WO2017047411A1 - シンチレータパネル、及び、放射線検出器 - Google Patents

シンチレータパネル、及び、放射線検出器 Download PDF

Info

Publication number
WO2017047411A1
WO2017047411A1 PCT/JP2016/075817 JP2016075817W WO2017047411A1 WO 2017047411 A1 WO2017047411 A1 WO 2017047411A1 JP 2016075817 W JP2016075817 W JP 2016075817W WO 2017047411 A1 WO2017047411 A1 WO 2017047411A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
scintillator
main surface
optical functional
scintillator layer
Prior art date
Application number
PCT/JP2016/075817
Other languages
English (en)
French (fr)
Inventor
秀典 上西
楠山 泰
弘武 大澤
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP20190232.7A priority Critical patent/EP3770923B1/en
Priority to US15/755,129 priority patent/US10302772B2/en
Priority to KR1020187000604A priority patent/KR102500502B1/ko
Priority to EP16846282.8A priority patent/EP3352176B1/en
Priority to CN201680053237.3A priority patent/CN108028088B/zh
Publication of WO2017047411A1 publication Critical patent/WO2017047411A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/02Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens characterised by the external panel structure
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/10Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a protective film

Definitions

  • One aspect of the present invention relates to a scintillator panel and a radiation detector.
  • Patent Document 1 describes an X-ray detector.
  • This X-ray detector includes a photoelectric conversion substrate, a fluorescence conversion film formed on the surface of the photoelectric conversion substrate, and a light reflection layer formed on the photoelectric conversion substrate and the fluorescence conversion film.
  • the fluorescence conversion film is formed in a columnar crystal structure in which a plurality of columnar crystals are formed in the surface direction of the photoelectric conversion substrate.
  • the light reflection layer has a peripheral portion in close contact with the photoelectric conversion substrate to seal the fluorescence conversion film.
  • the light reflection layer is composed of a mixture of a pressure-sensitive adhesive substance and an inorganic substance powder having a refractive index higher than that of the adhesive substance.
  • said X-ray detector is aiming at the improvement of X-ray resolution by suppressing the penetration
  • the light reflecting layer is deformed so as to follow the tip portion by the flow of the adhesive substance, and fills the space between the tip portions of the columnar crystals adjacent to each other. Further, depending on the magnitude of the fluidity of the adhesive substance, it is assumed that the columnar crystals permeate between the columnar crystals adjacent to each other even on the base end side. In these cases, the visible light leaks from the columnar crystal to the light reflection layer, and thus the X-ray resolution and the light output may be reduced.
  • An object of one aspect of the present invention is to provide a scintillator panel and a radiation detector capable of improving resolution and light output.
  • a scintillator panel is a scintillator panel for converting radiation into scintillation light, and includes a substrate having a main surface and having transparency to the scintillation light, and the main surface.
  • the height of the frame from the main surface is larger than the height of the scintillator layer from the main surface
  • the scintillator layer includes a plurality of columnar crystals of scintillator material
  • the optical functional layer is formed by the elastic force of the elastic member. It is pressed against the Nchire
  • a scintillator layer including a plurality of columnar crystals is provided on the main surface of the substrate and sealed with a protective layer.
  • a sheet-like optical functional layer is disposed between the scintillator layer and the protective layer, and an elastic member is disposed between the optical functional layer and the protective layer.
  • the elastic member is elastically deformed by being sandwiched between the optical functional layer and the protective layer.
  • the optical functional layer is pressed against the scintillator layer by the elastic force of the elastic member, and is in contact with the scintillator layer in a plurality of regions including the tips of the columnar crystals of the scintillator layer.
  • a sheet-like optical functional layer is used. For this reason, it is avoided that the optical functional layer fills the gap between the tips of the columnar crystals adjacent to each other or penetrates between the columnar crystals. Further, since the optical functional layer is pressed against the scintillator layer by the elastic force of the elastic member, it is possible to avoid the optical functional layer being separated from the tip of the columnar crystal. For this reason, it is suppressed that scintillation light leaks from a columnar crystal. Therefore, resolution and light output are improved.
  • the protective layer is fixed to a frame body that is higher (thicker) than the scintillator layer. For this reason, for example, by using a flat protective layer, a space corresponding to the height difference between the frame and the scintillator layer is formed between the scintillator layer and the protective layer. Therefore, by arranging the optical functional layer and the elastic member in the space, it is possible to easily and surely realize the above configuration and improve the resolution and light output.
  • the elastic member may be in the form of a sheet extending along the main surface.
  • the elastic member may include foamed plastic.
  • the optical functional layer can be pressed uniformly along the main surface of the substrate by the elastic member.
  • the elastic member may be integrated with the optical functional layer or the protective layer. In this case, it is easy to configure the optical functional layer to be pressed against the scintillator layer by the elastic member.
  • the tip of the columnar crystal may be flattened.
  • the optical functional layer can filling the gaps between the tips of the columnar crystals adjacent to each other or penetrating between the columnar crystals. , Resolution and light output can be improved.
  • a radiation detector is provided on a photoelectric conversion element having a main surface and a plurality of photoelectric conversion elements formed on the main surface, and converts radiation into scintillation light.
  • a protective layer fixed to the body, a sheet-like optical functional layer disposed between the scintillator layer and the protective layer, and an elastic member elastically deformed between the optical functional layer and the protective layer.
  • the height of the frame body from the main surface is larger than the height of the scintillator layer from the main surface, the scintillator layer includes a plurality of columnar crystals of scintillator material, and the optical functional layer is formed by the elastic force of the elastic member. Pressed into the layer , In contact with the scintillator layer in a plurality of areas including the tips of the plurality of columnar crystals.
  • a scintillator layer including a plurality of columnar crystals is provided on the main surface of a substrate having a plurality of photoelectric conversion elements and sealed with a protective layer.
  • a sheet-like optical functional layer is disposed between the scintillator layer and the protective layer, and an elastic member is disposed between the optical functional layer and the protective layer.
  • the elastic member is elastically deformed by being sandwiched between the optical functional layer and the protective layer.
  • the optical functional layer is pressed against the scintillator layer by the elastic force of the elastic member, and is in contact with the scintillator layer in a plurality of regions including the tips of the columnar crystals of the scintillator layer.
  • a sheet-like optical functional layer is used. For this reason, it is avoided that the optical functional layer fills the gap between the tips of the columnar crystals adjacent to each other or penetrates between the columnar crystals. Further, since the optical functional layer is pressed against the scintillator layer by the elastic force of the elastic member, it is possible to avoid the optical functional layer being separated from the tip of the columnar crystal. For this reason, it is suppressed that scintillation light leaks from a columnar crystal. Therefore, resolution and light output are improved.
  • the protective layer is fixed to a frame body that is higher (thicker) than the scintillator layer. For this reason, for example, by using a flat protective layer, a space corresponding to the height difference between the frame and the scintillator layer is formed between the scintillator layer and the protective layer. Therefore, by arranging the optical functional layer and the elastic member in the space, it is possible to easily and surely realize the above configuration and improve the resolution and light output.
  • the elastic member may be in the form of a sheet extending along the main surface.
  • the elastic member may include foamed plastic.
  • the optical functional layer can be pressed uniformly along the main surface of the substrate by the elastic member.
  • the elastic member may be integrated with the optical functional layer or the protective layer. In this case, it is easy to configure the optical functional layer to be pressed against the scintillator layer by the elastic member.
  • the tip of the columnar crystal may be flattened.
  • the optical functional layer can filling the gaps between the tips of the columnar crystals adjacent to each other or penetrating between the columnar crystals. , Resolution and light output can be improved.
  • a scintillator panel is a scintillator panel for converting radiation into scintillation light, and includes a substrate having a main surface and having transparency to the scintillation light, and the main surface.
  • a hard optical functional layer integrally formed on a surface of the protective layer facing the scintillator layer, and the height of the frame body from the main surface is the scintillator from the main surface.
  • the scintillator layer includes a plurality of columnar crystals of the scintillator material, and the optical functional layer is pressed against the scintillator layer in a state where the protective layer is fixed to the frame body. In contact with the scintillator layer in a plurality of regions including the tip of Jo crystals.
  • a scintillator layer including a plurality of columnar crystals is provided on the main surface of the substrate and sealed with a protective layer.
  • a hard optical functional layer is integrally formed on the surface of the protective layer facing the scintillator layer. The optical functional layer is pressed against the scintillator layer in a state where the protective layer is fixed to the frame. Thereby, the optical functional layer is in contact with the scintillator layer in a plurality of regions including the tips of the columnar crystals of the scintillator layer.
  • a hard optical functional layer formed integrally with the protective layer is used. For this reason, it is avoided that the optical functional layer fills the gap between the tips of the columnar crystals adjacent to each other or penetrates between the columnar crystals. Further, since the optical functional layer is pressed against the scintillator layer according to the fixing of the protective layer, the optical functional layer can be prevented from being separated from the tip of the columnar crystal. For this reason, it is suppressed that scintillation light leaks from a columnar crystal. Therefore, resolution and light output are improved.
  • the protective layer is fixed to a frame body that is higher (thicker) than the scintillator layer. For this reason, for example, by using a flat protective layer, a space corresponding to the height difference between the frame and the scintillator layer is formed between the scintillator layer and the protective layer. Therefore, by forming the optical functional layer according to the space, the above-described configuration can be realized easily and reliably, and the resolution and light output can be improved.
  • the optical functional layer is hard means that, for example, the optical functional layer is formed by curing a resin-containing material, thereby having a hardness corresponding to the hardness of the cured resin.
  • a radiation detector is provided on a photoelectric conversion element having a main surface and a plurality of photoelectric conversion elements formed on the main surface, and converts radiation into scintillation light.
  • the scintillator layer includes a plurality of columnar crystals of the scintillator material, and the optical functional layer is pressed against the scintillator layer in a state where the protective layer is fixed to the frame body, and includes the tips of the plurality of columnar crystals.
  • a scintillator layer including a plurality of columnar crystals is provided on the main surface of a substrate having a plurality of photoelectric conversion elements and sealed with a protective layer.
  • a hard optical functional layer is integrally formed on the surface of the protective layer facing the scintillator layer. The optical functional layer is pressed against the scintillator layer in a state where the protective layer is fixed to the frame. Thereby, the optical functional layer is in contact with the scintillator layer in a plurality of regions including the tips of the columnar crystals of the scintillator layer.
  • a hard optical functional layer formed integrally with the protective layer is used. For this reason, it is avoided that the optical functional layer fills the gap between the tips of the columnar crystals adjacent to each other or penetrates between the columnar crystals. Further, since the optical functional layer is pressed against the scintillator layer according to the fixing of the protective layer, the optical functional layer can be prevented from being separated from the tip of the columnar crystal. For this reason, it is suppressed that scintillation light leaks from a columnar crystal. Therefore, resolution and light output are improved.
  • the protective layer is fixed to a frame body that is higher (thicker) than the scintillator layer. For this reason, for example, by using a flat protective layer, a space corresponding to the height difference between the frame and the scintillator layer is formed between the scintillator layer and the protective layer. Therefore, by forming the optical functional layer according to the space, the above-described configuration can be realized easily and reliably, and the resolution and light output can be improved.
  • the scintillator panel according to this embodiment is for converting radiation such as X-rays into scintillation light such as visible light.
  • the scintillator panel according to the following embodiments can be used as a device for radiation imaging in, for example, a mammography apparatus, a chest examination apparatus, a CT apparatus, a dental intraoral imaging apparatus, and a radiation camera.
  • FIG. 1 is a cross-sectional view of a scintillator panel according to the present embodiment.
  • FIG. 2 is a plan view of the scintillator panel shown in FIG.
  • the scintillator panel 1 includes a substrate 2, a scintillator layer 3, a frame body 4, a protective layer 5, an optical functional layer 6, and an elastic member 7.
  • the substrate 2 has a main surface 2s.
  • the substrate 2 has, for example, a rectangular plate shape.
  • the substrate 2 is transparent to scintillation light generated in the scintillator layer 3.
  • the thickness of the substrate 2 is, for example, about 2.0 mm.
  • the substrate 2 is composed of, for example, an FOP (fiber optic plate: an optical device configured by bundling a large number of optical fibers (for example, J5734 manufactured by Hamamatsu Photonics)).
  • the scintillator layer 3 generates scintillation light such as visible light in response to incidence of radiation R such as X-rays.
  • the scintillator layer 3 is provided on the main surface 2 s of the substrate 2.
  • the scintillator layer 3 is formed, for example, in a rectangular area of the main surface 2s when viewed from the direction intersecting (for example, orthogonal to) the main surface 2s.
  • the outer edge portion of the scintillator layer 3 is provided with an inclined portion so that the thickness of the scintillator layer 3 decreases in the direction from the center of the scintillator layer 3 toward the edge. Therefore, the overall cross-sectional shape of the scintillator layer 3 is, for example, a trapezoidal shape.
  • the thickness of the scintillator layer 3 is, for example, about 600 ⁇ m.
  • the scintillator layer 3 includes a plurality of columnar crystals 30 of a scintillator material (see FIG. 3B).
  • the scintillator material is a material mainly composed of CsI such as CsI: Tl.
  • the scintillator layer 3 is formed, for example, by growing a columnar crystal 30 on the main surface 2s of the substrate 2 by a vacuum deposition method or the like.
  • the frame body 4 is provided on the main surface 2 s so as to surround the scintillator layer 3 when viewed from the direction intersecting the main surface 2 s of the substrate 2.
  • the frame 4 is, for example, a rectangular ring.
  • the height H4 of the frame 4 from the main surface 2s is larger than the height H3 (thickness) of the scintillator layer 3 from the main surface 2s.
  • the frame 4 is interposed between the main surface 2s and the protective layer 5, and joins the main surface 2s and the protective layer 5 to each other.
  • the main surface 2s, the frame body 4, and the protective layer 5 form a space in which the scintillator layer 3, the optical functional layer 6, and the elastic member 7 are arranged.
  • the frame 4 is joined to the main surface 2s and the protective layer 5 so as to seal the space at least in a liquid-tight (or air-tight) manner.
  • the frame 4 is a resin having a low moisture permeability, such as an epoxy resin.
  • the protective layer 5 is disposed on the main surface 2s and the scintillator layer 3.
  • the protective layer 5 is disposed so as to cover the scintillator layer 3 and the frame body 4 when viewed from the direction intersecting the main surface 2s.
  • the protective layer 5 is, for example, a rectangular flat plate extending along the main surface 2s.
  • the protective layer 5 transmits the radiation R.
  • the thickness of the protective layer 5 is, for example, about 0.5 mm or more and 2.0 mm or less.
  • the protective layer 5 is a glass plate such as chemically strengthened glass, for example.
  • the protective layer 5 is fixed (bonded) to the frame body 4 so as to seal the scintillator layer 3 at least in a liquid-tight manner. With the above sealing structure, moisture resistance to the scintillator layer 3 is realized.
  • the optical functional layer 6 is disposed between the scintillator layer 3 and the protective layer 5.
  • the optical functional layer 6 has a sheet shape. That is, the optical functional layer 6 does not have fluidity.
  • the optical functional layer 6 has a rectangular sheet shape extending along the main surface 2s.
  • the optical functional layer 6 covers the scintillator layer 3 when viewed from the direction intersecting the main surface 2s.
  • the optical functional layer 6 transmits the radiation R.
  • the optical functional layer 6 is, for example, a light reflection layer that reflects scintillation light generated in the scintillator layer 3 or a light absorption layer that absorbs scintillation light.
  • the thickness of the optical functional layer 6 is, for example, about 100 ⁇ m.
  • the optical functional layer 6 can include a layer made of a pigment and a binder resin.
  • the optical functional layer 6 is, for example, a PET film.
  • the elastic member (elastic layer) 7 is disposed between the optical functional layer 6 and the protective layer 5.
  • the elastic member 7 has, for example, a sheet shape extending along the main surface 2s.
  • the elastic member 7 is disposed on the optical functional layer 6 so as to cover at least the scintillator layer 3 when viewed from the direction intersecting the main surface 2s.
  • the elastic member 7 transmits the radiation R.
  • the elastic member 7 is elastically deformed by being sandwiched between the optical functional layer 6 and the protective layer 5 (that is, compressed in a direction intersecting the main surface 2s). Thereby, the elastic member 7 presses the optical functional layer 6 against the scintillator layer 3 by an elastic force. That is, the elastic member 7 is a pressure applying layer that applies pressure to the optical functional layer 6.
  • the thickness of the elastic member 7 is, for example, about 100 ⁇ m or more and 1000 ⁇ m or less.
  • the material of the elastic member 7 include plastics such as polyethylene, urethane resin, and melamine resin, rubber, and silicone gel.
  • the elastic member 7 is, for example, a foamed plastic sheet formed by foaming the above plastic, a urethane mat (urethane resin sheet), a silicon gel sheet, a melamine sponge sheet, a sheet-like bubble cushioning material, or the like. .
  • FIG. 3 is an enlarged cross-sectional view showing a part of the scintillator panel shown in FIG. 3A shows the region Ra in FIG. 1, and FIG. 3B shows the region Rb in FIG.
  • the elastic member 7 is bonded to the optical functional layer 6 by the adhesive layer 8 and integrated with the optical functional layer 6 here.
  • the adhesive layer 8 is, for example, a resin having adhesiveness.
  • the columnar crystal 30 of the scintillator layer 3 is bonded to the main surface 2s of the substrate 2 at the base end thereof.
  • the columnar crystal 30 includes a columnar portion 31 and a tapered portion 32.
  • the columnar part 31 includes a base end of the columnar crystal 30 on the main surface 2s side.
  • the columnar portion 31 extends in a direction intersecting the main surface 2s from the main surface 2s.
  • the taper portion 32 includes the tip 30 t of the columnar crystal 30.
  • the tapered portion 32 is configured integrally with the columnar portion 31.
  • the tapered portion 32 has a tapered shape that decreases as the distance from the main surface 2s increases.
  • the cross-sectional shape of the taper portion 32 is, for example, a triangular shape.
  • the columnar crystals 30 are separated from each other. That is, a gap is formed between the columnar crystals 30 adjacent to each other. More specifically, between the columnar crystals 30 adjacent to each other, a gap is formed between the side surfaces 31 s of the columnar portion 31 and between the side surfaces 32 s of the tapered portion 32.
  • the elastic member 7 presses the optical functional layer 6 against the scintillator layer 3 by elastic force. That is, the optical functional layer 6 is pressed by the elastic force of the elastic member 7 and is in contact with the scintillator layer 3.
  • the optical functional layer 6 is in contact with the tips 30 t of the plurality of columnar crystals 30.
  • the tips 30t of the columnar crystals 30 are separated from each other and independent. Therefore, the optical functional layer 6 is in contact with the scintillator layer 3 (that is, in contact at multiple points) in a plurality of independent regions including the tips 30 t of the plurality of columnar crystals 30.
  • the optical functional layer 6 does not fill the gap between the columnar crystals 30 adjacent to each other.
  • the optical functional layer 6 is in contact with the scintillator layer 3 so as to maintain a gap between the columnar crystals 30 adjacent to each other.
  • the sheet-like optical functional layer 6 is deformed so as to follow the shape of the tip 30 t of the columnar crystal 30, but contacts only a part of the side surface 32 s of the tapered portion 32 on the tip 30 t side.
  • an optical functional layer is formed by applying a fluid material (liquid material) to the scintillator layer 3
  • the optical functional layer fills a gap between the side surfaces 32s of the tapered portion 32. At the same time, it penetrates into the gap between the side surfaces 31 s of the columnar part 31. For this reason, contact with the optical functional layer having a refractive index higher than that of the air layer is formed on the entire side surface 32 s of the tapered portion 32 and at least part of the side surface 31 s of the columnar portion 31.
  • the scintillator layer 3 including the plurality of columnar crystals 30 is provided on the main surface 2 s of the substrate 2 and is sealed by the protective layer 5 and the frame body 4.
  • a sheet-like optical functional layer 6 is disposed between the scintillator layer 3 and the protective layer 5.
  • An elastic member 7 is disposed between the optical functional layer 6 and the protective layer 5. The elastic member 7 is sandwiched between the optical functional layer 6 and the protective layer 5 and is elastically deformed (compressed). The optical functional layer 6 is pressed against the scintillator layer 3 by the elastic force of the elastic member 7. Thereby, the optical functional layer 6 is in contact with the scintillator layer 3 in a plurality of independent regions including the tip 30 t of the columnar crystal 30.
  • the sheet-like optical functional layer 6 is used.
  • the optical functional layer 6 can be prevented from filling a gap between the tapered portions 32 of the columnar crystals 30 adjacent to each other or penetrating between the columnar portions 31 of the columnar crystals 30.
  • the optical functional layer 6 is pressed against the scintillator layer 3 by the elastic force of the elastic member 7, it is possible to avoid the optical functional layer 6 being separated from the tip 30 t of the columnar crystal 30. For this reason, it is suppressed that scintillation light leaks from the columnar crystal 30. Therefore, resolution and light output are improved.
  • the protective layer 5 is fixed to the frame 4 that is higher (thicker) than the scintillator layer 3. For this reason, for example, by using the flat protective layer 5, a space corresponding to the height difference between the frame 4 and the scintillator layer 3 is formed between the scintillator layer 3 and the protective layer 5. Therefore, by disposing the optical functional layer 6 and the elastic member 7 in the space, it is possible to easily and surely realize the above configuration and improve the resolution and light output.
  • the elastic member 7 can be formed in a sheet shape extending along the main surface 2 s of the substrate 2.
  • the elastic member 7 can contain foamed plastic, for example.
  • the optical functional layer 6 can be pressed uniformly by the elastic member 7 along the main surface 2s.
  • the elastic member 7 is integrated with the optical functional layer 6. For this reason, it is easy to configure so that the optical functional layer 6 is pressed against the scintillator layer 3 by the elastic member 7.
  • the thickness of the elastic member 7 can be, for example, about 100 ⁇ m or more and 1000 ⁇ m or less. If the thickness of the elastic member 7 is 100 ⁇ m or more, an elastic force sufficient to press the optical functional layer 6 against the scintillator layer 3 and contact the scintillator layer 3 can be obtained. If the thickness of the elastic member 7 is 1000 ⁇ m or less, the scintillator panel 1 can be prevented from becoming large (increased in thickness). That is, when the thickness of the elastic member 7 is set to 100 ⁇ m or more and 1000 ⁇ m or less, it is possible to achieve both downsizing of the scintillator panel 1 (suppression of increase in thickness) and improvement in resolution and light output.
  • FIG. 4 is a cross-sectional view of a scintillator panel according to a modification.
  • FIG. 5 is an enlarged cross-sectional view showing a part of the scintillator panel shown in FIG.
  • FIG. 5A shows a region Ra in FIG.
  • FIG. 5B shows a region Rb in FIG.
  • the scintillator panel 1 ⁇ / b> A includes the scintillator layer 3 ⁇ / b> A instead of the scintillator layer 3, and the elastic member 7 is integrated with the protective layer 5. It is different.
  • the scintillator layer 3A is different from the scintillator layer 3 in that it includes a columnar crystal 30A instead of the columnar crystal 30.
  • the columnar crystal 30 ⁇ / b> A is different from the columnar crystal 30 in that it has a tapered portion 32 ⁇ / b> A instead of the tapered portion 32.
  • the tapered portion 32A includes a tip 30t.
  • the tapered portion 32 ⁇ / b> A is configured integrally with the columnar portion 31.
  • the tapered portion 32A has a tapered shape that decreases as the distance from the main surface 2s increases.
  • the cross-sectional shape of the tapered portion 32A is, for example, a trapezoidal shape.
  • the tip 30t of the columnar crystal 30A is flattened by at least one of, for example, pressure treatment, heat treatment, energy beam irradiation treatment such as laser light, polishing treatment, and grinding treatment. That is, the tip 30t of the columnar crystal 30A is a flat surface defined by the edge of the side surface 32s of the tapered portion 32A.
  • the elastic member 7 is bonded to the protective layer 5 by the adhesive layer 8 and integrated with the protective layer 5.
  • the optical functional layer 6 is pressed by the elastic force of the elastic member 7 and is in contact with the scintillator layer 3A.
  • the optical functional layer 6 is in contact with the tips 30t of the plurality of columnar crystals 30A. That is, the optical functional layer 6 is in contact with the scintillator layer 3A (that is, in contact at multiple points) in a plurality of independent flat regions including the tips 30t of the plurality of columnar crystals 30A.
  • the optical functional layer 6 does not fill the gaps between the columnar crystals 30A adjacent to each other. That is, the optical functional layer 6 is in contact with the scintillator layer 3A so as to maintain a gap between the columnar crystals 30A adjacent to each other. More specifically, the optical functional layer 6 contacts only a flat surface (tip 30t) defined by the side surface 32s of the tapered portion 32A. For this reason, substantially the entire side surface 32s of the tapered portion 32A is not in contact with the optical function layer 6, and is maintained in contact with the air layer having a lower refractive index than the optical function layer 6 and the scintillator layer 3A. Further, the optical functional layer 6 does not penetrate into the gap between the side surfaces 31 s of the columnar part 31. Therefore, the entire side surface 31 s of the columnar part 31 is not in contact with the optical functional layer 6 and is kept in contact with the air layer.
  • the sheet-like optical functional layer 6 is pressed against the scintillator layer 3A by the elastic force of the elastic member 7 and brought into contact with the scintillator layer 3A.
  • the resolution and light output can be improved.
  • the elastic member 7 is integrated with the protective layer 5. For this reason, it is easy to configure so that the optical functional layer 6 is pressed against the scintillator layer 3 ⁇ / b> A by the elastic member 7.
  • the above embodiment exemplifies one embodiment of the scintillator panel according to one aspect of the present invention. Therefore, one aspect of the present invention is not limited to the above scintillator panels 1 and 1A.
  • One aspect of the present invention can be obtained by arbitrarily modifying the above scintillator panels 1 and 1A or applying it to other ones without departing from the scope of the claims.
  • a scintillator layer 3 ⁇ / b> B can be used in place of the scintillator layer 3.
  • the scintillator layer 3B is different from the scintillator layer 3 in that it has a columnar crystal 30B instead of the columnar crystal 30.
  • the columnar crystal 30B is different from the columnar crystal 30 in that the tip 30t is flattened.
  • the columnar crystal 30B is configured by flattening the tip 30t so as to remove the entire tapered portion 32 of the columnar crystal 30. That is, the columnar crystal 30 ⁇ / b> B has only the columnar portion 31.
  • the sheet-like optical functional layer 6 is pressed by the elastic force of the elastic member 7 and contacts only the flat surface (tip 30t) defined by the edge of the side surface 31s of the columnar portion 31. For this reason, as in the case of using the scintillator layer 3, the resolution and the light output can be improved.
  • the elastic member 7 may be integrated with the protective layer 5 in the same manner as the scintillator panel 1A. Further, in the scintillator panel 1 ⁇ / b> A, the elastic member 7 may be integrated with the optical functional layer 6 as in the scintillator panel 1. Also in the scintillator panel 1A, the scintillator layer 3B can be used instead of the scintillator layer 3A.
  • the scintillator panel according to one aspect of the present invention can be applied to the scintillator panel 1C shown in FIG.
  • the scintillator panel 1 ⁇ / b> C is different from the scintillator panel 1 in that the scintillator panel 1 ⁇ / b> C is provided with the optical functional layer 9 instead of the optical functional layer 6 and the elastic member 7 is not provided.
  • the optical functional layer 9 is disposed between the scintillator layer 3 and the protective layer 5.
  • the optical functional layer 9 is formed on the surface 5 s of the protective layer 5 facing the scintillator layer 3.
  • the optical functional layer 9 is, for example, arranged on the surface 5s of the protective layer 5 by arranging a resin layer made of a pigment having a light function such as reflection or absorption and a binder resin, and drying and curing the resin layer. Can be produced. Therefore, the optical functional layer 9 is hard. That is, the optical functional layer 9 does not have fluidity.
  • the optical function layer 9 is formed integrally with the surface 5 s of the protective layer 5.
  • that the optical functional layer 9 is hard means having the hardness according to the hardness of the hardened resin by hardening the material containing resin as mentioned above.
  • Such an optical functional layer 9 is pressed against the scintillator layer 3 in a state where the protective layer 5 is fixed to the frame body 4 (by being fixed). Thereby, the optical functional layer 9 is in contact with the scintillator layer 3.
  • the optical functional layer 9 is in contact with the scintillator layer 3 (that is, in contact at multiple points) in a plurality of independent regions including the tips 30 t of the plurality of columnar crystals 30.
  • the hard optical functional layer 9 is integrally formed on the surface 5s of the protective layer 5 facing the scintillator layer 3.
  • the optical functional layer 9 is sandwiched between the protective layer 5 and the scintillator layer 3 and pressed against the scintillator layer 3 in a state where the protective layer 5 is fixed to the frame body 4. Thereby, the optical functional layer 9 is in contact with the scintillator layer 3 in a plurality of regions including the tip 30t of the columnar crystal 30 of the scintillator layer 3.
  • the hard optical functional layer 9 formed integrally with the protective layer 5 is used.
  • the optical functional layer 9 can be prevented from filling a gap between the tips 30 t of the columnar crystals 30 adjacent to each other or penetrating between the columnar crystals 30.
  • the optical functional layer 9 is pressed against the scintillator layer 3 according to the fixing of the protective layer 5, it is possible to avoid the optical functional layer 9 being separated from the tip 30 t of the columnar crystal 30. For this reason, it is suppressed that scintillation light leaks from the columnar crystal 30. Therefore, resolution and light output are improved. That is, the protective layer 5 and the optical functional layer 9 can obtain the same characteristics as the combination of the protective layer 5, the optical functional layer 6, and the elastic member 7 described above.
  • a scintillator layer 3A or a scintillator layer 3B may be used instead of the scintillator layer 3.
  • a radiation detector can be configured by using a sensor panel (for example, a TFT panel or a CMOS image sensor panel) having a photoelectric conversion element as a substrate. Subsequently, an embodiment of the radiation detector will be described.
  • FIG. 8 is a cross-sectional view of the radiation detector according to the present embodiment.
  • the radiation detector 1 ⁇ / b> D is different from the scintillator panel 1 in that it includes a substrate 2 ⁇ / b> D as a sensor panel instead of the substrate 2.
  • the substrate (sensor panel) 2D has a main surface 2s and a plurality of photoelectric conversion elements 10 formed on the main surface 2s. More specifically, the substrate 2D has a plate-like base 2p including the main surface 2s.
  • the photoelectric conversion elements 10 are two-dimensionally arranged along the main surface 2s.
  • the scintillator layer 3 is provided on the main surface 2s and the photoelectric conversion element 10 by, for example, vapor deposition.
  • a film portion 11 such as a passivation film or a planarizing film is formed on the main surface 2 s and the photoelectric conversion element 10.
  • the scintillator layer 3 is provided on the main surface 2 s and the photoelectric conversion element 10 via the film part 11.
  • the scintillator layer 3 is optically coupled to the photoelectric conversion element 10. Therefore, the photoelectric conversion element 10 receives the scintillation light generated in the scintillator layer 3 and outputs an electrical signal corresponding to the scintillation light.
  • the electric signal is extracted to the outside through a wiring (not shown). Thereby, the radiation detector 1D detects the radiation R.
  • the radiation detector 1D has at least the same effect as that of the scintillator panel 1 described above. More specifically, in the radiation detector 1D, the scintillator layer 3 including a plurality of columnar crystals 30 is provided on the main surface 2s of the substrate 2D having the plurality of photoelectric conversion elements 10, and is sealed by the protective layer 5. ing. A sheet-like optical functional layer 6 is disposed between the scintillator layer 3 and the protective layer 5, and an elastic member 7 is disposed between the optical functional layer 6 and the protective layer 5. The elastic member 7 is elastically deformed by being sandwiched between the optical functional layer 6 and the protective layer 5.
  • the optical functional layer 6 is pressed against the scintillator layer 3 by the elastic force of the elastic member 7 and is in contact with the scintillator layer 3 in a plurality of regions including the tip 30 t of the columnar crystal 30 of the scintillator layer 3.
  • the sheet-like optical functional layer 6 is used.
  • the optical functional layer 6 can be prevented from filling a gap between the tapered portions 32 of the columnar crystals 30 adjacent to each other or penetrating between the columnar portions 31 of the columnar crystals 30.
  • the optical functional layer 6 is pressed against the scintillator layer 3 by the elastic force of the elastic member 7, it is possible to avoid the optical functional layer 6 being separated from the tip 30 t of the columnar crystal 30. For this reason, it is suppressed that scintillation light leaks from the columnar crystal 30. Therefore, resolution and light output are improved.
  • the protective layer 5 is fixed to the frame 4 that is higher (thicker) than the scintillator layer 3. For this reason, for example, by using the flat protective layer 5, a space corresponding to the height difference between the frame 4 and the scintillator layer 3 is formed between the scintillator layer 3 and the protective layer 5. Therefore, by disposing the optical functional layer 6 and the elastic member 7 in the space, it is possible to easily and surely realize the above configuration and improve the resolution and light output.
  • the radiation detector 1D is configured by directly forming the scintillator layer 3 on the substrate 2D (and the film unit 11) as a sensor panel, for example, by vapor deposition or the like. For this reason, when configuring a radiation detector, there is no need to bond a sensor panel and a scintillator panel prepared separately.
  • the radiation detector may be configured by separately providing a sensor panel on the back surface of the substrate 2 opposite to the main surface 2 s.
  • the radiation detector 1D may include a scintillator layer 3A or a scintillator layer 3B instead of the scintillator layer 3.
  • the elastic member 7 may be integrated with the optical functional layer 6 as in the scintillator panel 1, or integrated with the protective layer 5 as in the scintillator panel 1A. May be.
  • the radiation detector may be configured by changing the substrate 2 of the scintillator panel 1C to the substrate 2D.
  • the radiation detector in this case includes a hard optical functional layer 9 integrally formed on the surface 5s of the protective layer 5 facing the scintillator layer 3 in place of the optical functional layer 6, and an elastic member 7. There will be no.

Abstract

シンチレータパネルは、主面を有し、前記シンチレーション光に対して透過性を有する基板と、前記主面上に設けられたシンチレータ層と、前記主面に交差する方向からみて前記シンチレータ層を囲うように前記主面上に設けられた枠体と、前記主面及び前記シンチレータ層上に配置され、前記シンチレータ層を封止するように前記枠体に固定された保護層と、前記シンチレータ層と前記保護層との間に配置されたシート状の光機能層と、前記光機能層と前記保護層とに挟まれて弾性変形された弾性部材と、を備える。前記シンチレータ層は、シンチレータ材料の複数の柱状結晶を含み、前記光機能層は、前記弾性部材の弾性力によって前記シンチレータ層に押圧され、複数の前記柱状結晶の先端を含む複数の領域において前記シンチレータ層に接触している。

Description

シンチレータパネル、及び、放射線検出器
 本発明の一側面は、シンチレータパネル、及び、放射線検出器に関する。
 特許文献1には、X線検出器が記載されている。このX線検出器は、光電変換基板と、光電変換基板の表面に形成された蛍光変換膜と、光電変換基板及び蛍光変換膜上に形成された光反射層と、を備える。蛍光変換膜は、光電変換基板の面方向に複数の柱状結晶が形成された柱状結晶構造に形成されている。光反射層は、周辺部が光電変換基板に密着して蛍光変換膜を密閉する。光反射層は、流動性を有する粘着物質と、粘着物質よりも屈折率が高い無機物質の粉末と、の混合体によって構成されている。
特開2009-25258号公報
 上記のX線検出器は、光反射層によって水分を遮断して蛍光変換膜の劣化の防止を図っている。また、上記のX線検出器は、光反射層の蛍光変換膜の内部への浸透を抑制することにより、X線解像度の改善を図っている。しかしながら、光反射層は、粘着物質の流動によって先端部に追従するように変形し、互いに隣り合う柱状結晶の先端部同士の間の空間を充填する。また、粘着物質の流動性の大きさによっては、柱状結晶のより基端側においても、互いに隣り合う柱状結晶間に浸透することが想定される。これらの場合には、柱状結晶から光反射層に可視光が漏れることにより、X線解像度及び光出力が低下するそれがある。
 本発明の一側面は、解像度及び光出力を向上可能なシンチレータパネル及び放射線検出器を提供することを目的とする。
 本発明の一側面に係るシンチレータパネルは、放射線をシンチレーション光に変換するためのシンチレータパネルであって、主面を有し、シンチレーション光に対して透過性を有する基板と、主面上に設けられたシンチレータ層と、主面に交差する方向からみてシンチレータ層を囲うように主面上に設けられた枠体と、主面及びシンチレータ層上に配置され、シンチレータ層を封止するように枠体に固定された保護層と、シンチレータ層と保護層との間に配置されたシート状の光機能層と、光機能層と保護層とに挟まれて弾性変形された弾性部材と、を備え、主面からの枠体の高さは、主面からのシンチレータ層の高さよりも大きく、シンチレータ層は、シンチレータ材料の複数の柱状結晶を含み、光機能層は、弾性部材の弾性力によってシンチレータ層に押圧され、複数の柱状結晶の先端を含む複数の領域においてシンチレータ層に接触している。
 このシンチレータパネルにおいては、複数の柱状結晶を含むシンチレータ層が、基板の主面に設けられ、保護層により封止されている。シンチレータ層と保護層との間にはシート状の光機能層が配置され、光機能層と保護層との間には弾性部材が配置されている。弾性部材は、光機能層と保護層とにより挟まれて弾性変形されている。光機能層は、弾性部材の弾性力によってシンチレータ層に押圧され、シンチレータ層の柱状結晶の先端を含む複数の領域においてシンチレータ層に接触している。
 このように、このシンチレータパネルにおいては、シート状の光機能層が用いられる。このため、光機能層が、互いに隣り合う柱状結晶の先端の間の間隙を充填したり、柱状結晶間に浸透したりすることが避けられる。また、光機能層が弾性部材の弾性力によりシンチレータ層に押圧されるので、光機能層が柱状結晶の先端から離間することが避けられる。このため、シンチレーション光が柱状結晶から漏れることが抑制される。よって、解像度及び光出力が向上される。
 なお、保護層は、シンチレータ層よりも高い(厚い)枠体に固定される。このため、例えば平板状の保護層を用いることにより、枠体とシンチレータ層との高さの差に応じたスペースが、シンチレータ層と保護層との間に形成される。したがって、そのスペースに光機能層と弾性部材を配置することにより、容易且つ確実に上記の構成を実現して解像度及び光出力を向上可能である。
 本発明の一側面に係るシンチレータパネルにおいては、弾性部材は、主面に沿って延びるシート状であってもよい。このとき、弾性部材は、発泡プラスチックを含んでもよい。この場合、弾性部材によって、基板の主面に沿って一様に光機能層を押圧することができる。
 本発明の一側面に係るシンチレータパネルにおいては、弾性部材は、光機能層又は保護層と一体化されていてもよい。この場合、弾性部材によって光機能層をシンチレータ層に押圧するように構成することが容易である。
 本発明の一側面に係るシンチレータパネルにおいては、柱状結晶の先端は、平坦化されていてもよい。このように柱状結晶の先端が平坦化されている場合であっても、光機能層が互いに隣り合う柱状結晶の先端同士の間隙を充填したり柱状結晶間に浸透したりすることが避けられるので、解像度及び光出力を向上可能である。
 本発明の一側面に係る放射線検出器は、主面と、主面上に形成された複数の光電変換素子と、を有する基板と、光電変換素子上に設けられ、放射線をシンチレーション光に変換するためのシンチレータ層と、主面に交差する方向からみてシンチレータ層を囲うように主面上に設けられた枠体と、主面及びシンチレータ層上に配置され、シンチレータ層を封止するように枠体に固定された保護層と、シンチレータ層と保護層との間に配置されたシート状の光機能層と、光機能層と保護層とに挟まれて弾性変形された弾性部材と、を備え、主面からの枠体の高さは、主面からのシンチレータ層の高さよりも大きく、シンチレータ層は、シンチレータ材料の複数の柱状結晶を含み、光機能層は、弾性部材の弾性力によってシンチレータ層に押圧され、複数の柱状結晶の先端を含む複数の領域においてシンチレータ層に接触している。
 この放射線検出器においては、複数の柱状結晶を含むシンチレータ層が、複数の光電変換素子を有する基板の主面に設けられ、保護層により封止されている。シンチレータ層と保護層との間にはシート状の光機能層が配置され、光機能層と保護層との間には弾性部材が配置されている。弾性部材は、光機能層と保護層とにより挟まれて弾性変形されている。光機能層は、弾性部材の弾性力によってシンチレータ層に押圧され、シンチレータ層の柱状結晶の先端を含む複数の領域においてシンチレータ層に接触している。
 このように、この放射線検出器においては、シート状の光機能層が用いられる。このため、光機能層が、互いに隣り合う柱状結晶の先端の間の間隙を充填したり、柱状結晶間に浸透したりすることが避けられる。また、光機能層が弾性部材の弾性力によりシンチレータ層に押圧されるので、光機能層が柱状結晶の先端から離間することが避けられる。このため、シンチレーション光が柱状結晶から漏れることが抑制される。よって、解像度及び光出力が向上される。
 なお、保護層は、シンチレータ層よりも高い(厚い)枠体に固定される。このため、例えば平板状の保護層を用いることにより、枠体とシンチレータ層との高さの差に応じたスペースが、シンチレータ層と保護層との間に形成される。したがって、そのスペースに光機能層と弾性部材を配置することにより、容易且つ確実に上記の構成を実現して解像度及び光出力を向上可能である。
 本発明の一側面に係る放射線検出器においては、弾性部材は、主面に沿って延びるシート状であってもよい。このとき、弾性部材は、発泡プラスチックを含んでもよい。この場合、弾性部材によって、基板の主面に沿って一様に光機能層を押圧することができる。
 本発明の一側面に係る放射線検出器においては、弾性部材は、光機能層又は保護層と一体化されていてもよい。この場合、弾性部材によって光機能層をシンチレータ層に押圧するように構成することが容易である。
 本発明の一側面に係る放射線検出器においては、柱状結晶の先端は、平坦化されていてもよい。このように柱状結晶の先端が平坦化されている場合であっても、光機能層が互いに隣り合う柱状結晶の先端同士の間隙を充填したり柱状結晶間に浸透したりすることが避けられるので、解像度及び光出力を向上可能である。
 本発明の一側面に係るシンチレータパネルは、放射線をシンチレーション光に変換するためのシンチレータパネルであって、主面を有し、シンチレーション光に対して透過性を有する基板と、主面上に設けられたシンチレータ層と、主面に交差する方向からみてシンチレータ層を囲うように主面上に設けられた枠体と、主面及びシンチレータ層上に配置され、シンチレータ層を封止するように枠体に固定された保護層と、保護層のシンチレータ層に対向する面に一体的に形成された硬質の光機能層と、を備え、主面からの枠体の高さは、主面からのシンチレータ層の高さよりも大きく、シンチレータ層は、シンチレータ材料の複数の柱状結晶を含み、光機能層は、保護層が枠体に固定された状態においてシンチレータ層に押圧され、複数の柱状結晶の先端を含む複数の領域においてシンチレータ層に接触している。
 このシンチレータパネルにおいては、複数の柱状結晶を含むシンチレータ層が、基板の主面に設けられ、保護層により封止されている。保護層のシンチレータ層に対向する面には、硬質の光機能層が一体的に形成されている。そして、光機能層は、保護層が枠体に固定された状態でシンチレータ層に押圧される。これにより、光機能層は、シンチレータ層の柱状結晶の先端を含む複数の領域においてシンチレータ層に接触している。
 このように、このシンチレータパネルにおいては、保護層に一体形成された硬質の光機能層が用いられる。このため、光機能層が、互いに隣り合う柱状結晶の先端の間の間隙を充填したり、柱状結晶間に浸透したりすることが避けられる。また、光機能層が保護層の固定に応じてシンチレータ層に押圧されるので、光機能層が柱状結晶の先端から離間することが避けられる。このため、シンチレーション光が柱状結晶から漏れることが抑制される。よって、解像度及び光出力が向上される。
 なお、保護層は、シンチレータ層よりも高い(厚い)枠体に固定される。このため、例えば平板状の保護層を用いることにより、枠体とシンチレータ層との高さの差に応じたスペースが、シンチレータ層と保護層との間に形成される。したがって、そのスペースに応じて光機能層を形成することにより、容易且つ確実に上記の構成を実現して解像度及び光出力を向上可能である。また、光機能層が硬質であるとは、例えば、樹脂を含む材料を硬化させることにより光機能層が形成されることによって、硬化した樹脂の硬度に応じた硬度を有することを意味する。
 本発明の一側面に係る放射線検出器は、主面と、主面上に形成された複数の光電変換素子と、を有する基板と、光電変換素子上に設けられ、放射線をシンチレーション光に変換するためのシンチレータ層と、主面に交差する方向からみてシンチレータ層を囲うように主面上に設けられた枠体と、主面及びシンチレータ層上に配置され、シンチレータ層を封止するように枠体に固定された保護層と、保護層のシンチレータ層に対向する面に一体的に形成された光機能層と、を備え、主面からの枠体の高さは、主面からのシンチレータ層の高さよりも大きく、シンチレータ層は、シンチレータ材料の複数の柱状結晶を含み、光機能層は、保護層が枠体に固定された状態においてシンチレータ層に押圧され、複数の柱状結晶の先端を含む複数の領域においてシンチレータ層に接触している。
 この放射線検出器においては、複数の柱状結晶を含むシンチレータ層が、複数の光電変換素子を有する基板の主面に設けられ、保護層により封止されている。保護層のシンチレータ層に対向する面には、硬質の光機能層が一体的に形成されている。そして、光機能層は、保護層が枠体に固定された状態でシンチレータ層に押圧される。これにより、光機能層は、シンチレータ層の柱状結晶の先端を含む複数の領域においてシンチレータ層に接触している。
 このように、この放射線検出器においては、保護層に一体形成された硬質の光機能層が用いられる。このため、光機能層が、互いに隣り合う柱状結晶の先端の間の間隙を充填したり、柱状結晶間に浸透したりすることが避けられる。また、光機能層が保護層の固定に応じてシンチレータ層に押圧されるので、光機能層が柱状結晶の先端から離間することが避けられる。このため、シンチレーション光が柱状結晶から漏れることが抑制される。よって、解像度及び光出力が向上される。
 なお、保護層は、シンチレータ層よりも高い(厚い)枠体に固定される。このため、例えば平板状の保護層を用いることにより、枠体とシンチレータ層との高さの差に応じたスペースが、シンチレータ層と保護層との間に形成される。したがって、そのスペースに応じて光機能層を形成することにより、容易且つ確実に上記の構成を実現して解像度及び光出力を向上可能である。
 本発明の一側面によれば、解像度及び光出力を向上可能なシンチレータパネル及び放射線検出器を提供することができる。
本実施形態に係るシンチレータパネルの断面図である。 図1に示されたシンチレータパネルの平面図である。 図1に示されたシンチレータパネルの一部を拡大して示す断面図である。 変形例に係るシンチレータパネルの断面図である。 図4に示されたシンチレータパネルの一部を拡大して示す断面図である。 シンチレータ層の変形例を示す断面図である。 シンチレータパネルの変形例を示す断面図である。 本実施形態に係る放射線検出器の断面図である。
 以下、本発明の一側面の一実施形態について、図面を参照して詳細に説明する。なお、各図において同一部分又は相当部分には同一の符号を付し、重複する説明を省略する場合がある。
 本実施形態に係るシンチレータパネルは、X線等の放射線を可視光等のシンチレーション光に変換するためのものである。以下の実施形態に係るシンチレータパネルは、例えば、マンモグラフィー装置、胸部検査装置、CT装置、歯科口内撮影装置、及び、放射線カメラ等において、放射線イメージング用のデバイスとして用いることができる。
 図1は、本実施形態に係るシンチレータパネルの断面図である。図2は、図1に示されたシンチレータパネルの平面図である。図1,2に示されるように、シンチレータパネル1は、基板2、シンチレータ層3、枠体4、保護層5、光機能層6、及び、弾性部材7を備えている。
 基板2は、主面2sを有する。基板2は、例えば矩形板状である。基板2は、シンチレータ層3で生じるシンチレーション光に対して透過性を有する。基板2の厚さは、例えば2.0mm程度である。基板2は、例えば、FOP(ファイバオプティックプレート:多数の光ファイバを束ねて構成される光学デバイス(例えば、浜松ホトニクス(株)製J5734))等から構成される。
 シンチレータ層3は、X線等の放射線Rの入射に応じて、可視光等のシンチレーション光を生じさせる。シンチレータ層3は、基板2の主面2s上に設けられている。シンチレータ層3は、例えば、主面2sに交差(例えば直交)する方向からみて、主面2sの矩形状のエリアに形成されている。シンチレータ層3の外縁部は、シンチレータ層3の中心から縁に向かう方向にシンチレータ層3の厚さが減少するように、傾斜部が設けられている。したがって、シンチレータ層3の全体としての断面形状は、例えば台形状である。
 シンチレータ層3の厚さ(上記の傾斜部以外の厚さ)は、例えば600μm程度である。シンチレータ層3は、シンチレータ材料の複数の柱状結晶30を含む(図3の(b)参照)。シンチレータ材料は、例えば、CsI:TlといったCsIを主成分とする材料である。シンチレータ層3は、例えば、真空蒸着法等によって基板2の主面2s上に柱状結晶30を成長させることにより形成される。
 枠体4は、基板2の主面2sに交差する方向からみてシンチレータ層3を囲うように、主面2s上に設けられている。枠体4は、例えば矩形環状である。主面2sからの枠体4の高さH4は、主面2sからのシンチレータ層3の高さH3(厚さ)よりも大きい。枠体4は、主面2sと保護層5との間に介在して主面2sと保護層5とを互いに接合する。主面2s、枠体4、及び、保護層5は、シンチレータ層3、光機能層6、及び、弾性部材7が配置される空間を形成する。枠体4は、その空間を少なくとも液密(さらには気密)に封止するように、主面2s及び保護層5に接合される。枠体4は、例えばエポキシ樹脂等からなる透湿性が低い樹脂である。
 保護層5は、主面2s及びシンチレータ層3上に配置されている。保護層5は、主面2sに交差する方向からみて、シンチレータ層3及び枠体4を覆うように配置されている。保護層5は、例えば、主面2sに沿って延びる矩形平板状である。保護層5は、放射線Rを透過する。保護層5の厚さは、例えば0.5mm以上2.0mm以下程度である。保護層5は、例えば、化学強化ガラス等のガラス板である。保護層5は、上述したように、シンチレータ層3を少なくとも液密に封止するように枠体4に固定(接合)される。以上の封止構造により、シンチレータ層3に対する防湿が実現される。
 光機能層6は、シンチレータ層3と保護層5との間に配置されている。光機能層6は、シート状である。すなわち、光機能層6は、流動性を有さない。一例として、光機能層6は、主面2sに沿って延びる矩形シート状である。光機能層6は、主面2sに交差する方向からみて、シンチレータ層3を覆っている。光機能層6は、放射線Rを透過する。光機能層6は、例えば、シンチレータ層3で生じたシンチレーション光を反射する光反射層、又は、シンチレーション光を吸収する光吸収層である。光機能層6の厚さは、例えば、100μm程度である。光機能層6は、顔料とバインダ樹脂とからなる層を含むことができる。光機能層6は、例えば、PETフィルムである。
 弾性部材(弾性層)7は、光機能層6と保護層5との間に配置されている。弾性部材7は、例えば、主面2sに沿って延びるシート状である。弾性部材7は、主面2sに交差する方向からみて、少なくともシンチレータ層3を覆うように光機能層6上に配置されている。弾性部材7は、放射線Rを透過する。弾性部材7は、光機能層6と保護層5とに挟まれて弾性変形されている(すなわち、主面2sに交差する方向に圧縮されている)。これにより、弾性部材7は、弾性力によって、光機能層6をシンチレータ層3に押圧する。すなわち、弾性部材7は、光機能層6に圧力を付与する圧力付与層である。
 弾性部材7の厚さは、例えば、100μm以上1000μm以下程度である。弾性部材7の材料は、例えば、ポリエチレン、ウレタン樹脂、及び、メラミン樹脂等のプラスチック、ゴム、並びに、シリコーンゲル等である。弾性部材7は、例えば、上記のプラスチックを発泡させて形成される発泡プラスチックのシート、ウレタンマット(ウレタン樹脂のシート)、シリコンゲルシート、メラミンスポンジのシート、及び、シート状の気泡緩衝材等である。
 図3は、図1に示されたシンチレータパネルの一部を拡大して示す断面図である。図3の(a)は、図1の領域Raを示し、図3の(b)は図1の領域Rbを示す。図3に示されるように、弾性部材7は、ここでは、接着層8により光機能層6に接着され、光機能層6と一体化されている。接着層8は、例えば、粘着性を有する樹脂である。
 ここで、シンチレータ層3の柱状結晶30は、その基端において基板2の主面2sに接合されている。柱状結晶30は、柱状部31とテーパ部32とを含む。柱状部31は、柱状結晶30における主面2s側の基端を含む。柱状部31は、主面2sから主面2sに交差する方向に延びている。
 テーパ部32は、柱状結晶30の先端30tを含む。テーパ部32は、柱状部31と一体的に構成されている。テーパ部32は、主面2sから離れるにつれて縮小するテーパ状である。テーパ部32の断面形状は、例えば三角形状である。柱状結晶30は、互いに離間している。すなわち、互いに隣り合う柱状結晶30の間には間隙が形成されている。より具体的には、互いに隣り合う柱状結晶30間において、柱状部31の側面31s同士の間、及び、テーパ部32の側面32s同士の間に間隙が形成されている。
 上述したように、弾性部材7は、弾性力によって、光機能層6をシンチレータ層3に押圧する。つまり、光機能層6は、弾性部材7の弾性力によって押圧され、シンチレータ層3の接触している。ここでは、光機能層6は、複数の柱状結晶30の先端30tに接触する。柱状結晶30の先端30tは、互いに離間して独立している。したがって、光機能層6は、複数の柱状結晶30の先端30tを含む複数の独立した領域において、シンチレータ層3に接触している(すなわち多点で接触している)。
 一方、光機能層6は、互いに隣り合う柱状結晶30同士の間隙を充填しない。換言すれば、光機能層6は、互いに隣り合う柱状結晶30同士の間隙を維持するように、シンチレータ層3に接触している。より具体的には、シート状の光機能層6は、柱状結晶30の先端30tの形状に追従するように変形するが、テーパ部32の側面32sの先端30t側の一部のみに接触する。このため、テーパ部32の側面32sの柱状部31側の大部分においては、光機能層6と接触せず、光機能層6及びシンチレータ層3よりも屈折率の低い空気層との接触が維持される。また、光機能層6は、柱状部31の側面31s同士の間隙に浸透しない。したがって、柱状部31の側面31sの全体においても、光機能層6と接触せず、空気層との接触が維持される。
 他方、例えば、流動性を有する材料(液状の材料)をシンチレータ層3に塗布することによって光機能層を形成した場合には、その光機能層は、テーパ部32の側面32s同士の間隙を充填すると共に、柱状部31の側面31s同士の間隙に浸透する。このため、テーパ部32の側面32sの全体、及び、柱状部31の側面31sの少なくとも一部において、空気層よりも屈折率の高い光機能層との接触が形成される。
 以上説明したように、シンチレータパネル1においては、複数の柱状結晶30を含むシンチレータ層3が、基板2の主面2sに設けられ、保護層5及び枠体4により封止されている。シンチレータ層3と保護層5との間にはシート状の光機能層6が配置されている。光機能層6と保護層5との間には弾性部材7が配置されている。弾性部材7は、光機能層6と保護層5とにより挟まれて弾性変形している(圧縮されている)。光機能層6は、弾性部材7の弾性力によってシンチレータ層3に押圧されている。これにより、光機能層6は、柱状結晶30の先端30tを含む複数の独立した領域において、シンチレータ層3に接触している。
 このように、シンチレータパネル1においては、シート状の光機能層6が用いられる。このため、光機能層6が、互いに隣り合う柱状結晶30のテーパ部32同士の間隙を充填したり、柱状結晶30の柱状部31間に浸透したりすることが避けられる。また、光機能層6が弾性部材7の弾性力によりシンチレータ層3に押圧されるので、光機能層6が柱状結晶30の先端30tから離間することが避けられる。このため、シンチレーション光が柱状結晶30から漏れることが抑制される。よって、解像度及び光出力が向上される。
 なお、保護層5は、シンチレータ層3よりも高い(厚い)枠体4に固定される。このため、例えば平板状の保護層5を用いることにより、枠体4とシンチレータ層3との高さの差に応じたスペースが、シンチレータ層3と保護層5との間に形成される。したがって、そのスペースに光機能層6と弾性部材7を配置することにより、容易且つ確実に上記の構成を実現して解像度及び光出力を向上可能である。
 また、シンチレータパネル1においては、弾性部材7を、基板2の主面2sに沿って延びるシート状とすることができる。このとき、弾性部材7は、例えば発泡プラスチックを含むことができる。この場合、弾性部材7によって、主面2sに沿って一様に光機能層6を押圧することができる。
 また、シンチレータパネル1においては、弾性部材7が、光機能層6と一体化されている。このため、弾性部材7によって光機能層6をシンチレータ層3に押圧するように構成することが容易である。
 さらに、弾性部材7の厚さは、例えば、100μm以上1000μm以下程度とすることができる。弾性部材7の厚さが100μm以上であれば、光機能層6をシンチレータ層3に押圧してシンチレータ層3に接触させるのに十分な弾性力を得ることができる。弾性部材7の厚さが1000μm以下であれば、シンチレータパネル1の大型化(厚みが増すこと)が避けられる。すなわち、弾性部材7の厚さを100μm以上1000μm以下とすれば、シンチレータパネル1の小型化(厚み増加の抑制)と、解像度及び光出力の向上と、を両立することが可能である。
 図4は、変形例に係るシンチレータパネルの断面図である。図5は、図4に示されたシンチレータパネルの一部を拡大して示す断面図である。図5の(a)は、図4の領域Raを示す。図5の(b)は、図4の領域Rbを示す。図4,5に示されるように、シンチレータパネル1Aは、シンチレータ層3に代えてシンチレータ層3Aを備える点、及び、弾性部材7が保護層5と一体化されている点において、シンチレータパネル1と相違している。
 シンチレータ層3Aは、柱状結晶30に代えて柱状結晶30Aを含む点において、シンチレータ層3と相違している。柱状結晶30Aは、テーパ部32に代えてテーパ部32Aを有する点において、柱状結晶30と相違している。テーパ部32Aは、先端30tを含む。テーパ部32Aは、柱状部31と一体的に構成されている。テーパ部32Aは、主面2sから離れるにつれて縮小するテーパ状である。テーパ部32Aの断面形状は、例えば台形状である。
 ここでは、柱状結晶30Aの先端30tは、例えば、加圧処理、加熱処理、レーザ光等のエネルギー線照射処理、研磨処理、及び、研削処理の少なくとも1つによって平坦化されている。すなわち、柱状結晶30Aの先端30tは、テーパ部32Aの側面32sの縁部により規定される平坦面である。
 弾性部材7は、接着層8により保護層5に接着され、保護層5と一体化されている。光機能層6は、弾性部材7の弾性力によって押圧され、シンチレータ層3Aに接触している。ここでは、光機能層6は、複数の柱状結晶30Aの先端30tに接触する。すなわち、光機能層6は、複数の柱状結晶30Aの先端30tを含む複数の独立した平坦な領域において、シンチレータ層3Aに接触している(すなわち多点で接触している)。
 ここでも、光機能層6は、互いに隣り合う柱状結晶30A同士の間隙を充填しない。すなわち、光機能層6は、互いに隣り合う柱状結晶30A同士の間隙を維持するように、シンチレータ層3Aに接触している。より具体的には、光機能層6は、テーパ部32Aの側面32sにより規定される平坦面(先端30t)のみに接触する。このため、テーパ部32Aの側面32sの略全体においては、光機能層6と接触せず、光機能層6及びシンチレータ層3Aよりも屈折率の低い空気層との接触が維持される。また、光機能層6は、柱状部31の側面31s同士の間隙に浸透しない。したがって、柱状部31の側面31sの全体においても、光機能層6と接触せず、空気層との接触が維持される。
 このように、柱状結晶30Aの先端30tが平坦化されている場合であっても、シート状の光機能層6を弾性部材7の弾性力によってシンチレータ層3Aに押圧してシンチレータ層3Aに接触させる構成とすれば、シンチレータパネル1と同様に、解像度及び光出力の向上が可能である。
 また、シンチレータパネル1Aにおいては、弾性部材7が、保護層5と一体化されている。このため、弾性部材7によって光機能層6をシンチレータ層3Aに押圧するように構成することが容易である。
 以上の実施形態は、本発明の一側面に係るシンチレータパネルの一実施形態を例示したものである。したがって、本発明の一側面は、上記のシンチレータパネル1,1Aに限定されない。本発明の一側面は、各請求項の要旨を変更しない範囲において、上記のシンチレータパネル1,1Aを任意に変形したもの、或いは、他のものに適用したものとすることができる。
 例えば、図6に示されるように、シンチレータパネル1においては、シンチレータ層3に代えて、シンチレータ層3Bを用いることができる。シンチレータ層3Bは、柱状結晶30に代えて、柱状結晶30Bを有している点において、シンチレータ層3と相違している。柱状結晶30Bは、先端30tが平坦化されている点において、柱状結晶30と相違している。柱状結晶30Bは、柱状結晶30のテーパ部32の全体を除去するように、先端30tを平坦化することにより構成されている。すなわち、柱状結晶30Bは、柱状部31のみを有する。
 この場合には、シート状の光機能層6が、弾性部材7の弾性力によって押圧され、柱状部31の側面31sの縁部により規定される平坦面(先端30t)のみに接触する。このため、シンチレータ層3を用いる場合と同様に、解像度及び光出力の向上が可能である。
 なお、シンチレータパネル1においては、シンチレータパネル1Aと同様に、弾性部材7を保護層5と一体化してもよい。また、シンチレータパネル1Aにおいては、シンチレータパネル1と同様に、弾性部材7を光機能層6と一体化してもよい。また、シンチレータパネル1Aにおいても、シンチレータ層3Aに代えてシンチレータ層3Bを用いることができる。
 ここで、本発明の一側面に係るシンチレータパネルは、図7に示されるシンチレータパネル1Cに適用することができる。シンチレータパネル1Cは、光機能層6に代えて光機能層9を備える点、及び、弾性部材7を備えない点において、シンチレータパネル1と相違している。
 光機能層9は、シンチレータ層3と保護層5との間に配置されている。光機能層9は、保護層5のシンチレータ層3に対向する面5sに形成されている。光機能層9は、例えば、保護層5の面5sに対して、反射又は吸収等の光機能を有する顔料とバインダ樹脂とからなる樹脂層を配置し、その樹脂層を乾燥させて硬化させることにより作製することができる。したがって、光機能層9は、硬質である。すなわち、光機能層9は、流動性を有さない。また、光機能層9は、保護層5の面5sに一体的に形成されている。なお、光機能層9が硬質であるとは、上記の通り樹脂を含む材料を硬化させて形成されることにより、硬化した樹脂の硬度に応じた硬度を有することを意味する。
 このような光機能層9は、保護層5が枠体4に固定された状態において(固定されることによって)、シンチレータ層3に押圧される。これにより、光機能層9は、シンチレータ層3に接触している。特に光機能層9は、複数の柱状結晶30の先端30tを含む複数の独立した領域において、シンチレータ層3に接触している(すなわち多点で接触している)。
 以上説明したように、シンチレータパネル1Cにおいては、保護層5のシンチレータ層3に対向する面5sには、硬質の光機能層9が一体的に形成されている。光機能層9は、保護層5が枠体4に固定された状態で、保護層5とシンチレータ層3との間に挟持されてシンチレータ層3に押圧される。これにより、光機能層9は、シンチレータ層3の柱状結晶30の先端30tを含む複数の領域においてシンチレータ層3に接触している。
 このように、シンチレータパネル1Cにおいては、保護層5に一体形成された硬質の光機能層9が用いられる。このため、光機能層9が、互いに隣り合う柱状結晶30の先端30tの間の間隙を充填したり、柱状結晶30間に浸透したりすることが避けられる。また、光機能層9が保護層5の固定に応じてシンチレータ層3に押圧されるので、光機能層9が柱状結晶30の先端30tから離間することが避けられる。このため、シンチレーション光が柱状結晶30から漏れることが抑制される。よって、解像度及び光出力が向上される。つまり、保護層5と光機能層9とは、上述した保護層5と光機能層6と弾性部材7との組み合わせと同等の特性を得ることができる。
 なお、シンチレータパネル1Cにおいても、シンチレータ層3に代えてシンチレータ層3Aやシンチレータ層3Bを用いてもよい。
 上記実施形態においては、本発明の一側面をシンチレータパネル(例えばシンチレータパネル1,1A,1C)に適用した場合について説明した。このようなシンチレータパネルにおいては、光電変換素子を有するセンサパネル(例えばTFTパネルやCMOSイメージセンサパネル)を基板として用いることにより、放射線検出器を構成することができる。引き続いて、放射線検出器の一実施形態について説明する。
 図8は、本実施形態に係る放射線検出器の断面図である。図8に示されるように、放射線検出器1Dは、基板2に代えて、センサパネルとしての基板2Dを備える点において、シンチレータパネル1と相違している。基板(センサパネル)2Dは、主面2sと、主面2sに形成された複数の光電変換素子10と、を有する。より具体的には、基板2Dは、主面2sを含む板状の基部2pを有している。また、光電変換素子10は、主面2sに沿って2次元状に配列されている。
 シンチレータ層3は、例えば蒸着等によって、主面2s及び光電変換素子10上に設けられている。ここでは、主面2s及び光電変換素子10上には、パッシベーション膜又は平坦化膜等の膜部11が形成されている。シンチレータ層3は、膜部11を介して、主面2s及び光電変換素子10上に設けられている。シンチレータ層3は、光電変換素子10に光学的に結合されている。したがって、光電変換素子10は、シンチレータ層3において発生したシンチレーション光を入力し、シンチレーション光に応じた電気信号を出力する。電気信号は、図示しない配線等により外部に取り出される。これにより、放射線検出器1Dは放射線Rを検出する。
 放射線検出器1Dは、少なくとも、上記のシンチレータパネル1の奏する効果と同様の効果を奏する。より具体的には、放射線検出器1Dにおいては、複数の柱状結晶30を含むシンチレータ層3が、複数の光電変換素子10を有する基板2Dの主面2sに設けられ、保護層5により封止されている。シンチレータ層3と保護層5との間にはシート状の光機能層6が配置され、光機能層6と保護層5との間には弾性部材7が配置されている。弾性部材7は、光機能層6と保護層5とにより挟まれて弾性変形されている。光機能層6は、弾性部材7の弾性力によってシンチレータ層3に押圧され、シンチレータ層3の柱状結晶30の先端30tを含む複数の領域においてシンチレータ層3に接触している。
 このように、放射線検出器1Dにおいては、シート状の光機能層6が用いられる。このため、光機能層6が、互いに隣り合う柱状結晶30のテーパ部32同士の間隙を充填したり、柱状結晶30の柱状部31間に浸透したりすることが避けられる。また、光機能層6が弾性部材7の弾性力によりシンチレータ層3に押圧されるので、光機能層6が柱状結晶30の先端30tから離間することが避けられる。このため、シンチレーション光が柱状結晶30から漏れることが抑制される。よって、解像度及び光出力が向上される。
 なお、保護層5は、シンチレータ層3よりも高い(厚い)枠体4に固定される。このため、例えば平板状の保護層5を用いることにより、枠体4とシンチレータ層3との高さの差に応じたスペースが、シンチレータ層3と保護層5との間に形成される。したがって、そのスペースに光機能層6と弾性部材7を配置することにより、容易且つ確実に上記の構成を実現して解像度及び光出力を向上可能である。
 ここで、放射線検出器1Dによれば、次のような別の効果を奏することができる。すなわち、放射線検出器1Dは、センサパネルとしての基板2D上(及び膜部11上)に、例えば蒸着等によって直接的にシンチレータ層3を形成することにより構成されている。このため、放射線検出器を構成するに際して、互いに別体として用意したセンサパネルとシンチレータパネルとを貼り合わせる必要がない。ただし、シンチレータパネル1,1A,1Cにおいて、基板2における主面2sの反対側の裏面に対して、センサパネルを別途設けることにより放射線検出器を構成してもよい。
 なお、放射線検出器1Dは、シンチレータ層3に代えて、シンチレータ層3A又はシンチレータ層3Bを備えていてもよい。また、放射線検出器1Dにおいては、弾性部材7は、シンチレータパネル1のように、光機能層6と一体化されていてもよいし、シンチレータパネル1Aのように、保護層5と一体化されていてもよい。さらに、シンチレータパネル1Cの基板2を基板2Dに変更することにより放射線検出器を構成してもよい。この場合の放射線検出器は、光機能層6に代えて、保護層5のシンチレータ層3に対向する面5sに一体的に形成された硬質の光機能層9を備えると共に、弾性部材7を備えないことになる。
 解像度及び光出力を向上可能なシンチレータパネル及び放射線検出器を提供することができる。
 1,1A,1C…シンチレータパネル、1D…放射線検出器、2,2D…基板、2s…主面、3,3A,3B…シンチレータ層、4…枠体、5…保護層、5s…面、6…光機能層、7…弾性部材、9…光機能層、10…光電変換素子、30,30A,30B…柱状結晶、30t…先端、R…放射線、H3,H4…高さ。

Claims (12)

  1.  放射線をシンチレーション光に変換するためのシンチレータパネルであって、
     主面を有し、前記シンチレーション光に対して透過性を有する基板と、
     前記主面上に設けられたシンチレータ層と、
     前記主面に交差する方向からみて前記シンチレータ層を囲うように前記主面上に設けられた枠体と、
     前記主面及び前記シンチレータ層上に配置され、前記シンチレータ層を封止するように前記枠体に固定された保護層と、
     前記シンチレータ層と前記保護層との間に配置されたシート状の光機能層と、
     前記光機能層と前記保護層とに挟まれて弾性変形された弾性部材と、
     を備え、
     前記主面からの前記枠体の高さは、前記主面からの前記シンチレータ層の高さよりも大きく、
     前記シンチレータ層は、シンチレータ材料の複数の柱状結晶を含み、
     前記光機能層は、前記弾性部材の弾性力によって前記シンチレータ層に押圧され、複数の前記柱状結晶の先端を含む複数の領域において前記シンチレータ層に接触している、
     シンチレータパネル。
  2.  前記弾性部材は、前記主面に沿って延びるシート状である、
     請求項1に記載のシンチレータパネル。
  3.  前記弾性部材は、発泡プラスチックを含む、
     請求項2に記載のシンチレータパネル。
  4.  前記弾性部材は、前記光機能層又は前記保護層と一体化されている、
     請求項1~3のいずれか一項に記載のシンチレータパネル。
  5.  前記柱状結晶の前記先端は、平坦化されている、
     請求項1~4のいずれか一項に記載のシンチレータパネル。
  6.  主面と、前記主面上に形成された複数の光電変換素子と、を有する基板と、
     前記光電変換素子上に設けられ、放射線をシンチレーション光に変換するためのシンチレータ層と、
     前記主面に交差する方向からみて前記シンチレータ層を囲うように前記主面上に設けられた枠体と、
     前記主面及び前記シンチレータ層上に配置され、前記シンチレータ層を封止するように前記枠体に固定された保護層と、
     前記シンチレータ層と前記保護層との間に配置されたシート状の光機能層と、
     前記光機能層と前記保護層とに挟まれて弾性変形された弾性部材と、
     を備え、
     前記主面からの前記枠体の高さは、前記主面からの前記シンチレータ層の高さよりも大きく、
     前記シンチレータ層は、シンチレータ材料の複数の柱状結晶を含み、
     前記光機能層は、前記弾性部材の弾性力によって前記シンチレータ層に押圧され、複数の前記柱状結晶の先端を含む複数の領域において前記シンチレータ層に接触している、
     放射線検出器。
  7.  前記弾性部材は、前記主面に沿って延びるシート状である、
     請求項6に記載の放射線検出器。
  8.  前記弾性部材は、発泡プラスチックを含む、
     請求項7に記載の放射線検出器。
  9.  前記弾性部材は、前記光機能層又は前記保護層と一体化されている、
     請求項6~8のいずれか一項に記載の放射線検出器。
  10.  前記柱状結晶の前記先端は、平坦化されている、
     請求項6~9のいずれか一項に記載の放射線検出器。
  11.  放射線をシンチレーション光に変換するためのシンチレータパネルであって、
     主面を有し、前記シンチレーション光に対して透過性を有する基板と、
     前記主面上に設けられたシンチレータ層と、
     前記主面に交差する方向からみて前記シンチレータ層を囲うように前記主面上に設けられた枠体と、
     前記主面及び前記シンチレータ層上に配置され、前記シンチレータ層を封止するように前記枠体に固定された保護層と、
     前記保護層の前記シンチレータ層に対向する面に一体的に形成された硬質の光機能層と、
     を備え、
     前記主面からの前記枠体の高さは、前記主面からの前記シンチレータ層の高さよりも大きく、
     前記シンチレータ層は、シンチレータ材料の複数の柱状結晶を含み、
     前記光機能層は、前記保護層が前記枠体に固定された状態において前記シンチレータ層に押圧され、複数の前記柱状結晶の先端を含む複数の領域において前記シンチレータ層に接触している、
    シンチレータパネル。
  12.  主面と、前記主面上に形成された複数の光電変換素子と、を有する基板と、
     前記光電変換素子上に設けられ、放射線をシンチレーション光に変換するためのシンチレータ層と、
     前記主面に交差する方向からみて前記シンチレータ層を囲うように前記主面上に設けられた枠体と、
     前記主面及び前記シンチレータ層上に配置され、前記シンチレータ層を封止するように前記枠体に固定された保護層と、
     前記保護層の前記シンチレータ層に対向する面に一体的に形成された硬質の光機能層と、
     を備え、
     前記主面からの前記枠体の高さは、前記主面からの前記シンチレータ層の高さよりも大きく、
     前記シンチレータ層は、シンチレータ材料の複数の柱状結晶を含み、
     前記光機能層は、前記保護層が前記枠体に固定された状態において前記シンチレータ層に押圧され、複数の前記柱状結晶の先端を含む複数の領域において前記シンチレータ層に接触している、
     放射線検出器。
PCT/JP2016/075817 2015-09-15 2016-09-02 シンチレータパネル、及び、放射線検出器 WO2017047411A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20190232.7A EP3770923B1 (en) 2015-09-15 2016-09-02 Radiation detector
US15/755,129 US10302772B2 (en) 2015-09-15 2016-09-02 Scintillator panel and radiation detector
KR1020187000604A KR102500502B1 (ko) 2015-09-15 2016-09-02 신틸레이터 패널 및 방사선 검출기
EP16846282.8A EP3352176B1 (en) 2015-09-15 2016-09-02 Scintillator panel and radiation detector
CN201680053237.3A CN108028088B (zh) 2015-09-15 2016-09-02 闪烁器面板及放射线检测器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-181743 2015-09-15
JP2015181743A JP6549950B2 (ja) 2015-09-15 2015-09-15 シンチレータパネル、及び、放射線検出器

Publications (1)

Publication Number Publication Date
WO2017047411A1 true WO2017047411A1 (ja) 2017-03-23

Family

ID=58289243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075817 WO2017047411A1 (ja) 2015-09-15 2016-09-02 シンチレータパネル、及び、放射線検出器

Country Status (7)

Country Link
US (1) US10302772B2 (ja)
EP (2) EP3770923B1 (ja)
JP (1) JP6549950B2 (ja)
KR (1) KR102500502B1 (ja)
CN (1) CN108028088B (ja)
TW (1) TWI690942B (ja)
WO (1) WO2017047411A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020492A1 (ja) * 2019-07-31 2021-02-04 キヤノン株式会社 シンチレータユニット、及び放射線検出器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862324B2 (ja) 2017-09-27 2021-04-21 浜松ホトニクス株式会社 シンチレータパネル及び放射線検出器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196742A (ja) * 1991-08-21 1993-08-06 General Electric Co <Ge> 反射および保護膜を有するソリッドステート放射線イメージャ
JP2003107197A (ja) * 2001-09-27 2003-04-09 Fuji Photo Film Co Ltd 放射線像変換パネルおよびその製造方法
JP2007240306A (ja) * 2006-03-08 2007-09-20 Toshiba Corp シンチレータパネルおよび平面検出器
JP2008170374A (ja) * 2007-01-15 2008-07-24 Canon Inc 放射線検出装置及びシンチレータパネル
JP2009025258A (ja) * 2007-07-24 2009-02-05 Toshiba Corp 放射線検出器
JP2012127735A (ja) * 2010-12-14 2012-07-05 Fujifilm Corp 放射線検出装置及びシンチレータパネルの製造方法
JP2012137438A (ja) * 2010-12-27 2012-07-19 Fujifilm Corp 放射線画像検出装置及びその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077941B2 (ja) * 1997-02-14 2000-08-21 浜松ホトニクス株式会社 放射線検出素子及びその製造方法
US6172371B1 (en) 1998-06-15 2001-01-09 General Electric Company Robust cover plate for radiation imager
JP2005283483A (ja) * 2004-03-30 2005-10-13 Toshiba Corp X線検出器
JP4449074B2 (ja) 2004-03-30 2010-04-14 株式会社デンソー センサシステム
JP2007057428A (ja) 2005-08-25 2007-03-08 Canon Inc 放射線検出装置及び放射線撮像システム
JP5196742B2 (ja) * 2006-06-23 2013-05-15 川崎重工業株式会社 リーンバーンエンジンの着火支援装置
JP4764407B2 (ja) 2007-11-20 2011-09-07 東芝電子管デバイス株式会社 放射線検出器及びその製造方法
KR101726464B1 (ko) * 2010-01-29 2017-04-12 하마마츠 포토닉스 가부시키가이샤 방사선상 변환 패널
US20120001761A1 (en) * 2010-07-01 2012-01-05 Nokia Corporation Apparatus and method for detecting radiation
JP5178900B2 (ja) * 2010-11-08 2013-04-10 富士フイルム株式会社 放射線検出器
JP5703044B2 (ja) * 2011-01-31 2015-04-15 富士フイルム株式会社 放射線画像検出装置及びその製造方法
KR101266554B1 (ko) * 2011-05-09 2013-05-27 주식회사 아비즈알 신틸레이터 패널 및 신틸레이터 패널을 제조하는 방법
JP5917323B2 (ja) * 2012-07-20 2016-05-11 浜松ホトニクス株式会社 シンチレータパネル及び放射線検出器
US8895932B2 (en) * 2012-08-28 2014-11-25 Konica Minolta, Inc. Scintillator plate and radiation detection panel
JP6262419B2 (ja) * 2012-09-10 2018-01-17 コニカミノルタ株式会社 放射線画像検出器及び放射線画像検出器の製造方法
JP6018854B2 (ja) * 2012-09-14 2016-11-02 浜松ホトニクス株式会社 シンチレータパネル、及び、放射線検出器
JP6092568B2 (ja) * 2012-10-11 2017-03-08 キヤノン株式会社 放射線検出装置及び放射線検出システム
WO2014187502A1 (en) * 2013-05-24 2014-11-27 Teledyne Dalsa B.V. A moisture protection structure for a device and a fabrication method thereof
JP5936584B2 (ja) * 2013-08-29 2016-06-22 富士フイルム株式会社 放射線画像検出装置及び製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196742A (ja) * 1991-08-21 1993-08-06 General Electric Co <Ge> 反射および保護膜を有するソリッドステート放射線イメージャ
JP2003107197A (ja) * 2001-09-27 2003-04-09 Fuji Photo Film Co Ltd 放射線像変換パネルおよびその製造方法
JP2007240306A (ja) * 2006-03-08 2007-09-20 Toshiba Corp シンチレータパネルおよび平面検出器
JP2008170374A (ja) * 2007-01-15 2008-07-24 Canon Inc 放射線検出装置及びシンチレータパネル
JP2009025258A (ja) * 2007-07-24 2009-02-05 Toshiba Corp 放射線検出器
JP2012127735A (ja) * 2010-12-14 2012-07-05 Fujifilm Corp 放射線検出装置及びシンチレータパネルの製造方法
JP2012137438A (ja) * 2010-12-27 2012-07-19 Fujifilm Corp 放射線画像検出装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3352176A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020492A1 (ja) * 2019-07-31 2021-02-04 キヤノン株式会社 シンチレータユニット、及び放射線検出器
JP7321818B2 (ja) 2019-07-31 2023-08-07 キヤノン株式会社 シンチレータユニット、及び放射線検出器
US11828889B2 (en) 2019-07-31 2023-11-28 Canon Kabushiki Kaisha Scintillator unit and radiation detector

Also Published As

Publication number Publication date
US10302772B2 (en) 2019-05-28
EP3352176B1 (en) 2020-11-11
KR20180053291A (ko) 2018-05-21
EP3770923B1 (en) 2021-10-27
TWI690942B (zh) 2020-04-11
JP2017058187A (ja) 2017-03-23
JP6549950B2 (ja) 2019-07-24
CN108028088B (zh) 2021-01-08
CN108028088A (zh) 2018-05-11
EP3352176A1 (en) 2018-07-25
TW201724122A (zh) 2017-07-01
EP3352176A4 (en) 2019-05-08
EP3770923A1 (en) 2021-01-27
US20180259655A1 (en) 2018-09-13
KR102500502B1 (ko) 2023-02-17

Similar Documents

Publication Publication Date Title
JP5649872B2 (ja) 放射線検出器の製造方法
US9158010B2 (en) Radiation detector
EP2378525A2 (en) Digital radiographic detector with bonded phosphor layer
US20120318990A1 (en) Radiation detection panel and radiation imaging apparatus
JP7030956B2 (ja) 放射線検出器及び放射線画像撮影装置
WO2017047411A1 (ja) シンチレータパネル、及び、放射線検出器
JPWO2019181569A1 (ja) 放射線検出器、放射線画像撮影装置、及び製造方法
CN109073765B (zh) 放射器检测器及闪烁器面板
JP6725288B2 (ja) 放射線検出器の製造方法
JP2007057428A (ja) 放射線検出装置及び放射線撮像システム
US9513383B1 (en) Scintillator sealing with foil
JP7333244B2 (ja) 放射線検出器、及び、放射線検出器の製造方法
WO2020218538A1 (ja) 放射線検出器及び放射線画像撮影装置
TW201830053A (zh) 放射線檢測器及放射線圖像攝影裝置
WO2022137843A1 (ja) 放射線検出器、放射線検出器の製造方法、及びシンチレータパネルユニット
CN116724252A (zh) 放射线检测器和放射线检测器的制造方法
CN116635751A (zh) 放射线检测器、放射线检测器的制造方法和闪烁体面板组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187000604

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15755129

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846282

Country of ref document: EP