WO2017047283A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2017047283A1
WO2017047283A1 PCT/JP2016/073366 JP2016073366W WO2017047283A1 WO 2017047283 A1 WO2017047283 A1 WO 2017047283A1 JP 2016073366 W JP2016073366 W JP 2016073366W WO 2017047283 A1 WO2017047283 A1 WO 2017047283A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity type
band gap
region
semiconductor
wide band
Prior art date
Application number
PCT/JP2016/073366
Other languages
English (en)
French (fr)
Inventor
保幸 星
原田 祐一
崇 椎木
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2017539771A priority Critical patent/JP6350760B2/ja
Priority to CN201680011837.3A priority patent/CN107408575B/zh
Publication of WO2017047283A1 publication Critical patent/WO2017047283A1/ja
Priority to US15/692,690 priority patent/US10147792B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • silicon has been used as a constituent material of power semiconductor devices that control high voltage and large current.
  • power semiconductor devices such as bipolar transistors, IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal Oxide Semiconductor Field Transistors, Insulated Gate Field Effect Transistors). It has been.
  • bipolar transistors and IGBTs have a higher current density than MOSFETs and can be increased in current, but cannot be switched at high speed.
  • the bipolar transistor is limited in use at a switching frequency of about several kHz
  • the IGBT is limited in use at a switching frequency of about several tens of kHz.
  • a power MOSFET has a lower current density than a bipolar transistor or IGBT and is difficult to increase in current, but can perform a high-speed switching operation up to several MHz.
  • Non-Patent Document 1 Semiconductor materials that can replace silicon from the viewpoint of power semiconductor devices are being studied, and silicon carbide (SiC) is a semiconductor material that can produce (manufacture) next-generation power semiconductor devices with excellent low on-voltage, high-speed characteristics, and high-temperature characteristics. Has attracted attention (see Non-Patent Document 1 below).
  • Silicon carbide is a chemically very stable semiconductor material, has a wide band gap of 3 eV, and can be used extremely stably as a semiconductor even at high temperatures. Silicon carbide is also expected as a semiconductor material that can sufficiently reduce the on-resistance because the maximum electric field strength is one digit or more larger than that of silicon. Such features of silicon carbide also apply to other wide band gap semiconductors having a wider band gap than silicon, for example, gallium nitride (GaN). For this reason, the use of a wide bandgap semiconductor can increase the breakdown voltage of the semiconductor device (for example, see Non-Patent Document 2 below).
  • the generation loss is reduced, so that when used in an inverter, the carrier frequency is applied at a frequency one digit higher than that of a conventional semiconductor device using silicon.
  • the heat generation temperature to the chip increases, which affects the reliability of the semiconductor device.
  • a bonding wire is bonded to the front surface electrode on the front surface side of the substrate as a wiring material for extracting the potential of the front surface electrode to the outside.
  • FIG. 3 is a cross-sectional view showing a configuration of a conventional silicon carbide semiconductor device.
  • N type silicon carbide epitaxial layer 2 is deposited on the surface of n + type silicon carbide substrate 1, and a plurality of p + type regions 10 are provided on the surface of n type silicon carbide epitaxial layer 2.
  • a p-type silicon carbide epitaxial layer 11 is provided on the surface of p + -type region 10.
  • N type well region 12 is provided in p type silicon carbide epitaxial layer 11 on n type silicon carbide epitaxial layer 2 where p + type region 10 is not provided.
  • n + type source region 4 and p ++ type contact region 5 are provided on the surface of p type silicon carbide epitaxial layer 11.
  • a gate electrode 7 is provided on the surface of the p-type silicon carbide epitaxial layer 11 sandwiched between the n + -type source region 4 and the n-type well region 12 via a gate insulating film 6.
  • a PSG (Phospho Silicate Glass) film 14 is selectively provided.
  • Source electrodes 8 are provided on the surfaces of the n + -type source region 4 and the p ++ -type contact region 5.
  • the source electrode 8 has, for example, a two-layer structure of a Ti film 20 and an Al—Si film 21.
  • a protective film 15 is selectively provided on the source electrode 8, and a plating film 16 is provided in a portion where the protective film 15 is not provided.
  • a second protective film 17 is provided so as to cover a portion where the plating film 16 and the protective film 15 are adjacent to each other.
  • Solder 19 for connecting a pin-like electrode 18 connected to an external signal is provided on the plating film 16.
  • a drain electrode 9 is provided on the back side of n + -type silicon carbide substrate 1.
  • the coverage (step coverage) of the interlayer insulating film 13 is poor, and a step due to the unevenness of the lower layer is formed on the surface of the interlayer insulating film 13, so that the pin electrode is formed on the source electrode 8 via the plating film 16.
  • the step of interlayer insulating film 13 refers to a silicon carbide semiconductor substrate that includes n + -type silicon carbide substrate 1 and n-type silicon carbide epitaxial layer 2 that is generated when interlayer insulating film 13 covers gate electrode 7. This is the height of the interlayer insulating film 13.
  • the plating film 16, the protective film 15, and the source electrode 8 are formed near the end of the solder 19. Stress concentrates on the three points of contact with each other due to the difference in thermal expansion. As the stress concentrates in this way, the characteristics of the semiconductor device are deteriorated and the reliability is lowered. In the worst case, the interlayer insulating film 13 is broken, the gate electrode 7 and the source electrode 8 are short-circuited, and the semiconductor device becomes defective.
  • An object of the present invention is to provide a semiconductor device and a semiconductor device manufacturing method that improve the reliability of a semiconductor device in which pin-shaped electrodes are joined by solder.
  • a semiconductor device includes a first conductivity type wide bandgap semiconductor substrate, a first conductivity type wide bandgap semiconductor deposition layer, a second conductivity type semiconductor region, a second conductivity type wide bandgap semiconductor layer, A first first conductivity type region, a second first conductivity type region, a gate electrode, a source electrode, an interlayer insulating film, a drain electrode, a protective film, a plating film, a pin-like electrode, Is provided.
  • the first conductivity type wide band gap semiconductor substrate is made of a semiconductor having a wider band gap than silicon.
  • the first conductivity type wide band gap semiconductor deposition layer is deposited on the front surface of the first conductivity type wide band gap semiconductor substrate, and has an impurity concentration lower than that of the first conductivity type wide band gap semiconductor substrate.
  • the second conductivity type semiconductor region is selectively provided on a surface layer of the first conductivity type wide band gap semiconductor deposition layer opposite to the first conductivity type wide band gap semiconductor substrate side.
  • the second conductivity type wide band gap semiconductor layer is provided on the surface of the first conductivity type wide band gap semiconductor deposition layer and the second conductivity type semiconductor region, and is made of a semiconductor having a wider band gap than silicon.
  • the first first conductivity type region is selectively provided on the first conductivity type wide band gap semiconductor deposition layer in the second conductivity type wide band gap semiconductor layer.
  • the second first conductivity type region is selectively provided in the second conductivity type wide band gap semiconductor layer.
  • the gate electrode is provided on the second first conductivity type region and the first first conductivity type region via a gate insulating film.
  • the source electrode is in contact with the second conductivity type wide band gap semiconductor layer and the second first conductivity type region.
  • the interlayer insulating film covers the gate electrode.
  • the drain electrode is provided on the back surface of the first conductivity type wide band gap semiconductor substrate.
  • the protective film is selectively provided on the source electrode.
  • the plating film is selectively provided on a portion of the source electrode where the protective film is not provided.
  • the pin-like electrode is connected to the plating film via solder and takes out an external signal. Further, no channel is provided immediately below the triple point where the plating film, the protective film, and the source electrode are in contact with each other.
  • the fact that the channel is not provided immediately below the triple point portion indicates that the surface layer of the first conductivity type wide bandgap semiconductor deposited layer is the second layer.
  • a conductive semiconductor region is provided, the first conductive type region is provided in the second conductive type wide bandgap semiconductor layer, and the second conductive type wide bandgap semiconductor layer is provided with the second conductive type semiconductor region.
  • the first conductivity type region is not provided.
  • a semiconductor device manufacturing method has the following characteristics.
  • the channel in the above-described invention, in the step of selectively forming the second first conductivity type region, the channel is not formed immediately below the triple point portion.
  • the second conductivity type semiconductor region is formed in a surface layer of the first conductivity type wide band gap semiconductor deposition layer, and the first first conductivity type region is formed in the second conductivity type wide band gap semiconductor layer. And forming the second conductivity type wide bandgap semiconductor layer without forming the second first conductivity type region.
  • the semiconductor device and the method for manufacturing the semiconductor device of the present invention it is possible to provide a semiconductor device in which deterioration of characteristics of the semiconductor device is suppressed, and which has good characteristics.
  • FIG. 1 is a cross-sectional view showing a configuration of the silicon carbide semiconductor device according to the embodiment.
  • FIG. 2 is a plan view showing a main part of the silicon carbide semiconductor device according to the embodiment.
  • FIG. 3 is a cross-sectional view showing a configuration of a conventional silicon carbide semiconductor device.
  • the semiconductor device according to the present invention is configured using a wide band gap semiconductor.
  • a silicon carbide semiconductor device manufactured using, for example, silicon carbide (SiC) as a wide band gap semiconductor will be described by taking MOSFET as an example.
  • FIG. 1 is a cross-sectional view showing a configuration of the silicon carbide semiconductor device according to the embodiment.
  • FIG. 1 illustrates the state of the active region.
  • the silicon carbide semiconductor device includes an n + type silicon carbide substrate (first conductivity type wide band gap semiconductor substrate) 1 on the first main surface (front surface).
  • a silicon carbide epitaxial layer (first conductivity type wide band gap semiconductor deposition layer) 2 is deposited.
  • n + type silicon carbide substrate 1 is a silicon carbide single crystal substrate doped with, for example, nitrogen (N).
  • N-type silicon carbide epitaxial layer 2 is a low-concentration n-type drift layer doped with, for example, nitrogen at a lower impurity concentration than n + -type silicon carbide substrate 1.
  • n + type silicon carbide substrate 1 and n type silicon carbide epitaxial layer 2 are collectively referred to as a silicon carbide semiconductor substrate.
  • MOS gate metal-oxide film-insulated gate made of semiconductor
  • the surface layer on the side opposite to the n + -type silicon carbide substrate 1 of the n-type silicon carbide epitaxial layer 2 has ap functioning as a p base layer.
  • a + type region (second conductivity type semiconductor region) 10 is selectively provided.
  • a p-type silicon carbide epitaxial layer 11 (second conductivity type wide band gap semiconductor layer) is deposited on the surfaces of n-type silicon carbide epitaxial layer 2 and p + -type region 10.
  • an n-type well that penetrates p-type silicon carbide epitaxial layer 11 in the depth direction and reaches n-type silicon carbide epitaxial layer 2.
  • Region 12 (first first conductivity type region) is provided.
  • N type well region 12 forms a drift region together with n type silicon carbide epitaxial layer 2.
  • n + type source region 4 (second first conductivity type region) is separated from the n type well region 12 in a portion facing the p + type region 10 in the depth direction inside the p type silicon carbide epitaxial layer 11. ) Is selectively provided. Further, a p ++ type contact region 5 (second conductivity type region) having a higher impurity concentration than p type silicon carbide epitaxial layer 11 is selectively interposed between n + type source regions 4 in p type silicon carbide epitaxial layer 11. Is provided.
  • a gate electrode 7 is provided on the surface of the portion of p-type silicon carbide epitaxial layer 11 between n + -type source region 4 and n-type well region 12 with gate insulating film 6 interposed therebetween.
  • the gate electrode 7 may be provided on the surface of the n-type well region 12 via the gate insulating film 6.
  • An interlayer insulating film 13 is provided on the entire front surface side of the silicon carbide semiconductor substrate so as to cover the gate electrode 7.
  • a BPSG (Boron Phospho Silicate Glass) film 100 is laminated as the interlayer insulating film 13.
  • the source electrode 8 can have, for example, a two-layer structure of a Ti film 20 and an Al—Si film 21.
  • the Al—Si film 21 is, for example, an aluminum film containing silicon at a rate of 1%.
  • a drain electrode 9 is provided on the back surface of the silicon carbide semiconductor substrate.
  • a protective film 15 is selectively provided on the source electrode 8, and a plating film 16 is provided on the source electrode 8 on which the protective film 15 is not provided.
  • the protective film 15 has a function of protecting the front surface of the semiconductor device. Further, the protective film 15 has a function of preventing plating of the plating film 16 from flowing out when forming the plating film 16.
  • the protective film 15 has a function of protecting an edge termination structure portion (not shown) surrounding the active region.
  • the active region is a region through which a current flows when the semiconductor device is on.
  • the edge termination structure portion is a region that is provided so as to surround the periphery of the active region and relaxes the electric field on the substrate front surface side of the drift region and maintains a withstand voltage.
  • a second protective film 17 is provided so as to selectively cover a portion where the plating film 16 and the protective film 15 are in contact with each other.
  • the second protective film 17 covers the gap between the plating film 16 and the protective film 15 and has a function of preventing, for example, solder 19 from entering the substrate side.
  • the second protective film 17 functions as a mask when forming the solder 19.
  • the second protective film 17 may cover the entire surface of the protective film 15.
  • a pin-like electrode 18 is provided which is connected to the plated film 16 portion via a solder 19 and is a wiring material for taking out the potential of the source electrode 8 to the outside.
  • the pin-shaped electrode 18 has a needle shape and is joined to the source electrode 8 in an upright state.
  • the stress when soldering the pin-shaped electrode 18 to the source electrode 8 and the stress due to the difference in thermal expansion are concentrated on the step immediately below the triple point. In other words, no stress is applied to the step in the region away from directly below the triple point. For this reason, in the step in the region away from directly below the triple point, the characteristics of the semiconductor device are not deteriorated and the reliability is not lowered. Further, the interlayer insulating film 13 is not broken, the gate electrode 7 and the source electrode 8 are not short-circuited, and the semiconductor device is not defective.
  • the channel of the MOS structure is not provided immediately below the triple point portion where the plating film 16, the protective film 15, and the source electrode 8 are in contact with each other.
  • Directly below the triple point is the vicinity of the intersection where the straight line perpendicular to the silicon carbide semiconductor substrate side from the triple point and the p-type silicon carbide epitaxial layer 11 intersect.
  • the neighborhood is a region from the intersection point to a distance about three times the size of the cell. Specifically, if the size of the cell is about 10 ⁇ m, this is a region from the intersection to a distance of about 30 ⁇ m.
  • FIG. 2 is a plan view showing a main part of the silicon carbide semiconductor device according to the embodiment.
  • FIG. 2 shows a portion where the surface structure of the silicon carbide semiconductor device according to the embodiment has a stripe structure and no MOS structure channel is provided.
  • FIG. 2 only the p + type region 10 and the plating film 16 are illustrated.
  • a triple point where the plating film 16, the protective film 15, and the source electrode 8 are in contact with each other is a boundary portion between the plating film 16 and the protective film 15.
  • the triple point portion is a shaded region of the p + -type region 10, and the channel of the MOS structure is not provided on the surface of this region.
  • ap + type region 10 is provided in the surface layer of n type silicon carbide epitaxial layer 2, and n + type source region 4 is provided between n type well region 12 and p ++ type contact region 5. As a result, a channel having a MOS structure is not provided.
  • the MOS structure channel is not provided, no current flows even when a voltage higher than the threshold is applied to the gate electrode 7.
  • the n + type source region 4 is not provided between the n type well region 12 and the p ++ type contact region 5. For this reason, even if a voltage higher than the threshold is applied to the gate electrode 7 and an inversion layer is formed in the p-type silicon carbide epitaxial layer 11, there is no n-type semiconductor layer in the contact region. , No current flows.
  • N + type silicon carbide substrate 1 may have a (000-1) plane whose main surface has an off angle of about 4 degrees in the ⁇ 11-20> direction, for example.
  • an n-type silicon carbide epitaxial layer 2 having a thickness of 10 ⁇ m doped with nitrogen at an impurity concentration of 1.0 ⁇ 10 16 cm ⁇ 3 is formed on the (000-1) plane of the n + -type silicon carbide substrate 1. Epitaxially grow.
  • a mask having a desired opening is formed on the surface of n-type silicon carbide epitaxial layer 2 by a photolithography technique, for example, using a resist.
  • p-type impurities for example, aluminum atoms are ion-implanted by ion implantation using this resist mask as a mask.
  • p + -type region 10 is formed in a part of the surface region of n-type silicon carbide epitaxial layer 2.
  • the mask used at the time of ion implantation for forming the p + -type region 10 is removed.
  • p-type silicon carbide epitaxial layer 11 is epitaxially grown on the surface of n-type silicon carbide epitaxial layer 2 to a thickness of 0.5 ⁇ m, for example.
  • the p-type silicon carbide epitaxial layer 11 may be epitaxially grown so that the impurity concentration is 2.0 ⁇ 10 16 cm ⁇ 3 .
  • a mask having a desired opening is formed on the surface of p-type silicon carbide epitaxial layer 11 by a photolithography technique, for example, using a resist.
  • a mask having no opening is formed immediately below the triple point where the plating film 16, the protective film 15, and the source electrode 8 to be formed later are in contact with each other.
  • an n-type impurity such as nitrogen is ion-implanted by ion implantation using this resist mask as a mask.
  • n + type source region 4 is formed in a part of the surface region of p type silicon carbide epitaxial layer 11.
  • n + type source region 4 is not formed on p type silicon carbide epitaxial layer 11 immediately below the triple point portion.
  • the mask used at the time of ion implantation for forming the n + -type source region 4 is removed.
  • a mask having a desired opening is formed on the surface of p-type silicon carbide epitaxial layer 11 by a photolithography technique, for example, using a resist.
  • a mask having an opening immediately below a triple point where the plating film 16, the protective film 15, and the source electrode 8 formed later are in contact with each other is used.
  • a p-type impurity such as aluminum is ion-implanted by ion implantation using this resist mask as a mask.
  • p ++ type contact region 5 is formed in part of the surface region of p type silicon carbide epitaxial layer 11.
  • the mask used at the time of ion implantation for forming the p ++ type contact region 5 is removed.
  • a mask having a desired opening is formed on the surface of the p-type silicon carbide epitaxial layer 11 by a photolithography technique, for example, with a resist. Then, an n-type impurity such as nitrogen is ion-implanted by ion implantation using this resist mask as a mask. Thereby, n-type well region 12 is formed in a part of the surface region of p-type silicon carbide epitaxial layer 11. Next, the mask used at the time of ion implantation for forming the n-type well region 12 is removed.
  • heat treatment for activating the n + -type source region 4, the p ++ -type contact region 5, and the n-type well region 12 is performed.
  • the heat treatment temperature and heat treatment time at this time may be 1620 ° C. and 2 minutes, respectively.
  • the order of forming the n + -type source region 4, the p ++ -type contact region 5 and the n-type well region 12 can be variously changed.
  • the front surface side of the silicon carbide semiconductor substrate is thermally oxidized to form a gate insulating film 6 with a thickness of 100 nm.
  • This thermal oxidation may be performed by heat treatment at a temperature of about 1000 ° C. in a mixed atmosphere of oxygen (O 2 ) and hydrogen (H 2 ).
  • O 2 oxygen
  • H 2 hydrogen
  • a polycrystalline silicon layer doped with, for example, phosphorus (P) is formed on the gate insulating film 6 as the gate electrode 7.
  • the polycrystalline silicon layer is selectively removed by patterning, leaving the polycrystalline silicon layer on the portion of p-type silicon carbide epitaxial layer 11 sandwiched between n + -type source region 4 and n-type well region 12. .
  • a polycrystalline silicon layer may be left on the n-type well region 12. This remaining polycrystalline silicon layer becomes the gate electrode 7.
  • a BPSG film 100 is formed as an interlayer insulating film 13 so as to cover the gate electrode 7.
  • boron phosphorous glass BPSG
  • a reflow process is performed to flatten the BPSG film 100. After the reflow process, the BPSG film 100 is selectively removed to form contact holes.
  • a Ti film 20 and an Al—Si film 21 are formed as the source electrode 8.
  • the Ti film 20 is formed by the sputtering method
  • the Al—Si film 21 is formed on the Ti film 20 by the sputtering method.
  • a nickel film for example, is formed as the drain electrode 9 on the surface of the n + type silicon carbide substrate 1 (the back surface of the silicon carbide semiconductor substrate). Then, for example, heat treatment is performed at a temperature of 970 ° C. to form an ohmic junction between the n + -type silicon carbide substrate 1 and the drain electrode 9.
  • titanium, nickel (Ni), and gold (Au) are formed in this order as the drain electrode 9 on the surface of the nickel film.
  • protective film 15 is selectively formed on source electrode 8 on the front surface side of the silicon carbide semiconductor substrate.
  • a plating film 16 is selectively formed on the portion without the protective film 15 on the source electrode 8. Thereby, the plating film 16 is formed on the source electrode 8 without plating flowing to the edge termination structure portion.
  • a second protective film 17 is selectively formed using a polymer resin or the like so as to cover a portion where the plating film 16 and the protective film 15 are adjacent to each other.
  • the pin-shaped electrode 18 is formed on the plating film 16 via the solder 19. Thereby, the MOSFET shown in FIG. 1 is completed.
  • the embodiment since a channel is not formed immediately below the triple point where the plating film, the protective film, and the source electrode are in contact with each other, a current is applied to a portion where stress is concentrated. The flow does not flow, and the deterioration of the characteristics of the semiconductor device due to the concentration of stress is suppressed. For this reason, the fall of the reliability of a semiconductor device is suppressed. In addition, since the current does not flow to the portion where the stress is concentrated, even if the interlayer insulating film immediately below the triple point portion is cracked, the gate electrode and the source electrode are short-circuited and the semiconductor device becomes defective. Can be suppressed.
  • the MOSFET has been described as an example.
  • the present invention is not limited to this, and there are various types such as a MOS type semiconductor device such as an IGBT and a semiconductor device configured to cause stress concentration in an element structure due to a step of an interlayer insulating film.
  • the present invention can be applied to a semiconductor device having a configuration.
  • the case where silicon carbide is used as the wide band gap semiconductor has been described as an example.
  • a wide band gap semiconductor other than silicon carbide such as gallium nitride (GaN) is used.
  • GaN gallium nitride
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. It holds.
  • the semiconductor device according to the present invention is useful for a high voltage semiconductor device used for a power conversion device, a power supply device such as various industrial machines, and the like. It is suitable for a silicon carbide semiconductor device using a pin-like electrode as a wiring material taken out to the outside.

Abstract

半導体装置は、ソース電極(8)と、ソース電極(8)上に保護膜(15)と、ソース電極(8)上に保護膜(15)が設けられていない部分にめっき膜(16)と、を備え、めっき膜(16)と保護膜(15)とソース電極(8)がお互いに接する3重点部分の直下にチャネルが設けられていない。また、半導体装置は、めっき膜(16)と保護膜(15)とソース電極(8)がお互いに接する3重点部分の直下に第2の第1導電型領域(4)が設けられていない。このようにすることで、ピン状電極を半田で接合した半導体装置の信頼性を向上させることができる。

Description

半導体装置および半導体装置の製造方法
 この発明は、半導体装置および半導体装置の製造方法に関する。
 従来、高電圧や大電流を制御するパワー半導体装置の構成材料として、シリコン(Si)が用いられている。パワー半導体装置は、バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)など複数種類あり、これらは用途に合わせて使い分けられている。
 例えば、バイポーラトランジスタやIGBTは、MOSFETに比べて電流密度は高く大電流化が可能であるが、高速にスイッチングさせることができない。具体的には、バイポーラトランジスタは数kHz程度のスイッチング周波数での使用が限界であり、IGBTは数十kHz程度のスイッチング周波数での使用が限界である。一方、パワーMOSFETは、バイポーラトランジスタやIGBTに比べて電流密度が低く大電流化が難しいが、数MHz程度までの高速スイッチング動作が可能である。
 しかしながら、市場では大電流と高速性とを兼ね備えたパワー半導体装置への要求が強くなり、IGBTやパワーMOSFETはその改良に力が注がれ、現在ではほぼ材料限界に近いところまで開発が進んでいる。パワー半導体装置の観点からシリコンに代わる半導体材料が検討されており、低オン電圧、高速特性、高温特性に優れた次世代のパワー半導体装置を作製(製造)可能な半導体材料として炭化珪素(SiC)が注目を集めている(下記、非特許文献1参照)。
 炭化珪素は、化学的に非常に安定した半導体材料であり、バンドギャップが3eVと広く、高温でも半導体として極めて安定的に使用することができる。また、炭化珪素は、最大電界強度もシリコンより1桁以上大きいため、オン抵抗を十分に小さくすることができる半導体材料として期待される。このような炭化珪素の特長は、他の、シリコンよりバンドギャップが広いワイドバンドギャップ半導体である、例えば窒化ガリウム(GaN)にもあてはまる。このため、ワイドバンドギャップ半導体を用いることにより、半導体装置の高耐圧化を図ることができる(例えば、下記非特許文献2参照)。
 このような炭化珪素を用いた高耐圧半導体装置では発生損失が少なくなった分、インバータで使われる際、キャリア周波数を従来のシリコンを用いた半導体装置よりも1桁高い周波数で適用される。半導体装置を高い周波数で適用するとチップへの発熱温度が高くなり、半導体装置への信頼性に影響する。特に、基板おもて面側のおもて面電極には、おもて面電極の電位を外部に取り出す配線材としてボンディングワイヤが接合されており、半導体装置を高温度で使用すると、おもて面電極とボンディングワイヤとの密着が低下し信頼性に影響を及ぼす。
 また、おもて面電極の電位を外部に取り出す別の配線材として、ワイヤボンディング以外の板状導体部材を用いた技術がある(例えば、下記特許文献1参照)。
 また、おもて面電極にピン状電極を半田で接合する従来の炭化珪素半導体装置がある。図3は、従来の炭化珪素半導体装置の構成を示す断面図である。n+型炭化珪素基板1の表面にn型炭化珪素エピタキシャル層2が堆積され、n型炭化珪素エピタキシャル層2の表面に複数のp+型領域10が設けられる。p+型領域10の表面にp型炭化珪素エピタキシャル層11が設けられる。p+型領域10が設けられていないn型炭化珪素エピタキシャル層2上のp型炭化珪素エピタキシャル層11にn型ウェル領域12が設けられる。p型炭化珪素エピタキシャル層11の表面には、n+型ソース領域4とp++型コンタクト領域5が設けられる。
 p型炭化珪素エピタキシャル層11の、n+型ソース領域4とn型ウェル領域12とに挟まれた表面にゲート絶縁膜6を介して、ゲート電極7が設けられ、ゲート電極7の上部には層間絶縁膜13として、PSG(Phospho Silicate Glass)膜14が選択的に設けられている。n+型ソース領域4とp++型コンタクト領域5との表面に、ソース電極8が設けられる。ソース電極8は、例えば、Ti膜20とAl-Si膜21の2層構造である。ソース電極8の上部には、保護膜15が選択的に設けられ、保護膜15が設けられていない部分にめっき膜16が設けられる。
 めっき膜16と保護膜15とが隣接する部分を覆うように第2の保護膜17が設けられる。めっき膜16の部分に外部信号と接続されるピン状電極18を接続する半田19が設けられる。n+型炭化珪素基板1の裏面側にはドレイン電極9が設けられる。
 図3の構造のMOSFETにおいて、ソース電極8に対しドレイン電極9に正の電圧が印加された状態でゲート電極7にゲート閾値以下の電圧が印加されている場合には、p型炭化珪素エピタキシャル層11とn型ウェル領域12とのpn接合が逆バイアスされた状態であり、活性領域の耐圧が確保されて電流は流れない。一方、ゲート電極7にゲート閾値以上の電圧を印加するとゲート電極7直下のp型炭化珪素エピタキシャル層11表面には反転層が形成されることにより電流が流れる。このように、ゲート電極7に印加する電圧によってMOSFETのスイッチング動作を行うことができる。
特開2014-99444号公報
ケイ・シェナイ(K.Shenai)、外2名、オプティウム セミコンダクターズ フォー ハイパワー エレクトロニクス(Optimum Semiconductors for High-Power Electronics)、アイ・トリプル・イー トランザクションズ オン エレクトロン デバイシズ(IEEE Transactions on Electron Devices)、1989年9月、第36巻、第9号、p.1811-1823 ビー・ジャヤン・バリガ(B.Jayant Baliga)著、シリコン カーバイド パワー デバイシズ(Silicon Carbide Power Divices)、(米国)、ワールド サイエンティフィック パブリッシング カンパニー(World Scientific Publishing Co.)、2006年3月30日、p.61
 しかしながら、従来構造では、層間絶縁膜13の被覆性(ステップカバレッジ)が悪く層間絶縁膜13の表面に下層の凹凸による段差が生じているため、ソース電極8にめっき膜16を介してピン状電極18を半田接合する際に、層間絶縁膜13の段差の部分に応力が集中して掛かる。ここで、層間絶縁膜13の段差とは、層間絶縁膜13がゲート電極7を覆うことにより生じる、n+型炭化珪素基板1とn型炭化珪素エピタキシャル層2とを併せた炭化珪素半導体基体からの層間絶縁膜13の高さである。また、ピン状電極18の半田接合時や半導体装置のスイッチング時に、半田19と周囲との温度差が大きくなるため、半田19の端部付近、特にめっき膜16と保護膜15とソース電極8がお互いに接する3重点部分に熱膨張差により応力が集中する。このように応力が集中することにより、半導体装置の特性が劣化し、信頼性が低下する。最悪の場合、層間絶縁膜13が割れてしまい、ゲート電極7とソース電極8とがショートし、半導体装置が不良になる。
 この発明は、ピン状電極を半田で接合した半導体装置の信頼性を向上させる半導体装置および半導体装置の製造方法を提供することを目的とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。この発明にかかる半導体装置は、第1導電型ワイドバンドギャップ半導体基板と、第1導電型ワイドバンドギャップ半導体堆積層と、第2導電型半導体領域と、第2導電型ワイドバンドギャップ半導体層と、第1の第1導電型領域と、第2の第1導電型領域と、ゲート電極と、ソース電極と、層間絶縁膜と、ドレイン電極と、保護膜と、めっき膜と、ピン状電極と、を備える。第1導電型ワイドバンドギャップ半導体基板は、シリコンよりもバンドギャップが広い半導体からなる。第1導電型ワイドバンドギャップ半導体堆積層は、前記第1導電型ワイドバンドギャップ半導体基板のおもて面に堆積され、前記第1導電型ワイドバンドギャップ半導体基板よりも不純物濃度が低い。第2導電型半導体領域は、前記第1導電型ワイドバンドギャップ半導体堆積層の、前記第1導電型ワイドバンドギャップ半導体基板側に対して反対側の表面層に選択的に設けられている。第2導電型ワイドバンドギャップ半導体層は、前記第1導電型ワイドバンドギャップ半導体堆積層および前記第2導電型半導体領域の表面に設けられ、シリコンよりもバンドギャップが広い半導体からなる。第1の第1導電型領域は、前記第2導電型ワイドバンドギャップ半導体層内の前記第1導電型ワイドバンドギャップ半導体堆積層上に選択的に設けられている。第2の第1導電型領域は、前記第2導電型ワイドバンドギャップ半導体層内に選択的に設けられている。ゲート電極は、前記第2の第1導電型領域および前記第1の第1導電型領域の上にゲート絶縁膜を介して設けられている。ソース電極は、前記第2導電型ワイドバンドギャップ半導体層および前記第2の第1導電型領域に接する。層間絶縁膜は、前記ゲート電極を覆う。ドレイン電極は、前記第1導電型ワイドバンドギャップ半導体基板の裏面に設けられている。保護膜は、前記ソース電極上に、選択的に設けられている。めっき膜は、前記ソース電極上の、前記保護膜が設けられていない部分に、選択的に設けられている。ピン状電極は、前記めっき膜に半田を介して接続され、外部信号をとり出す。また、前記めっき膜と前記保護膜と前記ソース電極がお互いに接する3重点部分の直下にチャネルが設けられていない。
 また、この発明にかかる半導体装置は、上述した発明において、前記3重点部分の直下に前記チャネルが設けられていないことは、前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に前記第2導電型半導体領域が設けられ、前記第2導電型ワイドバンドギャップ半導体層内に、前記第1の第1導電型領域が設けられ、前記第2導電型ワイドバンドギャップ半導体層内に、前記第2の第1導電型領域が設けられていないことであることを特徴とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、次の特徴を有する。シリコンよりもバンドギャップが広い半導体からなる第1導電型ワイドバンドギャップ半導体基板のおもて面に、前記第1導電型ワイドバンドギャップ半導体基板よりも不純物濃度の低い第1導電型ワイドバンドギャップ半導体堆積層を形成する工程を含む。前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に、第2導電型半導体領域を選択的に形成する工程を含む。前記第1導電型ワイドバンドギャップ半導体堆積層の表面に、シリコンよりもバンドギャップが広い半導体からなる、第2導電型ワイドバンドギャップ半導体層を形成する工程を含む。前記第2導電型ワイドバンドギャップ半導体層の内部の、前記第1導電型ワイドバンドギャップ半導体堆積層上に第1の第1導電型領域を選択的に形成する工程を含む。前記第2導電型ワイドバンドギャップ半導体層の内部に第2の第1導電型領域を選択的に形成する工程と、前記第2の第1導電型領域および前記第1の第1導電型領域の上にゲート絶縁膜を介してゲート電極を形成する工程を含む。前記第2導電型ワイドバンドギャップ半導体層および前記第2の第1導電型領域に接するソース電極を形成する工程を含む。前記ゲート電極を覆う層間絶縁膜を形成する工程を含む。前記第1導電型ワイドバンドギャップ半導体基板の裏面にドレイン電極を形成する工程を含む。前記ソース電極上に、選択的に保護膜を形成する工程を含む。前記ソース電極上の、前記保護膜が形成されていない部分に、選択的にめっき膜を形成する工程を含む。前記めっき膜に半田を介して接続された、外部信号をとり出すピン状電極を形成する工程を含む。そして、前記第2の第1導電型領域を選択的に形成する工程において、前記めっき膜と前記保護膜と前記ソース電極がお互いに接する3重点部分の直下にチャネルを形成しない。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2の第1導電型領域を選択的に形成する工程において、前記3重点部分の直下に前記チャネルを形成しないことは、前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に前記第2導電型半導体領域を形成し、前記第2導電型ワイドバンドギャップ半導体層内に、前記第1の第1導電型領域を形成し、前記第2導電型ワイドバンドギャップ半導体層内に、前記第2の第1導電型領域を形成しないことであることを特徴とする。
 上述した発明によれば、めっき膜と保護膜とソース電極がお互いに接する3重点部分の直下に、チャネルを形成しないことにより、応力が集中して掛かる部分に電流が流れることがなくなり、応力が集中して掛かる部分による半導体装置の特性劣化が抑制される。このため、半導体装置の信頼性の低下が抑制される。また、応力が集中して掛かる部分に電流が流れることがなくなるため、例え、3重点部分の直下の層間絶縁膜が割れてしまっても、ゲート電極とソース電極とがショートし半導体装置が不良になることを抑制できる。
 本発明にかかる半導体装置および半導体装置の製造方法によれば、半導体装置の特性劣化が抑制され、良好な特性を有する半導体装置を提供することができるという効果を奏する。
図1は、実施の形態にかかる炭化珪素半導体装置の構成を示す断面図である。 図2は、実施の形態にかかる炭化珪素半導体装置の要部を示す平面図である。 図3は、従来の炭化珪素半導体装置の構成を示す断面図である。
 以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。+および-を含めたnやpの表記が同じ場合は近い濃度であることを示し濃度が同等とは限らない。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数の表記において、"-"はその直後の指数につくバーを意味しており、指数の前に"-"を付けることで負の指数をあらわしている。
(実施の形態)
 本発明にかかる半導体装置は、ワイドバンドギャップ半導体を用いて構成される。実施の形態においては、ワイドバンドギャップ半導体として、例えば炭化珪素(SiC)を用いて作製された炭化珪素半導体装置について、MOSFETを例に説明する。図1は、実施の形態にかかる炭化珪素半導体装置の構成を示す断面図である。図1には、活性領域の状態を図示する。
 図1に示すように、実施の形態にかかる炭化珪素半導体装置は、n+型炭化珪素基板(第1導電型ワイドバンドギャップ半導体基板)1の第1主面(おもて面)にn型炭化珪素エピタキシャル層(第1導電型ワイドバンドギャップ半導体堆積層)2が堆積されている。
 n+型炭化珪素基板1は、例えば窒素(N)がドーピングされた炭化珪素単結晶基板である。n型炭化珪素エピタキシャル層2は、n+型炭化珪素基板1よりも低い不純物濃度で、例えば窒素がドーピングされている低濃度n型ドリフト層である。以下、n+型炭化珪素基板1とn型炭化珪素エピタキシャル層2とを併せて炭化珪素半導体基体とする。
 炭化珪素半導体基体のおもて面側には、MOSゲート(金属-酸化膜-半導体からなる絶縁ゲート)構造(素子構造)が形成されている。具体的には、n型炭化珪素エピタキシャル層2のn+型炭化珪素基板1に対して反対側(炭化珪素半導体基体のおもて面側)の表面層には、pベース層として機能するp+型領域(第2導電型半導体領域)10が選択的に設けられている。
 n型炭化珪素エピタキシャル層2およびp+型領域10の表面には、p型炭化珪素エピタキシャル層11(第2導電型ワイドバンドギャップ半導体層)が堆積されている。また、p型炭化珪素エピタキシャル層11の、n型炭化珪素エピタキシャル層2上の部分には、深さ方向にp型炭化珪素エピタキシャル層11を貫通しn型炭化珪素エピタキシャル層2に達するn型ウェル領域12(第1の第1導電型領域)が設けられている。n型ウェル領域12は、n型炭化珪素エピタキシャル層2とともにドリフト領域を構成する。
 p型炭化珪素エピタキシャル層11の内部の、深さ方向にp+型領域10に対向する部分に、n型ウェル領域12と離して、n+型ソース領域4(第2の第1導電型領域)が選択的に設けられている。また、p型炭化珪素エピタキシャル層11内のn+型ソース領域4の間にp型炭化珪素エピタキシャル層11より高不純物濃度のp++型コンタクト領域5(第2導電型領域)が選択的に設けられている。
 p型炭化珪素エピタキシャル層11の、n+型ソース領域4とn型ウェル領域12とに挟まれた部分の表面には、ゲート絶縁膜6を介してゲート電極7が設けられている。ゲート電極7は、ゲート絶縁膜6を介して、n型ウェル領域12の表面に設けられていてもよい。
 炭化珪素半導体基体のおもて面側の全面に、ゲート電極7を覆うように層間絶縁膜13が設けられている。層間絶縁膜13として、例えば、BPSG(Boron Phospho Silicate Glass)膜100が積層されている。
 層間絶縁膜13に開口されたコンタクトホールを介して、n+型ソース領域4およびp++型コンタクト領域5に接し、n+型ソース領域4およびp++型コンタクト領域5と電気的に接続されるソース電極8が設けられている。ソース電極8は、例えば、Ti膜20とAl-Si膜21の2層構造とすることができる。Al-Si膜21は、例えば、1%割合でシリコンを含んだアルミニウム膜である。
 また、炭化珪素半導体基体の裏面には、ドレイン電極9が設けられている。ソース電極8上に保護膜15が選択的に設けられ、保護膜15が設けられていないソース電極8上にめっき膜16が設けられている。保護膜15は、半導体装置のおもて面を保護する機能を有する。また、保護膜15は、めっき膜16を形成する際、めっき膜16のめっきが外部に流れ出ないようにする機能を有する。また、保護膜15は、活性領域の周囲を囲むエッジ終端構造部(不図示)を保護する機能を有する。ここで、活性領域とは、半導体装置がオン状態のときに電流が流れる領域である。また、エッジ終端構造部とは、活性領域の周囲を囲むように設けられ、ドリフト領域の基板おもて面側の電界を緩和し耐圧を保持する領域である。
 また、めっき膜16と保護膜15が接する部分を選択的に覆うように第2の保護膜17が設けられている。第2の保護膜17は、めっき膜16と保護膜15との隙間を覆い、例えば半田19などが基体側へ侵入することを防止する機能を有する。第2の保護膜17は、半田19を形成する際のマスクとして機能する。また、第2の保護膜17は、保護膜15の全面を覆ってもよい。また、めっき膜16部分に半田19を介して接続された、ソース電極8の電位を外部に取り出す配線材であるピン状電極18が設けられている。ピン状電極18は、針状の形状を有し、ソース電極8に直立した状態で接合されている。
 ソース電極8にピン状電極18を半田接合する際の応力、および、熱膨張差による応力は、3重点部分の直下の段差に集中する。言い換えれば、3重点部分の直下から離れた領域にある段差には、応力は掛からない。このため、3重点部分の直下から離れた領域にある段差では、半導体装置の特性が劣化せず、信頼性が低下することがない。また、層間絶縁膜13が割れてしまわず、ゲート電極7とソース電極8とがショートせず、半導体装置が不良になることもない。
 このため、実施の形態では、めっき膜16と保護膜15とソース電極8がお互いに接する3重点部分の直下に、MOS構造のチャネルを設けていない。また、3重点部分の直下とは、3重点部分から炭化珪素半導体基体側に垂直におろした直線とp型炭化珪素エピタキシャル層11が交わる交点の近傍である。また、近傍とは、交点からセルの大きさの3倍程度の距離までの領域である。具体的に、セルの大きさが10μm程度とすると、交点から30μm程度の距離までの領域である。
 図2は、実施の形態にかかる炭化珪素半導体装置の要部を示す平面図である。図2は、実施の形態にかかる炭化珪素半導体装置の表面構造がストライプ構造を有し、MOS構造のチャネルが設けられていない箇所を示す。図2では、p+型領域10とめっき膜16のみを図示する。めっき膜16と保護膜15とソース電極8とがお互いに接する3重点部分は、めっき膜16と保護膜15との境界部分となる。3重点部分は、図2では、p+型領域10の斜線が付けられた領域となり、この領域の表面には、MOS構造のチャネルが設けられていない。
 また、例えば、n型炭化珪素エピタキシャル層2の表面層に、p+型領域10が設けられ、n型ウェル領域12とp++型コンタクト領域5との間にn+型ソース領域4が設けられないことにより、MOS構造のチャネルが設けられていない。
 MOS構造のチャネルが設けられていないため、ゲート電極7に閾値以上の電圧が印加されても、電流は流れなくなる。例えば、n型ウェル領域12とp++型コンタクト領域5との間にn+型ソース領域4が設けられていない。このため、ゲート電極7に閾値以上の電圧が印加され、p型炭化珪素エピタキシャル層11に反転層が形成されても、コンタクト領域にn型の半導体層がないため、3重点部分の直下には、電流が流れなくなる。
(実施の形態にかかる炭化珪素半導体装置の製造方法)
 次に、実施の形態にかかる炭化珪素半導体装置の製造方法について、例えば、1200Vの耐圧クラスのMOSFETを作成する場合を例に説明する。まず、例えば2×1019cm-3程度の不純物濃度で窒素がドーピングされたn+型炭化珪素基板1を用意する。n+型炭化珪素基板1は、主面が例えば、<11-20>方向に4度程度のオフ角を有する(000-1)面であってもよい。
 次に、n+型炭化珪素基板1の(000-1)面上に、1.0×1016cm-3の不純物濃度で窒素がドーピングされた厚さ10μmのn型炭化珪素エピタキシャル層2をエピタキシャル成長させる。
 次に、n型炭化珪素エピタキシャル層2の表面上に、フォトリソグラフィ技術によって所望の開口部を有するマスクを、例えばレジストで形成する。そして、このレジストマスクをマスクとしてイオン注入法によってp型の不純物、例えばアルミニウム原子をイオン注入する。それによって、n型炭化珪素エピタキシャル層2の表面領域の一部に、p+型領域10が形成される。次に、p+型領域10を形成するためのイオン注入時に用いたマスクを除去する。
 次に、n型炭化珪素エピタキシャル層2の表面上にに、p型炭化珪素エピタキシャル層11を、例えば0.5μmの厚さでエピタキシャル成長させる。このとき、例えば、p型炭化珪素エピタキシャル層11の不純物濃度が2.0×1016cm-3となるようにエピタキシャル成長させてもよい。
 次に、p型炭化珪素エピタキシャル層11の表面上に、フォトリソグラフィ技術によって所望の開口部を有するマスクを、例えばレジストで形成する。ここで、後に形成されるめっき膜16と保護膜15とソース電極8がお互いに接する3重点部分の直下に開口部を有しないマスクを形成する。そして、このレジストマスクをマスクとしてイオン注入法によってn型の不純物、例えば窒素をイオン注入する。それによって、p型炭化珪素エピタキシャル層11の表面領域の一部に、n+型ソース領域4が形成される。ここで、n+型ソース領域4は、3重点部分の直下のp型炭化珪素エピタキシャル層11上には形成されない。次に、n+型ソース領域4を形成するためのイオン注入時に用いたマスクを除去する。
 次に、p型炭化珪素エピタキシャル層11の表面上に、フォトリソグラフィ技術によって所望の開口部を有するマスクを、例えばレジストで形成する。ここで、後に形成されるめっき膜16と保護膜15とソース電極8がお互いに接する3重点部分の直下に開口部を有するマスクを利用する。そして、このレジストマスクをマスクとしてイオン注入法によってp型の不純物、例えばアルミニウムをイオン注入する。それによって、p型炭化珪素エピタキシャル層11の表面領域の一部に、p++型コンタクト領域5が形成される。次に、p++型コンタクト領域5を形成するためのイオン注入時に用いたマスクを除去する。
 次に、p型炭化珪素エピタキシャル層11の表面上に、フォトリソグラフィ技術によって所望の開口部を有するマスクを、例えばレジストで形成する。そして、このレジストマスクをマスクとしてイオン注入法によってn型の不純物、例えば窒素をイオン注入する。それによって、p型炭化珪素エピタキシャル層11の表面領域の一部に、n型ウェル領域12が形成される。次に、n型ウェル領域12を形成するためのイオン注入時に用いたマスクを除去する。
 次に、n+型ソース領域4、p++型コンタクト領域5およびn型ウェル領域12を活性化させるための熱処理(アニール)を行う。このときの熱処理温度および熱処理時間は、それぞれ1620℃および2分間であってもよい。
 n+型ソース領域4、p++型コンタクト領域5およびn型ウェル領域12を形成する順序は種々変更可能である。
 次に、炭化珪素半導体基体のおもて面側を熱酸化し、ゲート絶縁膜6を100nmの厚さで形成する。この熱酸化は、酸素(O2)と水素(H2)の混合雰囲気中において1000℃程度の温度の熱処理によって行ってもよい。これにより、p型炭化珪素エピタキシャル層11およびn型炭化珪素エピタキシャル層2の表面に形成された各領域がゲート絶縁膜6で覆われる。
 次に、ゲート絶縁膜6上に、ゲート電極7として、例えばリン(P)がドープされた多結晶シリコン層を形成する。次に、多結晶シリコン層をパターニングして選択的に除去し、p型炭化珪素エピタキシャル層11のn+型ソース領域4とn型ウェル領域12に挟まれた部分上に多結晶シリコン層を残す。このとき、n型ウェル領域12上に多結晶シリコン層を残してもよい。この残った多結晶シリコン層が、ゲート電極7となる。
 次に、ゲート電極7を覆うように、層間絶縁膜13として、BPSG膜100を形成する。例えば、ボロンリンガラス(BPSG)を1.0μmの厚さで成膜する。次に、BPSG膜100の平担化を行うためにリフロー処理を行う。リフロー処理後、BPSG膜100を選択的に除去して、コンタクトホールを形成する。
 次に、ソース電極8として、Ti膜20、Al-Si膜21を形成する。例えば、スパッタ法によりTi膜20を形成して、スパッタ法により、Ti膜20上部へAl-Si膜21を形成する。
 次に、n+型炭化珪素基板1の表面(炭化珪素半導体基体の裏面)に、ドレイン電極9として、例えばニッケル膜を成膜する。そして、例えば970℃の温度で熱処理し、n+型炭化珪素基板1とドレイン電極9とのオーミック接合を形成する。
 次に、ニッケル膜の表面に、ドレイン電極9として例えばチタン、ニッケル(Ni)および金(Au)をこの順に成膜する。次に、炭化珪素半導体基体のおもて面側の、ソース電極8上に選択的に保護膜15を形成する。
 次に、保護膜15をマスクとして用いて、ソース電極8上の保護膜15がない部分に、選択的にめっき膜16を形成する。これにより、めっき膜16は、めっきがエッジ終端構造部に流れることなくソース電極8上に形成される。次に、例えば、高分子樹脂等を用いて、めっき膜16と保護膜15とが隣接する部分を覆うように第2の保護膜17を選択的に形成する。
 次に、保護膜15および第2の保護膜17を半田付け時のマスクとして用いて、めっき膜16に半田19を介してピン状電極18を形成する。これにより、図1に示したMOSFETが完成する。
 以上、説明したように、実施の形態によれば、めっき膜と保護膜とソース電極とがお互いに接する3重点部分の直下にチャネルを形成しないことにより、応力が集中して掛かる部分に電流が流れることがなくなり、応力が集中して掛かる部分による半導体装置の特性劣化が抑制される。このため、半導体装置の信頼性の低下が抑制される。また、応力が集中して掛かる部分に電流が流れることがなくなるため、例え、3重点部分の直下の層間絶縁膜が割れてしまっても、ゲート電極とソース電極とがショートし半導体装置が不良になることを抑制できる。
 本発明の実施の形態では、MOSFETを例に説明したが、これに限らず、IGBTなどのMOS型半導体装置や、層間絶縁膜の段差により素子構造に応力集中が生じる構成の半導体装置など様々な構成の半導体装置に適用可能である。また、上述した各実施の形態では、ワイドバンドギャップ半導体として炭化珪素を用いた場合を例に説明したが、窒化ガリウム(GaN)など炭化珪素以外のワイドバンドギャップ半導体を用いた場合においても同様の効果が得られる。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
 以上のように、本発明にかかる半導体装置は、電力変換装置や種々の産業用機械などの電源装置などに使用される高耐圧半導体装置に有用であり、特に、おもて面電極の電位を外部に取り出す配線材としてピン状電極を用いた炭化珪素半導体装置に適している。
  1 n+型炭化珪素基板
  2 n型炭化珪素エピタキシャル層
  4 n+型ソース領域
  5 p++型コンタクト領域
  6 ゲート絶縁膜
  7 ゲート電極
  8 ソース電極
  9 ドレイン電極
 10 p+型領域
 11 p型炭化珪素エピタキシャル層
 12 n型ウェル領域
 13 層間絶縁膜
 14 PSG膜
 15 保護膜
 16 めっき膜
 17 第2の保護膜
 18 ピン状電極
 19 半田
 20 Ti膜
 21 Al-Si膜
100 BPSG膜

Claims (4)

  1.  シリコンよりもバンドギャップが広い半導体からなる第1導電型ワイドバンドギャップ半導体基板と、
     前記第1導電型ワイドバンドギャップ半導体基板のおもて面に堆積された、前記第1導電型ワイドバンドギャップ半導体基板よりも不純物濃度の低い第1導電型ワイドバンドギャップ半導体堆積層と、
     前記第1導電型ワイドバンドギャップ半導体堆積層の、前記第1導電型ワイドバンドギャップ半導体基板側に対して反対側の表面層に選択的に設けられた第2導電型半導体領域と、
     前記第1導電型ワイドバンドギャップ半導体堆積層および前記第2導電型半導体領域の表面に設けられた、シリコンよりもバンドギャップが広い半導体からなる第2導電型ワイドバンドギャップ半導体層と、
     前記第2導電型ワイドバンドギャップ半導体層内の前記第1導電型ワイドバンドギャップ半導体堆積層上に選択的に設けられた第1の第1導電型領域と、
     前記第2導電型ワイドバンドギャップ半導体層内に選択的に設けられた第2の第1導電型領域と、
     前記第2の第1導電型領域および前記第1の第1導電型領域の上にゲート絶縁膜を介して設けられたゲート電極と、
     前記第2導電型ワイドバンドギャップ半導体層および前記第2の第1導電型領域に接するソース電極と、
     前記ゲート電極を覆う層間絶縁膜と、
     前記第1導電型ワイドバンドギャップ半導体基板の裏面に設けられたドレイン電極と、
     前記ソース電極上に、選択的に設けられた保護膜と、
     前記ソース電極上の、前記保護膜が設けられていない部分に、選択的に設けられためっき膜と、
     前記めっき膜に半田を介して接続された、外部信号をとり出すピン状電極と、
    を備え、
     前記めっき膜と前記保護膜と前記ソース電極がお互いに接する3重点部分の直下にチャネルが設けられていないことを特徴とする半導体装置。
  2.  前記3重点部分の直下に前記チャネルが設けられていないことは、
     前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に前記第2導電型半導体領域が設けられ、
     前記第2導電型ワイドバンドギャップ半導体層内に、前記第1の第1導電型領域が設けられ、
     前記第2導電型ワイドバンドギャップ半導体層内に、前記第2の第1導電型領域が設けられていないことであることを特徴とする請求項1に記載の半導体装置。
  3.  シリコンよりもバンドギャップが広い半導体からなる第1導電型ワイドバンドギャップ半導体基板のおもて面に、前記第1導電型ワイドバンドギャップ半導体基板よりも不純物濃度の低い第1導電型ワイドバンドギャップ半導体堆積層を形成する工程と、
     前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に、第2導電型半導体領域を選択的に形成する工程と、
     前記第1導電型ワイドバンドギャップ半導体堆積層の表面に、シリコンよりもバンドギャップが広い半導体からなる、第2導電型ワイドバンドギャップ半導体層を形成する工程と、
     前記第2導電型ワイドバンドギャップ半導体層の内部の、前記第1導電型ワイドバンドギャップ半導体堆積層上に第1の第1導電型領域を選択的に形成する工程と、
     前記第2導電型ワイドバンドギャップ半導体層の内部に第2の第1導電型領域を選択的に形成する工程と、
     前記第2の第1導電型領域および前記第1の第1導電型領域の上にゲート絶縁膜を介してゲート電極を形成する工程と、
     前記第2導電型ワイドバンドギャップ半導体層および前記第2の第1導電型領域に接するソース電極を形成する工程と、
     前記ゲート電極を覆う層間絶縁膜を形成する工程と、
     前記第1導電型ワイドバンドギャップ半導体基板の裏面にドレイン電極を形成する工程と、
     前記ソース電極上に、選択的に保護膜を形成する工程と、
     前記ソース電極上の、前記保護膜が形成されていない部分に、選択的にめっき膜を形成する工程と、
     前記めっき膜に半田を介して接続された、外部信号をとり出すピン状電極を形成する工程と、
     を含み、
     前記第2の第1導電型領域を選択的に形成する工程において、前記めっき膜と前記保護膜と前記ソース電極がお互いに接する3重点部分の直下にチャネルを形成しないことを特徴とする半導体装置の製造方法。
  4.  前記第2の第1導電型領域を選択的に形成する工程において
     前記3重点部分の直下に前記チャネルを形成しないことは、
     前記第1導電型ワイドバンドギャップ半導体堆積層の表面層に前記第2導電型半導体領域を形成し、
     前記第2導電型ワイドバンドギャップ半導体層内に、前記第1の第1導電型領域を形成し、
     前記第2導電型ワイドバンドギャップ半導体層内に、前記第2の第1導電型領域を形成しないことであることを特徴とする請求項3に記載の半導体装置の製造方法。
PCT/JP2016/073366 2015-09-17 2016-08-08 半導体装置および半導体装置の製造方法 WO2017047283A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017539771A JP6350760B2 (ja) 2015-09-17 2016-08-08 半導体装置および半導体装置の製造方法
CN201680011837.3A CN107408575B (zh) 2015-09-17 2016-08-08 半导体装置及半导体装置的制造方法
US15/692,690 US10147792B2 (en) 2015-09-17 2017-08-31 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-184247 2015-09-17
JP2015184247 2015-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/692,690 Continuation US10147792B2 (en) 2015-09-17 2017-08-31 Semiconductor device and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2017047283A1 true WO2017047283A1 (ja) 2017-03-23

Family

ID=58289069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073366 WO2017047283A1 (ja) 2015-09-17 2016-08-08 半導体装置および半導体装置の製造方法

Country Status (4)

Country Link
US (1) US10147792B2 (ja)
JP (1) JP6350760B2 (ja)
CN (1) CN107408575B (ja)
WO (1) WO2017047283A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080090A1 (ja) * 2021-11-05 2023-05-11 ローム株式会社 半導体パッケージ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012845A (ja) * 1998-06-22 2000-01-14 Fuji Electric Co Ltd 半導体装置
JP2004207509A (ja) * 2002-12-25 2004-07-22 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2012054294A (ja) * 2010-08-31 2012-03-15 Mitsubishi Electric Corp 半導体装置
JP2012191010A (ja) * 2011-03-10 2012-10-04 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2013232564A (ja) * 2012-04-27 2013-11-14 National Institute Of Advanced Industrial & Technology 半導体装置および半導体装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054752A (en) * 1997-06-30 2000-04-25 Denso Corporation Semiconductor device
JP4305401B2 (ja) * 2005-02-28 2009-07-29 セイコーエプソン株式会社 半導体装置
CN101868856B (zh) * 2007-09-21 2014-03-12 飞兆半导体公司 用于功率器件的超结结构及制造方法
CN103632965A (zh) * 2012-08-21 2014-03-12 深圳市力振半导体有限公司 一种制备沟槽栅控功率器件的方法
JP2014099444A (ja) * 2012-11-13 2014-05-29 Renesas Electronics Corp 半導体装置
CN105009295B (zh) * 2013-03-29 2017-10-10 富士电机株式会社 半导体装置及半导体装置的制造方法
JP6368921B2 (ja) * 2013-10-01 2018-08-08 パナソニックIpマネジメント株式会社 半導体装置
JP6705155B2 (ja) * 2015-11-13 2020-06-03 富士電機株式会社 半導体装置および半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012845A (ja) * 1998-06-22 2000-01-14 Fuji Electric Co Ltd 半導体装置
JP2004207509A (ja) * 2002-12-25 2004-07-22 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2012054294A (ja) * 2010-08-31 2012-03-15 Mitsubishi Electric Corp 半導体装置
JP2012191010A (ja) * 2011-03-10 2012-10-04 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2013232564A (ja) * 2012-04-27 2013-11-14 National Institute Of Advanced Industrial & Technology 半導体装置および半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080090A1 (ja) * 2021-11-05 2023-05-11 ローム株式会社 半導体パッケージ

Also Published As

Publication number Publication date
JP6350760B2 (ja) 2018-07-04
CN107408575A (zh) 2017-11-28
US10147792B2 (en) 2018-12-04
CN107408575B (zh) 2020-09-08
JPWO2017047283A1 (ja) 2018-01-25
US20180006122A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
US10991821B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP6561759B2 (ja) 半導体装置および半導体装置の製造方法
JP6052481B2 (ja) 半導体装置
JP6347309B2 (ja) 半導体装置および半導体装置の製造方法
JP6903931B2 (ja) 半導体装置および半導体装置の製造方法
JP6627359B2 (ja) 半導体装置および半導体装置の製造方法
JP7087280B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6863464B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP7013735B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2017092355A (ja) 半導体装置および半導体装置の製造方法
JP2015115373A (ja) 半導体装置および半導体装置の製造方法
WO2017208735A1 (ja) 半導体装置
JP6350760B2 (ja) 半導体装置および半導体装置の製造方法
WO2018135146A1 (ja) 半導体装置および半導体装置の製造方法
WO2019077877A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2016058660A (ja) 半導体装置
WO2019077878A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP7103435B2 (ja) 半導体装置および半導体装置の製造方法
JP2020047672A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2016004966A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846156

Country of ref document: EP

Kind code of ref document: A1