A1 (ja) |
CN (1) | CN108138617B (ja) |
DE (1) | DE112015006976T5 (ja) |
WO (1) | WO2017051459A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109973176A (zh) * | 2017-12-28 | 2019-07-05 | 本田技研工业株式会社 | 排气净化过滤器 |
JP2019529073A (ja) * | 2016-08-05 | 2019-10-17 | ビーエーエスエフ コーポレーション | ガソリンエンジン排出処理システムのための四元変換触媒 |
JP2019529074A (ja) * | 2016-08-05 | 2019-10-17 | ビーエーエスエフ コーポレーション | ガソリンエンジン排出処理システムのための、単金属ロジウム含有四元変換触媒 |
WO2020071065A1 (ja) * | 2018-10-04 | 2020-04-09 | 三菱自動車工業株式会社 | 排ガス浄化触媒 |
JP2020534995A (ja) * | 2017-09-27 | 2020-12-03 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | 排気ガス浄化用途のための低ウォッシュコート充填量単層触媒 |
JP2021512791A (ja) * | 2018-02-05 | 2021-05-20 | ビーエーエスエフ コーポレーション | 改善されたフィルタ特性を有する四元変換触媒 |
JP2021512790A (ja) * | 2018-02-05 | 2021-05-20 | ビーエーエスエフ コーポレーション | 改善されたフィルタ特性を有する四元変換触媒 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7211709B2 (ja) * | 2018-02-27 | 2023-01-24 | エヌ・イーケムキャット株式会社 | 排ガス浄化用三元触媒及びその製造方法、並びに一体構造型排ガス浄化用触媒 |
JP7266603B2 (ja) * | 2018-08-02 | 2023-04-28 | 日本碍子株式会社 | 多孔質複合体 |
EP3639908B1 (en) * | 2018-10-18 | 2024-04-17 | Umicore Ag & Co. Kg | Exhaust gas purification system for a gasoline engine |
WO2020142472A1 (en) | 2019-01-04 | 2020-07-09 | Pacific Industrial Development Corporation | Nanocrystal-sized cerium-zirconium oxide material and method of making the same |
WO2020202253A1 (ja) | 2019-03-29 | 2020-10-08 | 本田技研工業株式会社 | 排気浄化フィルタ |
JP7230671B2 (ja) * | 2019-04-26 | 2023-03-01 | 株式会社デンソー | 排ガス浄化フィルタ |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014136174A (ja) * | 2013-01-15 | 2014-07-28 | Mazda Motor Corp | 触媒付パティキュレートフィルタ及びその製造方法 |
JP2015521245A (ja) * | 2012-04-24 | 2015-07-27 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company | 三元触媒を備えるフィルタ基体 |
JP2015157257A (ja) * | 2014-02-25 | 2015-09-03 | 日本碍子株式会社 | ハニカム構造体 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5898014A (en) * | 1996-09-27 | 1999-04-27 | Engelhard Corporation | Catalyst composition containing oxygen storage components |
JP2006233935A (ja) | 2005-02-28 | 2006-09-07 | Hitachi Metals Ltd | 排気ガス浄化装置 |
JP2006297259A (ja) | 2005-04-19 | 2006-11-02 | Mazda Motor Corp | 排気ガス浄化用触媒 |
JP5157068B2 (ja) * | 2006-01-10 | 2013-03-06 | トヨタ自動車株式会社 | 硫化水素生成抑制材及び排ガス浄化用触媒 |
JP2007192055A (ja) | 2006-01-17 | 2007-08-02 | Toyota Motor Corp | 排ガス浄化装置と排ガス浄化方法 |
JP2008121602A (ja) | 2006-11-14 | 2008-05-29 | Isuzu Motors Ltd | フィルタ及び排気ガス浄化システム |
JP4789016B2 (ja) | 2007-09-10 | 2011-10-05 | トヨタ自動車株式会社 | NOx触媒の劣化診断装置 |
US20090324468A1 (en) | 2008-06-27 | 2009-12-31 | Golden Stephen J | Zero platinum group metal catalysts |
JP4893711B2 (ja) | 2008-08-20 | 2012-03-07 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
GB0903262D0 (en) * | 2009-02-26 | 2009-04-08 | Johnson Matthey Plc | Filter |
JP5519181B2 (ja) | 2009-05-13 | 2014-06-11 | 本田技研工業株式会社 | 内燃機関の排気浄化装置 |
US20100300078A1 (en) | 2009-05-27 | 2010-12-02 | Gm Global Technology Operations, Inc. | Exhaust After Treatment System |
US8758695B2 (en) | 2009-08-05 | 2014-06-24 | Basf Se | Treatment system for gasoline engine exhaust gas |
US8745971B2 (en) | 2010-03-11 | 2014-06-10 | Cummins Inc. | System, method, and apparatus for controlling an aftertreatment system having a particulate filter and a rich NOx conversion device |
US8017097B1 (en) | 2010-03-26 | 2011-09-13 | Umicore Ag & Co. Kg | ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts |
US8815189B2 (en) * | 2010-04-19 | 2014-08-26 | Basf Corporation | Gasoline engine emissions treatment systems having particulate filters |
JP5891658B2 (ja) | 2011-08-31 | 2016-03-23 | いすゞ自動車株式会社 | 内燃機関の燃料噴射装置 |
GB2520190A (en) | 2011-09-29 | 2015-05-13 | Jaguar Land Rover Ltd | Engine exhaust gas after treatment using diesel particulate filters |
JP2014000516A (ja) | 2012-06-18 | 2014-01-09 | Cataler Corp | 触媒担持用担体、排気ガス浄化用担持触媒、及び排気ガス浄化用フィルター |
EP2698188B1 (en) | 2012-08-17 | 2018-01-31 | Pall Corporation | Catalytic filter module and catalytic filter system comprising same |
JP5974850B2 (ja) | 2012-11-20 | 2016-08-23 | マツダ株式会社 | 触媒付パティキュレートフィルタ |
JP2014148924A (ja) | 2013-01-31 | 2014-08-21 | Ngk Insulators Ltd | 排ガス浄化装置 |
JP2015157236A (ja) | 2014-02-21 | 2015-09-03 | マツダ株式会社 | エンジン排ガス浄化用触媒材及びパティキュレートフィルタ |
-
2015
- 2015-09-24 JP JP2017541198A patent/JPWO2017051459A1/ja active Pending
- 2015-09-24 DE DE112015006976.3T patent/DE112015006976T5/de active Pending
- 2015-09-24 US US15/762,682 patent/US10677124B2/en active Active
- 2015-09-24 CN CN201580083322.XA patent/CN108138617B/zh active Active
- 2015-09-24 WO PCT/JP2015/076948 patent/WO2017051459A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015521245A (ja) * | 2012-04-24 | 2015-07-27 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company | 三元触媒を備えるフィルタ基体 |
JP2014136174A (ja) * | 2013-01-15 | 2014-07-28 | Mazda Motor Corp | 触媒付パティキュレートフィルタ及びその製造方法 |
JP2015157257A (ja) * | 2014-02-25 | 2015-09-03 | 日本碍子株式会社 | ハニカム構造体 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11181023B2 (en) | 2016-08-05 | 2021-11-23 | Basf Corporation | Four way conversion catalysts for gasoline engine emissions treatment systems |
JP2019529073A (ja) * | 2016-08-05 | 2019-10-17 | ビーエーエスエフ コーポレーション | ガソリンエンジン排出処理システムのための四元変換触媒 |
JP2019529074A (ja) * | 2016-08-05 | 2019-10-17 | ビーエーエスエフ コーポレーション | ガソリンエンジン排出処理システムのための、単金属ロジウム含有四元変換触媒 |
US11865497B2 (en) | 2016-08-05 | 2024-01-09 | Basf Corporation | Monometallic rhodium-containing four-way conversion catalysts for gasoline engine emissions treatment systems |
JP7305536B2 (ja) | 2016-08-05 | 2023-07-10 | ビーエーエスエフ コーポレーション | ガソリンエンジン排出処理システムのための、単金属ロジウム含有四元変換触媒 |
JP2023002499A (ja) * | 2016-08-05 | 2023-01-10 | ビーエーエスエフ コーポレーション | ガソリンエンジン排出処理システムのための、単金属ロジウム含有四元変換触媒 |
JP7048577B2 (ja) | 2016-08-05 | 2022-04-05 | ビーエーエスエフ コーポレーション | ガソリンエンジン排出処理システムのための四元変換触媒 |
JP2020534995A (ja) * | 2017-09-27 | 2020-12-03 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | 排気ガス浄化用途のための低ウォッシュコート充填量単層触媒 |
JP7177143B2 (ja) | 2017-09-27 | 2022-11-22 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | 排気ガス浄化用途のための低ウォッシュコート充填量単層触媒 |
CN109973176A (zh) * | 2017-12-28 | 2019-07-05 | 本田技研工业株式会社 | 排气净化过滤器 |
JP2021512790A (ja) * | 2018-02-05 | 2021-05-20 | ビーエーエスエフ コーポレーション | 改善されたフィルタ特性を有する四元変換触媒 |
JP2021512791A (ja) * | 2018-02-05 | 2021-05-20 | ビーエーエスエフ コーポレーション | 改善されたフィルタ特性を有する四元変換触媒 |
JP7387643B2 (ja) | 2018-02-05 | 2023-11-28 | ビーエーエスエフ コーポレーション | 改善されたフィルタ特性を有する四元変換触媒 |
JP7391045B2 (ja) | 2018-02-05 | 2023-12-04 | ビーエーエスエフ コーポレーション | 改善されたフィルタ特性を有する四元変換触媒 |
JPWO2020071065A1 (ja) * | 2018-10-04 | 2021-09-02 | 三菱自動車工業株式会社 | 排ガス浄化触媒 |
JP7215487B2 (ja) | 2018-10-04 | 2023-01-31 | 三菱自動車工業株式会社 | 排ガス浄化触媒 |
WO2020071065A1 (ja) * | 2018-10-04 | 2020-04-09 | 三菱自動車工業株式会社 | 排ガス浄化触媒 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017051459A1 (ja) | 2018-08-30 |
US20180266289A1 (en) | 2018-09-20 |
DE112015006976T5 (de) | 2018-06-28 |
CN108138617A (zh) | 2018-06-08 |
US10677124B2 (en) | 2020-06-09 |
CN108138617B (zh) | 2020-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017051459A1 (ja) | 排気浄化フィルタ | |
US10201805B2 (en) | Exhaust gas purification apparatus | |
EP3207978B1 (en) | Exhaust gas purification device | |
JP5376261B2 (ja) | 排ガス浄化用触媒 | |
JP6458159B2 (ja) | 内燃機関の排気浄化システム | |
JP2021514837A (ja) | ガソリンエンジン排ガス後処理用触媒 | |
JP6570785B1 (ja) | 内燃機関の排気浄化システム | |
JP6538246B2 (ja) | 内燃機関の排気浄化システム | |
JP5954159B2 (ja) | 触媒付パティキュレートフィルタ | |
JP5991162B2 (ja) | 触媒付パティキュレートフィルタ | |
JP2013117190A (ja) | 触媒付きパティキュレートフィルタ | |
JP5974850B2 (ja) | 触媒付パティキュレートフィルタ | |
JP5834925B2 (ja) | 触媒付パティキュレートフィルタ | |
JP2010227799A (ja) | 排ガス浄化用触媒 | |
JP6627813B2 (ja) | 触媒付きパティキュレートフィルタの製造方法 | |
JP5954031B2 (ja) | 粒子状物質燃焼触媒 | |
JP5939140B2 (ja) | 触媒付パティキュレートフィルタ | |
JP6651344B2 (ja) | パティキュレートフィルタ | |
JP5834924B2 (ja) | 触媒付パティキュレートフィルタ | |
JP5949520B2 (ja) | 触媒付パティキュレートフィルタ | |
JP5942812B2 (ja) | 触媒付パティキュレートフィルタ | |
JP6191635B2 (ja) | 触媒付パティキュレートフィルタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15904716 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017541198 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15762682 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015006976 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15904716 Country of ref document: EP Kind code of ref document: A1 |