WO2017047621A1 - 冷凍機油、冷凍機用組成物及び圧縮型冷凍機 - Google Patents

冷凍機油、冷凍機用組成物及び圧縮型冷凍機 Download PDF

Info

Publication number
WO2017047621A1
WO2017047621A1 PCT/JP2016/077061 JP2016077061W WO2017047621A1 WO 2017047621 A1 WO2017047621 A1 WO 2017047621A1 JP 2016077061 W JP2016077061 W JP 2016077061W WO 2017047621 A1 WO2017047621 A1 WO 2017047621A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aliphatic
refrigerating machine
viscosity index
carbon atoms
Prior art date
Application number
PCT/JP2016/077061
Other languages
English (en)
French (fr)
Inventor
妙子 中野
岡本 真
忠 氣仙
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP16846492.3A priority Critical patent/EP3351611A1/en
Priority to US15/751,047 priority patent/US20180230397A1/en
Priority to CN201680052941.7A priority patent/CN107949627A/zh
Priority to KR1020187004601A priority patent/KR20180054571A/ko
Publication of WO2017047621A1 publication Critical patent/WO2017047621A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/10Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M105/14Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms polyhydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/18Ethers, e.g. epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/34Esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/36Esters of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • C10M145/26Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • C10M2207/0225Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/0406Ethers; Acetals; Ortho-esters; Ortho-carbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • C10M2209/043Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to a refrigerator oil, a composition for a refrigerator, and a compressor type refrigerator in which these are used.
  • refrigeration oil is used in compression refrigerators such as air conditioners, refrigerators, and car air conditioners, and compatibility with refrigerants is required in addition to lubricity.
  • oxygen-containing base oils such as polyvinyl ether (PVE), polyalkylene glycol (PAG), and polyol ester (POE) have been widely used for refrigerating machine oils (for example, patents). References 1 and 2).
  • refrigeration oil may mix
  • Patent Document 3 for the purpose of improving the lubricating performance of refrigerating machine oil, a polyether compound such as PAG having a kinematic viscosity higher than that of the base oil is blended with a base oil composed of mineral oil and / or synthetic oil. Is disclosed.
  • refrigerating machine oil is required to have a higher viscosity index.
  • a high volume resistivity is required from the viewpoint of preventing leakage.
  • PVE and POE which are base oils for refrigerating machine oil have a volume resistivity as high as about 10 12 ⁇ ⁇ m, but their viscosity index is generally 150 or less, which is not sufficient.
  • the PAG has a good viscosity index of 200 or more, but the volume resistivity is only about 10 8 ⁇ ⁇ m, which is insufficient. Therefore, it is difficult for the refrigerating machine oil disclosed in Patent Documents 1 and 2 to increase the volume resistivity while increasing the viscosity index.
  • Patent Document 3 it is expected that the viscosity index is improved to some extent by blending a PAG having a high kinematic viscosity.
  • the refrigerating machine oil disclosed in Patent Document 3 is merely formulated with PAG for the purpose of improving the lubricating performance of the refrigerating machine oil, and the blending amount is also small. It is difficult to make both the viscosity index and the volume resistivity sufficiently high.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigerating machine oil having a high viscosity index and volume resistivity.
  • the present inventors have found that by adding a viscosity index improver to an oxygen-containing base oil, a refrigerating machine oil having both increased viscosity index and volume resistivity can be obtained.
  • the present invention provides the following (1) to (4).
  • a refrigerating machine composition comprising the refrigerating machine oil described in (1) above and a refrigerant.
  • a compression-type refrigerator including any of the refrigerator oil described in (1) and the refrigerator composition described in (2).
  • a refrigerating machine oil for obtaining a refrigerating machine oil having a viscosity index (VI) of 200 or more and a volume resistivity of 1 ⁇ 10 9 ⁇ ⁇ m or more by blending at least a viscosity index improver with the oxygen-containing base oil. Manufacturing method.
  • the refrigerating machine oil includes an oxygen-containing base oil and a viscosity index improver, has a viscosity index (VI) of 200 or more, and a volume resistivity of 1 ⁇ 10 9 ⁇ ⁇ m or more. It is machine oil. Such a refrigerating machine oil has both a high viscosity index and a high volume resistivity, so that both energy saving and electrical insulation are good. On the other hand, when the viscosity index (VI) is less than 200, the viscosity of the refrigerating machine oil is easily changed with a temperature change.
  • the viscosity increases in a low temperature environment and power loss based on viscous resistance occurs, making it difficult to realize energy saving. Further, when the volume resistivity is less than 1 ⁇ 10 9 ⁇ ⁇ m, the electric insulation is lowered, and when a motor or the like is built in the refrigerator, electric leakage is likely to occur.
  • the viscosity index (VI) is preferably 240 or more and the volume resistivity is preferably 1 ⁇ 10 10 ⁇ ⁇ m or more. More preferably, (VI) is 270 or more and the volume resistivity is 2 ⁇ 10 10 ⁇ ⁇ m or more.
  • the upper limit values of the viscosity index (VI) and the volume resistivity are not particularly limited, but usually the viscosity index is 450 or less and the volume resistivity is 1 ⁇ 10 14 ⁇ ⁇ m or less.
  • the viscosity index is 430 or less
  • the volume resistivity is 1 ⁇ 10 13 ⁇ ⁇ m or less
  • the viscosity index is 400 or less
  • the volume resistance is more preferably 1 ⁇ 10 12 ⁇ ⁇ m or less.
  • the kinematic viscosity at 100 ° C. of the refrigerating machine oil is preferably 2 mm 2 / s or more and 100 mm 2 / s or less.
  • the 100 ° C. kinematic viscosity is 2 mm 2 / s or more, an oil film is formed even in a high temperature environment, and it becomes easy to prevent poor lubrication.
  • the 100 ° C. kinematic viscosity is 100 mm 2 / s or less, the viscosity resistance of the refrigerating machine oil is prevented from increasing, and the power loss is reduced. From the viewpoint of lubricity, is 100 ° C.
  • kinematic viscosity is more preferably 2 mm 2 / s or more 50 mm 2 / s or less, more preferably 5 mm 2 / s or more 50 mm 2 / s or less, 5 mm 2 / s or more 20 mm 2 / s or less Even more preferred.
  • An oxygen-containing base oil has an oxygen atom in its molecular structure. Since the oxygen-containing base oil has oxygen atoms, it is easy to ensure compatibility between the refrigerating machine oil and the refrigerant while improving lubricity.
  • the oxygen-containing base oil preferably has an ether group, an ester group, or both from the viewpoints of viscosity temperature characteristics and lubricity.
  • Some oxygen-containing base oils have hydroxyl groups, carboxy groups, aldehyde groups, acetal groups, epoxy groups, etc.
  • the oxygen-containing base oil preferably has a branch in any of the hydrocarbon portions in order to increase the volume resistivity.
  • the kinematic viscosity at 100 ° C. of the oxygen-containing base oil is preferably 1 mm 2 / s to 8 mm 2 / s, more preferably 1.3 mm 2 / s to 6 mm 2 / s, and even more preferably 1.6 mm 2 / s. This is 5 mm 2 / s or less.
  • the viscosity index improver prevents the kinematic viscosity of the refrigerating machine oil from increasing more than necessary.
  • the volume resistivity of the oxygen-containing base oil is preferably 1 ⁇ 10 9 ⁇ ⁇ m or more.
  • the volume resistivity of the oxygen-containing base oil is 1 ⁇ 10 so that the volume resistivity of the refrigerating machine oil can be secured in the above range. It is more preferably 10 ⁇ ⁇ m or more, and further preferably 1 ⁇ 10 11 ⁇ ⁇ m or more.
  • Examples of the oxygen-containing base oil having an ester group include at least one ester compound selected from an aliphatic monoester, an aliphatic diester, an aliphatic triester, and an aliphatic polyol ester.
  • the polyol ester refers to an ester of a tetravalent or higher alcohol.
  • the aliphatic monoester is an ester of a monovalent alkanol and a saturated aliphatic monocarboxylic acid, and is specifically represented by the following formula (1).
  • R 1 and R 2 are linear or branched alkyl groups having 2 to 24 carbon atoms, and R 1 and R 2 may be the same or different from each other.
  • the carbon number of R 1 is preferably 3 to 23, and more preferably 5 to 23.
  • the carbon number of R 2 is preferably 3 to 24, more preferably 4 to 24.
  • the total number of carbon atoms in the aliphatic monoester is preferably 20 to 40, more preferably 22 to 36, and even more preferably 24 to 32. By making the total carbon number within these ranges, various performances of the refrigerating machine oil are easily improved. Further, the molecular weight does not become too large, and the viscosity index is easily improved by the viscosity index improver. Furthermore, at least one of R 1 and R 2 preferably has a branch in order to improve the volume resistivity.
  • aliphatic monoester examples include n-hexanoic acid-2-octyl-1-dodecanoate, n-hexanoic acid-2-decyl-1-tetradecanoate, n-heptanoic acid isostearate, n-heptane Acid-2-octyl-1-dodecanoate, n-heptanoic acid-2-decyl-1-tetradecanoate, n-octanoic acid isostearate, n-octanoic acid-2-octyl-1-dodecanoate, n-nonane Acid isostearate, n-nonanoic acid-2-octyl-1-dodecanoate, n-decanoic acid-2-hexyl-1-decanoate, n-decanoic acid isostearate, n-decanoic acid-2-octyl-1- Dode,
  • Examples of the aliphatic diester include a diol ester that is an ester of a divalent alkanol and a saturated aliphatic monocarboxylic acid, or a dibasic acid ester that is an ester of a monovalent alkanol and a saturated aliphatic dicarboxylic acid.
  • Examples of the diol ester include those represented by the following formula (2-1).
  • R 3a and R 5a are linear or branched alkyl groups having 2 to 20 carbon atoms, and R 3a and R 5a may be the same or different from each other.
  • R 4a is a divalent saturated aliphatic hydrocarbon group having 2 to 20 carbon atoms.
  • R 3a and R 5a preferably have 4 to 14 carbon atoms, and R 4a preferably has 3 to 8 carbon atoms, and R 3a and R 5a have 6 to 6 carbon atoms.
  • 9 and R 4a preferably has 4 to 6 carbon atoms.
  • At least one of R 3a , R 4a and R 5a is preferably branched.
  • Examples of the dibasic acid ester include those represented by the following formula (2-2).
  • R 3b and R 5b are linear or branched alkyl groups having 2 to 20 carbon atoms, and R 3b and R 5b may be the same as or different from each other.
  • R 4b is a linear or branched divalent saturated aliphatic hydrocarbon group having 2 to 20 carbon atoms.
  • R 3b and R 5b preferably have 6 to 15 carbon atoms, and R 4b preferably has 3 to 10 carbon atoms, and R 3b and R 5b have 8 to 8 carbon atoms. More preferably, it is 13 and R 4b has 4 to 8 carbon atoms.
  • At least one of R 3b , R 4b and R 5b is preferably branched.
  • aliphatic diester examples include 2,2-dimethyl-1,3-propanediol, 2-methyl-1,3-propanediol, 2-methyl-1,4-butanediol, 1,4- Preferred examples include esters of pentanediol, 2-methyl-1,5-pentanediol, and 3-methyl-1,5-pentanediol and saturated aliphatic monocarboxylic acids having 7 to 10 carbon atoms.
  • an ester of any one of adipic acid, azelaic acid, and sebacic acid and a monovalent alkanol having 8 to 13 carbon atoms can be mentioned.
  • Preferred specific examples include di (n-octyl) adipate and dicarboxylate adipic acid.
  • Examples of the aliphatic triester include a triol ester which is an ester of a trivalent polyol and a saturated aliphatic monocarboxylic acid.
  • Examples of the triol ester include compounds represented by the following formula (3).
  • R 6 is a linear or branched trivalent saturated aliphatic hydrocarbon group having 2 to 20 carbon atoms.
  • R 7 , R 8 and R 9 are linear or branched alkyl groups having 2 to 20 carbon atoms, and R 7 , R 8 and R 9 may be the same as or different from each other.
  • R 6 preferably has 4 to 8 carbon atoms
  • R 7 , R 8 and R 9 preferably have 2 to 12 carbon atoms
  • R 6 has 5 to 7 carbon atoms.
  • R 7 , R 8 and R 9 preferably have 3 to 8 carbon atoms.
  • R 6 is more preferably a group obtained by removing a hydroxyl group from a hindered alcohol, and a hydroxyl group is removed from trimethylolpropane. More preferably, it is a group.
  • Hindered alcohol refers to an alcohol having a quaternary carbon atom bonded to four carbon atoms.
  • Preferable examples of the aliphatic triester include trimethylolpropane and an ester of a saturated aliphatic monocarboxylic acid having 4 to 9 carbon atoms, and specific examples include trimethylolpropane tri (n-butanoate), trimethylolpropane.
  • Triisobutanoate trimethylolpropane tri (n-pentanoate), trimethylolpropane triisopentanoate, trimethylolpropane tri (n-hexanoate), trimethylolpropane tri (2-ethylhexanoate), trimethylol Propane tri (n-heptanoate), trimethylolpropane triisoheptanoate, trimethylolpropane tri (n-octanoate), trimethylolpropane tri (2,2-dimethylhexanoate), trimethylolpropane tri n- nonanoate), trimethylolpropane tri (3,5,5-trimethyl hexanoate), and the like.
  • polyol ester examples include an ester of a tetravalent or higher alcohol and a saturated aliphatic monocarboxylic acid, and an ester of a tetravalent to hexavalent alcohol and a saturated aliphatic monocarboxylic acid is preferable.
  • equation (4) or (5) the compound shown by the following formula
  • R 10 is a linear or branched tetravalent saturated aliphatic hydrocarbon group having 2 to 20 carbon atoms
  • R 11 to R 14 are linear or branched alkyl groups having 2 to 20 carbon atoms.
  • R 11 , R 12 , R 13 and R 14 may be the same or different from each other.
  • R 10 preferably has 4 to 8 carbon atoms and R 11 to R 14 preferably have 2 to 10 carbon atoms, R 10 has 4 to 6 carbon atoms, and More preferably, R 11 to R 14 have 3 to 8 carbon atoms.
  • R 10 is more preferably a group obtained by removing a hydroxyl group from a hindered alcohol, and a hydroxyl group is removed from pentaerythritol. More preferred are groups.
  • R 18 and R 19 are each independently a branched or linear tetravalent saturated aliphatic hydrocarbon group having 2 to 20 carbon atoms. R 18 and R 19 may be the same as or different from each other.
  • R 15 to R 17 and R 20 to R 22 are linear or branched alkyl groups having 2 to 20 carbon atoms, and R 15 , R 16 , R 17 , R 20 , R 21 , and R 22 are the same as each other. Or different.
  • the carbon number of R 18, R 19 is 4-8, and R 15 ⁇ R 17, and the number of carbon atoms of R 20 ⁇ R 22 is 2 ⁇ 10, R 18, R More preferably, 19 has 4 to 6 carbon atoms, and R 15 to R 17 and R 20 to R 22 have 3 to 8 carbon atoms.
  • R 18 and R 19 have a branch.
  • preferred specific examples of R 18 and R 19 are preferably groups obtained by removing a hydroxyl group from hindered alcohol, and more preferably groups obtained by removing a hydroxyl group from pentaerythritol.
  • polyol ester examples include esters of pentaerythritol or dipentaerythritol and a saturated aliphatic monocarboxylic acid having 4 to 9 carbon atoms.
  • Preferred specific examples include pentaerythritol tetrabutanoate, pentaerythritol tetraisobutarate.
  • Examples of the oxygen-containing base oil having an ether group include ether compounds selected from aliphatic monoethers, aliphatic diethers, aliphatic triethers, aliphatic tetraethers, and polyvinyl ether (PVE).
  • Aliphatic monoethers include alkyl ethers, and specifically include compounds represented by the following formula (6).
  • R 23 —O—R 24 (6) In the formula (6), R 23 and R 24 are linear or branched alkyl groups having 2 to 24 carbon atoms, and R 23 and R 24 may be the same as or different from each other.
  • the carbon number of R 23 and R 24 is preferably 6 to 24, more preferably 8 to 12, and still more preferably 8 to 10.
  • R 23 and R 24 are preferably branched alkyl groups.
  • Specific aliphatic monoethers include n-hexyl ether, n-heptyl ether, n-octyl ether, bis (2-ethylhexyl) ether, n-nonyl ether, isononyl ether, bis (3, 5, 5-trimethylhexyl) ether, n-decylether, bis (2-butyloctyl) ether, bis (2-hexyldecyl) ether, bis (2-heptylundecyl) ether, bis (2-octyldodecyl) ether, Examples thereof include bis (2-nonyltridecyl) ether and bis (2-decyltetradecyl) ether. Among these, bis (2-ethylhexyl) ether and bis (3,5,5-trimethylhexyl) ether are preferred. More preferred.
  • Examples of the aliphatic diether include dialkyl ethers of divalent alcohols, and specific examples include compounds represented by the following formula (7).
  • R 25 —O—R 26 —O—R 27 (7) R 25 and R 27 are linear or branched alkyl groups having 2 to 20 carbon atoms, and R 25 and R 27 may be the same or different from each other.
  • R 26 is a linear or branched divalent saturated aliphatic hydrocarbon group having 2 to 20 carbon atoms.
  • R 25 and R 27 have 4 to 18 carbon atoms
  • R 26 preferably has 2 to 10 carbon atoms
  • R 25 and R 27 have 7 to 13 carbon atoms.
  • R 26 preferably has 4 to 6 carbon atoms.
  • At least one of R 25 ⁇ R 27 preferably has a branching.
  • aliphatic diethers examples include 2,2-dimethyl-1,3-propanediol, 2-methyl-1,3-propanediol, 2-methyl-1,4-butanediol, 1,4-pentanediol, Examples include dialkyl ethers of dihydric alcohols selected from 2-methyl-1,5-pentanediol and 1,6-hexanediol, and preferred specific examples include 2,2-dimethyl-1,3-propane.
  • Diol di (n-heptyl), 2,2-dimethyl-1,3-propanediol di (n-octyl), 2,2-dimethyl-1,3-propanediol di (n-nonyl), 2,2- Dimethyl-1,3-propanediol di (n-decyl), 2-methyl-1,3-propanediol di (n-heptyl), 2-methyl-1,3-propanediol di (n- Octyl), 2-methyl-1,3-propanediol di (n-nonyl), 2-methyl-1,3-propanediol di (n-decyl), 2-methyl-1,4-butanediol di (n -Heptyl), 2-methyl-1,4-butanediol di (n-octyl), 2-methyl-1,4-butanediol di (n-nonyl), 2-methyl-1,4-butanedio
  • Examples of the aliphatic triether include trialkyl ethers of trivalent alcohols, and specific examples include compounds represented by the following formula (8).
  • R 28 represents a linear or branched trivalent saturated hydrocarbon group having 2 to 20 carbon atoms.
  • R 29 to R 31 are linear or branched alkyl groups having 2 to 20 carbon atoms, and R 29 , R 30 and R 31 may be the same as or different from each other.
  • R 28 has 4 to 8 carbon atoms
  • R 29 to R 31 preferably have 3 to 10 carbon atoms
  • R 28 has 5 to 7 carbon atoms
  • R 29 to R 31 preferably have 4 to 9 carbon atoms
  • R 28 is preferably branched, and R 28 is more preferably a group obtained by removing a hydroxyl group from a hindered alcohol, and a hydroxyl group is removed from trimethylolpropane. More preferably,
  • Examples of aliphatic triethers include trialkyl ethers of trimethylolpropane, and preferred specific examples include trimethylolpropane tri (n-butyl), trimethylolpropane triisobutyl, trimethylolpropane tri (n-pentane), Trimethylolpropane triisopentane, trimethylolpropane tri (n-hexane), trimethylolpropane tri (n-heptane), trimethylolpropane tri (isoheptane), trimethylolpropane tri (n-octane), trimethylolpropane tri (2 -Ethylhexane), trimethylolpropane tri (2,2-dimethylhexane), trimethylolpropane tri (n-nonane), trimethylolpropane tri (3,5,5-trimethylhexane) It is. Among these, trimethylolpropane tri (n-butyl) is more prefer
  • Examples of the aliphatic tetraether include tetraalkyl ethers of tetravalent alcohols.
  • R 32 is a linear or branched tetravalent saturated aliphatic hydrocarbon group having 2 to 20 carbon atoms.
  • R 33 to R 36 are linear or branched alkyl groups having 2 to 20 carbon atoms, and R 33 , R 34 , R 35 and R 36 may be the same as or different from each other.
  • R 32 preferably has 4 to 8 carbon atoms and R 33 to R 36 preferably have 2 to 10 carbon atoms, and R 32 has 4 to 6 carbon atoms.
  • R 33 to R 36 preferably have 4 to 9 carbon atoms, more preferably R 33 to R 36 have 4 to 6 carbon atoms. By making the number of carbons within these ranges, the molecular weight can be made relatively small, so that the viscosity index improving effect by the viscosity index improver is easily obtained. Furthermore, it is easy to improve various performances such as lubrication performance. Furthermore, from the viewpoint of improving volume resistivity, it is preferable that at least R 32 has a branch, and R 32 is more preferably a group obtained by removing a hydroxyl group from hindered alcohol, and a group obtained by removing a hydroxyl group from pentaerythritol. Is more preferable.
  • Preferred aliphatic tetraethers include tetraalkyl ethers of pentaerythritol, and specific compounds include pentaerythritol tetra (n-butane), pentaerythritol tetraisobutane, pentaerythritol tetra (n-pentane), pentaerythritol.
  • Tetraisopentane pentaerythritol tetra (n-hexane), pentaerythritol tetra (n-heptane), pentaerythritol tetraisoheptane, pentaerythritol tetra (n-octane), pentaerythritol tetra (2 ethylhexane), pentaerythritol tetra (2 , 2-dimethylhexane), pentaerythritol tetra (n-nonane), pentaerythritol tetra (3,5,5-trimethylhexane), etc. Gerare, among them pentaerythritol tetra (n- butane) is more preferable.
  • the total number of carbon atoms each of the aliphatic monoether, aliphatic diether, aliphatic triether, and aliphatic tetraether is preferably 12 to 48.
  • the total number of carbon atoms falls within the above range, various performances as refrigerating machine oil are easily exhibited. Moreover, it becomes comparatively low molecule by setting it as the said upper limit or less, and it becomes easy to improve the viscosity index of refrigerating machine oil by using together with a viscosity index improver.
  • the total number of carbon atoms of each ether compound is more preferably 14 to 32, further preferably 16 to 24, and particularly preferably 18 to 21.
  • Polyvinyl ether includes a structural unit derived from vinyl ether, and preferably includes a structural unit derived from vinyl alkyl ether.
  • the alkyl group in the vinyl alkyl ether is an alkyl group having 1 to 20 carbon atoms, and more specifically, is the same as R 38 described later.
  • polyvinyl ether examples include compounds represented by the following formula (10).
  • n represents a repeating unit, and the average value thereof is 2 to 20.
  • R 37 is a hydrogen atom or a linear or branched alkyl group having 1 to 20 carbon atoms
  • R 38 is a linear or branched alkyl group having 1 to 20 carbon atoms.
  • R 37 and R 38 may be the same as or different from each other.
  • R 37 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the carbon number of R 38 is preferably 1 to 10, more preferably 2 to 6, from the viewpoint of lubricity and compatibility with the refrigerant. Moreover, the lower the molecular weight, the lower the viscosity of the polyvinyl ether, and the viscosity index is easily improved by the viscosity index improver described later. Therefore, the average value of n is preferably 2 to 10, and more preferably 2 to 5.
  • Suitable alkyl groups for R 37 and R 38 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, linear or branched Examples thereof include a pentyl group, a linear or branched hexyl group, a linear or branched heptyl group, a linear or branched octyl group, a linear or branched nonyl group, and each linear or branched decyl group.
  • the polyvinyl ether used as the base oil has a weight average molecular weight (Mw) of less than 5000, preferably 200 or more and 3000 or less, more preferably 250 or more and 2000 or less.
  • ester compounds and ether compounds are preferred from the viewpoints of compatibility with refrigerants and hydrolysis stability. Further, from the viewpoint of further improving the viscosity index by using in combination with the viscosity index improver and also improving the volume resistivity, aliphatic monoethers, aliphatic diethers, aliphatic triethers, and aliphatic tetraethers are more preferable. Of these, aliphatic monoethers are more preferred.
  • the oxygen-containing base oil is a main component in the refrigerator oil. Specifically, the oxygen-containing base oil is usually 65% by mass or more and 97% by mass or less, preferably 70% by mass or more and 92% by mass or less, more preferably 75% by mass or more and 89% by mass with respect to the total amount of the refrigerating machine oil. % Or less.
  • the refrigerating machine oil may include a lubricating base oil selected from mineral oil and synthetic oils other than the oxygen-containing synthetic base oil as long as the effects of the present invention are not impaired.
  • the sum total of synthetic oils other than mineral oil and the said oxygen containing synthetic base oil is 10 mass% or less normally with respect to refrigerating machine oil whole quantity, Preferably it is 5 mass% or less, More preferably, it is 3 mass% or less.
  • mineral oils include paraffinic mineral oils, naphthenic mineral oils, and intermediate group mineral oils.
  • Synthetic oils include, for example, poly- ⁇ -olefins, ⁇ -olefin copolymers, polybutenes, alkylbenzenes, and GTL by-product waxes. Examples thereof include isomerized oil.
  • the viscosity index improver is an additive that improves the viscosity index of the oxygen-containing base oil.
  • the viscosity index improver is at least one high molecular weight material selected from polyalkylene glycol (PAG), polyvinyl ether (PVE), and polymethacrylate (PMA).
  • PAG polyalkylene glycol
  • PVE polyvinyl ether
  • PMA polymethacrylate
  • these viscosity index improvers are blended in the oxygen-containing base oil, whereby the volume resistivity is easily maintained while the viscosity index is improved.
  • the weight average molecular weight of the high molecular weight material used as the viscosity index improver is 5,000 or more and 10,000,000 or less.
  • the weight average molecular weight of the viscosity index improver By setting the weight average molecular weight of the viscosity index improver to 5,000 or more, a sufficient viscosity index improvement effect can be obtained with an appropriate addition amount, and a decrease in volume resistivity due to the addition of the viscosity index improver is also suppressed.
  • the weight average molecular weight is preferably 5,000 or more and 5,000,000 or less, more preferably 7,000 or more and 1,000,000 or less, and 10,000 or more and 600. Is more preferable.
  • Polyalkylene glycol (PAG) examples of the polyalkylene glycol used as a viscosity index improver include a polymer obtained by polymerizing or copolymerizing alkylene oxide.
  • Specific examples of the polyalkylene glycol (PAG) include a compound represented by the following formula (11).
  • R 41 [-(OR 42 ) v -OR 43 ] w (11)
  • R 41 is a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, an acyl group having 2 to 10 carbon atoms, a hydrocarbon group having 1 to 10 carbon atoms having 2 to 6 bonding parts, or An oxygen-containing hydrocarbon group having 1 to 10 carbon atoms and having 2 to 6 bonds.
  • R 42 is an alkylene group having 2 to 4 carbon atoms.
  • R 43 is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an acyl group having 2 to 10 carbon atoms, or an oxygen-containing hydrocarbon group having 1 to 10 carbon atoms.
  • w is an integer of 1 to 6
  • v is a number of 1 or more, and the number is such that the weight average molecular weight falls within the above range.
  • the monovalent hydrocarbon group having 1 to 10 carbon atoms in each of R 41 and R 43 may be linear, branched or cyclic.
  • the hydrocarbon group is preferably an alkyl group, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a linear or branched butyl group, a linear or branched pentyl group, a linear or branched group.
  • the monovalent hydrocarbon group has good compatibility with the refrigerant when the number of carbon atoms is 10 or less. From such a viewpoint, the carbon number of the monovalent hydrocarbon group is more preferably 1 to 4.
  • the hydrocarbon group portion of the acyl group having 2 to 10 carbon atoms in each of R 41 and R 43 may be linear, branched, or cyclic.
  • the hydrocarbon group portion of the acyl group is preferably an alkyl group, and specific examples thereof include those having 1 to 9 carbon atoms among the alkyl groups that can be selected as R 41 and R 43 described above. When the carbon number of the acyl group is 10 or less, compatibility with the refrigerant is improved. A preferred acyl group has 2 to 4 carbon atoms. When R 41 and R 43 are both hydrocarbon groups or acyl groups, R 41 and R 43 may be the same or different from each other.
  • R 41 is a hydrocarbon group having 1 to 10 carbon atoms having 2 to 6 bonding sites
  • the hydrocarbon group may be a chain or a cyclic one.
  • the hydrocarbon group having two bonding sites is preferably an aliphatic hydrocarbon group, for example, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, cyclopentylene group. Examples thereof include a len group and a cyclohexylene group.
  • examples of other hydrocarbon groups include residues obtained by removing hydroxyl groups from bisphenols such as biphenol, bisphenol F, and bisphenol A.
  • the hydrocarbon group having 3 to 6 binding sites is preferably an aliphatic hydrocarbon group, for example, trimethylolpropane, glycerin, pentaerythritol, sorbitol, 1,2,3-trihydroxycyclohexane, 1,3,3, Examples thereof include a residue obtained by removing a hydroxyl group from a polyhydric alcohol such as 5-trihydroxycyclohexane.
  • coolant becomes favorable because carbon number of this aliphatic hydrocarbon group shall be 10 or less.
  • the aliphatic hydrocarbon group preferably has 2 to 6 carbon atoms.
  • oxygen-containing hydrocarbon group having 1 to 10 carbon atoms in each of R 41 and R 43 includes a chain aliphatic group having an ether bond or a cyclic aliphatic group (for example, a tetrahydrofurfuryl group). Can be mentioned.
  • R 42 in the general formula (11) is an alkylene group having 2 to 4 carbon atoms, and examples of the oxyalkylene group of the repeating unit include an oxyethylene group, an oxypropylene group, and an oxybutylene group.
  • the oxyalkylene groups in one molecule may be the same, or two or more oxyalkylene groups may be contained, but those containing at least an oxypropylene unit in one molecule are preferable. In particular, those containing 70 mol% or more of oxypropylene units are more preferred, and those containing 90 mol% or more of oxypropylene units are more preferred.
  • w is an integer of 1 to 6, and is determined according to the number of R 41 binding sites.
  • R 41 is an alkyl group or an acyl group
  • w is 1, and when R 41 is an aliphatic hydrocarbon group having 2, 3, 4, 5, and 6 binding sites, w is 2, 3 respectively.
  • W is preferably an integer of 1 to 3, more preferably an integer of 1 to 2.
  • w is 2 or more, a plurality of R 43 in one molecule may be the same or different.
  • Polyalkylene glycol can be produced by a known method.
  • PAG can be produced in a very high molecular weight by polymerizing an oxirane monomer with trialkylaluminum and a halogen-free onium salt to obtain PAG.
  • the manufacturing method will be described in detail.
  • the halogen-free onium salt is a salt having no halogen atom in the onium salt.
  • the halogen-free onium salt serves as a polymerization initiator in the polymerization reaction in the present production method.
  • Examples of halogen-free onium salts include ammonium salts, and preferred examples thereof include compounds represented by the following formula (X).
  • R 51 is a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms having 1 to 4 bonding portions
  • R 52 is a linear or branched alkyl group having 4 to 8 carbon atoms
  • x is an integer of 1 to 4.
  • x is an integer of 1 to 2
  • R 51 preferably has 1 to 2 bonding parts
  • x is 1
  • the number of carbon atoms in R 51 is preferably 1 to 5, and more preferably 1 to 4.
  • R 52 preferably has 4 to 6 carbon atoms, and more preferably 4 carbon atoms.
  • R 51 (—O ⁇ ) x is a polymerization initiation terminal in the obtained PAG.
  • R 51 examples include a linear or branched alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group; an ethylene group, a propylene group, Examples thereof include a straight-chain or branched saturated hydrocarbon group having 2 to 4 bonding parts, exemplified by a residue obtained by removing a hydroxyl group from a polyhydric alcohol such as neopentyl glycol, trimethylolpropane and pentaerythritol.
  • R 52 include a linear or branched butyl group and a linear or branched octyl group.
  • the halogen-free onium salt may be used in an amount corresponding to the desired molecular weight, but is preferably 0.005 mol% or more and 1.5 mol% or less with respect to all monomers in the reaction system. Preferably they are 0.01 mol% or more and 0.1 mol% or less, More preferably, they are 0.01 mol% or more and 0.06 mol% or less, Especially preferably, they are 0.01 mol% or more and 0.03 mol% or less.
  • the halogen-free onium salt is synthesized, for example, by reacting an alkali metal alkoxide with a quaternary ammonium salt.
  • the alkali metal alkoxide can be obtained by alkoxylating an alcohol with an alkali metal hydride.
  • the alkyl group of the alcohol to be used is changed according to the carbon number of R 51 , and one having 1 to 6 carbon atoms is used.
  • the alkyl group may be linear or branched.
  • monohydric to tetrahydric alcohols are used.
  • examples of the quaternary ammonium salt include tetrabutylammonium chloride, tetrabutylammonium bromide, tetraoctylammonium chloride, and tetraoctylammonium bromide.
  • trialkylaluminum examples include trialkylaluminum having an alkyl group having 1 to 18 carbon atoms. Among these, a trialkylaluminum having an alkyl group having 1 to 8 carbon atoms is preferred, A trialkylaluminum having 2 to 6 carbon atoms is more preferred.
  • the alkyl group contained in the trialkylaluminum may be branched or linear. Moreover, the alkyl group contained in 1 molecule may be the same, and may mutually differ.
  • Specific examples of the trialkylaluminum include trimethylaluminum, triethylaluminum, tri-n-butylaluminum, and triisobutylaluminum. Among these, triisobutylaluminum is preferable.
  • Trialkylaluminum may be used alone or in combination of two. Trialkylaluminum may be diluted with a solvent such as hexane or toluene.
  • the trialkylaluminum is preferably 1 or more and 100 or less, more preferably 5 or more and 50 or less, and more preferably 11 or more and 40 or less with respect to the halogen-free onium salt. Is more preferable.
  • this production method it is possible to produce a high molecular weight PAG by setting the trialkylaluminum within these ranges.
  • the oxirane monomer is a compound having a hetero three-membered ring composed of 2 atoms of carbon and 1 atom of oxygen, and specific examples include ethylene oxide, propylene oxide, and butylene oxide. These may be used alone or in combination of two or more.
  • the synthesis of PAG is performed by ring-opening polymerization of an oxirane monomer in the presence of a trialkylaluminum and a halogen-free onium salt.
  • the polymerization reaction is usually performed by mixing these raw materials in the reaction system.
  • the raw materials are mixed, for example, by adding an oxirane monomer to the halogen-free onium salt previously charged in the reaction system and then further adding a trialkylaluminum.
  • an oxirane monomer may be added to a mixture of trialkylaluminum and halogen-free onium salt previously charged in the reaction system.
  • the polymerization reaction is not particularly limited, but it is preferably performed in the presence of a solvent.
  • a solvent By carrying out in the presence of a solvent, it becomes easy to control the polymerization, and it becomes easy to produce a high molecular weight PAG.
  • the solvent is not particularly limited as long as it is inert to the raw material, but hydrocarbon solvents such as hexane, cyclohexane, octane, isooctane, toluene, monoether, diether, triether, tetraether, polyvinyl ether, Examples include ether solvents such as polyalkylene glycols.
  • examples of the monoether include dialkyl ethers in which the alkyl group has 1 to 12 carbon atoms.
  • a dialkyl diether having 1 to 12 carbon atoms in the alkyl group is used, and an alkane such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, or neopentyl glycol.
  • dialkyl ethers of diols examples include trivalent or tetravalent alcohol alkyl ethers such as glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol. These may be used alone or in combination of two or more.
  • the concentration of all monomers is usually from 0.1 mol / L to 10 mol / L, preferably from 1 mol / L to 8 mol / L, More preferably, it is added to the reaction system so as to be 1 mol / L or more and 4 mol / L or less.
  • concentration of the monomer is not more than these upper limit values, it becomes easy to produce a high molecular weight PAG.
  • by setting it as more than a lower limit it is prevented that the size of a reaction container becomes large more than necessary.
  • the conditions for performing the polymerization reaction are not particularly limited, and may be set as appropriate according to the type of raw material used, the target molecular weight, and the like.
  • the pressure during the polymerization reaction is usually atmospheric pressure.
  • the temperature during polymerization is usually ⁇ 30 to 30 ° C., preferably ⁇ 20 to 10 ° C., more preferably ⁇ 15 to 0 ° C.
  • the polymerization time is usually 0.5 to 24 hours, preferably 1 to 15 hours, more preferably 2 to 10 hours.
  • the polymerization reaction may be stopped, for example, by adding water, alcohol, acidic substance, or a mixture thereof to deactivate the catalyst. Further, after completion of the polymerization reaction, the polymer may be recovered by removing impurities and volatile components by a conventional method such as filtration or distillation under reduced pressure. Furthermore, although the terminal of the polymer obtained becomes a hydroxyl group, the terminal hydroxyl group may introduce a functional group with a modifier. Specifically, the end of the polymer is esterified or etherified to a hydroxyl group, so that a hydrocarbon group having 1 to 10 carbon atoms or an oxygen-containing hydrocarbon group having 1 to 10 carbon atoms, Ten acyl groups or the like may be introduced.
  • Polyvinyl ether (PVE) Polyvinyl ether (PVE) used as a viscosity index improver contains a constituent unit derived from vinyl ether, and preferably contains a constituent unit derived from vinyl alkyl ether.
  • the alkyl group in the vinyl alkyl ether is an alkyl group having 1 to 20 carbon atoms are the same as R 46 to be described later in more detail.
  • polyvinyl ether examples include compounds represented by the following formula (12).
  • R 45 is a hydrogen atom or a linear or branched alkyl group having 1 to 20 carbon atoms
  • R 46 is a linear or branched alkyl group having 1 to 20 carbon atoms.
  • R 45 and R 46 may be the same as or different from each other.
  • m is 1 or more and is a number corresponding to the weight average molecular weight.
  • R 45 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the carbon number of R 46 is preferably 1 to 10, more preferably 2 to 6, from the viewpoint of lubricity and compatibility with the refrigerant.
  • Preferable examples of the alkyl group represented by R 45 and R 46 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, straight chain or Examples thereof include a branched pentyl group, a linear or branched hexyl group, a linear or branched heptyl group, a linear or branched octyl group, a linear or branched nonyl group, and each linear or branched decyl group.
  • the polymethacrylate used as the viscosity index improver is roughly classified into a dispersion type and a non-dispersion type, and any type can be used in this embodiment, but the non-dispersion type is preferable.
  • the non-dispersed polymethacrylate include polymethacrylic acid alkyl ester.
  • the dispersed polymethacrylate include those obtained by copolymerizing a polymethacrylic acid alkyl ester and a monomer component having a polar group.
  • polyalkylene glycol and polyvinyl ether are preferable from the viewpoint of hydrolytic stability.
  • polyalkylene glycol is preferable, and in order to further increase the volume resistivity, polyvinyl ether is preferable.
  • the content of the viscosity index improver is preferably 3% by mass or more and 30% by mass or less with respect to the total amount of the refrigerating machine oil.
  • the content of the viscosity index improver is more preferably 8% by mass or more and 25% by mass or less, and further preferably 11% by mass or more and 22% by mass or less.
  • the refrigerating machine oil according to the present embodiment further includes other additives such as an antioxidant, an acid scavenger, an oxygen scavenger, an extreme pressure agent, an oil agent, a copper deactivator, a rust inhibitor, and an antifoaming agent.
  • You may contain any 1 type (s) or 2 or more types.
  • the content of the additive is preferably 20% by mass or less, more preferably 0% by mass or more and 10% by mass or less, based on the total amount of the refrigerating machine oil.
  • 0 mass% means that other additives are not contained in the refrigerating machine oil.
  • Antioxidants include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,2′-methylenebis (4-methyl-6-tert Phenyl-based antioxidants such as phenyl- ⁇ -naphthylamine and N, N′-di-phenyl-p-phenylenediamine are preferred, and phenolic antioxidants are preferred.
  • the content of the antioxidant is usually 0.01 to 5% by mass, preferably 0.05 to 3% by mass, based on the total amount of the refrigerating machine oil, from the viewpoints of effects and economy.
  • the acid scavenger examples include epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil.
  • epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil.
  • phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, and ⁇ -olefin oxide are preferable in terms of compatibility.
  • the alkyl group of the alkyl glycidyl ether and the alkylene group of the alkylene glycol glycidyl ether may have a branch, and usually have 3 to 30, preferably 4 to 24, and particularly preferably 6 to 16 carbon atoms. is there.
  • the ⁇ -olefin oxide generally has a total carbon number of 4 to 50, preferably 4 to 24, particularly 6 to 16.
  • one type of acid scavenger may be used, or two or more types may be used in combination.
  • the content thereof is usually 0.005 to 5% by mass, preferably 0.05 to 3% by mass, based on the total amount of the refrigerating machine oil, from the viewpoints of effects and suppression of sludge generation.
  • the stability of refrigerating machine oil can be improved by containing an acid scavenger.
  • oxygen scavenger examples include 4,4′-thiobis (3-methyl-6-tert-butylphenol), diphenyl sulfide, dioctyl diphenyl sulfide, dialkyl diphenylene sulfide, benzothiophene, dibenzothiophene, phenothiazine, benzothiapyran, thiapyran, thianthrene, Examples thereof include sulfur-containing aromatic compounds such as dibenzothiapyran and diphenylene disulfide, aliphatic unsaturated compounds such as various olefins, dienes and trienes, and terpenes having a double bond.
  • the content of the oxygen scavenger is usually 0.005 to 5% by mass, preferably 0.05 to 3% by mass, based on the total amount of the refrigerating machine oil.
  • extreme pressure agents include phosphorous extreme pressure agents such as phosphate esters, acid phosphate esters, phosphite esters, acid phosphite esters, and amine salts thereof. These phosphorus extreme pressure agents include tricresyl phosphate, trithiophenyl phosphate, tri (nonylphenyl) phosphite, dioleyl hydrogen phosphite, 2-ethylhexyl diphenyl phosphite, etc. in terms of extreme pressure and friction characteristics. Can be mentioned. Examples of the extreme pressure agent include metal salts of carboxylic acids.
  • the metal salt of the carboxylic acid here is preferably a carboxylic acid having 3 to 60 carbon atoms, more preferably a metal salt of a fatty acid having 3 to 30 carbon atoms, particularly 12 to 30 carbon atoms.
  • the dimer acid and trimer acid of the said fatty acid, and the metal salt of C3-C30 dicarboxylic acid can be mentioned.
  • metal salts of fatty acids having 12 to 30 carbon atoms and dicarboxylic acids having 3 to 30 carbon atoms are particularly preferred.
  • an alkali metal or an alkaline earth metal is preferable, and an alkali metal is particularly optimal.
  • extreme pressure agents other than the above include sulfur-based extreme pressure agents such as sulfurized fats and oils, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dihydrocarbyl polysulfides, thiocarbamates, thioterpenes, and dialkylthiodipropionates. be able to.
  • the content of the extreme pressure agent is usually 0.001 to 5% by mass, particularly preferably 0.005 to 3% by mass, based on the total amount of refrigerating machine oil, from the viewpoint of lubricity and stability.
  • One of these extreme pressure agents may be used alone, or two or more thereof may be used in combination.
  • oily agents include aliphatic saturated and unsaturated monocarboxylic acids such as stearic acid and oleic acid, polymerized fatty acids such as dimer acid and hydrogenated dimer acid, hydroxy fatty acids such as ricinoleic acid and 12-hydroxystearic acid, lauryl Aliphatic saturated and unsaturated monoalcohols such as alcohol, oleyl alcohol, aliphatic saturated and unsaturated monoamines such as stearylamine and oleylamine, aliphatic saturated and unsaturated monocarboxylic amides such as lauric acid amide and oleic acid amide, glycerin And partial esters of polyhydric alcohols such as sorbitol and aliphatic saturated or unsaturated monocarboxylic acids. These may be used individually by 1 type and may be used in combination of 2 or more type. The content thereof is usually selected in the range of 0.01 to 10% by mass, preferably 0.1 to 5% by mass, based on the total amount of ref
  • Examples of the copper deactivator include N- [N, N′-dialkyl (alkyl group having 3 to 12 carbon atoms) aminomethyl] triazole.
  • Examples of the antifoaming agent include silicone oil and fluorinated silicone oil. The content of the antifoaming agent is usually 0.005 to 2% by mass, preferably 0.01 to 1% by mass, based on the total amount of refrigerating machine oil.
  • Examples of the rust preventive include metal sulfonates, aliphatic amines, organic phosphites, organic phosphates, organic sulfonates, organophosphates, alkenyl succinates, polyhydric alcohol esters, etc. Can be mentioned.
  • the content of the rust inhibitor is usually 0.005 to 2% by mass, preferably 0.01 to 1% by mass, based on the total amount of refrigerating machine oil.
  • the refrigerating machine oil according to the present embodiment can further contain other known various additives as long as the object of the present invention is not impaired.
  • the refrigerating machine oil may be composed of an oxygen-containing base oil and a viscosity index improver, or from an oxygen-containing base oil, a viscosity index improver, and at least one selected from the additives described above. It may be.
  • the refrigerating machine oil is produced by blending at least the viscosity index improver with the oxygen-containing base oil. Moreover, you may mix
  • the refrigerating machine oil is used in a refrigerant environment, and specifically, is mixed with a refrigerant and used inside the refrigerating machine. That is, in the refrigerator, a composition for a refrigerator including a refrigerator oil and a refrigerant is used.
  • the amount of refrigerant and refrigerator oil used in the refrigerator is usually 99/1 to 10/90 in mass ratio of refrigerant / refrigerator oil, but is preferably in the range of 95/5 to 30/70. When this mass ratio is within the above range, the refrigerating capacity and lubricity in the refrigerator can be made appropriate.
  • the refrigerant include at least one selected from a fluorinated hydrocarbon compound represented by the following molecular formula (A), a saturated fluorinated hydrocarbon compound (HFC), and a natural refrigerant.
  • the molecular formula (A) represents the type and number of elements in the molecule, and the formula (A) represents a fluorine-containing organic compound having 1 to 6 carbon atoms C.
  • the bond form of p carbon atoms represented by C p includes a carbon-carbon single bond, an unsaturated bond such as a carbon-carbon double bond, a carbon-oxygen double bond, and the like. It is.
  • the carbon-carbon unsaturated bond is preferably a carbon-carbon double bond from the viewpoint of stability, and the number thereof is 1 or more, but 1 is preferable.
  • the bonding form of q oxygen atoms represented by O q is preferably oxygen derived from an ether group, a hydroxyl group, or a carbonyl group.
  • the number q of oxygen atoms may be 2 and includes the case of having two ether groups or hydroxyl groups.
  • q in O q is 0 and the molecule does not contain an oxygen atom
  • p is 2 to 6, and the molecule has one or more unsaturated bonds such as a carbon-carbon double bond. That is, at least one of the bonding forms of p carbon atoms represented by C p needs to be a carbon-carbon unsaturated bond.
  • R represents Cl, Br, I, or H, and any of these may be used. However, since there is little risk of destroying the ozone layer, R may be H. preferable.
  • Preferred examples of the fluorine-containing organic compound represented by the molecular formula (A) include unsaturated fluorinated hydrocarbon compounds, fluorinated ether compounds, fluorinated alcohol compounds, and fluorinated ketone compounds.
  • Unsaturated fluorinated hydrocarbon compound As the unsaturated fluorinated hydrocarbon compound, for example, in the molecular formula (A), R is H, p is 2 to 6, q is 0, r is 1 to 12, and s is 0 to 11. And hydrocarbon compounds. Preferable examples of such unsaturated fluorinated hydrocarbon compounds include linear or branched chain olefins having 2 to 6 carbon atoms and cyclic olefin fluorides having 4 to 6 carbon atoms.
  • ethylene having 1 to 3 fluorine atoms introduced propene having 1 to 5 fluorine atoms introduced, butenes having 1 to 7 fluorine atoms introduced, 1 to 9 Pentenes introduced with fluorine atoms, hexenes introduced with 1 to 11 fluorine atoms, cyclobutene introduced with 1 to 5 fluorine atoms, cyclopentene introduced with 1 to 7 fluorine atoms, 1 And cyclohexene introduced with up to 9 fluorine atoms.
  • unsaturated fluorinated hydrocarbon compounds having 2 to 3 carbon atoms are preferred, and examples thereof include ethylene fluorides such as trifluoroethylene and various propene fluorides.
  • the fluoride is more preferable.
  • the propene fluoride include 3,3,3-trifluoropropene, 1,2,3,3,3-pentafluoropropene (HFO1225ye), and 1,3,3,3-tetrafluoropropene (HFO1234ze). And 2,3,3,3-tetrafluoropropene (HFO1234yf) and the like.
  • An unsaturated fluorohydrocarbon compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • fluorinated ether compound for example, in the molecular formula (A), R is H, p is 2 to 6, q is 1 to 2, r is 1 to 14, and s is 0 to 13. Is mentioned.
  • a fluorinated ether compound for example, a fluoride of a linear aliphatic ether having 2 to 6 carbon atoms, having 1 to 2 ether bonds, and having an alkyl group in a linear or branched chain is preferable. And a cyclic aliphatic ether fluoride having 3 to 6 carbon atoms and having 1 to 2 ether bonds.
  • fluorinated dimethyl ether introduced with 1 to 6 fluorine atoms fluorinated methyl ethyl ether introduced with 1 to 8 fluorine atoms, and fluorinated with 1 to 8 fluorine atoms introduced Dimethoxymethane, fluorinated methyl propyl ethers with 1 to 10 fluorine atoms introduced, 1 fluorinated methyl butyl ethers with 1 to 12 fluorine atoms introduced, 1 to 12 fluorine atoms with a fluorine atom introduced Ethyl propyl ethers, oxetane fluoride with 1-6 fluorine atoms introduced, 1,3-dioxolane fluoride with 1-6 fluorine atoms introduced, 1-8 fluorine atoms introduced And fluorinated tetrahydrofuran.
  • fluorinated alcohol compound for example, in the molecular formula (A), R is H, p is 1 to 6, q is 1 to 2, r is 1 to 13, and s is 1 to 13. Is mentioned.
  • fluorinated alcohol compound include a fluoride of a linear or branched aliphatic alcohol having 1 to 6 carbon atoms and having 1 to 2 hydroxyl groups.
  • fluorinated methyl alcohol with 1 to 3 fluorine atoms introduced fluorinated ethyl alcohol with 1 to 5 fluorine atoms introduced, and fluorinated with 1 to 7 fluorine atoms introduced
  • fluorinated butyl alcohols having 1 to 9 fluorine atoms introduced fluorinated pentyl alcohols having 1 to 11 fluorine atoms introduced, and fluorines having 1 to 4 fluorine atoms introduced
  • ethylene glycol, and fluorinated propylene glycol introduced with 1 to 6 fluorine atoms fluorinated methyl alcohol with 1 to 3 fluorine atoms introduced, fluorinated ethyl alcohol with 1 to 5 fluorine atoms introduced, and fluorinated with 1 to 7 fluorine atoms introduced
  • fluorinated butyl alcohols having 1 to 9 fluorine atoms introduced fluorinated pentyl alcohols having 1 to 11 fluorine atoms introduced
  • fluorinated ketone compounds for example, in the molecular formula (A), R is H, p is 2 to 6, q is 1 to 2, r is 1 to 12, and s is 0 to 11. Is mentioned.
  • fluorinated ketone compound include fluorides of aliphatic ketones having 3 to 6 carbon atoms and linear or branched alkyl groups.
  • fluorinated acetone into which 1 to 6 fluorine atoms are introduced fluorinated methyl ethyl ketone into which 1 to 8 fluorine atoms are introduced, and fluorinated diethyl ketone into which 1 to 10 fluorine atoms are introduced
  • fluorinated methyl propyl ketones having 1 to 10 fluorine atoms introduced therein A fluorine ketone compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the saturated fluorinated hydrocarbon compound is usually an alkane fluoride having 1 to 4 carbon atoms, preferably an alkane fluoride having 1 to 3 carbon atoms, and an alkane having 1 to 2 carbon atoms (methane or ethane). Fluoride is more preferred.
  • Specific methane or ethane fluorides include trifluoromethane (R23), difluoromethane (R32), 1,1-difluoroethane (R152a), 1,1,1-trifluoroethane (R143a), 1,1, 2-trifluoroethane (R143), 1,1,1,2-tetrafluoroethane (R134a), 1,1,2,2-tetrafluoroethane (R134), 1,1,1,2,2-penta And fluoroethane (R125).
  • the saturated fluorinated hydrocarbon compound may be a compound obtained by halogenating the above alkane fluoride with a halogen atom other than fluorine, and examples thereof include trifluoroiodomethane (CF 3 I). .
  • These saturated fluorinated hydrocarbon compounds may be used alone or in combination of two or more.
  • 2 mixed refrigerants in which two or more kinds of saturated fluorinated hydrocarbon compounds having 1 to 3 carbon atoms are mixed, or 2 kinds of saturated fluorinated hydrocarbon compounds having 1 to 2 carbon atoms are used.
  • species or more is mentioned.
  • R410A which is a mixed refrigerant of difluoromethane (R32) and 1,1,1,2,2-pentafluoroethane (R125), difluoromethane (R32) and 1,1,1,2,2- R407C which is a mixed refrigerant of pentafluoroethane (R125) and 1,1,1,2-tetrafluoroethane (R134a).
  • Natural refrigerant examples include carbon dioxide (carbon dioxide), ammonia (NH 3 ), and hydrocarbons such as n-propane, n-butane, isobutane, 2-methylbutane, n-pentane, cyclopentaneisobutane, and normal butane. These may be used singly or in combination of two or more, or may be combined with a refrigerant other than the natural refrigerant.
  • At least one selected from an unsaturated fluorinated hydrocarbon compound, a saturated fluorinated hydrocarbon compound, and a natural refrigerant is preferably used.
  • R134a, R410A, R407C, HFO1234yf are used.
  • HFO1234ze, R32, carbon dioxide, ammonia, n-propane, n-butane, and isobutane are more preferable, and among them, R32, R134a, and HFO1234yf are more preferable.
  • R32 single refrigerant and HFO1234yf single refrigerant are preferable.
  • the refrigerating machine oil is usually used for a compression type refrigerating machine.
  • the compression refrigerator includes at least a compressor.
  • the compression refrigerator is preferably a hermetic refrigerator in which a motor is built in the compressor. Since the refrigerating machine oil has a high viscosity index and volume resistivity, energy saving can be achieved while preventing leakage etc. even when used in a closed refrigerating machine.
  • the compression type refrigerator includes a refrigerator oil therein, and lubricates a sliding portion provided in the compressor or the like with the refrigerator oil. Further, the compression refrigerator includes a refrigerant (that is, a refrigerator composition) in addition to the refrigerator oil, and circulates the refrigerator composition in the refrigeration cycle of the refrigerator.
  • a refrigerator has a refrigerating cycle which consists of a structure which makes a compressor, a condenser, an expansion mechanism (expansion valve etc.) and an evaporator, or a compressor, a condenser, an expansion mechanism, a dryer, and an evaporator essential.
  • Refrigerating machine oil includes, for example, various car air conditioners such as open-type car air conditioners and electric car air conditioners, gas heat pumps (GHP), air conditioners, refrigerators, vending machines, showcases, water heaters, floor heating, and other various refrigerator systems.
  • a refrigerator in a hot water supply system and a heating system
  • a car air conditioner particularly an electric car air conditioner in which a motor is built in a compressor.
  • an expansion valve is used, and it is not necessary for the refrigerating machine oil to pass through a small diameter capillary. Therefore, clogging does not occur due to the high molecular weight viscosity index improver.
  • a refrigerating machine oil having the following composition was prepared, and the 100 ° C. kinematic viscosity, viscosity index, and volume resistivity of each refrigerating machine oil were measured.
  • the mass% shown below shows the ratio with respect to refrigerating machine oil whole quantity.
  • Oxygenated base oil 78% by mass of bis (3,5,5-trimethylhexyl) ether
  • Viscosity index improver Polyalkylene glycol (PAG) 22% by mass * 1
  • PAG Polyalkylene glycol
  • PREMINOL S4318F manufactured by Asahi Glass Co., Ltd. was used.
  • Viscosity index improver Polyalkylene glycol (PAG) 21% by mass * 1 Kinematic viscosity at 100 ° C. of oxygen-containing base oil: 1.31 mm 2 / s, volume resistivity: 5.50 ⁇ 10 12 ⁇ ⁇ m * 2 The same PAG as in Example 1 was used.
  • Oxygenated base oil 80% by mass of pentaerythritol tetra (n-butyl)
  • Viscosity index improver Polyalkylene glycol (PAG) 20% by mass * 1
  • Kinematic viscosity at 100 ° C. of oxygen-containing base oil 1.66 mm 2 / s, volume resistivity: 8.04 ⁇ 10 12 ⁇ ⁇ m * 2
  • PAG Polyalkylene glycol
  • Oxygenated base oil 85% by mass of polybutyl vinyl ether (PVE) Viscosity index improver: Polyalkylene glycol (PAG) 15% by mass * 1
  • Oxygenated base oil (PVE) is a compound in which R 38 is a butyl group, R 37 is hydrogen, and n is 3.5 in formula (10), and kinematic viscosity at 100 ° C .: 2.28 mm 2 / s Volume resistivity: 4.41 ⁇ 10 11 ⁇ ⁇ m. * 2 The same PAG as in Example 1 was used.
  • Oxygenated base oil 89% by mass of bis (3,5,5-trimethylhexyl) ether
  • Viscosity index improver Polybutyl vinyl ether (PVE) 11% by mass * 1
  • the oxygen-containing base oil is the same as in Example 1.
  • * 2 PVE is a compound having a weight average molecular weight (Mw) of 84,000, and in formula (12), R 46 is a butyl group and R 45 is hydrogen.
  • Oxygenated base oil 100% by mass of polyoxyethylene polyoxypropylene glycol (PAG) * Kinematic viscosity of PAG at 100 ° C .: 9 mm 2 / s, volume resistivity: 5.3 ⁇ 10 8 ⁇ ⁇ m
  • Oxygenated base oil 100% by mass of polyethyl vinyl ether (PVE) * Kinematic viscosity of PVE at 100 ° C .: 9 mm 2 / s, volume resistivity: 1.8 ⁇ 10 12 ⁇ ⁇ m
  • a refrigerating machine oil excellent in both viscosity index and volume resistivity could be obtained by blending a predetermined viscosity index improver with an oxygen-containing base oil.
  • a predetermined viscosity index improver with an oxygen-containing base oil.
  • Comparative Examples 1 and 2 since the viscosity index improver was not blended, either the viscosity index or the volume resistivity could not be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

本発明の冷凍機油は、含酸素基油と粘度指数向上剤を含む冷凍機油であって、粘度指数(VI)が200以上で、かつ体積抵抗率が1×109Ω・m以上である。

Description

冷凍機油、冷凍機用組成物及び圧縮型冷凍機
 本発明は、冷凍機油、冷凍機用組成物、及びこれらが使用される圧縮機型冷凍機に関する。
 一般に冷凍機油は、空調、冷蔵庫、カーエアコン等の圧縮型冷凍機に使用され、潤滑性と共に、冷媒との相溶性が要求されている。従来、これら要求特性を満足するために、冷凍機油には、ポリビニルエーテル(PVE)、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)等の含酸素基油が広く使用されている(例えば、特許文献1、2参照)。
 また、冷凍機油には、各種の性能を向上させるために、基油に添加剤を配合することがある。例えば、特許文献3では、冷凍機油の潤滑性能を向上させることを目的として、鉱油及び/又は合成油からなる基油に、基油よりも高い動粘度を有するPAG等のポリエーテル系化合物を配合させることが開示されている。
WO2007/046196号 特開2012-52135号公報 特開平10-8082号公報
 近年、省エネルギー化の観点から、冷凍機油には、粘度指数をさらに高くすることが求められている。また、冷凍機油は、例えば、圧縮機にモーターが内蔵された、密閉型冷凍機で使用される場合、漏電防止の観点から高い体積抵抗率が求められる。
 ここで、冷凍機油用の基油であるPVEやPOEは、体積抵抗率が1012Ω・m程度と高くなるが、粘度指数が一般的に150以下となり十分ではない。一方、PAGは、粘度指数が200以上と良好であるが、体積抵抗率が108Ω・m程度にしかならず不十分である。そのため、特許文献1、2に開示される冷凍機油は、粘度指数を高くしつつ、体積抵抗率を高くすることが難しい。
 一方、特許文献3では、動粘度の高いPAGを配合したことで、粘度指数がある程度向上することが予想される。しかし、特許文献3に開示された冷凍機油は、冷凍機油の潤滑性能を向上させることを目的としてPAGを配合したにすぎず、また、その配合量も少ないため、引用文献3の教示に従っても、粘度指数及び体積抵抗率の両方を十分に高くすることが難しい。
 本発明は、以上の問題点に鑑みてなされたものであり、粘度指数及び体積抵抗率の両方を高くした冷凍機油を提供することを課題とする。
 本発明者らは、鋭意検討の結果、含酸素基油に粘度指数向上剤を配合することで、粘度指数及び体積抵抗率の両方を高くした冷凍機油が得られることを見出し、以下の本発明を完成させた。すなわち、本発明は、以下の(1)~(4)を提供する。
(1)含酸素基油と粘度指数向上剤を含む冷凍機油であって、粘度指数(VI)が200以上で、かつ体積抵抗率が1×109Ω・m以上である冷凍機油。
(2)上記(1)に記載の冷凍機油と、冷媒とを含む冷凍機用組成物。
(3)上記(1)に記載の冷凍機油、及び上記(2)に記載の冷凍機用組成物のいずれかを含有する圧縮型冷凍機。
(4)含酸素基油に少なくとも粘度指数向上剤を配合することで、粘度指数(VI)が200以上で、かつ体積抵抗率が1×109Ω・m以上である冷凍機油を得る冷凍機油の製造方法。
 本発明によれば、粘度指数及び体積抵抗率の両方を高くした冷凍機油を提供できる。
 以下、本発明について、実施形態を用いて説明する。
<冷凍機油>
 本発明の一実施形態に係る冷凍機油は、含酸素基油と粘度指数向上剤を含み、粘度指数(VI)が200以上で、かつ体積抵抗率が1×109Ω・m以上となる冷凍機油である。
このような冷凍機油は、粘度指数及び体積抵抗率の両方が高いことで、省エネルギー性及び電気絶縁性のいずれもが良好になる。
 一方で、冷凍機油は、粘度指数(VI)が200未満となると、温度変化に伴い粘度が変わりやすくなる。そのため、油膜が形成できるようにある程度粘度を高めると、低温環境下において増粘して粘性抵抗に基づく動力損失が発生し、省エネルギー化が実現しにくくなる。また、体積抵抗率が1×109Ω・m未満となると、電気絶縁性が低くなり、冷凍機内部にモーター等が内蔵される場合には、漏電が発生しやすくなる。
 省エネルギー性と、電気絶縁性の両方をさらに良好にするためには、粘度指数(VI)が240以上であるとともに、体積抵抗率が1×1010Ω・m以上であることが好ましく、粘度指数(VI)が270以上であるとともに、体積抵抗率が2×1010Ω・m以上であることがさらに好ましい。
 また、粘度指数(VI)及び体積抵抗率の上限値は特に限定されないが、通常、粘度指数が450以下であるとともに、体積抵抗率が1×1014Ω・m以下となる。また、冷凍機油の製造のしやすさから、粘度指数が430以下であるとともに、体積抵抗率が1×1013Ω・m以下となることが好ましく、粘度指数が400以下であるとともに、体積抵抗率が1×1012Ω・m以下であることがより好ましい。
 また、冷凍機油の100℃における動粘度は、2mm/s以上100mm/s以下であることが好ましい。100℃動粘度を2mm2/s以上とすると、高温環境下でも油膜を形成して、潤滑不良を防止しやすくなる。また、100℃動粘度を100mm2/s以下とすることで、冷凍機油の粘性抵抗が大きくなることを防止し、動力損失が小さくなる。潤滑性の観点から、100℃動粘度は2mm2/s以上50mm2/s以下がより好ましく、5mm2/s以上50mm2/s以下がさらに好ましく、5mm2/s以上20mm2/s以下がよりさらに好ましい。
 次に、冷凍機油に含有される含酸素基油、及び粘度指数向上剤についてより詳細に説明する。
[含酸素基油]
 含酸素基油は、その分子構造中に酸素原子を有するものである。含酸素基油は、酸素原子を有することで、潤滑性を良好にしつつも、冷凍機油と冷媒の相溶性も確保しやすくなる。また、含酸素基油は、粘度温度特性や潤滑性の観点から、好ましくはエーテル基、エステル基、又はその両方を有する。含酸素基油としては、水酸基、カルボキシ基、アルデヒド基、アセタール基、エポキシ基等を有することで、分子構造中に酸素原子を導入するものもあるが、エーテル基及びエステル基は、これらに比べて、熱安定性に優れ、体積抵抗率を向上させやすくなる。また、含酸素基油は、その体積抵抗率を高くするために、炭化水素部分のいずれかに分岐を有することが好ましい。
 含酸素基油の100℃における動粘度は、好ましくは1mm2/s以上8mm2/s以下、より好ましくは1.3mm2/s以上6mm2/s以下、さらに好ましくは1.6mm2/s以上5mm2/s以下である。このように、含酸素基油の動粘度を比較的低くすることで、後述する粘度指数向上剤によって、粘度指数の向上効果を得やすくなる。また、粘度指数向上剤によって、冷凍機油の動粘度が必要以上に上昇することが防止される。
 また、粘度指数向上剤により体積抵抗率を上昇させにくいため、冷凍機油の体積抵抗率を高めるためには、含酸素基油の体積抵抗率を高くすることが望ましい。具体的には、含酸素基油の体積抵抗率は1×109Ω・m以上であることが好ましい。
 また、粘度指数向上剤に体積抵抗率が比較的低いPAG等を使用する場合でも、冷凍機油の体積抵抗率を上記範囲に確保できるように、含酸素基油の体積抵抗率は、1×1010Ω・m以上であることがより好ましく、1×1011Ω・m以上であることがさらに好ましい。
(エステル化合物)
 エステル基を有する含酸素基油としては、脂肪族モノエステル、脂肪族ジエステル、脂肪族トリエステル、及び脂肪族ポリオールエステルから選択される少なくとも1種のエステル化合物が挙げられる。なお、本明細書において、ポリオールエステルとは、4価以上のアルコールのエステルをいう。
 脂肪族モノエステルは、1価のアルカノールと飽和脂肪族モノカルボン酸とのエステルであって、具体的には、以下の式(1)で表される。
   R1-CO22     (1)
 式(1)において、R1、R2は直鎖または分岐の炭素数2~24のアルキル基であり、R1、R2は互いに同じでも異なっていてもよい。
 ここで、式(1)において、R1の炭素数は、3~23が好ましく、5~23がより好ましい。また、R2の炭素数は、好ましくは3~24、より好ましくは4~24である。脂肪族モノエステルの総炭素数は、20~40が好ましく、22~36がより好ましく、24~32がさらに好ましい。総炭素数をこれらの範囲とすることで、冷凍機油の各種性能を良好にしやすくなる。また、分子量が大きくなりすぎず、粘度指数向上剤によって粘度指数を向上させやすくなる。さらに、R1、R2の少なくともいずれかは、体積抵抗率を向上させるために、分岐を有することが好ましい。
 脂肪族モノエステルの具体例としては、n-ヘキサン酸-2-オクチル-1-ドデカノエート、n-ヘキサン酸-2-デシル-1-テトラデカノエート、n-ヘプタン酸イソステアレート、n-ヘプタン酸-2-オクチル-1-ドデカノエート、n-ヘプタン酸-2-デシル-1-テトラデカノエート、n-オクタン酸イソステアレート、n-オクタン酸-2-オクチル-1-ドデカノエート、n-ノナン酸イソステアレート、n-ノナン酸-2-オクチル-1-ドデカノエート、n-デカン酸-2-ヘキシル-1-デカノエート、n-デカン酸イソステアレート、n-デカン酸-2-オクチル-1-ドデカノエート、n-ウンデカン酸-2-ヘキシル-1-デカノエート、n-ウンデカン酸イソステアレート、n-ウンデカン酸-2-オクチル-1-ドデカノエート、n-ドデカン酸-2-ヘキシル-1-デカノエート、2-デシルテトラデカン酸-n-ブチレート、2-デシルテトラデカン酸-n-ペンタノエート、2-デシルテトラデカン酸-n-ヘキサノエート、2-デシルテトラデカン酸-n-ヘプタノエート、2-デシルテトラデカン酸-n-オクタノエート、2-オクチルドデカン酸-n-ヘキサノエート、2-オクチルドデカン酸-n-ヘプタノエート、2-オクチルドデカン酸-n-オクタノエート、2-オクチルドデカン酸-n-ノナノエート、2-オクチルドデカン酸-n-デカノエート、イソステアリン酸-n-オクタノエート、イソステアリン酸-n-ノナノエート、イソステアリン酸-n-デカノエート、イソステアリン酸-n-ウンデカノエート、イソステアリン酸-n-ドデカノエート、2-ヘキシル-1-デカン酸-n-デカノエート、2-ヘキシル-1-デカン酸-n-ウンドデカノエート、2-ヘキシル-1-デカン酸-n-ドデカノエート等が挙げられる。
 脂肪族ジエステルとしては、2価のアルカノールと飽和脂肪族モノカルボン酸とのエステルであるジオールエステル、又は1価のアルカノールと飽和脂肪族ジカルボン酸のエステルである二塩基酸エステルが挙げられる。
 ジオールエステルとしては、以下の式(2-1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(2-1)において、R3a、R5aは直鎖または分岐の炭素数2~20のアルキル基であり、R3a、R5aは互いに同じであってもよいし、異なっていてもよい。また、R4aは炭素数2~20の2価の飽和脂肪族炭化水素基である。
 式(2-1)においては、R3a、R5aの炭素数が4~14で、かつR4aの炭素数が3~8であることが好ましく、R3a、R5aの炭素数が6~9で、かつR4aの炭素数が4~6がより好ましい。炭素数をこれら範囲とすることで、冷凍機油の各種性能を良好にしやすくなり、さらには、分子量が大きくなりすぎず、粘度指数向上剤により粘度指数も向上させやすくなる。さらに、体積抵抗率を向上させる観点から、R3a、R4a、R5aの少なくともいずれかひとつは、分岐であることが好ましい。
また、二塩基酸エステルとしては、以下の式(2-2)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000002

 式(2-2)において、R3b、R5bは直鎖または分岐の炭素数2~20のアルキル基であり、R3b、R5bは互いに同じであってもよいし、異なっていてもよい。また、R4bは直鎖又は分岐の炭素数2~20の2価の飽和脂肪族炭化水素基である。
 式(2-2)においては、R3b、R5bの炭素数が6~15で、かつR4bの炭素数が3~10であることが好ましく、R3b、R5bの炭素数が8~13で、かつR4bの炭素数が4~8であることがより好ましい。炭素数をこれら範囲とすることで、冷凍機油の各種性能を良好にしやすくなり、さらには、分子量が大きくなりすぎず、粘度指数向上剤により粘度指数も向上させやすくなる。さらに、体積抵抗率を向上させる観点から、R3b、R4b、R5bのうち少なくともいずれかひとつは、分岐であることが好ましい。
 脂肪族ジエステルとしては、具体的には、2,2-ジメチル-1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-メチル-1,4-ブタンジオール、1,4-ペンタンジオール、2-メチル-1,5-ペンタンジオール、及び3-メチル-1,5-ペンタンジオールのいずれかと炭素数7~10の飽和脂肪族モノカルボン酸のエステルが挙げられ、好ましい具体例としては、2,2-ジメチル-1,3-プロパンジオールジ(n-ヘプタノエート)、2,2-ジメチル-1,3-プロパンジオールジ(n-オクタノエート)、2,2-ジメチル-1,3-プロパンジオールジ(n-ノナノエート)、2,2-ジメチル-1,3-プロパンジオールジ(n-デカノエート)、2-メチル-1,3-プロパンジオールジ(n-ヘプタノエート)、2-メチル-1,3-プロパンジオールジ(n-オクタノエート)、2-メチル-1,3-プロパンジオールジ(n-ノナノエート)、2-メチル-1,3-プロパンジオールジ(n-デカノエート)、2-メチル-1,4-ブタンジオールジ(n-ヘプタノエート)、2-メチル-1,4-ブタンジオールジ(n-オクタノエート)、2-メチル-1,4-ブタンジオールジ(n-ノナノエート)、2-メチル-1,4-ブタンジオールジ(n-デカノエート)、1,4-ペンタンジオールジ(n-ヘプタノエート)、1,4-ペンタンジオールジ(n-オクタノエート)、1,4-ペンタンジオールジ(n-ノナノエート)、1,4-ペンタンジオールジ(n-デカノエート)、2-メチル-1,5-ペンタンジオールジ(n-ヘプタノエート)、2-メチル-1,5-ペンタンジオールジ(n-オクタノエート)、2-メチル-1,5-ペンタンジオールジ(n-ノナノエート)、2-メチル-1,5-ペンタンジオールジ(n-デカノエート)、3-メチル-1,5-ペンタンジオールジ(n-ヘプタノエート)、3-メチル-1,5-ペンタンジオールジ(n-オクタノエート)、3-メチル-1,5-ペンタンジオールジ(n-ノナノエート)、3-メチル-1,5-ペンタンジオールジ(n-デカノエート)が挙げられる。
 また、アジピン酸、アゼライン酸、及びセバシン酸のいずれかと、炭素数8~13の1価のアルカノールとのエステルが挙げられ、好ましい具体例としては、アジピン酸ジ(n-オクチル)、アジピン酸ジ(n-ノニル)、アジピン酸ジ(n-デシル)、アジピン酸ジ(2-エチルヘキシル)、アジピン酸ジイソオクチル、アジピン酸ジイソノニル、アジピン酸ジ(3,5,5-トリメチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジイソウンデシル、アジピン酸ジイソドデシル、アジピン酸ジイソトリデシル、アゼライン酸ジ(n-オクチル)、アゼライン酸ジ(n-ノニル)、アゼライン酸ジ(n-デシル)、アゼライン酸ジ(2-エチルヘキシル)、アゼライン酸ジイソオクチル、アゼライン酸ジイソノニル、アゼライン酸ジ(3,5,5-トリメチルヘキシル)、アゼライン酸ジイソデシル、アゼライン酸ジイソウンデシル、アゼライン酸ジイソドデシル、アゼライン酸ジイソトリデシル、セバシン酸ジ(n-オクチル)、セバシン酸ジ(n-ノニル)、セバシン酸ジ(n-デシル)、セバシン酸ジ(2-エチルヘキシル)、セバシン酸ジイソオクチル、セバシン酸ジイソノニル、セバシン酸ジ(3,5,5-トリメチルヘキシル)、セバシン酸ジイソデシル、セバシン酸ジイソウンデシル、セバシン酸ジイソドデシル、セバシン酸ジイソトリデシル等が挙げられる。
 脂肪族トリエステルとしては、3価のポリオールと、飽和脂肪族モノカルボン酸のエステルであるトリオールエステルが挙げられる。トリオールエステルとしては、以下の式(3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003

 式(3)において、R6は直鎖又は分岐の炭素数2~20の3価の飽和脂肪族炭化水素基である。R7、R8、R9は直鎖または分岐の炭素数2~20のアルキル基であり、R7、R8、R9は互いに同じであってもよいし、異なっていてもよい。
 式(3)においては、R6の炭素数が4~8で、かつR7、R8、R9の炭素数が2~12であることが好ましく、R6の炭素数が5~7で、かつR7、R8、R9の炭素数が3~8であることが好ましい。炭素数をこれら範囲とすることで、冷凍機油の各種性能を良好にしやすくなり、さらには、分子量が大きくなりすぎず、粘度指数向上剤により粘度指数も向上させやすくなる。
 また、体積抵抗率を良好にするために、少なくともR6が分岐であることが好ましく、R6はヒンダードアルコールから水酸基を除いた基であることがより好ましく、トリメチロールプロパンから水酸基を除いた基であることがさらに好ましい。なお、ヒンダードアルコールとは、4つの炭素原子に結合する4級炭素原子を有するアルコールをいう。
 脂肪族トリエステルの好ましい例としては、トリメチロールプロパンと炭素数4~9の飽和脂肪族モノカルボン酸のエステルが挙げられ、具体例には、トリメチロールプロパントリ(n-ブタノエート)、トリメチロールプロパントリイソブタノエート、トリメチロールプロパントリ(n-ペンタノエート)、トリメチロールプロパントリイソペンタノエート、トリメチロールプロパントリ(n-ヘキサノエート)、トリメチロールプロパントリ(2-エチルヘキサノエート)、トリメチロールプロパントリ(n-ヘプタノエート)、トリメチロールプロパントリイソヘプタノエート、トリメチロールプロパントリ(n-オクタノエート)、トリメチロールプロパントリ(2,2-ジメチルヘキサノエート)、トリメチロールプロパントリ(n-ノナノエート)、トリメチロールプロパントリ(3,5,5-トリメチルヘキサノエート)等が挙げられる。
 ポリオールエステルは、4価以上のアルコールと、飽和脂肪族モノカルボン酸とのエステルが挙げられ、4~6価のアルコールと、飽和脂肪族モノカルボン酸とのエステルが好ましい。
 具体的には、以下の式(4)又は(5)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004

 式(4)において、R10は直鎖又は分岐の炭素数2~20の4価の飽和脂肪族炭化水素基であり、R11~R14は直鎖又は分岐の炭素数2~20のアルキル基であり、R11、R12、R13、R14は互いに同じであっても異なっていてもよい。
 また、式(4)において、R10の炭素数が4~8で、かつR11~R14の炭素数が2~10であることが好ましく、R10の炭素数が4~6で、かつR11~R14の炭素数が3~8であることがさらに好ましい。炭素数をこれら範囲とすることで、冷凍機油の各種性能を良好にしやすくなり、さらには、分子量が大きくなりすぎず、粘度指数向上剤により粘度指数も向上させやすくなる。
 さらに、体積抵抗率を良好にするために、少なくともR10が分岐を有することが好ましく、R10は、ヒンダードアルコールから水酸基を除いた基であることがより好ましく、ペンタエリスリトールから水酸基を除いた基がさらに好ましい。
Figure JPOXMLDOC01-appb-C000005

 式(5)において、R18、R19は、それぞれ独立に分岐又は直鎖の炭素数2~20の4価の飽和脂肪族炭化水素基である。R18、R19は、互いに同じであってもよいし、異なっていてもよい。R15~R17、及びR20~R22は、直鎖又は分岐の炭素数2~20のアルキル基であり、R15、R16、R17、R20、R21、R22は互いに同じであっても異なっていてもよい。
 式(5)において、R18、R19の炭素数が4~8で、かつR15~R17、及びR20~R22の炭素数が2~10であることが好ましく、R18、R19の炭素数が4~6で、かつR15~R17、及びR20~R22の炭素数が3~8であることがより好ましい。炭素数をこれら範囲とすることで、冷凍機油の各種性能を良好にしやすくなり、さらには、分子量が大きくなりすぎず、粘度指数向上剤により粘度指数も向上させやすくなる。
 さらに、体積抵抗率を良好にするために、R18及びR19のいずれもが分岐を有することが好ましい。また、R18、R19の好適な具体例としては、ヒンダードアルコールから水酸基を除いた基であることが好ましく、ペンタエリスリトールから水酸基を除いた基がより好ましい。
 ポリオールエステルとしては、ペンタエリスリトール又はジペンタエリスリトールと、炭素数4~9の飽和脂肪族モノカルボン酸とのエステルが挙げられ、好ましい具体例としては、ペンタエリスリトールテトラブタノエート、ペンタエリスリトールテトライソブタノエート、ペンタエリスリトールテトラペンタノエート、ペンタエリスリトールテトライソペンタノエート、ペンタエリスリトールテトラヘキサノエート、ペンタエリスリトールテトラ(2-エチルブタノエート)、ペンタエリスリトールテトラヘプタノエート、ペンタエリスリトールテトライソヘプタノエート、ペンタエリスリトールテトラオクタノエート、ペンタエリスリトールテトラ(2,2-ジメチルヘキサノエート)、ジペンタエリスリトールヘキサブタノエート、ジペンタエリスリトールヘキサイソブタノエート、ジペンタエリスリトールヘキサペンタノエート、ジペンタエリスリトールヘキサイソペンタノエート、ジペンタエリスリトールヘキサヘキサノエート、ジペンタエリスリトールヘキサ(2-エチルブタノエート)、ジペンタエリスリトールヘキサヘプタノエート、ジペンタエリスリトールヘキサイソヘプタノエート、ジペンタエリスリトールヘキサオクタノエート、ジペンタエリスリトールヘキサ(2,2-ジメチルヘキサノエート)等が挙げられる。
(エーテル化合物)
 エーテル基を有する含酸素基油としては、脂肪族モノエーテル、脂肪族ジエーテル、脂肪族トリエーテル、脂肪族テトラエーテル、及びポリビニルエーテル(PVE)から選択されるエーテル化合物が挙げられる。
 脂肪族モノエーテルとしては、アルキルエーテルが挙げられ、具体的には、下記式(6)で示される化合物が挙げられる。
    R23-O-R24     (6)
 式(6)において、R23、R24は直鎖又は分岐の炭素数2~24のアルキル基であり、R23、R24は互いに同じでも異なっていてもよい。
 ここで、R23、R24の炭素数は、好ましくは6~24、より好ましくは8~12、さらに好ましくは8~10である。脂肪族モノエーテルにおいて、炭素数をこれら範囲内とすることで、エーテル化合物の分子量は比較的小さくなる。そのため、粘度指数向上剤による粘度指数の向上効果が得られやすくなる。さらには、潤滑性能等の各種性能も向上させやすくなる。さらに、体積抵抗率を向上させる観点から、R23及びR24は、分岐のアルキル基であることが好ましい。
 具体的な脂肪族モノエーテルとしては、n-ヘキシルエーテル、n-ヘプチルエーテル、n-オクチルエーテル、ビス(2-エチルへキシル)エーテル、n-ノニルエーテル、イソノニルエーテル、ビス(3,5,5-トリメチルへキシル)エーテル、n-デシルエーテル、ビス(2-ブチルオクチル)エーテル、ビス(2-へキシルデシル)エーテル、ビス(2-ヘプチルウンデシル)エーテル、ビス(2-オクチルドデシル)エーテル、ビス(2-ノニルトリデシル)エーテル、ビス(2-デシルテトラデシル)エーテル等が挙げられ、これらの中では、ビス(2-エチルへキシル)エーテル、ビス(3,5,5-トリメチルヘキシル)エーテルがより好ましい。
 脂肪族ジエーテルとしては、2価のアルコールのジアルキルエーテルが挙げられ、具体的には、下記式(7)で示される化合物が挙げられる。
    R25-O-R26-O-R27   (7)
 式(7)において、R25、R27は直鎖又は分岐の炭素数2~20のアルキル基であり、R25、R27は互いに同じでも異なっていてもよい。R26は、直鎖又は分岐の炭素数2~20の2価の飽和脂肪族炭化水素基である。
 式(7)において、R25、R27の炭素数が4~18であるとともに、R26の炭素数が2~10であることが好ましく、R25、R27の炭素数が7~13であるとともに、R26の炭素数が4~6であることがより好ましい。炭素数をこれら範囲とすることで、分子量が比較的小さくなり、粘度指数向上剤による粘度指数の向上効果が得られやすくなる。さらには、潤滑性能等の各種性能も向上させやすくなる。さらに、体積抵抗率を向上させる観点から、R25~R27の少なくともいずれかひとつは分岐を有することが好ましい。
 脂肪族ジエーテルの例としては、2,2-ジメチル-1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-メチル-1,4-ブタンジオール、1,4-ペンタンジオール、2-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオールから選択される2価のアルコールのジアルキルエーテルが挙げられ、好適な具体例としては、2,2-ジメチル-1,3-プロパンジオールジ(n-ヘプチル)、2,2-ジメチル-1,3-プロパンジオールジ(n-オクチル)、2,2-ジメチル-1,3-プロパンジオールジ(n-ノニル)、2,2-ジメチル-1,3-プロパンジオールジ(n-デシル)、2-メチル-1,3-プロパンジオールジ(n-ヘプチル)、2-メチル-1,3-プロパンジオールジ(n-オクチル)、2-メチル-1,3-プロパンジオールジ(n-ノニル)、2-メチル-1,3-プロパンジオールジ(n-デシル)、2-メチル-1,4-ブタンジオールジ(n-ヘプチル)、2-メチル-1,4-ブタンジオールジ(n-オクチル)、2-メチル-1,4-ブタンジオールジ(n-ノニル)、2-メチル-1,4-ブタンジオールジ(n-デシル)、1,4-ペンタンジオールジ(n-ヘプチル)、1,4-ペンタンジオールジ(n-オクチル)、1,4-ペンタンジオールジ(n-ノニル)、1,4-ペンタンジオールジ(n-デシル)、2-メチル-1,5-ペンタンジオールジ(n-ヘプチル)、2-メチル-1,5-ペンタンジオールジ(n-オクチル)、2-メチル-1,5-ペンタンジオールジ(n-ノニル)、2-メチル-1,5-ペンタンジオールジ(n-デシル)、3-メチル-1,5-ペンタンジオールジ(n-ヘプチル)、3-メチル-1,5-ペンタンジオールジ(n-オクチル)、3-メチル-1,5-ペンタンジオールジ(n-ノニル)、3-メチル-1,5-ペンタンジオールジ(n-デシル)、1,6-ヘキサンジオールジ(n-オクチル)、1,6-ヘキサンジオールジ(n-ノニル)、1,6-ヘキサンジオールジ(n-デシル)、1,6-ヘキサンジオールジ(2-エチルヘキシル)、1,6-ヘキサンジオールジイソオクチル、1,6-ヘキサンジオールジイソノニル、1,6-ヘキサンジオールジ(3,5,5-トリメチルヘキシル)、1,6-ヘキサンジオールジイソデシル、1,6-ヘキサンジオールジイソウンデシル、1,6-ヘキサンジオールジイソドデシル、1,6-ヘキサンジオールジイソトリデシル等が挙げられる。
 脂肪族トリエーテルとしては、3価のアルコールのトリアルキルエーテルが挙げられ、具体的には、下記式(8)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006

 式(8)において、R28は直鎖又は分岐の炭素数2~20の3価の飽和炭化水素基を表す。R29~R31は、直鎖又は分岐の炭素数2~20のアルキル基であり、R29、R30、R31は互いに同じでもよいし、異なっていてもよい。
 式(8)において、R28の炭素数が4~8であるとともに、R29~R31の炭素数が3~10であることが好ましく、R28の炭素数が5~7であるとともに、R29~R31の炭素数が4~9であることがより好ましく、R29~R31の炭素数が4~6であることがさらに好ましい。炭素数をこれら範囲とすることで、分子量が比較的小さくなり、粘度指数向上剤による粘度指数の向上効果が得られやすくなる。さらには、潤滑性能等の各種性能も向上させやすくなる。
 また、体積抵抗率を比較的大きくするために、少なくともR28が分岐であることが好ましく、R28はヒンダードアルコールから水酸基を除いた基であることがより好ましく、トリメチロールプロパンから水酸基を除いた基であることがさらに好ましい。
 脂肪族トリエーテルとしては、トリメチロールプロパンのトリアルキルエーテルが挙げられ、好ましい具体例としては、トリメチロールプロパントリ(n-ブチル)、トリメチロールプロパントリイソブチル、トリメチロールプロパントリ(n-ペンタン)、トリメチロールプロパントリイソペンタン、トリメチロールプロパントリ(n-ヘキサン)、トリメチロールプロパントリ(n-ヘプタン)、トリメチロールプロパントリ(イソヘプタン)、トリメチロールプロパントリ(n-オクタン)、トリメチロールプロパントリ(2-エチルヘキサン)、トリメチロールプロパントリ(2,2-ジメチルヘキサン)、トリメチロールプロパントリ(n-ノナン)、トリメチロールプロパントリ(3,5,5-トリメチルヘキサン)等が挙げられる。これらの中では、トリメチロールプロパントリ(n‐ブチル)がより好ましい。
 脂肪族テトラエーテルとしては、4価のアルコールのテトラアルキルエーテルが挙げられる。具体的には、下記式(9)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007

 式(9)において、R32は、は直鎖又は分岐の炭素数2~20の4価の飽和脂肪族炭化水素基である。R33~R36は直鎖又は分岐の炭素数2~20のアルキル基であり、R33、R34、R35、R36は互いに同じであっても異なっていてもよい。
 また、式(9)において、R32の炭素数が4~8で、かつR33~R36の炭素数が2~10であることが好ましく、R32の炭素数が4~6であり、かつR33~R36の炭素数が4~9であることがより好ましく、R33~R36の炭素数が4~6であることがさらに好ましい。炭素数をこれら範囲とすることで、分子量を比較的小さくできるため、粘度指数向上剤による粘度指数の向上効果が得られやすくなる。さらには、潤滑性能等の各種性能も向上させやすくなる。
 さらに、体積抵抗率を向上させる観点から、少なくともR32が分岐を有することが好ましく、R32は、ヒンダードアルコールから水酸基を除いた基であることがより好ましく、ペンタエリスリトールから水酸基を除いた基がさらに好ましい。
 好ましい脂肪族テトラエーテルとしては、ペンタエリスリトールのテトラアルキルエーテルが挙げられ、具体的な化合物としては、ペンタエリスリトールテトラ(n-ブタン)、ペンタエリスリトールテトライソブタン、ペンタエリスリトールテトラ(n-ペンタン)、ペンタエリスリトールテトライソペンタン、ペンタエリスリトールテトラ(n-ヘキサン)、ペンタエリスリトールテトラ(n-ヘプタン)、ペンタエリスリトールテトライソヘプタン、ペンタエリスリトールテトラ(n-オクタン)、ペンタエリスリトールテトラ(2エチルヘキサン)、ペンタエリスリトールテトラ(2,2-ジメチルヘキサン)、ペンタエリスリトールテトラ(n-ノナン)、ペンタエリスリトールテトラ(3,5,5-トリメチルヘキサン)等が挙げられ、中でもペンタエリスリトールテトラ(n-ブタン)がより好ましい。
 ここで、脂肪族モノエーテル、脂肪族ジエーテル、脂肪族トリエーテル、及び脂肪族テトラエーテルそれぞれが有する炭素数の総数は、好ましくは12~48となる。炭素数の総数が、上記範囲内となることで、冷凍機油としての各種性能が発揮しやすくなる。また、上記上限以下とすることで、比較的低分子となって、粘度指数向上剤と併用することで、冷凍機油の粘度指数を向上させやすくなる。以上の観点から、各エーテル化合物の炭素数の総数は、14~32がより好ましく、16~24がさらに好ましく、18~21が特に好ましい。
 ポリビニルエーテル(PVE)は、ビニルエーテル由来の構成単位を含むものであり、好ましくはビニルアルキルエーテル由来の構成単位を含むものである。なお、ビニルアルキルエーテルにおけるアルキル基は、炭素数1~20のアルキル基であり、より詳細には後述するR38と同様である。
ポリビニルエーテル(PVE)の具体例としては、下記式(10)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008

 式(10)において、nは繰り返し単位を示し、その平均値が2~20である。R37は水素原子、または直鎖若しくは分岐の炭素数1~20のアルキル基であり、R38は直鎖または分岐の炭素数1~20のアルキル基である。R37、R38は互いに同じであってもよいし、異なっていてもよい。
 R37は、水素原子、又は炭素数1~10のアルキル基が好ましく、水素原子又は炭素数1~6のアルキル基がより好ましい。R38の炭素数は、潤滑性及び冷媒との相溶性の観点から、好ましくは1~10、より好ましくは2~6である。
 また、ポリビニルエーテルは、分子量が低いほうが粘度も低くなり、後述する粘度指数向上剤によって粘度指数を向上させやすくなる。そのため、nの平均値は、2~10が好ましく、2~5がさらに好ましい。
 R37及びR38の好適なアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、直鎖又は分岐のペンチル基、直鎖又は分岐のヘキシル基、直鎖又は分岐のヘプチル基、直鎖又は分岐のオクチル基、直鎖又は分岐のノニル基、各直鎖又は分岐のデシル基などが挙げられる。
 なお、基油として使用されるポリビニルエーテルは、重量平均分子量(Mw)が5000未満のものであるが、好ましくは200以上3000以下、より好ましくは250以上2000以下である。
 なお、上記エステル化合物、及びエーテル化合物の中では、冷媒との相溶性、及び加水分解安定性等の観点から、エーテル化合物が好ましい。また、粘度指数向上剤との併用により粘度指数をより向上させ、かつ体積抵抗率も向上させやすくなる観点から、脂肪族モノエーテル、脂肪族ジエーテル、脂肪族トリエーテル、脂肪族テトラエーテルがより好ましく、中でも脂肪族モノエーテルがさらに好ましい。
 含酸素基油は、冷凍機油において主成分となるものである。具体的には、含酸素基油は、冷凍機油全量に対して、通常、65質量%以上97質量%以下、好ましくは、70質量%以上92質量%以下、さらに好ましくは75質量%以上89質量%以下である。
 また、冷凍機油は、本発明の効果を損なわない範囲で、鉱油、及び上記酸素含有合成基油以外の合成油から選択される潤滑油基油を含んでもよい。鉱油及び上記酸素含有合成基油以外の合成油の合計は、通常、冷凍機油全量に対して10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下である。
 なお、鉱油としては、例えばパラフィン系鉱油、ナフテン系鉱油、中間基系鉱油などが挙げられ、合成油としては、例えば、ポリ-α-オレフィン、α-オレフィンコポリマー、ポリブテン、アルキルベンゼン、GTL副生ワックス異性化油などが挙げられる。
[粘度指数向上剤]
 粘度指数向上剤は、上記含酸素基油の粘度指数を向上させる添加剤である。粘度指数向上剤としては、ポリアルキレングリコール(PAG)、ポリビニルエーテル(PVE)、及びポリメタクリレート(PMA)から選択される少なくとも1つの高分子量体である。冷凍機油は、これら粘度指数向上剤が上記含酸素基油に配合されることで、粘度指数を向上させつつ、体積抵抗率の値を高いものに維持しやすくなる。
 また、粘度指数向上剤として使用される高分子量体の重量平均分子量は、5,000以上10,000,000以下となるものである。粘度指数向上剤の重量平均分子量を5,000以上とすることで、適度な添加量で十分な粘度指数向上効果が得られ、粘度指数向上剤を添加したことによる体積抵抗率の低下も抑制される。また10,000,000以下とすることで、粘度指数向上剤を含酸素基油に溶解しやすくなる。
 添加量と粘度指数向上効果との関係から、上記重量平均分子量は、5,000以上5,000,000以下が好ましく、7,000以上1,000,000以下がより好ましく、10,000以上600,000以下がさらに好ましい。
(ポリアルキレングリコール(PAG))
 粘度指数向上剤として使用されるポリアルキレングリコールは、アルキレンオキシドを重合又は共重合してなる重合体が挙げられる。具体的なポリアルキレングリコール(PAG)としては、下記式(11)で表される化合物が挙げられる。
  R41[-(OR42-OR43   (11)
 式中、R41は水素原子、炭素数1~10の1価の炭化水素基、炭素数2~10のアシル基、結合部2~6個を有する炭素数1~10の炭化水素基、又は結合部2~6個を有する炭素数1~10の酸素含有炭化水素基である。R42は炭素数2~4のアルキレン基である。R43は水素原子、炭素数1~10の炭化水素基又は炭素数2~10のアシル基又は炭素数1~10の酸素含有炭化水素基である。wは1~6の整数、vは1以上の数であり、重量平均分子量が上記範囲となるような数である。
 上記一般式(11)において、R41及びR43の各々における炭素数1~10の1価の炭化水素基は直鎖状、分岐鎖状、環状のいずれであってもよい。該炭化水素基はアルキル基が好ましく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、直鎖又は分岐のブチル基、直鎖又は分岐のペンチル基、直鎖又は分岐のヘキシル基、直鎖又は分岐のヘプチル基、直鎖又は分岐のオクチル基、直鎖又は分岐のノニル基、直鎖又は分岐のデシル基、シクロペンチル基、シクロヘキシル基などを挙げることができる。上記1価の炭化水素基は、炭素数を10以下とすることで冷媒との相溶性が良好となる。そのような観点から、1価の炭化水素基の炭素数は、より好ましくは1~4である。
 また、R41及びR43の各々における炭素数2~10のアシル基が有する炭化水素基部分は、直鎖状、分岐鎖状、環状のいずれであってもよい。該アシル基の炭化水素基部分は、アルキル基が好ましく、その具体例としては、上述のR41及びR43として選択し得るアルキル基のうち炭素数1~9のものが挙げられる。該アシル基の炭素数が10以下とすることで冷媒との相溶性が良好となる。好ましいアシル基の炭素数は2~4である。
 R41及びR43が、いずれも炭化水素基又はアシル基である場合には、R41とR43は同一であってもよいし、互いに異なっていてもよい。
 R41が結合部位2~6個を有する炭素数1~10の炭化水素基である場合、この炭化水素基は鎖状のものであってもよいし、環状のものであってもよい。結合部位2個を有する炭化水素基としては、脂肪族炭化水素基が好ましく、例えばエチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、シクロペンチレン基、シクロヘキシレン基などが挙げられる。その他の炭化水素基としては、ビフェノール、ビスフェノールF、ビスフェノールAなどのビスフェノール類から水酸基を除いた残基を挙げることができる。また、結合部位3~6個を有する炭化水素基としては、脂肪族炭化水素基が好ましく、例えばトリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトール、1,2,3-トリヒドロキシシクロヘキサン、1,3,5-トリヒドロキシシクロヘキサンなどの多価アルコールから水酸基を除いた残基を挙げることができる。
 この脂肪族炭化水素基の炭素数が10以下とすることで冷媒との相溶性が良好となる。この脂肪族炭化水素基の好ましい炭素数は2~6である。
 さらに、R41及びR43の各々における炭素数1~10の酸素含有炭化水素基としては、エーテル結合を有する鎖状の脂肪族基や環状の脂肪族基(例えば、テトラヒドロフルフリル基)などを挙げることができる。
 前記一般式(11)中のR42は炭素数2~4のアルキレン基であり、繰り返し単位のオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシブチレン基が挙げられる。1分子中のオキシアルキレン基は同一であってもよいし、2種以上のオキシアルキレン基が含まれていてもよいが、1分子中に少なくともオキシプロピレン単位を含むものが好ましく、オキシアルキレン単位中に70モル%以上のオキシプロピレン単位を含むものがより好ましく、90モル%以上のオキシプロピレン単位を含むものがより好ましい。
 前記一般式(11)中のwは1~6の整数で、R41の結合部位の数に応じて定められる。例えばR41がアルキル基やアシル基の場合、wは1であり、R41が結合部位2,3,4,5及び6個を有する脂肪族炭化水素基である場合、wはそれぞれ2,3,4,5及び6となる。
 また、wは、好ましくは1~3の整数であり、より好ましくは1~2の整数である。
 なお、wが2以上の場合には、1分子中の複数のR43は同一であってもよいし、異なっていてもよい。
 ポリアルキレングリコール(PAG)は、公知の方法で製造可能である。
 また、PAGは、トリアルキルアルミニウムとハロゲン非含有オニウム塩により、オキシラン単量体を重合させ、PAGを得ることで極めて高分子量のものも製造可能である。以下、その製造方法について詳述する。
<ハロゲン非含有オニウム塩>
 ハロゲン非含有オニウム塩は、オニウム塩中にハロゲン原子を有さない塩である。ハロゲン非含有オニウム塩は、本製造方法における重合反応において、重合開始剤となるものである。
 ハロゲン非含有オニウム塩としては、アンモニウム塩が挙げられ、その好適例としては、以下の式(X)で表される化合物が挙げられる。
   R51(-Ox(NR52 4 x  ・・・(X)
 式(X)においてR51は、結合部を1~4個有する直鎖又は分岐の炭素数1~6の飽和炭化水素基、R52は直鎖又は分岐の炭素数4~8のアルキル基、xは1~4の整数である。)
 ここで、式(X)で表される化合物としては、xが1~2の整数であるとともに、R51が結合部を1~2個有することが好ましく、xが1であるとともに、R51が直鎖又は分岐の炭素数1~6のアルキル基であることがより好ましい。
 また、R51の炭素数としては、1~5が好ましく、1~4がより好ましい。R52の炭素数としては、4~6が好ましく、4がより好ましい。
 なお、式(X)のオニウム塩を使用する場合、得られるPAGにおいて、R51(-Oxが重合開始末端となる。
 R51の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の直鎖又は分岐のアルキル基;エチレン基、プロピレン基、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトールなどの多価アルコールから水酸基を除いた残基で例示される、結合部を2~4個有する直鎖又は分岐の飽和炭化水素基が挙げられる。
 また、R52の具体例としては、直鎖又は分岐のブチル基、直鎖又は分岐のオクチル基等が挙げられる。
 ハロゲン非含有オニウム塩は、所望する分子量に応じて使用量を変更すればよいが、反応系内の全単量体に対して、好ましくは0.005モル%以上1.5モル%以下、より好ましくは0.01モル%以上0.1モル%以下、さらに好ましくは0.01モル%以上0.06モル%以下、特に好ましくは0.01モル%以上0.03モル%以下である。ハロゲン非含有オニウム塩の使用量を、これら下限値以上とすることで、ハロゲン非含有オニウム塩を開始剤として適切に重合反応を進行させることが可能になる。また、これら上限値以下とすることで、得られるPAGの分子量が十分に高くなる。
 ハロゲン非含有オニウム塩は、例えば、アルカリ金属アルコキシドと第4級アンモニウム塩を反応させて合成する。
 アルカリ金属アルコキシドは、アルコールをアルカリ金属の水素化物でアルコキシ化することにより得られる。使用するアルコールのアルキル基は、R51の炭素数に応じて変更されるものであり、炭素数1~6のものが使用される。アルキル基は、直鎖でも分岐構造でもよい。
 アルコールとしては、1~4価のアルコールが使用され、具体的には、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、イソブチルアルコール、tert-ブチルアルコール、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトールなどが挙げられる。
 第4級アンモニウム塩としては、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラオクチルアンモニウムクロリド、テトラオクチルアンモニウムブロミドなどが挙げられる。
<トリアルキルアルミニウム>
 トリアルキルアルミニウムとしては、具体的には、アルキル基の炭素数が1~18のトリアルキルアルミニウムが挙げられ、これらの中では、アルキル基の炭素数が1~8のトリアルキルアルミニウムが好ましく、アルキル基の炭素数が2~6のトリアルキルアルミニウムがより好ましい。
 トリアルキルアルミニウムに含有されるアルキル基は、分岐であってもよいし、直鎖であってもよい。また、1分子中に含まれるアルキル基は同一であってもよいし、互いに異なっていてもよい。
 トリアルキルアルミニウムの具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、トリイソブチルアルミニウムなどが挙げられ、これらの中ではトリイソブチルアルミニウムが好ましい。
 トリアルキルアルミニウムは、1種単独で使用してもよいし、2種を併用してもよい。
また、トリアルキルアルミニウムは、ヘキサン、トルエンなどの溶剤で希釈されているものを使用してもよい。
 PAGの製造において、トリアルキルアルミニウムは、ハロゲン非含有オニウム塩に対して、モル比で1以上100以下であることが好ましく、5以上50以下であることがより好ましく、11以上40以下であることがさらに好ましい。
 本製造方法においては、トリアルキルアルミニウムをこれら範囲とすることで、高分子量のPAGを製造することが可能になる。
<オキシラン単量体>
 オキシラン単量体としては、炭素2原子、酸素1原子からなる複素三員環を有する化合物であるが、具体的には、エチレンオキシド、プロピレンオキシド、ブチレンオキシドが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用しても良い。
 PAGの合成は、トリアルキルアルミニウム、及び、ハロゲン非含有オニウム塩存在下、オキシラン単量体を開環重合することで行う。重合反応は、通常、これら原料を反応系内で混合することで行う。原料の混合は、例えば、反応系内に先に仕込んだハロゲン非含有オニウム塩に、オキシラン単量体を添加し、その後、さらにトリアルキルアルミニウムを添加して行う。或いは、反応系内に先に仕込んだトリアルキルアルミニウム、及びハロゲン非含有オニウム塩の混合物に、オキシラン単量体を添加して行ってもよい。
 重合反応は、特に限定されないが、溶媒存在下で行うことが好ましい。溶媒存在下で行うことで、重合を制御しやすくなり、高分子量のPAGが製造しやすくなる。
 溶媒としては、原料に対して不活性なものであれば特に限定されないが、ヘキサン、シクロヘキサン、オクタン、イソオクタン、トルエンなどの炭化水素系溶媒、モノエーテル、ジエーテル、トリエーテル、テトラエーテル、ポリビニルエーテル、ポリアルキレングリコール類などのエーテル系溶媒が挙げられる。
 ここで、モノエーテルとしては、アルキル基の炭素数が1~12であるジアルキルエーテル等が例示される。また、ジエーテルとしては、アルキル基の炭素数が1~12であるジアルキルジエーテルが用いられ、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコールなどのアルカンジオールのジアルキルエーテルが挙げられる。トリエーテル及びテトラエーテルとしては、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等の3価又は4価アルコールのアルキルエーテルが挙げられる。
 これらは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 溶媒は、全単量体の濃度(溶媒1Lに対する単量体のモル量)が、通常、0.1モル/L以上10モル/L以下、好ましくは1モル/L以上8モル/L以下、さらに好ましくは1モル/L以上4モル/L以下となるように反応系に添加される。単量体の濃度がこれらの上限値以下とすることで、高分子量のPAGを製造しやすくなる。また、下限値以上とすることで、反応容器のサイズが必要以上に大きくなることが防止される。
 重合反応を行う条件は特に限定されず、用いる原料の種類、目的とする分子量などに応じて適宜設定すればよい。重合反応時の圧力は、通常、大気圧下である。また、重合時の温度は、通常、-30~30℃、好ましくは-20~10℃、より好ましくは-15~0℃である。また、重合時間は、通常、0.5~24時間、好ましくは1~15時間、より好ましくは2~10時間である。
 重合反応は、例えば、水、アルコール、酸性物質、又はこれらの混合物等を添加し、触媒を失活させて停止してもよい。また、重合反応終了後、ろ過、減圧留去等の常法により、不純物、揮発成分を取り除いて重合体を回収すればよい。
 さらに、得られる重合体の末端は、水酸基となるものであるが、その末端水酸基は変性剤により官能基を導入してもよい。具体的には、重合体の末端は、水酸基をエステル化、又はエーテル化等することで、炭素数1~10の炭化水素基又は炭素数1~10の酸素含有炭化水素基、炭素数2~10のアシル基等を導入してもよい。
(ポリビニルエーテル(PVE))
 粘度指数向上剤として使用されるポリビニルエーテル(PVE)は、ビニルエーテル由来の構成単位を含むものであり、好ましくはビニルアルキルエーテル由来の構成単位を含むものである。なお、ビニルアルキルエーテルにおけるアルキル基は、炭素数1~20のアルキル基であり、より詳細には後述するR46と同様である。
 ポリビニルエーテル(PVE)の具体例としては、下記式(12)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009

 式(12)において、R45は水素原子、または直鎖若しくは分岐の炭素数1~20のアルキル基であり、R46は直鎖または分岐の炭素数1~20のアルキル基である。R45、R46は互いに同じであってもよいし、異なっていてもよい。また、mは、1以上で、上記重量平均分子量に応じた数である。
 R45は、水素原子、又は炭素数1~10のアルキル基が好ましく、水素原子又は炭素数1~6のアルキル基がより好ましい。R46の炭素数は、潤滑性及び冷媒との相溶性の観点から、好ましくは1~10、より好ましくは2~6である。
 R45及びR46のアルキル基の好適な例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、直鎖又は分岐のペンチル基、直鎖又は分岐のヘキシル基、直鎖又は分岐のヘプチル基、直鎖又は分岐のオクチル基、直鎖又は分岐のノニル基、各直鎖又は分岐のデシル基などが挙げられる。
(ポリメタクリレート)
 粘度指数向上剤として使用されるポリメタクリレートは、分散型及び非分散型に大別され、本実施形態ではいずれの型も用いることができるが、非分散型が好適である。非分散型のポリメタクリレートは、例えば、ポリメタクリル酸アルキルエステルが挙げられる。また、分散型のポリメタクリレートとしては、例えば、ポリメタクリル酸アルキルエステルと、極性基を有するモノマー成分とを共重合体したものが挙げられる。
 上記した粘度指数向上剤の中では、加水分解安定性の観点から、ポリアルキレングリコール及びポリビニルエーテルが好ましい。また、粘度指数をより向上させるためには、ポリアルキレングリコールが好ましく、体積抵抗率をより高くするためには、ポリビニルエーテルが好ましい。
 本実施形態において、粘度指数向上剤の含有量は、冷凍機油全量に対して、3質量%以上30質量%以下であることが好ましい。粘度指数向上剤の含有量を上記範囲内とすることで、体積抵抗率を悪化させることなく、粘度指数を向上させることができる。また、体積抵抗率及び粘度指数をバランスよく良好とするために、上記含有量は、8質量%以上25質量%以下がより好ましく、11質量%以上22質量%以下がさらに好ましい。
[その他の添加剤]
 本実施形態に係る冷凍機油は、さらに、酸化防止剤、酸捕捉剤、酸素捕捉剤、極圧剤、油性剤、銅不活性化剤、防錆剤、消泡剤等のその他の添加剤のいずれか1種又は2種以上を含有してもよい。添加剤の含有量は、冷凍機油全量に対して、好ましくは20質量%以下、より好ましくは0質量%以上10質量%以下である。なお、0質量%とは、冷凍機油に、その他の添加剤が含有されないことを意味する。
 酸化防止剤としては、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)等のフェノール系、フェニル-α-ナフチルアミン、N,N’-ジ-フェニル-p-フェニレンジアミン等のアミン系の酸化防止剤が挙げられるが、フェノール系の酸化防止剤が好ましい。酸化防止剤の含有量は、効果及び経済性などの点から、冷凍機油全量に対して、通常0.01~5質量%、好ましくは0.05~3質量%である。
 酸捕捉剤としては、例えばフェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油などのエポキシ化合物を挙げることができる。中でも相溶性の点でフェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシドが好ましい。
 このアルキルグリシジルエーテルのアルキル基、及びアルキレングリコールグリシジルエーテルのアルキレン基は、分岐を有していてもよく、炭素数は通常3~30、好ましくは4~24、特に好ましくは6~16のものである。また、α-オレフィンオキシドは全炭素数が一般に4~50、好ましくは4~24、特に6~16のものを使用する。本実施形態においては、上記酸捕捉剤は1種を用いてもよく、2種以上を組み合わせて用いてもよい。また、その含有量は、効果及びスラッジ発生の抑制の点から、冷凍機油全量に対して、通常0.005~5質量%、好ましくは0.05~3質量%である。
 本実施形態においては、酸捕捉剤を含有させることにより、冷凍機油の安定性を向上させることができる。
 酸素捕捉剤としては、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、ジフェニルスルフィド、ジオクチルジフェニルスルフィド、ジアルキルジフェニレンスルフィド、ベンゾチオフェン、ジベンゾチオフェン、フェノチアジン、ベンゾチアピラン、チアピラン、チアントレン、ジベンゾチアピラン、ジフェニレンジスルフィド等の含硫黄芳香族化合物、各種オレフィン、ジエン、トリエン等の脂肪族不飽和化合物、二重結合を持ったテルペン類等が挙げられる。酸素捕捉剤の含有量は、冷凍機油全量に対して、通常0.005~5質量%、好ましくは0.05~3質量%である。
 極圧剤としては、リン酸エステル、酸性リン酸エステル、亜リン酸エステル、酸性亜リン酸エステル及びこれらのアミン塩などのリン系極圧剤を挙げることができる。
 これらのリン系極圧剤は、極圧性、摩擦特性などの点からトリクレジルホスフェート、トリチオフェニルホスフェート、トリ(ノニルフェニル)ホスファイト、ジオレイルハイドロゲンホスファイト、2-エチルヘキシルジフェニルホスファイトなどが挙げられる。
 また、極圧剤としては、カルボン酸の金属塩も挙げられる。ここでいうカルボン酸の金属塩は、好ましくは炭素数3~60のカルボン酸、さらには炭素数3~30、特に12~30の脂肪酸の金属塩である。また、前記脂肪酸のダイマー酸やトリマー酸並びに炭素数3~30のジカルボン酸の金属塩を挙げることができる。これらのうち炭素数12~30の脂肪酸及び炭素数3~30のジカルボン酸の金属塩が特に好ましい。
 一方、金属塩を構成する金属としてはアルカリ金属又はアルカリ土類金属が好ましく、特に、アルカリ金属が最適である。
 さらに、上記以外の極圧剤として、例えば、硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、ジヒドロカルビルポリサルファイド、チオカーバメート類、チオテルペン類、ジアルキルチオジプロピオネート類などの硫黄系極圧剤を挙げることができる。
 上記極圧剤の含有量は、潤滑性及び安定性の点から、冷凍機油全量に基づき、通常0.001~5質量%、特に0.005~3質量%が好ましい。
 これら極圧剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 油性剤の例としては、ステアリン酸、オレイン酸などの脂肪族飽和及び不飽和モノカルボン酸、ダイマー酸、水添ダイマー酸などの重合脂肪酸、リシノレイン酸、12-ヒドロキシステアリン酸などのヒドロキシ脂肪酸、ラウリルアルコール、オレイルアルコールなどの脂肪族飽和及び不飽和モノアルコール、ステアリルアミン、オレイルアミンなどの脂肪族飽和および不飽和モノアミン、ラウリン酸アミド、オレイン酸アミドなどの脂肪族飽和及び不飽和モノカルボン酸アミド、グリセリン、ソルビトールなどの多価アルコールと脂肪族飽和又は不飽和モノカルボン酸との部分エステル等が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、その含有量は、冷凍機油全量に基づき、通常0.01~10質量%、好ましくは0.1~5質量%の範囲で選定される。
 銅不活性化剤としては、例えばN-[N,N’-ジアルキル(炭素数3~12のアルキル基)アミノメチル]トリアゾール等を挙げることができる。
 消泡剤としては、例えば、シリコーン油やフッ素化シリコーン油などを挙げることができる。消泡剤の含有量は、冷凍機油全量に対して、通常0.005~2質量%、好ましくは0.01~1質量%である。
 また、防錆剤としては、例えば金属スルホネート、脂肪族アミン類、有機亜リン酸エステル、有機リン酸エステル、有機スルフォン酸金属塩、有機リン酸金属塩、アルケニルコハク酸エステル、多価アルコールエステル等を挙げることができる。防錆剤の含有量は、冷凍機油全量に対して、通常0.005~2質量%、好ましくは0.01~1質量%である。
 本実施形態に係る冷凍機油には、さらに本発明の目的を阻害しない範囲で、他の公知の各種添加剤を含有させることができる。
 以上のように、冷凍機油は、含酸素基油と粘度指数向上剤からなるものでもよいし、含酸素基油と、粘度指数向上剤と、上記した添加剤から選択される少なくとも1種とからなるものでもよい。
<冷凍機油の製造方法>
 冷凍機油は、上記含酸素基油に、少なくとも上記粘度指数向上剤を配合することで製造する。また、含酸素基油には、上記した粘度指数向上剤以外のその他の添加剤を配合してもよい。さらに、冷凍機油には、含酸素基油以外にも、鉱油、含酸素基油以外の合成油から選択される潤滑油基油を配合してもよい。その潤滑油基油は、例えば、粘度指数向上剤、またはその他添加剤を希釈するために使用されるものであってもよい。
<冷媒>
 冷凍機油は、冷媒環境下で使用されるものであり、具体的には冷媒と混合されて冷凍機内部で使用されるものである。すなわち、冷凍機では、冷凍機油と冷媒とを含む冷凍機用組成物が使用される。冷凍機における冷媒と冷凍機油の使用量については、通常、冷媒/冷凍機油の質量比で99/1~10/90であるが、95/5~30/70の範囲にあることが好ましい。この質量比を上記範囲内とすると、冷凍機における冷凍能力、及び潤滑性を適切にできる。
 冷媒としては、下記の分子式(A)で示されるフッ化炭化水素化合物、飽和フッ化炭化水素化合物(HFC)、及び自然系冷媒から選択される少なくとも1種が挙げられる。
  C     ・・・(A)
(式中、Rは、Cl、Br、IまたはHを示し、pは1~6、qは0~2、rは1~14、sは0~13の整数である。但し、qが0の場合は、pは2~6であり、分子中に炭素-炭素不飽和結合を1以上有する。)
以下、前記分子式(A)で示される冷媒について詳細に説明する。
 前記分子式(A)は、分子中の元素の種類と数を表すものであり、式(A)は、炭素原子Cの数pが1~6の含フッ素有機化合物を表している。該分子式(A)において、Cで表されるp個の炭素原子の結合形態は、炭素-炭素単結合、炭素-炭素二重結合等の不飽和結合、炭素-酸素二重結合などが含まれる。炭素-炭素の不飽和結合は、安定性の点から、炭素-炭素二重結合であることが好ましく、その数は1以上であるが、1であるものが好ましい。
 また、分子式(A)において、Oで表されるq個の酸素原子の結合形態は、エーテル基、水酸基またはカルボニル基に由来する酸素であることが好ましい。この酸素原子の数qは、2であってもよく、2個のエーテル基や水酸基等を有する場合も含まれる。
 また、Oにおけるqが0であり分子中に酸素原子を含まない場合は、pは2~6であって、分子中に炭素-炭素二重結合等の不飽和結合を1以上有する。すなわち、Cで表されるp個の炭素原子の結合形態の少なくとも1つは、炭素-炭素不飽和結合であることが必要である。
 また、分子式(A)において、Rは、Cl、Br、IまたはHを表し、これらのいずれであってもよいが、オゾン層を破壊する恐れが小さいことから、Rは、Hであることが好ましい。
 分子式(A)で表される含フッ素有機化合物としては、不飽和フッ化炭化水素化合物、フッ化エーテル化合物、フッ化アルコール化合物及びフッ化ケトン化合物などが好適なものとして挙げられる。
[不飽和フッ化炭化水素化合物]
 不飽和フッ化炭化水素化合物としては、例えば、分子式(A)において、RがHであり、pが2~6、qが0、rが1~12、sは0~11である不飽和フッ化炭化水素化合物が挙げられる。
 このような不飽和フッ化炭化水素化合物として好ましくは、例えば、直鎖状または分岐状の炭素数2~6の鎖状オレフィンや炭素数4~6の環状オレフィンのフッ化物を挙げることができる。
 具体的には、1~3個のフッ素原子が導入されたエチレン、1~5個のフッ素原子が導入されたプロペン、1~7個のフッ素原子が導入されたブテン類、1~9個のフッ素原子が導入されたペンテン類、1~11個のフッ素原子が導入されたヘキセン類、1~5個のフッ素原子が導入されたシクロブテン、1~7個のフッ素原子が導入されたシクロペンテン、1~9個のフッ素原子が導入されたシクロヘキセンなどが挙げられる。
 これらの不飽和フッ化炭化水素化合物の中では、炭素数2~3の不飽和フッ化炭化水素化合物が好ましく、トリフルオロエチレンなどのエチレンのフッ化物及び各種プロペンのフッ化物が挙げられるが、プロペンのフッ化物がより好ましい。
 プロペンのフッ化物としては、例えば、3,3,3-トリフルオロプロペン、1,2,3,3,3-ペンタフルオロプロペン(HFO1225ye)、1,3,3,3-テトラフルオロプロペン(HFO1234ze)及び2,3,3,3-テトラフルオロプロペン(HFO1234yf)などを挙げることができる。
 不飽和フッ化炭化水素化合物は、1種を単独で用いてよく、2種以上組み合わせて用いてもよい。
[フッ化エーテル化合物]
 フッ化エーテル化合物としては、例えば、分子式(A)において、RがHであり、pが2~6、qが1~2、rが1~14、sは0~13であるフッ化エーテル化合物が挙げられる。
 このようなフッ化エーテル化合物として好ましくは、例えば、炭素数が2~6で、1~2個のエーテル結合を有し、アルキル基が直鎖状または分岐状の鎖状脂肪族エーテルのフッ化物や、炭素数が3~6で、1~2個のエーテル結合を有する環状脂肪族エーテルのフッ化物を挙げることができる。
 具体的には、1~6個のフッ素原子が導入されたフッ化ジメチルエーテル、1~8個のフッ素原子が導入されたフッ化メチルエチルエーテル、1~8個のフッ素原子が導入されたフッ化ジメトキシメタン、1~10個のフッ素原子が導入されたフッ化メチルプロピルエーテル類、1~12個のフッ素原子が導入されたフッ化メチルブチルエーテル類、1~12個のフッ素原子が導入されたフッ化エチルプロピルエーテル類、1~6個のフッ素原子が導入されたフッ化オキセタン、1~6個のフッ素原子が導入されたフッ化1,3-ジオキソラン、1~8個のフッ素原子が導入されたフッ化テトラヒドロフランなどを挙げることができる。
[フッ化アルコール化合物]
 フッ化アルコール化合物としては、例えば、分子式(A)において、RがHであり、pが1~6、qが1~2、rが1~13、sは1~13であるフッ化アルコール化合物が挙げられる。
 このようなフッ化アルコール化合物として好ましくは、例えば、炭素数が1~6で、1~2個の水酸基を有する直鎖状または分岐状の脂肪族アルコールのフッ化物を挙げることができる。
 具体的には、1~3個のフッ素原子が導入されたフッ化メチルアルコール、1~5個のフッ素原子が導入されたフッ化エチルアルコール、1~7個のフッ素原子が導入されたフッ化プロピルアルコール類、1~9個のフッ素原子が導入されたフッ化ブチルアルコール類、1~11個のフッ素原子が導入されたフッ化ペンチルアルコール類、1~4個のフッ素原子が導入されたフッ化エチレングリコール、1~6個のフッ素原子が導入されたフッ化プロピレングリコールなどを挙げることができる。
[フッ化ケトン化合物]
 フッ化ケトン化合物としては、例えば、分子式(A)において、RがHであり、pが2~6、qが1~2、rが1~12、sは0~11であるフッ化ケトン化合物が挙げられる。
 このようなフッ化ケトン化合物として好ましくは、例えば、炭素数が3~6で、アルキル基が直鎖状または分岐状の脂肪族ケトンのフッ化物を挙げることができる。
 具体的には、1~6個のフッ素原子が導入されたフッ化アセトン、1~8個のフッ素原子が導入されたフッ化メチルエチルケトン、1~10個のフッ素原子が導入されたフッ化ジエチルケトン、1~10個のフッ素原子が導入されたフッ化メチルプロピルケトン類などが挙げられる。
 フッ化ケトン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[飽和フッ化炭化水素化合物]
 飽和フッ化炭化水素化合物としては、通常、炭素数1~4のアルカンのフッ化物であり、炭素数1~3のアルカンのフッ化物が好ましく、炭素数1~2のアルカン(メタン又はエタン)のフッ化物がより好ましい。具体的なメタン又はエタンのフッ化物としては、トリフルオロメタン(R23)、ジフルオロメタン(R32)、1,1-ジフルオロエタン(R152a)、1,1,1-トリフルオロエタン(R143a)、1,1,2-トリフルオロエタン(R143)、1,1,1,2-テトラフルオロエタン(R134a)、1,1,2,2-テトラフルオロエタン(R134)、1,1,1,2,2-ペンタフルオロエタン(R125)が挙げられる。
 また、飽和フッ化炭化水素化合物としては、上記アルカンのフッ化物を、さらにフッ素以外のハロゲン原子でハロゲン化したものであっても良く、例えば、トリフルオロヨードメタン(CFI)などが例示できる。
 これらの飽和フッ化炭化水素化合物は、1種を単独で用いてよく、2種以上組み合わせて用いてもよい。ここで、2種以上組み合わせて用いる場合の例として、炭素数1~3の飽和フッ化炭化水素化合物を2種以上混合した混合冷媒や、炭素数1~2の飽和フッ化炭化水素化合物を2種以上混合した混合冷媒が挙げられる。具体的には、ジフルオロメタン(R32)と1,1,1,2,2-ペンタフルオロエタン(R125)の混合冷媒であるR410A、ジフルオロメタン(R32)と1,1,1,2,2-ペンタフルオロエタン(R125)と1,1,1,2-テトラフルオロエタン(R134a)の混合冷媒であるR407C等が挙げられる。
[自然系冷媒]
 自然系冷媒としては、二酸化炭素(炭酸ガス)、アンモニア(NH)や、n-プロパン、n-ブタン、イソブタン、2-メチルブタン、n-ペンタン、シクロペンタンイソブタン、ノルマルブタン等の炭化水素が挙げられ、これらは1種を単独で用いても、2種以上を組み合わせて用いてもよいし、自然系冷媒以外の冷媒と組み合わせてもよい。
 また、冷媒としては、上記の中では、不飽和フッ化炭化水素化合物、飽和フッ化炭化水素化合物、及び自然冷媒から選択される少なくとも1種が好ましく使用され、中でも、R134a、R410A、R407C、HFO1234yf、HFO1234ze、R32、二酸化炭素、アンモニア、n-プロパン、n-ブタン、及びイソブタンがより好ましくその中でもR32、R134a及びHFO1234yfがさらに好ましい。特に、R32単独の冷媒、及びHFO1234yf単独の冷媒が好ましい。
[圧縮型冷凍機]
 上記冷凍機油は、通常、圧縮型冷凍機に使用されるものである。圧縮型冷凍機は、少なくとも圧縮機を備える。また、圧縮型冷凍機は、圧縮機内部にモーターが内蔵されている密閉型冷凍機が好ましい。上記冷凍機油は、粘度指数及び体積抵抗率のいずれもが高いものであるため、密閉型冷凍機に使用される場合でも、漏電等を防止しつつ、省エネルギー化を達成できる。
 圧縮型冷凍機は、その内部に冷凍機油を含有するものであり、冷凍機油により圧縮機等に設けられる摺動部分を潤滑させる。また、圧縮型冷凍機は、その内部に冷凍機油に加え冷媒(すなわち、冷凍機用組成物)を含有しており、冷凍機の冷凍サイクルに冷凍機用組成物を循環させている。なお、冷凍機は、圧縮機、凝縮器、膨張機構(膨張弁など)及び蒸発器、あるいは圧縮機、凝縮器、膨張機構、乾燥器及び蒸発器を必須とする構成からなる冷凍サイクルを有する。
 また、冷凍機油は、例えば開放型カーエアコン、電動カーエアコン等の各種カーエアコン、ガスヒートポンプ(GHP)、空調、冷蔵庫、自動販売機、ショーケース、給湯機、床暖房などの各種冷凍機システム、給湯システム、及び暖房システムにおける冷凍機に用いることができるが、これらの中ではカーエアコン、特に、圧縮機内部にモーターが内蔵された電動カーエアコンに使用することが好ましい。カーエアコンでは、膨張弁が使用され、冷凍機油が細径のキャピラリーを通る必要がないので、高分子量体である粘度指数向上剤によって詰まりが発生したりすることがない。
 以下に、本発明を、実施例により、さらに具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、各種測定方法は、以下に示とおりである。
(1)動粘度(100℃)
 JIS K2283:2000に準拠して、各温度でガラス製毛管式粘度計を用いて測定した。
(2)粘度指数(VI)
 JIS K2283:2000に準拠して測定した。
(3)重量平均分子量(Mw)
 重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した。GPCは、カラムとして東ソー株式会社製TSKgel SuperMultiporeHZ-M2本を用い、テトラヒドロフランを溶離液として、検出器に屈折率検出器を用いて測定を行い、ポリスチレンを標準試料として重量平均分子量(Mw)を求めた。
(4)体積抵抗率
 JIS C 2101の24(体積抵抗率試験)に準拠し,室温25℃で測定した。
 各実施例、比較例において、以下の配合の冷凍機油を調合して、各冷凍機油の100℃動粘度、粘度指数、体積抵抗率を測定した。なお、以下で示す質量%は、冷凍機油全量に対する割合を示す。
[実施例1]
含酸素基油:ビス(3,5,5-トリメチルヘキシル)エーテル 78質量%
粘度指数向上剤:ポリアルキレングリコール(PAG)     22質量%
※1 含酸素基油の100℃における動粘度:1.45mm2/s、体積抵抗率:5.34×1013Ω・m
※2 PAGとしては、旭硝子株式会社製のPREMINOL S4318Fを使用した。重量平均分子量(Mw):18,000、式(11)において、R41が2価の炭化水素基、R42がプロピレン基、R43が水素原子、vが重量平均分子量に応じた数、wが2である化合物である。
[実施例2]
含酸素基油:トリメチロールプロパントリ(n‐ブチル) 79質量%
粘度指数向上剤:ポリアルキレングリコール(PAG)  21質量%
※1 含酸素基油の100℃における動粘度:1.31mm2/s、体積抵抗率:5.50×1012Ω・m
※2 PAGは、実施例1と同様のものを使用した。
[実施例3]
含酸素基油:ペンタエリスリトールテトラ(n‐ブチル) 80質量%
粘度指数向上剤:ポリアルキレングリコール(PAG)  20質量%
※1 含酸素基油の100℃における動粘度:1.66mm2/s、体積抵抗率:8.04×1012Ω・m
※2 PAGは、実施例1と同様のものを使用した。
[実施例4]
含酸素基油:ポリブチルビニルエーテル(PVE)    85質量%
粘度指数向上剤:ポリアルキレングリコール(PAG)  15質量%
※1 含酸素基油(PVE)は、式(10)において、R38がブチル基、R37が水素、nが3.5の化合物であり、100℃における動粘度:2.28mm2/s、体積抵抗率:4.41×1011Ω・mであった。
※2 PAGは、実施例1と同様のものを使用した。
[実施例5]
含酸素基油:ビス(3,5,5-トリメチルヘキシル)エーテル 89質量%
粘度指数向上剤:ポリブチルビニルエーテル(PVE)     11質量%
※1 含酸素基油は実施例1と同様である。
※2 PVEは、重量平均分子量(Mw)が84,000、式(12)において、R46がブチル基、R45が水素の化合物である。
[比較例1]
含酸素基油:ポリオキシエチレンポリオキシプロピレングリコール(PAG)100質量%
※PAGの100℃における動粘度:9mm2/s、体積抵抗率:5.3×108Ω・m
[比較例2]
含酸素基油:ポリエチルビニルエーテル(PVE)   100質量%
※PVEの100℃における動粘度:9mm2/s、体積抵抗率:1.8×1012Ω・m
Figure JPOXMLDOC01-appb-T000010
 以上のように、実施例1~5では、含酸素基油に、所定の粘度指数向上剤を配合することにより、粘度指数及び体積抵抗率のいずれもが優れた冷凍機油を得ることができた。それに対して、比較例1,2では、粘度指数向上剤を配合しなかったため、粘度指数及び体積抵抗率のいずれか一方を高くすることができなった。

Claims (12)

  1.  含酸素基油と粘度指数向上剤を含む冷凍機油であって、粘度指数(VI)が200以上で、かつ体積抵抗率が1×109Ω・m以上である冷凍機油。
  2.  前記含酸素基油が、少なくともエステル基又はエーテル基のいずれか一方を有する請求項1に記載の冷凍機油。
  3.  前記含酸素基油が、脂肪族モノエステル、脂肪族ジエステル、脂肪族トリエステル、脂肪族ポリオールエステル、脂肪族モノエーテル、脂肪族ジエーテル、脂肪族トリエーテル、脂肪族テトラエーテル、及びポリビニルエーテルからなる群から選択される少なくとも1種である請求項1又は2に記載の冷凍機油。
  4.  前記含酸素基油が、脂肪族モノエーテル、脂肪族ジエーテル、脂肪族トリエーテル、脂肪族テトラエーテル、及びポリビニルエーテルからなる群から選択される少なくとも1種である請求項1~3のいずれか1項に記載の冷凍機油。
  5.  前記粘度指数向上剤が、ポリアルキレングリコール、ポリビニルエーテル、及びポリメタクリレートからなる群から選択される少なくとも1つの高分子量体であり、その重量平均分子量が5,000以上10,000,000以下である請求項1~4のいずれか1項に記載の冷凍機油。
  6.  100℃における動粘度が2mm2/s以上100mm2/s以下である請求項1~5のいずれか1項に記載の冷凍機油。
  7.  前記含酸素基油の100℃における動粘度が1mm2/s以上8mm2/s以下である請求項1~6のいずれか1項に記載の冷凍機油。
  8.  請求項1~7のいずれか1項に記載の冷凍機油と、冷媒とを含む冷凍機用組成物。
  9.  前記冷媒が、下記の分子式(A)で示されるフッ化炭化水素化合物、飽和フッ化炭化水素化合物(HFC)、及び自然系冷媒からなる群から選択される少なくとも1種である請求項8に記載の冷凍機用組成物。
      C     ・・・(A)
    (式中、Rは、Cl、Br、IまたはHを示し、pは1~6、qは0~2、rは1~14、sは0~13の整数である。但し、qが0の場合は、pは2~6であり、分子中に炭素-炭素不飽和結合を1以上有する。)
  10.  前記冷媒が、R134a、R410A、R407C、R1234yf、R1234ze、R32、二酸化炭素、アンモニア、n-プロパン、n-ブタン、及びイソブタンからなる群から選択される少なくとも1種である請求項8又は9に記載の冷凍機用組成物。
  11.  請求項1~7のいずれか1項に記載の冷凍機油、及び請求項8~10のいずれか1項に記載の冷凍機用組成物のいずれかを含有する圧縮型冷凍機。
  12.  含酸素基油に少なくとも粘度指数向上剤を配合することで、粘度指数(VI)が200以上で、かつ体積抵抗率が1×109Ω・m以上である冷凍機油を得る冷凍機油の製造方法。
PCT/JP2016/077061 2015-09-16 2016-09-14 冷凍機油、冷凍機用組成物及び圧縮型冷凍機 WO2017047621A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16846492.3A EP3351611A1 (en) 2015-09-16 2016-09-14 Refrigeration machine oil, composition for refrigeration machines, and compression-type refrigeration machine
US15/751,047 US20180230397A1 (en) 2015-09-16 2016-09-14 Refrigeration machine oil, composition for refrigeration machines, and compression-type refrigeration machine
CN201680052941.7A CN107949627A (zh) 2015-09-16 2016-09-14 冷冻机油、冷冻机用组合物和压缩型冷冻机
KR1020187004601A KR20180054571A (ko) 2015-09-16 2016-09-14 냉동기유, 냉동기용 조성물 및 압축형 냉동기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-183257 2015-09-16
JP2015183257A JP2017057278A (ja) 2015-09-16 2015-09-16 冷凍機油、冷凍機用組成物及び圧縮型冷凍機

Publications (1)

Publication Number Publication Date
WO2017047621A1 true WO2017047621A1 (ja) 2017-03-23

Family

ID=58288710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077061 WO2017047621A1 (ja) 2015-09-16 2016-09-14 冷凍機油、冷凍機用組成物及び圧縮型冷凍機

Country Status (6)

Country Link
US (1) US20180230397A1 (ja)
EP (1) EP3351611A1 (ja)
JP (1) JP2017057278A (ja)
KR (1) KR20180054571A (ja)
CN (1) CN107949627A (ja)
WO (1) WO2017047621A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188151A1 (ja) * 2016-04-27 2017-11-02 出光興産株式会社 冷凍機油、及び冷凍機用組成物
JP2021531386A (ja) * 2018-07-20 2021-11-18 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー 冷媒組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542296B (zh) * 2020-12-04 2021-10-29 刚和石油(营口)有限公司 一种可生物降解高燃点型绝缘流体
JPWO2022270342A1 (ja) 2021-06-21 2022-12-29

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123577A (ja) * 1983-12-08 1985-07-02 Nishi Nippon Tsusho Kk 冷凍機油組成物
JPH08239679A (ja) * 1994-11-07 1996-09-17 Nippon Oil Co Ltd 冷凍機用潤滑油、冷凍機用組成物および冷凍機器
JPH08337786A (ja) * 1988-12-06 1996-12-24 Idemitsu Kosan Co Ltd 圧縮型冷凍機用潤滑油組成物
JPH09235577A (ja) * 1995-12-26 1997-09-09 Kao Corp 潤滑油組成物
JPH10168479A (ja) * 1996-12-11 1998-06-23 Kao Corp 冷凍機油及び冷凍機作動流体用組成物
JP2003119482A (ja) * 2001-10-10 2003-04-23 New Japan Chem Co Ltd 潤滑油
JP2016108370A (ja) * 2014-12-02 2016-06-20 旭硝子株式会社 潤滑油組成物及び冷凍機システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020007725A1 (en) * 1996-08-17 2002-01-24 Flensburger Fahrzeugbau Gesellschaft Mbh Mine clearance system
US8293693B2 (en) * 2003-04-02 2012-10-23 Idemitsu Kosan Co., Ltd. Conductive lubricant composition
CN104685040B (zh) * 2012-09-28 2017-10-27 出光兴产株式会社 压缩型冷冻机用润滑油
JP5819384B2 (ja) * 2013-11-06 2015-11-24 Jx日鉱日石エネルギー株式会社 自動車用変速機油組成物
EP3305879A1 (en) * 2015-05-26 2018-04-11 Idemitsu Kosan Co., Ltd Refrigeration oil, refrigerator composition, and refrigerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123577A (ja) * 1983-12-08 1985-07-02 Nishi Nippon Tsusho Kk 冷凍機油組成物
JPH08337786A (ja) * 1988-12-06 1996-12-24 Idemitsu Kosan Co Ltd 圧縮型冷凍機用潤滑油組成物
JPH08239679A (ja) * 1994-11-07 1996-09-17 Nippon Oil Co Ltd 冷凍機用潤滑油、冷凍機用組成物および冷凍機器
JPH09235577A (ja) * 1995-12-26 1997-09-09 Kao Corp 潤滑油組成物
JPH10168479A (ja) * 1996-12-11 1998-06-23 Kao Corp 冷凍機油及び冷凍機作動流体用組成物
JP2003119482A (ja) * 2001-10-10 2003-04-23 New Japan Chem Co Ltd 潤滑油
JP2016108370A (ja) * 2014-12-02 2016-06-20 旭硝子株式会社 潤滑油組成物及び冷凍機システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188151A1 (ja) * 2016-04-27 2017-11-02 出光興産株式会社 冷凍機油、及び冷凍機用組成物
JP2021531386A (ja) * 2018-07-20 2021-11-18 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー 冷媒組成物
JP7366993B2 (ja) 2018-07-20 2023-10-23 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー 冷媒組成物

Also Published As

Publication number Publication date
JP2017057278A (ja) 2017-03-23
CN107949627A (zh) 2018-04-20
EP3351611A1 (en) 2018-07-25
KR20180054571A (ko) 2018-05-24
US20180230397A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
US11001779B2 (en) Refrigerator oil and refrigerator working fluid composition
WO2014142313A1 (ja) 冷凍機油組成物及び冷凍機システム
CN108138067B (zh) 冷冻机油、冷冻机用组合物、冷冻机和冷冻机油的选择方法
WO2016072302A1 (ja) 冷凍機用潤滑油組成物及び冷凍機
EP3492563B1 (en) Refrigerating machine oil
JP7095940B2 (ja) 冷凍機油、及び冷凍機用組成物
WO2017047621A1 (ja) 冷凍機油、冷凍機用組成物及び圧縮型冷凍機
CN108350381A (zh) 冷冻机油
JP6796423B2 (ja) 冷凍機油
EP3933015B1 (en) Refrigerator composition
WO2020204162A1 (ja) 冷凍機用潤滑油組成物
JP6801929B2 (ja) 冷凍機油、冷凍機用組成物、冷凍機及び冷凍機油の選定方法
TW202039809A (zh) 冷凍機油及冷凍機用作動流體組合物
JP7432512B2 (ja) 冷凍機油
US11485926B2 (en) Refrigerant oil and method for producing refrigerant oil
JP7470648B2 (ja) 冷凍機油及び冷凍機油の製造方法
JP2018048223A (ja) 冷凍機油及び冷凍機用作動流体組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15751047

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187004601

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE